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Abstract

This paper lists most of the algorithms provided by SACLIB and shows how to
call them from C. There is also a brief explanation of the inner workings of the
list processing and garbage collection facilities of SACLIB.
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Chapter 1

Introduction

1.1 What is SACLIB?

SACLIB is a library of C programs for computer algebra derived from the SAC2
system. Hoon Hong was the main instigator. Sometime early in 1990 he pro-
posed to translate SAC2 (which was written in the ALDES language) into C
instead of Fortran (as it had been since 1976), and he quickly wrote the required
translator. The results were rewarding in several ways. Hoon Hong, myself and
Jeremy Johnson, working together at Ohio State University, observed a speedup
by a factor of about two in most applications and the powerful debugging facil-
ities associated with C became available.

Later that year Hoon finished his doctorate and moved to RISC, where
Bruno Buchberger was writing a book on Gröbner bases and working on a set
of programs to go with it. He found that SAC2 was the only computer algebra
system in which he could write these programs without an unacceptable sacrifice
in computational efficiency. It became apparent that for similar reasons other
researchers would benefit greatly from the availability of a library of C programs
derived from SAC2. Subsequently Bruno did much to promote and facilitate
the preparation of the library for distribution.

Although the translated programs were correct, they needed to be reformat-
ted for user consumption, a users guide was required, and we had compulsions to
make some minor improvements. Jeremy Johnson made many recent improve-
ments to the algebraic number algorithms and wrote the corresponding chap-
ter of this Guide, among other things. Werner Krandick made improvements
to the polynomial real root algorithms and wrote the corresponding chapter.
Mark Encarnación wrote three chapters of the Guide and also converted the
polynomial input and output algorithms to modern notation from the original
”Fortran notation”. Ana Mandache, Andreas Neubacher and Hoon Hong all
toiled long hours editing and reformatting programs. Andreas deserves special
recognition. He initiated the writing of the manual, wrote three chapters of
the manual and two of the appendices, and did all the required system main-
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tenance. To facilitate experimenting with the functions in the library, Herbert
Vielhaber implemented ISAC, the interactive shell for SACLIB. He also wrote
the corresponding appendix of the manual.

Besides the above it would be unthinkable not to mention, collectively, all
of my former doctoral students, who contributed to the development of the
SAC2 algorithms and the research on which they were founded over a period
of 26 years. During the last 20 of those years Rüdiger Loos was a frequent
collaborator. He proposed creation of an ”ALgorithm DEScription language”
for SAC1, the predecessor of SAC2, and wrote an ALDES-to-Fortran translator.

This initial version of SACLIB is just the beginning of what is to come. We
know how to improve several of the programs in the current system and we will
do it for subsequent versions. Some basic functionalities are largely undeveloped
in the currrent system (e.g. linear algebra) but they will be supplied in subse-
quent versions. Some more advanced functionalities (e.g. polynomial complex
roots and quantifier elimination) are nearly ready and will be forthcoming soon.
Also we expect that users of the system will write programs based on the ones
we distribute and offer them to other users.

George E. Collins

1.2 About this Guide

The main goal in writing this guide was to enable the reader to quickly discover
whether SACLIB provides a function for a given problem. The structure of the
paper should facilitate searching for a function in the following way:

• Every chapter deals with functions operating over a certain domain (lists,
numbers, polynomials, etc.) or with functions solving certain problems
(GCD computation, factorization, real root calculation, etc.).

• Some chapters are split into sections covering more specific topics (integer
arithmetic, rational number arithmetic, integral polynomial arithmetic,
etc.)

• Inside a section, functions are divided into various areas (basic arithmetic,
predicates, input/output, etc.).

• Inside these areas, closely related functions (a function and its inverse,
functions solving essentially the same problem, a function and its auxiliary
routines, etc.) are grouped.

This partitioning was done on a completely subjective basis. The intention
always was that the neophyte user should be able to pinpoint a desired function
by using simple heuristics. This approach may certainly fail in some cases, but
with at most 50 functions per section browsing them sequentially should always
succeed in an acceptable amount of time.

Another rather subjectively designed feature is the function descriptions.
The lists were generated automatically from the headers of the SACLIB source
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files. For some functions additional remarks were added in emphasized type
style.

Readers who want to use SACLIB functions in their C programs should read
Appendix A, which describes how initialization and cleanup are done, which
files have to be #included, etc. A detailed description of the input/output
specifications of a given function can be found in the comment block at the
beginning of the corresponding source file. Read the “Addendum to the SACLIB
User’s Guide” for information on how to access these.

Those who want to know more about the inner workings of SACLIB should
refer to Appendix C which gives an overview of the internal representation of
lists, the garbage collector and the constants and global variables used internally.
Descriptions of the high level data structures used for implementing the elements
of domains like integers, polynomials, etc. can be found at the beginnings of the
corresponding sections.

1.3 SACLIB Maintenance

The recommended way for reporting problems with SACLIB is sending e-mail
to the maintenance account

saclib@risc.uni-linz.ac.at

or mail to

SACLIB Maintenance

Research Institute for Symbolic Computation

Johannes Kepler University

4020 Linz

Austria

Messages which might interest a greater audience should be sent to the
mailing list

saclib-l@risc.uni-linz.ac.at

This list can be subscribed by sending a message with the body

subscribe saclib-l <first name> <last name>

to listserv@risc.uni-linz.ac.at.
Note that SACLIB is not sold for profit1. Therefore do not expect prompt

service and extensive support. Nevertheless, SACLIB is continuously main-
tained and extended, so do not hesitate getting in contact with us.

1SACLIB maintenance is sponsored by the Research Institute for Symbolic Computation.
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Chapter 2

List Processing

2.1 Mathematical Preliminaries

Let A be a finite domain and let C be the closure of A under the operation of
finite sequence formation. Then

• the elements of C are called objects,

• the elements of A are called atoms, and

• the elements of C\A are called lists.

Note that the atom a and the list (a) containing a as its only element are distinct
objects. Furthermore, the set of lists also encompasses the empty sequence,
which we call the empty list.

2.2 Purpose

Lists are the basis for nearly all SACLIB internal representations of elements
of domains like the integers, polynomials, algebraic numbers, etc. The SACLIB
list processing package implements the abstract concept of lists described above.

2.3 Definitions of Terms

atom An integer a such that −BETA < a < BETA.

list (handle) An integer L such that BETA ≤ L < BETAp, where BETA and BETAp

are positive integer constants1. L is a reference to the memory location of
the first cell of the list L.

1See Section C.2 for more information on BETA and BETAp.
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The term list is used to denote the SACLIB internal representation of an
element of C\A as given in Section 2.1. If emphasis is on the reference to
memory, the term list handle is used.

(list) cell The memory space used to store a (reference to a) single list element
and bookkeeping information needed to combine several cells into a list.

(list) element If L is the list (l1, l2, . . . , ln), then l1 is its first element, l2 is its
second element, etc.

empty list A list containing no elements, represented by the constant NIL.

object A term denoting both atoms and lists.

composition of an object l and a list (l1, l2, . . . , ln) is the list (l, l1, l2, . . . , ln).

reductum of a list (l1, l2, . . . , ln) is the list (l2, l3, . . . , ln). The reductum of the
empty list is undefined.

concatenation of lists (l1, l2, . . . , ln) and (m1,m2, . . . ,mk) is the list (l1, . . . ,
ln,m1, . . . ,mk).

inverse of a list (l1, l2, . . . , ln) is the list (ln, ln−1, . . . , l1).

length of a list (l1, l2, . . . , ln) is n. The length of the empty list is 0.

extent The number of cells used by an object. More precisely:

• EXTENT(a) = 0 if a is an atom.

• EXTENT(NIL) = 0.

• EXTENT(L) = 1 + EXTENT(l1) + EXTENT((l2, . . . , ln)), where L is the
non-empty list (l1, l2, . . . , ln).

order The depth of an object. More precisely:

• ORDER(a) = 0 if a is an atom.

• ORDER(NIL) = 1.

• ORDER(L) = MAX(ORDER(l1) + 1, ORDER((l2, . . . , ln))), where L is the
non-empty list (l1, l2, . . . , ln).

side effects When a function modifies the content of one or more cells of the
input list(s), it is said to cause side effects. This is always noted in the
function specifications.

destructive An operation on lists causing side effects is called destructive.

(unordered) set An (unordered) list of atoms.
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2.4 Functions

Constructors:

M <- COMP(a,L) Composition. Prefixes an object to a list.

M <- COMP2(a,b,L) Composition 2. Prefixes 2 objects to a list.

M <- COMP3(a1,a2,a3,L) Composition 3. Prefixes 3 objects to a list.

M <- COMP4(a1,a2,a3,a4,L) Composition 4. Prefixes 4 objects to a
list.

L <- LIST1(a) List, 1 element. Builds a list from one object.

L <- LIST2(a,b) List, 2 elements. Builds a list from 2 objects.

L <- LIST3(a1,a2,a3) List, 3 elements. Builds a list from 3 objects.

L <- LIST4(a1,a2,a3,a4) List, 4 elements. Builds a list from 4 objects.

L <- LIST5(a1,a2,a3,a4,a5) List, 5 elements. Builds a list from 5
objects.

L <- LIST10(a1,a2,a3,a4,a5,a6,a7,a8,a9,a10) List, 10 elements. Builds
a list from 10 objects.

Selectors:

ADV(L; a,Lp) Advance. Returns the first element and the reductum of
a list.

ADV2(L; a,b,Lp) Advance 2. Returns the first 2 elements and the 2nd
reductum of a list.

ADV3(L; a1,a2,a3,Lp) Advance 3. Returns the first 3 elements and the
3rd reductum of a list.

ADV4(L; a1,a2,a3,a4,Lp) Advance 4. Returns the first 4 elements and
the 4th reductum of a list.

AADV(L; a,Lp) Arithmetic advance. Returns the first element and the
reductum of a non-empty list, returns 0 as the first element if the list
is empty.

a <- FIRST(L) First. Returns the first element of a list.

FIRST2(L; a,b) First 2. Returns the first 2 elements of a list.

FIRST3(L; a1,a2,a3) First 3. Returns the first 3 elements of a list.

FIRST4(L; a1,a2,a3,a4) First 4. Returns the first 4 elements of a list.

a <- SECOND(L) Second. Returns the 2nd element of a list.

a <- THIRD(L) Third. Returns the 3rd element of a list.

a <- FOURTH(L) Fourth. Returns the 4th element of a list.

Lp <- LASTCELL(L) Last cell. Returns the list handle of the last cell of
a list.
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a <- LELTI(A,i) List element. Returns the i-th element of a list.

Lp <- RED(L) Reductum. Returns the reductum of a list.

Lp <- RED2(L) Reductum 2. Returns the 2nd reductum of a list.

M <- RED3(L) Reductum 3. Returns the 3rd reductum of a list.

M <- RED4(L) Reductum 4. Returns the 4th reductum of a list.

B <- REDI(A,i) Reductum. Returns the i-th reductum of a list.

Information and Predicates:

t <- ISOBJECT(a) Test for object. Tests whether the argument repre-
sents an object.

t <- ISATOM(a) Test for atom. Tests whether the argument represents
an atom.

t <- ISLIST(a) Test for list. Tests whether the argument represents a
list.

t <- ISNIL(L) Test for empty list. Tests whether the argument repre-
sents the empty list.

t <- EQUAL(a,b) Equal. Tests whether two objects are equal.

t <- MEMBER(a,L) Membership test. Tests whether an object is an ele-
ment of a list.

i <- LSRCH(a,A) List search. Returns the index of an object in a list.

n <- EXTENT(a) Extent.

n <- LENGTH(L) Length.

n <- ORDER(a) Order.

Concatenation:

L <- CCONC(L1,L2) Constructive concatenation. Builds a list (l1, . . . , lm,
lm+1, . . . , ln) from lists (l1, . . . , lm) and (lm+1, . . . , ln).

L <- CONC(L1,L2) Concatenation. Concatenates two lists destructively.

M <- LCONC(L) List concatenation. Concatenates the elements of a list
of lists destructively.

Inversion:

M <- CINV(L) Constructive inverse. Builds a list containing the ele-
ments of the argument in inverse order.

M <- INV(L) Inverse. Inverts a list destructively.

Insertion:

LINS(a,L) List insertion. Inserts an object after the first element of a
list.
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L <- LEINST(A,i,a) List element insertion. Inserts an object after the
i-th element of a list.

Lp <- SUFFIX(L,b) Suffix. Appends an object after the last element of
a list.

B <- LINSRT(a,A) List insertion. Inserts an atom into a sorted list of
atoms.

Combinatorial:

M <- LEROT(L,i,j) List element rotation. Rotates some consecutive
elements of a list.

Lp <- LPERM(L,P) List permute. Permutes the elements of a list.

Pp <- PERMCY(P) Permutation, cyclic. Rotates a list to the left.

L <- PERMR(n) Permutation, random. Builds a list of the first n integers
in random order.

B <- LEXNEX(A) Lexicographically next. Computes the lexicographical
successor of a permutation.

Set Operations:

b <- SEQUAL(A,B) Set equality. Tests whether two sets represented as
unordered redundant lists are equal.

C <- SDIFF(A,B) Set difference.

B <- SFCS(A) Set from characteristic set.

C <- SINTER(A,B) Set intersection.

C <- SUNION(A,B) Set union.

C <- USDIFF(A,B) Unordered set difference.

C <- USINT(A,B) Unordered set intersection.

C <- USUN(A,B) Unordered set union.

Sorting:

M <- LBIBMS(L) List of BETA-integers bubble-merge sort. Sorts a list
of atoms into non-descending order.

LBIBS(L) List of BETA-integers bubble sort. Sorts a list of atoms into
non-descending order.

L <- LBIM(L1,L2) List of BETA-integers merge. Merges two sorted lists
of atoms.

B <- LINSRT(a,A) List insertion. Inserts an atom into a sorted list of
atoms.

C <- LMERGE(A,B) List merge. Constructively merges two lists avoiding
duplicate elements.
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Input/Output:

A <- AREAD() Atom read.

AWRITE(A) Atom write.

L <- LREAD() List read.

LWRITE(L) List write.

B <- OREAD() Object read.

OWRITE(B) Object write.

Miscellaneous:

C <- PAIR(A,B) Pair. Builds a list by interleaving the elements of two
lists.

SFIRST(L,a) Set first element. Sets the first element of a list.

SLELTI(A,i,a) Set list element. Sets the i-th element of a list.

SRED(L,Lp) Set reductum. Sets the reductum of a list.
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Chapter 3

Arithmetic

3.1 Introduction

3.1.1 Purpose

The SACLIB arithmetic packages support computations with integers, modular
numbers, and rational numbers whose sizes are only bounded by the amount of
memory available.

3.1.2 Definitions of Terms

integer Integers to be entered into SACLIB must be of the following external
form.

• <digit sequence> or

• + <digit sequence> or

• − <digit sequence> ,

where <digit sequence> designates any non-empty word over the alphabet
0, 1, ..., 9. Note that there is no blank between the optional sign and the
digit sequence; also note that leading zeros are allowed. Inputs of this
form are interpreted in the usual way as decimal numbers.

SACLIB outputs the canonical external representation of integers. This
is the integer in external form with both positive sign and leading zeros
digits supressed.

The internal representation I of a number n ∈ Z is defined as follows:

• If −BETA < n < BETA then I is the atom whose value is n.

• If n ≤ −BETA or BETA ≤ n then I is the list (d0, d1, . . . , dk) with
dk 6= 0, di ≤ 0 if n < 0 and 0 ≤ di if 0 < n for 0 ≤ i ≤ k, and
n =

∑k
i=0 diBETA

i.
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digit, BETA-digit, BETA-integer An atom n with −BETA < n < BETA.

GAMMA-digit, GAMMA-integer An atom n with −γ < n < γ, where γ is the
largest integer which fits into a Word1. (E.g. if the size of a Word is 32 bits,
then γ = 231 − 1.)

modular digit An atom n with 0 ≤ n < m, where m is a positive BETA-digit.

modular integer An integer n with 0 ≤ n < m, where m is a positive integer.

symmetric modular An integer n with −
⌊
m
2

⌋
+ 1 ≤ n ≤

⌊
m
2

⌋
, where m is

a positive integer. In the input/output specifications of the correspond-
ing algorithms these are denoted as elements of Z’ M, as opposed to the
notation Z M, which is used for (non-symmetric) modular integers.

rational number Rational numbers to be entered into SACLIB must be of
the following external form.

• <integer N > or

• <integer N > / <integer D > ,

where <integer N > and <integer D > are external forms of relatively
prime integers N and D, such that D > 0. Note that no blanks are
permitted immediately before and after the /. Inputs of this form are
interpreted in the usual way as rational numbers with numerator N and
denominator D.

SACLIB outputs the canonical external representation of rational numbers
r ∈ Q. If r ∈ Z, the canonical external representation of r is the canonical
external representation of the integer r. Otherwise there are unique inte-
gers N and D such that r = N

D , D > 1, and gcd(N,D) = 1. The canonical
external representation of r in this case is the canonical external represen-
tation of the integer N followed by / followed by the canonical external
representation of the integer D.

The internal representation R of a number r ∈ Q is defined as follows:

• If r = 0 then R is the BETA-digit 0.

• Otherwise, R is the list (N, D), where N and D are the internal repre-
sentations of the numerator and the denominator of r, i.e. the unique
integers n and d such that r = n

d , d > 0, and gcd(n, d) = 1.

ceiling of a number r is the smallest integer n such that r ≤ n.

floor of a number r is the largest integer n such that n ≤ r.

positive n is positive if 0 < n.

non-negative n is non-negative if 0 ≤ n.

