Qpid Dispatch Router Book

Contents
1 Introduction 4
1.1 Overview L 4
1.2 Benefits 5
1.3 Features L 6
2 Using Qpid Dispatch 6
2.1 Configuration L 6
2.2 Client Compatibility 6
2.3 Tools. 6
2.3.1 qdstat 6
2.3.2 qdmanage 7
2.4 Features and Exampleso oL 7
2.4.1 Standalone and Interior Modes 7
2.4.2 Mobile Subscribers 8
2.4.3 Dynamic Reply-To 9
2.5 Known Issues and Limitations 11
3 Addressing 11
3.1 Routing patterns oo 12
3.2 Routing mechanisms oo Lo 12
3.2.1 Messagerouting 13
3.22 Linkrouting L L. 13

4 AMQP Mapping

4.1
4.2
4.3

4.4

5 The
5.1

5.2

5.3

5.4

Message Annotations
Source/Target Capabilities
Addresses and Address Formats
4.3.1 Address Patterns oL
4.3.2 Supported Addresses

Implementation of the AMQP Management Specification

qdrouter management schema

Annotations
5.1.1 addrPort
5.1.2 saslMechanisms
5.1.3 commnectionRole
5.1.4 sslProfileo
Base Entity Type oo
5.21 entity oo
Configuration Entities 000
5.3.1 configurationEntity
5.3.2 comtainero
5.3.3 router
5.3.4 listener
5.3.5 commector
9.3.6 log
5.3.7 fixedAddress
5.3.8 waypoint o
Operational Entities L.
5.4.1 operationalEntity
5.4.2 router.link L Lo
5.4.3 router.addresso
5.4.4 router.nmode
5.4.5 commectiono
5.4.6 allocator

13
14
14
14
14
14
15

6 Manual page qdrouterd.8

6.1 Name e
6.2 Synopsis
6.3 Descriptiono
6.4 Files e
6.5 See AlSO

Manual page qdstat.8

7.1 Name e
T2 Synopsis
7.3 Description

7.3.1 Connection Options
T4 See Also

Manual page qdmanage.8

8.1 Name
8.2 Synopsis
8.3 Description
8.4 Operations
85 Options

8.5.1 Connection Options
8.6 Files e
8.7 Examples
8.8 See AlSO

Manual page qdrouterd.conf.5

9.1 Name e
9.2 Descriptiono
9.3 Annotation Sections Lo
9.3.1 Addrport
9.3.2 Saslmechanisms
9.3.3 Connectionrole oL

24
24
24
24
24
25

25
25
25
25
25
26

26
26
26
26
26
27
28
28
28
29

9.3.4 Sslprofile 31

9.4 Configuration Sections 31
9.4.1 Container L 31
94.2 Router. 32
9.4.3 Listener Lo 32
9.4.4 Connector 33
9.45 Log 34
9.4.6 Fixedaddress 34
947 Waypoint 35

1 Introduction

1.1 Overview

The Dispatch router is an AMQP message message router that provides ad-
vanced interconnect capabilities. It allows flexible routing of messages between
any AMQP-enabled endpoints, whether they be clients, servers, brokers or any
other entity that can send or receive standard AMQP messages.

A messaging client can make a single AMQP connection into a messaging bus
built of Dispatch routers and, over that connection, exchange messages with
one or more message brokers, and at the same time exchange messages directly
with other endpoints without involving a broker at all.

The router is an intermediary for messages but it is not a broker. It does
not take responsibility for messages. It will, however, propagate settlement
and disposition across a network such that delivery guarantees are met. In
other words: the router network will deliver the message, possibly via several
intermediate routers, and it will route the acknowledgement of that message by
the ultimate reciever back across the same path. This means that responsibility
for the message is transfered from the original sender to the ultimate receiver as
if they were directly connected. However this is done via a flexible network that
allows highly configurable routing of the message transparent to both sender
and receiver.

There are some patterns where this enables “brokerless messaging” approaches
that are preferable to brokered approaches. In other cases a broker is essential
(in particular where you need the separation of responsibility and/or the buffer-
ing provided by store-and-forward) but a dispatch network can still be useful
to tie brokers and clients together into patterns that are difficult with a single
broker.

For a “brokerless” example, consider the common brokered implementation of
the request-response pattern, a client puts a request on a queue and then waits
for a reply on another queue. In this case the broker can be a hindrance - the
client may want to know immediatly if there is nobody to serve the request, but
typically it can only wait for a timeout to discover this. With a dispatch net-
work, the client can be informed immediately if its message cannot be delivered
because nobody is listening. When the client receives acknowledgement of the
request it knows not just that it is sitting on a queue, but that it has actually
been received by the server.

For an exampe of using dispatch to enhance the use of brokers, consider using
an array of brokers to implement a scalable distributed work queue. A dispatch
network can make this appear as a single queue, with senders publishing to
a single address and receivers subscribing to a single address. The dispatch
network can distribute work to any broker in the array and collect work from any
broker for any receiver. Brokers can be shut down or added without affecting
clients. This elegantly solves the common difficult of “stuck messages” when
implementing this pattern with brokers alone. If a receiver is connected to a
broker that has no messages, but there are messages on another broker, you have
to somehow transfer them or leave them “stuck”. With a dispatch network, all
the receivers are connected to all the brokers. If there is a message anywhere it
can be delivered to any receiver.

The router is meant to be deployed in topologies of multiple routers, preferably
with redundant paths. It uses link-state routing protocols and algorithms (simi-
lar to OSPF or IS-IS from the networking world) to calculate the best path from
every point to every other point and to recover quickly from failures. It does
not need to use clustering for high availability; rather, it relies on redundant
paths to provide continued connectivity in the face of system or network fail-
ure. Because it never takes responsibility for messages it is effectively stateless,
messages not delivered to their final destination will not be acknowledged to the
sender and therefore the sender can re-send such messages if it is disconnected
from the network.

