SX MANUAL

CONTENTS

Contents
1 Introduction]
L1 SXFeaturesoovviiiein e Bl
1.2 Skylableecosystem @
2 Installation 6]
2.1 Binarypackages
22 Sourcecode. @
3 Cluster deployment @
3.1 Requirementso v v vii e @
3.2 Creatingthefirstnode @
3.3 Addingmorenodestothecluster 18]
3.4 Automatic node configuration.
4 Cluster Management o7
4.1 Local node status and configuration 14|
4.2 Administrator accesst 17
43 UsSermanagement v v v v v v e e e e e K]
44 Volumemanagement, @
45 Nodemanagementuiiuiiriiaa.. 21
46 Clusterhealing
5 Client operations 28
51 Accessprofiles
5.2 Workingwithfiles 29
6 Advanced B3
6.1 Datadistribution 33
6.2 Globalobjects 35
6.3 Jobs ... 35l
7 Troubleshooting 37
7.1 Frequently Asked Questions, B7
7.2 Mailinglist B7
7.3 Bugreporting. B7

CHAPTER

INTRODUCTION

Welcome to Skylable SX, a complete private cloud framework. With Skylable S* you
can create flexible, reliable and secure storage solutions, which can be accessed
from all popular platforms.

1.1

SX FEATURES

This software has been designed and built with usability in mind. Some of the great
features of Skylable S* include:

Fast and lightweight protocol

Never transfer the same data twice. The S* protocol transfers only the dif-
ferences between the local copy of a file and the data already stored in the
cluster. Additionally, it transfers data to/from all SX nodes in parallel to max-
imize speed.

Replication

Choose how many times you want your data to be replicated. You can set dif-
ferent levels of replica for different data and find the perfect balance between
reliability and efficiency.

Deduplication

If you upload 10 copies of the same data, that data takes the same space as
1 copy. If you upload 10 files, which only differ in a few bytes, just the dif-
ferences between the files will take up additional space and the rest will be
deduplicated.

Encryption
Client-side encryption with AES256, HTTPS communication, and all the se-
curity best practices to keep your data is safe.

Revisions and undelete

SX can optionally keep multiple revisions of your files and allow you to go
back in time to any version of your files. You can also restore a file that has
been accidentally deleted.

SX Drive
Android

Figure 1.1: Skylable cloud ecosystem

¢ S3 Support
Need a drop-in replacement for S32 Install S¥ together with LibreS3 and
change a single setting in your S3 clients and tools: that’s all you need to do
to switch to Skylable.

¢ Mobile and Desktop clients
Keep your files synchronized across all your devices with SXDrive: available
for Windows/MacOSX/Linux on desktop and iOS/Android on mobile.

1.2 SKYLABLE ECOSYSTEM

This manual covers the open-source Skylable SX software for UNIX platforms. SX
is used to create data clusters and forms the base for the Skylable platform, which
consists of multiple components as shown on ﬁgure With Skylable SX one can
build a cloud consisting of many nodes, which can be accessed in different ways
and from multiple platforms. The client applications include command-line tools,
which are part of the Skylable S itself, as well as desktop and mobile apps.

The command line tools shipped with Skylable SX provide a typical UNIX expe-
rience and together with external tools and scripts can be used to automate various
processes, such as backups.

$X Drive for Linux, Windows and OS X keeps remote data synchronized with a
local directory. The synchronization works both ways, and the latest data is always
available on the local machine and in the cloud.

SX Drive for Android and iOS provides an instant access to the cloud from mo-
bile devices. One can upload or download any documents or photos and keep

favourite files automatically updated.

$X Web provides a web interface to the cloud. Users can access all their data
right from web browsers. S* Web additionally provides an easy way to share files
with other people.

Finally, with LibreS3, the Skylable cloud becomes available to clients compati-
ble with the S3 protocol. LibreS3 implements a large subset of the S3 API and trans-
lates it to the SX protocol. It makes possible to use existing solutions such as s3cmd
or DragonDisk with Skylable SX.

CHAPTER

INSTALLATION

Skylable S is tested on all popular UNIX platforms, including Linux, FreeBSD, and
Mac OS X. We try to support as many platforms as possible, if you have troubles
installing, compiling or running our software on your platform please let us know.

2.1 BINARY PACKAGES

The binary packages are available for all popular Linux distributions and this is the
easiest and recommended way to install Skylable SX.

DEBIAN WHEEZY

Add the following entry to /etc/apt/sources.list:

I RERREEEE———————————G—GG————————
deb http://cdn.skylable.com/debian wheezy main
I

then run the following commands:

——
wget https://pgp.mit.edu/pks/lookup?op=get&search=0x5377E192B7BC1D2E |

sudo apt-key add -
apt-get install sx

CENTOS 5/6/7
Create the file /etc/yum.repos.d/skylable-sx.repo with this content:

‘[skylable—sx]

name=Skylable SX
baseurl=http://cdn.skylable.com/centos/$releasever/$basearch
enabled=1

gpgcheck=0

then execute:
[
yum install skylable-sx

FEDORA 20

Create the file /etc/yum.repos.d/skylable-sx.repo with this content:

[skylable -sx]
name=Skylable SX

baseurl=http://cdn.skylable.com/fedora/$releasever/$basearch
enabled=1
gpgcheck=0

then execute:

yum install skylable-sx

2.2 SOURCE CODE

In order to compile S* from source, you will need the following packages to be in-
stalled together with their development versions:

¢ OpenSSL/NSS
e libcurl >=7.34.0 (otherwise the embedded one will be used)
e zIlib

For example, on Debian run:

|
apt-get install libssl-dev libcurl4-openssl-dev libz-dev

COMPILATION

The software is based on autoconf, and you can just perform the standard installa-
tion steps. The following commands install all the software in /opt/sx:

[
$./configure && make
make install

The rest of the manual assumes that SX was installed from a binary package, so
some paths may be different.

CHAPTER

CLUSTER DEPLOYMENT

3.1 REQUIREMENTS

SX by default operates on the port 443 or 80, which needs to be available on a given
P addres You can build just a single-node SX cluster, however for data safety
reasons it is recommended to create at least two nodes and use replica higher than
1. You can add more nodes to the cluster at any time.

3.2 CREATING THE FIRST NODE

Setting up the first node initializes the cluster and makes S* ready to use. The
sxsetup tool presented below performs an automated configuration of the S*
server, which includes creating a local data storage, SSL certificate, and default ad-
min account. You will only need to answer a few basic questions!

In the example we assume the IP address of the first node is 192.168.1.101, the
name of the cluster is mycluster, and S* was installed from a binary package. In
many some cases (eg. the path to SX storage) we assume the default values, but you
may want to customize them.

sxsetup
--- SKYLABLE SX CONFIGURATION SCRIPT ---

The script will help you to create or extend a Skylable SX data
cluster.

--- CLUSTER NAME ---

Clients will access your cluster using a sx://clustername/volume/path
URI. It is recommended to use a FQDN for clustername, but not
required. Refer to the documentation for more info.

Enter the cluster name (use the same across all nodes) []: mycluster

--- DATA STORAGE ---

Please provide the location where all incoming data will be stored.
Path to SX storage [default=/var/lib/sxserver]: <confirm default>

Please specify the maximum size of the storage for this node. You can

1You can choose a custom port when running sxsetup with in advanced mode

use M, G and T suffixes, eg. 100T for 100 terabytes.
Maximum size [default=1T]: 500G

--- NETWORKING

Enable SSL? (use the same setting for all nodes in the cluster) (Y/mn)
<confirm default>

Enter the IP address of this node [default=192.168.1.101]: <confirm default>
Checking port 443 on 192.168.1.101 ... OK

--- CLUSTER CONFIGURATION ---

Is this (192.168.1.101) the first node of a new cluster? (Y/n)
<confirm default>

SSL CONFIGURATION ---

Generating default SSL certificate and keys in
/etc/ssl/private/sxkey.pem /etc/ssl/certs/sxcert.pem
Generating a 2048 bit RSA private key

L
writing new private key to ’/etc/ssl/private/sxkey.pem’

--- YOUR CHOICES ---

Cluster: sx:// luster
Node: 192.168.1.101

Use SSL: yes

Storage: /var/lib/sxserver
Run as user: nobody

Is this correct? (Y/n) <confirm default>
--- CLUSTER INITIALIZATION ---

+ /usr/sbin/sxadm node --new --batch-mode --owner=nobody:nogroup /var/lib/
sxserver/storage

+ /usr/sbin/sxadm cluster --new --port=443 --batch-mode --node-dir=/var/lib/
sxserver/storage --ssl-ca-file=/etc/ssl/certs/sxcert.pem 50
/192.168.1.101 sx://mycluster

Starting SX.fcgi

Starting sxhttpd

Cluster UUID: 0l1dca714-8cc9-4e26-960e-daf04892ble2

Cluster key: CLUSTER/ALLNODE/ROOT/USERwBdjfz3tKcnTF2ouWIkTipreYuYjAAA

Admin key: ODPiKuNIrrVmD8IUCuwlhQxNqZfIkCY+oKwxi5zHSPn5y0S0i3IMawAA

Internal cluster protocol: SECURE

Used disk space: 16.75M

Actual data size: 453.00K

List of nodes:

* ec4d9d63-9fa3-4d45-838d-3e521f124ed3 192.168.1.101
(192.168.1.101) 500.00G

--- CONFIGURATION SUMMARY ---

SSL private key (/etc/ssl/private/sxkey.pem):

BEGIN PRIVATE KEY
MIIEvAIBADANBgkqhkiGO9wOBAQEFAASCBKYwggSiAgEAAoIBAQCYNdtHyNglHZQ8
va01HJWtZ/eerB2H80XyQTZpDFRS87qGUNcrRudDNO9EypcueXaWl1UN/3L8KKn7t
tGhLe6quG8QuKkw//UiJDDGTDEICOndtYfBh07zNR9zgaQRi910qQB6Iqfe4K/TIF
EONMjVji10F5JI/3SgxEDwoQ4+1eghDuMGME12zJ4VJCojXhiEtvwolZruFX+Xogd
rq4Ys6Pch7n9Fowd0c2n+IRxPXKb6CqnHC1t9AKEBmbaoP+0zhM8ZFC13WFRChvb
JF8T9Z2Z593n0l1668NILNN1f4RRe07+pb9ubfWqNABhuI5hQUnG81wKjcIzjWK4HZ
+3bMwg6PAgMBAAECggEAQ+fTGmV60KTHm4mnXYeRJIzm4+SskSaC41e10EvOTMybV
UlMCi6YoS0o6EaNZROESsKYKfiI29FRX8ZqQT24kijmaIOWgYzPmhm3Q0CBB2qim2
z/UdHB4TMUAv4ValaP+edb9SE872wiRVc8SjA2YT /66 10oNw09kgszLhA7T2QgZAbG
xmxVwCNTRFd7dg4Wmy10Qz3YVOn1C3Qs8C8L0oGo00Mci85quhBUw9s7J12skXGbu
ZGDtpJylgwtfclq7nojaFkWenGCA9D1HB8zCqKPkhMh+HtA26g8VdFaHPVBzw/pz