1See Section C.2 for details on the type Word.
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non-positive n is non-positive if n ≤ 0.

negative n is negative if n < 0.

3.2 Integer Arithmetic

Basic Arithmetic:

C <- ISUM(A,B) Integer sum.

C <- IDIF(A,B) Integer difference.

B <- INEG(A) Integer negation.

C <- IPROD(A,B) Integer product.

C <- IDPR(A,b) Integer-digit product.

DPR(a,b; c,d) Digit Product.

C <- IPRODK(A,B) Integer product, Karatsuba algorithm.

C <- IQ(A,B) Integer quotient.

C <- IDQ(A,b) Integer-digit quotient.

IQR(A,B; Q,R) Integer quotient and remainder.

IDQR(A,b; Q,r) Integer-digit quotient and remainder.

DQR(a1,a0,b; q,r) Digit quotient and remainder.

C <- IREM(A,B) Integer remainder.

r <- IDREM(A,b) Integer-digit remainder.

c <- IMAX(a,b) Integer maximum. Returns the greater of two integers.

c <- IMIN(a,b) Integer minimum. Returns the smaller of two integers.

s <- ISIGNF(A) Integer sign function.

B <- IABSF(A) Integer absolute value function.

s <- ICOMP(A,B) Integer comparison. Compares two integers and re-
turns −1, 0, and +1 in case of <,=, and >, respectively.

t <- IEVEN(A) Integer even. Tests whether the argument is even.

t <- IODD(A) Integer odd. Tests whether the argument is odd.

Exponentiation:

B <- IEXP(A,n) Integer exponentiation.

IROOT(A,n; B,t) Integer root.

ISQRT(A; B,t) Integer square root.

DSQRTF(a; b,t) Digit square root function.

IPOWER(A,L; B,n) Integer power. If the argument can be expressed as
bn, such integers b and n are computed.
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Greatest Common Divisor:

C <- IGCD(A,B) Integer greatest common divisor.

c <- DGCD(a,b) Digit greatest common divisor.

IGCDCF(A,B; C,Ab,Bb) Integer greatest common divisor and cofactors.

IEGCD(a,b; c,u1,v1) Integer extended greatest common divisor algo-
rithm.

DEGCD(a,b; c,u,v) Digit extended greatest common divisor.

IDEGCD(a,b; c,u1,v1,u2,v2) Integer doubly extended greatest com-
mon divisor algorithm.

IHEGCD(A,B; C,V) Integer half-extended greatest common divisor.

C <- ILCM(A,B) Integer least common multiple.

Factorization:

F <- IFACT(n) Integer factorization.

s <- ISPT(m,mp,F) Integer selfridge primality test. Returns 1 if the
argument is prime, -1 if it is not prime, and 0 if the primality could
not be determined.

ILPDS(n,a,b; p,np) Integer large prime divisor search.

IMPDS(n,a,b; p,q) Integer medium prime divisor search.

ISPD(n; F,m) Integer small prime divisors.

Prime Number Generation:

L <- DPGEN(m,k) Digit prime generator.

Random Number Generation:

A <- IRAND(n) Integer, random.

a <- DRAN() Digit, random.

a <- DRANN() Digit, random non-negative.

Combinatorial:

A <- IFACTL(n) Integer factorial.

A <- IBCOEF(n,k) Integer binomial coefficient. Returns
(
n
k

)
.

B <- IBCIND(A,n,k) Integer binomial coefficient induction. Returns( n
k + 1

)
given n, k, and

(
n
k

)
.

A <- IBCPS(n,k) Integer binomial coefficient partial sum. Returns
∑k
i=0

(
n
i

)
.

Binary Arithmetic:
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n <- ILOG2(A) Integer logarithm, base 2. Returns 1 + (the floor of the
base 2 logarithm of the argument).

n <- DLOG2(a) Digit logarithm, base 2.

IFCL2(a; m,n) Integer, floor and ceiling, logarithm, base 2. Returns the
floor and the ceiling of the base 2 logarithm of the argument.

B <- IMP2(A,h) Integer multiplication by power of 2. Multiplies the
argument by a non-negative power of 2.

B <- IDP2(A,k) Integer division by power of 2. Divides the argument
by a non-negative power of 2.

B <- ITRUNC(A,n) Integer truncation. Divides the argument by a posi-
tive or negative power of 2.

n <- IORD2(a) Integer, order of 2. Returns the largest n such that 2n

divides the argument.

Boolean:

c <- DAND(a,b) Digit and. Returns the bit-wise ∧ of two digits.

c <- DOR(a,b) Digit or. Returns the bit-wise ∨ of two digits.

b <- DNOT(a) Digit not. Returns the bit-wise ¬ of a digit.

c <- DNIMP(a,b) Digit non-implication. Returns the bit-wise ¬(a⇒ b)
of digits a and b.

Input/Output:

A <- IREAD() Integer read.

IWRITE(A) Integer write.

ILWRITE(L) Integer list write. Writes a list of integers in the form
(n1, n2, . . . , nk) to the output stream.

Auxiliary Functions:

C <- ISSUM(n,L) Integer shifted sum. Computes
∑k
i=0 CiBETA

in given
n and the Ci.

ISEG(A,n; A1,A0) Integer segmentation. Splits an integer at a BETA-
digit boundary.

C <- IDIPR2(A,B,a,b) Integer digit inner product, length 2. Computes
Aa+Bb for integers A,B and BETA-digits a, b.

C <- ILCOMB(A,B,u,v) Integer linear combination. Computes Aa+Bb
for integers A,B and BETA-digits a, b with Aa+Bb ≥ 0.

DPCC(a1,a2; u,up,v,vp) Digit partial cosequence calculation.

AADV(L; a,Lp) Arithmetic advance. Returns the first element and the
reductum of a non-empty list, returns 0 as the first element if the list
is empty.

14



3.3 Modular Number Arithmetic

3.3.1 Modular Digit Arithmetic

Basic Arithmetic:

c <- MDSUM(m,a,b) Modular digit sum.

c <- MDDIF(m,a,b) Modular digit difference.

b <- MDNEG(m,a) Modular digit negative.

c <- MDPROD(m,a,b) Modular digit product.

c <- MDQ(m,a,b) Modular digit quotient.

b <- MDINV(m,a) Modular digit inverse.

b <- MDEXP(m,a,n) Modular digit exponentiation.

Chinese Remainder Algorithm:

a <- MDCRA(m1,m2,mp1,a1,a2) Modular digit chinese remainder algo-
rithm.

L <- MDLCRA(m1,m2,L1,L2) Modular digit list chinese remainder algo-
rithm.

b <- MDHOM(m,A) Modular digit homomorphism. Computes nmodm.

Random Number Generation:

a <- MDRAN(m) Modular digit, random.

3.3.2 Modular Integer Arithmetic

Basic Arithmetic:

C <- MISUM(M,A,B) Modular integer sum.

C <- MIDIF(M,A,B) Modular integer difference.

B <- MINEG(M,A) Modular integer negation.

C <- MIPROD(M,A,B) Modular integer product.

C <- MIQ(M,A,B) Modular integer quotient.

B <- MIINV(M,A) Modular integer inverse.

B <- MIEXP(M,A,N) Modular integer exponentiation.

Chinese Remainder Algorithm:

As <- MIDCRA(M,m,mp,A,a) Modular integer digit chinese remainder al-
gorithm.

As <- MIHOM(M,A) Modular integer homomorphism. Computes nmodm.

Random Number Generation:
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R <- MIRAN(M) Modular integer, random.

Conversion:

B <- SMFMI(M,A) Symmetric modular from modular integer. Computes
the isomorphism from Zm to {−

⌊
m
2

⌋
+ 1, . . . ,

⌊
m
2

⌋
}.

3.4 Rational Number Arithmetic

Basic Arithmetic:

T <- RNSUM(R,S) Rational number sum.

T <- RNDIF(R,S) Rational number difference.

S <- RNNEG(R) Rational number negative.

T <- RNPROD(R,S) Rational number product.

T <- RNQ(R,S) Rational number quotient.

S <- RNINV(R) Rational number inverse.

s <- RNSIGN(R) Rational number sign.

S <- RNABS(R) Rational number absolute value.

t <- RNCOMP(R,S) Rational number comparison.

c <- RNMIN(a,b) Rational number min.

c <- RNMAX(a,b) Rational number max.

Constructors:

R <- RNINT(A) Rational number from integer. Returns n
1 given an in-

teger n.

R <- RNRED(A,B) Rational number reduction to lowest terms. Returns
n
d given two integers n and d with d 6= 0.

Selectors:

a <- RNNUM(R) Rational number numerator.

b <- RNDEN(R) Rational number denominator.

Random Number Generation:

R <- RNRAND(n) Rational number, random.

Input/Output:

R <- RNREAD() Rational number read.

RNWRITE(R) Rational number write.
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RNDWRITE(R,n) Rational number decimal write. Approximates a ratio-
nal number by a decimal fraction with a given accuracy and writes
the approximation to the output stream.

Miscellaneous:

a <- RNCEIL(r) Rational number, ceiling of.

a <- RNFLOR(r) Rational number, floor of.

RNBCR(A,B; M,N,k) Rational number binary common representation.

RNFCL2(a; m,n) Rational number floor and ceiling of logarithm, base 2.

r <- RNP2(k) Rational number power of 2. Computes 2n given a GAMMA-
digit n.
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Chapter 4

Polynomial Arithmetic

4.1 Introduction

4.1.1 Purpose

The SACLIB polynomial arithmetic packages provide functions doing computa-
tions with multivariate polynomials over domains implemented by the SACLIB
arithmetic packages.

Except for the functions listed in Section 4.7 and various conversion func-
tions, only the sparse recursive representation is used.

4.1.2 Definitions of Terms

sparse recursive representation A polynomial p ∈ D[x1, . . . , xr] is inter-
preted as an element of (. . . (D[x1]) . . .)[xr], for some domain D. The
SACLIB sparse recursive representation P of a polynomial p =

∑n
i=1 pix

ei
r

with e1 > . . . > en, pi ∈ (. . . (D[x1]) . . .)[xr−1], and pi 6= 0 is defined
recursively as follows:

• If p = 0 then P is the BETA-digit 0.

• If r = 0, then p is in D and its representation P is the representation
of elements of the domain D.

• If r > 0, then P is the list (e1, P1, . . . , en, Pn) where the ei are BETA-
digits and each Pi is the representation of pi.

sparse distributive representation A polynomial p ∈ D[x1, . . . , xr] is in-
terpreted as p =

∑n
i=1 dix

ei , where di ∈ D, di 6= 0, and xei stands for
x
ei,1
1 x

ei,2
2 · · ·xei,rr with ei,j ≥ 0. Furthermore, we assume that e1 > e2 >

. . . > en, where ek > ei iff there exists a ̂ such that ek,j = ei,j for ̂ < j ≤ r
and ek,̂ > ei,̂.
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The sparse distributive representation P of such a polynomial p is the list
(D1, E1, D2, E2, . . . , Dn, En), where Di is the SACLIB internal representation
of di and Ei is the list (ei,r, ei,r−1, . . . , ei,1) with ei,j being BETA-digits.

As always in SACLIB, P = 0 if p = 0.

dense recursive representation A polynomial p ∈ D[x1, . . . , xr] is inter-
preted as an element of (. . . (D[x1]) . . .)[xr], for some domain D. The
dense recursive representation P of a polynomial p =

∑n
i=0 pix

i
r with

pi ∈ (. . . (D[x1]) . . .)[xr−1] is defined recursively as follows:

• If p = 0 then P is the BETA-digit 0.

• If r = 0, then p is in D and its representation P is the representation
of elements of the domain D.

• If r > 0, then P is the list (n, Pn, Pn−1, . . . , P0) where the n is a
BETA-digit and each Pi is the representation of pi.

polynomial If this term appears in the parameter specifications of a function,
this denotes a polynomial in the sparse recursive representation. Other-
wise, it is used to denote a polynomial in arbitrary representation.

base domain, base ring If p is an element of D[x1, . . . , xr], D is its base
domain.

integral polynomial A polynomial whose base domain is Z.

modular polynomial A polynomial whose base domain is Zm with m a prime
positive BETA-digit.

modular integral polynomial A polynomial whose base domain is Zm with
m a positive integer.

rational polynomial A polynomial whose base domain is Q.

main variable of a polynomial in D[x1, . . . , xr] is xr.

degree The degree of a polynomial w.r.t. a given variable is the highest power
of this variable appearing with non-zero coefficient in the polynomial. If
no variable is specified, the degree is computed w.r.t. the main variable.

order The order of a polynomial p =
∑n
i=0 pix

i
r is the smallest k ≥ 0 such that

pk 6= 0.

constant polynomial A polynomial of degree 0 in every variable.

leading term of a polynomial is a polynomial equal to the term of highest
degree w.r.t. the main variable.

reductum of a polynomial is the polynomial minus its leading term.
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leading coefficient The leading coefficient of a polynomial is the coefficient of
its leading term.

leading base coefficient An element of the base domain equal to the coeffi-
cient of the leading power product of a polynomial where the ordering on
the power products is the lexicographic ordering with x1 < · · · < xr.

trailing base coefficient An element of the base domain equal to the coeffi-
cient of the smallest power product of a polynomial where the ordering on
the power products is the lexicographic ordering with x1 < · · · < xr.

monic polynomial A polynomial, the leading coefficient of which is 1.

positive polynomial A polynomial, the leading base coefficient of which is
positive.

sign An integer equal to 1 if the leading base coefficient of the polynomial is
positive, −1 otherwise.

absolute value of a polynomial p is the positive polynomial q such that p =
sign(p) · q.

content of a polynomial p is equal to the absolute value of the greatest common
divisor of the coefficients of p.

integer content of an integral polynomial is an integer equal to the positive
greatest common divisor of the integer coefficients of each power product
of the polynomial.

primitive polynomial A polynomial, the content of which is 1.

squarefree polynomial A polynomial p is squarefree if each factor occurs only
once. In other words, if p = pe11 · · · p

ek
k is a complete factorization of p then

each of the ei is equal to 1.

squarefree factorization The squarefree factorization of p is pe11 · · · p
ek
k where

1 ≤ e1 < · · · < ek and each of the pi is a positive squarefree polynomial
of positive degree. Note that if p is squarefree then p1 is the squarefree
factorization of p.

variable (name) A list (c1, . . . , ck), where the ci are C characters. Example:
the name ”fubar” would be represented by the character list (’f’,’u’,’b’,’a’,’r’).

list of variables A list (n1, . . . , nr) giving the names of the corresponding vari-
ables of an r-variate polynomial for input and output.
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4.2 Polynomial Input and Output

In this section we will describe the polynomial input and output routines that are
available in SACLIB. Before proceeding further, the reader should be familiar
with the internal representations of polynomials which are discussed in Section
4.1.2.

4.2.1 Recursive polynomials over Z

The external canonical representation of sparse recursive polynomials over Z
is defined by the following rules. First of all, each polynomial is enclosed in
parentheses. A term is represented by the coefficient immediately followed by
the variable (no space nor ’*’ in between). The coefficients +1 and −1 are
suppressed unless the exponent of the variable is 0 in which case the variable
is suppressed. The caret ’^’ is used to indicate exponentiation. Exponents
with the value 1 are suppressed and if a variable has the exponent 0 then the
variable is suppressed. These rules apply recursively to the coefficients which
may themselves be polynomials. A few examples are in order.

recursive polynomial external canonical form

−x4 + 2x3 − x+ 3 (-x^4+2x^3-x+3)

(x2 + 1)y3 + (x+ 8)y − 5 ((x^2+1)y^3+(x+8)y+(-5))

−(x2 − 4)y4 + y2 − y − x ((-x^2+4)y^4+(1)y^2+(-1)y+(-x))

Note that a constant polynomial in r variables will be enclosed in r sets of
parentheses. For example, the constant polynomial 2 in 3 variables will be
represented in external canonical form as (((2))).

The algorithm IPREAD reads an r-variate recursive polynomial over Z in
external canonical form from the input stream. The polynomial that is read is
stored in internal canonical form and the number of variables is also recorded.
The variables are not stored. Integer coefficients may be of arbitrary length
but exponents must be BETA-digits. Since no sorting is performed on the terms,
they must be given in order of descending degree. This is an important remark
since almost all algorithms that manipulate polynomials require that the terms
be ordered and violating this rule will undoubtedly cause incorrect results to be
computed and may even crash the system. Another important remark is that
terms whose coefficients are 0 should not be given as these terms will be stored
and may cause problems, for example in equality testing.

Although IPREAD is happiest when a polynomial is given in external canon-
ical form as exemplified by the previous examples, the user is allowed some
freedom. An arbitrary number of spaces may interspersed between the coef-
ficients, the variables, the exponents and the symbols ’+’, ’-’ and ’^’. Spaces

21



may not be inserted within a variable nor within an integer. Coefficients with
magnitude 1 as well as the exponents 0 and 1 may be explicitly given. Thus,
for example, ((x ^ 2+1) y^3+(1x+8) y^1-(5x^0) y^0) is perfectly valid and
is equivalent to the second example given in the table above.

Since IPREAD was intended to be used mainly for reading output produced
by previous computations, it is designed to be fast and, consequently, very little
error checking is performed on the input. Among other things, IPREAD does
not check for consistency among the variables, e.g. ((y)x^2+(z)y) will be
accepted as valid input and would be identical to ((u)v^2+(u)v) in internal
representation. Also, IPREAD does not check for consistency among terms, i.e.
each term is processed separately and it is not checked whether all terms have
the same number of recursive nestings. For example, (y^3+(x-1)y) will be
accepted although the first term, y^3, is a univariate polynomial whereas the
second, (x-1)y, is a bivariate polynomial. It is therefore the responsibility of
the user to see that polynomials are input properly.