1.2 Benefits

e Simplifies connectivity

e An endpoint can do all of its messaging through a single transport con-
nection

e Avoid opening holes in firewalls for incoming connections

e Simplifies reliability

e Reliability and availability are provided using redundant topology, not
server clustering

e Reliable end-to-end messaging without persistent stores

e Use a message broker only when you need store-and-forward semantics

1.3 Features

e Supports arbitrary topology - no restrictions on redundancy

e Automatic route computation - adjusts quickly to changes in topology
e Cost-based route computation

e Rich addressing semantics

e Security

2 Using Qpid Dispatch

2.1 Configuration

The default configuration file is installed in install-prefiz/etc/qpid/qdrouterd.conf.
This configuration file will cause the router to run in standalone mode, listening
on the standard AMQP port (5672). Dispatch Router looks for the configu-
ration file in the installed location by default. If you wish to use a different
path, the “-¢” command line option will instruct Dispatch Router as to which
configuration to load.

To run the router, invoke the executable: o $ qdrouterd [-c my-config-file]

For more details of the configuration file see the gdrouterd. conf (5) man page.

2.2 Client Compatibility

Dispatch Router should, in theory, work with any client that is compatible with
AMQP 1.0. The following clients have been tested:

Client Notes

qpid::messaging The Qpid messaging clients work with Dispatch Router as long as they are configured to

Proton Messenger Messenger works with Dispatch Router.

2.3 Tools
2.3.1 qdstat

gdstat is a command line tool that lets you view the status of a Dispatch Router.
The following options are useful for seeing that the router is doing:

Option Description

-1 Print a list of AMQP links attached to the router. Links are unidirectional. Outgoing links are usuz
-a Print a list of addresses known to the router.

-n Print a list of known routers in the network.

-C Print a list of connections to the router.

For complete details see the qdstat(8) man page and the output of gdstat
--help.

2.3.2 qdmanage

gdmanage is a general-purpose AMQP management client that allows you to
not only view but modify the configuration of a running dispatch router.

For example you can query all the connection entities in the route r $ gdrouterd
query —type connection

To enable logging debug and higher level messages by default: $ qdrouter update
log/DEFAULT enable=debug+

In fact, everything that can be configured in the configuration file can also be
created in a running router via management. For example to create a new
listener in a running router: $ gdrouter create type=listener port=>5555

Now you can connect to port 5555, for exampple $ qdrouterd query -b local-
host:5555 —type listener

For complete details see the gdmanage (8) man page and the output of gdmanage
--help. Also for details of what can be configured see the qdrouterd. conf (5)
man page.

2.4 Features and Examples
2.4.1 Standalone and Interior Modes

The router can operate stand-alone or as a node in a network of routers. The
mode is configured in the router section of the configuration file. In stand-alone
mode, the router does not attempt to collaborate with any other routers and
only routes messages among directly connected endpoints.

If your router is running in stand-alone mode, gdstat -a will look like the fol-
lowing:

$ qdstat -a
Router Addresses

class address in-proc local remote in out thru to-proc from-proc
local $management Y 0 0 1 0 0 1 0
local temp.AY8lga 1 0 0 O 0 0 0
Note that there are two known addresses. $management is the address of the
router’s embedded management agent. temp.AY81ga is the temporary reply-to
address of the qdstat client making requests to the agent.
If you change the mode to interior and restart the processs, the same command
will yield two additional addresses which are used for inter-router communica-
tion:
$ qdstat -a
Router Addresses
class address in-proc local remote in out thru to-proc from-proc
local $management Y 0 0 1 0 0 1 0
local qdhello Y 0 0 0 O 0 0 3
local qdrouter Y 0 0 0 O 0 0 1
local temp.khOpGb 1 0 0 0 0 0 0

2.4.2 Mobile Subscribers

The term “mobile subscriber” simply refers to the fact that a client may connect
to the router and subscribe to an address to receive messages sent to that
address. No matter where in the network the subscriber attaches, the messages
will be routed to the appropriate destination.

To illustrate a subscription on a stand-alone router, you can use the examples
that are provided with Qpid Proton. Using the recv.py example receiver:

$ recv.py amgp://0.0.0.0/my-address

This command creates a receiving link subscribed to the specified address. To
verify the subscription:

from-proc

$ qdstat -a

Router Addresses
class address in-proc 1local remote in out thru to-proc
local $management Y 0 0 1 0 0 1
mobile my-address 1 0 0 0 0 0
local temp.fDt8_a 1 0 0 O 0 0

o

You can then, in a separate command window, run a sender to produce messages
to that address:

$ send.py -a amqp://0.0.0.0/my-address

2.4.3 Dynamic Reply-To

Dynamic reply-to can be used to obtain a reply-to address that routes back to
a client’s receiving link regardless of how many hops it has to take to get there.
To illustrate this feature, see below a simple program (written in C++ against
the gpid::messaging API) that queries the management agent of the attached
router for a list of other known routers’ management addresses.

#include <gpid/messaging/Address.h>
#include <gpid/messaging/Connection.h>
#include <gpid/messaging/Message.h>
#include <qgpid/messaging/Receiver.h>
#include <gpid/messaging/Sender.h>
#include <gpid/messaging/Session.h>

using namespace qpid::messaging;
using namespace qpid::types;

using std::stringstream;
using std::string;

int main() {
const char* url = "amqp:tcp:127.0.0.1:5672";
std::string connectionOptions = "{protocol:amgpl.0}";

Connection connection(url, connectionOptions);
connection.open();

Session session = connection.createSession();
Sender sender = session.createSender("mgmt") ;

// create reply receiver and get the reply-to address
Receiver receiver = session.createReceiver("#");
Address responseAddress = receiver.getAddress();

Message request;

request.setReplyTo(responseAddress);
request.setProperty("x-amgp-to", "amqgp:/_local/$management");
request.setProperty("operation", "DISCOVER-MGMT-NODES");
request.setProperty("type", "org.amqgp.management");
request.setProperty("name, "self");

sender.send(request) ;

