
.CookTutorialAryeh M. Friedmanaryeh@m-net.arbornet.org



.This document describes Cook version 2.34and was prepared 6 August 2013.This document describing the Cook program isCopyright © 2002 Aryeh M. FriedmanCook itself isCopyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Peter MillerThis program is free software; you can redistribute it and/or modify it under the terms ofthe GNU General Public License as published by the Free Software Foundation; eitherversion 3 of the License, or (at your option) anylater version.This program is distributed in the hope that it will be useful, but WITHOUT ANYWARRANTY;without eventhe implied warranty of MERCHANTABILITY or FITNESSFOR A PARTICULAR PURPOSE.See the GNU General Public License for moredetails.Youshould have receivedacopyofthe GNU General Public License along with thisprogram. If not, see <http://www.gnu.org/licenses/>.



Cook Tutorial1. BuildingProgramsIf you write simple programs (a fewhundred linesof code at most) compiling the program is oftenno more then something likethis:gcc foo.c -o fooIf you have a few files in your program you justdo:gcc foo.c ack.c -o fooBut what happens if some file that is beingcompiled is the output of an other program (likeusing yacc/lextoconstruct a command lineparser)? Obviouslyfoo.cdoes not exist beforefoo.yis processed by yacc.Thus you have todo:yacc foo.ycc foo.c ack.c -o fooWhat happens if say you modifyack.cbutdonot modifyfoo.y?You can skip the yacc step.Forasmall program likethe one above itispossible to remember what order you need to dostuffinand what needs to be done depending onwhat file you modify.Let’sadd one more complication let’ssay youhave a library that also needs to be "built" beforethe executable(s) is built. You need to not onlyremember what steps are needed to construct thelibrary object file but you also need to rememberthat it needs to be done you makeyourexecutables. Nowadd to this you also need tokeep track of different versions as well figuringout howtobuild different versions for differentplatforms and/or customers (say you supportWindows, Unix and have a Client, Server andtrial, desktop and enterprise versions of each andyou need to produce anyand all combination ofthings... that’s24different versions of the sameset of executables). Itnowbecomes almostimpossible to to remember howeach on is built.On top all this if you build it differently everytime you need to recompile the program there isno guarantee you will not introduce bugs due toonly the order stuffwas built in.And the above example is for a "small"applications (maybe 10 to 20 files) what happensif you have a medium or large project (100s or1000s of files) and 10+ or 100+ executables witheach one having 10+ different configurations.Itis clearly the number of possible ways to makethis approaches infinity very rapidly (in algorithmdesigner termsO(n!)). Therehas to be a easierway! Traditionally people have used a tool calledmaketo handle this complexity,but makehassome major flaws such that it is very hard if notimpossible to makeknowhow tobuild the entireproject without some super nasty and flawed"hacks". Inthe last fewyears a program calledCook has gained a small but growing popularityas a extremely "intelligent" replacement for make.2. DependencyGraphsClearly,for anybuild process the buildmanagement utility (e.g.cookormake)needs toknowthat for event Y to occur event X has tohappen first.This knowledge is called adependency. Insimple programs it is possible tojust tell the build manager that X depends on Y.This has a fewproblems:•Youcan not define generic dependenciesfor example you can not say that all.ofilesdepend on.cfiles of the same name.•Often there are intermediate files createdduring the build process for examplefoo.y→foo.c→foo.o→foo.This means that each intermediate fileneeds to be made before the final programis built.•In almost all projects there is no single wayof producing anygiv enfile type.Forexampleack.cdoes not need to becreated from theack.yfile butfoo.cdoes need to be created from thefoo.yfile.•Manytimes manythings depend on event XbutXcan not happen until Y happens.Forexample if you need to compile all the.cfiles into.ofiles before you can combinethem into a library then once the library ismade then andonlythen can you build allthe executables that need that library.•Depending on what variant of an executableyou are building you may have a totaldifferent set of dependencies for thatexecutable. For example the Microsoftversion of your program may be totallydifferent than the Unix one.Thus one of the most fundamental things anybuild manager needs to knowiscreate a "graph"of all the dependencies (i.e. what depends onwhat and what order stuffneeds to be built in).Obviously if you modify only a file or twoandrebuild the project you only need to recreate thosefiles that depend on the ones you changed.ForAryeh M. FriedmanPage 1