The algorithm IPWRITE takes as inputs an r-variate recursive polynomial A
over Z and a list V = (v1, . . . , vr) of r variables and writes A to the output
stream using the variables specified with vr as the main variable and v1 as the
most minor variable. The list V may be initialized using VLREAD which reads
a variable list from the input stream. For generating a list with a fixed number of
variables one could also use an expression such as LIST3(LFS("X"),LFS("Y"),LFS("Z")).
Here the functions LFS is used for converting a C string to a SACLIB variable.
It is possible to use the algorithm IUPWRITE to write univariate recursive poly-
nomials but this algorithm was intended mainly as a subroutine to be called
by IPWRITE, which also handles univariate polynomials, and the user need not
even be aware of its existence.

There is an additional set of input functions of which the top level function is
IPEXPREAD. The format accepted by this function is a bit more convenient as ex-
pressions may be of the form (3 X Y^2 + X)^3 - (Y X + Y) (X - 1)^2 + 5.
Note that IPEXPREAD also takes a variable list as input and therefore can detect
the order of the variables without requiring the recursive structure made explicit
by parentheses.

To be more precise, IPEXPREAD accepts any polynomial expression built from
integers and variables using +, -, blanks for multiplication, ˆ for exponentia-
tion, and parenthesis for grouping. The expression may be terminated by any
character not being part of the legal input set (e.g. a period, a semicolon, etc.).
This terminating character is not removed from the input stream.

The function IPEXPREADR has the same specification as IPEXPREAD, with the
difference that it does remove the terminating character.

4.2.2 Recursive polynomials over Q

For r-variate recursive polynomials over Q the algorithms RPREAD and
RPWRITE are the corresponding input and output routines. The situation for
rational polynomials is essentially the same as that for integral polynomials
with the exception that the base coefficients may be rational numbers. The
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same freedoms on valid input apply and an arbitrary number of spaces may
be inserted before and after ’/’. If the denominator of a base coefficient is
1 then only the numerator is in the external canonical representation. As
an example, the external canonical representation of 2

7x
3 − 65x2 + 5x + 12

4 is
(2/7x^3-65x^2+5x+12/4) which, among many other possible variations, may
be input as (2/7x^ 3- 65 x^2 + 5/1x+12/ 4). It should be noted that the
rational base coefficients are not reduced to lowest terms when converted to
internal representation. Corresponding to IUPWRITE is RUPWRITE which, again,
need not concern the user.

For rational polynomials there are also input functions for reading polyno-
mial expressions. Here the name of the top level function is RPEXPREAD. The
input format here is the same as in the integral case, except that numbers may
be rational.

4.2.3 Distributive polynomials over Z

The external canonical representation of sparse distributive polynomials over
Z is as follows. The entire polynomial is enclosed in parentheses. Each term
is made up of the integer coefficient followed by the variables having positive
exponents with each variable separated from its corresponding exponent by a
caret. The coefficient and each variable-exponent pair is separated by a single
space. As was the case for recursive polynomials, coefficients and exponents
with a magnitude of 1 are suppressed as are variables with exponent 0. For
example, the polynomial 2x3y5 − xy3 − 4y+ x+ 1 will be expressed in external
canonical form as ( 2 x^3 y^5 - x y^3 -4 y + x +1 ).

The algorithms DIIPREAD and DIIPWRITE are the input and output routines
for distributive polynomials over Z. DIIPREAD takes as input a variable list V

= (v1, . . . , vr) and reads a distributive polynomial in external canonical form
from the input stream. The ordering of the variables in V is significant and
the variables in each term of the polynomial that is read must appear in the
same order that they appear in V and the terms must be ordered in descending
degree in vr. For example, if V = (x,y,z) then (4 z^5 - y^2 z^4 + 9 x y z)

is valid but (4 z^5 + 9 y x z - y^2 z^4) is not for two reasons—first, y

appears before x in the term 9 y x z and second, the term 9 y x z appears
before - y^2 z^4 which violates the rule that terms must appear in order of
descending degree in z. Additionally, if there are two terms with the same
degree in vr then they should be ordered according to descending degree in
vr−1 and so on. Coefficients may be separated from the variables by an arbitrary
number of spaces (including no space at all). Variables must be separated by at
least one space if there is no exponent explicitly given, otherwise an arbitrary
number of spaces may separate them. For example (4z^5 - y^2z^4 + 9x y z)

is valid but (4z^5 - y^2z^4 + 9xyz) is not since xyz will be treated as a single
variable.
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4.2.4 Distributive polynomials over Q

Distributive polynomials over Q may be read in and written out using the
algorithms DIRPREAD and DIRPWRITE. The only difference between rational dis-
tributive polynomials and integral distributive polynomials is that the base co-
efficients may be rational numbers and not just integers. It should be clear after
reading the preceding subsections what constitutes valid input and we will not
discuss this matter further.

4.2.5 Conversion Between Recursive and Distributive
Representation

Converting recursive polynomials to distributive polynomials can be achieved
by using DIPFP which, given a polynomial in recursive internal representation,
computes an equivalent one in distributive internal representation. In the other
direction, namely to convert from distributive to recursive representation, the
algorithm PFDIP is provided. Both DIPFP and PFDIP work for polynomials over
either Z or Q but the number of variables must be specified. For example, if A
is a polynomial over Q in internal recursive representation and the user wants
to display A in external distributive representation then the code

DIRPWRITE(r,DIPFP(r,A),V);

where r is equal to the number of variables and V is a list of r variables, will
suffice.

4.2.6 Polynomials over Zm

The input and output routines for polynomials over Z work equally well for
polynomials over Zm.

4.3 Domain Independent Polynomial Arithmetic

Constructors:

A <- PFBRE(r,a) Polynomial from Base Ring Element. Builds an r-
variate polynomial from an element of some domain.

A <- PMON(a,e) Polynomial monomial. Builds axe from a and e.

A <- PBIN(a1,e1,a2,e2) Polynomial binomial. Builds a1x
e1 + a2x

e2

from a1, a2, e1, and e2.

Selectors:

a <- PLDCF(A) Polynomial leading coefficient. Returns the leading co-
efficient w.r.t. the main variable.

B <- PRED(A) Polynomial reductum. Returns the reductum (the poly-
nomial minus its leading term) w.r.t. the main variable.
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a <- PLBCF(r,A) Polynomial leading base coefficient. Returns the coef-
ficient of the term of the highest degree w.r.t. all variables (an element
of the base domain).

a <- PTBCF(r,A) Polynomial trailing base coefficient. Returns the coef-
ficient of the term of the lowest degree w.r.t. all variables (an element
of the base domain).

Information and Predicates:

n <- PDEG(A) Polynomial degree. Returns the degree of the argument
w.r.t. the main variable.

n <- PMDEG(A) Polynomial modified degree. Returns the degree of the
argument, −1 if the argument is 0.

n <- PDEGSV(r,A,i) Polynomial degree, specified variable. Returns the
degree of the argument w.r.t. the i-th variable.

V <- PDEGV(r,A) Polynomial degree vector. Returns a list (d1, . . . , dr)
where di is the degree of argument w.r.t. the i-th variable.

b <- PCONST(r,A) Polynomial constant. Tests whether the argument is
a constant polynomial.

b <- PUNT(r,A) Polynomial univariate test. Tests whether the argu-
ment is a univariate polynomial.

k <- PORD(A) Polynomial order. Returns the smallest exponent appear-
ing in the argument polynomial (w.r.t. the main variable).

Transformation:

B <- PSDSV(r,A,i,n) Polynomial special decomposition, specified vari-

able. Computes p(x1, . . . , x
1/n
i , . . . , xr) given p, i, n, and r.

B <- PDPV(r,A,i,n) Polynomial division by power of variable. Com-
putes x−ni p given p, i, and n.

B <- PMPMV(A,k) Polynomial multiplication by power of main variable.
Computes xnp given p and n, with x being the main variable of p.

B <- PRT(A) Polynomial reciprocal transformation. Computes xnp(x−1)
with n = deg(p).

B <- PDBORD(A) Polynomial divided by order. Computes x−np where n
is the order of p.

Conversion1:

B <- PFDIP(r,A) Polynomial from distributive polynomial. Computes
a polynomial in the sparse recursive representation from a polynomial
in the sparse distributive representation.

1See Section 4.7 for a description of the sparse distributive and the dense recursive repre-
sentations.
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B <- PFDP(r,A) Polynomial from dense polynomial. Computes a poly-
nomial in the sparse recursive representation from a polynomial in
the dense recursive representation.

Miscellaneous:

B <- PINV(r,A,k) Polynomial introduction of new variables. Computes
a polynomial in R[y1, . . . , ys, x1, . . . , xr] from a polynomial in R[x1, . . . , xr].

B <- PPERMV(r,A,P) Polynomial permutation of variables. Computes
a polynomial in R[xp1 , . . . , xpr ] from a polynomial in R[x1, . . . , xr],
where (p1, . . . , pr) is a permutation of (1, . . . , r).

B <- PCPV(r,A,i,j) Polynomial cyclic permutation of variables.

B <- PICPV(r,A,i,j) Polynomial inverse cyclic permutation of vari-
ables.

B <- PTV(r,A,i) Polynomial transpose variables.

B <- PTMV(r,A) Polynomial transpose main variables.

B <- PUFP(r,A) Polynomial, univariate, from polynomial. Computes a
univariate polynomial from an r-variate polynomial by substituting 0
for all variables except the main variable xr.

L <- PCL(A) Polynomial coefficient list. Returns a list (pn, . . . , p0) where
n is the degree of p and the pi are the coefficients of p.

4.4 Integral Polynomial Arithmetic

Basic arithmetic:

C <- IPSUM(r,A,B) Integral polynomial sum.

C <- IPDIF(r,A,B) Integral polynomial difference.

B <- IPNEG(r,A) Integral polynomial negative.

C <- IPPROD(r,A,B) Integral polynomial product.

C <- IPIP(r,a,B) Integral polynomial integer product. Computes c∗p
given an integer c and an integral polynomial p.

C <- IPP2P(r,B,m) Integral polynomial power of 2 product.

IPQR(r,A,B; Q,R) Integral polynomial quotient and remainder.

C <- IPQ(r,A,B) Integral polynomial quotient.

C <- IPIQ(r,A,b) Integral polynomial integer quotient. Computes p/c
given an integral polynomial p and an integer c.

C <- IPPSR(r,A,B) Integral polynomial pseudo-remainder.

IUPSR(A,B; ab,bb,C) Integral univariate polynomial semi-remainder.

B <- IPEXP(r,A,n) Integral polynomial exponentiation.
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s <- IPSIGN(r,A) Integral polynomial sign.

B <- IPABS(r,A) Integral polynomial absolute value.

Differentiation and Integration:

B <- IPDMV(r,A) Integral polynomial derivative, main variable.

B <- IPDER(r,A,i) Integral polynomial derivative. Computes the deriva-
tive of the argument w.r.t. the i-th variable.

B <- IPHDMV(r,A,k) Integral polynomial higher derivative, main vari-
able. Computes the k-th derivative of the argument w.r.t. the main
variable.

B <- IPINT(r,A,b) Integral polynomial integration. Computes the in-
tegral of the argument w.r.t. the main variable.

Substitution and Evaluation:

C <- IPSMV(r,A,B) Integral polynomial substitution for main variable.
Substitutes an integral polynomial for the main variable of an integral
polynomial.

C <- IPSUB(r,A,i,B) Integral polynomial substitution. Substitutes an
integral polynomial for the i-th variable of an integral polynomial.

C <- IPGSUB(r,A,s,L) Integral polynomial general substitution. Sub-
stitutes an integral polynomials for all variables of an integral poly-
nomial.

B <- IUPQS(A) Integral univariate polynomial quotient substitution.

B <- IPEMV(r,A,a) Integral polynomial evaluation of main variable.
Substitutes a constant for the main variable of an integral polyno-
mial.

B <- IPEVAL(r,A,i,a) Integral polynomial evaluation. Substitutes a
constant for the i-th variable of an integral polynomial.

b <- IUPBEI(A,c,m) Integral univariate polynomial binary rational eval-
uation, integer output.

s <- IUPBES(A,a) Integral univariate polynomial binary rational eval-
uation of sign.

b <- IUPBRE(A,a) Integral univariate polynomial binary rational eval-
uation.

B <- IPBEILV(r,A,c,k,m) Integral polynomial binary rational evalua-
tion, integral polynomial result, leading variable.

B <- IPBREI(r,A,i,c) Integral polynomial binary rational evaluation,
integral polynomial result.

Transformation:
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B <- IPTRMV(r,A,h) Integral polynomial translation, main variable. Com-
putes p(x+ h) given p and h, where x is the main variable of p.

B <- IPTRAN(r,A,T) Integral polynomial translation. Computes p(x1+
t1, . . . , xr + tr) given p and the ti.

B <- IPBHT(r,A,i,k) Integral polynomial binary homothetic transfor-
mation.

B <- IPBHTLV(r,A,k) Integral polynomial binary homothetic transfor-
mation, leading variable.

B <- IPBHTMV(r,A,k) Integral polynomial binary homothetic transfor-
mation, main variable.

B <- IUPBHT(A,k) Integral univariate polynomial binary homothetic trans-
formation.

B <- IUPIHT(A,n) Integral univariate polynomial integer homothetic
transformation.

B <- IPNT(r,A,i) Integral polynomial negative transformation.

B <- IUPNT(A) Integral univariate polynomial negative transformation.

B <- IPTR(r,A,i,h) Integral polynomial translation, specified variable.

B <- IUPTR(A,h) Integral univariate polynomial translation.

B <- IPTR1(r,A,i) Integral polynomial translation by 1, specified vari-
able. specified variable.

B <- IPTRLV(r,A) Integral polynomial translation, leading variable.

B <- IPTR1LV(r,A) Integral polynomial translation by 1, leading vari-
able.

B <- IUPTR1(A) Integral univariate polynomial translation by 1.

Predicates:

t <- IPCONST(r,A) Integral polynomial constant. Tests whether the
argument is a constant.

t <- IPONE(r,A) Integral polynomial one. Tests whether the argument
is 1.

Random Polynomial Generation:

A <- IPRAN(r,k,q,N) Integral polynomial, random.

Conversion:

IPSRP(r,A; a,Ab) Integral polynomial similiar to rational polynomial.
Given a rational polynomial q, computes a rational number c and an
integral polynomial p with cp = q.

B <- IPFRP(r,A) Integral polynomial from rational polynomial. Com-
putes an integral polynomial from a rational polynomial whose base
coefficients are integers.
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Input/Output:

IPREAD(; r,A) Integral polynomial read.

IPEXPREAD(r,V; A,t) Integral polynomial expression read.

IPWRITE(r,A,V) Integral polynomial write.

IPDWRITE(r,A,V) Integral Polynomial Distributive Write. Writes an
integral recursive polynomial in distributive form.

Contents and Primitive Parts:

IPICPP(r,A; a,Ab) Integral polynomial integer content and primitive
part.

c <- IPIC(r,A) Integral polynomial integer content.

Ab <- IPIPP(r,A) Integral polynomial integer primitive part.

d <- IPICS(r,A,c) Integral polynomial integer content subroutine.

IPSCPP(r,A; s,C,Ab) Integral polynomial sign, content, and primitive
part. Computes the sign, content and primitive part of the argument
w.r.t. the main variable.

IPCPP(r,A; C,Ab) Integral polynomial content and primitive part.

C <- IPC(r,A) Integral polynomial content.

Ab <- IPPP(r,A) Integral polynomial primitive part.

IPLCPP(r,A; C,P) Integral polynomial list of contents and primitive
parts.

Polynomial Norms:

b <- IPSUMN(r,A) Integral polynomial sum norm.

b <- IPMAXN(r,A) Integral polynomial maximum norm.

Chinese Remainder Algorithm:

As <- IPCRA(M,m,mp,r,A,a) Integral polynomial chinese remainder al-
gorithm.

Squarefree Factorization:

L <- IPSF(r,A) Integral polynomial squarefree factorization.

L <- IPFSD(r,A) Integral polynomial factorization, second derivative.

L <- IPSFSD(r,A) Integral squarefree factorization, second derivative.

Computations in Ideals:

B <- IPTRUN(r,D,A) Integral polynomial truncation. Computes pmod (xd11 , . . . , x
dr
r )

given p and the di.
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C <- IPTPR(r,D,A,B) Integral polynomial truncated product. Com-
putes pqmod
(xd11 , . . . , x

dr
r ) given p, q, and the di.

B <- IPIHOM(r,D,A) Integral polynomial mod ideal homomorphism. Com-
putes pmod

(xd11 , . . . , x
dr−1

r−1 ) given an r-variate polynomial p and the di.

C <- IPIPR(r,D,A,B) Integral polynomial mod ideal product. Com-
putes pqmod

(xd11 , . . . , x
dr−1

r−1 ) given r-variate polynomials p and q and the di.

C <- IUPTPR(n,A,B) Integral univariate polynomial truncated product.
Computes pqmodxn given univariate polynomials p and q and a
BETA-digit n.

4.5 Modular Polynomial Arithmetic

Note that the functions whose names begin with MI are based upon modular
integer arithmetic, while those beginning with MP and MUP are based upon
modular digit arithmetic with a prime modulus2.

Basic arithmetic:

C <- MIPSUM(r,M,A,B) Modular integral polynomial sum.

C <- MPSUM(r,m,A,B) Modular polynomial sum.

C <- MIPDIF(r,M,A,B) Modular integral polynomial difference.

C <- MPDIF(r,m,A,B) Modular polynomial difference.

B <- MIPNEG(r,M,A) Modular integral polynomial negation.