Message response = receiver.fetch();

Variant content(response.getContentObject());

std::cout << "Response: " << content << std::endl << std::endl;

connection.close();

The equivalent program written in Python against the Proton Messenger API:

from proton import Messenger, Message

def main():
host = "0.0.0.0:5672"

messenger = Messenger()

messenger.start ()

messenger.route("amqp:/*", "amqp://%s/$1" % host)
reply_subscription = messenger.subscribe("amqgp:/#")
reply_address = reply_subscription.address

request = Message()
response = Message()

request.address = "amgp:/_local/$management"

request.reply_to = reply_address

request.properties = {u’operation’ : u’DISCOVER-MGMT-NODES’,
u’type’ : u’org.amqgp.management’,
u’name’ : u’self’}

messenger . put (request)

messenger .send ()

messenger.recv()
messenger .get (response)

print "Response: %r" ’ response.body

messenger.stop()

main()

10

2.5 Known Issues and Limitations

This is an early test release. It is expected that users will find bugs and other
various instabilities. The main goal of this release is to prove that the process
can be run and that users can demonstrate basic functionality as described in
this document. Nevertheless, the following are known issues with the 0.1 release:

e Subscriber addresses are not always cleaned up after a consumer discon-
nects. See https://issues.apache.org/jira/browse/QPID-4964.

e Dispatch Router does not currently use the target address of a client’s
sender link to route messages. It only looks at the “to” field in the mes-
sage’s headers. See https://issues.apache.org/jira/browse/QPID-5175.

e All subscription sources are treated as multicast addresses. There is cur-
rently no facility for provisioning different types of addresses. Multicast
means that if there are multiple subscribers to the same address, they will
all receive a copy of each message sent to that address.

e SSL connectors and listeners are supported but very lightly (and not re-
cently) tested.

e SASL authentication is not currently integrated into any authentication
framework. Use ANONYMOUS for testing,.

3 Addressing

AMQP addresses are used to control the flow of messages across a network of
routers. Addresses are used in a number of different places in the AMQP 1.0
protocol. They can be used in a specific message in the to and reply-to fields
of a message’s properties. They are also used during the creation of links in the
address field of a source or a target.

Addresses designate various kinds of entities in a messaging network:

Endpoint processes that consume data or offer a service
Topics that match multiple consumers to multiple producers
Entities within a messaging broker:

Queues

Durable Topics

Exchanges

The syntax of an AMQP address is opaque as far as the router network is con-
cerned. A syntactical structure may be used by the administrator that creates
addresses, but the router treats them as opaque strings. Routers consider ad-
dresses to be mobile such that any address may be directly connected to any

11

https://issues.apache.org/jira/browse/QPID-4964
https://issues.apache.org/jira/browse/QPID-5175

router in a network and may move around the topology. In cases where mes-
sages are broadcast to or balanced across multiple consumers, an address may
be connected to multiple routers in the network.

Addresses have semantics associated with them. When an address is created in
the network, it is assigned a set of semantics (and access rules) during a process
called provisioning. The semantics of an address control how routers behave
when they see the address being used.

Address semantics include the following considerations:

Routing pattern - direct, multicast, balanced
Routing mechanism - message routed, link routed
Undeliverable action - drop, hold and retry, redirect
Reliability - N destinations, etc.

3.1 Routing patterns

Routing patterns constrain the paths that a message can take across a network.

Pattern Description

Direct Direct routing allows for only one consumer to use an address at a time. Messages (or links) follo
Multicast Multicast routing allows multiple consumers to use the same address at the same time. Messages

Balanced Balanced routing also allows multiple consumers to use the same address. In this case, messages |

3.2 Routing mechanisms

The fact that addresses can be used in different ways suggests that message
routing can be accomplished in different ways. Before going into the specifics of
the different routing mechanisms, it would be good to first define what is meant
by the term routing:

In a network built of multiple routers connected by connections (i.e.,
nodes and edges in a graph), routing determines which connection
to use to send a message directly to its destination or one step closer
to its destination.

Each router serves as the terminus of a collection of incoming and outgoing links.
Some of the links are designated for message routing, and others are designated
for link routing. In both cases, the links either connect directly to endpoints
that produce and consume messages, or they connect to other routers in the
network along previously established connections.

12

3.2.1 Message routing

Message routing occurs upon delivery of a message and is done based on the
address in the message’s to field.

When a delivery arrives on an incoming message-routing link, the router extracts
the address from the delivered message’s to field and looks the address up in
its routing table. The lookup results in zero or more outgoing links onto which
the message shall be resent.

Delivery Handling

pre-settled If the arriving delivery is pre-settled (i.e., fire and forget), the incoming delivery shall be settled

unsettled Unsettled delivery is also propagated across the network. Because unsettled delivery records can

3.2.2 Link routing

Link routing occurs when a new link is attached to the router across one of
its AMQP connections. It is done based on the target.address field of an
inbound link and the source.address field of an outbound link.

Link routing uses the same routing table that message routing uses. The dif-
ference is that the routing occurs during the link-attach operation, and link
attaches are propagated along the appropriate path to the destination. What
results is a chain of links, connected end-to-end, from source to destination. It
is similar to a wirtual circuit in a telecom system.

Each router in the chain holds pairs of link termini that are tied together. The
router then simply exchanges all deliveries, delivery state changes, and link state
changes between the two termini.

The endpoints that use the link chain do not see any difference in behavior
between a link chain and a single point-to-point link. All of the features available
in the link protocol (flow control, transactional delivery, etc.) are available over
a routed link-chain.

4 AMQP Mapping

Dispatch Router is an AMQP router and as such, it provides extensions, code-
points, and semantics for routing over AMQP. This page documents the details
of Dispatch Router’s use of AMQP.

