
.CookAFile Construction ToolUser GuidePeter Millerpmiller@opensource.org.au

.This document describes Cook version 2.34and was prepared 6 August 2013.This document describing the Cook program, and the Cook program itself, areCopyright © 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Peter MillerThis program is free software; you can redistribute it and/or modify it under the terms ofthe GNU General Public License as published by the Free Software Foundation; eitherversion 3 of the License, or (at your option) anylater version.This program is distributed in the hope that it will be useful, but WITHOUT ANYWARRANTY;without eventhe implied warranty of MERCHANTABILITY or FITNESSFOR A PARTICULAR PURPOSE.See the GNU General Public License for moredetails.Youshould have receivedacopyofthe GNU General Public License along with thisprogram. If not, see <http://www.gnu.org/licenses/>.

Cook UserGuide1. IntroductionThis document describescook,amaintenance tool designed to construct files.Cookmay be used tomaintain consistencybetween executable files and the associated source files that are used to generate them.The consistencyisdesignated by the relative last-modified times of files and is thus automatically adjustedeach time a file is edited, compiled or otherwise modified.Cookvalidates the consistencyofasystem offiles and executes all commands necessary to maintain that consistency.Cookis a tool for constructing files.It is givenaset of files to create, and instructions detailing howtoconstruct them.In anynon-trivial program there will be prerequisites to performing the actions necessaryto creating anyfile, such as extraction from a source-control system.Cookprovides a mechanism to definethese.When a program is being developed or maintained, the programmer will typically change one file of severalwhich comprise the program.Cookexamines the last-modified times of the files to see when theprerequisites of a file have changed, implying that the file needs to be recreated as it is logically out of date.Cookalso provides a facility for implicit recipes, allowing users to specify howtoform a file with a givensuffix from a file with a different suffix. For example, to createfilename.ofromfilename.c1.1 WhyYou Want ToUse Cook•Cook is a replacement for the traditionalmake(1) tool.•There is amake2cookutility included in the distribution to help convert makefiles into cookbooks.•Cook is more powerful than the traditionalmaketool.•Cook has true variables, not simple macros.•Cook has a simple but powerful string-based description language with manybuilt-in functions.Thisallows sophisticated filename specification and manipulation without loss of readability orperformance.•Cook has user defined functions.•Cook can build in parallel.•Cook can distribute builds across your LAN.•Cook is able to build your project with multiple parallel threads, with support for rules which must besingle threaded.It is possible to distribute parallel builds overyour LAN, allowing you to turn yournetwork into a virtual parallel build engine.•Cook is able to use fingerprints to supplement file modification times.This allows build optimizationwithout contorted rules.•Cook can be configured with an explicit list of primary source files.This allowthe dependencygraph to be constructed faster by not going down dead ends, and also allows better error messageswhen the graph can’tbeconstructed. Thisrequires an accurate source file manifest.•In addition to walking the dependencygraph, Cook can turn the input rules into a shell script, or aweb page.•Cook has specialcascadedependencies, allowing powerful include dependencyspecification,amongst other things.•And Cook doesn’tinterpret tab differently to 8 space characters!If you are putting together a source-code distribution and planning to write a makefile, consider writing acookbook instead.Although Cook takes a day or twotolearn, it is much more powerful and a bit moreintuitive than the traditionalmake(1) tool.Peter MillerPage 1

Cook UserGuide1.2 HowtoUse this ManualThis manual is divided into twoparts.The first part is tutorial introduction tocook.This part runs from chapter 4 to chapter 5.The second part is for reference and details precisely howcookworks. Thispart runs from chapter 6 tochapter 14.Users familiar with other programs similar tocookare advised to skim the tutorial part before diving intothe reference part.1.3 AncientHistor yCookwasoriginally developed because I was marooned on an operating system without anything evenvaguely resemblingmake(1). Thiswasin1988. SinceIhad to write my own, I added a fewimprovements.When I finally escaped back toUNIX,in1990, it took only twodays to portcookto SystemV.Ihave sincedeleted all code for that original operating system, although clues to its identity are still present.After I hadcookup onUNIX,the progress the world had made caught up with me.It was gratifying thatmanyofthe features other make-oid authors had thought necessary were either already present, or easilyand seamlessly added.Cookwaswritten with portability in mind.This does not means it is entirely portable, but it comes close.Cookhas been tested on numerousUNIXflavors. Thiswasmade much simpler in 1994 when I started usingthe GNU Autoconf utility.This means that when you obtain the sources for Cook, all you have todoisruntheconfigurescript included in the distribution and Cook will be configured for your system.See theBUILDINGfile in the source distribution for more information.In 1996 Cook had internationalization support added, so that users could have error messages and otherwarning and informational messages printed in their native language. Thiswasmade possible by the GNUGettext utilities.In 1997 Cook had a major re-write of significant portions of its inference engine.This enabled the additionof parallel processing support, and simplified adding user-defined functions to the cookbook language.Peter MillerPage 2

Cook UserGuide2. Cookfrom the OutsideThis chapter is part of the tutorial on howtouse thecookprogram. Itfocuses on howtousecook,withoutneeding to knowhowcookworks internally.2.1 Whatcan cook do for me?By far the most common use of cook, by experts and beginners alike, is to issue the commandcookand cook will consult its cookbook to see what needs to be done.In general,cookis used to takeaset of files and chewonthem in some way to produce another set of files;such as the source files for a program, and howtoturn them into the executable program file.In order forcookto do anything useful, it needs to knowwhat to do."What to do" is contained in a file calledHowto.cookin the same directory as the files it is going to work on.Youneed to execute thecookcommand in the same directory as all of the files.2.2 Whatis cook doing?TheHowto.cookfile was written by the same person who wrote the source files.It contains a set of recipes;each of which, among other things, contain commands for howtomanipulate the files.Thecookprogramechos each of the commands it is about to execute, so that you can watch what it is doing as it goes.If theHowto.cookfile contained only commands, you would be better offusing a shell script.In addition tothe commands is information tellingcookwhich files need to be constructed before other files can be, andfrom this informationcookdetermines the order in which to execute the commands.Also,cookexaminesother information to determine which commands it need not do, because the associated files are already up-to-date.2.3 Whatcan cook alwaysdo?If you are in a directory with aHowto.cookfile, you can expect a fewcommon requests to workcook clobberThis command can be expected to remove any files from the directory whichcookis able to reconstruct.cook allThis is the default action, and so can be obtained by a simplecookrequest. Itcausescookto construct some specific file or set of files.cook cleanThis is similar to "cook clobber" above,but it only removesintermediate files,and not not the final file or files which "cook all" constructs.In addition to the above,manyHowto.cookfiles will also definecook installIf a program or library or document is constructed in the directory,the thiscommand will install it into the correct place in the system.cook uninstallThe reverse of the above,itremovessomething from the system.2.4 Ifsomething goes wrongMost errors whilecookis constructing file are caused by errors in the source files, and not theHowto.cookfile. Ingeneral, you can fix the problems in the source files, and execute thecookcommand again, andcookwill resume from the command which incurred the error.To help you while editing the files with the errors,cookkeeps a listing file of all the commands it executed,and anyoutput of those commands, in a file calledHowto.listin the current directory.Youmay wantcookto find all the errors it can before you do anyediting, do do this, use the-Continueoption (it may be abbreviated to-cfor convenience).Peter MillerPage 3

Cook UserGuide2.5 TheReference ManualFormore information about the command line arguments and options of the various commands mentioned,you should consult the on-line manual pages.The Cook Reference Manual is also a good source of thisinformation, and is available from the same place as you obtained this manual.Peter MillerPage 4

Cook UserGuide3. Cookfrom a CookbookThis chapter describes the contents and meaning of a cookbook, a file which contains informationcookneeds to do its job.Itfocuses on what a cookbook looks like, and touches on a fewareas of howcookworks does its job.3.1 Whatdoes Cook do?The basic building block forcookis the concept of arecipe.Arecipe has three parts:1. oneor more files which the recipe constructs, known as thetargetsof the recipe2. zeroor more files which are used by the recipe to construct the target, known as theingredientsofthe recipe3. oneor more commands to execute which construct the targets from the ingredients, known as thebodyof the recipe.When a number of recipes are given, some recipes may describe howtocook the ingredients of otherrecipes. Whencookis asked to construct a particular target it automatically determines the correct order toperform the recipe bodies to cook the requested target.Cookwould not be especially useful if you had to give explicit recipes for howtocook every little thing.As a result,cookhas the concept of animplicitrecipe. Animplicit recipe is very similar to an explicitrecipe, except that the targets and ingredients of the recipe arepatternsto be matched to file names, ratherthan explicit file names.This means it is possible to write a recipe, for example which constructs a fileswith a name ending in ‘.o’from a file of the same name, but ending in ‘.c’rather than ‘.o’.In addition to recipes,cookneeds to knowwhento construct targets from ingredients.Cookhas beendesigned to cook as little as possible."As little as possible" is determined by examining when each file waslast modified, and only constructing targets when that are out of date with the ingredients.3.1.1 Whenis Cook useful?From the above description,cookmay be described as a tool for maintaining consistencyofsets of files.3.1.2 Whenis Cook not useful?Cook is not useful for maintaining consistencyofsets of things which arewithinfiles and thuscookisunable to determine when theywere modified.Forexample,cookis not useful for maintaining consistencyof sets of records within a database.3.2 HowdoItell Cook what to do?Sets of recipes are gathered together into cookbooks.Whencookis executed it looks for a cookbook of thenameHowto.cookin the current directory.Ifyou did not name a file to be constructed on the commandline, the first target in the cookbook will be constructed.The best way to understand howtowrite recipes is an example. Inthis example, aprogram,prog,iscomposed of three files:foo.c,bar.candbaz.c.Toinformcookof this, the cookbook#include "c"prog: foo.o bar.o baz.o{cc -o prog foo.o bar.o baz.o;}is sufficient forprogto be constructed.This cookbook has twoparts. ThelinePeter MillerPage 5

Cook UserGuide#include "c"tellscookto refer to a system cookbook which tells it, among other things, howtoconstruct asomething.ofile from asomething.cfile.The second part is a recipe.The first line of this recipeprog: foo.o bar.o baz.o...names the target,prog,and the ingredients,foo.o,bar.oandbaz.o.The next three lines...{cc -o prog foo.o bar.o baz.o;}are the recipe body,which consists of a singlecc(1) command to be executed. Recipebodies are alwayswithin{curly braces},and commands always end with a semicolon (;).Thus, to updateprogafter anyofthe source files have been edited, it is only necessary to issue thecommandcook progThis could be simplified further,becausecookwill cook the targets of the first recipe by default; in thiscase,prog.The power of cook becomes more apparent when include files are considered.If the filesfoo.candbaz.cinclude the filedefs.h,this would automatically be detected bycook.Ifdefs.hwere to be edited, andcookre-executed, this would causecookto recompile bothfoo.candbaz.c,and relinkprog.The informationabout howtoturn.cfiles into.ofiles came from the ‘‘#include "c"’’ line, which read in the C recipesdistributed with Cook.3.2.1 Thecommon programcaseThe above example may be simplified evenfurther.Ifthe four filesfoo.c,bar.c,baz.canddefs.hall residedin a directory with a path of/some/where/prog,then theHowto.cookfile in that directory need only contain#include "c"#include "program"forprogto be cooked. Thisis because the "program"cookbook looks for all of thesomething.cfiles inthe current directory,compiles them all, and links them into a program named after the current directory.The default target in the "program"cookbook is calledall.The ingredient ofallis the program namedafter the current directory.Two other targets are supplied by this cookbook:clean removesall of thesomething.ofiles from the current directory.clobber removesthe program named after the current directory,and also removesall of thesomething.ofiles from the current directory.3.3 CreatingaCookbookTo usecookyou will usually need to define a cookbook, by creating a file, usually calledHowto.cookin thecurrent directory,with your favorite text editor.This file has a specific format.The format has been designed to be easy to learn, evenfor the casual user.Much of the power ofcookis contained in howitworks, without complicating the format of the cookbook.Peter MillerPage 6

Cook UserGuideExample of what a cookbook looks likeare scattered throughout this document.The following example isthe entire cookbook for manyprograms, some quite large:#include "c"#include "yacc"#include "usr.local"#include "program"As you can see, evenfor manycomplexprograms, the cookbook is remarkably simple.Peter MillerPage 7

Cook UserGuide4. Cookingin ParallelCook is able to use the dependencyinformation in the cookbook to schedule more than one recipe body atonce, where theyare independent.In large projects this is almost always possible.Parallel processing is of most use on multi-processor systems.There are cases, however, when running twojobs at once on a workstation can takeadvantage of disk or network latencies.Parallel processing requires more resources than the simple case.Because more commands are running,more CPU is required, but also more virtual memory and more temporary file space.Youneed to be surethat cooking in parallel is a sensible thing to be doing.4.1 CommandLine OptionThe-PARalleloption is used to tell Cook to run the recipe bodies in parallel.By default, 4 jobs run inparallel. You may specify the number of jobs after the option (e.g.--par=2)ifyou wish.4.2 CookbookVariableIt is also possible to set the number of jobs from within the cookbook by using theparallel_jobsvariable. Thiscan be used to automate the selection of the number of jobs, based on the current host name:if [not [defined parallel_jobs]] then{host = [os node];if [in [host] cerberus] thenparallel_jobs = 3;else if [in [host] zaphod] thenparallel_jobs = 2;else if [in [host] hydra] thenparallel_jobs = 8;}In this way,the number of jobs will be set appropriately for each machine, provided the number of jobs wasnot already set by the command line option.4.3 RecipeWr itingMost recipes run in parallel without difficulty,howev ersome will require special treatment.The problemsarise from conflict for resources − usually temporary files.The simplest example of this isyacc(1). Theoutput filenames are hard-coded, evenwhen you write a moregeneral recipe:%.c: %.ysingle-thread yy.tab.c{[yacc] [yacc_flags] %.y;sed "’s/[yY][yY]/%_/g’" yy.tab.c > [target];rm yy.tab.c;}Replacing theYYis a common method for getting more than one yacc grammar into a program.We runinto trouble with theyy.tab.cfile because every one of the yacc grammars will need to use the sametemporary file name.Thesingle-threadclause tells cook to find something else to do if it discovers that it wants do twoofthese at the same time.Peter MillerPage 8

Cook UserGuideThe temporary file name may not be so evident as in the yacc case.The GNU Autoconf utilities use anumber of temporary files in the current directory,but none of them appear in the text of the recipes.%: %.in: config.statussingle-thread conftest.subs{CONFIG_FILES\=[target] CONFIG_HEADERS\= config.status;}It is common, if your project uses GNU Autoconf, to generate several files in this way.Once theconfig.statusscript is produced, all of these files will then be candidates for cook to generate − buttheycan only be done one at a time.Other resources, such as tape drives, can also be described in thesingle-threadclause. You can dothis by device name (e.g./dev/rmt/0)orbysome descriptive string. Thesingle threading is performedby mutually exclusive string sets, not by inode.4.3.1 ConcurrentExecution ThreadsEach recipe, when its actions are executed, is executed within an execution thread.Execution threads sharealmost everything in common; this includes all of the variables, the state of the ‘‘set’’statement, the statcache,etc.If you need to create variable names, or temporary file names, which are unique to a thread, use the[thread-id]variable. Thisvariable has a unique value for the life of a thread.No other concurrentthread will have the same value.Note, however, that the[thread-id]values of completed threads will be re-used; this ensures that whenit is used to construct variable names, the variables will be re-used.This prevents memory bloat whencooking large projects.4.4 FileLockingThe above discussion applies to utilities which perform no file locking, and thus cannot detect or sequencemultiple accesses to a resource.Other programs, such as those which access databases, may have quitecapable file locking mechanisms and are able to manage multiple parallel updates on their own, obviatingthe need for thesingle-threadclause.4.5 Virtual MachineIt is possible to simulate a parallel machine if you are on a network. Cookis able to distribute tasks tocomputers on a network, if it is givensufficient information.The first information Cook requires is the list of machines.This is done using theparallel_hostsvariable.Note:The tasks will be distributed amongst these machines independent of the setting of theparallel_jobsvariable.i.e.ev enifyou are not doing parallel processing.parallel_hosts = larry curly moe;If you want to give one machine more weighting than the others (say,because it is twice as fast) you simplyname it more than once.Cook will use these names in round-robin fashion.4.5.1 RemoteShell CommandCook uses the Berkeleyrsh(1) command to invoke the remote command.Youcan set the command, or thecommand and some options, using theparallel_rshvariable. Thedefault value isparallel_rsh = rsh;In order to work in a useful way,Cook makes some assumptions about your environment and your account:•That your system administrators allowrsh(1) to be used on your network.•That your account name is the same onallmachines (otherwise not eventhersh -llogin-nameoption will help).Peter MillerPage 9

Cook UserGuide•That the/etc/hosts.equivfile, or your˜/.rhostsfile, is set onallmachines so that youdon’tneed to give a password.•That all of the necessary files and directories are mounted in exactly the same place on all of themachines; and that theyarethe same fileson all machines, via NFS or similar.Automounters canmakethis especially messy.•That your account start-up scripts set the necessary environment settings,e.g.command searchPATH,without anyintervention required.•That all of the machines are of the same architecture, or that the architecture doesn’tmatter.•That the system time is synchronized on all machines, usingrdate(1) fromcron(8), or using NTP,orsimilar.4.5.2 LimitationsThere are some inherent limitations in thersh(1) protocol.•Your current environment variable settings are not transferred across.Neither areulimitsettings,etc.If anyare important, you need to write the cookbook to explicitly replicate them.•The exit status of the remote command is not reported in the exit status of thersh(1) command1.There are internal contortions used by Cook to obtain the exit status; error about mysteriously namedfiles usually indicate that one or more of the above assumptions is being broken.4.5.3 SecureShellIt is possible to use the Secure Shell (ssh) instead of Remote Shell (rsh).This givesyou fully authenticated,fully encrypted sessions, both overyour intranet and evenoverthe Internet.Once you have itinstalled andconfigured correctly,you simply replace thershcommand in the above examples with thesshcommand.This is accomplished by settingparallel_rsh = "ssh";Somewhere near the top of your cookbook.4.5.4 HostBindingIn some cases, such as licensing conditions, some commands will only run on a limited set of hosts.Ratherthan perform all commands on those hosts, it is possible to bind recipes to specific hosts.This bindingoverrides theparallel_hostsvariable.%.c: %.esqlhost-binding shylock{esql %.esql > [target];}This example says that the embedded SQL preprocessor is only to be run on the database server called‘‘shylock’’, probably due to usurious licensing fees.However, you may want to perform your otherdevelopment activities on more lightly loaded machines; this clause only applies to this one recipe, otherrecipes behave asnormal.Thehost-bindingclause may have more than one host named, and theywill be used in round-robinfashion. Thisis a recipe-levelvariant of theparallel_hostsvariable.Thehost-bindingclause will apply independent of the setting of the settingsparallel_jobsandparallel_hostsvariables.The recipe levelhost-bindingoverrides the cookbook levelparallel_hostswhen determiningwhich remote hosts should be used.If the list of hosts giventothehost-bindingclause is empty,the local host will be used (normal recipeexecution will occur).1.The Berkeleysources certainly don’tcontain code to do this.Do anyother vendors have a more useful implementation?Peter MillerPage 10

Cook UserGuideIf you need to include the local host in the round robin, uselocalhostor[os node],howev erthiswill behave exactly the same as for a remote host.Youshould also consider hard coding the name, thatwayyou get the same behavior no mater which of the machines in the round robin the Cook command isexecuted on.4.5.5 LoadBalancingIt is possible to usehost-bindingto perform load balancing.This is accomplished by usingrup(1) todiscoverwhich hosts are least busy,and then using this information to invoke the system’srsh(1).This may be accomplished by usingparallel_rsh = "cook_rsh";somewhere near the top of your cookbook (orcook_rsh −sfor secure shell).Youthen give classes of hoststo thehost-bindingclause of the recipes, rather than specific host names.Seecook_rsh(1) for moreinformation about setting up classes of hosts.If you still need to give specific host names to some recipes,cook_rsh(1) will cope with this, too.4.6 Virtual Machine,RevisitedIt is also possible to have Cook run multiple processes in parallel without having to knowwhat machinesare available. Thismethod puts control of the network resources in the hands of an external program, oneexample of which iscook_rsh,distributed with Cook.Once you have such a virtual network defined it becomes very easy to build projects for multiple platformsor architectures in the same build. Italso allows easily adding newmachines, or disabling machines formaintenance. Thevirtual network can be changed at anytime without disturbing ongoing development.The following examples will have the form allowing multiple architecture builds, but of course theywillwork for single architecture as well.4.6.1 cook_rshThecook_rshsystem is just one way of defining the capabilities of a givennetwork in a way that a singleprogram can makethe best choice of machine for a givenjob.Itdoes so in a way that is reliable and does adecent job of balancing loads across available machines, evenwith multiple developers doing builds at thesame time.Each job that requested viacook_rshpicks the appropriate machine from those able to do the job at thatinstant in time.In contrast toparallel_hostsorhost-binding hostA hostB etc,itdoes notwork from a list which was current at the time a cook process was started.Thus it is less vulnerable tomachines going offline or becoming overloaded as time passes.Currentlycook_rshusesrshto actually execute the job, so requires the same network setup.The nextversion may usemulticastinstead for evenfiner control and reliability.There are minor differences in the setup to usecook_rshcontrol. Thefirst is that Cook no longerrequires a list of machines.It is not necessary to set theparallel_hostsvariable. Theparallel_rshvariable is set as:parallel_rsh = cook_rsh -v;The-voption produces information as to what machine was actually picked for each job.4.6.2 HostBindingAll recipe bodies which should run in parallel need ahost-bindingsetting. Ratherthan list the hosts tobe used we form a name which is used bycook_rshto select an appropriate machine.This name mayinclude anarchitecturecomponent and aoperationcomponent.%1/%.o: %.chost-binding %1_C{[%1_cc] -o [target] -c [resolve %.c];}Peter MillerPage 11