B <- MPNEG(r,m,A) Modular polynomial negative.

C <- MIPPR(r,M,A,B) Modular integral polynomial product.

C <- MPPROD(r,m,A,B) Modular polynomial product.

B <- MPUP(r,m,c,A) Modular polynomial univariate product.

C <- MPMDP(r,p,a,B) Modular polynomial modular digit product.

C <- MIPIPR(r,M,D,A,B) Modular integral polynomial mod ideal prod-
uct.

MIUPQR(M,A,B; Q,R) Modular integral univariate polynomial quotient
and remainder.

MPQR(r,p,A,B; Q,R) Modular polynomial quotient and remainder.

C <- MPQ(r,p,A,B) Modular polynomial quotient.

C <- MPUQ(r,p,A,b) Modular polynomial univariate quotient.

2See Section 3.3 for details on modular digit and integer arithmetic.
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C <- MPPSR(r,p,A,B) Modular polynomial pseudo-remainder.

MMPIQR(r,M,D,A,B; Q,R) Modular monic polynomial mod ideal quo-
tient and remainder.

B <- MPEXP(r,m,A,n) Modular polynomial exponentiation.

Differentiation and Integration:

B <- MUPDER(m,A) Modular univariate polynomial derivative.

Contents and Primitive Parts:

MPUCPP(r,p,A; a,Ab) Modular polynomial univariate content and prim-
itive part.

c <- MPUC(r,p,A) Modular polynomial univariate content.

Ab <- MPUPP(r,p,A) Modular polynomial univariate primitive part.

d <- MPUCS(r,p,A,c) Modular polynomial univariate content subrou-
tine.

Evaluation:

B <- MPEMV(r,m,A,a) Modular polynomial evaluation of main variable.

B <- MPEVAL(r,m,A,i,a) Modular polynomial evaluation.

Transformation:

Ap <- MPMON(r,p,A) Modular polynomial monic. Computes the monic
polynomial similar to a given modular polynomial.

Chinese Remainder Algorithm:

As <- MPINT(p,B,b,bp,r,A,A1) Modular polynomial interpolation.

B <- MIPHOM(r,M,A) Modular integral polynomial homomorphism. Com-
putes the homomorphism from Z[x1, . . . , xr] to Zm[x1, . . . , xr].

B <- MPHOM(r,m,A) Modular polynomial homomorphism.

Squarefree Factorization:

L <- MUPSFF(p,A) Modular univariate polynomial squarefree factoriza-
tion.

Random Polynomial Generation:

A <- MIPRAN(r,M,q,N) Modular integral polynomial, random.

A <- MPRAN(r,m,q,N) Modular polynomial, random.

A <- MUPRAN(p,n) Modular univariate polynomial, random.

Conversion:

B <- MIPFSM(r,M,A) Modular integral polynomial from symmetric mod-
ular.

B <- SMFMIP(r,M,A) Symmetric modular from modular integral poly-
nomial.
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4.6 Rational Polynomial Arithmetic

Basic arithmetic:

C <- RPSUM(r,A,B) Rational polynomial sum.

C <- RPDIF(r,A,B) Rational polynomial difference.

B <- RPNEG(r,A) Rational polynomial negative.

C <- RPPROD(r,A,B) Rational polynomial product.

C <- RPRNP(r,a,B) Rational polynomial rational number product.

RPQR(r,A,B; Q,R) Rational polynomial quotient and remainder.

Differentiation and Integration:

B <- RPDMV(r,A) Rational polynomial derivative, main variable.

B <- RPIMV(r,A) Rational polynomial integration, main variable.

Evaluation:

C <- RPEMV(r,A,b) Rational polynomial evaluation, main variable.

Conversion:

B <- RPFIP(r,A) Rational polynomial from integral polynomial.

B <- RPMAIP(r,A) Rational polynomial monic associate of integral poly-
nomial.

Input/Output:

RPREAD(; r,A) Rational polynomial read.

RPEXPREAD(r,V; A,t) Rational polynomial expression read.

RPWRITE(r,A,V) Rational polynomial write.

RPDWRITE(r,A,V) Rational Polynomial Distributive Write.

Normalization:

RPBLGS(r,A; a,b,s) Rational polynomial base coefficients least com-
mon multiple, greatest common divisor, and sign.

4.7 Miscellaneous Representations

4.7.1 Sparse Distributive Representation

Conversion3:

3See Section 4.1 for a description of the sparse recursive representation.
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B <- DIPFP(r,A) Distributive polynomial from polynomial. Computes
a polynomial in sparse distributive representation from a polynomial
in the sparse recursive representation.

B <- PFDIP(r,A) Polynomial from distributive polynomial. Computes
a polynomial in the sparse recursive representation from a polynomial
in the sparse distributive representation.

Input/Output:

A <- DIIPREAD(V) Distributive integral polynomial read.

DIIPWRITE(r,A,V) Distributive integral polynomial write.

A <- DIRPREAD(V) Distributive rational polynomial read.

DIRPWRITE(r,A,V) Distributive rational polynomial write.

Miscellaneous:

n <- DIPDEG(r,A) Distributive polynomial degree.

DIPINS(a,d,A; t,B) Distributive polynomial, insert term.

4.7.2 Dense Recursive Representation

Basic arithmetic:

C <- DMPPRD(r,m,A,B) Dense modular polynomial product.

C <- DMPSUM(r,m,A,B) Dense modular polynomial sum.

C <- DMUPNR(p,A,B) Dense modular univariate polynomial natural re-
mainder.

Conversion4:

B <- DPFP(r,A) Dense polynomial from polynomial. Computes a poly-
nomial in dense recursive representation from a polynomial in the
sparse recursive representation.

B <- PFDP(r,A) Polynomial from dense polynomial. Computes a poly-
nomial in the sparse recursive representation from a polynomial in
the dense recursive representation.

4See Section 4.1 for a description of the sparse recursive representation.
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Chapter 5

Linear Algebra

5.1 Mathematical Preliminaries

A matrix A of order m× n over a domain D is a rectangular array of elements
of D of the form

A =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
am1 am2 · · · amn


which we will sometimes denote by A = (aij). If A has order n × n then we
say that A is a square matrix. When appropriate, we will denote a matrix A by
Am×n to indicate that the order of A is m× n.

If A is a square matrix then the determinant of A, denoted det(A), is defined
to be det(A) =

∑
ε(σ)aσ(1),1 · · · aσ(n),n, the sum being taken over all permuta-

tions σ of {1, . . . , n} with ε(σ) equal to the sign1 of σ.
An m-vector V is a matrix of order m× 1 and will be denoted by V = (vi).

If A is a matrix of order m× n, b is an m-vector and x is an n-vector then the
equation Ax = b can be viewed as representing the system of linear equations∑n
j=1 aijxj = bi, i = 1, . . . ,m. If a solution to the system Ax = b exists then

we say that the system is consistent. The null space of a matrix Am×n is the
set of all n-vectors x that satisfy Ax = 0. A basis B for the null-space of A is a
set of n-vectors such that each element of the null-space can be expressed as a
linear combination of elements of B.

5.2 Purpose

The SACLIB linear algebra package provides algorithms for solving systems
of linear diophantine equations, for computing null-space bases, for computing

1If σ is the product of m transpositions, then the sign of σ is ε(σ) = (−1)m.

34



determinants and for matrix multiplication.

5.3 Methods and Algorithms

To solve a system of linear diophantine equations one may use either of the two
algorithms LDSMKB and LDSSBR. Both algorithms take as inputs a matrix Am×n
and an m-vector b, with A represented column-wise, i.e. A is a list of n columns
each of which is a list of m integers. Either algorithm returns an n-vector x∗ and
a list N where x∗ is a particular solution of the system of linear diophantine
equations Ax = b and N is a list of n-vectors that form a basis for the null
space of A. In case the system Ax = b is not consistent, both x∗ and N are
null lists. LDSMKB implements a modification of the Kannan-Bachem algorithm
while LDSSBR implements an algorithm based on ideas of Rosser.

Determinants of matrices over Z[x1, . . . , xr] may be computed by using ei-
ther MAIPDE or MAIPDM. MAIPDE implements an algorithm which is based on
exact division while MAIPDM is based on modular homomorphisms and Chinese
remaindering.

MMDDET computes determinants of matrices over Zp while MMPDMA, which is
based on evaluation homomorphisms and interpolation, computes determinants
of matrices over Zp[x1, . . . , xr].

5.4 Functions

Systems of linear equations:

LDSMKB(A,b; xs,N) Linear diophantine system solution, modified Kan-
nan and Bachem algorithm. Given an integral matrix Am×n, repre-
sented column-wise, and an integral m-vector b, uses a modification
of the Kannan and Bachem algorithm to compute x∗ and N where
x∗ is a particular solution of the system of linear equations Ax = b
and N is a list of vectors which form a basis for the solution module
of Ax = 0. If Ax = b is not consistent then both x∗ and N are null
lists.

LDSSBR(A,b; xs,N) Linear diophantine system solution, based on Rosser
ideas. Similar to LDSMKB but the computations are performed using
an algorithm based on ideas of Rosser.

B <- MMDNSB(p,M) Matrix of modular digits null-space basis. Given a
matrix Am×n over Zp, represented row-wise, computes a list B =
(B1, . . . , br) of m-vectors representing a basis for the null-space of A.

Determinants:

D <- MAIPDE(r,M) Matrix of integral polynomials determinant, exact
division algorithm. Given a square matrix A over Z computes det(A).
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D <- MAIPDM(r,M) Matrix of integral polynomials determinant, mod-
ular algorithm. Similar to MAIPDE but uses an algorithm based on
modular homomorphisms and Chinese remaindering.

d <- MMDDET(p,M) Matrix of modular digits determinant. Given a square
matrix A over Zp, computes det(M).

D <- MMPDMA(r,p,M) Matrix of modular polynomials determinant, mod-
ular algorithm. Given a matrix M over Zp[x1, . . . , xr], computes
det(M) using a method based on evaluation homomorphisms and in-
terpolation.

Matrix arithmetic:

C <- MAIPP(r,A,B) Matrix of integral polynomials product.

Vector computations:

B <- VIAZ(A,n) Vector of integers, adjoin zeros.

C <- VIDIF(A,B) Vector of integers difference.

W <- VIERED(U,V,i) Vector of integers, element reduction.

C <- VILCOM(a,b,A,B) Vector of integers linear combination.

B <- VINEG(A) Vector of integers negation.

C <- VISPR(a,A) Vector of integers scalar product.

C <- VISUM(A,B) Vector of integers sum.

VIUT(U,V,i; Up,Vp) Vector of integers, unimodular transformation.

Miscellaneous functions:

B <- MAIPHM(r,m,A) Matrix of integral polynomials homomorphism.

B <- MIAIM(A) Matrix of integers, adjoin identity matrix.

B <- MICINS(A,V) Matrix of integers column insertion.

B <- MICS(A) Matrix of integers column sort.

B <- MINNCT(A) Matrix of integers, non-negative column transforma-
tion.

B <- MMPEV(r,m,A,k,a) Matrix of modular polynomials evaluation.
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Chapter 6

Polynomial GCD and
Resultants

6.1 Mathematical Preliminaries

Given polynomials A and B in R[x1, . . . , xr], R a unique factorization domain,
a greatest common divisor (GCD) of A and B is a polynomial C in R[x1, . . . , xr]
such that C divides both A and B and such that any other divisor of both A
and B also divides C. GCDs of more than two polynomials are defined in a
similar way. GCDs are not unique since any unit multiple of a GCD is itself a
GCD. Polynomials A and B are relatively prime if 1 is a GCD of A and B.

If A =
∑m
i=0 aix

i
r and B =

∑n
i=0 bix

i
r, then the Sylvester matrix of A and B

is the (m+ n)× (m+ n) square matrix

am am−1 · · · · · · a0 0 · · · 0
0 am · · · · · · a1 a0 · · · 0
...

. . .
. . .

...
0 · · · 0 am · · · · · · a1 a0
bn bn−1 · · · · · · b0 0 · · · · · · 0
0 bn · · · · · · b1 b0 0 · · · 0
...

. . .
. . .

...
...

. . .
. . .

...
0 · · · · · · 0 bn · · · · · · b1 b0


in which there are n rows of A coefficients and m rows of B coefficients.

The resultant of two polynomials A and B, denoted by res(A,B), is the
determinant of the Sylvester matrix of A and B. The resultant will be an
element of R[x1, . . . , xr−1] if A and B are elements of R[x1, . . . , xr]. From a
classic result we know that A and B are relatively prime just in case their
resultant is nonzero.
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Let degxr
(A) = m and degxr

(B) = n, with m ≥ n > 0. If M is the Sylvester
matrix of A and B, then for 0 ≤ i ≤ j < n define Mij to be the matrix obtained
by deleting from M the last j rows of the A coefficients, the last j rows of the
B coefficients and the last 2j + 1 columns except column m + n − i − j. The
j-th subresultant of A and B is the polynomial Sj(xr) =

∑j
i=0 det(Mij)x

i
r for

0 ≤ j < n. Note that S0 is simply res(A,B). The k-th principal subresultant
coefficient of A and B is the coefficient of xkr in Sk (which may be 0).

A and B are similar, denoted A ∼ B, if there exist a and b, elements of
R[x1, . . . , xr−1], such that aA = bB. If A and B are nonzero and degxr

(A) ≥
degxr

(B) then a polynomial remainder sequence (PRS) of A and B is a se-
quence A1, . . . , An of nonzero polynomials such that A1 = A, A2 = B, Ai ∼
prem(Ai−2, Ai−1), for i = 3, . . . , n, and degxr

(An) = 0.1

Since there are many polynomials similar to a given one, there are many
different PRSs A1, A2, . . . , An corresponding to A and B.

The Euclidean PRS is obtained by setting Ai = prem(Ai−2, Ai−1) for i =
3, . . . , n.

The primitive PRS is obtained by setting Ai = prem(Ai−2, Ai−1)/gi, where
gi is the content of prem(Ai−2, Ai−1). In other words, we set Ai to be equal to
the primitive part of prem(Ai−2, Ai−1).

The subresultant PRS of the first kind is obtained by setting Ai = Sdi−1−1
where di is the degree of the i-th element of any PRS of A and B. [For each i,
di is invariant over the set of PRSs of A and B.]

The subresultant PRS of the second kind is obtained by setting Ai = Sdi
where di is as in the previous definition.

The reduced PRS is obtained by setting Ai = prem(Ai−2, Ai−1)/cδi+1
i , where

ci = ldcf(Ai−2) and δi = degxr
(Ai−3)− degxr

(Ai−2) for 3 ≤ i ≤ n, with δ3 = 0.
Although it is not immediately clear from the definitions, both subresultant

PRSs as well as the reduced PRS can be shown to be, in fact, PRSs.
For univariate polynomials over a field we may define what is known as

the natural PRS defined by Ai = Ai−2 − QiAi−1, deg(Ai) < deg(Ai−1), for
i = 3, . . . , n. That is, we take Ai to be the remainder obtained from dividing
Ai−2 by Ai−1.

6.2 Purpose

The SACLIB polynomial GCD and resultant package provides algorithms for
the calculation of GCDs of r-variate polynomials over R = Z or R = Zp.
Since GCDs are not unique, we will need to specify a canonical form in which
to express the results of the computations. Over R = Z, the positive GCD is
computed while over R = Zp it is the monic GCD that is computed. Henceforth,
if we refer to the GCD of A and B we will mean the GCD defined by the
algorithms and this will be denoted by gcd(A,B).

1prem(F,G) denotes the pseudo-remainder of F when pseudo-divided by G with respect
to the main variable xr.
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Algorithms are also available for the computation of resultants of r-variate
polynomials over R = Z or R = Zp. The package also provides algorithms for
computing the subresultant PRS and the reduced PRS for r-variate polynomials
over R = Z and the subresultant PRS for r-variate polynomials over R = Zp.

6.3 Definitions of Terms

coarsest squarefree basis If A = (A1, . . . , An) is a list of r-variate polynomi-
als, a coarsest squarefree basis for A is a list B = (B1, . . . , Bm) of pairwise
relatively prime squarefree r-variate polynomials such that each Ai in A
can be expressed as the product of powers of elements of B.

discriminant If A is an r-variate polynomial of degree n in its main variable,
n ≥ 2, the discriminant of A is the (r − 1)-variate polynomial equal to
the quotient of (−1)n(n−1)/2res(A,A′) when divided by a, where A′ is
the derivative of A with respect to its main variable and a is the leading
coefficient of A.

finest squarefree basis A finest squarefree basis B = (B1, . . . , Bm) for a list
A of r-variate polynomials is a coarsest squarefree basis for A with the
additional condition that each Bi is irreducible.

cofactors If C is the GCD of two polynomials A and B then the cofactors of
A and B, respectively, are A/C and B/C.

content The content of a polynomial A in r variables is a polynomial in r − 1
variables equal to the absolute value of the greatest common divisor of the
coefficients of A.

greatest squarefree divisor A greatest squarefree divisor of a polynomial A
is a squarefree polynomial C that divides A and is such that any other
squarefree polynomial that divides A also divides C.

primitive part The primitive part of a polynomial A is the absolute value of
A/c where c is the content of A.

primitive polynomial A polynomial, the content of which is 1.

squarefree factorization The squarefree factorization of A is A = Ae11 · · ·A
ek
k

where 1 ≤ e1 < · · · < ek and each of the Ai is a positive squarefree
polynomial of positive degree. Note that if A is squarefree then A1 is the
squarefree factorization of A.

squarefree polynomial A polynomial A is squarefree if each factor occurs
only once. In other words, if A = Ae11 · · ·A

ek
k is a complete factorization

of A then each of the ei is equal to 1.
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univariate content If A is an r-variate polynomial, r ≥ 2, then the univariate
content of A is a univariate polynomial in the most minor variable equal
to the GCD of the coefficients of A, where A is considered as an element
of (R[x1])[x2, . . . , xr].

univariate primitive part Given an r-variate polynomial A, r ≥ 2, the uni-
variate primitive part of A is the r-variate polynomial A/a, where a is the
univariate content of A.

