Theano provides two functions (theano.pp() and theano.printing.debugprint()) to print a graph to the terminal before or after compilation. These two functions print expression graphs in different ways: pp() is more compact and math-like, debugprint() is more verbose. Theano also provides pydotprint() that creates a png image of the function. You can read about them in printing – Graph Printing and Symbolic Print Statement.
Consider again the logistic regression but notice the additional printing instuctions. The following output depicts the pre- and post- compilation graphs.
import numpy
import theano
import theano.tensor as T
rng = numpy.random
N = 400
feats = 784
D = (rng.randn(N, feats).astype(theano.config.floatX),
rng.randint(size=N,low=0, high=2).astype(theano.config.floatX))
training_steps = 10000
# Declare Theano symbolic variables
x = T.matrix("x")
y = T.vector("y")
w = theano.shared(rng.randn(feats).astype(theano.config.floatX), name="w")
b = theano.shared(numpy.asarray(0., dtype=theano.config.floatX), name="b")
x.tag.test_value = D[0]
y.tag.test_value = D[1]
#print "Initial model:"
#print w.get_value(), b.get_value()
# Construct Theano expression graph
p_1 = 1 / (1 + T.exp(-T.dot(x, w) - b)) # Probability of having a one
prediction = p_1 > 0.5 # The prediction that is done: 0 or 1
xent = -y * T.log(p_1) - (1 - y) * T.log(1 - p_1) # Cross-entropy
cost = xent.mean() + 0.01 * (w ** 2).sum() # The cost to optimize
gw,gb = T.grad(cost, [w, b])
# Compile expressions to functions
train = theano.function(
inputs=[x, y],
outputs=[prediction, xent],
updates={w: w - 0.01 * gw, b: b - 0.01 * gb},
name="train")
predict = theano.function(inputs=[x], outputs=prediction,
name="predict")
if any( [x.op.__class__.__name__=='Gemv' for x in
train.maker.fgraph.toposort()]):
print 'Used the cpu'
elif any( [x.op.__class__.__name__=='GpuGemm' for x in
train.maker.fgraph.toposort()]):
print 'Used the gpu'
else:
print 'ERROR, not able to tell if theano used the cpu or the gpu'
print train.maker.fgraph.toposort()
for i in range(training_steps):
pred, err = train(D[0], D[1])
#print "Final model:"
#print w.get_value(), b.get_value()
print "target values for D"
print D[1]
print "prediction on D"
print predict(D[0])
# Print the picture graphs
# after compilation
theano.printing.pydotprint(predict,
outfile="pics/logreg_pydotprint_predic.png",
var_with_name_simple=True)
# before compilation
theano.printing.pydotprint_variables(prediction,
outfile="pics/logreg_pydotprint_prediction.png",
var_with_name_simple=True)
theano.printing.pydotprint(train,
outfile="pics/logreg_pydotprint_train.png",
var_with_name_simple=True)
theano.printing.pprint(variable)
>>> theano.printing.pprint(prediction) # (pre-compilation)
gt((TensorConstant{1} / (TensorConstant{1} + exp(((-(x \\dot w)) - b)))),TensorConstant{0.5})
theano.printing.debugprint({fct, variable, list of variables})
>>> theano.printing.debugprint(prediction) # (pre-compilation)
Elemwise{gt,no_inplace} [@181772236] ''
|Elemwise{true_div,no_inplace} [@181746668] ''
| |InplaceDimShuffle{x} [@181746412] ''
| | |TensorConstant{1} [@181745836]
| |Elemwise{add,no_inplace} [@181745644] ''
| | |InplaceDimShuffle{x} [@181745420] ''
| | | |TensorConstant{1} [@181744844]
| | |Elemwise{exp,no_inplace} [@181744652] ''
| | | |Elemwise{sub,no_inplace} [@181744012] ''
| | | | |Elemwise{neg,no_inplace} [@181730764] ''
| | | | | |dot [@181729676] ''
| | | | | | |x [@181563948]
| | | | | | |w [@181729964]
| | | | |InplaceDimShuffle{x} [@181743788] ''
| | | | | |b [@181730156]
|InplaceDimShuffle{x} [@181771788] ''
| |TensorConstant{0.5} [@181771148]
>>> theano.printing.debugprint(predict) # (post-compilation)
Elemwise{Composite{neg,{sub,{{scalar_sigmoid,GT},neg}}}} [@183160204] '' 2
|dot [@183018796] '' 1
| |x [@183000780]
| |w [@183000812]
|InplaceDimShuffle{x} [@183133580] '' 0
| |b [@183000876]
|TensorConstant{[ 0.5]} [@183084108]
>>> theano.printing.pydotprint_variables(prediction) # (pre-compilation)
Notice that pydotprint() requires Graphviz and Python’s pydot.
>>> theano.printing.pydotprint(predict) # (post-compilation)
>>> theano.printing.pydotprint(train) # This is a small train example!