13

4.1 Message Annotations

The following Message Annotation fields are defined by Dispatch Router:

Field Type Description

x-opt-qd.ingress string The identity of the ingress router for a message-routed message. The ingres:
x-opt-qd.trace list of string The list of routers through which this message-routed message has transited
x-opt-qd.to string To-Override for message-routed messages. If this field is present, the addres
x-opt-qd.class string Message class. This is used to allow the router to provide separate paths for

4.2 Source/Target Capabilities

The following Capability values are used in Sources and Targets.

Capability — Description

qd.router This capability is added to sources and targets that are used for inter-router message exchange.

4.3 Addresses and Address Formats

The following AMQP addresses and address patterns are used within Dispatch
Router.

4.3.1 Address Patterns

Pattern Description

_local/<addr> An address that references a locally attached endpoint. Messages using t]
_topo/<area>/<router>/<addr> An address that references an endpoint attached to a specific router node

<addr> A mobile address. An address of this format represents an endpoint or a

4.3.2 Supported Addresses

Address Description

_local/$management The management agent on the attached router/container. This address wot

14

Address Description

_topo/0/Router.E/agent The management agent at Router.E in area 0. This address would be used
_local/qdhello The router entity in each of the connected routers. This address is used to
_local/qdrouter The router entity in each of the connected routers. This address is used by

_topo/0/Router.E/qdxrouter The router entity at the specifically indicated router. This address form is 1

4.4 Implementation of the AMQP Management Specifi-
cation

Qpid Dispatch is manageable remotely via AMQP. It is compliant with the
emerging AMQP Management specification (draft 9).

Differences from the specification:

e The “name” attribute is not required when an entity is created. If not
supplied it will be set to the same value as the system-generated “identity”
attribute. Otherwise it is treated as per the standard.

e The REGISTER operation is not implementd. The router has its own
mechansm to discover peers that does not require this operation.

e The DEREGISTER operation is not implementd. The router has its own
mechansm to discover peers that does not require this operation.

5 The qdrouter management schema

The schema gdrouterd. json is a JSON format file that defines annotations
and entity types of the Qpid Dispatch Router management model. The model
is based on the AMQP management specification.

The schema is a JSON map with the following keys:

e “description”: documentation string for the schema

e “prefix”: Prefix prepended to schema names when they are exposed to
AMQP management clients.

e “annotations”: map of annotation names to definitions (see below)

e “entityTypes”: map of entity type names to definitions (see below)

Annotation and entity type definition maps have the following keys:

e “description”: documentation string.

15

e “operations”: list of allowed operation names.
e “attributes”: map of attribute names to attribute definitions (see below)

Entity type definitions also have these fields:

e “extends”. Name of base type. The new type includes operations and
attributes from the base type.

e “annotations”: List of annotation names. The new type includes opera-
tions and attributes from all the annotations.

Attribute definition maps have the following fields:

e “type”: one of the following:
e “String”: a unicode string value.
o “Integer”: an integer value.

e “Boolean”: a true/false value.

o “default”: a default can be a literal value or a reference to another at-
tribute in the form $attributeName.

There is the following hierarchy among entity types:

entity: The base of all entity types. - configurationEntity: base for all
types that hold configuration information.

Configuration information is supplied in advance and expresse intent. For ex-
ample “I want the router to listen on port N”. All the entities that can be used
in the configuration file extend configurationEntity.

e operationalEntity: base for all types that hold operational information.

Operational information reflects the actual current state of the router. For
example, “how many addresses are presently active?” All the entities queried
by the gdstat tool extend operationalEntity.

The two types are often related. For example listener and connector extend
configurationEntity, they express the intent to make or receive connections.
connection extends operationalEntity, it holds information the actual con-
nection status.

The rest of this section provides the schema documentation in readable format.

16

5.1 Annotations
5.1.1 addrPort

Attributes for internet address and port.

Used by listener, connector.
addr (String, default=0.0.0.0) Host address: ipv4 or ipv6 literal or a host
name.

port (String, default=amqp) Port number or symbolic service name.

5.1.2 saslMechanisms

Attribute for a list of SASL mechanisms.
Used by listener, connector.

saslMechanisms (String, required) Comma separated list of accepted SASL
authentication mechanisms.

5.1.3 connectionRole

Attribute for the role of a connection.

Used by listener, connector.

role (One of [normal, inter-router, on-demand], default=normal)
The role of an established connection. In the normal role, the connection
is assumed to be used for AMQP clients that are doing normal message
delivery over the connection. In the inter-router role, the connection is
assumed to be to another router in the network. Inter-router discovery
and routing protocols can only be used over interRouter connections.

5.1.4 sslProfile

Attributes for setting TLS/SSL configuration for connections.

Used by listener, connector.

certDb (String) The path to the database that contains the public certificates
of trusted certificate authorities (CAs).

certFile (String) The path to the file containing the PEM-formatted public
certificate to be used on the local end of any connections using this profile.

17

keyFile (String) The path to the file containing the PEM-formatted private
key for the above certificate.

passwordFile (String) If the above private key is password protected, this is
the path to a file containing the password that unlocks the certificate key.

password (String) An alternative to storing the password in a file referenced
by passwordFile is to supply the password right here in the configuration
file. This option can be used by supplying the password in the ‘password’
option. Don’t use both password and passwordFile in the same profile.

5.2 Base Entity Type
5.2.1 entity
Base entity type for all entities.

name (String, unique) Unique name, can be changed.
identity (String, unique) Unique identity, will not change.

type (String, required) Management entity type.

5.3 Configuration Entities
5.3.1 configurationEntity

Base type for entities containing configuration information.

Extends: entity (name, identity, type).

5.3.2 container

Attributes related to the AMQP container.

Extends: configurationEntity (name, identity, type).

containerName (String) The name of the AMQP container. If not specified,
the container name will be set to a value of the container’s choosing. The
automatically assigned container name is not guaranteed to be persistent
across restarts of the container.

workerThreads (Integer, default=1) The number of threads that will be
created to process message traffic and other application work (timers,
non-amgp file descriptors, etc.) .

debugDump (String) A file to dump debugging information that can’t be logged
normally.