Cook UserGuide%1/%2: [addprefix %1/ [%2_objs]]host-binding %1_L{[%1_ld] -o [target] [resolve [need]];}This example says that the compiles for a certain architecture should takeplace on anymachine designatedas a compile host for that architecture.And linking jobs should go to machines designated as a link host forthat architecture.Of course the same machine could probably do both jobs, but you get to define it as yousee fit, and change the designations from moment to moment.Current designations per architecture are:_C Compile (Compilesource code)_L Link(link binary programs)_T Test (runautomatic tests)_B Build(including cooking, or generic jobs)And others may be added if necessary by simple extension.4.6.3 Administration of cook_rshThe definition of the virtual network used bycook_rshis contained in just a twoconfiguration files.Onefile lists designations, and lists machines belonging to each designation.The other is anexcludefile, whichlists machines which should not be used for whateverreason.The designations file may be created by hand if desired but a utility calledrate_hostsis provided thatcan generate thehost_lists.plfile, possibly after being customized for the particular requirements ofagiv enenvironment.The exclusion file lists machines that should neverbeselected. Theexclusion file can be edited at anytimeand adding a machine will prevent anyfurther jobs from going its way.Removing the name will againallowselection of that machine.Howsoon a job actually goes there depends greatly on the networkutilization. Theexclude_hostsfile contains machine names and optional comments.An exampleexclude_hostsfile might contain:#list of hosts to exclude from arch_hosts lists#for whatever reason.monolith #not a development machine - the FTP hostnamshub #developer test stationtiamat #unreliable configurationlocutus #Being upgradedThis is handy for maintenance on machines.If a particular machine needs to be brought down you simplyadd its name to the exclusion file.Checking its process list will tell when anycurrently running removejobs are done.After that it can safely be brought down without affecting anyactive builds.Peter MillerPage 12

Cook UserGuide5. Include File DependenciesAsignificant factor in a cookbook accurately describing the dependencies in a program are the include filedependencies. Thereare three methods for doing this in Cook.The first is easily understandable but is tooslowtouse on large projects, the second is a little harder to understand, but works well for large projects.The third method is rather convoluted, but works well for projects with manythousands of source files andmultiple simultaneous architectures built within the same source tree.The recipes here are merely examples and starting points; you will almost certainly need to enhance themto suit the needs of your projects.Areas you will need to address include (a) the existence ofcc -Ipathoptions, (b) the use ofsearch_listvariable and the[resolve]function, and (c) heterogeneousdevelopment. Thetechniques also apply to other languages, such as Fortran, Pascal and Roff, but eachrequires a language-specific include scanning program2.5.1 TheManual MethodWell, actually there are four methods, if you count maintaining the dependencies manually.This has theserious defect that humans tend toforgetto update the cookbook.On a large project not all developers arefamiliar with the workings of Cook, and so theyshy awayfrom updating the cookbook.By finding ways toautomate include dependencyprocessing, we reduce the risk that a developer will forget to update thecookbook, and we reduce the risk that the cookbook’sdependencyinformation is out-of-date.Automatic include dependencymethods described belowhav eflaws, and can neverreplace a human forflexibility and domain knowledge. Onthe other hand, humans have better things to do with their time thangrope files for include file dependencies (likewrite neat software).5.2 Debugging CookbooksBefore we proceed further,itisworth spending some time covering some of the methods for debuggingyour cookbook, because small mistakes in implementing the methods belowcan become quite difficult tolocate.5.2.1 CommandLocationsUsually Cook will echo all the commands it executes, just before executing them.If you add the lineset tell-position;near the top of your cookbook, Cook will add the filename and line number within the cookbook to eachcommand it echoes.This can be useful in figuring out which recipe Cook actually chose to execute.5.2.2 Printing StuffOften you will want to have Cook print various pieces of information.The wrong way to do it is with theshell’s"echo" commandecho variable "=" [variable];because this invokesanother process (which can makedebugging parallel cookbooks harder) and becauseof the optionaldata ... dataendwhich can followcommands (see the command statement in the languagedefinition, below). Thecorrect method is to call the "print" function, likethisfunction print [__FILE__]: [__LINE__]: variable "=" [variable];Note the use of the __FILE__ and __LINE__ builtins, which provide you with cookbook positioninformation.5.2.3 Trigger IngredientsAnother useful piece of information is the ingredients which caused Cook to invoke a particular recipebody.The following functionfunction say-why ={if [count [@1]] then2.Thec_inclprogram understands Roff, you just need to use the−roption.Peter MillerPage 13

Cook UserGuide@1 = [@1];if [count [@2]] then@2 = [@2];local tt = [target];if [defined targets] thentt = [targets];local t = ;if [in [count [younger]] 0 1 2 3] then{function print [@1] [@2]Building [target]because of [younger];}else{function print [@1] [@2]Building [target] because of[wordlist 1 3 [younger]] et al;}}can be inserted at the beginning of a recipe%.o: %.c{function say-why [__FILE__] [__LINE__];cc -c %.c;}to say whythe recipe was invoked. Thiswill eveninclude dependencies automatically determined by all ofthe methods which follow, not just those named on the right-hand-side of the recipe itself.5.3 ToolsAll of the automated include file dependencymethods described belowuse thec_incl(1) program includedin the Cook distribution. Ithas a number of options tailored for use with Cook.Forexact informationabout thec_inclcommand, consult the on-lineman(1) system (it should have been installed) or the CookReference Manual.Other tools are available. Thecommonest is to use thegcc -Moption, which produces a list of includefiles on the standard output.Because thegcc -Moutput is aimed at GNU Make, you will need anawk(1)orsed(1) script to massage the output into a format suitable for Cook.5.4 TheSmall MethodThe easiest way to determine a file’sinclude dependencies is within the recipe’singredients.%.o: %.c: [collect c_incl -api %.c]{cc -c %.c;}Note the second colon − thesecondset of dependencies are only evaluated after Cook has chosen toactivate the recipe (based on the first set).This does not guarantee that the file exists yet (it may have tobegenerated bylexoryacc), which is whythe--Absent-Program-Ignoreoption is required.This method has the advantage of simplicity.Ituses a single recipe which reads the way recipes usuallyread, and does not contain anyunusual constructs.There are twoproblems with this method.The first is that it doesn’tscale well.When there are only a fewsource files, the processing burden of runningc_inclfor every.cfile every time Cook is invokedishardlynoticeable. Thec_inclprogram caches the results of its scans, so that is can minimize the length of timePeter MillerPage 14

Cook UserGuidetaken, and this does help a little.Howeverprojects with hundreds or thousands of files find eventhe cachedperformance an unreasonable burden; it is constantly re-calculating something which has not changed fromone run to the next.The second problem is that thec_inclprogram is run when the dependencygraph is being built, not when itis being walked. Thismeans that the.cfile (or a subordinate.hfile) may have been out-of-date at the time.When the graph is walked, it will have been regenerated, and the twosets of include files, those determinedbyc_inclat graph building time, and those seen byccat graph walking time, may not agree − which mayresult in compile-time errors.5.5 TheLarge MethodForprojects with large numbers of files, hundreds or eventhousands, it is necessary to re-calculate theinclude file dependencies only when a.cfile changes, or a subordinate.hfile. Ideally,Cook should accessthis information directly,rather than running a program to determine it or to fetch it.The first task is to move the information whichc_inclcaches into a format that Cook can access directly;Cook can then read in this information as it scans the cookbook.By making a separate ‘‘dependency’’filefor each.cfile, we can use existing Cook mechanisms to describe howtokeep this file up-to-date.The dependencyfile is generated and maintained as follows:%.c.d: %.c{c_incl --no-cache %.c"--prefix=’%.o "[target]": %.c’""--suffix=’set nodefault;’"-o [target];}This recipe generates a file which contains a mini-cookbook describing the ingredients of theobjectfile.The dependencies are in terms of the object file because if anyofthe.hfiles change, it is the object filewhich is out-of-date, not the.cfile. Themini-cookbook itself is also described, so that if anyofthe sourcefiles change, the mini-cookbook can be brought up-to-date again.The recipe for the object file is less complicated than in the previous section, because the mini-cookbookssupplement it:%.o: %.c{cc -c %.c;}The only thing missing is howtoget the information in the mini-cookbooks into the main cookbook.Thisis done with an include directive inthe cookbook itself, but a special form of it.The names of the mini-cookbooks can be determined the same way as the names of the object files, and this allows the cookbookfragments such as the following to be written:object_files = [fromto %.c %.o [source_files]];dependency_files = [fromto %.c %.c.d [source_files]];#include-cooked [dependency_files]The#include-cookeddirective says to include the named files (there may be more than one) if the fileexist. Oncethe cookbook (and its includes) have been read in, the files included with this directive arechecked to see if theyare up-to-date.If theyare not, then theyare re-cooked, and then Cook starts overagain; this time with up-to-date include dependencies.The advantage of the method is that if the source files don’tchange, the dependencyinformation is notrecalculated, this can result in significant savings. Also,no processes are invokedifnothing has changed,Cook reads the information directly.Because file opens are significantly cheaper than process invocations,this results in a significant performance improvement.Peter MillerPage 15

Cook UserGuideThe disadvantage of this method is that it is harder to describe and harder to implement.To the uninitiatedthe cookbook looks incomplete and overly complex.Another problem is that if you delete an include file, Cook will complain that it is unable to derive thedependencyfile because the include file is not present.Simply delete the dependencyfile and start again.To avoid the problem, remove references to include files, and re-build, before deleting the include files.This problem is seen from time to time, but does not present a huge problem in normal practice.5.6 TheCascade MethodWhen large numbers of files are involved, it becomes clear that the more popular include files are beingscanned repeatedly.This can be un-necessarily time-consuming when a popular include file is touched, asthe dependencyfiles of all.cfiles which reference it, evenindirectly,must be re-calculated.There is also a problem when you are attempting to perform heterogeneous builds for multiple architecturesout of the same sources.This is typically done by inserting the architecture name into the object file path asadirectory.This presents another problem: nominating all of the architectures on the left-hand-side of theregenerated dependencyrecipes. Especiallyif you add another one after the fact - nowall the existingdependencyfiles must be recalculated, merely to add the newarchitecture.An alternative istoscan each of the source files and include files once, and request cook to combine themtogether at build time, rather than at dependence scan time.This is done usingcascaderecipes. Theserecipes nominate additional ingredients (on their right-hand-size) if anyofthe files on their left-hand-sizeappears in an ingredients list.cascade foo.c = bar.h;This recipe says that anyrecipe which hasfoo.cfor an ingredient, also hasbar.hfor an ingredient.This takes care of the heterogeneous case, because while the recipes remain specified in a simple manner,viz:%1/%0%.o: %0%.c{%1-gcc -o [target] -c %0%.c;}Anyand all of them which compilefoo.cwill depend onbar.hfrom thecascaderecipe. (Thisexampleassumes that you are usinggcc(1) in the usual way,and that your architecture names match the GNU targetnames.)The dependencyfiles are generated and maintained in much the same way as before, except that you needtwo: one for.cfiles and one for.hfiles:%0%.c.d: %0%.cset no-cascade{c_incl --no-cache --no-recurs %0%.c"--prefix=’cascade %0%.c =’""--suffix=’;’"-o [target];}%0%.h.d: %0%.hset no-cascade{c_incl --no-cache --no-recurs %0%.h"--prefix=’cascade %0%.h =’""--suffix=’;’"-o [target];}Youwill also need to add the.h.dfiles to the#include-cookedlines, to ensure theyare generated.Ifthere are anygenerated.cor.hfiles, you will need to mention these, too.Peter MillerPage 16

Cook UserGuide5.7 Dependencieson Derived FilesIf the relationship between a target and a derivedingredient appears only in a derivedcookbook, it is likelythat a clean build (solely from primary source files) will fail. Itis recommended that relationships such asthis be placed in a primary source cookbook.Cook looks for such dependencies, and will warn you aboutthem.An example of this is commonly seen when using the-doption withyacc(1). Ifyou have a separatelexical analyzer (the usual reason for using-d)itwill need to include the generated token definition file.When you first add theyacc(1) grammar definition, Cook will generate both the.cand.hfile from theusual yacc recipes.It is only later,when you have cleaned out all derivedfiles (including the dependencyfiles) that you may have problems. Whereis it recorded that Cook needs to regenerate the token definitionfile before it can determine the include dependencies of the lexical analyzer?(Theywere in a.dfile whichwas‘‘cleaned’’away.)Cook will detect this situation at the first possible moment, and warn you.But placing the dependencyinanon-derivedcookbook (e.g.Howto.cook)the warning will go away, and you will be able to do reliableclean builds.If you are convinced that Cook isalwayswrong in your case, it is possible to suppress this warning. Placethe lineset no-include-cooked-warning;in your main cookbook, and the warning will not be issued.Suppressing the warning could lead to problems.It is often better to add the ingredients recipe giveninthewarning to the cookbook, evenifyou think it is redundant.This disables a single instance of the warning,rather than all of them − subsequentvalidinstances will still be reported.(Implicit ingredients recipes,rather than explicit ones, are a useful alternative ifyou have a consistent pattern.)5.8 RenamingInclude FilesAconsistent problem when you have automatically generated include dependencies is that when you movean include file, Cook complains that a required ingredient does not exist.The easiest way to avoid this is to do a fewthings before you build again after moving the include file.•Move the include file to the newname.•Where the include file wasfrom,put a file containing the line#error "I’m not here"to makeCook happy(the ingredient will exist), but also have the compiler generate an error if youmiss a reference to it.•Edit all the references to the old include file name to reference the newname. Don’tworry if youmiss one or two, the previous step will catch it.•Rebuild the program.Cook will automatically re-calculate all of the include dependences and thenrecompile.•If you missed one of the include file references, Cook will not complain, but the compiler will.(Thisassumes you are using whole-project builds, as described in theLarge Projectschapter.)•Once the program builds cleanly,remove the fakeold include file, because you knowfor certain thatthere are no longer anyreferences.Peter MillerPage 17

Cook UserGuide6. BuildingLarge ProjectsThis chapter covers some of theissues you may come across in building large projects.It givesaskeletonfor howyou could use Cook to build a medium-to-large projects, and evencovers some heterogeneousbuild issues.It is expected that you will use this chapter as a guide; your development environment, and theshape of each individual project, mean that you will probably change this to suit your own needs.The material in this chapter uses many, manyfeatures of Cook.If you are not familiar with Cook, you maywant to read the rest of this User Guide to get a good idea of Cook’sfeatures and capabilities.Even if youare familiar with Cook, you may need to refer to the language guide and built-in function descriptions fromtime to time.6.1 WholeProject BuildThe skeleton givenhere builds the whole project as a single Cook invocation, evenwhen the projectconsists of tens thousands of individual source files.This is distinct from a build process which has Cookrecursively invoking itself in deeper directories, or a shell script doing much the same.Some of theadvantages of doing whole project builds will be discussed in a later section.Fornow itissufficient to saythat experience has shown repeatedly that this method does scale to significant projects.The first thing about a single build pass is that it happens relative toasingle fixed place.The logical placeis the top of the project source tree3.This works well with thesearch_listfunctionality,mentioned below,which simplifies the structure of private work areas.6.1.1 ProjectDirector yStr uctureIn the examples use in this chapter,the following directory structure is assumed:ProjectHowto.cooklibrarysource1.csource2.cetc...includeapi1.hapi2.hetc...program1source3.csource4.cetc...program2source5.csource6.cetc...Belowthe project directory is alibrarydirectory,which contains functions common to all of theprograms. Allsource files in this directory are to be compiled, and linked into a library.When theprograms are linked, theywill all reference this library.Next to thelibrarydirectory is theincludedirectory.This describes interfaces and data shared by theproject. Informationwhich is private to the internals of the library or a programs belongs there, not in theshared include space.The rest of the directories belowthe project directory are programs to be built. Thesources files in each areto be compiled and linked, together with the common library,toform the programs.The name of the3.If you everwant to use Aegis for configuration management, this is what Aegis expects.Peter MillerPage 18

Cook UserGuideprogram will be taken from the directory.This is a common enough picture, repeated for manyprojects. Your individual projects may vary in thedetails; you may have more directory levels belowthelibrarydirectory,orall of your programs may bebelowasinglecommanddirectory.With simple changes to the examples giveninthis chapter,you will beable to cope with just about anyproject structure.6.1.2 FileManifestThere are manyways of discovering the source files you are working with.Manyconfigurationmanagement systems are able to give you a list of them.Forexample, if you were using Aegis, you wouldsaychange_files =[collect aegis -l cf -terse -p [project] -c [change]];project_files =[collect aegis -l pf -terse -p [project] -c [change]];manifest =[sort [change_files] [project_files]];If you were using RCS, you could find all of the RCS files, and reconstruct the original filenames fromthem,viz:manifest =[fromto ./%0RCS/%,v %0%[collect find .-path "*/RCS/*,v" -print]];Or you could simply scan the directory tree:manifest =[fromto ./%0% %0%[collect find .!-type d -print]];This is will find too much, but what follows will not be altered by this.If you want to get more advanced,however, ithelps to have anaccurate primary source file manifest.6.1.3 CompilingCSourcesRecalling that the build will takeplace from the top of the source tree, this means that there it is going tohave tobedirectory components in the filenames in the command executed by Cook, and in the recipesCook is to use.This chapter uses C examples, but the same techniques work just as will with Fortran or Groff, or anythingelse. Mostof it maps directly; you may need to adjust for your specific compiler behavior.This chapter starts with the lowest levelofbuilding a project, the individual source files, and works its wayupwards, building on the examples until the whole project, including the library and all programs are linkedin a single pass.So, when cooking C sources, you need recipes of the formcc = gcc;cc_flags = -g -Wall -O;%0%.o: %0%.c{[cc] [cc_flags] -c %0%.c-o [target];}The ‘‘%0’’ part of the patterns matches zero or more directory parts.If your compiler insists on putting theoutput (.o)file into the current directory (the top levelone) you will need to move it, after:%0%.o: %0%.c{Peter MillerPage 19

Cook UserGuide[cc] [cc_flags] -c %0%.c;mv %.o [target];}But, most existing sources will be assuming that most of their include files are in the same directory as thesource files.We need include options to indicate this.This is most easily done by using more patternelements%1/%0%.o: %1/%0%.c{[cc] [cc_flags] -I%1 -c %0%.c-o [target];}Or by using the dirname of the source file%0%.o: %0%.c{[cc] [cc_flags] -I[dirname %0%.c] -c %0%.c-o [target];}Forstructures more than 2 directories deep, these twoproduce different options.Depending on yourproject structure, if you have deep directories, one will probably be more suitable than the other.Oneelegant use for deeper directory structures is to reflect the C++ inheritance hierarchydirectly in thedirectory hierarchy.The simple[cc_flags]variable is often not sufficient. Instead,you may want to replace it with[variable_by_path "cc_flags" %0%.c]which will look for several variables (all prefixed with"cc_flags") based on the name of the source file.See theFunctions Librarychapter for a description of thisfunction.The common include file will also need to be searched.Because of where the command is issued, it israther simple to add theincludedirectory,viz:%0%.o: %0%.c{[cc] [cc_flags]-I[dirname %0%.c] -Iinclude-c %0%.c -o [target];}It is important to note that all of these recipes, and the commands theyexecute, are independent of thelocation of the source file.It is possible to customize thecc-flagsused, based on the target file, or eventhe directory containing the file, without compromising the generality of the recipe4.6.1.4 Tracking Include DependenciesWhen it comes to tracking include dependencies usingc_incl,you need to remember,again, that the Cookhappens from a single place.All of the recipes thatc_inclwrites for you must berelative to that place.Continuing our example, and assuming we are using the cascade include method described in the previouschapter,weneed include dependencyfiles which look similar tocascadeprogram1/source3.c =include/api1.h;Working backwards, we need to create the dependencyfile using the following recipe:%0%.c.d: %0%.cset nocascade{c_incl -nc -ns -nrec-I[dirname %0%.c] -Iinclude4.Hint: use a function, and pass[target]as the argument.Peter MillerPage 20

Cook UserGuide%0%.c-prefix "’cascade %0%.c =’"-suffix "’;’"-o [target];}Forother source languages, you will need to use thec_incl --languageoption.The dependencyfiles need to be included in the magic way so that Cook will build them again if theyareout of date.This method needs the source file manifest to knowtheir names.dep-files =[addsuffix .d[match_mask %0%.c [manifest]][match_mask %0%.h [manifest]]];#include-cooked [dep-files]These files will only be re-calculated if theyare out of date; theyare small and often zero-length, and so areusually very quick to read, adding little to the time it takes to read the cookbook.Notice that adding a newsource file will automatically cause it to be scanned for include dependencies,without modification to the cookbook.6.1.5 LinkingLibrar iesTo link libraries with a generic recipe, you need a generalized way of specifying their contents.Alittletrickery with constructed variable names does the job:%/lib%.a: [[target]_obj]set unlink{ar cq [target] [[target]_obj];}The right-hand-side of recipes has late binding, and we use the name of the target to tell us the name of thevariable which holds all of the object files.Assigning this variable looks bizarre, but it looks more logicalas you have more and more of them...library/liblibrary.a_obj =[fromto %0%.c %0%.o[match_mask "library/%0%.c" [manifest]]];The great thing about this construct is that you can build a loop, using Cook’sloop statement, that assigns avariable for each of your libraries, if you have more than one.Notice that adding a newlibrary source file will automatically cause it to be compiled into the library,without modification to the cookbook.6.1.6 LinkingCommandsWe’lluse a similar trick for each of the programs you want to link...First the link linebin/%: [[target]_obj]set mkdir{[cc] -o [target] [[target]_obj];}Then the objects variable. Notehowweadd a libraryfilenamehere, this will still only use the libraryportions actually referenced, not the whole library,soitwon’tbloat your programs.bin/program_obj =[fromto %0%.c %0%.o[match_maskprogram/%0%.c [manifest]]]library/liblibrary.a;Peter MillerPage 21