avv5r9gLnBETwHfM3XuIYv7h3wowES5uAKVhgvL8w0OQKBgQDJs2avbY0OwgcEEOf7L
nPRqmb5XjJE329KsyIzo4YwOrZDjQXSYrBjifoBIJzUReDDB7ww51t0Xy3MExeS4
nglL0/oWotjd7jGU+EdABozKwW3bZuyUTSqTeQJwo+alhjNtiyMrnpFy3vjYrJKGy
W/9¢cnviWjqxpqnQgDjE/yJt36wKBgQDBL7p7iCWjIf+LH1/caFgPchJENd4YZZrB
bhGA/tuo6VtJIcarc/Etx3DGbKhnJq13LxRRLjyH1Phw/k70ZBdaVK27I+vNfw5Lj
c2KZCYbFnF3kbP5ryuMW0QqGbkZZ /FExzwgFyAOUuCTwIL2VmKtPgbP9ywDTJcOZ
Jq/pdz0e7QKBgFOpxn4dvvIH4DgQlk9+2yMcgoduFw5EcC6bQVeXtrCf7elVzTdG
qOvHjQ5gtPJ6GDI9ZGIkKusqT6TGhpC2v3S0iK07CImFo6tXELbOALhZY2g0WTNqj
q59EzYFxin7AHn/rKb7Lvmm4zF844plI77NLf2nX5EwwF9r0CBmc7F /hAoGAUCctH
had4rYVqvu9PY3pU/U6rUmRTFqEa8s1FLD/bYQjgrcnkyAsa/msHELxIwQPbRi8kx
wpwjmdAmXbTKgnW6WQY+rdGy4cUImEzuXiVubpS6HFEZ18IbTDnN3wUpvEfciN5D
YO9AVONyoKK+8mv1fJBKCRa+jqfeotuCd7MEpDECgYAhWcDt6aXSsUOtq+jgVNtC
01i9Cnm4FNW7Z/VVgCCRFIwHxpqqAau63/naSGxkLU1K+UOStReiLC2D4FPrqs9Jh
scUH9hTIp3hxwznZBRFkuvUOm3h6CwQOt3km7AffLRsGQZ9EM1vNb4TE6mR/ Izgxy
smcEPJfJgX61£fx7c//bUBQ==
END PRIVATE KEY

SSL certificate (/etc/ssl/certs/sxcert.pem):

BEGIN CERTIFICATE
MIIDpzCCAo+gAwIBAgIJAODcwxKZHi35MAOGCSqGSIb3DQEBCwWUAMDsxCzAJBgNV
BAYTAkdCMQswCQYDVQQIEwJVSzZELMAKGA1UEChMCU1gxEjAQBgNVBAMTCW15Y2x1
c3R1cjAeFwOxNDAzMjExNDU2NTdaFwOx0TAzMjAxNDU2NTdaMDsxCzAJBgNVBAYT
AkdCMQswCQYDVQQIEwJVSzZELMAkKkGA1UEChMCU1gxEjAQBgNVBAMTCW15Y2x1c3R1
cjCCASIwWDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAJg120£fI2CUd1Dy9%07Uc
1ailn956sHYfzRf JBNmkMVFLzuoZQ1lytG50M3TOTK1ly55dpbVQ3/cvwoqfu20aEt7
qq4bxC4rD/9SIkMMZMMQgI6d21h8GHTvM1H30BpBGL2WipAHoip97gr9POUQ40yN
WOLU4Xkkj/dKDEQPChDj7V6CEO4wYwSXMnhUkKiNeGIS2/CjVmu4Vf5eiB2urhiz
09yHufOWjB05zaf4hHE9cpvoKqccLW30A0QGZtqg /7 TOEzxkUKXdYVEKG9skXxP1
lnmreeiXrrw0gs03V/hFF7Tv61v25t9a00AGG4jmFBScbzXAqNwjONYrgdn7dszC
Do8CAwWEAAaOBrTCBqjAdBgNVHQ4EFgQUs7Zs8qeEtPdNQ713zs3f2v+MTrswawYD
VROjBGQwYoAUs7Zs8qeEtPdNQ713zs3f2v+MTruhP6Q9MDsxCzAJBgNVBAYTAkdC
MQswCQYDVQQIEwJVSzZELMAKGA1UEChMCU1gxEjAQBgNVBAMTCW15Y2x1c3R1coIlJ
AODcwxKZHi35MA8GA1UdEWEB/wQFMAMBAf8wCwYDVROPBAQDAGEGMAOGCSqGSIb3
DQEBCwUAA4IBAQBGwoULuHM5svPvV7cOtdsBmxovrhCYkMg4MwtPJI8eJQckyrCP3
fIU1VMXXeHKegaZ4q3QzIVIDD01XB9TzifZ8yKm7a2/N1UnvgLQCGu82H /226 YLE
abqoipcJsAANo5+2qGYEmYDODmLOnToaCX5bcmbLcltcG4uf /x880+PGLgh/h5+9
MUM1ffyJWAE5eJN1rk9T5k00nm5PE1QLP/ZQecodHGLI9XxzgjO9kLfwbRmUruGu/
ft4Ru0o0rQDIDWxQuiBitawQKX/tyaGkpX+g38gyFwDiPINo2q/IHeckxX5EHgF3
YGgPNaWwBnH3jfsJ/kMXcJS52q/zP0IvUCz0

END CERTIFICATE

Cluster: sx://mycluster
This node: 192.168.1.101
Cluster UUID: 0l1dca714-8cc9-4e26-960e-daf04892ble2
Cluster key: CLUSTER/ALLNODE/ROOT/USERwBdjfz3tKcnTF2ouWIkTipreYuYjAAA
Admin key: ODPiKuNIrrVmD8IUCuwlhQxNqZfIkCY+oKwxi5zHSPn5y0S0i3IMawAA
Internal cluster protocol: SECURE
Used disk space: 16.75M
Actual data size: 453.00K
List of nodes:
* ec4d9d63-9fa3-4d45-838d-3e521f124ed3 192.168.1.101
(192.168.1.101) 500.00G
Storage location: /var/lib/sxserver
Run as user: nobody
Sockets and pidfiles in: /var/run/sxserver
Logs in: /var/log/sxserver/sxfcgi.log

--- END OF SUMMARY ---

Congratulations, the new node is up and running!
You can control it with ’/usr/sbin/sxserver’

You can add a new node to the cluster by running ’sxsetup’ on another
server. When prompted, enter the ’admin key’, ’SSL private key’ and
>SSL certificate’ printed above.

You can run ’sxacl useradd joe sx://admin@mycluster’ to add a new user.
To create a new volume owned by user ’joe’ run:

’sxvol create --owner joe --replica N --size SIZE sx://admin@mycluster/

VOLNAME’

When the script finishes successfully, the node is already functional. Please notice
the admin key listed at the end of the summary: it will be needed for both adding
more nodes and accessing the cluster. You can always retrieve the admin key with
the following command:

sxsetup --info
--- S8X INFO ---
SX Versiomn: 1.0
Cluster name: mycluster
Cluster port: 443
Cluster UUID: 0Oldca714-8cc9-4e26-960e-daf04892ble2
Cluster key: CLUSTER/ALLNODE/ROOT/USERwBdjfz3tKcnTF2ouWIkTipreYuYjAAA
Admin key: ODPiKuNIrrVmD8IUCuwlhQxNqZfIkCY+oKwxi5zHSPn5y0S0i3IMawAA
Internal cluster protocol: SECURE
Used disk space: 16.75M
Actual data size: 453.00K
List of nodes:
* ec4d9d63-9fa3-4d45-838d-3e521f124ed3 192.168.1.101 (192.168.1.101)
500.00G
Storage location: /var/lib/sxserver/storage
SSL private key: /etc/ssl/private/sxkey.pem
SX Logfile: /var/log/sxserver/sxfcgi.log

That’s it - your SX storage is already up and running! You can now go to the next
step and add more nodes or go to the next chapter and learn how to perform basic
client operations.

3.3 ADDING MORE NODES TO THE CLUSTER
Follow these steps to add a new node to the cluster:
* Run sxsetup --info on one of the nodes of the cluster

¢ Collect the following information:

Cluster name

Admin key

One of the IP addresses from the list of nodes
The content of the SSL private key file (not the path itself!)

« Install S* using a binary package or source code

* Run sxsetup and provide the collected information. Below we assume the
new node is 192.168.1.102 and its size is 250 GBs.

sxsetup
--- SKYLABLE SX CONFIGURATION SCRIPT ---

The script will help you to create or extend a Skylable SX data
cluster.

--- CLUSTER NAME ---

Clients will access your cluster using a sx://clustername/volume/path

URI. It is recommended to use a FQDN for clustername, but not
required. Refer to the documentation for more info.
Enter the cluster name (use the same across all nodes) []: mycluster

--- DATA STORAGE --

Please provide the location where all incoming data will be stored.
Path to SX storage [default=/var/lib/sxserver]: <confirm default>

Please specify the maximum size of the storage for this node. You can
use M, G and T suffixes, eg. 100T for 100 terabytes.
Maximum size [default=1T]: 250G

--- NETWORKING ---

Enable SSL? (use the same setting for all nodes in the cluster) (Y/mn)
<confirm default>

Enter the IP address of this node [default=192.168.1.102]: <confirm default>
Checking port 443 on 192.168.1.102 ... 0K

--- CLUSTER CONFIGURATION ---

Is this (192.168.1.102) the first node of a new cluster? (Y/n) n
Please provide the IP address of a working node in ’mycluster’.
IP address: 192.168.1.101

The admin key is required to join the existing cluster.

If you don’t have it, run \path{sxsetup --info} on 192.168.1.101.
Below you can provide the key itself or path to the file
containing the key.

Admin key or path to key-file:
ODPiKuNIrrVmD8IUCuwlhQxNqZfIkCY+oKwxi5zHSPn5y0S0i3IMawAA

--- SSL CONFIGURATION ---

Please paste the SSL private key below (and press CTRL+D when
done) or provide a path to it.
SSL private key:
<below paste the private key from 192.168.1.101>