Cook Tutorialexample if I modifyfoo.ybutnotack.cthenack.cdoes not need to be recompiled butfoo.cafter it is recreated does.All buildmanagers knowhow todothis.3. Cookvs.MakeManytimes the contents of entire directoriesdepend on the building of everything in otherdirectories. Makehas traditionally done this with"recursive make". Thereis a basic flawwith thismethod though: if you "blindly" makeeachdirectory in some preset order you are doing stuffthat is either unneeded and/or may causeproblems in the build process down the road.Foramore complete explanation, see Recursive MakeConsidered Harmful1.Cook takes the opposite approach.It makes acompletedependencygraph of your entire projectthen does the entire "cook" at the root directory ofyour project.4. Teaching Cook aboutDependenciesEachnodein a dependencygraph has twobasicattributes. Thefirst is what other nodes (if any) itdepends on, and the second is a list of actionsneeded to be performed to bring the nodeup todate(bring it to a state in which anynodes thatdepend on it can use it’sproducts safely).One issue we have right offthe bat is which nodedo we start at.While by convention this node isusually called ’all’itdoes not have tobe, as wewill see later it might not evenhav eahard codedname at all.Once we knowwhere to start weneed somewayoflinking nodes together in thedependencygraph.In cook all this functionality is handled byrecipes.Inbasic terms a recipe is:•The name of the node so other nodes knowhowtolink to it (this name can bedynamic). Thisname is usually the nameof a file, but not always.1.Miller,P.A. (1998).Recursive MakeConsideredHarmful,AUUGN Journal of AUUG Inc., 19(1), pp.14-25.http://aegis.sourceforge.net/auug97.pdf•Alist of other recipes that need to be"cooked" before this recipe can beprocessed. Thebest way to think of this isto use the metaphor that cook is based on.That being in order to makemeal at a finerestaurant you need to makeeach dish.Foreach dish you need to combine theingredients in the right order at the righttime. You keep dividing up the task untilyou get to a task that does not depend onsomething else likeseeing if you haveenough eggs to makethe bread.Adependencygraph for building a softwareproject is almost identical except theingredientsare source code not food.•Alist of actions to perform once all theingredient are ready.Again using thecooking example, in order to makeaFrenchcream sauce you gather all the ingredients(in cook’scases the output from otherrecipes) and then andonlythen put thebutter in the pan with the the flour andbrown it, then slowly mix the milk in, andfinally add in the cheese.So in summary we have the following parts of arecipe:•The name of the recipe’snode in the graph•Alist of ingredients needed to cook therecipe•Alist of steps performed to cook the recipeFrom the top levelviewinorder to makeahypothetical project we do the following recipes:•We repeatedly process dependencygraphnodes until we get aleafnode (one thatdoes not have any ingredients). Namelywego from the general to the specific not theother way.•Visit theallrecipe which hasprogram1andprogram2as its ingredients•Visit theprogram1node which hasprogram1.oandlibutils.aas itsingredients•Visitprogram1.owhich hasprogram1.candprogram1.has itsingredients•Visitprogram1.cto discoverthat it is aleaf node, because the file already exists weneed to do nothing to create it.Aryeh M. FriedmanPage 2