Cook UserGuideNotice that adding a newprogram source file will automatically cause it to be compiled and linked into theprogram, without modification to the cookbook.The loop construct tends to obscure things, which is whythe essential assignment was givenfirst. Thisnext fragment shows the whole loop.programs =[fromto %/main.c %[match_mask %/main.c [manifest]]];program_list = [programs];loop{program = [head [program_list]];if [not [count [program]]] thenloopstop;program_list = [tail [program_list]];bin/[program]_obj =[fromto %0%.c %0%.o[match_mask [program]/%0%.c[manifest]]]library/liblibrary.a;}And nowtell Cook you actually want it to do something, likebuild all of the programs...all: [addprefix bin/ [programs]];Notice theyway thecommandsvariable is constructed: just adding a newcommand (and itsmain.cfile)will automatically cause it to be built, without modification to the cookbook.6.2 Private Wor kAreasThis chapter is about large projects, but large projects usually means large numbers of developers. Thedirectory structure and cookbook presented so far does not immediately lend itself to use by multipledevelopers.6.2.1 DirectoryStr uctureThe method suggested here uses Cook’ssearch_listfunctionality,which nominates a search list ofdirectories that Cook looks in to find the files named in the recipes.This can be used to overlay a privatework area on top of a master repository.Repositorymain.cpart1.cWork Areamain.cpart2.cCombined Viewmain.cpart1.cpart2.cWhen recipes are run, the results are written into the work area, which means that the repository can becompletely read-only.It follows from this, that the directory structure of the work area exactly parallels the directory structure ofPeter MillerPage 22

Cook UserGuidethe repository.Exceptyou only check out files into your work area that you actually need to change.6.2.2 Findingthe CookbookSetting the search list is done with a simple assignment.In your work area, create a simpleHowto.cookfile, containing only 3 lines:set mkdir;search_list = . /project/repository ;#include /project/repository/Howto.cookYouonly use this file if you don’tneed to modify the cookbook itself.Youcan makeitwork always, evenif you are modifying the cookbook, by giving the cookbook a different name (main.cook), and changingHowto.cookto always readset mkdir;search_list = . /project/repository ;#include [resolve main.cook]The[resolve]function walks the search list, looking for the file5.This givesyou access to Cook’sinternal search mechanism.However, wealso need to modify each of the recipes to takethe search list intoaccount.The unexplainedmkdirflag is used to request that directories be automatically created before recipebodies are run.This is common for large projects, where the source files are structured into several sub-directories, rather than all lumped together in the one place.This may be necessary,for example, if a.cfile in the repository needs to be recompiled because a.hfile in the work area has been changed.6.2.3 FileManifestThe files could be in either of twoplaces. You need to merge them.Most configuration management toolsdo this for you; in this example we’ll scan the directory trees again. Fortunately,Cook comes with a tool todo this efficiently.all_files_in_. = ;#include manifest.cookmanifest = [all_files_in_.];/* This reduces re-scanning to a minimum. */set fingerprint;%0manifest.cook: ["if" [in "%0" ""] "then" "." "else" "%0"]set mkdir{cook_bom /* Bill Of Materials */[addprefix ’--dir=’ [search_list]][need] [target] ;}At the end of this fragment, themanifestvariable contains a complete list of all files in the directorytree(s). Thisvariable may then be taken apart with thematch_maskfunction to build ingredients lists.Theiffunction is different to theifstatement. Itallows you to select one of twovalues (thethenpart ortheelsepart) without creating a dummy variable. Inthis example, it would be impossible to create adummy variable. Rememberto quote theif,thenandelsestrings, otherwise Cook will think theyareif,thenandelsekeywords, and give you a syntax error.The constructedmanifest.cookfiles work for both the top-leveldirectory and individual sub-directories.6.2.4 CompilingCSourcesThe C compilation recipe needs to be changed to read...%0%.o: %0%.c{5.The search list defaults to just dot (the current directory) if not set.Peter MillerPage 23

Cook UserGuide[cc] [cc_flags][prepost "-I" /[dirname %0%.c] [search_list]][prepost "-I" "/include" [search_list]]-c [resolve %0%.c]-o [target];}This ensures that the rights places are searched for include files.Theprepostfunction is used to add a prefix and a suffix to each of the remaining strings.This is veryuseful when constructing filenames, as are theaddprefixandaddsuffixfunctions.6.2.5 Tracking Include DependenciesAsimilar change needs to be made to the include dependencies recipe...%0%.c.d: %0%.cset nocascade{c_incl -nc -ns -nrec[prepost "-I" /[dirname %0%.c] [search_list]][prepost "-I" "/include" [search_list]][resolve %0%.c]-prefix "’cascade %0%.c =’"-suffix "’;’"[addsuffix "-rp=" [search_list]]-o [target];}Note that the form of the output of this recipedoes notchange. Thismeans that the recipes it writes workev enifyou subsequently copyafile from the repository to the work area, or uncopyone.6.2.6 LinkingLibrar iesThe library recipe needs fewmodifications.%/lib%.a: [[target]_obj]set unlink{ar cq [target] [resolve [[target]_obj]];}The variable assignment givenabove requires no modifications.6.2.7 LinkingCommandsThe command linking recipe requires fewmodifications.bin/%: [[target]_obj]set mkdir{[cc] -o [target] [resolve [[target]_obj]];}The variable assignment needs no modifications.6.3 WholeProject Build AdvantagesThe advantage of using a whole project build is that the dependencygraph is complete, and the order oftraversal may be freely determined by Cook.Breaking the build into fractured segments denies Cookaccess to the whole graph, and dictates the order of traversal to one which, in the light of the entire graph,would be incorrect.It greatly simplifies the creating of work areas for developers, by using Cook’ssearch_listfunctionality.Awhole project build also permits thecook -continueoption to work in the presence of a wider range oferrors.Peter MillerPage 24

Cook UserGuideThe whole project build also permits thecook -paralleloption to parallelize more operations.6.4 HeterogeneousBuildLarge projects frequently involvenumerous target architectures.This may be in the form a multiple nativecompilations, performed in suitable hosts, or it may takethe form of cross-compilation.In this example, we assume that the GNU C Compiler (GCC) is being used.When GCC is installed as across compiler,the command names (cc,as,ld,etc)are installed with the architecture name as a prefix.Forconsistency, the native compiler is installed with its own architecture names as a prefix, in addition tothe more commonly usedgcccommand. Thisexample will exploit this normal installation practice.6.4.1 CrossCompiling C SourcesIn order to support cross compiling, the C compilation recipe needs to be changed to read...%1/%0%.o: %0%.chost-binding [defined-or-null %1-hosts]{%1-gcc [cc_flags][prepost "-I" /[dirname %0%.c] [search_list]][prepost "-I" "/include" [search_list]]-c [resolve %0%.c]-o [target];}This uses the first directory element of thetargetto be the architecture name.This allows multiplearchitectures to be compiled in the same source tree, simultaneously.Because of the practice of installing a duplicate GCC in the same form as the cross compilers, this samerecipe continues to work for native builds.Thehost-bindingline tells Cook to run the command on one of the hosts nominated in a variable named forthe architecture (or as a native cross-compiler of no such variable exists). (Thedefined-or-nullfunction is available in the ‘‘functions’’library distributed with Cook.)Remembering these architectures followthe GNU convention, these lines could readi386-linux-hosts = fast faster fastest ;This will do twothings for you: first, it will always execute linux compiles on linux hosts evenwhen Cookis not executed on one; second, it will use more than one of them when you use the--paralleloption.It is possible to use implicit ingredients recipes to say that all object of a givenarchitecture depend on amagic include file,e.g.i386-linux/%0%.o: include/linux-special.h;could be used to say that all Linux object files depend on this include file.(This is a sledge-hammerapproach, and a more subtle method is preferable, but it is sometimes required.)6.4.2 Tracking Include DependenciesBecause of the cascade form of include dependency, there is no need to do anything different for includedependencies, evenifyou add another architecture some time in the future.6.4.3 LinkingLibrar iesThe library recipe needs fewmodifications.%1/%/lib%.a: [%/lib%.a_obj]set unlink{%1-ar cq [target] [resolve [%/lib%.a_obj]];}The variable assignment givenabove requires no modifications.Peter MillerPage 25

Cook UserGuide6.4.4 LinkingCommandsThe command linking recipe requires fewmodifications.%1/bin/%: [bin/%_obj]set mkdir{%1-gcc -o [target] [resolve [bin/%_obj]];}The variable assignment needs no modifications.6.4.5 Whatto BuildThe list of what to build becomes more interesting.Youcan nominate anyand all architectures for whichyou have cross compilers, or native compilers and native hosts.all:[addprefix i386-linux/bin/ [commands]][addprefix sparc-linux/bin/ [commands]][addprefix sparc-solaris2.0/bin/ [commands]][addprefix m68k-sunos4.1.3/bin/ [commands]];All of these architectures will be built in a single Cook invocation, on appropriate machines if necessary.The use of--continueand--parallelwork overthe entire scope of the build.6.5 InstallingThingsThe biggest hassle is that theinstall(1) command, which should knowhow todomost installation tasks, hascompletely incompatible interfaces on the various platforms.This is whythe GNU Autoconf system comeswith aninstall-shscript, which faithfully emulates the BSD options.Once you have a reliable commandline interface to aninstall(1) program (be it Perl or shell) you can then write sensible installationcookbooks.If we have a list of commands, we would install as follows:prefix = /usr/local;bindir = [prefix]/bin;install = install;install: [addprefix [bindir]/ [commands]];[bindir]/%0%: bin/%0% bin/%0.mkdir{[install] -m 755 bin/%0% [bindir]/%0%;}That magicbin/%0.mkdirfile is used to record that the destination directory exists. Whileyou canoften assume this, it is not always true when you are building things likeRPM packages.bin/%0.mkdir:{[install] -d [bindir]/%0set errok;touch [target];}The alternative istouseset mkdir;at the top of your cookbook.This creates directories for targets before rules are run.The install recipe thenreadsset mkdir;[bindir]/%0%: bin/%0%{Peter MillerPage 26

Cook UserGuide[install] -m 755 bin/%0% [bindir]/%0%;}because there is no need for the ‘‘.mkdir’’ recipe. This,howevergiv esyou less control overthedirectories permission modes, and it doesn’thelp when you want to create empty directories as part of theinstall. Usethe appropriate technique for your needs.6.6 MiscellaneousThis section contains assorted material that covers a variety of topics.(As the manual expands, it willprobably be movedsomewhere else.)6.6.1 Lotsof DependenciesThere are cases where you may want to nominate a whole category of files as depending on something else.Forexample, you may want to say that all your fubar-language sources depend on your fubar compiler Youcould say something such ascascade [match_mask %0%.fubar [manifest]] = fubarcompiler;butrecall thateverythingwhich has a.fubarfile as an ingredient will also havefubarcompileras aningredient. Thismay not be what you wanted.Recall, also, that compiler recipes carry specific information.Youcould more specifically nominate thecompiler by saying%0%.o: %0%.fubar: fubarcompiler{fubarcompiler -c %0%.fubar -o [target];}which would be much more selective about which uses of.fubarfiles also depend onfubarcompiler.There are times when writing cross-compilation recipes when you want to nominate an operating-system-specific include file for all of the object files:%1/%0%.o: %0%.c{/* general cross compiler recipe */%1-gcc -c %0%.c -o [target];}/* All windows NT objects depend on this include file */i386-NT/%0%.o: winnt.h;Youcan also usegatesto makeyou recipes more selective.The gating expression may be just aboutanything, but is often a pattern match or simple set membership.%.o: %.cif [in [target] foo.o bar.o]{/* foo.o and bar.o are magic */cc -DMAGIC [cc_flags] -c %.c;}The gate is most easily read as ‘‘if(this condition)use this recipe’’.6.6.2 ErrorProcessingCook stops processing a recipe at the first error.Ifthe error occurs when constructing a command to beexecuted, the command isnotexecuted. Ifarecipe body contains more than one command, and one ofthem gets an error (and doesn’thav etheerrokflag set) the rest of the command willnotbe executed.In addition, if an error occurs while executing a recipe body,the targets of the recipe will be deleted (on theassumption that theyare probably only partially completed, or otherwise defective). Tooverride thisbehavior,use thepreciousflag.Peter MillerPage 27

Cook UserGuide6.6.3 NFSAperennial problem for building projects overnetworks is that the clocks don’tmatch. Ifyou use thetime-adjustflag, this problem is largely solved. Thesimplest method is to putset time-adjust;at the top of your cookbook.File fingerprints, while not directly relevant to NFS, can offer significant performance improvements, astheycan eliminate manycases of unnecessary re-compilation.To turn them on, useset fingerprint;at the top of your cookbook.See belowfor more discussion of fingerprints.6.6.4 SymbolicLinksSymbolic links are followed to the actual file, when determining file modification times.The modificationtime of the symbolic link itself is not used.This means that ‘‘symlink farms’’can be used whenconstructing work areas, particularly when you want functionality more complexthansearch_listcanprovide.6.7 FileFinger printsCook has the ability to supplement the last-modified time-stamps the operating system supplies for each filewith a ‘‘fingerprint’’. Thisis a cryptographically strong checksum, with an mind-bogglingly lowprobability that twodifferent files will have the same fingerprint.When Cook needs to knowifafile has changed, it looks at the last-modified time-stamp.If it has changedsince the last time the fingerprint was calculated, the fingerprint is re-calculated.If the fingerprints match,Cook knows the file contents are unchanged, and uses the old time-stamp, and also suppress anyrecipeactions which would otherwise happen if the file contents had actually changed.(Cook remembers the boththe newand old time-stamps, so that it can be efficient about re-calculating checksums and still use the oldtime stamp for out-of-date calculations.)When recipe bodies are run, Cook knows that the target(s) have been modified, so it doesn’tneed to re-examine the operating system’sidea of the last-modified time-stamp, it simply re-fingerprints.It is tempting to try to achieve something similar by writing recipe bodies which only over-write theirtargets if theyactually changed.E.g.%.o: %.c{if [exists [target]] then{[CC] -o %.tmp -c %.c;if cmp %.tmp %.o\;then mv %.tmp %.o\;else rm %.tmp;}else[CC] -o %.o -c %.c;}However, this will not work (whether or not you have fingerprints turned on).Largely as a defense againstNFS time synchronization problems and stupid systems with very coarse file time-stamps, Cook ‘‘knows’’that because the recipe body was run the target ‘‘changed’’, causing all down stream dependencies to beconsidered out-of-date.In addition, this recipe would leave the last-modified time-stamp out-of-date if the file was unchanged.This means the recipe would trigger again in the next Cook execution, negating manyofthe intendedsavings.Fingerprints are intended for this purpose, but have the advantage of leaving the last-modified time-stampscorrect, and theyneed to do half the I/O that thecmp(1) command does.Also, all down stream dependentPeter MillerPage 28

Cook UserGuidefiles are touched, to ensure their last-modified time-stamps are also consistent.Naturally,iftheyneeded tobe re-built for some other reason, then theywould be re-built, not simply touched.While there is some overhead in initially calculating the fingerprints for a newwork area, theyrepay thatoverhead manytimes over. This is especially true if your system has generated code in it, particularlygenerated include files, but there are also savings for simpler,smaller projects.6.7.1 Tur ningFinger prints OnTo turn fingerprints on, you need to add the linesset fingerprint;set time-adjust;to your cookbook.That second line is no essential, but it corrects last-modified time-stamps when NFStime synchronization problems would otherwise cause inconsistent behavior.While it is possible to turn fingerprints on for a subset of the files in your project, it is not as straightforwardas it may seem.There is no way to bind the fingerprint request to a single file, only to recipes, so you needto use the ‘‘set fingerprint’’ recipe flag on all recipes between the relevant source file and theultimate target. Thistends to be messy.6.7.2 Vanishing DependenciesIt is quite common that you need to re-build a file if one of the dependencies is removed. Usually,this isquite hard to detect, because Cook has trouble seeing something that isn’tthere, compared to the previousexecution. Howeveraningenious method has been described by Gilles Lamiral <lamiral@mail.dotcom.fr>which ‘‘remembers’’though a file:function contents-remember ={/* @1 = name of contents file *//* @2..N = the value of [need] */[write [args]];}function contents-changed ={/* @1 = name of contents file */* @2..N = the value of [need] */if [not [exists [resolve [@1]]]] thenreturn 0;local old-contents = [collect_lines cat [resolve [@1]]];/* return 0 if nothing disappeared, >0 if did disappear */return [count [stringset [old-contents] - [tail [arg]]]];}libfred.a libfred.contents: [fred_obj]set ["if" [contents-changed libfred.contents [fred_obj]]"then" forced]unlink{ar cq [target] [resolve [fred_obj]];[contents-remember libfred.contents [fred_obj]];}Note: because the set clause is evaluated when the target is evaluated, the [need] variable is not available.In this example, you must have calculated the final value of [fred_obj] before the recipe appears in thecookbook. Theevaluation of the set clause also limits the application of this technique to explicit recipes; itwill not work for implicit (pattern) recipes, because the value of the pattern elements is not known at thetime the set clause is evaluated.Peter MillerPage 29

Cook UserGuide6.8 Copingwith LinksYouwill notice that the default operation of Cook copes with links (hard links and symbolic links) ratherpoorly.For example, the recipetwo: one{ln one two;}will always conclude that filetwois out-of-date.This is because filesoneandtwohave exactly the sametime stamp.If you specify a weaker time constraint, Cook will allowthis kind of recipe to be written, andnotconcludethe files is always out of date:two: one(weak){ln one two;}The ‘‘(weak)’’ onthe end of the ingredient name tells Cook to use the weak edge type, rather than thestrict edge type.This technique is useful for symbolic links, too.One other thing which can be very useful for both link types, but particularly symbolic links to directories,is the ‘‘set unlink’’recipe flag.two: one(weak)set unlink{ln -s one two;}This removesthe target (if necessary) before the recipe body is run.6.9 Copingwith Version StampsIn some systems, the version stamp is regenerated for every build, but you don’twant to relink zillions ofexecutables just because the version stamp has changed, but nothing else has.By using the ‘‘(exists)’’ edge type, you can tell Cook that an ingredient is needed for a giventarget, butthat it should neverbeconsidered to makethe target out-of-date.Forexample:#include "c"all: prog1 prog2;version.c:set forced{date "’+#define VERSION \"%C\"’" > [target];}prog1: prog1.o mylib.a version.o(exists){gcc -o [target] [need];}prog2: prog2.o mylib.a version.o(exists){gcc -o [target] [need];}This cookbook will generate a newversion.cfile every time that Cook is run, and thus a newversion.ofile.However, theprog1andprog2files will not be re-linked unless something else changed as well.Peter MillerPage 30

Cook UserGuide7. CookbookLanguage DefinitionThis chapter defines that language which cookbooks are written in.While some of its properties are similarto C, do not be misled.Anumber of sections appear within this chapter.1. TheLexical Analysissection describes what the words of the cookbook language look like.2. ThePreprocessorsection describes the include mechanism and the conditional compilationmechanism.3. TheSyntax and Semanticssection describes howwords in the cookbook may be combined to formvalid constructs (thesyntax), and what these constructs mean (thesemantics).The sections are laid out in the recommended reading order.7.1 Lexical AnalysisThe cookbook is made of a number of recipes, which are in turn made of words. Thissection describeswhat constitutes a word, and what does not.7.1.1 Words and KeywordsWords are made of sequences of almost anycharacter,and are separated by white space (including end-of-line) or the special symbols.Cookis always case sensitive when reading cookbooks.The characters:;={}[]are the special symbols, and are words in themselves, needing no delimiting.In addition to the special symbols, some words, known askeywords,hav especial meaning tocook.Thekeywords are:else host-bindingloopstop single-threadfail ifreturn thenfunction loopset unsetenvYouwill meet the keywords in later sections.7.1.2 EscapeSequencesThe character\is theescapecharacter.Ifa character is preceded by a\anyspecialness, if it had any, willbe removed. Ifit had no specialness it may have some added.This means that, if you want to useifas a word, rather than a keyword, at least one of its characters needsto be escaped, for example\if.The escape sequences which are special are as follows.\bThe backspace character\fThe form feed character\nThe newline or linefeed character\rThe carriage return character\tThe horizontal tab character\nnnAcharacter with a value ofnnn,wherennnis an octal number of at most 3digits.An escaped end-of-line is totally ignored.It should be noted that a cookbook may not have any non-printing ASCII characters in it other than space, tab and end-of-line.7.1.3 QuotingWords, and sections of words, may be quoted.If anypart of a word is quoted it cannot be a keyword.This means that, if you want to useifas a word, rather than a keyword, at least one of its characters needsto be quoted, for example’if ’.Peter MillerPage 31