BEGIN PRIVATE KEY
MIIEvAIBADANBgkqhkiGO9wOBAQEFAASCBKYwggSiAgEAAoIBAQCYNdtHyNglHZQ8
va01HIJWtZ/eerB2H80XyQTZpDFRS87qGUNcrRudDNO9EypcueXaW1UN/3L8KKn7t
tGhLe6quG8QuKkw//UiJDDGTDEICOndtYfBh0O7zNR9zgaQRi910qQB6Iqfe4K/TOF
EONMjVji10F5JI/3SgxEDwoQ4+1eghDuMGME1zJ4VJCojXhiEtvwolZruFX+Xogd
rq4Ys6Pch7n9Fowd0c2n+IRxPXKb6CqnHC1t9AKEBmbaoP+0zhM8ZFC13WFRChvb
JF8T9Z2Z593n01668NILNN1f4RRe07+pb9ubfWqNABhuI5hQUnG81wKjcIzjWK4HZ
+3bMwg6PAgMBAAECggEAQ+fTGmV60KTHm4mnXYeRJIzm4+SskSaC41el10EvOTMybV
UlMCi6Y0oS0o6EaNZROESsKYKfiI29FRX8ZqQT24kijmaIOWgYzPmhm3QO0CBB2qim2
z/UdHB4TMUAv4ValaP+edb9SE872wiRVc8SjA2YT /66 10oNw09kgszLhA7T2QgZAbG
xmxVwCNTRFd7dg4Wmy10Qz3YV0Onl1C3Qs8C8LoGo00Mci85quhBUw9s7J12skXGbu
ZGDtpJylgwtfclq7nojaFkWenGCA9D1HB8zCqKPkhMh+HtA26g8VdFaHPVBzw/pz
avv5r9gLnBETwHfM3XulYv7h3wowES5uAKVhgvL8w0QKBgQDJs2avbYOwgcEEQOf7L
nPRqmb5XjJE329KsyIzo4YwOrZDjQXSYrBjifoBIJzUReDDB7ww51t0Xy3MExeS4
nglL0/oWotjd7jGU+EdABozKwW3bZuyUTSqTeQJwo+alhjNtiyMrnpFy3vjYrJKGy
W/9cnviWjqxpqnQgDjE/yJt36wKBgQDBL7p7iCWjIf+LH1/caFgPchJENd4YZZrB
bhGA/tuo6VtJcarc/Etx3DGbKhnJq13LxRRLjyH1Phw/k70ZBdaVK27I+vNfw5Lj
c2KZCYbFnF3kbP5ryuMW0QqGbkZZ /FExzwgFyAOUuCTw9L2VmKtPgbP9ywDTJc0Z
Jq/pdz0e7QKBgFOpxn4dvvIH4DgQlk9+2yMcgoduFw5EcC6bQVeXtrCf7elVzTdG
qOvHjQ5gtPJ6GDI9ZGIkKusqT6TGhpC2v3S0iK07CImFo6tXELbOALhZY2g0WTNq j
q59EzYFxin7AHn/rKb7Lvmm4zF844plI77NLf2nX5EwwF9r0CBmc7F /hAoGAUCctH
hadrYVqvu9PY3pU/U6rUmRTFqEa8s1FLD/bYQjgrcnkyAsa/msHELxIwQPbRi8kx
wpwjmdAmXbTKgnW6WQY+rdGy4cUImEzuXiVubpS6HFEZ18IbTDnN3wUpvEfciN5D
YO9AVONyoKK+8mv1lfIJBKCRa+jqfeotuCd7MEpDECgYAhWcDt6aXSsUOtq+jgVNtC
0i9Cnm4FNW7Z/VVgCCRFIwHxpqqAau63/naSGxkLU1K+UOStReiLC2D4FPrqs9Jh
scUH9hTIp3hxwznZBRFkuvUOm3h6CwQOt3km7AffLRsGQZ9EM1vNb4T56mR/ Izgxy
smcEPJfJgX61£fx7c//bUBQ

END PRIVATE KEY--
<press CTRL+D>

Successfully obtained SSL certificate from 192.168.1.101
--- YOUR CHOICES

Cluster: sx://mycluster
Node: 192.168.1.102

Use SSL: yes

Storage: /var/lib/sxserver
Run as user: nobody

Is this correct? (Y/n) <confirm default>
--- CLUSTER INITIALIZATION ---

Connecting to 192.168.1.101
Server certificate:
Subject: C=UK; L=London; 0=SX; CN=mycluster
Issuer: C=UK; L=London; 0=SX; CN=mycluster
SHA1 fingerprint: 627917198424168ad0c144e721567eb4ebc90db1l

Do you trust this SSL certificate? [y/N] y

+ /usr/sbin/sxadm node --new --batch-mode --owner=nobody:nogroup --cluster-
uuid=01dca714-8cc9-4e26-960e-daf04892ble2 --cluster-key=/var/lib/
sxserver/cluster.key /var/lib/sxserver/storage

Starting SX.fcgi

Starting sxhttpd

SX node started successfully

+ /usr/sbin/sxadm cluster --mod 536870912000/192.168.1.101/ec4d9d63-9fa3-4
d45-838d-3e521f124ed3 250G/192.168.1.102 sx://admin@mycluster

Cluster UUID: Oldca714-8cc9-4e26-960e-daf04892ble2

Cluster key: CLUSTER/ALLNODE/ROOT/USERwBdjfz3tKcnTF2ouWIkTipreYuYjAAA

Admin key: ODPiKuNIrrVmD8IUCuwlhQxNqZfIkCY+oKwxi5zHSPn5y0S0i3IMawAA

Internal cluster protocol: SECURE

Used disk space: 16.75M

Actual data size: 453.00K

List of nodes:
- ec4d9d63-9fa3-4d45-838d-3e521f124ed3 192.168.1.101 (192.168.1.101)

500.00G
* 02e01f5d4-80d8-4a01-b1f7-ab6eecb8aefb 192.168.1.102 (192.168.1.102)
250.00G

--- CONFIGURATION SUMMARY ---

SSL private key (/etc/ssl/private/sxkey.pem):
BEGIN PRIVATE KEY

MIIEvAIBADANBgkqhkiGOwOBAQEFAASCBKYwggSiAgEAAOIBAQCYNdtHyNglHZQ8
va01HJWtZ/eerB2H80XyQTZpDFRS87qGUNcrRudDNO9EypcueXaWlUN/3L8KKn7t
tGhLe6quG8Qukw//UiJDDGTDEICOndtYfBh07zNR9zgaQRi910qQB6Iqfe4K/TOF
EONMjVji10F5JI/3SgxEDwoQ4+1eghDuMGME1zJ4VJCojXhiEtvwolZruFX+Xogd
rq4Ys6Pch7n9Fowd0c2n+IRxPXKb6CqnHC1t9AKEBmbaoP+0zhM8ZFC13WFRChvb
JF8T9Z225q3n01668NILNN1f4RRe07+pb9ubfWgNABhul5hQUnG81wKjcIzjWK4HZ
+3bMwg6PAgMBAAECggEAQ+fTGmV60KTHm4mnXYeRJIzm4+SskSaC41el10EvOTMybV
UlMCi6Y0oS0o6EaNZROESsKYKfiI29FRX8ZqQT24kijmaIOWgYzPmhm3Q0OCBB2qim2
z/UdHB4TMUAv4ValaP+edb9SE872wiRVc8SjA2YT /66 1oNw09kgszLhA72QgZAbG
xmxVwCNTRFd7dg4Wmy10Qz3YVOn1C3Qs8C8LoGo00Mci85quhBUw9s7J12skXGbu
ZGDtpJylgwtfclq7nojaFkWenGCA9D1HB8zCqKPkhMh+HtA26g8VdFaHPVBzw/pz
avv5r9gLnBETwHfM3XulYv7h3wowES5uAKVhgvL8w0QKBgQDJs2avbYOwgcEEOf7L
nPRqmb5XjJE329KsyIzo4YwOrZDjQXSYrBjifoBIJzUReDDB7ww51t0Xy3MExeS4
ngl0/oWotjd7jGU+EdABozKwW3bZuyUTSqTeQJwo+alhjNtiyMrnpFy3vjYrJKGy
W/9cnviWjqxpqnQgDjE/yJt36wKBgQDBL7p7iCWjIf+LH1/caFgPchJENd4YZZrB
bhGA/tuo6VtJcarc/Etx3DGbKhnJq13LxRRLjyH1Phw/k70ZBdaVK27I+vNfw5Lj
c2KZCYbFnF3kbP5ryuMW0QqGbkZZ /FExzwgFyAOUuCTw9L2VmKtPgbP9ywDTJc0Z

/pdz0e7QKBgFOpxn4dvvIH4DgQlk9+2yMcgoduFw5EcC6bQVeXtrCf7elVzTdG
qOvHjQ5gtPJ6GDI9ZGIkKusqT6TGhpC2v3S0iK07CImFo6tXELbOALhZY2g0WTNqj
q59EzYFxin7AHn/rKb7Lvmm4zF844plI77NLf2nX5EwwF9r0CBmc7F /hAoGAUctH
hadrYVqvu9PY3pU/U6rUmRTFqEa8s1FLD/bYQjgrcnkyAsa/msHELxIwQPbRi8kx
wpwjmdAmXbTKgnW6WQY+rdGy4cUImEzuXiVubpS6HFEZ18IbTDnN3wUpvEfciN5D

YO9AVONyoKK+8mv1lf JBKCRa+jgqfeotuCd7MEpDECgYAhWcDt6aXSsUOtq+jgVNtC
0i9Cnm4FNW7Z/VVgCCRFIwHxpqqAau63/naSGxkLU1K+UOStReiLC2D4FPrqs9Jh
scUH9hTIp3hxwznZBRFkuvUOm3h6CwQOt3km7AffLRsGQZ9EM1vNb4TE6mR/ Izgxy
smcEPJfJgX61fx7c//bU6Q==

END PRIVATE KEY

SSL certificate (/etc/ssl/certs/sxcert.pem):

BEGIN CERTIFICATE
MIIDpzCCAo+gAwIBAgIJAODcwxKZHi35MAOGCSqGSIb3DQEBCwWUAMDsxCzAJBgNV
BAYTAkdCMQswCQYDVQQIEwJVSzZELMAKGA1UEChMCU1gxEjAQBgNVBAMTCW15Y2x1
c3R1cjAeFwOxNDAzMjjExNDU2NTdaFwOx0TAzMjAxNDU2NTdaMDsxCzAJBgNVBAYT
AkdCMQswCQYDVQQIEwJVSzELMAkKkGA1UEChMCU1gxEjAQBgNVBAMTCW15Y2x1c3R1
cjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAJg120fI2CUd1Dy9%07Uc
1lain956sHYfzRf JBNmkMVFLZzuoZQ1ytG50M3TOTK1y55dpbVQ3/cvwoqfu20aEt7
qq4bxC4rD/9SIkMMZMMQgI6d21h8GHTvM1H30BpBGL2WipAHoip97gr9P0OUQ40yN
WOLU4Xkkj/dKDEQPChDj7V6CEO4wYwSXMnhUkKiNeGIS2/CjVmu4Vf5eiB2urhiz
09yHufOWjB05zaf4hHE9cpvoKqccLW30A0QGZtqg /7 TOEzxkUKXdYVEKG9skXxP1
lnmreeiXrrwOgs03V/hFF7Tv61v25t9a00AGG4jmFBScbzXAqNwjONYrgdn7dszC
Do8CAWEAAaOBrTCBqjAdBgNVHQ4EFgQUs7Zs8qeEtPdNQ713zs3f2v+MTrswawYD
VROjBGQwYoAUs7Zs8qeEtPdNQ713zs3f2v+MTruhP6Q9MDsxCzAJBgNVBAYTAkAC
MQswCQYDVQQIEwJVSzELMAkKkGA1UEChMCU1gxEjAQBgNVBAMTCW15Y2x1c3R1colJ
AODcwxKZHi35MA8GA1UdEWEB/wQFMAMBAf8wCwYDVROPBAQDAGEGMAOGCSqGSIb3
DQEBCwUAA4IBAQBGwoULuHM5svPvV7cOtdsBmxovrhCYkMg4MwtPJI8eJQckyrCP3
fIU1VMXXeHKegaZ4q3QzIVIDD01XB9TzifZ8yKm7a2/N1UnvgLQCGu82H /226 YLE
abqoipcJsAANo5+2qGYEmYDODmLOnToaCX5bcmbLcltcG4uf /x880+PGLgh/h5+9
MUM1ffyJWAE5eJN1rk9T5k00nm5PE1QLP/ZQecodHGLI9XxzgjO9kLfwbRmUruGu/
ft4RuOoO0rQDIDWxQuiBitawQKX/tyaGkpX+g38gyFwDiPINo2q/IHeckxX5EHgF3
YGgPNaWwBnH3jfsJ/kMXcJS52q/zP0IvUCz0

END CERTIFICATE

Cluster: sx://mycluster
This node: 192.168.1.102

Port number: 443
Cluster UUID: Oldca714-8cc9-4e26-960e-daf04892ble2
Cluster key: CLUSTER/ALLNODE/ROOT/USERwBdjfz3tKcnTF2ouWIkTipreYuYjAAA
Admin key: ODPiKuNIrrVmD8IUCuwlhQxNqZfIkCY+oKwxi5zHSPn5y0S0i3IMawAA
Internal cluster protocol: SECURE
Used disk space: 16.75M
Actual data size: 453.00K
List of nodes:
- ec4d9d63-9fa3-4d45-838d-3e521f124ed3 192.168.1.101 (192.168.1.101)
500.00G
* 02e01f5d-80d8-4a01-b1f7-ab6eecb8aefb 192.168.1.102 (192.168.1.102)
250.00G
Storage location: /var/lib/sxserver
Run as user: nobody
Sockets and pidfiles in: /var/run/sxserver
Logs in: /var/log/sxserver/sxfcgi.log

--- END OF SUMMARY ---

Congratulations, the new node is up and running!
You can control it with ’/usr/sbin/sxserver’

You can add a new node to the cluster by running ’sxsetup’ on another
server. When prompted, enter the ’admin key’, ’SSL private key’ and
’SSL certificate’ printed above.