6.4 Methods and Algorithms

In this section we briefly discuss the main algorithms that might be of interest
to the user and give a sketch of the mathematical ideas behind these algorithms.

6.4.1 GCD Computations

To compute the GCD of two univariate polynomials over R = Zp, the algorithm
MUPGCD may be used. Making use of the fact that if A1, . . . , An is a PRS of two
polynomials A and B then gcd(A,B) ∼ An, this algorithm simply computes the
natural PRS of the two input polynomials and returns the monic GCD.

The GCD and cofactors of two r-variate polynomials over Zp are computed
by MPGCDC which employs evaluation homomorphisms and interpolation to re-
duce the problem to that of computing the GCDs of (r−1)-variate polynomials
over R = Zp. MPGCDC proceeds recursively until it arrives at univariate polyno-
mials whereupon MUPGCD is called. The GCD computed is monic.

To obtain the GCD of two r-variate integral polynomials A and B one would
use the algorithm IPGCDC which also computes the cofactors of A and B. In
this algorithm modular homomorphisms and Chinese remaindering are used to
reduce the problem to GCD computations of r-variate polynomials over R = Zp,
which is solved by MPGCDC.

6.4.2 Resultants

Using the algorithm suggested by the definition of the resultant, namely to
construct the Sylvester matrix and compute its determinant, is not the most
efficient way to proceed.

Instead, MUPRES computes the resultant of two univariate polynomials A and
B over R = Zp by computing the natural PRS of A and B and by using the
identity

res(A,B) = (−1)ν

[
n−1∏
i=2

c
di−1−di+1

i

]
cdn−1
n

where ci = ldcf(Ai), di = deg(Ai), ν =
∑k−2
i=1 didi+1 and A1, . . . , An is the

natural PRS.
For calculating the resultant of r-variate polynomials over R = Zp, MPRES

makes use of evaluation homomorphisms and interpolation to recursively reduce
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the problem to the calculation of resultants of univariate polynomials over R =
Zp which can be done by MUPRES.

IPRES computes the resultant of r-variate polynomials over R = Z by apply-
ing modular homomorphisms and Chinese remaindering to simplify the problem
to resultant computations over R = Zp, computations which are performed by
MPRES.

6.5 Functions

Integral polynomial GCDs:

C <- IPC(r,A) Integral polynomial content. Given an r-variate poly-
nomial A over R = Z, computes the (r− 1)-variate polynomial equal
to the content of A.

IPCPP(r,A; C,Ab) Integral polynomial content and primitive part. Com-
putes the content and the primitive part of a given polynomial over
R = Z.

IPGCDC(r,A,B; C,Ab,Bb) Integral polynomial greatest common divisor
and cofactors. Given two r-variate polynomials A and B over R = Z,
computes the GCD and the cofactors of A and B.

IPLCPP(r,A; C,P) Integral polynomial list of contents and primitive
parts. Given a list (A1, . . . , An) of r-variate polynomials over R = Z,
computes two lists, one consisting of the contents of the Ai that have
positive degree in at least one variable and another consisting of the
primitive parts of the Ai that that have positive degree in the main
variable.

Ab <- IPPP(r,A) Integral polynomial primitive part. Given a polyno-
mial A over R = Z, computes the primitive part of A.

IPSCPP(r,A; s,C,Ab) Integral polynomial sign, content, and primitive
part. Computes the sign, the content and the primitive part of a given
polynomial over R = Z.

Modular Polynomial GCDs:

MPGCDC(r,p,A,B; C,Ab,Bb) Modular polynomial greatest common di-
visor and cofactors. Computes the GCD and cofactors of two given
polynomials over R = Zp.

c <- MPUC(r,p,A) Modular polynomial univariate content. Computes
the univariate content of an r-variate polynomial, r ≥ 2, over R =
Zp.

MPUCPP(r,p,A; a,Ab) Modular polynomial univariate content and prim-
itive part. Giver an r-variate polynomial A, r ≥ 2, computes the
univariate content a of A and the univariate primitive part A/a.
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d <- MPUCS(r,p,A,c) Modular polynomial univariate content subrou-
tine.

Ab <- MPUPP(r,p,A) Modular polynomial univariate primitive part. Given
A, an r-variate polynomial over R = Zp, r ≥ 2, computes the uni-
variate primitive part of A.

C <- MUPGCD(p,A,B) Modular univariate polynomial greatest common
divisor. Computes the GCD of two given univariate polynomials over
R = Zp.

L <- MUPSFF(p,A) Modular univariate polynomial squarefree factoriza-
tion. Computes the squarefree factorization of a given univariate
polynomial over R = Zp.

Squarefree basis:

B <- IPCSFB(r,A) Integral polynomial coarsest squarefree basis. Given
a list A of positive and primitive r-variate polynomials over R = Z,
each of which is of positive degree in the main variable, computes a
coarsest squarefree basis for A.

B <- IPFSFB(r,A) Integral polynomial finest squarefree basis. Given a
list A of positive and primitive r-variate polynomials over R = Z,
each of which is of positive degree in the main variable, computes a
finest squarefree basis for A.

B <- IPPGSD(r,A) Integral polynomial primitive greatest squarefree di-
visor. Given a polynomial A over R = Z, computes the positive and
primitive greatest squarefree divisor of the primitive part of A.

L <- IPSF(r,A) Integral polynomial squarefree factorization. Given a
primitive polynomial A, of positive degree in the main variable, com-
putes the squarefree factorization of A.

Bs <- IPSFBA(r,A,B) Integral polynomial squarefree basis augmenta-
tion.

B <- ISPSFB(r,A) Integral squarefree polynomial squarefree basis.

Resultants:

B <- IPDSCR(r,A) Integral polynomial discriminant. Computes the dis-
criminant of an r-variate polynomial over R = Z, the degree of which
is greater than or equal to 2 in its main variable.

P <- IPPSC(r,A,B) Integral polynomial principal subresultant coeffi-
cients. Computes a list of the non-zero principal subresultant coeffi-
cients of two given r-variate polynomials over R = Z each of which
is of positive degree in the main variable.

C <- IPRES(r,A,B) Integral polynomial resultant. Given two r-variate
polynomials over R = Z, each of which is of positive degree in the
main variable, computes the (r − 1)-variate polynomial over R = Z
equal to their resultant.
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IUPRC(A,B; C,R) Integral univariate polynomial resultant and cofactor.
Given two univariate polynomials A and B over R = Z, where both
A and B are of positive degree, computes res(A,B) and the univari-
ate polynomial C over R = Z such that for some D, AD + BC =
res(A,B) and deg(C) < deg(A).

C <- MPRES(r,p,A,B) Modular polynomial resultant. Given two r-variate
polynomials over R = Zp, each of which is of positive degree in the
main variable, computes the (r − 1)-variate polynomial over R = Zp
equal to their resultant.

MUPRC(p,A,B; C,r) Modular univariate polynomial resultant and co-
factor. Given two univariate polynomials A and B over R = Zp,
where both A and B are of positive degree, computes res(A,B) and
the univariate polynomial C over R = Zp such that for some D,
AD +BC = res(A,B) and deg(C) < deg(A).

c <- MUPRES(p,A,B) Modular univariate polynomial resultant. Com-
putes the resultant of two given univariate polynomials over R = Zp,
each of which is of positive degree in the main variable.

Polynomial Remainder Sequences:

S <- IPRPRS(r,A,B) Integral polynomial reduced polynomial remain-
der sequence. Computes a list representing the reduced polynomial
remainder sequence of two given nonzero r-variate polynomials over
R = Z.

S <- IPSPRS(r,A,B) Integral polynomial subresultant polynomial re-
mainder sequence. Computes a list representing the subresultant
polynomial remainder sequence of the first kind of two given nonzero
r-variate polynomials over R = Z.

S <- MPSPRS(r,p,A,B) Modular polynomial subresultant polynomial re-
mainder sequence.Computes a list representing the subresultant poly-
nomial remainder sequence of the first kind of two given nonzero
r-variate polynomials over R = Zp.

Extended GCDs:

MUPEGC(p,A,B; C,U,V) Modular univariate polynomial extended great-
est common divisor. Computes the GCD C of two univariate poly-
nomials A and B over R = Zp as well the univariate polynomials U
and V such that AU +BV = C.

MUPHEG(p,A,B; C,V) Modular univariate polynomial half-extended great-
est common divisor.Computes the GCD C of two univariate polyno-
mials A and B over R = Zp as well the univariate polynomial V such
that AU +BV = C for some U .
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Chapter 7

Polynomial Factorization

7.1 Mathematical Preliminaries

A non-constant polynomial A(x1, . . . , xr) in R[x1, . . . , xr], where R is a unique
factorization domain, is said to be irreducible if A cannot be expressed as the
product of two non-constant polynomials in R[x1, . . . , xr]. The problem of fac-
toring a polynomial A(x1, . . . , xr) is that of finding distinct irreducible polyno-
mials Ai(x1, . . . , xr) and integers ei, i = 1, . . . , k, such that A = Ae11 · · ·A

ek
k .

Such an expression is called a complete factorization of A. The polynomials Ai
are called the irreducible factors of A and the integer ei is called the multiplicity
of Ai.

7.2 Purpose

The SACLIB polynomial factorization package provides factorization algorithms
for R = Zp, p a single-precision prime and r = 1, and for R = Z for r ≥ 1. For
R = Z one obtains the sign, integer content and positive primitive irreducible
factors of A, as well as the multiplicity of each irreducible factor. The integer
content is not factored. For R = Zp the irreducible factors obtained are monic.

7.3 Methods and Algorithms

To factor an arbitrary univariate polynomial modulo a prime, one should first
obtain a similar monic polynomial by using the algorithm MPMON. Having done
this, one then computes the squarefree factors of the monic polynomial by us-
ing the algorithm MUPSFF. In order to factor each squarefree factor one would
use MUPFBL, which implements Berlekamp’s algorithm. The irreducible factors
returned by MUPFBL are monic.

For factoring a univariate integral polynomial, IUPFAC first computes the
squarefree factorization using the algorithm IPSF. The squarefree factors are in
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turn factored using IUSFPF which first computes a factorization modulo a prime
and the modular factors thus obtained are then lifted by the quadratic version
of the Hensel construction. IUPFAC returns the sign, the integer content and
a list of irreducible factors, with multiplicities, of the input polynomial. The
irreducible factors returned by IUPFAC are positive and primitive.

Multivariate integral polynomials are factored by using IPFAC. This algo-
rithm first computes the content as well as the squarefree factors of the primitive
part of the input polynomial and subsequently factors each of these separately.
The factorization of a squarefree primitive polynomial is performed by the al-
gorithm ISFPF which implements a multivariate lifting technique based on the
Hensel lemma. The lifting is done one variable at a time as opposed to lifting
several variables simultaneously.

If the polynomial A to be factored has rational base coefficients then it must
first be converted to an integral polynomial by multiplying A by the least com-
mon multiple of the denominators of the base coefficients and then converting
the polynomial thus obtained to integral representation. This can be achieved
by using IPSRP which computes the primitive and positive integral polynomial
A′ as well as the rational number a such that A = aA′.

7.4 Functions

Factorization:

IPFAC(r,A; s,c,L) Integral polynomial factorization. Factors r-variate
polynomials over Z.

IUPFAC(A; s,c,L) Integral univariate polynomial factorization. Fac-
tors univariate polynomials over Z.

L <- MUPFBL(p,A) Modular univariate polynomial factorization-Berlekamp
algorithm. Factors monic squarefree univariate polynomials over Zp.

Auxiliary Functions for Factorization:

IPCEVP(r,A; B,L) Integral polynomial, choice of evaluation points. Given
an integral polynomial A that is squarefree in its main variable, com-
putes integers that, when substituted for the minor variables, main-
tain the degree of A in the main variable and its squarefreeness.

b <- IPFCB(V) Integral polynomial factor coefficient bound. Given the
degree vector of an integral polynomial A, computes an integer b such
the product of the infinity norms of any divisors of A is less than or
equal to 2b times the infinity norm of A.

Lp <- IPFLC(r,M,I,A,L,D) Integral polynomial factor list combine.

B <- IPFSFB(r,A) Integral polynomial finest squarefree basis.

a <- IPGFCB(r,A) Integral polynomial Gelfond factor coefficient bound.
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IPIQH(r,p,D,Ab,Bb,Sb,Tb,M,C; A,B) Integral polynomial mod ideal
quadratic Hensel lemma.

L <- ISFPF(r,A) Integral squarefree polynomial factorization. Given a
positive, primitive integral polynomial A that is squarefree with re-
spect to the main variable, computes a list of the distinct positive
irreducible factors of A.

IUPFDS(A; p,F,C) Integral univariate polynomial factor degree set.

IUPQH(p,Ab,Bb,Sb,Tb,M,C; A,B) Integral univariate polynomial quadratic
Hensel lemma.

Fp <- IUPQHL(p,F,M,C) Integral univariate polynomial quadratic Hensel
lemma, list.

L <- IUSFPF(A) Integral univariate squarefree polynomial factorization.
Given a univariate, positive, primitive, squarefree integral polynomial
A, computes a list of the positive irreducible factors of A.

M <- MCPMV(n,L) Matrix of coefficients of polynomials, with respect to
main variable.

MIPISE(r,M,D,A,B,S,T,C; U,V) Modular integral polynomial mod ideal,
solution of equation.

MIUPSE(M,A,B,S,T,C; U,V) Modular integral univariate polynomial, so-
lution of equation.

MPIQH(r,p,D,Ab,Bb,Sb,Tb,M,Dp,C; A,B) Modular polynomial mod ideal,
quadratic Hensel lemma.

Fp <- MPIQHL(r,p,F,M,D,C) Modular polynomial mod ideal, quadratic
Hensel lemma, list.

MPIQHS(r,M,D,Ab,Bb,Sb,Tb,s,n,C; A,B,S,T,Dp) Modular polynomial
mod ideal, quadratic Hensel lemma on a single variable.

Q <- MUPBQP(p,A) Modular univariate polynomial Berlekamp Q-polynomials
construction.

L <- MUPDDF(p,A) Modular polynomial distinct degree factorization. Given
a monic, squarefree polynomial A over R = Zp, computes a list
((n1, A1), . . ., (nk, Ak)), where the ni are positive integers with n1 <
· · · < nk and each Ai is the product of all monic irreducible factors
of A of degree ni.

L <- MUPFS(p,A,B,d) Modular univariate polynomial factorization, spe-
cial.
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Chapter 8

Real Root Calculation

8.1 Mathematical Preliminaries

Let A(x) be a univariate polynomial with integer coefficients. A real number x0
with A(x0) = 0 is called a real root of A(x). A real number x0 is a root of A(x)
if and only if A(x) is divisible by (x−x0), i.e. if there is a polynomial B(x) with
real coefficients such that A(x) = (x − x0)B(x). For any real root x0 of A(x)
there is a natural number k such that A(x) is divisible by (x− x0)k but not by
(x − x0)k+1. This number k is called the multiplicity of the root x0 of A(x).
Roots of multiplicity 1 are called simple roots. An interval I containing x0 but
no other real root of A(x), is called an isolating interval for x0. For example, if
A(x) = x2 − 2, the interval (−2, 2) is not an isolating interval for a real root of
A(x), but (0, 1000) is.

8.2 Purpose

The SACLIB real root calculation package solves non-linear equations in one
variable: It computes isolating intervals for the real roots of univariate integral
polynomials along with the multiplicity of each root, and it refines the isolating
intervals to any specified size.

8.3 Methods and Algorithms

For root isolation three methods are available. The coefficient sign variation
method (or: modified Uspensky method), is based on Descartes’ rule of signs.
The Collins-Loos method is based on Rolle’s theorem. Sturm’s method is based
on Sturm sequences.

Generally, the coefficient sign variation method is many times faster than
the other two methods. For the coefficient sign variation method various main
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programs are provided to accommodate details of input and output specifica-
tions.

For the refinement of isolating intervals to any specified precision a symbolic
version of Newton’s method is used.

Given an arbitrary integral polynomial IPRCH will calculate all its real roots
to specified accuracy. The multiplicity of each root is also computed. The
algorithm uses the coefficient sign variation method to isolate the roots from
each other and then applies Newton’s method to refine the isolating intervals to
the desired width.

Given a squarefree integral polynomial IPRIM isolates all the real roots from
each other. The roots inside a specified open interval are isolated by IPRIMO.
Both IPRIM and IPRIMO use the coefficient sign variation method. Other main
algorithms which use this method are IPRIMS and IPRIMW.

The Collins-Loos method is implemented in IPRICL: Given an arbitrary uni-
variate integral polynomial IPRICL produces a list of isolating intervals for its
real roots. These intervals have the additional property that the first derivative
of A is monotone on each of them.

An implementation of Sturm’s method is provided by IPRIST: Given a
squarefree univariate integral polynomial IPRIST produces a list of isolating
intervals for its real roots.

Roots of different polynomials can be isolated from each other using the
program IPLRRI.

Reference: Jeremy R. Johnson: Algorithms for polynomial real root isolation.
Technical Research Report OSU-CISRC-8/91-TR21, 1991. The Ohio State Uni-
versity, 2036 Neil Avenue Mall, Columbus, Ohio 43210, Phone: 614-292-5813.