Cook UserGuideBoth single (’)and double (")quotes are understood bycook,and one may enclose the other.Ifaquote isescaped it does not open or close a quote as it usually would.Cookdoes not likenewlines within quotes.This is a generally good heuristic for catching unbalancedquotes. Ifyou really want a newline within a string, use the\nescape.7.1.4 CommentsComments are delimited on the left by/*,and on the right by*/.Ifthe/character has been escaped orquoted, it doesn’tintroduce a comment.Comments may be nested.Comments may span multiple lines.Comments are replaced by one logical space.7.2 PreprocessorThe preprocessor may be thought of as doing a little work before theSyntax and Semanticssection has itsturn.The preprocessor is drivenbypreprocessor directives.Apreprocessor directive isaline which starts with ahash (#)character.Each of the preprocessor directivesisdescribed below.7.2.1 includeThe most common preprocessor directive is#include "filename"This preprocessor directive isprocessed as if the contents of the named file had appeared in the cookbook,rather than the preprocessor include directive.The most common use of the #include directive istoinclude system cookbooks.Forexample, manysmallprograms can be developed using the following simple cookbook:#include "c"#include "program"The standard places to search are first anypath specified with the-Includecommand line option, and then$HOME/.cookand then/usr/share/cookin that order.7.2.2 include-cookedThis directive looks similar to the one above,but do not be deceived.#include-cookedfilename...Youmay name several filenames on the line, and theymay be expressions.The search path used for these files is the same as that used for other cooked files, see thesearch_listvariable and theresolvebuilt-in function for more information.The order in which you set thesearch_listand the#include-cookeddirectivesisimportant. Always set thesearch_listvariable first, if you are goingto use it.Files included in this way are checked, after theyhav ebeen read, to makesure theyare up-to-date.If theyare not,cookbrings them up-to-date and then re-reads the cookbook and starts over.Youwill only get a warning if the files are not found.Usually,cookwill either succeed in constructingthem, in which case theywill be present the second time around, or a fatal error will result from attemptingto construct them.Note that it is possible to go into an infinite loop, if the files are constantly out-of-date.The commonest use of this construct is maintaining include file dependencylists for source files.obj = [fromto %.c %.o [glob *.c]];%.o: %.c{[cc] [cc_flags] -c %.c;}%.c.d: %.c{Peter MillerPage 32

Cook UserGuidec_incl -prefix "’%.o "[target]": %.c’" -suffix "’;’"-no-cache %.c > [target];}#include-cooked [fromto %.o %.c.d [obj]]This cookbook fragment shows howinclude file dependencies are maintained.Notice howthe.dfiles havearecipe to construct them, and that theyare also included.Cookwill bring them up-to-date if necessary,and then re-read the cookbook, so that it is always working with the current include dependencies.(Thedoubly nested quotes are to insulate the spaces and special characters from bothcookand the shell.)Youcould usegcc -MMif you prefer (you will need some extra shell script).Thec_inclprogramunderstands absent files better but doesn’tunderstand conditional compilation, andgccunderstandsconditional compilation but givesfatal errors for absent include files.Warning: If you are usingsearch_listyoumustusec_incl.Gcc returns complete paths, which will result incookfailing to notice when aninclude file is copied from later in the search list to earlier,and then modified.There are times when you don’twant the#include-cookeddirectivestobeacted upon.Youcan over-ride it using the--no-include-cookedcommand line option, but it is often easier to use the[command-line-goals]variable, and say something like#if [not [match %1clean%2 [command-line-goals]]]#include-cooked [fromto %.o %.c.d [obj]]#endifThis construct means that wheneveranexplicit ‘‘clean’’ goal (or similar) is requested, the#include-cookedlines will not be performed.This is sensible, because cleaning actions usually removedependencyfiles; there is no point making sure theyare up-to-date first.7.2.3 include-cooked-nowarnThis directive isalmost identical to the one above,but no warning is issued for absent files.#include-cooked-nowarnfilename...Youmay name several filenames on the line, and theymay be expressions.7.2.4 ifThe #if directive may be used to conditionally pass tokens to the syntax and semantics processing.Directivestakethe form#ifexpression1something1#elifexpression2something2#elsesomething3#endifThere may be anynumber ofelifclauses, and theelseclause is optional.Only one of thesomethingswill be passed through.7.2.5 ifdefThis directive takes a similar form to theifdirective,but with a different first line:#ifdefvariableThis is syntactic sugar for#if [definedvariable]This is of most use in bracketing#includedirectives.7.2.6 ifndefThis directive takes a similar form to theifdirective,but with a different first line:#ifndefvariableThis is syntactic sugar for#if [not [definedvariable]]This is of most use in bracketing#includedirectives.Peter MillerPage 33

Cook UserGuide7.2.7 pragmaThis is for the addition of extensions.7.2.7.1 onceThis directive istoensure that include files in which it appears are included exactly once.This directive has the form#pragma once7.2.7.2 unknown extensionsAnypragma extensions not recognized will be ignored.Peter MillerPage 34

Cook UserGuide7.3 Syntaxand SemanticsThe syntax is described using ‘‘train track’’diagrams, with prose descriptions of the related semantics.7.3.1 Overall StructureThe general form of the cookbook is defined ascookbookstmtfunctionAcookbook is defined as a sequence of statements.Each statement statement is executed. For a definitionof what it means when a statement is executed, see the individual statement definitions.The nonterminal symbolstatementwill be defined in the sections below.Please note that a statement is not always evaluated when is is read, but at specific, well defined times.7.3.2 TheCompound StatementAnonterminal symbol which will be referred to belowisthecompound_statementsymbol, defined asfollows:cstmt{stmt}The compound statement may be used anywhere a statement may be, and in particularstmtcstmt7.3.3 Var iables and ExpressionsCookprovides variables to the user to simplify things.7.3.3.1 TheAssignment StatementIt is possible to assign to variables with the following statement.stmtexpr=exprs;When this statement is executed, the variable whose name the left hand expression evaluates to will beassigned the value that the right hand expression list evaluates to.Forexample:program_obj = foo.o bar.o baz.o;Note:It is possible to over-ride the value of built-in functions and variables with this statement.This willnot produce an error message, howeveritisusually not desirable as it will change the meaning of the rest ofyour cookbook.7.3.3.2 TheAssign-Append StatementIt is possible to append to the value of variables with the following statement.Peter MillerPage 35

Cook UserGuidestmtexpr+=exprs;When this statement is executed, the variable whose name the left hand expression evaluates to will have itsvalue appended by the value that the right hand expression list evaluates to.Expression values are lists ofwords, appending means to append to the word list; it doesnotmean appending to the last string of thevalue.Forexample:program_obj += [glob "deeper/*.o"];Note:It is possible to over-ride the value of built-in functions and variables with this statement.This willnot produce an error message (unless evaluating them with no arguments is an error), howeveritisusuallynot desirable as it will change the meaning of the rest of your cookbook.7.3.3.3 TheSetenvStatementIt is possible to assign to environment variables with the following statement.stmtsetenvexpr=exprs;When this statement is executed, the environment variable whose name the left hand expression evaluatesto will be assigned the value that the right hand expression list evaluates to.It is an error if the variabledoes not already exist.Forexample:setenv PATH = [getenv PATH]":"[getenv HOME]/more-bin;7.3.3.4 TheSetenv-Append StatementIt is possible to append to the value of an environment variables with the following statement.stmtsetenvexpr+=exprs;When this statement is executed, the environment variable whose name the left hand expression evaluatesto will have its value appended by the value that the right hand expression list evaluates to.Evaluation isanalogous to the assign-append statement.Forexample:setenv FRED += nurk;7.3.3.5 ExpressionsManydefinitions makereference to theexpr,elistandexprsnonterminal symbols.These are defined asfollows.Theelistis a list of at least one expression,elistexprwhereas theexprsis a list of zero or more expressions.exprselistAn expression is composed of words, variable references, function invocations, or concatenation ofexpressions. Theconcatenation is implied by abutting the twoparts of the expression together,e.g.:Peter MillerPage 36

Cook UserGuide"[fred]>thing"isanindirection onfredconcatenated with the literal word ">thing".exprword[elist]exprcatexprWhen an[elist]expression is evaluated, theelistis evaluated first.If the result is a single word, then avariable of that name is searched for.Iffound the value of an expression of this form is the value of thevariable.If there is no variable of the givenname, or theelistevaluated to more than one word, the first word is takento be a built-in function name.If there is no function of this name it is an error.Thecatoperator works as one would expect, joining the last word of the left expression and the first wordof the right expression together,and otherwise leaving the order of the expressions alone.One usually usesthe trivial case of single word expressions. For more complexconcatenations, see the [catenate] and [join]built-in functions.7.3.4 RecipesAnumber of forms ofstatementare concerned with tellingcookhowtocook things.There are threeforms, theexplicitrecipe, theimplicitrecipe, and theingredientsrecipe.7.3.5 TheExplicit Recipe StatementThe explicit recipe has the formstmtelist:exprsflagsgatecstmtuseThe target(s) of the recipe are to the left of the colon, and the ingredients, if any, are to the right.Thestatements, usually commands, which are to be performed to (re)construct the target(s) are contained in thecompound statement.The expressions are only evaluated into words when the recipe is executed. Recipebodies may have local variables.Forexample:program: [program_obj]{/* use [need] rather than [program_obj] in casethere are additional ingredients recipes(see below).*/cc -o program [need];}The target expressions and recipe flags are evaluated when the recipe is instantiated.The ingredientsexpressions and the recipe gate are evaluated at graph building time.The body and use statements areexecuted at graph walking time.The recipes also takea‘‘host-binding’’ attribute. Seethe chapter on Cooking in Parallel for howthis isattribute is written and used.If the host binding flag is given, it is always used, evenwhen not cooking inparallel. Ifit is not givenandyou are cooking in parallel, it will default to the contents of the[parallel_hosts] variable.7.3.5.1 RecipeFlagsTheflagsare defined as follows.Peter MillerPage 37

Cook UserGuideflagssetexprsRecipe flags are evaluated when the recipe targets are evaluated. Atthis time,noneof the [target], [targets],[need] or [younger] variables are set, and neither are anyofthe pattern matches (%, %1,etc)available.Anumber of flags may be usedclearstat Thelast-modified time of the files named in executed commands will be removedfromthe last-modified time cache.This is essential for commands such asrm(1) andmv(1).noclearstat Donot clear entries from the last-modified time cache.This is usually the default.ctime Usethe ctime of files as well as the mtime when determining the last-modified time of afile. Thisis the default.no-ctime Donot supplement st_mtime with st_ctime.This can be important if you version controltool often hard links files for efficiency.default Ifno targets are specified on the command line, the first recipe with thedefaultflag willbe used.Not meaningful for implicit recipes.nodefault Ifno targets are specified on the command line, and there are no recipes with thedefaultflag set, the first recipewithoutthenodefaultflag will be used.Not meaningful forimplicit recipes.errok Exitstatus from commands will be ignored.noerrok Ifthenoerrokflag is specified, the commands within the actions bound to the recipe mustalways be successful.This is usually the default.file-size-statistics Thisoption tellscookto print file size statistics at the enf of the run.The filename to useis settable in the[file-size-statistics]variable, or defaults to “file-size-statistics.txt”ifnot set.no-file-size-statistics This option says not to collect file size statistics.This is the default.fingerprint Filefingerprints are used to supplement last-modified time information about files, whichis howcookdetermines if a file is out-of-date and needs to be cooked. Ifafile appears tohave changed, from the last-modified time, it is fingerprinted, and the fingerprintcompared with what it was in the past.The file has changed if and only if the fingerprinthas also changed.Acryptographically strong hash is used, so the chance of a file editproducing an identical fingerprint is less than 1 in 2**200.Fingerprinting is disabled bydefault.nofingerprint Donot use file fingerprinting.This is usually the default.forced Iftheforcedflag is specified, the actions bound to the recipe will always be evaluated.noforced Ifthenoforcedflag is specified, the actions bound to the recipe will be evaluated whenthe recipe is logically out-of-date.This is usually the default.gate-after-ingredients Thisflags causes the recipe gate to be evaluated after the ingredients have beenevaluated and determined to be cookable.This is usually the default.gate-before-ingredients Thisflag causes the recipe gate to be applied before the ingredients are evaluatedand determined to be cookable.This is useful if the ingredients evaluation itself needs tobe conditional.implicit-ingredientsThis flag may be used to specify that a recipe’singredients may be satisfied by implicitrecipes. Thisis usually the default.Peter MillerPage 38

Cook UserGuideno-implicit-ingredientsThis flag may be used to specify that a recipe’singredients may not be satisfied byimplicit recipes; this is of most use with utilities such as RCS where the recipe writerknows that the ingredients cannot be constructed.include-cooked-warning Thisflag may be used to enable warnings when the relationship between a targetand a derivedingredient appears only in a derivedcookbook. Thisis usually the default.This flag is only meaningful at the cookbook level, it is not meaningful for individualrecipes or commands.no-include-cooked-warning Thisflag may be used to disable warnings when the relationship between atarget and a derivedingredient appears only in a derivedcookbook. Thisflag is onlymeaningful at the cookbook level, it is not meaningful for individual recipes orcommands.ingredients-fingerprint Thisflag may be used to cause recipes to re-trigger when their ingredients listchanges in anyway.This is especially useful, for example, in causing libraries to berebuilt when a content source file is removed.no-ingredients-fingerprint Cancel anyactiveingredients-fingerprintsetting.match-mode-cook Use native Cook pattern matching.match-mode-regexUse POSIX regular expression pattern matching.meter Ifthemeterflag is specified, a summary of the CPU usage by the commands within thisrecipe will be printed after each command.The silent options override this option.nometer Donot meter commands.This is usually the default.mkdir Ifthemkdirflag is specified, the directories of anytargets will be created before theactions bound to the recipe are evaluated.nomkdir Ifthenomkdirflag is specified, the directories of anytargets will need to be created bythe actions bound to the recipe.This is usually the default.precious Ifthepreciousflag is specified, if the actions bound to the recipe fail, the targets of therecipe will not be deleted.noprecious Ifthenopreciousflag is specified, if the actions bound to the recipe fail, the targets of therecipe will be deleted.This is usually the default, so that erroneous targets will be re-cooked.recurse Ifthis flag is specified, recipes will recurse upon themselves if one of their ingredientsmatches one of their targets. Thiscan cause problems, and so it is not the default.norecurse Ifthis flag is specified, the recipe will not recurse if one of its ingredients matches one ofits targets. Thisis the default.silent Ifthesilentflag is specified, the commands within the actions bound to the recipe will notbe echoed.nosilent Commandswill be echoed.This is usually the default.stripdot Thisoption causescookto remove leading "./" prefixes from filenames.This is usuallythe default.nostripdot Thisoption causescookto leave leading "./" prefixes on filenames.symlink-ingredients Whenusing a search path, of an ingredient exists, but is not in the top levelofthesearch path, this option request that a symbolic link to the actual file be created in the topleveldirectory.This option is typically used on a per-recipe basis for for brain dead tools,likeGNU Automake, which don’tgrok search paths.Peter MillerPage 39

Cook UserGuideno-symlink-ingredients Reverse of the above.Nev ercreate symbolic links for ingredients.tell-position Thisoption causes the filename and line number to be printed when echoing commandsjust before theyare executed, in addition to the command itself.no-tell-position Thisoption suppresses the printing of the filename and line number when echoingcommands just before theyare executed. Thisis usually the default.time-adjust Thisoption causescookto check the last-modified time of the targets of recipes, andadjust them if necessary,tomakesure theyare consistent with (younger than) the last-modified times of the ingredients.This usually adjusts the file time into the (near) future.Awarning message will be printed, telling you howmanyseconds the file was adjusted.This results in more system calls, and can slowthings down on some systems6.no-time-adjust Donot adjust the file last-modified times after performing the body of a recipe.This isusually the default.time-adjust-back This option causescookto force the last-modified time of the targets of recipes to beexactly one (1) second younger than their youngest ingredient.This usually adjusts thefile time into the (recent) past.Awarning message will be printed, telling you howmanyseconds the file was adjusted.This results in more system calls, and can slowthingsdown on some systems.This is primarily useful when some later process is going tocompress file modification times; this provides smarter compression.unlink Iftheunlinkflag is specified, of anytargets will be unlinked before the actions bound tothe recipe are performed.nounlink Ifthenounlinkflag is specified, the recipe targets are not removedbefore the actionsbound to the recipe are performed.This is usually the default.Each flag may also be specified in the negative,byadding a "no" prefix, to override anyexisting positivedefault setting.There is a strict precedence defined for the various levels of flag setting, see the end of the"HowCook Works" chapter for details.7.3.5.2 RecipeGateEach recipe may have agate.The gate is a way of specifying a conditional recipe; if the condition is nottrue, the recipe is not used.The condition is in addition to the condition that the ingredients are cookable.gateifexprForexample:program: [program_obj]if [not [in horrible.o [program_obj]]]{cc -o program [program_obj];}7.3.5.3 ThenClauseThere are times when it is necessary to knowthat a recipe has been applied, but because the recipe was up-to-date, the recipe body was not run.6.This flag was once named the ‘‘update’’flag. Thename was changed to more closely reflect its function.The old namecontinues to work.Peter MillerPage 40

Cook UserGuideusethencstmtThe then-clause is run every time the recipe is applied, evenifthe recipe is up-to-date.It will be run afterthe recipe body,ifthe recipe body is run.All of the usual percent (%) substitutions and automatic variableswill apply.Recipe then-clauses may have local variables.Forexample:program: [program_obj]{cc -o program [program_obj];}then{install-set += program;}7.3.5.4 Double ColonMost cookbooks are constructed so that ifcookfinds a suitable recipe for the target it is currentlyconstructing, it will apply the recipe and then conclude that it has finished constructing the target. Insomerare cases you will wantcookto keep going after applying a recipe.To specify this use a ‘‘double colon’’construction:stmtelist::exprsflagsgatecstmtuseThis operates likeanormal explicit recipe, butcookwill continue on looking for recipes after applying thisone. Assoon as an applicable ‘‘single colon’’recipe is found and applied,cookwill conclude that it hasfinished constructing the target.Forexample:all:: programs{[print "all programs done"];}all:: libraries{[print "all libraries done"];}7.3.6 TheImplicit Recipe StatementImplicit recipes are distinguished from explicit recipes in that and implicit recipe has a target with a ’%’character in it.7.3.6.1 SimpleFormIn general the user will rarely need to use the implicit recipe form, as there are a huge range of implicitrecipes already defined in the system default recipes.An example of this recipe form is%: %.gz{gzcat %.gz > %;}This recipe tellscookhowtouse thegzcat(1) program.Peter MillerPage 41

Cook UserGuide7.3.6.2 ComplexFor mThe implicit recipe recipe has a second form where there are twosets of ingredients, separated by anothercolon. Inthis form, the ingredients specified in the first ingredients list are used to determine theapplicability of the recipe; if these are all constructible then the recipe will be applied, if anyare notconstructible then the recipe will not be applied.If the recipe is applied, the ingredients specified in thesecond ingredients list are required to be constructible.The the second ingredients list section is known astheforced ingredientssection.Note:if you want the first ingredients list to be empty youmustseparate the twocolons with a space,otherwisecookwill think this is a ‘‘double colon’’recipe.An example of this is the C recipe%.o: %.c: [collect c_incl -api %.c]{cc -c %.c;}This recipe is applied if the%.cfile can be constructed, and is not applied if it cannot be constructed.Theinclude dependencies are only expressed if the recipe is going to be applied; but if theyare expressed, theymustbe constructible.This means that absent include files generate an error7.The naive form of this recipe%.o: %.c [collect c_incl -api %.c]{cc -c %.c;}will attempt to apply thec_inclcommand before the%.cfile is guaranteed to exist. Thisis because theexprs2is performed after theexprs1all exist (because theyare constructible, theyhav ebeen constructed).In this naive form, absent include files result in the recipe not being applied.7.3.6.3 Double ColonJust as explicit recipes have a ‘‘double colon’’form, so do both types of implicit recipes.The semantics areidentical, withcooklooking for more than one applicable implicit recipe, but stopping if it finds anapplicable ‘‘single colon’’implicit recipe.As stated earlier in this manual,cookfirst scans for explicit recipes before scanning for implicit recipes.Ifan explicit recipe has been applied,cookwill not also look for applicable implicit recipes, evenifall theapplicable explicit recipes were double colon recipes.7.3.7 TheIngredients Recipe StatementThe ingredients recipe has the formstmtelist:exprsflagsgate;The target(s) of the recipe are to the left of the colon, and the prerequisites are to the right.There are nostatements to perform to cook the targets of this recipe, it is simply supplementary to anyother recipe,usually an implicit recipe.Forexample:program: batman.o robin.o;The right-hand-side expressions are only evaluated into words when the recipe is instantiated.Ingredients recipes are usually explicit, but it is also valid to use implicit ingredients recipes.Forexample:7.This is not the recommended way of determining C include dependencies, see the ‘‘Include Dependencies’’chapter for moreinformation.Peter MillerPage 42