You can run ’sxacl useradd joe sx://admin@mycluster’ to add a new user.

To create a new volume owned by user ’joe’ run:

’sxvol create --owner joe --replica N --size SIZE sx://admin@mycluster/
VOLNAME’

The node successfully joined the cluster - at the end of the summary you can see
the current list of nodes in the cluster. Repeat the same steps to add more nodes to

the cluster.

3.4 AUTOMATIC NODE CONFIGURATION

The process of adding new nodes can be automated with the use of
--config-file option of sxsetup. In the following example we assume the clus-
ter has been configured to use a couple of nodes as described in the previous sec-
tion, and we will be adding a third node with the IP address of 192.168.1.103 and
size of 250G, which has the SX software installed the same way as on the other
nodes. We will use the sxsetup. conf file from the node 192.168.1.102 as a tem-
plate, which has the following content:

cat /etc/sxserver/sxsetup.conf
HEHBHARRBHBHARBHAR AR AR AR HARBHA R R B R BHAR BB RAH AR AR RSB RSB R B R BHA AR AR R AR AR HH
1Y DO NOT EDIT THIS FILE !!!

This file was generated during node creation with sxsetup.
Some of the variables defined below are used by sxserver and other
scripts, however the main purpose of this file is to provide
a template for creating new nodes with sxsetup --config-file.
Changing parameters such as SX_NODE_SIZE directly in this file
will have no effect *after* the node was created.

#

HERS R RS R AR B R BB R AR AR RS RS RS RSB BB BB BB R R R RS RS RS RSB B B R B RS RS RS 248

SX_CLUSTER_NAME="mycluster"

SX_DATA_DIR="/var/lib/sxserver/storage"

SX_RUN_DIR="/var/run/sxserver"

SX_LIB_DIR="/var/lib/sxserver"

SX_LOG_FILE="/var/log/sxserver/sxfcgi.log"

SX_NODE_SIZE="250G"

SX_NODE_IP="192.168.1.102"

SX_NODE_INTERNAL_IP=""

SX_EXISTING_NODE_IP="192.168.1.1"

SX_SERVER_USER="nobody"

SX_SERVER_GROUP="nogroup"

SX_CHILDREN_NUM="32"

SX_PORT="443"

SX_USE_SSL="yes"

SX_SSL_KEY_FILE="/etc/ssl/private/sxkey.pem"

SX_SSL_CERT_FILE="/etc/ssl/certs/sxcert.pem"

SX_SSL_KEY=" BEGIN PRIVATE KEY

MIIEvAIBADANBgkqhkiGO9wOBAQEFAASCBKYwggSiAgEAAoIBAQCYNdtHyNglHZQ8

va01HIJWtZ/eerB2H80XyQTZpDFRS87qGUNcrRudDNO9EypcueXaWl1UN/3L8KKn7t

tGhLe6quG8QuKkw//UiJDDGTDEICOndtYfBh07zNR9zgaQRi910qQB6Iqfe4K/TIF

EONMjVji10F5JI/3SgxEDwoQ4+1eghDuMGME12zJ4VJCojXhiEtvwolZruFX+Xogd

rq4Ys6Pch7n9Fowd0c2n+IRxPXKb6CqnHC1t9AKEBmbaoP+0zhM8ZFC13WFRChvb

JF8T9ZZ593n0l1668NILNN1f4RRe07+pb9ubfWqNABhuI5hQUnG81wKjcIzjWK4HZ

+3bMwg6PAgMBAAECggEAQ+fTGmV60KTHm4mnXYeRJIzm4+SskSaC41e10EvOTMybV

UlMCi6YoS0o6EaNZROESsKYKfiI29FRX8ZqQT24kijmaIOWgYzPmhm3QO0CBB2qim2

z/UdHB4TMUAv4ValaP+edb9SE872wiRVc8SjA2YT /66 10oNw09kgszLhA7T2QgZAbG

xmxVwCNTRFd7dg4Wmy10Qz3YVOn1C3Qs8C8L0oGo00Mci85quhBUw9s7J12skXGbu

ZGDtpJylgwtfclq7nojaFkWenGCA9D1HB8zCqKPkhMh+HtA26g8VdFaHPVBzw/pz

avvbr9gLnBETwWHfM3XuIlYv7h3wowES5uAKVhgvL8wOQKBgQDJs2avbYOwgcEEOf7L

nPRqmb5XjJE329KsyIzo4YwOrZDjQXSYrBjifoBIJzUReDDB7ww51t0Xy3MExeS4

nglL0/oWotjd7jGU+EdABozKwW3bZuyUTSqTeQJwo+alhjNtiyMrnpFy3vjYrJKGy

W/9cnviWjqxpqnQgDjE/yJt36wKBgQDBL7p7iCWjIf+LH1/caFgPchJENd4YZZrB

bhGA/tuo6VtJcarc/Etx3DGbKhnJq13LxRRLjyH1Phw/k70ZBdaVK27I+vNfw5Lj

c2KZCYbFnF3kbP5ryuMW0QqGbkZZ /FExzwgFyAOUuCTw9L2VmKtPgbP9ywDTJc0Z

Jq/pdz0e7QKBgFOpxn4dvvIH4DgQlk9+2yMcgoduFw5EcC6bQVeXtrCf7elVzTdG

qOvHjQ5gtPJ6GD9ZGIkKusqT6TGhpC2v3S0iK07CImFo6tXELbOALhZY2g0WTNqgj

q59EzYinn7AHn/er7Lvmm4zF844plI77NLf2nX5Ewa9rOCBmc7F/hAoGAUCtH

ha4rYVqvu9PY3pU/U6rUmRTFqEa8s1FLD/bYQjgrcnkyAsa/msHELxIwQPbRi8kx

wpwjmdAmXbTKgnW6WQY+rdGy4cUImEzuXiVubpS6HFEZ18IbTDnN3wUpvEfciN5D

YO9AVONyoKK+8mv1fJBKCRa+jqfeotuCd7MEpDECgYAhWcDt6aXSsUOtq+jgVNtC

#
#
#
#
#
#
#
#
#
#

0i9Cnm4FNW7Z/VVgCCRFIwHxpqqAau63/naSGxkLU1K+UOStReiLC2D4FPrqs9Jh
scUH9hTIp3hxwznZBRFkuvUOm3h6CwQOt3km7AffLRSGQZ9EM1vNbATS5mR/ Izgxy
smcEPJfJgX61£fx7c//bU6Q

END PRIVATE KEY-----
SX_SSL_CERT=" BEGIN CERTIFICATE
MIIDpzCCAo+gAwIBAgIJAODcwxKZHi35MAOGCSqGSIb3DQEBCwWUAMDsxCzAJBgNV
BAYTAkdCMQswCQYDVQQIEwJVSzZELMAkKkGA1UEChMCU1gxEjAQBgNVBAMTCW15Y2x1
c3R1cjAeFwOxNDAzMjjExNDU2NTdaFwOx0TAzMjAxNDU2NTdaMDsxCzAJBgNVBAYT
AkdCMQswCQYDVQQIEwJVSzZELMAKkGA1UEChMCU1gxEjAQBgNVBAMTCW15Y2x1c3R1
cjCCASIWDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAJg120£I2CUd1Dy907Uc
1a1n956sHYfzRf JBNmkMVFLzuoZQ1ytG50M3TOTK1y55dpbVQ3/cvwoqfu20aEt7
qq4bxC4rD/9SIkMMZMMQgI6d21h8GHTvM1H30BpBGL2WipAHoip97gr9POUQ40yN
WOLU4Xkkj/dKDEQPChDj7V6CEO4wYwSXMnhUkKiNeGIS2/CjVmu4Vf5eiB2urhiz
09yHufOWjB05zaf4hHE9cpvoKqccLW30A0QGZtqg /7 TOEzxkUKXdYVEKG9skXxP1
lnmreeiXrrw0Ogs03V/hFF7Tv61v25t9a00AGG4jmFBScbzXAqNwjONYrgdn7dszC
Do8CAWEAAaOBrTCBqjAdBgNVHQ4EFgQUs7Zs8qeEtPdNQ713zs3f2v+MTrswawYD
VROjBGQwYoAUs7Zs8qeEtPdNQ713zs3f2v+MTruhP6Q9MDsxCzAJBgNVBAYTAkdC
MQswCQYDVQQIEwJVSzZELMAKGA1UEChMCU1gxEjAQBgNVBAMTCW15Y2x1c3R1coIlJ
AODcwxKZHi35MA8GA1UdEWEB/wQFMAMBAf8wCwYDVROPBAQDAgGEGMAOGCSqGSIb3
DQEBCwUAA4IBAQBGwoULuHM5svPvV7cOtdsBmxovrhCYkMg4MwtPJ8eJQckyrCP3
fIU1VMXXeHKegaZ4q3QzIVIDD01XB9TzifZ8yKm7a2/N1UnvgLQCGu82H /226 YLE
abqoipcJsAANo5+2qGYEmYDODmLOnToaCX5bcmbLcltcG4uf /x880+PGLgh/h5+9
MUM1ffyJWAE5eJN1rk9T5k00nm5PE1QLP/ZQecodHGLIXxzgjO9kLfwbRmUruGu/
ft4Ru0o0rQDIDWxQuiBitawQKX/tyaGkpX+g38gyFwDiPINo2q/IHeckxX5EHgF3
YGgPNaWwBnH3jfsJ/kMXcJS52q/zP0IvUCz0

END CERTIFICATE
SX_CFG_VERSION="2"
SX_CLUSTER_UUID="01dca714-8cc9-4e26-960e-daf04892b1e2"
SX_ADMIN_KEY="ODPiKuNIrrVmD8IUCuwlhQxNqZfIkCY+oKwxi5zHSPn5y0S0i3IMawAA"

As instructed in the header, we shouldn’t modify the original file. Instead, we will
copy the file to /root/sxsetup.conf on the new node and update SX_NODE_IP
to point to 192.168.1.3 with the other settings left untouched. After that we run
sxsetup on the new node as follows:

sxsetup config-file /root/sxsetup.conf
Using config file /root/sxsetup.conf
[...]
Cluster: sx://mycluster
This node: 192.168.1.103
Port number: 443
Cluster UUID: Oldca714-8cc9-4e26-960e-daf04892ble2
Cluster key: CLUSTER/ALLNODE/ROOT/USERwBdjfz3tKcnTF2ouWIkTipreYuYjAAA
Admin key: ODPiKuNIrrVmD8IUCuwlhQxNqZfIkCY+oKwxi5zHSPn5y0S0i3IMawAA
Internal cluster protocol: SECURE
Used disk space: 16.75M
Actual data size: 453.00K
List of nodes:
- ec4d9d63-9fa3-4d45-838d-3e521f124ed3 192.168.1.101 (192.168.1.101)
500.00G
- 02e01f5d-80d8-4a01-b1f7-ab6eecb8aef5 192.168.1.102 (192.168.1.102)
250.00G
* 912b6125-9228-4227-93ce-57f6f6e248c0 192.168.1.103 (192.168.1.103)
250.00G
Storage location: /var/lib/sxserver
Run as user: nobody
Sockets and pidfiles in: /var/run/sxserver
Logs in: /var/log/sxserver/sxfcgi.log

--- END OF SUMMARY ---

Congratulations, the new node is up and running!
You can control it with ’/usr/sbin/sxserver’

[...1

The node has been automatically configured and successfully joined the cluster.