8.4 Definitions of Terms

binary rational number A rational number whose denominator is a power
of 2.

interval A list I = (a, b) of rational numbers a ≤ b. If a = b the interval
is called a one-point interval and it designates the set consisting of the
number a. If a < b it is not evident from the representation whether the
endpoints are thought to be part of I or not. Therefore the specifications
of the algorithms have to state whether a particular interval is meant to
be an open interval, a left-open and right closed interval, a left-closed and
right open interval or a closed interval.

standard interval An interval whose endpoints are binary rational numbers
a, b such that a = m/2k, b = (m + 1)/2k, k and m being positive or
negative integers, or zero.

(weakly) isolating interval An interval I is called a (weakly) isolating inter-
val for a simple real root α of the polynomial A if I contains α but no
other root of A.
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strongly isolating interval An isolating interval for a root α of a polynomial
A is said to be strongly isolating, if the closure of I is also an isolating
interval for α.

disjoint intervals Intervals are called disjoint if the sets they designate are
disjoint.

strongly disjoint intervals Disjoint intervals are called strongly disjoint if
their closures are disjoint.

inflectionless isolating interval An interval I with binary rational endpoints
which is an isolating interval for a real root x0 of A(x) is called inflection-
less if the derivative A′(x) is monotone in I, i.e. if A′′(x) does not have a
root in I except possibly x0.

inflectionless isolation list A list of inflectionless isolating intervals.

8.5 Functions

High Precision Calculation

L <- IPRCH(A,I,k) Integral polynomial real root calculation, high pre-
cision. Input: any polynomial. Output: all roots or all roots in an
interval.

L <- IPRCHS(A,I,k) Integral polynomial real root calculation, high-
precision special. Input: polynomial which does not have common
roots with its first or second derivative. Output: all roots or all roots
in an interval.

IPRCNP(A,I; sp,spp,J) Integral polynomial real root calculation, New-
ton method preparation.

J <- IPRCN1(A,I,s,k) Integral polynomial real root calculation, 1 root.

Coefficient Sign Variation Method

L <- IPRIM(A) Integral polynomial real root isolation, modified Uspen-
sky method.

L <- IPRIMO(A,Ap,I) Integral polynomial real root isolation, modified
Uspensky method, open interval.

L <- IPRIMS(A,Ap,I) Integral polynomial real root isolation, modified
Uspensky method, standard interval.

L <- IPRIMU(A) Integral polynomial real root isolation, modified Us-
pensky method, unit interval.

L <- IPRIMW(A) Integral polynomial real root isolation, modified Us-
pensky method, weakly disjoint intervals.
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L <- IPSRM(A,I) Integral polynomial strong real root isolation, modi-
fied Uspensky method. Input: an integral polynomial without multi-
ple roots and no roots in common with its second derivative. Output:
an inflectionless isolation list for all roots or all roots in an interval.

L <- IPSRMS(A,I) Integral polynomial strong real root isolation, mod-
ified Uspensky method, standard interval.

Rolle’s Theorem

L <- IPRICL(A) Integral polynomial real root isolation, Collins-Loos al-
gorithm.

Sturm’s method

IPRIST Integral polynomial real root isolation using a Sturm sequence.

Special

r <- IUPRLP(A) Integral univariate polynomial, root of a linear poly-
nomial.

b <- IUPRB(A) Integral univariate polynomial root bound. Input: a
univariate integral polynomial A. Output: a binary rational number,
power of 2, which is greater than the absolute value of any root of A.

M <- IPLRRI(L) Integral polynomial list real root isolation. Input: a
list of integral polynomials without multiple roots and without com-
mon roots. Output: a list of strongly disjoint isolating intervals in
ascending order for all the roots of all the input polynomials – each
interval is listed with the polynomial of which it isolates a root.

Is <- IUPIIR(A,I) Integral univariate polynomial isolating interval re-
finement.

Low-Level Functions

IPRRS(A1,A2,I1,I2; Is1,Is2,s) Integral polynomial real root separa-
tion.

IPRRLS(A1,A2,L1,L2; Ls1,Ls2) Integral polynomial real root list sep-
aration.

L <- IPRRII(A,Ap,d,Lp) Integral polynomial real root isolation induc-
tion.

Is <- IPRRRI(A,B,I,s1,t1) Integral polynomial relative real root iso-
lation.

J <- IPSIFI(A,I) Integral polynomial standard isolating interval from
isolating interval.

IPIIWS(A,L) Integral polynomial isolating intervals weakly disjoint to
strongly disjoint.
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IPPNPRS Integral polynomial primitive negative polynomial remainder se-
quence.

k <- IPVCHT(A) Integral polynomial variations after circle to half-plane
transformation.

B <- IUPCHT(A) Integral univariate polynomial circle to half-plane trans-
formation.

n <- IUPVAR(A) Integral univariate polynomial variations.

v <- IUPVOI(A,I) Integral univariate polynomial, variations for open
interval.

v <- IUPVSI(A,I) Integral univariate polynomial, variations for stan-
dard interval.

51



Chapter 9

Algebraic Number
Arithmetic

9.1 Mathematical Preliminaries

An algebraic number is a number that satisfies a rational polynomial equation.
An algebraic number α is represented by an irreducible polynomial, A(x), such
thatA(α) = 0. A real algebraic number, is a real number that is also an algebraic
number, and it is represented by an irreducible polynomial and an isolating
interval to distinguish it from its real conjugates. The collection of algebraic
numbers forms a field containing the real algebraic numbers as a subfield. Since
A(x) is irreducible, the extension field Q(α) obtained by adjoining α to the
rational number field is isomorphic to Q[x]/(A(x)) and elements of Q(α) are
represented by polynomials whose degrees are less than the degree of A(x). If
α is real then Q(α) is an ordered field and sign computations can be performed
using the isolating interval for α.

9.2 Purpose

The SACLIB algebraic number arithmetic package provides algorithms for per-
forming arithmetic with algebraic numbers, with elements of an algebraic num-
ber field, and with polynomials whose coefficients belong to an algebraic number
field. There are algorithms for computing the gcd of two polynomials with alge-
braic number coefficients and for factoring a polynomial with algebraic number
coefficients. Algorithms are also provided for performing sign computations in a
real algebraic number field and for isolating the real roots of a polynomial with
real algebraic number coefficients.
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9.3 Methods and Algorithms

Algorithms for performing algebraic number arithmetic use resultant compu-
tations. Let A(x) =

∑m
i=0 aix

i = am
∏m
i=1(x − αi) be the integral minimal

polynomial for α = α1 and let B(y) =
∑n
j=0 bjy

j = bn
∏n
j=1(y − βj) be the

integral minimal polynomial for β = β1. The minimal polynomial for α + β
is a factor of resx(A(x), B(y − x)) and the minimal polynomial for α · β is a
factor of resx(A(x), xnB(y/x)). If α and β are real algebraic numbers, the par-
ticular factor can be found by using the isolating intervals for α and β. The
algorithms ANSUM and ANPROD use these ideas to perform addition and multipli-
cation in the field of real algebraic numbers. Subtraction and division can be
performed by negating and adding and inverting and multiplying respectively.
The minimal polynomial of −α is A(−x) and the minimal polynomial of 1/α is
xmA(1/x). These operations are provided by the algorithms IUPNT and PRT in
the polynomial arithmetic system.

Let Q(α) be the extension field of the rationals obtained by adjoining the
algebraic number α. Arithmetic in Q(α) is performed using the isomorphism
Q(α) ∼= Q[x]/(A(x)). Elements of Q(α) are represented by polynomials whose
degrees are less than the degree of the minimal polynomial of α and addition
and multiplication are performed using polynomial multiplication and addition
modulo the minimal polynomial. Inverses of elements of Q(α) are calculated by
using a resultant computation. If B(x) is the polynomial representing β = B(α)
and R = res(A(x), B(x)), then there exist polynomials S(x) and T (x) such that
A(x)S(x) + B(x)T (x) = R. Since the minimal polynomial A(x) is irreducible,
the resultant does not equal zero and B(α)−1 = T (α)/R. The algorithm AFINV

uses this approach to compute inverses of elements of Q(α).
If α ∈ I is a real algebraic number, then the field Q(α) can be ordered.

The algorithm AFSIGN computes the sign of an element of Q(α). The sign of
β = B(α) is determined by refining the isolating interval, I, for α until it can
be shown that B(y) does not contain any roots in I. If there are no roots of
B(y) in the isolating interval I, then the sign of B(α) is equal to the sign of
B(y) for any y ∈ I. The algorithm AFSIGN uses this approach and Descartes’
rule of signs to determine how much to refine I.

SACLIB provides algorithms for computing with polynomials whose coef-
ficients belong to an algebraic field Q(α). Besides basic arithmetic, there are
algorithms for polynomial gcd computation, factorization, and real root isola-
tion. The algorithm AFUPGC uses the monic PRS to compute the gcd of two
univariate polynomials. The algorithms AFUPGS, AFUPSF, and AFUPSB use this
algorithm to compute greatest squarefree divisors, squarefree factorization, and
a squarefree basis respectively. Algorithms are also provided to isolate the real
roots of a polynomial whose coefficients belong to a real algebraic number field.
Both the Collins-Loos algorithm (AFUPRICL) and the coefficient sign variation
method (AFUPRICS) are provided.

An algebraic number may arise as a solution of a polynomial with algebraic
number coefficients. The norm can be used to find a defining polynomial with
integral coefficients. Let B(α, y) be a polynomial with coefficients in Q(α).
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The norm of B(α, y) is the rational polynomial Norm(Bα, y)) =
∏m
i=1B(αi, y).

The norm can be computed with the resultant computation resx(A(x), B(x, y))
which produces a polynomial similar to the norm. The algorithm AFPNORM uses
this approach to compute the norm. The algorithm AFPNIP returns the list of
irreducible factors of the norm. If α is a real algebraic number, the isolating
interval for α can be used to select the appropriate irreducible factor of the
norm. This is done by the algorithm AFUPMPR.

As a special case, the minimal polynomial of β = B(α) can be computed
by calculating the norm of the linear polynomial y − B(α). Since y − B(α) is
irreducible the norm is a power of an irreducible polynomial, and the minimal
polynomial can be obtained with a greatest squarefree divisor computation. The
algorithm ANFAF uses this approach to convert the representation of an element
of an algebraic number field to its representation as an algebraic number.

The algorithm AFUPFAC uses the norm to factor a squarefree polynomial
whose coefficients belong to an algebraic number field. LetB∗(y) = Norm(B(α, y)),
and let

∏t
i=1B

∗
i (y) be the irreducible factorization of B∗(y). Provided the norm

is squarefree the irreducible factorization of B(α, y) =
∏t
i=1 gcd(B(α, y), B∗i (y)).

If B∗(y) is not squarefree, a translation, B(α, y−sα), is computed whose norm is
squarefree. The factorization of B(α, y) can be recovered from the factorization
of the translated polynomial.

SACLIB also provides an algorithm for computing a primitive element of a
multiple extension field. Let α and β be algebraic numbers and consider the
multiple extension field Q(α, β). The primitive element theorem states that
there exists a primitive element γ such that Q(α, β) = Q(γ). The algorithms
ANPEDE and ANREPE provide a constructive version of this theorem.

References: R. G. K. Loos: Computing in Algebraic Extensions, In “Com-
puter Algebra, Symbolic and Algebraic Computation”, pages 173–187.

Jeremy R. Johnson: Algorithms for polynomial real root isolation. Technical
Research Report OSU-CISRC-8/91-TR21, 1991. The Ohio State University,
2036 Neil Avenue Mall, Columbus, Ohio 43210, Phone: 614-292-5813.

Barry Trager: Algebraic Factoring and Rational Function Integration, In
“SYMSAC ’76: Proceedings of the 1976 ACM Symposium on Symbolic and
Algebraic Computation”, pages 219–226.

9.4 Definitions of Terms

algebraic number A solution of a rational polynomial equation. An algebraic
number α is represented either by a rational minimal polynomial or an
integral minimal polynomial.

algebraic integer A solution of a monic integral polynomial equation.

real algebraic number A real number that is also an algebraic number. A
real algebraic number is represented by an integral minimal polynomial
and an acceptable isolating interval.
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rational minimal polynomial The rational minimal polynomial for an alge-
braic number α is the unique monic, irreducible rational polynomial A(x)
such that A(α) = 0.

integral minimal polynomial The integral minimal polynomial for an alge-
braic number α is the unique, positive, primitive, integral polynomial A(x)
such that A(α) = 0.

acceptable isolating interval an isolating interval, I, for a real algebraic
number α, where I is either a left-open and right-closed standard interval
or a one-point interval.

algebraic field element an element of the extension field Q(α). β ∈ Q(α)
is represented by a list (r,B(y)), where β = rB(α) and r is a rational
number and B(y) is a primitive integral polynomial whose degree is less
than the degree of the minimal polynomial of α.

9.5 Representation

There are several different representations for elements of Q(α). Let A(x) be the
integral minimal polynomial for an algebraic number α with deg(A(x)) = m.
An element β of Q(α) can be uniquely represented by:

1. A rational polynomial, B(x), whose degree is less than m and such that
B(α) = β.

2. A pair (r,B(x)), where r is a rational number, B(x) is a positive primitive
integral polynomial, and β = B(α) = rB(α).

The default representation is (2). The algorithm AFCR converts representation
(1) to (2), and the algorithm AFICR converts representation (2) to (1).

Let Z[α] denote the Z-module with basis 1, α, α2, . . . , αm−1. Elements of
Z[α] are represented by integral polynomials whose degree is less than m. If
α is an algebraic integer, then Z[α] is a ring. If an algorithm does not require
division or reduction by the minimal polynomial, operations in Q(α) can be
replaced with operations in Z[α]. When this is possible, efficiency is gained by
using the integral representation Z[α]. An important example is polynomial
real root isolation. Let P (α, y) be a polynomial in Q(α)[y] and let d be the
greatest common divisor of the denominators of the coefficients of P (α, y). Then
dP (α, y) is in Z[α, y] and has the same roots as P (α, y). Moreover, the coefficient
sign variation method for real root isolation only uses operations which can be
performed in Z[α].

The name of algorithms which operate in Z[α] begin with the letters AM. The
algorithm AMPSAFP(r, P ) computes a polynomial P ∈ Z[α,X1, . . . , Xr] which is
similar to the polynomial P ∈ Q(α)[X1, . . . , Xr]. The algorithm AIFAN com-
putes an algebraic integer α such that Q(α) = Q(α).
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9.6 Functions

Algebraic Number Arithmetic

ANIIPE(M,I,N,J,t,L; S,k,K) Algebraic number isolating interval for
a primitive element

ANPROD(A,I,B,J; C,K) Algebraic number product

ANSUM(A,I,B,J;C,K) Algebraic number sum

ANPEDE(A,B;C,t) Algebraic number primitive element for a double ex-
tension

b <- ANREPE(M,A,B,t) Algebraic number represent element of a prim-
itive extension

Algebraic Field Arithmetic

c <- AFDIF(a,b) Algebraic number field element difference

b <- AFINV(M,a) Algebraic number field element inverse

b <- AFNEG(a) Algebraic number field negative

c <- AFPROD(P,a,b) Algebraic number field element product

c <- AFQ(M,a,b) Algebraic number field quotient

c <- AFSUM(a,b) Algebraic number field element sum

Real Algebraic Number Sign and Order Computation

t <- AFCOMP(M,I,a,b) Algebraic number field comparison

s <- AFSIGN(M,I,a) Algebraic number field sign

s <- AMSIGN(M,I,a) Algebraic module sign

AMSIGNIR(M,I,a;s,Is) Algebraic module sign, interval refinement

Algebraic Polynomial Arithmetic

C <- AFPAFP(r,M,a,B) Algebraic number field polynomial algebraic num-
ber field element product

C <- AFPAFQ(r,M,A,b) Algebraic number field polynomial algebraic num-
ber field element quotient

C <- AFPDIF(r,A,B) Algebraic number field polynomial difference

Ap <- AFPMON(r,M,A) Algebraic number field polynomial monic

B <- AFPNEG(r,A) Algebraic number field polynomial negative

C <- AFPPR(r,M,A,B) Algebraic number field polynomial product

AFPQR(r,M,A,B; Q,R) Algebraic number field polynomial quotient and
remainder

C <- AFPSUM(r,A,B) Algebraic number field polynomial sum

56



Algebraic Polynomial Differentiation and Integration

B <- AFPDMV(r,M,A) Algebraic number field polynomial derivative, main
variable

B <- AFPINT(r,M,A,b) Algebraic number field polynomial integration

B <- AMPDMV(r,M,A) Algebraic module polynomial derivative, main vari-
able

Algebraic Polynomial Factorization

F <- AFUPFAC(M,B) Algebraic number field univariate polynomial fac-
torization

L <- AFUPSF(M,A) Algebraic number field univariate polynomial square-
free factorization

Algebraic Polynomial Greatest Common Divisors

AFUPGC(M,A,B; C,Ab,Bb) Algebraic number field univariate polynomial
greatest common divisor and cofactors

B <- AFUPGS(M,A) Algebraic number field polynomial greatest square-
free divisor

Algebraic Polynomial Norm Computation

L <- AFPNIP(M,A) Algebraic number field polynomial normalize to in-
tegral polynomial

Bs <- AFPNORM(r,M,B) Algebraic number field polynomial norm.