Cook UserGuidesome-%-program: %.o;7.3.8 TheCascade Recipe StatementThe cascade recipe statement has the formstmtcascadeelist=elist;This recipe specifies on its right-hand-side additional ingredients for anyrecipe which has ingredientsmentioned on the left-hand-side of this cascade recipe.Unlikeall other recipe forms, both the left-hand-sideandthe right-hand-side are evaluated when the recipeis instantiated.Forexample:cascade batman.c = robin.h;cascade somelib.a = some-deeper-lib.a;7.3.9 CommandsCommands may takesev eral forms incook.Theyall have one thing in common; theyexecute a command.7.3.10 TheSimple Command StatementThe simplest command form isstmtelistflags;When executed, theelistis evaluated into a word list and used as a command to be passed to the operatingsystem. OnUNIX this usually means that a shell is invokedtorun the command, unless the string containsno shell meta-characters.Theflagsare those which may be specified in the explicit recipe statement.Theyhav eahigher precedencethan either thesetstatement or the recipe flags.Some characters in commands are special both to the shell and to cook.Youwill need to quote or escapethese characters.Each command is executed in a separate process, so thecdcommand will not work, youwill need to combine it with the relevant commands, not forgetting to escape the semicolon (;)characters.When Cook needs to invoke a shell to execute a command, it uses the shell named in theSHELLenvironment variable. Ifthe cookbook is to be used by a variety of users, each with a different shell setting,it may be useful to add asetenv SHELL = /bin/sh;line at the top of your cookbook.It is also important to note that unless theerrokflag has been specified, the shell will be giventhe -eoption, which will cause it to exit immediately after the first commandwhich returns a non-zero exit status.This can be important whencommands in the.profileor.bashrc(or similar) file fails.7.3.11 TheData Command StatementForprograms which requirestdinto be supplied bycookto perform their functions, the data commandstatement has been provided.stmtelistflags;dataexprdataendIn this form, theexpris evaluated and used as input to the command.Between thedataanddataendkeywords the definition of the special symbols and whitespace change.There are only twospecialsymbols,[and],toallowfunctions and variable references to appear in the expression. Inaddition,whitespace ceases to have its usual specialness; it is handed to the command, instead.Peter MillerPage 43

Cook UserGuideForthose of you familiar with writing shell scripts, this is analogous toheredocuments. Itallows you tocreate an input file without creating an explicit temporary file.It also allows you to create files that youcould not create usingechoredirected into the file8.Thedatakeyword must be the last on a line, whitespace after thedatakeyword up to and including end-of-line, willnotbe giventothe command.Thedataendkeyword must appear alone on a line, optionally surrounded by whitespace; if it is not alone,it is not adataendkeyword and will not terminate the expression.An example of this may be useful./usr/fred/%: %{newgrp fred;datacp % /usr/fred/%dataend}Thenewgrp(1) command is used to change the default group of a process, and then throwashell; so the‘‘cp’’isexecuted by this sub-shell when it reads its standard input.If the directory/usr/fredhas read-onlypermissions for others, and group write permissions, and belonged to groupfred,and you were a memberof groupfred,the above implicit recipe could be used to copythe file.Here is an example of howtocope with stupidly short NT command lines:%.LIB: [%_obj]{cat > %.contents;data[unsplit "\n" [unix-to-dos [need]]]dataendlink -lib "/out:"[unix-to-dos [target]] @%.contents;rm %.contents;}The ‘‘@something’’ means the linker should read file names from thesomethingfile.This technique will also work with Unix if you have more then 5MB of command line argumentsandtheprogram is written to have anoption something likethis (manyhav ea-foption).7.3.12 TheSet StatementIt is possible to override the defaults used bycookor eventhose specified by theCOOKenvironmentvariable, by using thesetstatement.stmtsetexprs;The flag values are those mentioned in theflagsclause of the explicit recipe statement.Manycommand-line options have equivalent flag settings.There is no ‘‘unset’’statement, to restore the default settings, butit is possible to set flags the other way,byadding or removing the ‘‘no’’prefix.To set flags for individual recipes, use theflagsclause of the recipe statements.To set flags for individual commands, use theflagsclause of the command statements.7.3.12.1 ExamplesFingerprinting is not used by default, because it can cause a fewsurprises, and takes a little more CPU.Toenable fingerprinting for you project, place the statementset fingerprint;8.Forexample, Windows NT has a ludicrously small command line length limit.Peter MillerPage 44

Cook UserGuidesomewhere near the start of yourHowto.cookfile. The-No_FingerPrintcommand line option can stilloverride this, but the default behavior will be to use fingerprints.To prevent echoing of commands as theyare executed, placeset silent;somewhere in yourHowto.cookfile. The-NoSilentcommand line option can still override this, but thedefault behavior will be not to echo commands.7.3.13 TheFail StatementCookcan be forced to think that a recipe has failed by the uses of thefailstatement.stmtfailexprs;This is hugely useful when programs do not return a useful exit status, butdofail. Iftheyhav eprinted anerror message, but not produced the output file, you could use the Fail statement without arguments:fred: other stuffset unlink{brain-dead [need] -o [target];if [not [exists [target]]] thenfail;}If you give the Fail statement anyarguments, theywill be printed as an error message before the recipefails:fred: other stuffset unlink{brain-dead [need] -o [target];if [not [exists [target]]] thenfail Did not produce [target] file.;}7.3.14 TheIf StatementThe if statement has one of twoforms.stmtifexprthenstmtelsestmtIn nested if statements, theelsewill bind to the closestelse-lessif.Anexpression is false if and only if allof its words are null or it has no words.Note that one or both of the subordinate statements may be compound statements, should you need to saysomething more complexthan a single statement.7.3.15 TheLoop and Loopend StatementsLooping is provided for incookby the generic infinite loop construct defined below.stmtloopstmtAfacility is provided to break out of a loop at anypoint.stmtloopstop;Peter MillerPage 45

Cook UserGuideThe statement following theloopdirective isexecuted repeatedly forever. Theloopstopstatement is onlysemantically valid within the scope of aloopstatement.Here is an example of howtouse the loop statement:dirs = a b c d;src = ;tmp = [dirs];loop{tmp_dir = [head [tmp]];if [not [tmp_dir]] thenloopstop;tmp = [tail [tmp]];src = [src] [glob [tmp_dir]"/*.c"];}There is also a ‘‘for each’’loop variant, allowing a more terse expression of exactly the same thingdirs = a b c d;src = ;loop tmp_dir = [dirs]{src = [src] [glob [tmp_dir]"/*.c"];}Youcan use loopstop within such a loop.Note that the loop bodymustbe a compound statement.7.3.16 FunctionsIt is possible to define your own functions.7.3.16.1 FunctionDefinitionUser-defined functions are specified using something similar to an assignment.functionfunctionword=cstmtFunctions must be defined before theyare used.Youneed to makesure you do not re-define a built-in-function as this may have dire consequences.7.3.16.2 TheRetur nStatementYoureturn values from a function by using the return statement:stmtreturnexprs;Note that return statements are not meaningful outside a function definition.7.3.16.3 FunctionArgumentsThe arguments to the function are passed in the ‘‘arg’’variable. Eachargument is also separately defined inthe ‘‘@1’’to‘‘@9’’variables for direct access.(If there are more than 9, you will need to use ‘‘[wordn[arg]]’’for argument 10 and later).These variables are unique for each function invocation, eveniftheyarenested.Youcan use the ‘‘@1’’to‘‘@9’’variables as local variables if you have noneed of their values.All of these special names are thread safe and recursion safe.Every function invocation receivesits ownset of them.Peter MillerPage 46

Cook UserGuide7.3.16.4 ExampleAn example of a function definition is a ‘‘capitalize’’function:function capitalize ={@1 = ;loop @2 = [downcase [arg]]{@1 += [upcase [substr 1 1 [@2]]][substr 2 99 [@2]];}return [@1];}This function capitalizes the first letter of each of its arguments.User-defined functions are invokedinthe same way a built-in functions.host = [os node];Host = [capitalize [host]];See the ‘‘Function Library’’section for additional function examples which are distributed with Cook.7.3.16.5 FunctionCall StatementUser defined functions may be invokedinthe same way as built-in functions, but theymay also be invokedin the same way as commands, providing a form of subroutine.stmtfunctionelist;If the function return value is not zero, it is considered to fail, just as a command would fail. Thecommonest use of this is to invoke the built-in print function for debugging cookbooks.function print [__FILE__] [__LINE__] hello [getenv USER];These function calls may be used in recipe bodies, or in the general cookbook.7.3.16.6 LocalVariablesFunctions can have local variables simply by using the wordlocalon the left-hand-side of theassignment. Careneeds to be taken with theloopstatement and the+=assignment, as the variable needsto be established as a local variablefirst.function capitalize ={local result = ;local tmp = ;loop tmp = [downcase [arg]]{result += [upcase [substr 1 1 [tmp]]][substr 2 99 [tmp]];}return [result];}Functions may have asmanylocal variables as theylike.Local variables are reentrant.Youcan write recursive functions, and each invocation of the function has anindependent set of local variables.Local variables are thread-safe.Youcan use the same user-defined function in twoparallel threads, andtheir local variables are completely independent.The ‘‘arg’’and ‘‘@1’’to‘‘@9’’variables are implicitly local.Peter MillerPage 47

Cook UserGuide8. Built-InFunctionsThis chapter defines each of the built-in functions ofcook.Abuilt-in function is invokedbyusing an expression of the form[func-name argarg...]in most places where a literal word is valid.8.1 addprefixTheaddprefixfunction is used to add a prefix to a list or words. Thisfunction requires at least oneargument. Thefirst argument is a prefix to be added to the second and subsequent arguments.8.1.1 SeeAlsoaddsuffix, patsubst, prepost, subst8.2 addsuffixTheaddsuffixfunction is used to add a suffix to a list or words. Thisfunction requires at least oneargument. Thefirst argument is a suffix to be added to the second and subsequent arguments.8.2.1 SeeAlsoaddprefix, patsubst, prepost, subst8.3 andThis function requires at least twoarguments, upon which it forms a logical conjunction.The valuereturned is "1" (true) if none of the arguments are "" (false), otherwise "" (false) is returned.8.3.1 ExampleThe following cookbook fragment shows howtouse the [and] function in conditional recipes.#if [and [defined change] [defined baseline]]...do something...#endifThis fragment will onlydo somethingif both thechangeandbaselinevariables are defined.8.3.2 CaveatThis function is rather clumsy,and probably needs to be replaced by a better syntax within the cookbookgrammar itself.This function does not short-circuit evaluation.8.3.3 SeeAlsoor,not8.4 basenameThebasenametreats each argument as filenames, and extracts all but the suffix of each filename.If thefilename contains a period, the basename is everything up to (but not including) the period.Otherwise, thebasename is the entire filename.Please note: this is not the same behavior as the Unixbasename(1) utility.For this,[basename[notdirargs]]or[fromto %0%.c %0%args]may be more appropriate.8.4.1 ExampleExpression Result[basename foo.c]foo[basename foo/bar.c] foo/barPeter MillerPage 48

Cook UserGuide[basename baz]baz[basename foo/bar/baz]foo/bar/baz8.4.2 SeeAlsoaddsuffix, dirname, entryname, fromto, notdir,suffix8.4.3 CaveatThis function is almost nothing likethe Unix command of the same name.It operates in this manner forcompatibility with other packages.8.5 candoThis function is used to test whether Cook knows howtocook the giventargets. Itreturns all of thearguments for which derivations can be found, or nothing if none can.8.5.1 CaveatThis will use as much of the cookbook as has been read in up to the point where this function is used.Thiscan mean that crucial recipes have yet to be parsed and instantiated.8.5.2 SeeAlsocook, uptodate8.6 catenateThis function requires zero or more arguments. Ifno arguments are supplied, the result is an empty wordlist. Ifone or more arguments are supplied, the result is a word list of one word being the catenation of allof the arguments.8.6.1 ExampleExpression Result[catenate a]a[catenate a b]ab[catenate a " " b]"a b"Quotes used in the results for clarity.8.6.2 SeeAlsosplit, unsplit, prepost, join8.7 collectThe arguments are interpreted as a command to be passed to the operating system.The result is one wordfor each white-space separated word of the output of the command.The command will not be echoed unless the -No_Silent option is specified on the command line.8.7.1 ExampleRead the date and time and assign it to a variable:now = [collect date];Do not use the collect function to expand a filename wildcard, used the [glob] function instead.8.7.2 SeeAlsocollect_lines, execute, glob, read, read_lines, write8.7.3 AlsoKnown Asshell8.8 collect_linesThe arguments are interpreted as a command to be passed to the operating system.The result is one "word"Peter MillerPage 49

Cook UserGuidefor each line of the output of the command.8.8.1 ExampleTo read each line of a file into a variable:files = [collect_lines cat file];Spaces and tabs in the input lines will be preserved in the "words" of the result.8.8.2 SeeAlsocollect, execute, glob, read, read_lines, write8.8.3 CaveatYouwill probably get better performance using the#include-cookeddirective,and a recipe to createthe included file.8.9 cookThis function requires one or more arguments, filenames to be tested to see if theyare up-to-date, and bebrought up-to-date if theyare not.The result are true ("1") if the files are (now) up-to-date, or false ("") iftheycould not be built.8.9.1 CaveatThis will use as much of the cookbook as has been read in up to the point where this function is used.Thiscan mean that crucial recipes have yet to be parsed and instantiated.This function works one argument at a time.This is slower than the main cookbook, which will pursue alltargets simultaneously.8.9.2 SeeAlsocando, uptodate8.10 countThis function requires zero or more arguments. Theresult is a word list of one word containing the(decimal) length of the argument word list.8.10.1 ExampleThis cookbook fragment echoes the number of files, and then the name of the last file:echo There are [count [files]] files.;echo The last file is [word [count [files]] [files]].;8.10.2 SeeAlsohead, tail, word8.10.3 AlsoKnown Aswords8.11 definedThis function requires a single argument, the name of a variable to be tested for existence. Itreturns "1"(true) if the named variable is defined and "" (false) if it is not.8.11.1 ExampleThis function is most often seen in conditional portions of cookbooks:if [defined baseline] thencc_flags = [cc_flags] -I[baseline];8.12 dirThis function requires one or more arguments, the names of files which will have their directory partsextracted.Peter MillerPage 50

Cook UserGuide8.12.1 ExampleExpression Result[dir a] .[dir a/b]a[dir a/b/c]a/b8.12.2 SeeAlsobasename, entryname, notdir,pathname, relative_dirname, suffix8.12.3 AlsoKnown Asdirname8.13 dirnameThis function requires one or more arguments, the names of files which will have their directory partsextracted.8.13.1 ExampleExpression Result[dirname a]‘pwd‘[dirname a/b]a[dirname a/b/c] a/bWhen the answer would be ‘‘.’’ (the current directory), the result is instead the absolute path of the currentdirectory.This allows repeated [dirname] applications to climb the directory tree, no matter where youstart. Seerelative_dirnamefor one which returns ‘‘.’’ instead.8.13.2 SeeAlsobasename, entryname, notdir,pathname, relative_dirname, suffix8.13.3 AlsoKnown Asdir8.14 dos-pathThis function requires one or more arguments, which will be converted from a UNIX path into a DOS path.This is of most use under Windows-NT,toconvert Cook’sinternal pathnames into DOS pathnames.(TheUNIX porting layer usually hides this from Cook.)8.14.1 ExampleExpression Result[dos-path a/b/c]a\b\c[dos-path //c/temp]c:\temp[dos-path //server/stuff] \\server\stuff8.14.2 SeeAlsoun-dos-path8.15 downcaseThis function requires one or more arguments, words to be forced into lower case.8.15.1 ExampleExpression ResultPeter MillerPage 51

Cook UserGuide[downcase FOO]foo[downcase Bar]bar[downcase baz]baz8.15.2 SeeAlsoupcase8.16 entrynameThis function requires one or more arguments, the names of files which will have their entry name partsextracted.8.16.1 ExampleExpression Result[entryname foo.c]foo.c[entryname foo/bar.c] bar.c[entryname baz] baz8.16.2 SeeAlsobasename, dir,suffix8.16.3 AlsoKnown Asnotdir8.17 executeThis function requires at least one argument, and executes the command givenbythe arguments. Iftheexecuted command returns non-zero exit status the resulting value is "" (false), otherwise it is "1" (true).The command will not be echoed unless the -No_Silent option is specified on the command line.8.17.1 CaveatThis function is not often required as its functionality is available in a more useful form as recipe bodies.8.17.2 ExampleTo get access to a wide range of Unix command, such astest(1), you can use this function in conditionalsif [not [test -d fubar]] then{rm -f fubar;mkdir fubar;}8.17.3 SeeAlsocollect8.18 existsThis function requires one argument, being the name of a file to test for existence. Theresulting word listis "" (false) if the file does not exist, and "1" (true) if the file does exist.8.18.1 ExampleTo remove the target of a recipe before building it again:%.a: [%_obj]{if [exists [target]] thenrm [target]set clearstat;[ar] qc [target] [%_obj];Peter MillerPage 52

Cook UserGuide}Note: youmustuse the clearstat, because otherwise cook’s"stat cache" will be incorrect.This is only an example. Itis better to perform this particular activity using the ‘‘unlink’’flag. Seethe[find_command] function, below, for an example.8.18.2 SeeAlsocando, find_command, uptodate8.19 exists-symlinkThis function requires one argument, being the name of a file to test for existence. Thetest willnotfollowsymbolic links, so it may be used to test for the existence of symbolic links themselves. Theresulting wordlist is "" (false) if the file does not exist, and "1" (true) if the file does exist.8.19.1 SeeAlsoexists, readlink8.20 exprThis function may be used to calculate simple integer arithmetic expressions. Thenumbers and theoperators are expected to each be a separate argument. Theresult is a string containing the value of theevaluated expression.8.20.1 OperatorsThe following operators are understood.Theyhav ethe same precedence as the equivalent C operators.Operator Associativity()→!˜-←*/%→+-→<< >>→<<=>>=→== !=→&→ˆ→|→&&→||→?:←Please note that there is no short-circuit evaluation of the?:or&&or||operators.Youmay need to quote some of the operators, to insulate them from their usual Cook interpretation (colonand equals characters in particular).Numbers may be givenindecimal, octal (with a0prefix), or hexadecimal (with a0xprefix). Theresult isalways decimal.8.20.2 SeeAlsocount8.21 filterThis function requires one or more arguments. Thefirst argument is a pattern, the second and laterarguments are strings to match against this pattern.The resulting wordlist contains those arguments whichmatched the pattern givenasthe first argument.Peter MillerPage 53

Cook UserGuide8.21.1 ExampleExpression Result[filter %.c a.c a.o]a.c[filter %.cc a.c a.o]8.21.2 MatchModeThis function is affected by the selected match mode.See theFile Name Patternschapter for details.8.21.3 SeeAlsofilter_out, stringset8.21.4 AlsoKnown Asmatch_mask8.22 filter_outThis function requires one or more arguments. Thefirst argument is a pattern, the second and laterarguments are strings to match against this pattern.The resulting wordlist contains those arguments whichdid not match the pattern givenasthe first argument.8.22.1 ExampleExpression Result[filter_out %.c a.c a.o]a.o[filter_out %.cc a.c a.o]a.c a.o8.22.2 MatchModeThis function is affected by the selected match mode.See theFile Name Patternschapter for details.8.22.3 SeeAlsofilter,stringset8.23 findstringThe findstring function is used to match a fixed string against a set of strings.This function takes at leastone argument. Thefirst argument is the fixed string, the second and subsequent arguments are matchedagainst the first.The result contains one word for each of the second and subsequent arguments, each willeither be the empty string (false) or the string to be matched, if a match was found.8.23.1 ExampleExpression Result[findstring a a b c]a""""[findstring a b c]"" ""Quotes are for clarity,toemphasize the empty strings.Because the empty string is "false", this can be usedin anifstatement:if [findstring fish [sources]] thensources = [sources] hook.c;8.23.2 SeeAlsofilter-out, match, match_mask, patsubst, stringset, subst8.24 find_commandThis function requires at least one argument, being the names of commands to search for in $PATH. Theresulting word list contains either "" (false) or a fully qualified path name for each command given.Peter MillerPage 54

Cook UserGuide8.24.1 ExampleSome systems requireranlib(1) to be run on archives, and some do not.Here is a simple way to test:ranlib = [find_command ranlib];%.a: [%_obj]set unlink{ar qc [target] [%_obj];if [ranlib] then[ranlib] [target];}8.24.2 SeeAlsocando, exists, uptodate8.25 firstwordThis function requires zero or more arguments. Thewordlist returned is empty if there were no arguments,or the first argument if there were arguments.8.25.1 ExampleYoucan iterate along a list using theloopstatement combined with thefirstwordandtailfunctions:dirs = a b c d;src = ;tmp = [dirs];loop{tmp_dir = [firstword [tmp]];if [not [tmp_dir]] thenloopstop;tmp = [tail [tmp]];src = [src] [glob [tmp_dir]"/*.c"];}More efficient ways exist to do this, this an example only.8.25.2 SeeAlsocount, glob, fromto, prepost, tail, word8.25.3 AlsoKnown Ashead8.26 fromtoThis function requires at least twoarguments. Fromtogivesthe user access to the pattern transformationsavailable tocook.The first argument is the "from" form, the second argument is the "to" form.All otherarguments are mapped from one to the other.8.26.1 ExampleGivenalist of C source files, generate a list of object files as follows:obj = [fromto %.c %.o [src]];8.26.2 SeeAlsofilter,filter_out, substSee the pattern matching chapter for more information about patterns.Peter MillerPage 55

Cook UserGuide8.26.3 MatchModeThis function is affected by the selected match mode.See theFile Name Patternschapter for details.8.26.4 AlsoKnown Aspatsubst8.27 getenvEach argument is treated as the name of an environment variable. Theresult is the value of each argumentvariable, or "" if it does not exist (consistent with command shell behaviour).8.27.1 ExampleTo read the value of the TERM environment variable:term = [getenv TERM];Values of variables are not automagically set from the environment, you must set each one explicitly:cc = [getenv CC];if [not [cc]] thencc = gcc;8.27.2 SeeAlsofind_command, home8.28 globEach argument is treated as ash(1) file name pattern, and expanded accordingly.The resulting list offilenames is sorted lexicographically.Youmay need to quote the pattern, to protect square brackets from the meaning cook attaches to them.Note:The character sequence/*is a comment introducer,and is a frequent source of problems whencombined with theglobfunction. Rememberto quoteglobarguments which need this character sequence.See the [head] function, below, for an example of this.8.28.1 ExampleTo find the sources in the current directory:src = [glob *.c];obj = [fromto %.c %.o [src]];8.28.2 SeeAlsofilter,filter_out, shell8.28.3 AlsoKnown Aswildcard8.29 headThis function requires zero or more arguments. Thewordlist returned is empty if there were no arguments,or the first argument if there were arguments.8.29.1 ExampleYoucan iterate along a list using theloopstatement combined with theheadandtailfunctions:dirs = a b c d;src = ;tmp = [dirs];loop{tmp_dir = [head [tmp]];if [not [tmp_dir]] thenPeter MillerPage 56