18

5.3.3 router

Tracks peer routers and computes routes to destinations.

Extends: configurationEntity (name, identity, type).

routerId (String) Router’s unique identity.

mode (One of [standalone, interior, edge, endpoint], default=standalone)

In standalone mode, the router operates as a single component. It does
not participate in the routing protocol and therefore will not coorperate
with other routers. In interior mode, the router operates in cooreration
with other interior routers in an interconnected network. In edge mode,
the router operates with an uplink into an interior router network. Edge
routers are typically used as connection concentrators or as security
firewalls for access into the interior network.

area (String) Unused placeholder.

helloInterval (Integer, default=1) Interval in seconds between HELLO
messages sent to neighbor routers.

helloMaxAge (Integer, default=3) Time in seconds after which a neighbor
is declared lost if no HELLO is received.

ralnterval (Integer, default=30) Interval in seconds between Router-
Advertisements sent to all routers.

remoteLsMaxAge (Integer, default=60) Time in seconds after which link
state is declared stale if no RA is received.

mobileAddrMaxAge (Integer, default=60) Time in seconds after which mo-
bile addresses are declared stale if no RA 1is received.

addrCount (Integer) Number of addresses known to the router.
linkCount (Integer) Number of links attached to the router node.

nodeCount (Integer) Number of known peer router nodes.

5.3.4 1listener

Listens for incoming connections to the router.
Extends: configurationEntity (name, identity, type).

Annotations: sslProfile (certDb, certFile, keyFile, passwordFile,
password), addrPort (addr, port), saslMechanisms (saslMechanisms),
connectionRole (role).

19

requirePeerAuth (Boolean, default=True) Only for listeners using SSL. If
set to ‘yes’, attached clients will be required to supply a certificate. If the
certificate is not traceable to a CA in the ssl profile’s cert-db, authentica-
tion fails for the connection.

trustedCerts (String) This optional setting can be used to reduce the set of
available CAs for client authentication. If used, this setting must provide
a path to a PEM file that contains the trusted certificates.

allowUnsecured (Boolean) For listeners using SSL only. If set to ‘yes’, this
option causes the listener to watch the initial network traffic to determine
if the client is using SSL or is running in-the-clear. The listener will enable
SSL only if the client uis using SSL.

allowNoSasl (Boolean) If set to ‘yes’, this option causes the listener to allow
clients to connect even if they skip the SASL authentication protocol.

maxFrameSize (Integer, default=65536) Defaults to 65536. If specified, it is
the maximum frame size in octets that will be used in the connection-open
negotiation with a connected peer. The frame size is the largest contiguous
set of uniterruptible data that can be sent for a message delivery over the
connection. Interleaving of messages on different links is done at frame
granularity.

5.3.5 connector

Establishes an outgoing connections from the router.
Extends: configurationEntity (name, identity, type).

Annotations: sslProfile (certDb, certFile, keyFile, passwordFile,
password), addrPort (addr, port), saslMechanisms (saslMechanisms),
connectionRole (role).

allowRedirect (Boolean, default=True) Allow the peer to redirect this
connection to another address.

maxFrameSize (Integer, default=65536) Maximum frame size in octets that
will be used in the connection-open negotiation with a connected peer. The
frame size is the largest contiguous set of uniterruptible data that can be
sent for a message delivery over the connection. Interleaving of messages
on different links is done at frame granularity.

5.3.6 1log

Configure logging for a particular module.

Extends: configurationEntity (name, identity, type).

20

module (One of [ROUTER, MESSAGE, SERVER, AGENT, CONTAINER, CONFIG, ERROR,
Module to configure. The special module ‘DEFAULT’ specifies defaults
for all modules.

enable (String, required, default=default) Levels are: trace, debug, info,
notice, warning, error, critical. The enable string is a comma-separated
list of levels. A level may have a trailing ‘+’ to enable that level and above.
For example ‘trace,debug,warning+’ means enable trace, debug, warning,
error and critical. The value ‘none’ means disable logging for the module.
The value ‘default’ means use the value from the DEFAULT module.

timestamp (Boolean) Include timestamp in log messages.
source (Boolean) Include source file and line number in log messages.

output (String) Where to send log messages. Can be ‘stderr’, ‘syslog’ or a file
name.

5.3.7 fixedAddress

Establishes semantics for addresses starting with a prefix.

Extends: configurationEntity (name, identity, type).

prefix (String, required) The address prefix (always starting with ¢/’).

phase (Integer) The phase of a multi-hop address passing through one or more
waypoints.

fanout (One of [multiple, single], default=multiple) One of ‘multiple’ or
‘single’. Multiple fanout is a non-competing pattern. If there are multiple
consumers using the same address, each consumer will receive its own copy
of every message sent to the address. Single fanout is a competing pattern
where each message is sent to only one consumer.

bias (One of [closest, spread], default=closest) Only if fanout is single.
One of ‘closest’ or ‘spread’. Closest bias means that messages to an ad-
dress will always be delivered to the closest (lowest cost) subscribed con-
sumer. Spread bias will distribute the messages across subscribers in an
approximately even manner.

5.3.8 waypoint

A remote node that messages for an address pass through.

Extends: configurationEntity (name, identity, type).

address (String, required) The AMQP address of the waypoint.

21

connector (String, required) The name of the on-demand connector used to
reach the waypoint’s container.

inPhase (Integer, default=-1) The phase of the address as it is routed to
the waypoint.

outPhase (Integer, default=-1) The phase of the address as it is routed from
the waypoint.

5.4 Operational Entities
5.4.1 operationalEntity

Base type for entities containing current operational information.

Extends: entity (name, identity, type).

5.4.2 router.link

Link to another AMQP endpoint: router node, client or other AMQP process.
Extends: operationalEntity (name, identity, type).

linkName (String)

linkType (One of [endpoint, waypoint, inter-router, inter-area))

linkDir (One of [in, out])

owningAddr (String)

eventFifoDepth (Integer)

msgFifoDepth (Integer)

remoteContainer (String)

5.4.3 router.address

AMQP address managed by the router.