Algebraic Polynomial Substitution and Evaluation

C <- AFPCMV(r,M,A,B) Algebraic number field polynomial composition
in main variable

B <- AFPEMV(r,M,A,a) Algebraic number field polynomial evaluation
of main variable

B <- AFPEV(r,M,A,i,a) Algebraic number field polynomial evaluation

B <- AFPME(r,M,A,b) Algebraic number field polynomial multiple eval-
uation

s <- AFUPSR(M,I,A,c) Algebraic number field univariate polynomial,
sign at a rational point

s <- AMUPBES(M,I,A,c) Algebraic module univariate polynomial, bi-
nary rational evaluation of sign.

s <- AMUPSR(M,I,A,c) Algebraic module univariate polynomial, sign
at a rational point

B <- IPAFME(r,M,A,b) Integral polynomial, algebraic number field mul-
tiple evaluation
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B <- RPAFME(r,M,A,b) Rational polynomial, algebraic number field mul-
tiple evaluation

Algebraic Polynomial Transformations

B <- AMUPBHT(A,k) Algebraic module univariate polynomial binary ho-
mothetic transformation

B <- AMUPNT(A) Algebraic module univariate polynomial negative trans-
formation

B <- AMUPTR(A,h) Algebraic module univariate polynomial translation

B <- AMUPTR1(A) Algebraic module univariate polynomial translation
by 1

Real Algebraic Polynomial Real Root Isolation

N <- AFUPBRI(M,I,L) Algebraic number field univariate polynomial ba-
sis real root isolation

AFUPMPR(M,I,B,J,L; Js,j) Algebraic number field polynomial mini-
mal polynomial of a real root

b <- AFUPRB(M,I,A) Algebraic number field univariate polynomial root
bound

L <- AFUPRICL(M,I,A) Algebraic number field univariate polynomial
real root isolation, Collins-Loos algorithm

L <- AFUPRICS(M,I,A) Algebraic number field univariate polynomial
real root isolation, coefficient sign variation method

a <- AFUPRL(M,A) Algebraic number field univariate polynomial, root
of a linear polynomial

n <- AFUPVAR(M,I,A) Algebraic number field univariate polynomial vari-
ations

AMUPMPR(M,I,B,J,L; Js,j) Algebraic module univariate polynomial min-
imal polynomial of a real root

L <- AMUPRICS(M,I,A) Algebraic module univariate polynomial real root
isolation, coefficient sign variation method

AMUPRICSW(M,I,A;L,Is) Algebraic module univariate polynomial real
root isolation, coefficient sign variation method, weakly disjoint in-
tervals

AMUPRINCS(M,I,A,a,b;L,Is) Algebraic module univariate polynomial
root isolation, normalized coefficient sign variation method

AMUPVARIR(M,I,A; n,J) Algebraic module univariate polynomial vari-
ations, interval refinement

Algebraic Polynomial Real Root Refinement
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Js <- AFUPIIR(M,I,B,J) Algebraic number field polynomial isolating
interval refinement

AFUPIIWS(M,I,A,L) Algebraic number field univariate polynomial iso-
lating intervals weakly disjoint to strongly disjoint

AFUPRLS(M,I,A1,A2,L1,L2; Ls1,Ls2) Algebraic number field univari-
ate polynomial real root list separation

Js <- AFUPRRI(M,I,A,B,J,s1,t1) Algebraic number field univariate
polynomial relative real root isolation

AFUPRRS(M,I,A1,A2,I1,I2; Is1,Is2,s) Algebraic number field uni-
variate polynomial real root separation

Js <- AMUPIIR(M,I,B,J) Algebraic module polynomial isolating inter-
val refinement

AMUPIIWS(M,I,A,L) Algebraic module univariate polynomial isolating
intervals weakly disjoint to strongly disjoint

AMUPRLS(M,I,A1,A2,L1,L2; Ls1,Ls2) Algebraic module univariate poly-
nomial real root list separation

AMUPRRS(M,I,A1,A2,I1,I2; Is1,Is2,s) Algebraic module univariate
polynomial real root separation

Conversion

Ap <- AFCR(A) Algebraic number field element convert representation

a <- AFFINT(M) Algebraic number field element from integer

a <- AFFRN(R) Algebraic number field element from rational number

Ap <- AFICR(A) Algebraic number field element inverse convert repre-
sentation

B <- AFPCR(r,A) Algebraic number field polynomial convert represen-
tation

B <- AFPFIP(r,A) Algebraic number field polynomial from integral poly-
nomial

B <- AFPFRP(r,A) Algebraic number field polynomial from rational poly-
nomial

B <- AFPICR(r,A) Algebraic number field polynomial inverse convert
representation

AIFAN(M; mh,Mh) Algebraic integer from algebraic number

B <- AMPSAFP(r,A) Algebraic module polynomial similar to algebraic
field polynomial

ANFAF(M,I,a; N,J) Algebraic number from algebraic number field ele-
ment

Input/Output
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AFDWRITE(M,I,b,n) Algebraic number field, decimal write

AFPWRITE(r,A,V,v) Algebraic number field polynomial write

AFUPWRITE(A,vA,vc) Algebraic number field univariate polynomial write

AFWRITE(A,v) Algebraic field element write

ANDWRITE(M,I,n) Algebraic number decimal write
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Appendix A

Calling SACLIB Functions
from C

This chapter describes how the SACLIB environment has to be set up for
SACLIB functions to work correctly. We will start with a quick introduction to
the basics using a sample program in Section A.1. In Section A.2 we describe
the steps necessary for combining dynamic allocation with SACLIB list process-
ing. Special care has to be taken with SACLIB data structures addressed by
global variables. This is explained in Section A.3. Finally, Section A.4 describes
how SACLIB can be initialized without using sacMain(), and Section A.5 gives
some information on error handling in SACLIB.

A.1 A Sample Program

Figure A.1 shows the basic layout of a program using SACLIB functions.
Note that the only thing which is different from ordinary C programs are the

#include "saclib.h" statement and the fact that the main routine is called
sacMain instead of main.

One important point is that the argc and argv variables passed to sacMain

will not contain all command line parameters. Parameters starting with “+” are
filtered out and used for initializing some SACLIB global variables. Information
on these parameters is written out when a program is called with the parameter
“+h”.

In Section A.4 we give some more details on the initializations done before
sacMain is called.

A.2 Dynamic Memory Allocation in SACLIB

When one needs to randomly (as opposed to sequentially) access elements in a
data structure, one may prefer to use arrays instead of lists. If the size and the
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#include "saclib.h"

int sacMain(argc, argv)

int argc;

char **argv;

{

Word I1,I2,I3,t;

Word i,n;

Step1: /* Input. */

SWRITE("Please enter the first integer: "); I1 = IREAD();

SWRITE("Please enter the second integer: "); I2 = IREAD();

SWRITE("How many iterations? "); n = GREAD();

Step2: /* Processing. */

t = CLOCK();

for (i=0; i<n; i++)

I3 = IPROD(I1,I2);

t = CLOCK() - t;

Step3: /* Output. */

IWRITE(I1); SWRITE(" * "); IWRITE(I2); SWRITE(" =\n"); IWRITE(I3);

SWRITE("\nRepeating the above computation "); GWRITE(n);

SWRITE(" times took\n"); GWRITE(t); SWRITE(" milliseconds.\n");

Return:

return(0);

}

Figure A.1: A sample program.

number of these arrays is determined at runtime, they have to be dynamically
allocated. Furthermore, one may need to mix them with lists, in which case the
garbage collector must be able to handle them.

The concept of the GCA (Garbage Collected Array) handle provides this
kind of dynamic data structure.

Nevertheless it is recommended to first check whether it might be possible to
reformulate the algorithm so that lists can be used instead of arrays. In many
cases one uses arrays only because one is more familiar with them, although
lists may be better suited to the problem at hand.

The following functions are to be used for initializing GCA handles and for
accessing the elements of the corresponding arrays:

A <- GCAMALLOC(s,f) is used for memory allocation. It takes a BETA-digit
giving the size of the array in Words as input, uses malloc() to allocate

62



the array, and returns a GCA handle (a Word). This GCA handle is not
a C pointer to the array so you cannot address the elements of the array
in C-style using this handle. Rather, it can be used to store a reference to
the array in SACLIB lists.

The second parameter to GCAMALLOC() may take one of the following two
values (which are constants defined in “saclib.h”):

• GC CHECK . . . This will cause the garbage collector to check the con-
tents of the array for list or GCA handles.

• GC NO CHECK . . . With this setting, the garbage collector will ignore
the contents of the array. Therefore, GC NO CHECK should only be
used if it is guaranteed that the array will never contain list or GCA
handles (e.g. if it is used to store BETA-digits).

If you are not sure which one to choose, use GC CHECK, as inappropriate
use of GC NO CHECK may cause the program to crash.

GCASET(A,i,a) sets the i-th element of the array referenced by the GCA handle
A to the value a. Here, a can be any Word.

a <- GCAGET(A,i) returns the value of the i-th element of the array referenced
by the GCA handle A.

Figure A.2 shows how the mechanism of GCA handles is used.
The code inside the do/until loop reads an integer I, allocates an array A of

10 Words, stores the value I ∗ (i + 1) at position i in the array using GCASET(),
and then appends a new element containing the GCA handle of the array A to
the beginning of the list L.

Always remember that GCA handles must be used whenever you want to
store references to SACLIB structures (i.e. lists) in dynamically allocated mem-
ory. Using the standard UNIX function malloc() may crash your program
sometime after a garbage collection or at least cause some strange bugs.

Furthermore, GCA handles are also implemented in such a way that they
can be used as input to list processing functions in places where objects are
regarded as data. E.g. in the COMP() function, a GCA handle can be used as the
first argument (the element to be appended to the list) but not as the second
argument (the list being appended to). Nevertheless note that the functions
LWRITE(), EXTENT(), and ORDER() are not defined for lists containing GCA
handles.

There are two more functions taking GCA handles as input. It is not rec-
ommended to call these functions directly. They are listed here only for com-
pleteness.

p <- GCA2PTR(A) gives access to the array referenced by a GCA handle. It
takes a GCA handle as input and returns a C pointer to the array of Words
allocated by a previous call to GCAMALLOC(). This C pointer must not be
used as input to SACLIB functions or stored in SACLIB lists. Rather, it
can be used to address the elements of the array directly.
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.

.

.

Word A, L, I,i;

.

.

.

Step2: /* Here we do some allocation. */

L = NIL;

do {

SWRITE("Enter an integer (0 to quit): "); I = IREAD();

A = GCAMALLOC(10,GC_CHECK);

for (i=0; i<10; i++)

GCASET(A,i,IDPR(I,i+1));

L = COMP(A,L);

}

until (ISZERO(I));

.

.

.

Figure A.2: Sample code using GCA handles.

Note that this is not the recommended way of accessing array elements. If
you overwrite the variable containing the GCA handle (e.g. an optimizing
compiler might remove it if it is not used anymore), you can still access the
array using the C pointer, but the garbage collector will free the allocated
memory the next time it is invoked.

GCAFREE(A) can be used to explicitly free the memory allocated by GCAMALLOC().
It takes a GCA handle as input which becomes invalid after the call.

You should consider calling GCAFREE() only in cases where you are sure
you will not need the memory referenced by a GCA handle any more and
want to deallocate it immediately instead of putting this off until the next
garbage collection or until the SACLIB cleanup.

A.3 Declaring Global Variables to SACLIB

If you are using global variables, arrays, or structures containing SACLIB list
or GCA handles other than those defined within SACLIB (in “external.c”), you
have to make them visible to the garbage collector. This is done by the function
GCGLOBAL().

Figure A.3 shows how these macros are used:
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#include "saclib.h"

Word GL = NIL;

Word GA = NIL;

char buffer[81];

int flag;

int sacMain(argc, argv)

int argc;

char **argv;

{

... /* Variable declarations. */

Step1: /* Declare global variables. */

GCGLOBAL(&GL);

GCGLOBAL(&GA);

Step2: /* Initialize global variables. */

GA = GCAMALLOC(10,GC_CHECK);

.

.

.

Figure A.3: Declaring global variables.

First two global variables GL and GA of type Word, a global array buffer of
81 characters, and a global variable flag of type int are declared.

The variables GL and GA are declared to the garbage collector by calls to
GCGLOBAL() before they are initialized. Note that for the variables buffer and
flag this is not necessary because they will not hold SACLIB list or GCA
handles at any time during program execution.

Calling GCGLOBAL on a pointer to a global variable tells the garbage collector
not to free cells or arrays referenced by the corresponding variable. You should
be careful about not missing any global variables which ought to be declared:
while declaring too much does not really matter, declaring too little will cause
weird bugs and crashes . . .

A.4 Initializing SACLIB by Hand

If it is desired to have complete control over command line parameters or if
SACLIB is used only as part of some bigger application, then the necessary
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initializations can also be done directly without using sacMain().
There are three functions which are of interest:

ARGSACLIB(argc,argv;ac,av) does argument processing for SACLIB command
line arguments. These must start with a “+” and are used to set various
global variables. The argument “+h” causes a usage message to be printed
(by INFOSACLIB()). Then the program is aborted.

ARGSACLIB takes the argc and argv parameters of main() as input. It
returns the number of non-SACLIB command line arguments in ac and a
pointer to an array of non-SACLIB command line arguments in av. This
means that the output of ARGSACLIB() is similar to argc and argv with
the exception that all arguments starting with “+” have been removed.

BEGINSACLIB(p) initializes SACLIB by allocating memory, setting the values of
various global variables, etc. It must be passed the address of a variable
located on the stack before any variable containing SACLIB structures
such as lists or GCA handles. One variable which fulfills this requirement
is argc, for example.

ENDSACLIB(f) frees the memory allocated by BEGINSACLIB(). It must be
passed one of the following values (which are constants defined in “saclib.h”):

• SAC FREEMEM . . . This will cause it to also free all remaining memory
allocated by GCAMALLOC().

• SAC KEEPMEM . . . This will cause it not to free the remaining memory
allocated by GCAMALLOC(). Nevertheless, all GCA handles become
invalid after ENDSACLIB() has been called, so the memory can only
be accessed by C pointers which were initialized by calls to GCA2PTR()

before calling ENDSACLIB(). Furthermore, if any of the arrays con-
tains list or GCA handles, these will also become invalid, so keeping
the allocated memory only makes sense when the arrays contain BETA-
or GAMMA-digits.

Deallocation then has to be done by the standard UNIX function
free(), because GCAFREE() only works when the SACLIB environ-
ment is valid.

Figure A.4 gives an example of how the SACLIB environment can be initial-
ized, used, and removed inside a function.

The function symbolic computation() in this example encapsulates SACLIB
as part of some bigger application whose main routine is main() instead of
sacMain(). From Step 2 on the SACLIB environment is initialized and any
SACLIB function may be used. Outside the area enclosed by BEGINSACLIB /

ENDSACLIB, calls to SACLIB functions may crash the program.
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#include "saclib.h"

void symbolic_computation()

{

Word stack;

Step1: /* Initialise SACLIB. */

BEGINSACLIB(&stack);

Step2: /* Use SACLIB. */

.

.

.

Step3: /* Remove SACLIB. */

ENDSACLIB(SAC_FREEMEM);

}

Figure A.4: Sample code for initializing SACLIB by hand.

A.5 SACLIB Error Handling

SACLIB functions do not check whether the parameters passed to them are
correct and fulfill their input specifications. Calling a function with invalid
inputs will most probably cause the program to crash instead of aborting in a
controlled way.

Nevertheless, there are situations where SACLIB functions may fail and exit
the program cleanly with an error message. For example, this is the case when
an input functions discovers a syntax error.

All error handling (i.e. writing a message and aborting the program) is done
by the function FAIL(). If some more sophisticated error processing is desired,
the simplest way is to replace it by a custom written function.

A.6 Compiling

The SACLIB header files must be visible to the compiler and the compiled
SACLIB library must be linked. How this is done is explained in the “Addendum
to the SACLIB User’s Guide”, which should be supplied by the person installing
SACLIB.

A point worth mentioning is the fact that several SACLIB functions are
also defined as macros. By default, the macro versions are used, but there is a
constant for switching on the C function versions: NO SACLIB MACROS switches
off all macros except for FIRST, RED, SFIRST, SRED, ISNIL, GCASET, GCAGET.
These elementary list and GCA functions are always defined as macros.
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If you want to use this constant, you must add the statement

#define NO SACLIB MACROS

before you include the file “saclib.h”.
Alternatively, you can use the “-D” option of the C compiler (see the “Ad-

dendum to the SACLIB User’s Guide” for more information).
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Appendix B

ISAC: An Interactive
Interface to SACLIB

B.1 What is ISAC?

ISAC is a small experimental interactive interface to SACLIB, allowing simple
read--eval--write cycles of interaction.

The system is designed and implemented in the most straightforward way,
so that its source code can be used as an example or a tutorial for those who
want to quickly write an interactive test environment for their SACLIB based
functions or intend to develop professional interfaces to SACLIB.

B.2 Supported SACLIB Algorithms

All the SACLIB library algorithms and macros are accessible. NIL and BETA

are available as constants.

B.3 Command Line Options

ISAC takes the standard SACLIB command line options for initializing various
global variables. In order to find out what is available, issue the command

isac +h

B.4 Interface Functionality

An ISAC session consists of one or more statements. Every statement must end
with a semicolon ‘;’. A statement can be one of the three kinds:

• command
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• call

• assignment

The commands supported in this version are:

quit; For quitting the session.

vars; For displaying the contents of the variables. Val-
ues are displayed in internal SACLIB format.

help [algName]; For displaying a general help or an algorithm.
For example, in order to display the algorithm
IPROD, issue the the command: help IPROD;

view algName; For displaying an algorithm with the editor vi(1).

save fileName; For saving the current state of the session (i.e.
the variable binding) to a file.

restore fileName; For restoring the state of a session from a file.