Cook Tutorial•Visitprogram1.hto discoverthat it is aleaf node, because the file already exists weneed to do nothing to create it.•Nowthat we have all the ingredients forprogram1.owe can cook it with acommand something likegcc -c program1.c \-o program1.o•Visit thelibutils.anode which haslib1.oas its only ingredient.•Visitlib1.cto discoverthat it is a leafnode, because the file already exists weneed to do nothing to create it.•Nowthat we have all the ingredients forlib1.owe can cook it with a commandsomething likegcc -c lib1.c -o lib1.o•Nowthat we have all the ingredients forlibutils.awe can cook it with acommand something likerm libutils.aar cq libutils.a lib1.o•Nowthat we have all the ingredients forprogram1we can cook it with acommand something likegcc program1.o libutils.a \-o program1•Visit theprogram2node which hasprogram2.oandlibutils.aas itsingredients•Visitprogram2.owhich hasprogram2.candprogram1.has itsingredients•Visitprogram2.cto discoverthat it is aleaf node, because the file already exists weneed to do nothing to create it.•Visitprogram2.hto discoverthat it is aleaf node, because the file already exists weneed to do nothing to create it.•Nowthat we have all the ingredients forprogram2.owe can cook it with acommand something likegcc -c program2.c \-o program2.o•There is no need to visit thelibutils.anode, or anyofits ingredient nodes,because Cook remembers that theyhav ebeen brought up to date already.•Nowthat we have all the ingredients forprogram2we can cook it with acommand something likegcc program2.o libutils.a \-o program2•Return to theallrecipe and find that wehave cooked all the ingredients and thereare no other actions for it.We are done andour entire project is built!Nowwhat happens if I say modifyprogram2.call we have todoiswalk to the entire graph fromalland we find thatprogram2.chas changed,and do anynode which depends onprogram2.cneeds to be brought up to date,and anynodes which depend onthem,and so on.In this example, this would beprogram2.c→program2.o→program2→all.5. RecipeSyntaxAll statements, recipes and otherwise, are in theform ofstatement;Note the terminating simicolon (;). Anexamplestatement isecho aryeh;The only time the the simicolon (;)isnot neededis in compound statements surrounded by{curlybraces}.Ingeneral the convention is to followthe same general form that C uses, as it is withmost modern programming languages.Thismeans that for the main part almost everythingyou have learned about writing legalstatementsworks just fine in cook.The only exception arethe[square brackets]used instead of(parentheses)in most cases.The general form of a recipe, there are someadvanced options that do not fit well into thisformat, is:name:ingredients{actions}Note: the actions and ingredients are optional.Here is a recipe from the above example:program1.o: program1.c program1.h{gcc -c program1.c-o program1.o;}The only thing to remember here is thatAryeh M. FriedmanPage 3



Cook Tutorialprogram1.ceither has to exist or Cook needsto knowhow tocook it.If you reference aningredient that Cook does not knowhow tocookyou get the following error:cook: program1: don’t know howcook: cookfile: 1: "program1"not derived due to errorsderiving "program1.o"All this says is there is no algorithmic way tobuildexample1.othat Cook can find.Acookbookfile can contain zero or more recipes.If there is nodefaultrecipe (the first recipe whosename is hard coded) you get the following error:cook: no default targetMost of the time this just means that Cook cannotfigure out what the "concrete" name of a recipe isbased solely by reading the cookbook.By defaultcook looks for the cookbook in "Howto.cook"[note 1].6. ASample ProjectForthe remainder of the tutorial we will be usingthe following sample project source tree:ProjectHowto.cookliblib1.clib2.clib.hprog1src1.csrc2.cmain.cprog2src1.csrc2.cmain.cdocprog1manualprog2manualThe final output of the build process will becompletely working and installed executables ofprog1 and prog2 installed in /usr/local/bin and thedocumentation being placed in/usr/local/share/doc/myproj.7. OurFirst CookbookThe first step in making a cookbook is to sketchout the decencies in our sample project the graphwould be:lib1.clib2.clib.hlib1.olib2.olib/lib.abin/prog2src1.cmain.csrc2.cmain.osrc1.osrc2.osrc2.ybin/prog1main.csrc1.csrc2.cmain.osrc1.osrc2.oNowweknowenough to write the first version ofour cookbook.The cookbook which followsdoesn’tactually cook anything, because itcontains ingredients and no actions.We will addthe actions needed in a later section.Here it is:/* top level target */all: /usr/local/bin/prog1/usr/local/bin/prog2/usr/local/share/doc/prog1/manual/usr/local/share/doc/prog2/manual;/* where to install stuff *//usr/local/bin/prog1:bin/prog1 ;/usr/local/bin/prog2:bin/prog2 ;/usr/local/share/doc/prog1/manual:doc/prog1/manual ;/usr/local/share/doc/prog2/manual:doc/prog2/manual ;/* how to link each program */bin/prog1:prog1/main.oprog1/src1.oprog1/src2.olib/liblib.a ;bin/prog2:prog2/main.oprog2/src1.oprog2/src2.olib/liblib.a ;Aryeh M. FriedmanPage 4