CHAPTER

CLUSTER MANAGEMENT

4.1 LOCAL NODE STATUS AND CONFIGURATION

You can check status of a specific node by running sxserver status onthatnode:

sxserver status
--- SX STATUS ---

sx.fcgi is running (PID 14394)
sxhttpd is running (PID 14407)

Run sxsetup --info to display the node’s configuration:

sxsetup --info

--- S8X INFO ---

SX Version: 1.0

Cluster name: mycluster

Cluster port: 443

Cluster UUID: Oldca714-8cc9-4e26-960e-daf04892ble2

Cluster key: CLUSTER/ALLNODE/ROOT/USERwBdjfz3tKcnTF2ouWIkTipreYuYjAAA
Admin key: ODPiKuNIrrVmD8IUCuwlhQxNqZfIkCY+oKwxi5zHSPn5y0S0i3IMawAA

Internal cluster protocol: SECURE
Used disk space: 16.75M
Actual data size: 453.00K

List of nodes:
* ec4d9d63-9fa3-4d45-838d-3e521f124ed3 192.168.1.101 (192.168.1.101)
500.00G
Storage location: /var/lib/sxserver/storage
SSL private key: /etc/ssl/private/sxkey.pem
SX Logfile: /var/log/sxserver/sxfcgi.log

This gives you the information about local services and disk usage, but also pro-
vides the admin key, which is needed for accessing the cluster itself.

4.2 ADMINISTRATOR ACCESS

During cluster deployment a default admin account gets created and initialized.
You should be able to access the cluster from any node using sx://admin@
mycluster profile. In order to manage the cluster remotely or from another system
account, you need to initialize access to the cluster using sxinit [H In the exam-
ple below we use the default admin account created during cluster setup. Since

1For more information about access profiles please see sectionon page

17

"mycluster" is not a DNS name, we need to point sxinit to one of the nodes of
the cluster - this will allow it automatically discover the IP addresses of the other
nodes. Additionally, we create an alias @cluster, which later can be used instead
of sx://admin@mycluster.

$ sxinit -1 192.168.1.101 -A @cluster sx://admin@mycluster
Warning: self-signed certificate:

Subject: C=GB, ST=UK, 0=SX, CN=mycluster

Issuer: C=GB, ST=UK, 0=SX, CN=mycluster

SHA1 Fingerprint: 84:EF:39:80:1E:28:9C:4A:C8:80:E6:56:57:A4:CD:64:2E
:23:99:7A

Do you trust this SSL certificate? [y/N] y
Trusting self-signed certificate
Please enter the user key: ODPiKuNIrrVmD8IUCuwlhQxNqZfIkCY+oKwxi5zHSPn5y0S0i3IMawAA

4.3 USER MANAGEMENT

SX similarly to UNIX systems supports two types of users: regular and administra-
tors. A new cluster has only a single 'admin’ user enabled by default. The adminis-
trators can perform all cluster operations and access all data in the cluster, while the
regular users can only work with volumes they have access to. It is recommended
to only use the admin account for administrative purposes and perform regular
operations as a normal user.

CREATING A NEW USER

Use sxacl useradd to add new users to the cluster:

$ sxacl useradd jeff Q@cluster

User successfully created!

Name: jeff

Key : FqmlTd9CWZUuPBGMdjE46DaT1/3kx+EYbahlrhcdVpy/9ePfrtWCIgAA

Type: normal

Run ’sxinit sx://jeff@mycluster’ to start using the cluster as user ’jeff’.

By default a regular user account gets created. The authentication key is automat-
ically generated and can be changed anytime by the cluster administrator or the
user itself (see below).

LISTING USERS
In order to list all users in the cluster run:

$ sxacl userlist @cluster

admin (admin)
jeff (normal)

Only cluster administrators can list users.
KEY MANAGEMENT

It is possible to obtain the existing key or issue a new one for any user in the cluster.
To retrieve the current authentication key for user ’jeff’ run:

R II————————————————
$ sxacl usergetkey jeff @cluster
5tJdVr+RSpA/IPuFeSwUeePtKdbDLWUKqoaoZLkmCcXTwu5qzPgbe7AAA

A new key can be issued any time by running:

|
$ sxacl usernewkey jeff @sxtest

Key successfully changed!

Name i jeff
New key: FqmlTd9CWZUuPBGMdjE46DaT1/3MSHk9TLH27dFf5Zd611EbWEeAqgAA
Run ’sxinit sx://jeff@sxtest’ and provide the new key for user ’jeff’.

As long as the user can access the cluster, it can change its own key. The cluster
administrator can force a key change for any user, what can also be used to tem-
porarily block access to the cluster for a specified user.

REMOVING A USER
Use sxacl userdel to permanently delete a user from the cluster:

[
$ sxacl userdel jeff Qcluster
User ’jeff’ successfully removed.

All volumes owned by the user will be automatically reassigned to the cluster ad-
ministrator performing the removal.

4.4 VOLUME MANAGEMENT

Volumes are logical partitions of the SX storage of a specific size and accessible by a
particular group of users. The volumes can be used in connection with client side
filters to perform additional operations, such as compression or encryption. Only
cluster administrators can create and remove volumes.

CREATING A PLAIN VOLUME

Below we create a basic volume of size 50G owned by the user ’jeff’ and fully repli-

cated on two nodes.
|

$ sxvol create -o jeff -r 2 -s 50G Qcluster/vol-jeff

Volume ’vol-jeff’ (replica: 2, size: 50G, max-revisions: 1) created.

By default, a volume will only keep a single revision of each file (max-revisions
parameter set to 1). The revisions are previous versions of the file stored when the
file gets modified. For example, when a volume gets created with max-revisions
set to 3, and some file gets modified multiple times, then the latest 3 versions of the
file will be preserved. All revisions are accounted for their size. See the information
about sxrev in section[5.2]on page[29/on how to manage file revisions.

CREATING A FILTERED VOLUME

Filters are client side plugins, which perform operations on files or their contents,
before and after they get transferred from the S¥ cluster. When a filter gets assigned
to a volume, all remote clients will be required to have that filter installed in order

to access the volume. Run the following command to list the available filters:
_— - ________________________________

$ sxvol filter --list
Name Type Short description

undelete . generic Backup removed files

zcomp . compress Zlib Compression Filter

aes256 . crypt Encrypt data using AES-256-CBC-HMAC-512
attribs . generic File Attributes

We will create an encrypted volume for user ’jeff. To obtain more information
about the aes256 filter run:

$ sxvol filter -i aes256

’aes256’ filter details:

Short description: Encrypt data using AES-256-CBC-HMAC-512 mode.

Summary: The filter automatically encrypts and decrypts all data using
OpenSSL’s AES-256 in CBC-HMAC-512 mode.

Options:

nogenkey (don’t generate a key file when creating a volume)
paranoid (don’t use key files at all - always ask for a password)
salt:HEX (force given salt, HEX must be 32 chars long)

UUID: 35a5404d-1513-4009-904c-6ee5b0cd8634

Type: crypt

Version: 1.4

By default, the aes256 filter asks for the password during volume creation. Since
we're creating a volume for another user, we pass the nogenkey option, which de-
lays the key creation till the first data transfer.

$ sxvol create eff 2 -s aes256=nogenkey @cluster/vo
Volume ’vol-jeff-aes’ (replica: size: 50G, max-revisions: 1) created.

LISTING ALL VOLUMES

To get a list of all volumes in the cluster run sx1s with the cluster argument as
an administrator. When the same command is run by a normal user, it will list all
volumes, which the user has access to.

-1H @cluster
rep:2 rev:1l rw - 0 50.00G 0% sx://admin@mycluster/vol-jeff

rep:2 rev:1l rw aes256 0 50.00G 0% sx://admin@mycluster/vol-jeff
-aes

The -1 (--long-format) flag makes sx1s provide more information about the
volumes, and -H converts all sizes into a human readable form. The parameters
right after the volume marker VOL are: number of replicas, maximum number of
revisions, access permissions for the user performing the listing (in this case for the
administrator), active filter, used space, size of the volume, and the usage percent-
age.

MANAGING VOLUME PERMISSIONS

Cluster administrators and volume owners can grant or revoke access to the vol-
umes to other users. To list the current access control list for the volume vol- jeff
run:

$ sxacl volshow @cluster/vol-jeff
admin: read write

jeff: read write owner
(all admin users): read write admin

To grant full access to user 'bob’ run:

$ sxacl volperm --grant=read,write bob @cluster/vol-jeff
New volume ACL:
admin: read write

bob: read write

jeff: read write owner
(all admin users): read write admin

User 'bob’ can now download, upload and remove files to the volume but cannot
make any changes to the volume itself (this is restricted to admins and owners). To
revoke write access from user 'bob’ run:

$ sxacl volperm --revoke=write bob @cluster/vol-jeff
New volume ACL:
admin: read write

bob: read
jeff: read write owner
(all admin users): read write admin

Now ’'bob’ can only read files but cannot upload or remove anything.

CHANGING VOLUME SETTINGS

Some of the volume settings such as its size or ownership can be modified at a later
time. For example, the cluster administrator may want to extend a volume size or
shrink it to forbid users from storing more data - when the new size is lower than
the current space usage of the volume the existing contents will remain untouched,
but in order to upload more data to the volume, the user will have to make enough
space to satisfy the new limit.

To resize the volume 'vol-jeff’ to 100GB run:

[
$ sxvol modify --size 100G @cluster/vol-jeff

4.5 NODE MANAGEMENT

In section [3.3] on page [11]we described how to add new nodes to a cluster. This
section covers other modifications to an existing cluster, such as node repair, resize
or delete. In the examples below we will manage a cluster with four nodes, 500GB
each, with an administrator profile configured as @cluster2.