Cook UserGuideloopstop;tmp = [tail [tmp]];src = [src] [glob [tmp_dir]"/*.c"];}More efficient ways exist to do this, this an example only.8.29.2 SeeAlsocount, glob, fromto, prepost, tail, word8.29.3 AlsoKnown Asfirstword8.30 homeThehomefunction is used to find the home directory of the named users.Youmay name more than oneuser.Ifnousers are named, it returns the home directory of the current user.8.31 ifThis function requires one or more arguments, the arguments before the "then" word are used as acondition. Ifthe condition is true the words between the "then" word and the "else" word are the result,otherwise the words after the "else" word are the value. The"else" clause is optional.There is no way toescape the "then" and "else" words.8.31.1 ExampleHere is an example of the ‘‘if ’’function. Pleasenote that ‘‘if ’’, ‘‘then’’and ‘‘else’’are reserved words, soyou need to quote them before theywill be recognised on the function context.%: %_objset ["if" [defined all_shallow] "then" shallow]{[cc] -o [target] [%_obj];}8.31.2 CaveatIt is often clearer to use theif statementthan this function.The recipe flags are evaluated at the same time as the recipe targets. Noneof the [target], [targets], [need],[younger] variables or pattern matches (%, %1,etc)are set at this time.8.32 inThis function requires one or more arguments. Thewordlist returned is a single word: the indexofthematching word (1 based) if the first argument is equal to anyofthe later ones; or "" (false) if not.This function can also be used for equality testing, just use a single element in the set.Because it returns the index, the return valus can be used with the[word]or[words]functions.8.32.1 ExampleFrequently seen in conditional parts of recipes:%: [%_obj]{[cc] -o [target] [%_obj];if [in [target] [private]] thenchmod og-rwx [target];}8.32.2 SeeAlsostringset, word, wordsPeter MillerPage 57

Cook UserGuide8.33 interior_filesThis function requires zero arguments. Theresult is the list of files which are interior to the dependencygraph. (Fileswhich are constructed by a recipe.)This function is only meaningful within a recipe body.8.33.1 SeeAlsoleaf_files function, graph_interior_file variable, graph_interior_pattern variable8.34 joinThejoinfunction is used to join twosets of strings together,element by element.The argument list mustcontain an evennumber of arguments, with the first half joined pair-wise with the last half.There is nomarker of anykind between the lists, so the user needs to ensure theyare both the same length.8.34.1 ExampleExpression Result[join a b c d]ac bd[join a b]ab8.34.2 SeeAlsobasename, catenate, suffix8.35 leaf_filesThis function requires zero arguments. Theresult is the list of files which are leavesofthe dependencygraph. (Fileswhich are not constructed by a recipe.)This function is only meaningful within a recipebody.8.35.1 SeeAlsointerior_files function, graph_leaf_file variable, graph_leaf_pattern variable8.36 matchesThis function requires one or more arguments. Thefirst argument is a pattern, the second and laterarguments are strings to match against the pattern.The resulting wordlist contains "" (false) if did notmatch and the 1-based list index(true) if it did.The returned list indexmay be used in combination with the [words] function.8.36.1 ExampleThis function may be used to test for strings which have a particular form:if [matches %1C%2 [version]] thencc_flags = [cc_flags] -DDEBUGIf the version contains a Capital-C character,then turn on debugging.8.36.2 MatchModeThis function is affected by the selected match mode.See theFile Name Patternschapter for details.8.36.3 SeeAlsofilter,filter-out, words8.37 match_maskThis function requires one or more arguments. Thefirst argument is a pattern, the second and laterarguments are strings to match against this pattern.The resulting wordlist contains those arguments whichmatched the pattern givenasthe first argument.Peter MillerPage 58

Cook UserGuide8.37.1 ExampleExpression Result[match_mask %.c a.c a.o]a.c[match_mask %.cc a.c a.o]8.37.2 MatchModeThis function is affected by the selected match mode.See theFile Name Patternschapter for details.8.37.3 SeeAlsofilter-out, findstring, stringset8.37.4 AlsoKnown Asfilter8.38 mtimeThis function requires one argument, the name of a file to fetch the last-modified time of.The resultingwordlist is "" (false) is the file does not exist, or a string containing a (sortable) representation of the dateand time the files were last modified.8.38.1 SeeAlsoexists, mtime-seconds, sort_newest8.39 mtime-secondsThis function requires one argument, the name of a file to fetch the last-modified time of.The resultingwordlist is "" (false) is the file does not exist, or a string containing number of seconds since the epoch thatthe files were last modified.This is more useful than [mtime] for doing arithmetic on.8.39.1 SeeAlsoexists, expr,mtime, sort_newest8.40 notThis function requires zero or more arguments, the value to be logically negated. Itreturns "1" (true) if allof the arguments are "" (false), or there are no arguments; and returns "" (false) otherwise.This issymmetric with the definition of true and false forif.8.40.1 ExampleThis is often seen in recipes:%1/%0%2.o: %1/%0%2.csingle-thread %2.o{if [not [exists [dirname [target]]]] thenmkdir -p [dirname [target]]set clearstat;[cc] [cc_flags] -I%1 %1/%0%2.c;mv %2.o [target];}Note that "%0"matches zero or more whole filename portions, including the trailing slash.See the chapteron pattern matching for more information.This is an example only.The ‘‘mkdir’’recipe flag creates the directory more efficiently.8.40.2 SeeAlsoand, orPeter MillerPage 59

Cook UserGuide8.41 notdirThis function requires one or more arguments, the names of files which will have their entry name partsextracted.8.41.1 ExampleExpression Result[notdir foo.c]foo.c[notdir foo/bar.c] bar.c[notdir baz]baz8.41.2 SeeAlsobasename, dirname, relative_dirname, suffix8.41.3 AlsoKnown Asentryname8.42 operating_systemThis function requires zero or more arguments. Theresulting wordlist contains the values of variousattributes of the operating system, as named in the arguments. Ifno attributes are named, "system" isassumed. Belowisalist of attributes:node Thename of the computercookis presently running on.system Thename of the operating systemcookis presently being run under.For example: if youwere running on SunOS 4.1.3, this would return "SunOS".release Thespecific release of operating system, within name,cookis presently being run under.Forexample: if you were running on SunOS 4.1.3, this would return "4.1.3".version Version information.ForSunOS 4.1.3, this would return the kernel build number,forother systems it is often the kernel patch release number.machine Thename of the hardwarecookis presently running on.Forexample: If you wererunning on SunOS 4.1.3 this would return "sun4"orsimilar.This function may be abbreviated to "os".8.42.1 ExampleThis function is usually used to determine the architecture (either system or machine):arch=[os system]-[os release]-[os machine];if [matches SunOS-4.1%1-sun4%2 [arch]] thenarch = sun4;else if [matches SunOS-5.%1-sun4%2 [arch]] thenarch = sun5;else if [matches SunOS-5.%1-i86pc [arch]] thenarch = sun5pc;else if [matches ConvexOS-%1-%2 [arch]] thenarch = convex;elsearch = unknown;8.42.2 CaveatThis function is implemented using theuname(2) system call.Some systems do not implement thiscorrectly,and therefore this function is less useful than it should be, and needs the pattern match appropachused above.Peter MillerPage 60

Cook UserGuide8.42.3 SeeAlsocollect8.42.4 AlsoKnown Asos8.43 optionsThis functions takes no arguments. Theresults is a complete list ofcookoptions, exactly describing thecurrent options settings.This intended for use in constructing recursivecookinvocations.The option setting generated are a combination of the command line options used to invokecook,thecontents of the COOK environment variable, the results of the ‘‘set’’command and the various ‘‘set’’clauses.8.43.1 ExampleThe top levelcookbook for a recursive project structure can be as follows:%:{dirlist = [dirname [glob ’*/Howto.cook’]];loop{dir = [head [dirlist]];if [not [dir]] thenloopstop;dirlist = [tail [dirlist]];cd [dir]\; cook [options] %;}}/**This recipe sets the default.*Itdoesn’t actually do anything.*/all:;Please note the % hiding on the end of the nestedcookcommand, this is howthe target is communicated tothe nestedcookinvocation.8.43.2 CaveatRecursive Cook is not recommended, because it segments the dependencygraph and forces Cook to walkthe graph in (potentially) the wrong order.This introduces a number of significant problems.Asingle top-levelcookbook is recommended.8.43.3 SeeAlsoThe supplied ‘‘recursive’’ cookbook does exactly this.In order to use it, you need aHowto.cookfilecontaining the single line#include "recursive"8.44 orThis function requires at least twoarguments, upon which it forms a logical disjunction.The valuereturned is "1" (true) if anyone of the arguments is not "" (false), otherwise "" (false) is returned.8.44.1 SeeAlsoand, notPeter MillerPage 61

Cook UserGuide8.45 pathnameThe function requires one or more arguments, being files names to be replaced with their full path names.8.45.1 ExampleRelative names are made absolute, and redundant slashes and dots are removed:pwd = [pathname .];8.45.2 SeeAlsobasename, dirname, entryname8.46 patsubstThis function requires at least twoarguments. Patsubst givesthe user access to the pattern transformationsavailable tocook.The first argument is the "from" form, the second argument is the "to" form.All otherarguments are mapped from one to the other.8.46.1 ExampleGivenalist of C source files, generate a list of object files as follows:obj = [patsubst %.c %.o [src]];8.46.2 MatchModeThis function is affected by the selected match mode.See theFile Name Patternschapter for details.8.46.3 SeeAlsofilter,filter_out, subst8.46.4 AlsoKnown Asfromto8.47 prepostThis function must have atleast twoarguments. Thefirst argument is a prefix and the second argument is asuffix. Theresulting word list is the third and later arguments each giventhe prefix and suffix as defined bythe first and second arguments.8.47.1 ExampleExpression Result[prepost sun4/ .o a b]sun4/a.o sun4/b.o[prepost -I "" . bl]-I. -Ibl8.47.2 SeeAlsoaddprefix, addsuffix, patsubst, subst8.48 printThe arguments are printed as an informative message. Theusual output wrapping is performed.Thefunction returns the empty list as a result.This function is frequently use to debug cookbooks.8.49 quoteEach argument is quoted by double quotes, with shell9special characters escaped as necessary.9.Seesh(1) andcsh(1) for more information.Peter MillerPage 62

Cook UserGuide8.49.1 SeeAlsocollect, execute8.50 readThe argument is interpreted as the name of a text file to be read.The result is one word for each white-space separated word of the file.8.50.1 ExampleRead a theexamplefile and assign it to a variable:example = [read example];8.50.2 SeeAlsocollect, collect_lines, read_lines, write8.51 readlinkThe arguments are assumed to be symbolic links, and their values are read.It is a fatal error if the filesnamed are not symbolic links.8.51.1 SeeAlsocollect, exists-symlink8.52 read_linesThe argument is interpreted as the name of a text file to be read.The result is one word for each line of thefile.8.52.1 ExampleRead a theexamplefile and assign it to a variable:example = [read_lines example];8.52.2 SeeAlsocollect, collect_lines, read, write8.53 relative_dir nameThis function requires one or more arguments, the names of files which will have their directory partsextracted.8.53.1 ExampleExpression Result[relative_dirname a].[relative_dirname a/b]a[relative_dirname a/b/c]a/bSeedirnameif you want to climb the directory tree with repeated applications,relative_dirnamewillcontinue to return ‘‘.’’ once the current directory is reached.8.53.2 SeeAlsobasename, dirname, entryname, notdir,pathname, suffix8.53.3 AlsoKnown Asreldir8.54 resolveThis builtin function is used to resolvefile names when using thesearch_listvariable to locate files.Thisbuiltin function produces resolved file names as output.This is useful when taking partial copies of asource to perform controlled updates.The targets of recipes are always cooked into the current directory.Peter MillerPage 63

Cook UserGuide8.54.1 ExampleThis function is used in cookbooks whichuse thesearch_listfunctionality:search_list = . baseline;%.o: %.c{[cc] [cc_flags] [addprefix -I [search_list]] [resolve %.c];}The cookbooks distributed with Cook contain full support for thesearch_listfunctionality.Theyare agood source of examples of howtowrite recipes which takethis into account.8.55 shellThe arguments are interpreted as a command to be passed to the operating system.The result is one wordfor each white-space separated word of the output of the command.The command will not be echoed unless the -No_Silent option is specified on the command line.8.55.1 ExampleRead the date and time and assign it to a variable:now = [shell date];Do not use the shell function to expand a filename wildcard, used the [wildcard] function instead.8.55.2 SeeAlsocollect_lines, execute, wildcard8.55.3 AlsoKnown Ascollect8.56 sortThe arguments are sorted lexicographically.Note:Duplicates arenotremoved. Usethestringsetfunction if you want to do this.8.56.1 SeeAlsosort_newest, stringset8.57 sort_newestThe arguments are sorted by file last-modified time, youngest to oldest.File names are resolved first (seethe resolvefunction, below). Absentfiles will be sorted to the start of the list.8.57.1 ExampleThis function is often used to "shorten the wait" when building large project, so that the file you edited mostrecently is recompiled almost immediately:src = [glob *.c];obj = [sort_newest [fromto %.c %.o [src]]];This trick does not always work as expected, and can takesignificant time for little result.8.57.2 SeeAlsofromto, glob, sort8.58 splitThesplitfunction is used to split strings into multiple strings, giventhe separator.This function requires atleast one argument. Thefirst argument is the separator character,the second and subsequent arguments areto be separated.The result is the separated strings, each as a separate word.Peter MillerPage 64

Cook UserGuide8.58.1 ExampleExpression Result[split ":" "foo:bar:baz"]foo bar baz[split " " "NewYork"] NewYorkEach of the words in the result is a separate string.This can be useful in splitting an environment variable into separate words. For example:path = [split ":" [getenv PATH]];8.58.2 SeeAlsounsplit, join, catenate, strip8.59 stringsetLogical operations are performed on sets of strings.These include conjunction (+)orimplicit, disjunction(*)and difference (-).8.59.1 ExampleExpression Result[stringset a b a]ab[stringset a b c * a]a[stringset a b c - a]bc[stringset a b - c + d]abdThe can be very useful in constructing lists of source files:src = [stringset [glob "*.[cyl]"] - y.tab.c lex.yy.c];8.59.2 SeeAlsofilter,filter_out, glob, in, patsubst, subst8.60 stripThestripfunction is used to remove leading and trailing white space from words. Internalsequences ofwhite space are replaced by a single space.8.60.1 ExampleExpression Result[strip " " "foo " " bar"]"" foo bar[strip " reallybig "]"really big"Quotes are used here for clarity,and are not present in the internal representation of strings.8.60.2 SeeAlsosplit8.61 stripdotThestripdotfunction is used to remove leading ‘‘.\’’ directories from each of the path name arguments.8.61.1 ExampleExpression Result[stripdot ./foo.c]foo.c[stripdot bar.o] bar.o[stripdot /fubar]/fubarPeter MillerPage 65

Cook UserGuide8.61.2 SeeAlsoset stripdot8.62 strlenThestrlenfunction is used to obtain the lentghs of strings.It returns a list of the lengths (in bytes, notcharacters) of each of the arguments.8.62.1 ExampleExpression Result[strlen][strlen foo.c]5[strlen foo.c bar.c] 55[strlen foo bar baz]3338.63 substThesubstfunction is used to perform string substitutions on its arguments. Thisfunction requires at leasttwoarguments. Thefirst argument is the "from" string, the second argument is the "to" string.Alloccurreneces of "from" are replaced with "to" in the third and subsequent arguments.8.63.1 ExampleThis is a literal replacement, not a pattern replacement:Expression Result[subst buffalo cress water.buffalo] water.cress[subst .c .o test.c]test.o[subst .c .o stat.cache.c]stat.oache.oNote that last case: it is not selective.8.63.2 SeeAlsofilter,filter_out, patsubst8.64 substrThesubstrfunction is used to perform substring extracton. Thefirst argument is the starting position in thestring, starting from one.The second argument is the number of characters to extract. Thirstandsubsequent arguments will be processed to extract sub-strings.8.64.1 ExampleExpression Result[substr 1 1 Peter]P[substr 3 99 Miller]ller8.64.2 SeeAlsosubst, patsubst8.65 suffixThesuffixfunction treats each argument as a filename, and extracts the suffix from each.If the filenamecontains a period, the suffix is everything starting with the last period.Otherwise, the suffix is the emptystring (as opposed to nothing at all).8.65.1 ExamplePeter MillerPage 66

Cook UserGuideExpression Result[suffix a.c foo b.y] .c"" .y[suffix stat.cache.c].c[suffix .eric]""Quotes are used here for clarity,and are not present in the internal representation of strings.Thesuffixfunctions in this way to allowsensible results when using thejoinfunction to re-unite filenamesdismembered by thebasenameandsuffixfunctions.8.65.2 SeeAlsobasename, dirname, entryname, join, patsubst8.66 tailThis function requires zero or more arguments. Theword list returned will be empty if there is less thantwoarguments, otherwise it will consist of the second and later arguments.8.66.1 SeeAlsocount, head, word8.67 unsplitTheunsplitfunction is used to glue strings together,using the specified glue.The first argument is the textto go between each of the second and subsequent arguments.8.67.1 ExampleExpression Result[unsplit ":" one twothree] "one:two:three"[unsplit " " four fivesix] "fourfivesix"The quotes are necessary to isolate characters such as colon and space which cook would normally treatdifferently.8.67.2 SeeAlsocatenate, prepost, split8.68 un-dos-pathThis function requires one or more arguments, which will be converted from a DOS path into a UNIX path.This is of most use under Windows-NT,toconvert DOS pathnames into Cook’sinternal pathnames.(TheUNIX porting layer usually hides this from Cook.)8.68.1 ExampleExpression Result[un-dos-path a\b\c]a/b/c[un-dos-path c:\temp]//c/temp[un-dos-path \\server\stuff] //server/stuff8.68.2 SeeAlsodos-path8.69 upcaseThis function requires one or more arguments, words to be forced into upper case.8.69.1 ExamplePeter MillerPage 67

Cook UserGuideExpression Result[upcase FOO]FOO[upcase Bar]BAR[upcase baz]BAZ8.69.2 SeeAlsodowncase8.70 uptodateThis function may be used to determine if files are up-to-date.It returns a word list containing the names ofthe up-to-date files, or empty if none of them are up-to-date.Theyarenotbrought up to date if theyare notalready.This function requires one or more arguments.8.70.1 CaveatThis will use as much of the cookbook as has been read in up to the point where this function is used.Thiscan mean that crucial recipes have yet to be parsed and instanciated.8.70.2 SeeAlsocando, cook8.71 wildcardEach argument is treated as ash(1) file name pattern, and expanded accordingly.The resulting list offilenames is sorted lexicographically.Youmay need to quote the pattern, to protect square brackets from the meaning cook attaches to them.Note:The character sequence/*is a comment introducer,and is a frequent source of problems whencombined with thewildcardfunction. Rememberto quotewildcardarguments which need this charactersequence.8.71.1 ExampleTo find the sources in the current directory:src = [wildcard *.c];obj = [patsubst %.c %.o [src]];8.71.2 SeeAlsofilter,filter_out, patsubst8.71.3 AlsoKnown Asglob8.72 wordThewordfunction is used to extract a specific word from a list of words. Thefunction requires at least oneargument. Thefirst argument is the number of the word to extract from the wordlist. Thewordlist is thesecond and subsequent arguments. Anempty list will be returned if you ask for an element offthe end ofthe list.8.72.1 ExampleExpression Result[word 1 one twothree] one[word 2 one twothree] two[word 3 one twothree] three[word 5 one twothree]The last element of a list of words may be extracted as:last = [word [count [list]] [list]];Peter MillerPage 68

Cook UserGuide8.72.2 SeeAlsocount, head8.72.3 WordlistThis function may be used to extract a list of words from a larger list.The first argument is the startingposition, and the second argument is the ending poistion, inclusive.The third and subsequent argumentsare the list to be extracted from.Positions are numbered starting from 1.If the start is bigger than the end,theywill be quietly swapped. Ifthe start is bigger than the list, the result will be empty.8.72.3.1 ExampleExpression Result[wordlist 2 3 foo bar baz]bar baz[wordlist 1 1 foo bar baz]foo[wordlist 7 3 foo bar baz]bazThere are a number of functions which are similarExpression Similarto[wordlist 1 1list][headlist][wordlist 2 9999list][taillist][wordlistNNlist][wordNlist]8.72.3.2 SeeAlsofirstword head, tail, word, words8.73 wordsThis function requires zero or more arguments. Theresult is a word list of one word containing the(decimal) length of the argument word list.8.73.1 ExampleThis cookbook fragment echoes the number of files, and then the name of the last file:echo There are [words [files]] files.;echo The last file is [word [words [files]] [files]].;8.73.2 SeeAlsohead, tail, word8.73.3 AlsoKnown Ascount8.74 writeThis function requires one or more arguments. Thefirst argument is the name of the file to write, thesecond an later arguments are lines to be written to the file.(This is specifically a text file.)The result is anempty word list.This function is very useful in writing command line file for Windows-NT,due to its absurdly shortcommand line interface.8.74.1 SeeAlsoread, read_linesPeter MillerPage 69