Cook Tutorial/* how to use yacc */prog2/src2.c: prog2/src2.y ;/* how to compile sources */prog1/main.o: prog1/main.c ;prog1/src1.o: prog1/src1.c ;prog1/src2.o: prog1/src2.c ;prog2/main.o: prog2/main.c ;prog2/src1.o: prog2/src1.c ;prog2/src2.o: prog2/src2.c ;lib/src1.o: lib/src1.c ;lib/src2.o: lib/src2.c ;/* include file dependencies */prog1/main.o: lib/lib.h ;prog1/src1.o: lib/lib.h ;prog1/src2.o: lib/lib.h ;prog2/main.o: lib/lib.h ;prog2/src1.o: lib/lib.h ;prog2/src2.o: lib/lib.h ;lib/src1.o: lib/lib.h ;lib/src2.o: lib/lib.h ;/* how to build the library */lib/liblib.a:lib/src1.olib/src2.o ;In order to cook this cookbook just type thecookcommand in the same directory as the cookbookis in.8. Softcoding RecipesOne of the most glaring problems with this firstversion of our cookbook is it hard codesev erything. Thishas twoproblems:•We hav eto be super verbose in howwedescribe stuffsince we have tospecifyev ery single recipe by hand.•If we add newfiles (maybe we add a thirdexecutable to the project) we have torewrite the cookbook foreveryfile we add.Fortunately,Cook has a way of automating thebuild with implicit recipes.It has a way of sayinghowtomove from anyarbitrary.cfile to its.ofile.Cook provides several methods for being able tosoft code these relationships.This sectiondiscusses file "patterns" that can be used to dopattern matching on what recipe to cook for agivenfile.Note on pattern matching notation used in thissection:[string]means the matched pattern.The first thing to keep in mind about cook’spattern matching is once a pattern is matched itwill have the same value for the remainder of therecipe. Sofor example if we matchedprog/[src1].c then anyother reference to thatpattern will also return src1.Forexample:prog/[src1].o: prog/[src1].o ;if we matchedsrc1on the first match(prog1/[src1].o)then we will always matchsrc1in this recipe (prog1/[src1].c).Cook uses the percent (%)character to denotematches of the relative file name (no path).Thusthe above recipe would be written:prog/%.o: prog/%.c ;Cook also lets you match the full path of a file, orparts of the path to a file.This done with%nwherenis a part number.For example/usr/local/bin/prog1could match the pattern/%1/%2/%3/%with the parts be assigned%1 usr%2 local%3 bin%prog1Note that the final component of the path has non(there is no%4forprog1). Ifwe want toreference the whole path, Cook uses %0 as aspecial pattern to do this./usr/local/bin/prog1could match the pattern%0%with the parts be assigned%0 /usr/local/bin/%prog1Patterns are connected together thus%0%.cwillmatch any.cfile in anypattern.Let’srewrite the cookbook for our sample projectusing pattern matching.The relevant portions ofour cookbook are replaced by/* how to use yacc */%0%.c: %0%.y;/* include file dependencies */%0%.c: lib/lib.h;/* how to compile sources */%0%.o: %0%.c;Aryeh M. FriedmanPage 5



Cook TutorialWhen constructing the dependencygraph Cookwill match the the first recipe it sees that meets allthe requirements to meet a givenpattern. I.e.ifwe have a pattern forprog1/%.cand one for%0%.oand it needs to find the right recipe forprog1/src.oit will match the one that appearsfirst in the cookbook.So if the first one is%0%.cthen it does that recipe evenifwemeant for it tomatchprog1/%.c.9. ArbitraryStatementsand VariablesAnystatement that is not a recipe, and not astatment inseide a recipe, is executed as soon as itis seen.Forexample I can have aHowto.cookfile that only contains the following line:echo Aryeh;and when everIise thecookcommand it willprint my name.This in and upon it self is quite pointless but itdoes give a clue about howwecan set somecookbook-wide values. Nowthe question is howdo we symbolically represent those variables.Cook has only one type of variable and that is alist of string