REMOTE CLUSTER STATUS

To get information about remote cluster status run the following command:

$ sxadm cluster --info @cluster2

Current configuration: 536870912000/192.168.100.1/d3f8ad83-d003-4aaa-bbfb
-73359af85991 536870912000/192.168.100.2/abc2ed51-b4a8-46b6-a8ac-0
beb58e697d2 536870912000/192.168.100.3/a343b7f9 -Obef -4f03-8c6f -526
cal2d75a9 536870912000/192.168.100.4/b9b05fc7 -7a4b-417d-853b-

acb6ed32f5d3

Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf(v.7) - checksum:
18024964248989723179

Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665

The first line provides the list of cluster nodes in the following format:

R EEEEESSZ—————————
SIZE/IP_ADDRESS [/ ERNAL_IP_ADDRESS]/UUID

where SIZE is in bytes and UUID is a unique identifier assigned to a node when
joining the cluster.

REBALANCE MODE

After making any change to the cluster, it will automatically enter into a rebal-
ance mode. The rebalance process makes the data properly distributed among the
nodes according to the new cluster scheme. During the rebalance all data opera-
tions on volumes can be performed as usual, but no changes to the cluster itself are
accepted. When the cluster is rebalancing, it reports its new configuration in the
status output under "Target configuration”.

CLUSTER RESIZE

The first modification we will perform is a global cluster resize.
sxadm cluster --resize provides an easy way to shrink or grow the en-
tire cluster, with changes applied to all nodes proportionally to their current

capacity in the cluster. In our cluster all four nodes have equal sizes, therefore
growing the cluster by 400G, should result in each node being resized by 100G:

$ sxadm cluster --resize +400G Q@cluster?2

$ sxadm cluster --info @cluster2

Target configuration: 644245094400/192.168.100.1/d3f8ad83-d003-4aaa-bbfb
-73359af85991 644245094400/192.168.100.2/abc2ed51-b4a8-46b6-a8ac-0
beb58e697d2 644245094400/192.168.100.3/a343b7£f9-0bef -4£03-8c6f-526
cal2d75a9 644245094400/192.168.100.4/b9b05fc7 -7a4b-417d-853b-
acb6ed32f5d3

Current configuration: 536870912000/192.168.100.1/d3f8ad83-d003-4aaa-bbfb
-73359af85991 536870912000/192.168.100.2/abc2ed51-b4a8-46b6-a8ac-0
beb58e697d2 536870912000/192.168.100.3/a343b7f9 -Obef -4f03-8c6f -526
cal2d75a9 536870912000/192.168.100.4/b9b05fc7 -7a4b-417d-853b-
acb6ed32f5d3

Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf(v.8) - checksum:
14098478712246199608

Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665

All nodes were properly resized. When the rebalance process finishes, "Target con-
figuration" will become "Current configuration".

NODE RESIZE

In order to modify a single node, we will use a generic option cluster --mod,
which takes a new configuration of the cluster. First, we obtain the current config-
uration:

$ sxadm cluster --info Qcluster2

Current configuration: 644245094400/192.168.100.1/d3f8ad83-d003-4aaa-bbfb
-73359af85991 644245094400/192.168.100.2/abc2edb51-b4a8-46b6-a8ac-0
beb58e697d2 644245094400/192.168.100.3/2a343b7£f9-0bef -4f03-8c6f-526
cal2d75a9 644245094400/192.168.100.4/b9b05fc7 -7a4b-417d-853b-
ac56ed32f5d3

Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf(v.9) - checksum:
18024963750773516843

Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665

In order to change the size of the first node (192.168.100.1) to 700GB, we provide
a new configuration of the cluster with an updated specification of the first node
(only the size changes) and the rest left untouched:

$ sxadm cluster --mod 751619276800/192.168.100.1/d3f8ad83-d003-4aaa-bbfb-73359
af85991 644245094400/192.168.100.2/abc2ed51-b4a8-46b6-aBac-0beb58e697d2

644245094400/192.168.100.3/a343b7£f9-0bef -4f03-8c6f -526cal2d75a9
644245094400/192.168.100.4/b9b05fc7 -7a4b-417d-853b-acb6ed32£5d43
@cluster?2

It’s very important to provide proper node UUIDs, otherwise the cluster won't be
able to recognize the node changes. When the rebalance finishes, the new config-
uration of the cluster is:

$ sxadm cluster --info @cluster?2

Current configuration: 751619276800/192.168.100.1/d3f8ad83-d003-4aaa-bbfb
-73359af85991 644245094400/192.168.100.2/abc2ed51-b4a8-46b6-a8ac-0
beb58e697d2 644245094400/192.168.100.3/a343b7f9 -Obef -4f03-8c6f -526
cal2d75a9 644245094400/192.168.100.4/b9b05fc7 -7a4b-417d-853Db-

acb6ed32f5d3

Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf(v.11) - checksum:
18024964785860635179

Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665

NODE REMOVAL

Deleting a node requires removing it from the current configuration of the cluster.
In order to remove the last node, following the previous example, we provide a new
cluster configuration without the specification of the node 192.168.100.4:

$ sxadm cluster --mod 751619276800/192.168.100.1/d3£f8ad83-d003-4aaa-bbfb
-73359af85991 644245094400/192.168.100.2/abc2ed51-b4a8-46b6-a8ac-0
beb58e697d2 644245094400/192.168.100.3/a343b7f9 -0bef -4f03-8c6f -526
cal2d75a9 @cluster2

$ sxadm cluster --info @cluster2

Target configuration: 751619276800/192.168.100.1/d3f8ad83-d003-4aaa-bbfb
-73359af85991 644245094400/192.168.100.2/abc2ed51-b4a8-46b6-a8ac-0
beb58e697d2 644245094400/192.168.100.3/a343b7f9 -0bef -4f03-8c6f -526
cal2d75a9

Current configuration: 751619276800/192.168.100.1/d3f8ad83-d003-4aaa-bbfb
-73359af85991 644245094400/192.168.100.2/abc2ed51 -b4a8-46b6-a8ac-0
beb58e697d2 644245094400/192.168.100.3/a343b7f9 -0bef -4f03-8c6f -526
cal2d75a9 644245094400/192.168.100.4/b9b05fc7 -7adb-417d-853b-
acb6ed32f5d3

Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf(v.12) - checksum:
16329829800547562843

Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665

The rebalance process will move all the data out of the node 192.168.100.4 and de-
activate it. When the node disappears from "Current configuration”, it's no longer
part of the cluster and can be disabled physically.

CREATING A BARE NODE

A bare node is a node, which is prepared to join a specific cluster, but is not a part
of the cluster yet. Bare nodes can be configured in order to replace existing nodes
or to join multiple nodes at once to the cluster, rather than doing that one by one.
A bare node can be configured in an automatic way, similarly to the process de-
scribed in section [3.4] on page[15| - the only difference is that the option --bare
must be additionally passed to sxsetup. It can also be configured in interactive
mode, similarly to adding a new node as described in section [3.3] on page by
running sxsetup --bare and answering the questions.

sxsetup --bare

[...1

SX node started successfully
Bare node created. Use ’sxadm cluster --mod’ to join it to the cluster

or perform another operation.

Node specification: 500G/192.168.100.5

When the setup is finished, it provides a node specification string, which can be
used with cluster modification options. Please notice the bare node has no UUID
assigned - it will get it when joining the target cluster.

PERFORMING MULTIPLE CHANGES AT ONCE

Adding new nodes with sxsetup is a serialized process - one node is joined to
a cluster, a rebalance is triggered and then another node can be added. With
sxadm cluster --mod multiple operations can be merged and performed at
once, resulting in a single and shorter data rebalance process. In the following ex-
ample, we will replace a couple of nodes in the cluster, by adding two larger nodes
and removing two existing smaller nodes. First, we obtain the current cluster con-
figuration:

$ sxadm cluster --info Qcluster2

Current configuration:
536870912000/192.168.100.1/d3£8ad83-d003-4aaa-bbfb-73359af85991
536870912000/192.168.100.2/abc2ed51-b4a8-46b6-a8ac-0beb58e697d2
536870912000/192.168.100.3/a343b7f9-0bef-4f03-8c6f-526cal2d75a9

536870912000/192.168.100.4/b9b05fc7-7a4b-417d-853b-ac56ed32f5d3
Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf(v.7) - checksum:
18024964248989723179
Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665

It tells us there are four 500GB nodes. Now we create a couple of bare nodes:
192.168.100.5 and 192.168.100.6, both 1TB in size:

-- on node 192.168.100.5 --

sxsetup --bare

[...]

SX node started successfully

Bare node created. Use ’sxadm cluster --mod’ to join it to the cluster
or perform another operation.

Node specification: 1T/192.168.100.5

-- on node 192.168.100.6 --

sxsetup --bare

[...1

SX node started successfully

Bare node created. Use ’sxadm cluster --mod’ to join it to the cluster
or perform another operation.

Node specification: 1T/192.168.100.6

With the following command, we will remove nodes 192.168.100.3 and
192.168.100.4 and add a couple of larger nodes 192.168.100.5 and 192.167.100.6. In
order to do that, we provide a new cluster configuration, consisting of the current
specifications for nodes 192.168.100.1 and 192.168.100.2 as well as the bare nodes:

$ sxadm cluster --mod 536870912000/192.168.100.1/d3£f8ad83-d003-4aaa-bbfb-73359af85991
536870912000/192.168.100.2/abc2ed51-b4a8-46b6-aBac-0beb58e697d2 1T/192.168.100.5

1T/192.168.100.6 @cluster?2

After issuing the command, the rebalance process is started, which moves all data
from the nodes 192.168.100.3 and 192.168.100.4 and balances the data across the
cluster, which now also includes the 1TB nodes:

$ sxadm cluster --info @cluster2

Target configuration: 536870912000/192.168.100.1/d3£8ad83-d003-4aaa-bbfb-73359af85991
536870912000/192.168.100.2/abc2ed51-b4a8-46b6-a8ac-0beb58e697d2
1099511627776/192.168.100.5/42ealec2-4127-491a-9ff9-d9fdfd7c92d0
1099511627776/192.168.100.6/5£26e559-fca0-44aa-b2d6-eb6e8e1156b1

Current configuration: 536870912000/192.168.100.1/d3f8ad83-d003-4aaa-bbfb
-73359af85991 536870912000/192.168.100.2/abc2ed51-b4a8-46b6-a8ac-0
beb58e697d2 536870912000/192.168.100.3/a343b7f9 -Obef -4£f03-8c6f -526
cal2d75a9 536870912000/192.168.100.4/b9b05fc7 -7a4b-417d-853b-
ac56ed32f5d3

Operations in progress:

* node d3f8ad83-d003-4aaa-bbfb-73359af85991 (192.168.100.1): Relocating
data
* node abc2edbl-b4aB8-46b6-aB8ac-0beb58e697d2 (192.168.100.2): Relocating
data
* node 42ealec2-4127-491a-9ff9-d9fdfd7c92d0 (192.168.100.5): Relocation
complete
* node 5f26e559-fcal0-44aa-b2d6-eb6e8el1156b1 (192.168.100.6): Relocation
complete
Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf(v.9) - checksum:
16116260632263325108
Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665

When the rebalance finishes, the cluster consists of two 500GB nodes:
192.168.100.1 and 192.168.100.2 and two 1TB nodes: 192.168.100.5 and
192.168.100.6:

$ sxadm cluster --info @cluster2

Current configuration: 536870912000/192.168.100.1/d3f8ad83-d003 -4aaa-bbfb
-73359af85991 536870912000/192.168.100.2/abc2ed51-b4a8-46b6-a8ac -0
beb58e697d2 1099511627776/192.168.100.5/42ealec2-4127-491a-9£f£f9-
d9fdfd7c92d0 1099511627776/192.168.100.6/5f26e559-fcal-44aa-b2d6-

eb6e8e1156b1

Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf(v.10) - checksum:
4695375810298161327

Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665

The nodes 192.168.100.3 and 192.168.100.4 are no longer part of the cluster and can
be turned off.