A call statement is a call to any procedures or functions in the SACLIB library.
For example,

IPFAC(r,A; s,c,F);

IPWRITE(r,IPSUM(r,A,B),V);

An assignment statement is of the form:

var := expression;

For example,

A := IPROD(a,ISUM(b,c));

a := 2 * 3 + 4;

a := 3 % 2;

B.5 Interface Grammar

Below we give a context-free grammar for a session. We have followed the
following conventions:

• Upper-case strings and quoted strings denote tokens,

• Lower-case strings denote non-terminals.

session

: statement

| session statement

;
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statement

: command ’;’

| proc_call ’;’

| assignment ’;’

;

command

: IDENT

| IDENT CMDARGS

;

proc_call

: IDENT ’(’ proc_arg_star ’)’

;

assignment

: IDENT ’:=’ expr

;

proc_arg_star

: val_star

| val_star ’;’ ref_star

;

val_star

: /* empty */

| val_plus

;

val_plus

: expr

| val_plus ’,’ expr

;

ref_star

: /* empty */

| ref_plus

;

ref_plus

: ref

| ref_plus ’,’ ref

;

ref
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: IDENT

expr

: expr ’+’ expr

| expr ’-’ expr

| expr ’*’ expr

| expr ’/’ expr

| expr ’%’ expr

| ’+’ expr

| ’-’ expr

| ’(’ expr ’)’

| func_call

| atom

;

func_call

: IDENT ’(’ func_arg_star ’)’

;

func_arg_star

: val_star

;

atom

: IDENT

| INTEGER

;
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Appendix C

Notes on the Internal
Workings of SACLIB

C.1 Lists, GCA Handles, and Garbage Collec-
tion

C.1.1 Implementation of Lists

When SACLIB is initialised, the array SPACE containing NU+1 Words is allocated
from the heap. This array is used as the memory space for list processing. Lists
are built from cells, which are pairs of consecutive Words the first of which is at
an odd position in the SPACE array. List handles (“pointers” to lists) are defined
to be BETA plus the index of the first cell of the list in the SPACE array with the
handle of the empty list being NIL (which is equal to BETA). Figure C.1 shows
the structure of the SPACE array.

SPACE��
�*

p p p
Value of the
SACLIB
list handle: BETA + 0 1 3 5

� �� �
cell
� �� �

cell
� �� �

cell

NU-3 NU-1

� �� �
cell
� �� �

cell

Figure C.1: The SPACE array.

The first Word of each cell is used to store the handle of the next cell in the
list (i.e. the value returned by RED()), while the second Word contains the data
of the list element represented by the cell (i.e. the value returned by FIRST()).
Figure C.2 gives a graphical representation of the cell structure for a sample
list. The arrows stand for list handles.

As already mentioned in Chapter 2, atoms are required to be integers a
with −BETA < a < BETA. This allows the garbage collector and other functions
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L
?p p p p p pp p p p p pp p p p p pp p p p p pp p p p p pq ?q ? q ?

1 NIL 8 9 NIL 6q
6

Figure C.2: The cell structure of the list L = (1, (9, 6), 8).

operating on objects to decide whether a variable of type Word contains an atom
or a list handle. Note that values less or equal −BETA are legal only during
garbage collection while values greater than BETA + NU are used for referencing
other garbage collected structures.

The Words of a cell adressed by a list handle L are SPACE[L − BETA] and
SPACE[L−BETA+1]. To simplify these computations, the C pointers SPACEB and
SPACEB1 are set to the memory addresses of SPACE[−BETA] and SPACE[−BETA+
1], respectively. This is used by the functions FIRST(L), which returns SPACEB1[L],
and RED(L), which returns SPACEB[L].

C.1.2 Implementation of GCA Handles

When SACLIB is initialised, the array GCASPACE containing NUp + 1 structures
of type GCArray is allocated. A GCA handle is defined to be BETApplus the
index of the corresponding GCArray structure in the GCASPACE array, with the
null handle being NIL.

The GCArray structure contains the following fields:

• next . . . a Word, used for linking empty GCArrays to the GCAAVAIL list
and for marking (see Section C.1.3).

• flag . . . a Word, set to one of GC CHECK and GC NO CHECK (see Section
C.1.3).

• len . . . a Word, the length of the array in Words.

• array . . . a C pointer to an array of Words of size len.

When GCAMALLOC()( is called, it takes the first GCArray from the GCAAVAIL

list and initializes its fields.
GCA2PTR() simply returns the C pointer in the array field.
GCAFREE() deallocates the memory addressed by the array field, sets all

fields to zero, and links the GCArray to the beginning of the GCAAVAIL list.

C.1.3 The Garbage Collector

Garbage collection is invoked when COMP() or GCAMALLOC() call GC() in the case
of AVAIL or GCAAVAIL being NIL. The garbage collector consists of two parts:

• The function GC() is system dependent. It must ensure that the contents
of all processor registers are pushed onto the stack and pass alignment
information and the address of the end of the stack to GCSI().
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• GCSI() is the system independent part of the garbage collector. It uses a
mark-and-sweep method for identifying unused cells:

Marking: The processor registers, the system stack, and the variables
and GCA arrays to which pointers are stored in the GCGLOBALS list are
searched for non-NIL list and GCA handles. All the cells accessible
from these handles are marked by a call to MARK().

If a list handle is found, this function traverses the cells of the list,
marking them by negating the contents of their first Word. If the
second Word of a cell contains a list or GCA handle, MARK() calls
itself recursively on this handle.

In case of a GCA handle, the GCA cell adressed by the handle is
marked by negating the contents of its next field. If the cell’s flag

field is not set to GC NO CHECK, the Words in the array pointed to by
the array field are searched for list or GCA handles with MARK()

calling itself recursively on valid handles.

Sweeping: In the sweep step, the AVAIL and GCAAVAIL lists are built:

Cells in SPACE whose first Word contains a positive value are linked to
the AVAIL list. If the first Word of a cell contains a negative value, it
is made positive again and the cell is not changed in any other way.

Cells in GCASPACE whose next field contains a positive value are linked
to the GCAAVAIL list and the array pointed to by the array field is
deallocated. If the next field contains a negative value, it is made
positive again and the cell is not changed in any other way.

If the AVAIL list contains no more than NU/RHO cells at the end of garbage
collection, an error message is written to the output stream and the program is
aborted.

C.2 Constants and Global Variables

This section lists SACLIB types, constants, and global variables. All types
and constants are defined in “saclib.h”, “sactypes.h”, and “sacsys.h”. External
variables are defined in “external.c” and declared as external in “saclib.h”.

The average user of SACLIB functions should not find it neccessary to deal
directly with any of these values (except for Word, BETA, and NIL, which are
also mentioned in other sections). If you modify any of the values listed below
without knowing what you are doing, you may either crash SACLIB or cause it
to produce false results, so please take care!

Notation: In the description below, pointer means a C pointer (i.e. an actual
memory address) and pointer to an array means a C pointer to the first element
of an array. List handle means a SACLIB list handle (i.e. an integer L with
BETA ≤ L < BETAp which is used as an index into the SPACEB and SPACEB1

arrays), and GCA handle means a handle for a garbage collected array (i.e.
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an integer A with BETAp ≤ A < BETApp which is used as an index into the
GCASPACEBp array). Cell means a SACLIB list cell (i.e. two consecutive Words
in the SPACE array, the first one of which has an odd index) and GCA cell means
a GCArray structure in the GCASPACE array.

In SACLIB only two low-level data structures are typechecked by the C
compiler1. These two typedefs are:

• Word . . . the basic type which in most installations of SACLIB will be the
same as a C int. Word is defined in “sysdep.h”.

• GCArray . . . a struct containing information on garbage collected arrays.
This is a SACLIB internal data structure defined in “sactypes.h”.

The following constants are defined in “sacsys.h” except for NIL, which is
defined in “saclib.h”:

• BETA . . . a Word, the value used to distinguish between atoms and lists.
This is also the base for the internal representation of large integers. BETA
must be a power of 2 such that 28 ≤ BETA and 3 ∗ BETA fits into a Word.
In most implementations where a Word is a standard C int with n bits,
the setting is BETA = 2n−3.

• BETA1 . . . a Word, BETA1 = BETA− 1.

• NIL . . . a Word, the empty list handle2.

• NU , NUp , NPRIME , NSMPRM , NPFDS , RHO , NPTR1 . . . Words, the ini-
tial values for the corresponding global variables.

The following flags are defined in “saclib.h”:

• GC CHECK / GC NO CHECK . . . Words, used for telling the garbage collec-
tor whether an array allocated by GCAMALLOC() will contain list or GCA
handles (and thus cannot be ignored in the mark phase).

• SAC KEEPMEM / SAC FREEMEM . . . Words, used when calling ENDSACLIB()

directly for requesting memory allocated by GCAMALLOC() to be kept /
deallocated.

Below we give a list of the SACLIB global variables as defined in “external.c”:

List processing and garbage collection:

• AVAIL . . . a Word, the list handle of the free list.

• GCGLOBALS . . . a Word, the list handle of the list of global variables.

1Lists, integers, polynomials, etc. are structures which are built at runtime. For these no
type checking is done so that the programmer has to make sure that there are no conflicts.

2This is equal to BETA. For historical reasons, in some SACLIB functions BETA is explicitly
used instead of NIL.
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• BACSTACK . . . a pointer to the beginning of the system stack.

• GCC . . . a Word, the number of garbage collections.

• GCAC . . . a Word, the number of GCA cells collected in all garbage
collections.

• GCCC . . . a Word, the number of cells collected in all garbage collec-
tions.

• GCM . . . a Word, if GCM is 1, a message is written to the output stream
each time the garbage collector is called.

• NU . . . a Word, one less than the size of the SPACE array in Words, i.e.
twice the number of cells in SPACE.

• RHO . . . a Word, the garbage collector aborts the program if no more
than NU/RHO cells were reclaimed.

• SPACEB . . . a pointer to an array of words, SPACEB = SPACE− BETA.

• SPACEB1 . . . a pointer to an array of words, SPACEB1 = SPACE −
BETA1.

• GCAAVAIL . . . a Word, the GCA handle of the free list of GCA cells.

• GCASPACE . . . a pointer to an array of GCArray structures, the mem-
ory space for GCA cells.

• GCASPACEBp . . . a pointer to an array of GCArray structures, GCASPACEBp =
GCASPACE− BETAp.

• NUp . . . a Word, one less than the number of GCArray structures in
the GCASPACE array.

• BETAp . . . a Word, the bound used to distinguish between list and
GCA handles. BETAp = BETA + NU + 1.

• BETApp . . . a Word, the upper bound on GCA GCA handles. BETApp =
BETAp + NUp + 1.

Timing:

• TAU . . . a Word, the time (in milliseconds) spent for garbage collec-
tions.

• TAU0 . . . a Word, the system time (in milliseconds) just before SACLIB
initialization.

• TAU1 . . . a Word, the system time (in milliseconds) immediately after
SACLIB initialization.

Integer arithmetic:

• DELTA . . . a Word, DELTA = 2bZETA/2c.

• EPSIL . . . a Word, EPSIL = 2dZETA/2e = BETA/DELTA.

• ETA . . . a Word, ETA = blog10 BETAc.
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• RINC . . . a Word, the increment for the random number generator.

• RMULT . . . a Word, the multiplier for the random number generator.

• RTERM . . . a Word, the last value produced by the random number
generator.

• TABP2 . . . a pointer to an array of Words, TABP2[i] = 2i−1 for 1 ≤ i ≤
ZETA.

• THETA . . . a Word, THETA = 10ETA.

• UZ210 . . . a Word, the list handle of the list of units of Z210.

• ZETA . . . a Word, ZETA = log2 BETA.

Prime numbers:

• NPFDS . . . a Word, the number of primes used by the SACLIB function
IUPFDS.

• NPRIME . . . a Word controlling the number of primes in PRIME.

• PRIME . . . a Word, the list handle of the list of primes between BETA−
NPRIME ∗ ZETA ∗ 7/5 and BETA.

• NSMPRM . . . a Word, the upper bound on the size of primes in SMPRM.

• SMPRM . . . a Word, the list handle of the list of primes < NSMPRM.

Miscellaneous:

• NPTR1 . . . a Word, the number of Words in the GCAPTR1 array.

• GCAPTR1 . . . a Word, the GCA handle of the array used by the function
IUPTR1.

Input/Output:

• LASTCHAR . . . a Word, the last character read from the input stream.
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IPDIF, 26
IPDMV, 27
IPDSCR, 42
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IPFRP, 28
IPFSD, 29
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IPTRMV, 28
IPTRUN, 29
IPVCHT, 51
IPWRITE, 29
IQ, 12
IQR, 12
IRAND, 13
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IREM, 12
IROOT, 12
ISATOM, 7
ISEG, 14
ISFPF, 46
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ISLIST, 7
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IUPTR1, 28
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IUSFPF, 46
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leading coefficient, 20
leading term, 19
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LELTI, 7
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LEROT, 8
LEXNEX, 8
LINS, 7
LINSRT, 8
list, 4

empty, 5
of characters, 20
of variables, 20

LIST1, 6
LIST10, 6
LIST2, 6
LIST3, 6
LIST4, 6
LIST5, 6
LMERGE, 8
LPERM, 8
LREAD, 9
LSRCH, 7
LWRITE, 9

main variable, 19
MAIPDE, 35
MAIPDM, 36
MAIPHM, 36
MAIPP, 36
MCPMV, 46
MDCRA, 15
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MDDIF, 15
MDEXP, 15
MDHOM, 15
MDINV, 15
MDLCRA, 15
MDNEG, 15
MDPROD, 15
MDQ, 15
MDRAN, 15
MDSUM, 15
MEMBER, 7
MIAIM, 36
MICINS, 36
MICS, 36
MIDCRA, 15
MIDIF, 15
MIEXP, 15
MIHOM, 15
MIINV, 15
MINEG, 15
MINNCT, 36
MIPDIF, 30
MIPFSM, 31
MIPHOM, 31
MIPIPR, 30
MIPISE, 46
MIPNEG, 30
MIPPR, 30
MIPRAN, 31
MIPROD, 15
MIPSUM, 30
MIQ, 15
MIRAN, 16
MISUM, 15
MIUPQR, 30
MIUPSE, 46
MMDDET, 36
MMDNSB, 35
MMPDMA, 36
MMPEV, 36
MMPIQR, 31
modular

digit, 11
integer, 11
integral polynomial, 19
polynomial, 19

symmetric, 11
monic polynomial, 20
MPDIF, 30
MPEMV, 31
MPEVAL, 31
MPEXP, 31
MPGCDC, 41
MPHOM, 31
MPINT, 31
MPIQH, 46
MPIQHL, 46
MPIQHS, 46
MPMDP, 30
MPMON, 31
MPNEG, 30
MPPROD, 30
MPPSR, 31
MPQ, 30
MPQR, 30
MPRAN, 31
MPRES, 43
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MPSUM, 30
MPUC, 31, 41
MPUCPP, 31, 41
MPUCS, 31, 42
MPUP, 30
MPUPP, 31, 42
MPUQ, 30
MUPBQP, 46
MUPDDF, 46
MUPDER, 31
MUPEGC, 43
MUPFBL, 45
MUPFS, 46
MUPGCD, 42
MUPHEG, 43
MUPRAN, 31
MUPRC, 43
MUPRES, 43
MUPSFF, 31, 42

name
of a variable, 20

negative, 12
non-negative, 11
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non-positive, 12
number

algebraic, 54
rational, 11
real algebraic, 54

object, 5
ORDER, 7
order

of a list, 5
of a polynomial, 19

OREAD, 9
OWRITE, 9

PAIR, 9
PBIN, 24
PCL, 26
PCONST, 25
PCPV, 26
PDBORD, 25
PDEG, 25
PDEGSV, 25
PDEGV, 25
PDPV, 25
PERMCY, 8
PERMR, 8
PFBRE, 24
PFDIP, 25, 33
PFDP, 26, 33
PICPV, 26
PINV, 26
PLBCF, 25
PLDCF, 24
PMDEG, 25
PMON, 24
PMPMV, 25
polynomial, 19

constant, 19
dense recursive representation, 19
integral, 19
integral minimal, 55
modular, 19
modular integral, 19
monic, 20
positive, 20
primitive, 20, 39

rational, 19
rational minimal, 55
sparse distributive representation,

18
sparse recursive representation, 18
squarefree, 20, 39

PORD, 25
positive, 11
positive polynomial, 20
PPERMV, 26
PRED, 24
primitive part, 39

univariate, 40
primitive polynomial, 20, 39
PRT, 25
PSDSV, 25
PTBCF, 25
PTMV, 26
PTV, 26
PUFP, 26
PUNT, 25

rational
number, 11
polynomial, 19

RED, 7
RED2, 7
RED3, 7
RED4, 7
REDI, 7
reductum

of a list, 5
of a polynomial, 19

RNABS, 16
RNBCR, 17
RNCEIL, 17
RNCOMP, 16
RNDEN, 16
RNDIF, 16
RNDWRITE, 17
RNFCL2, 17
RNFLOR, 17
RNINT, 16
RNINV, 16
RNMAX, 16
RNMIN, 16
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RNNEG, 16
RNNUM, 16
RNP2, 17
RNPROD, 16
RNQ, 16
RNRAND, 16
RNREAD, 16
RNRED, 16
RNSIGN, 16
RNSUM, 16
RNWRITE, 16
RPAFME, 58
RPBLGS, 32
RPDIF, 32
RPDMV, 32
RPDWRITE, 32
RPEMV, 32
RPEXPREAD, 32
RPFIP, 32
RPIMV, 32
RPMAIP, 32
RPNEG, 32
RPPROD, 32
RPQR, 32
RPREAD, 32
RPRNP, 32
RPSUM, 32
RPWRITE, 32
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