literals, i.e."ack","foo","bar",etc.There are no restrictions on howyou namevariables, except theycan not be reserved words,this is pretty close to the restrictions mostprogramming languages have.There is one majordifference though: variables can start withnumbers and contain punctuation characters.Additionally you can vary variable names, i.e. thename of the actual variable can use a variableexpression (this is hard to explain but easy toshowwhich we will do in a fewparagraphs).All variables, when queried for their value, are[in square brackets]for example if the "name"variable contains "Aryeh" then:echo [name];Has exactly the same result as the previousexample. Variables are simply set by usingvar=value;Forexample:name = Aryeh;echo [name];Let’ssay I need to have two variables called’prog1_obj’ and ’prog2_obj’ that contain a list ofall the .o ingredients in the prog1 and prog2directories respectively.Obviously the sameoperation that produces the value of prog1_obj isidentical to the one that produces prog2_objexcept it operates on a different directories.Sowhythen do we need twodifferent operations todo the same thing, this violates the principle ofanygiv enoperation it should only occur in oneplace. Inreality all we need to do is have somewayofchanging the just the variable name andnot the values it produces.In cook we do thiswith something like[[dir_name]_obj]. Theactualprocedure for getting the list of files will becovered in the "control structures" section.Let’srevise some sections of our sample project’scookbook to takeadvantage of variables:/* where to install stuff */prefix = /usr/local;idoc_dir = [prefix]/share/doc;ibin_dir = [prefix]/bin;/* top level target */all:[ibin_dir]/prog1[ibin_dir]/prog2[idoc_dir]/prog1/manual[idoc_dir]/prog2/manual;/* where to install each program */[ibin_dir]/%: bin/% ;[idoc_dir]/%/manual: doc/%/manual ;As you can see we didn’tmakethe cookbook anysimpler because we do not knowhow tointelligently set stuffbased on what the actual filestructure of our project.The only thing we gainhere is the ability to change where we install stuffvery quickly be just changing install_dir.Wealsogain a little flexibility in howwename thedirectories in our source tree.10. UsingBuilt-inFunctionsIf all you could do was set variables to staticvalues and do pattern matching cook would not bevery useful, i.e. every time we add a newsourcefile to our project we need to rewrite thecookbook. Weneed some way to extract usefuldata from variables and leave out what we do notwant. For example if we want to knowwhat allthe .c files in the prog1 directory are we just askfor all files that match prog1/%.c.We could usethe match_mask built-in function to extract theneeded sublist of files.Built-in functions can domanyother manipulations of our source treecontents and howtoprocess them.In general Iwill introduce a givenbuilt-in function as weencounter them.Aryeh M. FriedmanPage 6



Cook TutorialAs far as cook is concerned, for the most part,functions and variables are treated identically.This means anywhere where you would use avariable you can use a function.In general afunction is called likethis:[func arg1 arg2 ... argN]Forexample:name = [foobar aryeh];11. Source Tree ScanningThe first thing we need to do to automate theprocess of handling newfiles is to collect the listof source files.In order to do this we need to askthe operating system to give usalist of all files inadirectory and all it’ssubdirectories. InUnix thebest way to do this is with the find(1) command.Thus to get a complete list of all files in say thecurrent directory we do:find . -printor anyvariation thereof.Great, nowhow doweget the output of find intoavariable so cook can use it.Well, thecollectfunction does this.We then just assign the resultsofcollectto a list of files, build experts liketocall this the manifest.So here is howweget themanifest:manifest = [stripdot[collect find . -print]];That is all nice and well but howdoweget the listof source files inprog1only,for example.There is a function calledmatch_maskthatdoes this.Thematch_maskfunction returns all"words" that match some pattern in our list.Forexample to get a list of all.cfiles in our projectwe do:src = [match_mask %0%.c[manifest]];It is fine to knowwhat files are already in oursource tree but what