Extends: operationalEntity (name, identity, type).
inProcess (Boolean)

subscriberCount (Integer)

remoteCount (Integer)

deliveriesIngress (Integer)

deliveriesEgress (Integer)

22

deliveriesTransit (Integer)
deliveriesToContainer (Integer)

deliveriesFromContainer (Integer)

5.4.4 router.node

AMQP node managed by the router.

Extends: operationalEntity (name, identity, type).
addr (String)

nextHop (Integer)

routerLink (Integer)

validOrigins (List)

5.4.5 connection

Connections to the router’s container.

Extends: operationalEntity (name, identity, type).
container (String)

state (One of [connecting, opening, operational, failed, user])
host (String)

dir (One of [in, out])

role (String)

sasl (String)

5.4.6 allocator

Memory allocation pool.

Extends: operationalEntity (name, identity, type).
typeSize (Integer)

transferBatchSize (Integer)

localFreeListMax (Integer)

globalFreeListMax (Integer)

totalAllocFromHeap (Integer)

23

totalFreeToHeap (Integer)
heldByThreads (Integer)
batchesRebalancedToThreads (Integer)

batchesRebalancedToGlobal (Integer)

6 Manual page qdrouterd.8

6.1 Name

qdrouterd - AMQP message router.

6.2 Synopsis

qdrouterd [options]

6.3 Description

The Qpid Dispatch router (qdrouterd) is a network daemon that directs AMQP
1.0 messages between endpoints, such as messaging clients and servers. ##
Options

-c, —config=PATH (/etc/qpid-dispatch/qdrouterd.conf) Load configu-
ration from file at PATH

-I, —include=PATH (/usr/lib/qpid-dispatch/python) Location of
Dispatch’s Python library

-d, —.daemon Run process as a SysV-style daemon
-P, —pidfile If daemon, the file for the stored daemon pid
-U, —user If daemon, the username to run as

-h, —help Print this help

Run gdrouterd --help to see options.

6.4 Files

/etc/qpid-dispatch/qdrouterd.conf Configuration flie.

24

6.5 See Also

gdrouterd.conf(5), qdstat(8), gdstat.conf(5),
http://qpid.apache.org/components/dispatch-router

7 Manual page qdstat.8

7.1 Name

qdstat - A tool to inspect Dispatch router networks

7.2 Synopsis

qdrouterd [options]

7.3 Description

qdstat shows status information about networks of Dispatch routers. It can
display connections, network nodes and links, and router stats such as memory
use. ## Options

-h, —help show this help message and exit

—version Print version and exit.

-g, —general Show General Router Stats

-c, —connections Show Connections

-1, —links Show Router Links

-n, —-nodes Show Router Nodes

-a, —address Show Router Addresses

-m, -memory Show Broker Memory Stats

7.3.1 Connection Options

-b URL, ~bus=URL URL of the messaging bus to connect to (default
-r ROUTER-ID, —router=ROUTER-ID Router to be queried

25

http://qpid.apache.org/components/dispatch-router

-t SECS, —timeout=SECS Maximum time to wait for connection in seconds
(default 5)

—sasl-mechanism=MECH Force SASL mechanism (e.g. EXTERNAL,
ANONYMOUS, PLAIN, CRAM-MD5, DIGEST-MD5, GSSAPI).

—ssl-certificate=CERT Client SSL certificate (PEM Format)
—ssl-key=KEY Client SSL private key (PEM Format)

Run gdstat --help to see options.

7.4 See Also

gdrouterd (8), qdmanage (8), gdrouterd.conf (5)
http://qpid.apache.org/components/dispatch-router

8 Manual page qdmanage.8

8.1 Name

gqdmanage - A management tool for Dispatch routers.

8.2 Synopsis

qdmanage operation [options...] [arguments. . .]

8.3 Description

An AMQP management client for use with qdrouterd. Sends AMQP manage-
ment operations requests and prints the response in JSON format. This is a
generic AMQP management tool and can be used with any standard AMQP
managed endpoint, not just with qdrouter.

8.4 Operations
query [ATTR...] Prints the named attributes of all entities. With no argu-

ments prints all attributes. The —type option restricts the result to entities
extending the type.

26

http://qpid.apache.org/components/dispatch-router

create [ATTR=VALUE...] Create a new entity with the specified at-
tributes. With the —stdin option, read attributes from stdin. This can
be a JSON map of attributes to create a single entity, or a JSON list of
maps to create multiple entitiees.

read Print the attributes of an entity specified by the —name or —identity op-
tions. With the —stdin option, create entities based on data from stdin.
This can be a JSON map of attributes to create a single entity, or a JSON
list of maps to create multiple entitiees.

update [ATTR=VALUE...] Update the attributes of an existing entity.
With the —stdin option, read attributes from stdin. This can be a JSON
map of attributes to update a single entity, or a JSON list of maps to
update multiple entitiees. If an ATTR name is listed with no =VALUE,
that attribute will be deleted from the entity.

delete Delete an entity specified by the -name or —identity options.

get-types [TYPE] List entity types with their base types. With no argu-
ments list all types.

get-operations [TYPE]| List entity types with their operations. With no
arguments list all types.

get-attributes [TYPE] List entity types with their attributes. With no
arguments list all types.

get-annotations [TYPE] List entity types with their annotations. With no
arguments list all types.

get-mgmt-nodes List all other known management nodes connected to this one.

8.5 Options

-h, —help show this help message and exit

—version Print version and exit.

—type=TYPE Type of entity to operate on.

—name=NAME Name of entity to operate on.

—identity=ID Identity of entity to operate on.