4.6 CLUSTER HEALING

REPLACING BROKEN NODES

It may happen one or more nodes are permanently lost due to external causes.
When that happens, some operations will only be possible in read-only mode, be-
cause the requested replica level cannot be satisfied and that results in client errors.
Skylable SX provides an option to automatically rebuild a lost node and gather as
much data as possible from other nodes. Please never use this method against
properly working nodes: it assumes the node’s data is lost and can only retrieve
missing data for volumes with replica higher than 1; healthy nodes can be replaced
using - -mod option as described in the previous section. In the following example,
the node 192.168.100.4 is no longer available and we will replace it with a new node
192.168.100.5.

$ sxadm cluster --info @cluster?2
Current configuration: 536870912000/192.168.100.1/d3f8ad83-d003-4aaa-bbfb

-73359af85991 536870912000/192.168.100.2/abc2ed51-b4a8-46b6-a8ac-0
beb58e697d2 536870912000/192.168.100.3/a343b7f9 -Obef -4f03-8c6f -526
cal2d75a9 536870912000/192.168.100.4/b9b05fc7-7a4b-417d-853b-ac56ed32f5d3

! Failed to get status of node b9b05fc7-7a4b-417d-853b-ac56ed32f5d3
(192.168.100.4)
Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf(v.7) - checksum:

18024964248989723179
Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665

First we need to prepare a bare node 192.168.100.5 of the exact size as the broken
node we are replacing, that is 500GB:

-- on node 192.168.100.5 --

sxsetup --bare

[...1

SX node started successfully

Bare node created. Use ’sxadm cluster --mod’ to join it to the cluster
or perform another operation.

Node specification: 500G/192.168.100.5

Now we issue the following command, which uses the specification of the broken
node but points to the new IP address:

$ sxadm cluster replace-faulty
168.100.5/b9b05fc7-7adb-417d-853b-ac56ed32f5d3 @cluster?2

The broken node is immediately replaced with the new one, and the healing pro-
cess is started:

$ sxadm cluster --info Qcluster2

Current configuration: 536870912000/192.168.100.1/d3f8ad83-d003-4aaa-bbfb
-73359af85991 536870912000/192.168.100.2/abc2ed51-b4a8-46b6-a8ac-0
beb58e697d2 536870912000/192.168.100.3/a343b7f9 -Obef -4£f03-8c6f -526
cal2d75a9 536870912000/192.168.100 b9b05fc7 -7a4b-417d-853b-
ac56ed32f5d3

Operations in progress:

* node b9b05fc7 -7a4b-417d-853b-ac56ed32f5d3 (192.168.100.5): Healing
blocks

Distribution: 872eeecb-ebf9-4368-8150-beb23cd44edf (v.7) - checksum:
18024964248989723179

Cluster UUID: cc8ab859-619e-4806-ade6-c32ab2db1665

During the repair process client operations should be back to normal. The same
steps can be used to replace a broken node without changing its IP address, in that
case the bare node must be prepared and available with the IP address of the bro-
ken one. It is also possible to repair more than one node at a time by passing more
node specifications to - -replace-faulty.

CHECKING STORAGE INTEGRITY
To check the integrity and correctness of the local storage (called HashFS) run the

following command on the node you want to check (run sxsetup --info if you
don’t remember the location of the storage):

sxadm node --check /var/lib/sxserver/storage/

[sx_hashfs_check]: Integrity check started
HashFS is clean, no errors found

It performs a deep check of the storage structure and also verifies if the data on disk
is not corrupted by calculating and comparing data checksums.

DATA RECOVERY

It is possible to recover local data in case a node gets damaged. Please perform the
following command and sxadm will try to extract as much data as possible from the
local storage:

[
sxadm node --extract=/tmp/RECOVERED /var/lib/sxserver/storage/
Finished data extraction from node /var/lib/sxserver/storage/

CHAPTER

CLIENT OPERATIONS

5.1 ACCESS PROFILES

Using sxinit one can configure access for multiple users and clusters. The
access profiles have a format of sx://[PROFILE_NAMEQ] cluster_name, where
PROFILE_NAME is an arbitrary name for the profile, and doesn’'t need to match the
username for which the access is configured. In case of a single user access to a
cluster, PROFILE_NAME can be omitted and sx://cluster_name will be the de-
fault profile for a given cluster.

ADDING PROFILES

To add an access profile for the user ’jeff’ and the local cluster created in previous
chapters run the following command:

$ sxinit -1 192.168.1.101 -A Q@jeff sx://jeff@mycluster
Warning: self-signed certificate:

Subject: C=GB, ST=UK, 0=SX, CN=mycluster

Issuer: C=GB, ST=UK, 0=SX, CN=mycluster

SHA1 Fingerprint: 84:EF:39:80:1E:28:9C:4A:C8:80:E6:56:57:A4:CD:64:2E
:23:99:7A

Do you trust this SSL certificate? [y/N] y
Trusting self-signed certificate
Please enter the user key: FqmlTd9CWZUuPBGMdjE46DaT1/3kx+EYbahlrhcdVpy/9ePfrtWCIgAA

Since "mycluster” is not a DNS name, we had to point sxinit to one of the nodes
of the cluster. That allowed it to connect and discover all the other nodes. We also
created the alias @jeff, which will be used for convenience.

LISTING ACCESS PROFILES
To list all configured access profiles run:

$ sxinit --list
sx://jeff@mycluster Qjeff

sx://admin@mycluster Q@cluster

28

DELETING PROFILES

To delete a profile run the following command and provide a full URI or an alias
name as follows:

[
$ sxinit --delete @somealias

It will delete the alias @somealias and the profile associated with it.

5.2 WORKING WITH FILES

SX provides easy to use file tools, which resemble typical UNIX commands. Since $*
is an object storage and not a filesystem, there are some fundamental differences,
though. One of them is lack of "real" directories: each file (object) has assigned a
full path that uniquely identifies it and the path is not a part of any tree structure. S*
does simulate a directory structure by matching the subpaths, for example /path/
filel and /path/file2 will be presented as contents of the directory /path/ just
like on a typical filesystem. However, the directory /path/ is only emulated (and is
not assigned to any object), and therefore it’s perfectly legit to also have a file with
a path /path, which doesn’t conflict with the other two files at all!

In the following subsections we present the command line tools and show how
to use them to perform common tasks.

SXCP: UPLOAD AND DOWNLOAD FILES

sxcp can copy files and entire directories from and to Skylable SX clusters. It can
also copy data between two different SX clusters. By default, for each file a progress
bar is displayed, which shows the transfer speed and the estimated time of arrival.
sxcp makes use of all the advanced features SX, such as deduplication and transfer
resuming to minimize the bandwidth usage.

Use sxcp -r torecursively upload directories to the remote volume:

$ sxcp -r /home/jeff/VMs/ @jeff/vol-jeff/VMimages/

Uploading /home/jeff/VMs/FreeBSD 10.0/FreeBSD 10.0.vmdk (size: 4.91GB)
147 [====> 1 55.11MB/s ETA 44s

sxcp shows the average speed of the tranfer and how long it will take. The great
feature of S¥ is the already mentioned transfer resuming, which allows to continue
the transfer in case it was interrupted. Below we interrupt the transfer of the large
file and repeat the same copy again:

$ sxcp -r /home/jeff/VMs/ @jeff/vol-jeff/VMimages/

/home/jeff/VMs/FreeBSD 10.0/FreeBSD 10.0.vmdk (size: 4.91GB)
] 55.11MB/s ETA 5s

“CProcess interrupted
$ sxcp -r /home/jeff/VMs/ @jeff/vol-jeff/VMimages/
97% [+++++++++++++++++++++++++t+tt+ttttttt+++++++++++=>] 52,.17MB/s ETA 2s

The second sxcp call automatically finds out, which blocks of the file has already
been transferred and only uploads the missing ones. The transfer resuming works
in a similar way for file downloads.

sxcp can copy files between different volumes, also on different clusters, and
comes with other useful features, such as bandwidth limiting. See man sxcp for
the usage details and other examples.

SXLS: LIST VOLUMES AND FILES

With sx1s one can discover, which volumes are accessible on the cluster and then
list their contents. To get the list of volumes, which user ’jeff’ can access run:

$ sxls -1H Qjeff

VOL rep:2 rev:l rw - 12.83G 50.00G 25% sx://jeff@mycluster/vol-jeff

With -1 (--long) and -H (--human-readable) options sx1s displays the list
of available volumes, together with additional information such as the replica
count, maximum number of revisions per file, permissions, size and usage.

Running sx1s against the volume without any arguments returns the first level
of files, similarly to the command 1s:

$ sxls Qjeff/vol-jeff

sx://jeff@m uster/vol-jeff/VMimages/

To list the volume recursively, with more information about files and human read-
able sizes run:

$ sxls -rlH @jeff/vol-jeff

2014-11-17 14:03 31 sx://jeff@mycluster/vol-jeff/VMimages/Debian-
MIPS/bridge.sh

2014-11-17 14:03 245.88M sx://jeff@mycluster/vol-jeff/VMimages/Debian-
MIPS/debian_squeeze_mips_standard.qcow?2

2014-11-17 14:03 4.10M sx://jeff@mycluster/vol-jeff/VMimages/Debian-
MIPS/initrd.gz

2014-11-17 14:03 139 sx://jeff@mycluster/vol-jeff/VMimages/Debian-
MIPS/run

2014-11-17 14:03 677 sx://jeff@mycluster/vol-jeff/VMimages/Debian-
MIPS/start.sh

2014-11-17 14:03 6.61M sx://jeff@mycluster/vol-jeff/VMimages/Debian-
MIPS/vmlinux-2.6.32-5-4kc-malta

2014-11-17 14:03 1.41G sx://jeff@mycluster/vol-jeff/VMimages/Debian-
PPC/debian_squeeze_powerpc_standard.qcow2

2014-11-17 14:04 349 sx://jeff@mycluster/vol-jeff/VMimages/Debian-
PPC/start.sh

2014-11-17 14:02 4.91G sx://jeff@mycluster/vol-jeff/VMimages/FreeBSD
10.0/FreeBSD 10.0.vmdk

2014-11-17 14:03 693.12M sx://jeff@mycluster/vol-jeff/VMimages/FreeBSD
10.0/FreeBSD-10.0-BETA1 -amd64 -discl.iso

SXMV: MOVE OR RENAME FILES

sxmv can move files or group of files into new locations. It can be used to just re-
name individual files or move entire groups to another cluster. In contrast to the
command mv, renaming a directory with sxmv requires prividing the recursive flag
-r. That’s because of the design of the object storage and lack of real directories
as described at the beginning of this chapter. In order to rename a directory, sxmv
has to rename all the files (objects), which share the same directory path. In the ex-
ample below we rename the directory ’'VMimages’ to 'VMs’ and list the new volume
structure in basic mode:

$ sxls -r Qjeff/vol-jeff
sx://jeff@mycluster/vol-jeff/VMs/Debian-MIPS/bridge.sh

sx://jeff@mycluster/vol-jeff/VMs/Debian-MIPS/debian_squeeze_mips_standard.
qcow2
sx://jeff@mycluster/vol-jeff/VMs/Debian-MIPS/initrd.gz