we really want to do is findthe list of files that need to be cooked. Weuse thefromtofunction to do this.Thefromtofunction takes all the words in our list andtransforms all the names which match to someother name.Forexample to get a list of all the.ofiles we need to cook we do:obj = [fromto %0%.c %0%.o[src]];It is rare that we need to knowabout the existenceof.cfiles since in most cases, unless theyarederivedfrom cooking something else, theyeitherexist or theydonot exist. Inthe case of them notexisting the.otarget for that source should fail.Forthis reason we really do not need asrcvariable at all.Remember I mentioned that afunction call can be used anywhere a variable can.This means that we can do thematch_maskcallin the same line that we do the fromto.Thus thenewstatement is:obj = [fromto %0%.c %0%.o[match_mask %0%.c[manifest]]];Time to update some sections of our sampleproject’scookbook one more time:/* info about our files */manifest =[collect find . -print];obj = [fromto %0%.c %0%.o[match_mask %0%.c[manifest]]];/* how to build each program */prog1_obj = [match_maskprog1/%.o [obj]];prog2_obj = [match_maskprog2/%.o [obj]];bin/%: [%_obj] lib/lib.a;/* how to build the library */lib_obj = [match_mask lib/%.o[obj]];lib/lib.a: [lib_obj];The important thing to observehere is that it isnowpossible to add a source file to one of theprobram or library directories and Cook willautomagically notice, without anyneed to modifythe cookbook.It doesn’tmatter whether there are3files or 300 in these directories, the cookbook isthe same.12. FlowControlIf there was no conditional logic in programmingwould be rather pointless, who wants to write Iprogram that can only do something once, thesame is true in cook.Even though the stuffweneed to conditional in a build is often very trivialas far as conditional logic goes, namely there areif statements and the equivalent of while loopsand thats all.If statements are pretty straight forward. Ifyouare used to C, C++,etc,the only surprise is theneed for thethenkeyword. Hereis a example ifstatement:if [not [count [file]]] thenecho no file provided;The count function returns the number of wordsAryeh M. FriedmanPage 7



Cook Tutorialin the "file" list and the not function is true if theargument is 0.Other then that the if statementworks much the way you would expect it to.Cook has only one type of loop that being theloopstatement and it takes no conditions.Aloop is terminated by theloopstopstatement(likeaCbreakstatement). Otherthen that loopspretty much work the way you expect them to.Here is an example loop:/* set the loop "counter" */list = [kirk spock 7of9janeway worf];/* do the loop */loop word = [list]{/* print the word */echo [word];}13. SpecialVariablesLikemost scripting languages Cook has a set ofpredefined variables. Whilemost of them areused internally by Cook and not by the user,oneof them deserves special mention and that istarget.Thetargetvariable has no meaningout side of recipes but inside recipes it refers tothe current recipe’starget’s"real" name, i.e. theone that Cook "thinks" it is currently building, notthe soft coded name we provided in thecookbook. For example in our sample project’scook book if we where compilinglib/src1.cintolib/src.othe%0%.o: %0%.c;recipewould, as far as Cook is concerned, actually belib/src1.o: lib/src1.c;The recipename, and thus the[target],ofthis is set tothelib/src.ostring.There are other special variables described in theCook User Guide.Youmay want to look them upand use them when you start writing moreadvanced cookbooks.14. SuperSoft codingNowweknowenough so we can makeCookhandle building an arbitrary number of programsin our sample project.Note the followingexample assumes that all program directoriescontain amain.cfile and no other directorycontains it.The best way to understand what isneeded it to look at the sample cookbook for thisline by line.So here are the rewritten sections ofour sample cookbook:/* names of the programs */progs = [fromto %/main.c %[match_mask %/main.c[manifest]]];/* top level target */all:[addprefix [ibin_dir]/[progs]][prepost [idoc_dir]/ /manual[progs]];/* how to build each program */loop prog = [progs]{[prog]_obj = [match_mask[prog]/%.o [obj]];}bin/%: [%_obj] lib/lib.a;The basic idea is that we use a loop to create thelist