—indent=INDENT Pretty-printing indent. -1 means don’t pretty-print

—stdin Read attributes as JSON map or list of maps from

27

8.5.1 Connection Options

-b URL, —bus=URL URL of the messaging bus to connect to (default
-r ROUTER-ID, —router=ROUTER-ID Router to be queried

-t SECS, —timeout=SECS Maximum time to wait for connection in seconds
(default 5)

—sasl-mechanism=MECH Force SASL mechanism (e.g. EXTERNAL,
ANONYMOUS, PLAIN, CRAM-MD5, DIGEST-MD5, GSSAPI).

—ssl-certificate=CERT Client SSL certificate (PEM Format)
—ssl-key=KEY Client SSL private key (PEM Format)

Run gdmanage --help to see options.

8.6 Files
/usr/ /usr/share/doc/qpid-dispatch/qdrouter.json Management schema
for qdrouterd.

/usr//usr/share/doc/qpid-dispatch/qdrouter.json.readme.txt
Explanation of the management schema.

8.7 Examples

Show the logging configuration

qdmanage query --type=log

Enable debug and higher log messages by default:
gdmanage udpdate name=log/DEFAULT enable=debug+

Enable trace log messages only for the MESSAGE moudle and direct MESSAGE
logs to the file “test.log”

gdmanage udpdate name=log/MESSAGE enable=trace output=test.log
Set MESSAGE logging back to the default:

gdmanage udpdate name=log/MESSAGE enable=default

Disable MESSAGE logging;:

gdmanage udpdate name=log/MESSAGE enable=none

28

8.8 See Also

gdrouterd(8), qdstat(8), gdrouterd.conf(5)
http://qpid.apache.org/components/dispatch-router

9 Manual page qdrouterd.conf.5

9.1 Name

qdrouterd.conf - Configuration file for the Qpid Dispatch router

9.2 Description

The configuration file is made up of sections with this syntax:

SECTION-NAME {
ATTRIBUTE-NAME: ATTRIBUTE-VALUE
ATTRIBUTE-NAME: ATTRIBUTE-VALUE

There are two types of sections:

Configuration sections correspond to configuration entities. They can be queried
and configured via management tools as well as via the configuration file.

Annotation sections define a group of attribute values that can be included in
one or more entity sections.

For example you can define an “ssl-profile” annotation section with SSL cre-
dentials that can be included in multiple “listener” entities. Here’s an example,
note how the ‘ssl-profile’ attribute of ‘listener’ sections references the ‘name’
attribute of ‘ssl-profile’ sections.

ssl-profile {
name: ssl-profile-one
cert-db: ca-certificate-1.pem
cert-file: server-certificate-1.pem
key-file: server-private-key.pem

}

listener {
ssl-profile: ssl-profile-one

29

http://qpid.apache.org/components/dispatch-router

addr: 0.0.0.0
port: 20102
sasl-mechanisms: ANONYMOUS

9.3 Annotation Sections
9.3.1 Addrport

Attributes for internet address and port.

addr (String, default=0.0.0.0) Host address: ipv4 or ipv6 literal or a host
name.

port (String, default=amqp) Port number or symbolic service name.
Used by listener, connector.

9.3.2 Saslmechanisms

Attribute for a list of SASL mechanisms.

saslMechanisms (String, required) Comma separated list of accepted
SASL authentication mechanisms.

Used by listener, connector.

9.3.3 Connectionrole

Attribute for the role of a connection.

role (One of [normal, inter-router, on-demand], default=normal)
The role of an established connection. In the normal role, the connection
is assumed to be used for AMQP clients that are doing normal message
delivery over the connection. In the inter-router role, the connection is
assumed to be to another router in the network. Inter-router discovery
and routing protocols can only be used over interRouter connections.

Used by listener, connector.

30

9.3.4 Sslprofile

Attributes for setting TLS/SSL configuration for connections.
certDb (String) The path to the database that contains the public certificates
of trusted certificate authorities (CAs).

certFile (String) The path to the file containing the PEM-formatted public
certificate to be used on the local end of any connections using this profile.

keyFile (String) The path to the file containing the PEM-formatted private
key for the above certificate.

passwordFile (String) If the above private key is password protected, this is
the path to a file containing the password that unlocks the certificate key.

password (String) An alternative to storing the password in a file referenced
by passwordFile is to supply the password right here in the configuration
file. This option can be used by supplying the password in the ‘password’
option. Don’t use both password and passwordFile in the same profile.

Used by listener, connector.

9.4 Configuration Sections
9.4.1 Container

Attributes related to the AMQP container.

containerName (String) The name of the AMQP container. If not specified,
the container name will be set to a value of the container’s choosing. The
automatically assigned container name is not guaranteed to be persistent
across restarts of the container.

workerThreads (Integer, default=1) The number of threads that will be
created to process message traffic and other application work (timers, non-
amqp file descriptors, etc.) .

debugDump (String) A file to dump debugging information that can’t be
logged normally.

name (String, unique) Unique name, can be changed.

identity (String, unique) Unique identity, will not change.

31

9.4.2 Router
Tracks peer routers and computes routes to destinations.

routerld (String) Router’s unique identity.

mode (One of [standalone, interior, edge, endpoint], default=standalone)

In standalone mode, the router operates as a single component. It does
not participate in the routing protocol and therefore will not coorperate
with other routers. In interior mode, the router operates in cooreration
with other interior routers in an interconnected network. In edge mode,
the router operates with an uplink into an interior router network. Edge
routers are typically used as connection concentrators or as security
firewalls for access into the interior network.

area (String) Unused placeholder.

helloInterval (Integer, default=1) Interval in seconds between HELLO
messages sent to neighbor routers.

helloMaxAge (Integer, default=3) Time in seconds after which a neighbor
is declared lost if no HELLO is received.

ralnterval (Integer, default=30) Interval in seconds between Router-
Advertisements sent to all routers.

remoteLsMaxAge (Integer, default=60) Time in seconds after which link
state is declared stale if no RA is received.

mobileAddrMaxAge (Integer, default=60) Time in seconds after which
mobile addresses are declared stale if no RA is received.

addrCount (Integer) Number of addresses known to the router.
linkCount (Integer) Number of links attached to the router node.
nodeCount (Integer) Number of known peer router nodes.

name (String, unique) Unique name, can be changed.

identity (String, unique) Unique identity, will not change.