://jeff@mycluster/vol-jeff/VMs/Debian-MIPS/run

://jeff@mycluster/vol-jeff/VMs/Debian-MIPS/start.sh

://jeff@mycluster/vol-jeff/VMs/Debian-MIPS/vmlinux-2.6.32-5-4kc-malta

://jeff@mycluster/vol-jeff/VMs/Debian-PPC/debian_squeeze_powerpc_standard.
qcow2

://jeff@mycluster/vol-jeff/VMs/Debian-PPC/start.sh

://jeff@mycluster/vol-jeff/VMs/FreeBSD 10.0/FreeBSD 10.0.vmdk

://jeff@mycluster/vol-jeff/VMs/FreeBSD 10.0/FreeBSD-10.0-BETA1-amd64-discl
.iso

SXRM: REMOVE FILES

The equivalent of the system command rm in SX is sxrm. Similarly to other tools,
it can handle individual files or entire directories in recursive mode. Below we first
check the current space usage for the volume, then remove a directory with some
large files (using a wildcard to match it), and check the usage again:

$ sxls -1 Q@jeff

VOL rep:2 rev:l rw - 7.24G 50.00G 147 sx://jeff@mycluster/vol-jeff
$ sxrm -r Qjeff/vol-jeff/VMs/FreeBSD*

Deleted 2 file(s)
$ sxls -1H Qjeff
VOL rep:2 rev:1l rw - 1.66G 50.00G 14% sx://jeff@mycluster/vol-jeff

SXREV: MANAGE FILE REVISIONS

The S* volumes can be conﬁguredto keep multiple revisions of files. For example,
if a volume was created with an option to keep 3 revisions, every time a specific file
gets modified the previous copy will be preserved and the latest 3 versions of the file
will be available for download. The tools such as sxcp or sx1s will always operate
on the latest revision. In order to access and manage the older revisions, one has to
use sxrev.

In the examples below we will operate on the volume vol- jeff-rev, which
was configured to store up to 3 revisions for each file and the example file
document . pdf was already updated a few times. In order to list all of its revisions,
run the following command:

$ sxrev list Q@jeff/vol-jeff-rev/document.pdf

Revisions for file Q@jeff/vol-jeff-rev/document.pdf (most recent first):

1. 2014-11-18 12:05 size:128026 rev:"2014-11-18 12:05:00.938:
d2bc1190a0£f70f4b4925d702e0d567a7"

2. 2014-11-18 11:54 size:105866 rev:"2014-11-18 11:54:42.362:1
fcl102f66cabd0e8daac8e1279b54c0a"

3. 2014-11-18 10:23 size:93545 rev:"2014-11-18 10:23:22.188:
d3b1fbld7e4219ab4a8difc7c8edffOc"

The first revision on the list is the latest one, which is also visible to other tools. In
order to restore an older revision of a file, it needs to be copied into a new destina-
tion. By default sxrev asks interactively, which revision should be copied as on the
example below:

$ sxrev copy @jeff/vol-jeff-rev/document.pdf ~/document-prev.pdf
Revisions for file Q@jeff/vol-jeff-rev/document.pdf (most recent first):

1. 2014-11-18 12:05 size:128026 rev:"2014-11-18 12:05:00.938:
d2bc1190a0f70£f4b4925d702e0d567a7"

ISee sectionon pageon how to create and configure volumes

2. 2014-11-18 11:54 size:105866 rev:"2014-11-18 11:54:42.362:
fc102f66cabd0e8daac8e1279b54c0a"
3. 2014-11-18 10:23 size:93545 rev:"2014-11-18 10:23:22.188:

d3b1fb1d7e4219ab4a8d1fc7c8edffOc"
Choose revision to copy: 2
Copy operation completed successfully

The same operation can be performed in non-interactive mode by providing the
revision string as an argument:
$ sxrev copy -r "2014-11-18 11:54:42.362:1fc102f66cabd0e8daac8e1279b54c0a"

Qjeff/vol-jeff-rev/document.pdf ~/document-prev.pdf
Copy operation completed successfully

The size of all revisions adds up to the volume usage, that’s why one may want to
remove specific revisions (eg. for large media files). When a file with multiple revi-
sions gets deleted with sxrm, all of the revisions get removed automatically as well.
With sxrev delete only specific revisions can be deleted and it works similarly
to sxrev copy. In the example below we remove the two oldest revisions, in both
interactive and non-interactive modes:

$ sxrev delete Qjeff/vol-jeff-rev/document.pdf

Revisions for file Q@jeff/vol-jeff-rev/document.pdf (most recent first):

1. 2014-11-18 12:05 size:128026 rev:"2014-11-18 12:05:00.938:
d2bc1190a0f70£f4b4925d702e0d567a7"

2. 2014-11-18 11:54 size:105866 rev:"2014-11-18 11:54:42.362:1
fc102f66cabd0e8daac8e1279b54c0a"

3. 2014-11-18 10:23 size:93545 rev:"2014-11-18 10:23:22.188:
d3b1fbld7e4219ab4a8d1fc7c8edffOc"

Choose revision to delete: 2

Delete operation completed successfully

$ sxrev delete -r "2014-11-18 10:23:22.188:d3b1fb1d7e4219ab4a8d1fc7c8edffOc"
Q@jeff/vol-jeff-rev/document.pdf

Delete operation completed successfully

$ sxrev list Qjeff/vol-jeff-rev/document.pdf

Revisions for file @jeff/vol-jeff-rev/document.pdf (most recent first):

1. 2014-11-18 12:05 size:128026 rev:"2014-11-18 12:05:00.938:

d2bc1190a0£f70£f4b4925d702e0d567a7"

CHAPTER

ADVANCED

This chapter describes some advanced details of the S* design.

6.1 DATA DISTRIBUTION

Files are divided into blocks of equal size, which depend on the file’s size, and dis-
tributed among S* nodes using a consistent hashing algorithm. This ensures that
the storage among all nodes in the cluster is properly balanced, and that when
nodes are added or removed from the cluster only a minimal amount of data gets
moved.

The cluster exposes an HTTP(S) REST API designed around deduplicated stor-
age: equal blocks of data get stored only once. This has the advantage of reduced

_W
o
7

Figure 6.1: Data distribution

[] ® [] ® ® []
2 4 5 6 8

33

Figure 6.2: Data replication

bandwidth usage, better resume handling, and that the data is immutable (only the
metadata is mutable).

In the example shown in figure[6.1] on the previous page there is a file divided
into 10 blocks, where the first and last two blocks are equal — only the first block
of them is uploaded. The rest of the blocks are distributed among all nodes in the
cluster. Inevitably some nodes will receive more than one block, in which case the
protocol supports an efficient batched upload and download mode.

In this example each block of data was stored only once, what is called replica
1. If one of the nodes that stores a block of the file goes down, the file will be un-
reachable. To make the data more resistant one should use a replica count higher
than 1, which means that the data will be duplicated on multiple nodes. A volume
with replica 2 can survive a loss of at most 1 node, with replica 3 the loss of at most
2 nodes, etc. The maximum replica count is limited by the number of nodes. High
replica counts increase reliability for downloads, at the cost of increased latency
on uploads, and lower fault-tolerance on uploads (all replica nodes must be up for
uploads to succeed).

The handling of replicas is illustrated in figure [6.2| for a replica 3 volume. The
client tries to upload the data to a given node, which is then responsible for repli-
cating the data inside the cluster asynchronously. If the client fails to upload to a
specific node it can retry on the next one, and so on. Each time the receiving node
will replicate the data inside the cluster.

volA_rl volB_r2 volC_r3 users

node ACL files ACL files ACL files admin ul u2
nodel v v v X v X v v 7/
node2 v X v v v v v v /
node3 v X v v v v v v /
node4 vV X v X v v v v /

Table 6.1: Global objects

6.2 (GLOBAL OBJECTS

Users, volumes and privileges are stored globally - on each node in the cluster - and
changing them requires cooperation of all nodes.

user each user is issued an authentication token. All requests are signed using
HMAC and the authentication token.

admin users the privileged users can perform all administrative tasks such as vol-
ume and user management

volumes used to group several files, owned by a specific user. Each volume has a
replica count and metadata associated with it.

volume ACL the volume owner by default has full access to the volume. The owner
(and the cluster admin) can grant and revoke permissions for other users. E]

As shown in Table the volume names, privileges and users are stored on all
nodes. However the volume’s contents are stored only on a subset of nodes:

volA_rl is a volume with replica 1: its data and filenames are only stored in one
place (no copies)

volB_r2 is a volume with replica 2: the data is always stored on (at least) 2 distinct
nodes, and its filenames are stored on exactly 2 specific distinct nodes

volC_r3 is a volume with replica 3: the data is always stored on (at least) 3 distinct
nodes, and its filenames are stored on exactly 3 specific distinct nodes ...

The cluster can have multiple volumes with different replica counts at the same
time. A volume can also have an arbitrary metadata attached to.

6.3 JOBS

Certain operations, such as finalizing a file upload (which may require replication
of data), can take a long time. To avoid blocking other operations, all taks which
involve more than one node create a job and the S clients poll for the job’s out-
come instead of blocking and waiting for it to finish. This allows to speed up re-
cursive uploads for example: each file creates a new job and the client only waits

11t's impossible to revoke privileges for admin users - they always have full access to all volumes.

for completion at the end of the recursive upload. The cluster tries its best to retry
when transient errors occur internally. In case of a failure, it will abort or undo the
operation and report the status to the client. The jobs are also used for conflict res-
olution: on conflicting operations, for example creating two users with same name,
only one job is guaranteed to "win" and all the others will be aborted.

CHAPTER

TROUBLESHOOTING

7.1 FREQUENTLY ASKED QUESTIONS

If you face an issue, please have a look into our FAQ database at https://wiki.
skylable.com/wiki/FAQ. It’s constantly updated to provide solutions and an-
swers to frequent questions from our users.

7.2 MAILING LIST

In case you cannot find a solution to your problem, please subscribe to our mailing
list sx-users athttp://lists.skylable.comand post your question there.

7.3 BUG REPORTING

If you believe you've found a bug in S* please enter it into our Bugzilla tracker at
https://bugzilla.skylable.com. Please try to provide as much details as pos-
sible. If you report a problem with the client, you can generate a report about the
system and client configuration by running:

$ sxreport-client
Report stored in sxreport-client-1418047578.1log

You can attach it to a bugreport at https://bugzilla.skylable.com

When reporting a problem with one of the server components, you can use
sxreport-server instead:

sxreport-server --anonymize
Anonymized report stored in sxreport-server-1418047910-anon.log

You can attach it to a bugreport at https://bugzilla.skylable.com

It creates a report with all IP addresses, URLs, and usernames anonymized.

37

https://wiki.skylable.com/wiki/FAQ
https://wiki.skylable.com/wiki/FAQ
https://bugzilla.skylable.com

	Contents
	Introduction
	SX Features
	Skylable ecosystem

	Installation
	Binary packages
	Source code

	Cluster deployment
	Requirements
	Creating the first node
	Adding more nodes to the cluster
	Automatic node configuration

	Cluster Management
	Local node status and configuration
	Administrator access
	User management
	Volume management
	Node management
	Cluster healing

	Client operations
	Access profiles
	Working with files

	Advanced
	Data distribution
	Global objects
	Jobs

	Troubleshooting
	Frequently Asked Questions
	Mailing list
	Bug reporting