of.ofiles for all programs and then we usevariable variable names to reference the right onein the recipe.15. ScanningforHiddenDecenciesIn most real programs most.cfiles have adifferent set of#includelines in them.Forexampleprog1/src1.cmight includeprog1/hdr1.hbutprog1/src2.cdoes not.So far we have conveniently avoided this fact onthe assumption that once made.hfiles don’tchange. Anyexperience with a non-trivial projectshowthis is not true.So howdoweautomaticallyscan for these dependencies?It would not onlydefeat the purpose of soft coding but would be apain in the butt to have toencode this in thecookbook.One way of doing it is to scan each.cfor#includelines and say anythat are foundrepresent "hidden" dependencies.It would befairly trivial to create a shell script or small Cprogram that does this.Cook though has beennice enough to include program that does this forus in most cases that are not insanely non-trivial.There are several methods of usingc_inclwewill only coverthe "trivial" method here, if youneed higher performance refer to the Cook UserGuide, it has a whole chapter on includedependencies.Thec_inclprogram essentially just prints a listof#includefiles it finds in its argument. TodoAryeh M. FriedmanPage 8



Cook Tutorialthis just do:c_inclprog.cNowall we have todoishav eCookcollectthis output on the ingredients list of our recipeand boom we have a list of our hiddendependencies. Hereis the rewritten portion of oursample cookbook for that:/* how to build each program andinclude file dependencies */%0%.o: %0%.c[collect c_incl -api %0%.c];Thec_incl -apioption means if the filedoesn’texist, just ignore it.16. RecipeActionsNowthat we have all the decencies soft coded allwe have todoactually build our project is to telleach recipe howtoactually cook the target fromthe ingredients.This is done by adding actions toarecipe. Theactions are nothing more "simple"statements that are bound to a recipe.This isdone by leaving offthe trailing semicolon (;)onthe recipe and putting the actions inside{curlybraces}.This is best shown by example. Sohere is our final cookbook for our sample project:/* where to install stuff */prefix = /usr/local;idoc_dir = [prefix]/share/doc;ibin_dir = [prefix]/bin;/* info about our files */manifest =[collect find . -print];obj = [fromto %0%.c %0%.o[match_mask %0%.c[manifest]]];/* names of the programs */progs = [fromto %/main.c %[match_mask %/main.c[manifest]]];/* top level target */all:[addprefix [ibin_dir]/[progs]][prepost [idoc_dir]/ /manual[progs]];/* how to build each program */loop prog = [progs]{[prog]_obj = [match_mask[prog]/%.o [obj]];}bin/%: [%_obj]{gcc [%_obj] -o [target];}/* how to build the library */lib_obj = [match_mask lib/%.o[obj]];lib/lib.a: [lib_obj]{rm [target];ar cq [target] [lib_obj];}/* how to "install" stuff */[ibin_dir]/%: bin/%{cp bin/% [target];}[idoc_dir]/%/manual: doc/%/manual{cp doc/%/manual [target];}/* how to compile sources*/%0%.o: %0%.c[collect c_incl -api %0%.c]{gcc -c %0%.c -o [target];}17. Advanced FeaturesEven though the tutorial part of this document isdone, I feel it is important to just mention someadvanced features not covered in the tutorial.Except for just stating the basic nature of thesefeatures I will not go into detail on anygiv enone.•Platform polymorphism.This is whereCook can automatically detect whatplatform you are on and do some filejuggling so that you build for that platform.•Support for private work areas.If you areworking within a change managementsystem, Cook knows howtoquery it foronly the files you need to work on.Thisincludes the automatic check-out and in ofprivate copies of those files.•Parallel builds. For large projects it ispossible to spread the build oversev eralprocessors or machines.Conditional recipes.It is possible toexecute a recipe one way if certainAryeh M. FriedmanPage 9



Cook Tutorialconditions are met and an other way if theyare not.Manymore that are not directly supported byCook but can easily be integrated using shellscripts.18. ContactsIf you find anybugs in this tutorial please send abugreport to Aryeh M. Friedman<aryeh@m-net.arbornet.org>.The Cook web site ishttp:-//miller.emu.id.au/pmiller/cook/If you want to contact Cook’sauthor,send emailto Peter Miller<pmiller@opensource.org.au>.Aryeh M. FriedmanPage 10