Cook UserGuide9. PredefinedVariablesAnumber of variables are defined bycookat run-time.9.1 argThis is the arguments list for user-defined functions.Individual arguments are split out into ‘‘@1’’to‘‘@9’’. Thesecan also be used at automatic variables. Caution:argand the automatic variables aresharedfor parallel execution, causing weird interactions if you execute a command within the function.9.2 command-line-goalsThe value of this variable is the goals specified on the command line, if any. Ifnone were specified, and thedefault goal is in effect, the value will be empty.9.3 __FILE__The value of this variable is the logical name of the file which contains it.In the case of#include-cookedfiles, the physical name may be obtained using the [resolve] function.The logical name may beset using the#linedirective.9.4 __FUNCTION__The value of this variable is the name of the function which executes it.It is not set for the globalcookbook scope or the recipe body scope.9.5 graph_leaf_fileFile names which are listed in this variable could be leaf files of the dependencygraph. (Seealso theleaf_filesfunction, for Cook’sidea of the leaf files.)9.6 graph_exter ior_fileFile names which are listed in this variable cannot be present in anyway in the dependencygraph.9.7 graph_inter ior_fileFile names which are listed in this variable could be interior files of the dependencygraph. (Seealso theinterior_filesfunction, for Cook’sidea of the interior files.)9.8 graph_leaf_patter nFile names which match the patterns in this variable could be leaf files of the dependencygraph. (Seealsotheleaf_filesfunction, for Cook’sidea of the leaf files.)9.9 graph_exter ior_patternFile names which match the patterns in this variable cannot be present in anyway in the dependencygraph.9.10 graph_inter ior_patternFile names which match the patterns in this variable could be interior files of the dependencygraph. (Seealso theinterior_filesfunction, for Cook’sidea of the interior files.)9.11 __LINE__The value of this variable is the line number within of the file which contains it.The line number may beset using the#linedirective.9.12 needThe ingredients of the recipe currently being cooked.Peter MillerPage 70

Cook UserGuide9.13 parallel_hostsThis variable may be set to indicate a list of hosts to use to distribute the execution of recipe bodies.9.14 parallel_jobsThis variable may be set to the number of parallel execution threads to perform simultaneously.Defaults to1ifnot set.9.15 parallel_rshThis variable may be set to the command used to execute commands on remote machines.Assumes to takeargument in the same form as the BSDrsh(1) command.Defaults to ‘‘rsh’’ ifnot set.9.16 search_listThis variable may be set to a list of directories to be searched for targets and ingredients.This list isinitially the current directory (.)and will always have the current directory prepended if it is not present.This is useful when taking partial copies of a source to perform controlled updates.Use theresolvebuilt-infunction to determine what file name cook actually found.The targets of recipes are always cooked into thecurrent directory.The cookbooks distributed with Cook contain full support for thesearch_listfunctionality.Theyare agood source of examples of howtowrite recipes which takethis into account.9.17 selfThe namecookwasinv okedas, usually "cook".Be careful what you call cook, because anything with thestring "cook" in it will be changed, including (but not limited to) file suffixes and environment variablenames.9.18 targetThe target of the recipe currently being cooked, or the first target if there is more than one.9.19 targetsThe targets of the recipe currently being cooked. Thisincludes all targets of the recipe, should there bemore than one.9.20 thread-idThis variable has a unique value for each execution thread, for the lifetime of that thread.This value maybe used to construct thread-unique variable names, thread-unique temporary file names, or anything elsethat needs to be unique to each execution thread.The thread IDs are re-used, and so several threads insequence may have the same thread ID; it is only guaranteed that no other simultaneous thread will have thesame thread ID.By re-using thread IDs, generated variable names are also re-used, avoiding memorybloat.9.21 timestamp_granular ityThis variable may be set to the granularity of the filesystem’smodtime in seconds.Defaults to 1 second ifnot set (a suitable value for most systems). Recommended non-default values include 2 seconds for Cygwinon FAT32 and 4 seconds for PrimeOS.9.22 youngerThe subset of the ingredients of the recipe currently being cooked which are younger than the target.9.23 versionThe version ofcookcurrently executing.Peter MillerPage 71

Cook UserGuide10. FunctionsLibrar yThere is a file of functions available to you by using a#include "functions"line in your cookbook.The file defines a number of useful functions.The functions in the file also serveasexamples of howyou can write your own functions.10.1 capitalizeThecapitalizefunction maps all of its arguments into lower case, and then the first letter of each argumentis mapped to upper case.Zero, one or more arguments may be given.10.2 defined-or-nullThedefined-or-nullfunction may be used to determine if a variable has been set (on the command line, forexample) and return its value if so, otherwise return the empty list.This function should only be givenone argument - the name of the variable to look for.Additionalarguments will be ignored.Toofew arguments will produce a complaint about the "" variable beingundefined.10.3 defined-or-defaultThedefined-or-defaultfunction may be used to determine if a variable has been set (on the command line,for example) and return its value if so, otherwise return the givendefault value.The first argument is the name of the variable to look for.The second and later arguments (if present) are the default value to be used if the named variable is notdefined. Optional.10.4 repeatTherepeatfunction is used to repeatedly call another function, once for each of the specified arguments.The can be useful when dealing with functions which do not automatically accept argument lists in theform you require.There are manyinstances where the repeat function call be used to elegantly avoid used to the ‘‘loop {loopstop }’’construct.The first argument is the name of the function you want called.This function must accept a singleargument.The second and subsequent arguments are argument values to be passed to the named function, one at atime.The results of the invocations of the function are accumulated in the order in which theywere calculated.The accumulated results are returned.10.5 var iable_by_pathThevariable_by_pathfunction is used to extract the union of option settings relevant to a particularcompilation or link.By using a variable prefix, this function may be used to obtain the setting of a widevariety of options and commands.Global variables are searched in a no particular order for the necessary information.All are searched, allfound are used.Forexample, the function call[variable_by_path cc_flags foo/bar/baz.c]will hunt forvariables with the following names:cc_flags_foo/bar/baz.candcc_flags_foo/barandcc_flags_fooandcc_flags.Itisexpected that the vast majority of these variables will not be set.Duplicates are removed.Peter MillerPage 72

Cook UserGuide11. Actionswhen CookingThis section describes whatcookdoes when you ask it to cook something.Cookperforms the following actions in the order stated.11.1 Scanthe COOK Environment Var iableTheCOOKenvironment variable is looked for.Ifitisfound, it is treated as if it consisted ofcookcommand line arguments. Onlythe-Helpoption is illegal. Thiscould result is very strange behavior ifused incorrectly.This feature is supplied to overridecook’s default with your own preferences.11.2 Scanthe Command LineThe command line is scanned as defined in chapter 3.11.3 Locatethe CookbookThe current directory is scanned for the cookbook.Names which a cookbook may have includehowto.cook Howto.cook .howto.cookhow.to.cook How.to.cook .how.to.cookcookfile Cookfile.cookrccook.file Cook.file.cook.rcThe first so named file found in the current directory will be used.The order of search is not defined.Youare strongly advised to have justoneof these name forms in anydirectory.The nameHowto.cookis thepreferred form.11.4 For mthe Listing FilenameThe listing file, if not explicitly named in the environment variable or on the command line, will be thename of the cookbook, with anysuffix removedand ’.list’appended.11.5 Createthe Listing fileThe listing file is created.Ifcookis executing in the background, or the-NoTTyoption has been specified,stdoutandstderrwill be redirected into the listing file.Ifcookis executing in the foreground, and the-NoTTyoption has not been specified,stdoutandstderrwill be redirected into a pipe to atee(1) command;which will, in turn, copythe output into the named file.Aheading line with the name of the file and the date, is generated.11.6 Scanthe CookbookWhencookreads the cookbook it evaluates all of the statements it finds in it.Usually these statementsinstantiate recipes, although other things are possible.Recipes contain statements that are not evaluated immediately,but which are remembered for laterexecution when cooking a target. Themeaning of a cookbook is defined in chapter X.11.7 Determine targets to cookIf no target files are named on the command line, the targets of the first defined explicit or ingredientsrecipe. Itis an error if this is none.11.8 CookingaTargetAderivation graph is formed using all of the targets given. Oncethe derivation graph is formed, it will bewalked, looking for files which are out of date.Peter MillerPage 73

Cook UserGuideTo build the derivation graph for a target, each the following steps is performed in the order given:1.Cookexploits knowledge of the derivation graph that the user may provide to it:•If thegraph_exterior_filevariable is set, and the file name is listed in it, the file is not a leaf,and the derivation will backtrack and try another alternative.•If thegraph_exterior_patternvariable is set, and the file name matches one of the patternslisted in it, the file is not a leaf, and the derivation will backtrack and try another alternative.•If thegraph_leaf_filevariable is set, and the file name is listed in it, the file is a leaf file of thederivation. Thereis no need to attempt to apply anyrecipes. Itwill be an error if the file doesnot exist.•If thegraph_leaf_patternvariable is set, and the file name matches one of the patterns listedin it, the file is a leaf file of the derivation. Thereis no need to attempt to apply anyrecipes.It will be an error if the file does not exist.These optimizations require an accurate source file manifest, but can result is substantialperformance improvements.2.Cookscans through the instantiated ingredients recipes in the order theywere defined.Allingredients recipes with the target in their target list are used.If a recipe is used, then anyingredients also have their derivation graph constructed.When walkingthe graph, if anyofthe ingredients are younger than the target, all other explicit or implicit recipeswith the same target will be deemed to be out of date.103.Cookthen scans through the instantiated explicit recipes in the order theywere defined.All explicitrecipes with the target in their target list are used.If a recipe is a used, the ingredients also have their derivation graph constructed.When walking thegraph, if anyingredients are out of date or the target does not yet exist (or the "forced" flag is set inthe recipe’ssetclause) the recipe body will be performed.If a recipe has no ingredients, it will notbe performed, unless the target does not yet exist, or it is forced.4. Ifthe target was not in the target list of anyexplicit recipe,cookthen scans the instantiated implicitrecipes in the order theywere defined, in twopasses. Implicitrecipes which not not have patternelements in the basename of the targets are scanned before implicit recipes which do have patternsin the basename.Usually this has no significant effect, howeverinheavily heterogeneous buildsthis method is often used in constructing the dependencyfiles, so that all architectures may use theone implicit dependencyrecipe, rather than stating every architecture explicitly.Within each pass,the order of scan is the order of definition.Implicit recipe targets and ingredients may contain a wildcard character (%), which is whytheyareimplicit. Whenexpressions are evaluated into word lists in an implicit recipe, anyword containingthe wildcard character (%)will be expanded out by the current wildcard expansion.If the target matches a pattern in the targets of an implicit recipe, it is a candidate.Each ingredientof a candidate recipe is recursively cooked. Ifanyingredient cannot be cooked, then the implicitrecipe is not used.If all ingredients can be cooked, then the implicit recipe is used.If an implicit recipe is a used, the forced ingredients also have their derivation graph constructed.Itis an error if a forced ingredient cannot be constructed.Only the first implicit recipe to get to this point is used.The scan stops at this point.5. Ifthe target is not the subject of anyingredients or explicit recipe, and no implicit recipes can beapplied, then several derivations are attempted, in the order specified:10.Atarget which does not exist yet is considered to be infinitely ancient, and thus everything is younger than it.Peter MillerPage 74

Cook UserGuide•If thegraph_interior_filevariable is set, and the file name is listed in it, the file is a not leaffile of the derivation. Cookwill backtrack and try another alternative.•If thegraph_interior_patternvariable is set, and the file name matches one of the patternslisted in it, the file is a not leaf file of the derivation. Cookwill backtrack and try anotheralternative.•If thegraph_leaf_filevariable is set, and the file name is listed in it, the file is a leaf file of thederivation. Itwill be an error if the file does not exist.•If thegraph_leaf_patternvariable is set, and the file name matches one of the patterns listedin it, the file is a leaf file of the derivation. Itwill be an error if the file does not exist.•If either of thegraph_leaf_fileorgraph_leaf_patternvariables are set, then the file is not aleaf, and the derivation will backtrack and try another alternative.•If the file exists, then it is up to date, and the file is a leaf file of the derivation.•If the file does not exist thenCookdoesn’tknowhow,and the derivation will backtrack andtry another alternative.If a command in the body of anyrecipe fail,cookwill not that body anyfurther,and will not perform thebody of anyrecipe for which the target of the failed actions was an ingredient, directly or indirectly.Cookwill trap recursive looping of targets.•If the file exists, the it is up to date, or•If the file does not exist thencookdoesn’tknowhow.11.9 TheDependency GraphThe above section describes howCook derivesthe dependencygraph. Oncethe dependencygraph hasbeen derived, it is then walked. Thenext section describes a little about howCook walks the dependencygraph.Cook is a simple kind of expert system.Yougiv eit a set of of recipes for howtoconstruct things, and atarget to be constructed.The recipes can be decomposed into pair-wise ordered dependencies betweenfiles.Cook determines howtobuild the target by constructing adirected acyclic graph.The vertexesofthisgraph are the files in the system, the edges in this graph are the inter-file dependencies.The edges of thegraph are directed because the pair-wise dependencies are ordered resulting in aacyclicgraph − thingswhich look likeloops are resolved by the direction of the edges.Forexample, if you have a simple cookbook (with the recipe bodies omitted for simplicity) likethis:program: one.o two.o;one.o: one.c one.h;two.o: two.c two.h one.h;here is the corresponding directed acyclic graph.Peter MillerPage 75

Cook UserGuideone.cone.htwo.ctwo.hone.otwo.oprogramThere are several things that can be done with the graph once it has been derived:•Itcan be walked to verify and regenerate the referential integrity of the files (the usual case), or•itcan walked to print the pair-wise dependencies (the-pairsoption), or•itcan be walked to generate a shell script (the-scriptoption) which does something very similar tothe first option.11.9.1 EdgeTypesEach of the arrows in the above graph have a specific type.strictedges mean that Cook will decide that a target is out-of-date if its time stamp is not strictlyyounger than all of the ingredients.This is almost always what you want.weakedges mean that Cook will decide that a target is out-of-date if its time stamp is older than anyofthe ingredients.This means that the times stamps of the target and ingredients may be equal -this is useful for hard links and symbolic links.Youspecify edges of this type by appending the‘‘(weak)’’ string to the name of the ingredient.existsedges mean that Cook will arrange for the ingredient to be cooked before the recipe is run, butthe time stampis not consulted.The ingredient cannot evermakethe target out-of-date.This isuseful form coping with version stamps which change often, but you don’twant to re-link unlesssomething else changes.Youspecify edges of this type by appending the ‘‘(exists)’’ stringto the name of the ingredient.The default edge type is ‘‘strict’’.You can use the "time-adjust" setting (see the "set" command) to makethis simpler on very fast machines.11.10 FileStatusCookdetermines the time a file was last modified by asking the operating system.Because this operationtends to be performed frequently,cookmaintains a cache of this information, rather than makeredundantcalls to the operating system.Because this information is cached, it is possible forcook’s memory of afile’slast-modified time to become inconsistent with the file’sactual last-modified time.In particular,cookdoenotask the operating system for the "new" last-modified time of a recipe target once a recipe body iscompleted. Carefuluse of theset clearstatclause will generally prevent this.Forexample, thefollowing recipe needs to create a directory when writing its output:bin/%: [%_obj]{if [not [exists bin]] thenmkdir bin;[cc] -o [target] [need];}If there were several programs being cooked, e.g.bin/fooandbin/bar,the second timecookperformed therecipe, it would erroneously attempt to makethebindirectory a second time - contrary to the test.This isbecause[exists bin]used the cache, and nothing tellscookthat the cache is nowwrong. Therecipe shouldPeter MillerPage 76

Cook UserGuidehave been writtenbin/%: [%_obj]{if [not [exists bin]] thenmkdir binset clearstat;[cc] -o [target] [need];}which tellscookthat it should remove any files named in themkdircommand from the cache.An alternative way of performing the above example is to set themkdirrecipe flag:bin/%: [%_obj]set mkdir{[cc] -o [target] [need];}This flag instructscookto create the directory for the target before running the recipe body.There is asimilarunlinkflag, which unlinks the targets of the recipe before running the recipe body.These twoflagstakecare of most, but not all, uses of theclearstatflag.Asecond mechanism used bycookto determine the last-modified times of files is a filefingerprint.This isacryptographically strong hash of the contents of a file.The chances of twodifferent files having the samefingerprint is less than 1 in 2**200.Ifcooknotices that a file has changed, because its last-modified timehas changed, a fingerprint is taken of the file and compared with the remembered fingerprint.If thefingerprints differ,the file is considered to be different. Ifthe fingerprints match, the file is considered notto have changed.This description of fingerprints is somewhat simplified, the actual mechanics depends on remembering twodifferent last-modified times, as well as the fingerprint, in a file called.cook.fpin the current directory.Fingerprinting can cause some surprises.Forexample, when you use thetouch(1) command,cookwilloften fail to do anything, and report instead that everything is up-to-date.This is because the fingerprinthas not changed.In this situation, either remove the.cook.fpfile, or use the-No_FingerPrintcommandline option.Peter MillerPage 77

Cook UserGuide12. OptionPrecedenceAt various points in the description there are a number of flags and options with the same, or similar,names. Theseare in fact different levels of the same option.The different levels, from highest precedence to lowest, are as follows.Error Thislevelisused to disable undesirable side effects when an error occurs.Command LineOptions specified on the command line override almost everything. Thereare someisolated cases where there is no equivalent command line option.Theyare in scope forthe entirecooksession.Execute Whenacommand attached to a recipe is executed, the flags in the ’set’clause are giventhis precedence.Theyare in scope for the duration of the execution of the command theyare bound to.Recipe Whenarecipe is considered for use, the flags in the ’set’clause are giventhe precedence.Theyare in scope for the evaluation of the ingredients names and the execution of therecipe body; theyare not in scope while cooking the ingredients.Cookbook Whena’set’statement is encountered in the cookbook, the option are giventhis priority.Theyare in scope until the end of thecooksession.Environment VariableWhen theoptions in theCOOKenvironment variable are set, theyare giventhisprecedence. Theyare in scope for the entirecooksession.Default Alloptions have a default setting.The defaults noted in chapter 3 are giventhisprecedence. Theyare in scope for the entirecooksession.Peter MillerPage 78

Cook UserGuide13. Filename patternsThere are twopattern matchers to choose from.The tough part about designing a pattern matcher for something likeCook is thatideallythe patterns mustbe reversible. Thatis, it must be possible to use the same string both as a pattern to be matched against andas a template for building a string once a pattern has matched.Rather likethe difference between the leftand right sides of an editor search-and-replace command in an editor using the same description for boththe search pattern and the replace template.This is whyclassic regular expressions are not the default.The choice of which pattern matcher to use is dictated by flag settings:set match-mode-cookThis causes patterns to be matched using Cook’snative patterns. Thisis the default.set match-mode-regexThis causes patterns to be matched using regular expressions.The match mode to use may be set at the cookbook levelset match-mode-cook;or at the recipe level%.o: %.cset match-mode-cook{[cc] -o %.o -c %.c;}if you want to change your mind temporarily.The match mode also affects match functions, such asfilter,filter_out,fromto,match_mask,matchesandpatsubst.Ifyou use these in your user-defined functions, you need to be extra careful about this.The match mode also affects the graph variables, used to specify explicit graph interior and leaf files.13.1 CookPatter nsThe native Cook pattern matcher has symmetric left-hand-side and right-hand-side patterns.This is bestdemonstrated with an example recipe:%.c %.h: %.yset match-mode-cook{yacc -d %.y;mv yy.tab.c %.c;mv yy.tab.h %.h;}Notice howthe left-hand-side of the recipe (the targets) uses the same style of patterns as the right-hand-side (the ingredients and the recipe body).This matcher has elevenmatch "fields", referenced as%and%0to%9.The%character can be escapedas%%.The%and%1to%9forms match anycharacter except slash (/); these forms may not match aleading empty string, to avoid problems with false matches against absolute paths.The%0form matchesall characters, but must be either empty,orhav ewhole path components, including the trailing/on eachcomponent.Afew examples will makethis clearer:string doesnot match%.c snot/fred.c%1/%2.c etc/boo/fred.cPeter MillerPage 79

Cook UserGuidestring matchessetting%.c fred.c%="fred"%1/%2.c snot/fred.c%1="snot"%2="fred"%0%5.c fred.c%0=""%5="fred"%0%6.c snot/fred.c%0="snot/"%6="fred"%0%7.c etc/boo/fred.c%0="etc/boo/"%7="fred"/usr/%1/%1%2/%3.%2%4 /usr/man/man1/fred.1x%1="man"%2="1"%3="fred"%4="x"The%0behavior is designed to allowpatterns to range oversubtrees in a controlled manner.Note that theuse of this sort of pattern in a recipe will result in deeper searches than the naive recipe designer wouldexpect.13.1.1 ExamplesThere are twomain places where patterns are used: with thematch_maskandfromtofunctions, and inrecipes.Youcan perform file name filtering and rewriting as follows:source_files = [collect cat MANIFEST];object_files =[fromto %0%.c %0%.o [match_mask %0%.c [manifest]]][fromto %0%.y %0%.gen.o [match_mask %0%.y [manifest]]];The recipes to go with the above files may be%0%.o: %0%.csingle-thread ["if" %0 "then" %.o]{/* note: no slash before dot */cc -c -I%0. %0%.c;if %0 thenmv %.o %0%.o;}This recipe can compile files in a large project, where source files appear in a number of sub-directories.The ‘‘-I%0.’’ ensures that there are locally include-able files in the sub-directories.If the ‘‘%0’’had beenentirely omitted from the recipe, it will only compile files in the current directory.Acommonyaccrecipe, used when there is more than one yacc grammar in a project, looks likethis:%0%.gen.c %0%.gen.h: %0%.ysingle-thread yy.tab.c yy.tab.h{yacc -d %0%.yyy = [collect echo %0% | sed "’s/[ˆA-Za-z0-9]/_/’"];sed "’s/[yY][yY]/"[yy]"_/g’" yy.tab.c > %0%.gen.c;sed "’s/[yY][yY]/"[yy]"_/g’" yy.tab.h > %0%.gen.h;rm yy.tab.c yy.tab.h;}To bemore selective about the ‘‘%0’’portion, use more pattern elements before or after it.Peter MillerPage 80