9.4.3 Listener

Listens for incoming connections to the router.

requirePeer Auth (Boolean, default=True) Only for listeners using SSL.
If set to ‘yes’, attached clients will be required to supply a certificate. If
the certificate is not traceable to a CA in the ssl profile’s cert-db, authen-
tication fails for the connection.

32

trustedCerts (String) This optional setting can be used to reduce the set of
available CAs for client authentication. If used, this setting must provide
a path to a PEM file that contains the trusted certificates.

allowUnsecured (Boolean) For listeners using SSL only. If set to ‘yes’, this
option causes the listener to watch the initial network traffic to determine
if the client is using SSL or is running in-the-clear. The listener will enable
SSL only if the client uis using SSL.

allowNoSasl (Boolean) If set to ‘yes’, this option causes the listener to allow
clients to connect even if they skip the SASL authentication protocol.

maxFrameSize (Integer, default=65536) Defaults to 65536. If specified,
it is the maximum frame size in octets that will be used in the connection-
open negotiation with a connected peer. The frame size is the largest
contiguous set of uniterruptible data that can be sent for a message de-
livery over the connection. Interleaving of messages on different links is
done at frame granularity.

name (String, unique) Unique name, can be changed.

identity (String, unique) Unique identity, will not change.

Annotations sslProfile, addrPort, saslMechanisms, connectionRole.

9.4.4 Connector

Establishes an outgoing connections from the router.
allowRedirect (Boolean, default=True) Allow the peer to redirect this
connection to another address.

maxFrameSize (Integer, default=65536) Maximum frame size in octets
that will be used in the connection-open negotiation with a connected
peer. The frame size is the largest contiguous set of uniterruptible data
that can be sent for a message delivery over the connection. Interleaving
of messages on different links is done at frame granularity.

name (String, unique) Unique name, can be changed.

identity (String, unique) Unique identity, will not change.

Annotations sslProfile, addrPort, sasilMechanisms, connectionRole.

33

9.4.5 Log
Configure logging for a particular module.

module (One of [ROUTER, MESSAGE, SERVER, AGENT, CONTAINER, CONFIG, ERROR
Module to configure. The special module ‘DEFAULT’ specifies defaults
for all modules.

enable (String, required, default=default) Levels are: trace, debug, info,
notice, warning, error, critical. The enable string is a comma-separated
list of levels. A level may have a trailing ‘+’ to enable that level and above.
For example ‘trace,debug,warning+’ means enable trace, debug, warning,
error and critical. The value ‘none’ means disable logging for the module.
The value ‘default’ means use the value from the DEFAULT module.

timestamp (Boolean) Include timestamp in log messages.
source (Boolean) Include source file and line number in log messages.

output (String) Where to send log messages. Can be ‘stderr’, ‘syslog’ or a
file name.

name (String, unique) Unique name, can be changed.

identity (String, unique) Unique identity, will not change.

9.4.6 Fixedaddress
Establishes semantics for addresses starting with a prefix.

prefix (String, required) The address prefix (always starting with ¢/’).

phase (Integer) The phase of a multi-hop address passing through one or
more waypoints.

fanout (One of [multiple, single], default=multiple) One of ‘multiple’
or ‘single’. Multiple fanout is a non-competing pattern. If there are
multiple consumers using the same address, each consumer will receive
its own copy of every message sent to the address. Single fanout is a
competing pattern where each message is sent to only one consumer.

bias (One of [closest, spread], default=closest) Only if fanout is single.
One of ‘closest’ or ‘spread’. Closest bias means that messages to an ad-
dress will always be delivered to the closest (lowest cost) subscribed con-
sumer. Spread bias will distribute the messages across subscribers in an
approximately even manner.

name (String, unique) Unique name, can be changed.

identity (String, unique) Unique identity, will not change.

34

9.4.7 Waypoint

A remote node that messages for an address pass through.

address (String, required) The AMQP address of the waypoint.

connector (String, required) The name of the on-demand connector used
to reach the waypoint’s container.

inPhase (Integer, default=-1) The phase of the address as it is routed to
the waypoint.

outPhase (Integer, default=-1) The phase of the address as it is routed
from the waypoint.

name (String, unique) Unique name, can be changed.

identity (String, unique) Unique identity, will not change.

35

	Introduction
	Overview
	Benefits
	Features

	Using Qpid Dispatch
	Configuration
	Client Compatibility
	Tools
	qdstat
	qdmanage

	Features and Examples
	Standalone and Interior Modes
	Mobile Subscribers
	Dynamic Reply-To

	Known Issues and Limitations

	Addressing
	Routing patterns
	Routing mechanisms
	Message routing
	Link routing

	AMQP Mapping
	Message Annotations
	Source/Target Capabilities
	Addresses and Address Formats
	Address Patterns
	Supported Addresses

	Implementation of the AMQP Management Specification

	The qdrouter management schema
	Annotations
	addrPort
	saslMechanisms
	connectionRole
	sslProfile

	Base Entity Type
	entity

	Configuration Entities
	configurationEntity
	container
	router
	listener
	connector
	log
	fixedAddress
	waypoint

	Operational Entities
	operationalEntity
	router.link
	router.address
	router.node
	connection
	allocator

	Manual page qdrouterd.8
	Name
	Synopsis
	Description
	Files
	See Also

	Manual page qdstat.8
	Name
	Synopsis
	Description
	Connection Options

	See Also

	Manual page qdmanage.8
	Name
	Synopsis
	Description
	Operations
	Options
	Connection Options

	Files
	Examples
	See Also

	Manual page qdrouterd.conf.5
	Name
	Description
	Annotation Sections
	Addrport
	Saslmechanisms
	Connectionrole
	Sslprofile

	Configuration Sections
	Container
	Router
	Listener
	Connector
	Log
	Fixedaddress
	Waypoint