Cook UserGuide13.2 RegularExpressionsThe regular expression pattern matcher uses POSIX regular expressions. Ithas asymmetric left-hand-sideand right-hand-side patterns.This is best demonstrated with an example recipe:\\(.*\\)\\.c \\(.*\\)\\.h: \\1.yset match-mode-regex{yacc -d \\1.y;mv yy.tab.c \\1.c;mv yy.tab.h \\1.h;}Notice howthe left-hand-side of the recipe (the targets) uses a completely different style of patterns as theright-hand-side (the ingredients and the recipe body).All those backslashes are necessary,because Cook uniformly applies C escapes to strings when it readsthem, and it doesn’tknowyou mean a regular expression backslash until you use it in a recipe context.Seere_format(7) for a definition of POSIX 1003.2 regular expressions; you want the ‘‘basic’’REs.Please note that characters which are special to Cook will need to be escaped with a backslash, or enclosedin quotes.These include curly braces (‘‘{’’and ‘‘}’’), square brackets (‘‘[’’and ‘‘]’’), colon (‘‘:’’) andequals (‘‘=’’). Backslashalways needs to be escaped, whether encoded in a string or not, because within astring it serves to escape the string terminator.Youalso need to remember that dot (‘‘.’’)isacommon character in filenames, and frequently significant infile name patters, but it is a regular expression wildcard.Youneed to escape it to makeitliteral.Youneed to makeabsolutely certain that when recipes have more than one left-hand-size (as in the yaccexample) that the patternsallassign identical values to their nested sub-expressions.The usual right-hand-side replacements are available: an escaped number is replaced with then-th nestedsub-expression; and the ampersand (‘‘&’’) is replaced by the whole left-hand-side (if you have more thanone left-hand-side, this is ambiguous).Backslash may be used to escape them.13.2.1 ExamplesThere are twomain places where patterns are used: with thematch_maskandfromtofunctions, and inrecipes.Youcan perform file name filtering and rewriting as follows:set match-mode-regex;source_files = [collect cat MANIFEST];object_files =[fromto \\(.*\\)\\.c \\1.o[match_mask \\(.*\\)\\.c [manifest]]][fromto \\(.*\\)\\.y \\1.gen.o[match_mask \\(.*\\)\\.y [manifest]]];The recipes to go with the above files may be\\(.*\\)\\.o: \\1.csingle-thread ["if" [not [in [relative_dirname \\1] .]]"then" [notdir \\1.o]]{cc -c -I[[relative_dirname \\1] \\1.c;if [not [in [relative_dirname \\1] .]] thenmv [notdir \\1.o] \\1.o;}This recipe can compile files in a large project, where source files appear in a number of sub-directories.The ‘‘-I\\1.’’ ensures that there are locally include-able files in the sub-directories.Peter MillerPage 81

Cook UserGuideAcommonyaccrecipe, used when there is more than one yacc grammar in a project, looks likethis:\\(.*\\)\\.gen.c \\(.*\\)\\.gen.h: \\1.ysingle-thread yy.tab.c yy.tab.h{yacc -d \\1.yyy = [collect echo \\1 | sed "’s/[ˆA-Za-z0-9]/_/’"];sed "’s/[yY][yY]/"[yy]"_/g’" yy.tab.c > \\1.gen.c;sed "’s/[yY][yY]/"[yy]"_/g’" yy.tab.h > \\1.gen.h;rm yy.tab.c yy.tab.h;}To bemore selective about the ‘‘\\(.*\\)’’ portion, use more pattern elements before or after it.Peter MillerPage 82

Cook UserGuide14. SuppliedCookbooksAnumber of cookbooks are supplied withcook.Tomakeuse of one, a preprocessor directive ofthe form#include "whichone"must appear at the start of your cookbook.Cookdoes not have any "built-in" recipes.All recipes are stored in text files, so theyare more easily read,understood, copied, hacked or corrected.The supplied cookbooks live inthe/usr/share/cookdirectory.Youmay supply your own "system" recipes, by placing cookbooks into a directory called$HOME/.cookorusing the-Includecommand line option, possibly in your$COOKenvironment variable.14.1 asThis cookbook defines howtouse the assembler.14.1.1 recipes%.o: %.sConstruct object files from assembler source files.14.1.2 var iablesas Theassembler command.Not altered if already defined.as_flags Optionsto pass the assembler command.Not altered if already defined.The default isempty.as_src Assemblersource files in the current directory.dot_src Sourcefiles constructable in the current directory (unioned with existing setting, ifnecessary).dot_obj Objectfiles constructable in the current directory (unioned with existing setting, ifnecessary).dot_clean Fileswhich may be removedfrom the current directory in a clean target.14.2 cThis cookbook describes howtowork with C files.Include file dependencies are automatically determined.14.2.1 recipes%.o: %.cConstruct object files form C source files, with automatic include file dependencydetection.%.ln: %.cConstruct lint object files from C source files, with automatic include file dependencydetection.14.2.2 var iablesc_incl TheCinclude dependencysniffer command.Not altered if already defined.cc TheCcompiler command.Not altered if already defined.lint Thelint command.Not altered if already defined.cc_flags Optionsto pass to the C compiler command.Not altered if already defined.The defaultis "-O".cc_include_flags Optionspassed to the C compiler and c_incl controlling include file searching.Notaltered if already defined.The default is empty.cc_src Csource files in the current directory.Peter MillerPage 83

Cook UserGuidedot_src Sourcefiles constructable in the current directory (unioned with existing setting, ifnecessary).dot_obj Objectfiles constructable in the current directory (unioned with existing setting, ifnecessary).dot_clean Fileswhich may be removedfrom the current directory in a clean target.dot_lint_obj Lintobject files constructable in the current directory (unioned with existing setting, ifnecessary).14.2.3 SeeAlsoThe ‘‘library’’cookbook, for linking C sources into a library.The ‘‘program’’cookbook, for linking C sources into a program.14.3 f77This cookbook describes howtowork with Fortran files.14.3.1 recipes%.o: %.f77Construct object files form Fortran source files.14.3.2 var iablesf77 TheFortran compiler command.Not altered if already defined.f77_flags Optionsto pass to the Fortran compiler command.Not altered if already defined.Thedefault is "-O".f77_src Fortran source files in the current directory.dot_src Sourcefiles constructable in the current directory (unioned with existing setting, ifnecessary).dot_obj Objectfiles constructable in the current directory (unioned with existing setting, ifnecessary).dot_clean Fileswhich may be removedfrom the current directory in a clean target.14.3.3 SeeAlsoThe ‘‘library’’cookbook, for linking Fortran sources into a library.The ‘‘program’’cookbook, for linking Fortran sources into a program.14.4 g77This cookbook is the same as the ‘‘f77’’cookbook, but it sets thef77variable to the GNU Fortran compiler,g77.14.5 gccThis cookbook is the same as the ‘‘c’’cookbook, but it sets theccvariable to the GNU C compiler,gcc.14.6 homeThis cookbook defined where certain directories are, and some common uses of those directories, relativeto $HOME.14.6.1 var iableshome Thecurrent users’ home directory.bin Thedirectory to place program binaries into.Peter MillerPage 84

Cook UserGuideinclude Thedirectory to place include files into.lib Thedirectory to place libraries into.cc_include_flags The[include] directory is appended to the search options.cc_link_flags The[lib] directory is appended to the search options.14.7 lexThis cookbook describes howtowork with lexfiles.14.7.1 recipes%.c: %.lConstruct C source files from lexsource files.14.7.2 var iableslexThe lexcommand. Notaltered if already defined.lex_flags Optionsto pass to the lexcommand. Notaltered if already defined.The default is empty.lex_src Lexsource files in the current directory.dot_src Sourcefiles constructible in the current directory (unioned with existing setting, ifnecessary).dot_obj Objectfiles constructible in the current directory (unioned with existing setting, ifnecessary).dot_clean Fileswhich may be removedfrom the current directory in a clean target.dot_lint_obj Lintobject files constructible in the current directory (unioned with existing setting, ifnecessary).14.8 librar yThis cookbook defines howtoconstruct a library.If an include file (or files) are defined for this library,you will have toappend them to [install] in yourHowto.cookfile.14.8.1 var iablesall targets of the all recipeinstall targets of the install recipeme Thename of the library to be constructed.Defaults to the last component of thepathname of the current directory.ar Thearchive command.install targets of the install command.Only defined if the [lib] variable is defined.14.8.2 recipesall constructthe targets defined in [all].clean remove the files named in [dot_clean].clobber remove the files name in [dot_clean] and [all].install Constructthe files named in [install].Only defined if the [lib] variable is defined.uninstall Remove the files named in [install].Only defined if the [lib] variable is defined.Peter MillerPage 85

Cook UserGuide14.9 printThis cookbook is used to print files.It will almost certainly need to be changed for every site.14.9.1 recipes%.lw: %.psPrint a PostScript file.%.lp: %Print a text file.14.9.2 var iableslp Theprint command.Not altered if already defined.lp_flags Optionspassed to the print command.Not altered if already defined.Defaults to empty.14.10 programThis cookbook defines howtoconstruct a program.If your program uses anylibraries, you will have toappend them to [ld_libraries] in yourHowto.cookfile.14.10.1 var iablesall Targets of the all recipe.install targets of the install recipeld Thename of the linker command.Not altered if already defined.Set to the same as the‘‘cc’’variable if set, otherwise set to the same as the ‘‘f77’’variable if set, otherwise setto ‘‘ld’’.ld_flags Notaltered if already defined.The default is empty.ld_libraries Optionspassed to the C compiler when linking, these are typically library search paths(-L)and libraries (-l). Notaltered if already defined.The default is empty.me Thename of the program to be constructed.Defaults to the last component of thepathname of the current directory.14.10.2 recipesall Constructthe targets named in [all].clean Remove the files named in [dot_clean].clobber Remove the files named in [dot_clean] and [all].install Constructthe files named in [install].Only defined if the [lib] variable is defined.uninstall Remove the files named in [install].Only defined if the [lib] variable is defined.14.10.3 SeeAlsoThe ‘‘c’’cookbook, for C sources.The ‘‘f77’’cookbook, for Fortran sources.The ‘‘usr’’or‘‘usr.local’’or‘‘home’’cookbooks, for defining install locations.14.11 rcsThis cookbook is used to extract files from RCS.14.11.1 recipes%: RCS/%,vExtract files from RCS.Peter MillerPage 86

Cook UserGuide%: %,vExtract files from RCS.14.11.2 var iablesco TheRCS checkout command.co_flags Flagsfor the co command, default to empty.14.12 recursiveThis cookbook may be used to construct recursive cook directory structures, where the top-levelcookbookonly invokescookbooks in deeper directories.All targets giventothis cookbook result in all sub-directories containing aHowto.cookfile havingcookinvokedwith the same target.14.12.1 RecipesTheallrecipe is defined, but it does nothing, it only exists to set the default target name.14.13 sccsThis cookbook is used to extract files from SCCS.14.13.1 recipes%: SCCS/s.%Extract files from SCCS.%: s.%Extract files from SCCS.14.13.2 var iablesget TheSCCS get command.get_flags Flagsfor the get command, default to empty.14.14 textThis cookbook is used to process text documents.Include file dependencies are automatically detected.The requirements for various preprocessors areautomatically detected (e.g.eqn, tbl, pic, graf).14.14.1 recipes%.ps: %.tPostScript for generic *roffsource.%: %.tStraight text from *roffsource.14.14.2 var iablestext_incl Thetext_incl command (finds include dependencies).Not altered if already set.text_roffThe text_roffcommand (finds preprocessor requirements).Not altered if already set.roff_flags Arguments passed to text_roff, and indirectly to the *roffprogram. Notaltered if alreadyset. Defaults to empty.14.15 usr.localThis cookbook defined where certain directories are, and some common uses of those directories, relativeto /usr/local.14.15.1 var iablesbin Thedirectory to place program binaries into.Peter MillerPage 87

Cook UserGuideinclude Thedirectory to place include files into.lib Thedirectory to place libraries into.cc_include_flags The[include] directory is added to the search options.cc_link_flags The[lib] directory is added to the search options.14.16 usrThis cookbook defined where certain directories are, relative to/usr.14.16.1 var iablesbin Thedirectory to place program binaries into.include Thedirectory to place include files into.lib Thedirectory to place libraries into.14.17 yaccThis cookbook describes howtouse yacc.Youwill have toadd "-d" to the [yacc_flags] variable if you want %.h files generated.If ay.outputfile is constructed, it will be movedto%.list.14.17.1 recipes%.c %.h: %.yConstruct C source and header files from yacc source files.Applied if -d in [yacc_flags].%.c: %.yConstruct C source files from yacc source files.Applied if -d not in [yacc_flags].14.17.2 var iablesyacc_src Yacc source files in the current directory.dot_src Sourcefiles constructable in the current directory (unioned with existing setting, ifnecessary).dot_obj Objectfiles constructable in the current directory (unioned with existing setting, ifnecessary).dot_clean Fileswhich may be removedfrom the current directory in a clean target.dot_lint_obj Lintobject files constructable in the current directory (unioned with existing setting, ifnecessary).14.18 yacc_manyThis cookbook describes howtouse yacc.The difference with the "yacc" cookbook is that this cookbookallows you to have more that one yacc generated parser in the same program, by using the classicsed(1)hack of the output.Peter MillerPage 88

Cook UserGuide15. GlossaryThis document employs a number of terms specific tocook.bodyAset of statements, usually commands, to be performed tocookthetargetsofarecipeafter theingredientsexist.commandAcommand is a list of words to be passed to theoperating systemto be executed.cookWhen used as a verb, refers to the actionscookwould perform to create atarget,according to somerecipe.cookbookAfile containing input forcook,usuallyrecipes.explicit recipeAn explicit recipe is one where thetargetscontain no patterns.That is, there are nopercent (’%’) characters in anyofthetargets.fingerprintAcryptographically strong hash of the contents of a file, use to determine if the filecontents have changed.flagAflag modifies the behavior of a cook session,recipeor command.forced ingredientAfiles which must exist before atargetfile of animplicit recipemay be cooked. Theinability to construct a forced ingredient is an error.functionAfunction is an action applied to a word list.gateAgate is a condition which allows the conditional application of arecipe.The gatecondition is in addition to the requirement that the ingredients are cookable.implicit recipeAn implicit recipe is a recipe with patterns in thetargets. Thatis, there is a percent (’%’)character in at least one of thetargets.ingredientAfiles which must exist before atargetfile may be cooked. Inanimplicit recipetheinability to construct of an ingredient means that therecipewill not be applied.In anexplicit recipe the inability to construct an ingredient is an error.last-modified timeUNIXimbues files with several attributes. Oneof these is a time-stamp of when the filewaslast modified.Usually this is when the file was last written to.recipeArecipeconsists of several parts.1. Aset oftargetstobecooked,2. Aset of ingredients of thosetargets, and3. Anoptional set of forced ingredients.4. Anoptional set of flags.5. Anoptional gate.6. Anoptional body .targetThe object of arecipe,athing which is cooked.touchUNIX imbues files with several attributes. Oneof these is a time-stamp of when the filewaslast modified.Usually this is when the file was last written to, howeveritispossibleto simply adjust this attribute, rather than actually writing to the file; this is colloquiallyknown astouching a file.variableAvariable is a named place holder for a value. Thevalue may be changed.Peter MillerPage 89

Cook UserGuidePeter MillerPage 90

CONTENTS1.Introduction.. 31.1WhyYou Want ToUse Cook.. 31.2HowtoUse this Manual... 41.3Ancient History... 42.Cook from the Outside... 52.1What can cook do for me?.. 52.2What is cook doing?... 52.3What can cook always do?.. 52.4If something goes wrong.. 52.5The Reference Manual.. 63.Cook from a Cookbook... 73.1What does Cook do?... 73.2HowdoItell Cook what to do?.. 73.3Creating a Cookbook.. 84.Cooking in Parallel.. 104.1Command Line Option... 104.2Cookbook Variable... 104.3Recipe Writing.. 104.4File Locking.. 114.5Virtual Machine.. 114.6Virtual Machine, Revisited... 135.Include File Dependencies... 155.1The Manual Method... 155.2Debugging Cookbooks... 155.3Tools.. 165.4The Small Method.. 165.5The Large Method.. 175.6The Cascade Method.. 185.7Dependencies on DerivedFiles.. 195.8Renaming Include Files.. 196.Building Large Projects... 206.1Whole Project Build... 206.2Private Work Areas... 246.3Whole Project Build Advantages.. 266.4Heterogeneous Build.. 276.5Installing Things... 286.6Miscellaneous... 296.7File Fingerprints.. 306.8Coping with Links.. 326.9Coping with Version Stamps.. 327.Cookbook Language Definition... 337.1Lexical Analysis... 337.1.1Words and Keywords.. 337.1.2Escape Sequences... 337.1.3Quoting... 337.1.4Comments... 34i

7.2Preprocessor.. 347.2.1include... 347.2.2include-cooked.. 347.2.3include-cooked-nowarn.. 357.2.4if.. 357.2.5ifdef... 357.2.6ifndef... 357.2.7pragma.. 367.3Syntax and Semantics... 377.3.1Overall Structure... 377.3.2The Compound Statement.. 377.3.3Variables and Expressions.. 377.3.4Recipes.. 397.3.5The Explicit Recipe Statement... 397.3.6The Implicit Recipe Statement... 437.3.7The Ingredients Recipe Statement.. 447.3.8The Cascade Recipe Statement... 457.3.9Commands.. 457.3.10The Simple Command Statement... 457.3.11The Data Command Statement... 457.3.12The Set Statement... 467.3.13The Fail Statement.. 477.3.14The If Statement... 477.3.15The Loop and Loopend Statements.. 477.3.16Functions... 488.Built-In Functions.. 508.1addprefix... 508.2addsuffix.. 508.3and... 508.4basename... 508.5cando... 518.6catenate... 518.7collect.. 518.8collect_lines.. 518.9cook... 528.10count... 528.11defined... 528.12dir.. 528.13dirname... 538.14dos-path... 538.15downcase... 538.16entryname... 548.17execute.. 548.18exists... 548.19exists-symlink... 558.20expr... 558.21filter... 558.22filter_out.. 568.23findstring... 568.24find_command.. 568.25firstword.. 578.26fromto... 57ii

8.27getenv.. 588.28glob... 588.29head... 588.30home... 598.31if.. 598.32in... 598.33interior_files.. 608.34join.. 608.35leaf_files.. 608.36matches... 608.37match_mask.. 608.38mtime.. 618.39mtime-seconds.. 618.40not... 618.41notdir... 628.42operating_system.. 628.43options... 638.44or... 638.45pathname... 648.46patsubst... 648.47prepost... 648.48print... 648.49quote... 648.50read... 658.51readlink... 658.52read_lines.. 658.53relative_dirname... 658.54resolve... 658.55shell... 668.56sort.. 668.57sort_newest... 668.58split... 668.59stringset... 678.60strip... 678.61stripdot.. 678.62strlen... 688.63subst.. 688.64substr... 688.65suffix... 688.66tail... 698.67unsplit... 698.68un-dos-path... 698.69upcase... 698.70uptodate... 708.71wildcard.. 708.72word.. 708.73words... 718.74write.. 719.Predefined Variables.. 729.1arg... 729.2command-line-goals... 729.3__FILE__.. 72iii

9.4__FUNCTION__.. 729.5graph_leaf_file.. 729.6graph_exterior_file.. 729.7graph_interior_file.. 729.8graph_leaf_pattern.. 729.9graph_exterior_pattern.. 729.10graph_interior_pattern.. 729.11__LINE__... 729.12need... 729.13parallel_hosts.. 739.14parallel_jobs.. 739.15parallel_rsh... 739.16search_list... 739.17self... 739.18target... 739.19targets.. 739.20thread-id.. 739.21timestamp_granularity.. 739.22younger... 739.23version... 7310.Functions Library... 7410.1capitalize... 7410.2defined-or-null.. 7410.3defined-or-default.. 7410.4repeat... 7410.5variable_by_path... 7411.Actions when Cooking.. 7511.1Scan the COOK Environment Variable.. 7511.2Scan the Command Line... 7511.3Locate the Cookbook.. 7511.4Form the Listing Filename.. 7511.5Create the Listing file.. 7511.6Scan the Cookbook... 7511.7Determine targets to cook... 7511.8Cooking a Target... 7511.9The DependencyGraph.. 7711.10File Status... 7812.Option Precedence... 8013.File name patterns.. 8113.1Cook Patterns.. 8113.2Regular Expressions... 8314.Supplied Cookbooks.. 8514.1as... 8514.2c... 8514.3f77... 8614.4g77.. 8614.5gcc... 8614.6home... 8614.7lex... 8714.8library.. 87iv

14.9print... 8814.10program... 8814.11rcs.. 8814.12recursive.. 8914.13sccs.. 8914.14text.. 8914.15usr.local... 8914.16usr... 9014.17yacc... 9014.18yacc_many.. 9015.Glossary... 91v

vi

