Point Cloud Library (PCL)
1.9.1
|
41 #ifndef PCL_SAMPLE_CONSENSUS_MODEL_NORMALSPHERE_H_
42 #define PCL_SAMPLE_CONSENSUS_MODEL_NORMALSPHERE_H_
44 #include <pcl/sample_consensus/sac_model.h>
45 #include <pcl/sample_consensus/sac_model_sphere.h>
46 #include <pcl/sample_consensus/model_types.h>
68 template <
typename Po
intT,
typename Po
intNT>
88 typedef boost::shared_ptr<SampleConsensusModelNormalSphere>
Ptr;
110 const std::vector<int> &indices,
130 const double threshold,
131 std::vector<int> &inliers);
140 const double threshold)
const;
148 std::vector<double> &distances)
const;
154 EIGEN_MAKE_ALIGNED_OPERATOR_NEW
164 isModelValid (
const Eigen::VectorXf &model_coefficients)
const;
169 #ifdef PCL_NO_PRECOMPILE
170 #include <pcl/sample_consensus/impl/sac_model_normal_sphere.hpp>
173 #endif //#ifndef PCL_SAMPLE_CONSENSUS_MODEL_NORMALSPHERE_H_
This file defines compatibility wrappers for low level I/O functions.
virtual int countWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold) const
Count all the points which respect the given model coefficients as inliers.
pcl::PointCloud< PointT >::Ptr PointCloudPtr
void selectWithinDistance(const Eigen::VectorXf &model_coefficients, const double threshold, std::vector< int > &inliers)
Select all the points which respect the given model coefficients as inliers.
SampleConsensusModelFromNormals represents the base model class for models that require the use of su...
virtual ~SampleConsensusModelNormalSphere()
Empty destructor.
unsigned int sample_size_
The size of a sample from which the model is computed.
SampleConsensusModelFromNormals< PointT, PointNT >::PointCloudNPtr PointCloudNPtr
SampleConsensusModelNormalSphere(const PointCloudConstPtr &cloud, const std::vector< int > &indices, bool random=false)
Constructor for base SampleConsensusModelNormalSphere.
unsigned int model_size_
The number of coefficients in the model.
PointCloud represents the base class in PCL for storing collections of 3D points.
A point structure representing Euclidean xyz coordinates, and the RGB color.
SampleConsensusModel< PointT >::PointCloudConstPtr PointCloudConstPtr
pcl::PointCloud< PointT >::ConstPtr PointCloudConstPtr
SampleConsensusModelNormalSphere(const PointCloudConstPtr &cloud, bool random=false)
Constructor for base SampleConsensusModelNormalSphere.
virtual bool isModelValid(const Eigen::VectorXf &model_coefficients) const
Check whether a model is valid given the user constraints.
std::string model_name_
The model name.
boost::shared_ptr< SampleConsensusModelNormalSphere > Ptr
pcl::SacModel getModelType() const
Return an unique id for this model (SACMODEL_NORMAL_SPHERE).
SampleConsensusModel< PointT >::PointCloud PointCloud
SampleConsensusModelNormalSphere defines a model for 3D sphere segmentation using additional surface ...
SampleConsensusModel represents the base model class.
void getDistancesToModel(const Eigen::VectorXf &model_coefficients, std::vector< double > &distances) const
Compute all distances from the cloud data to a given sphere model.
SampleConsensusModelFromNormals< PointT, PointNT >::PointCloudNConstPtr PointCloudNConstPtr
pcl::PointCloud< PointNT >::ConstPtr PointCloudNConstPtr
SampleConsensusModel< PointT >::PointCloudPtr PointCloudPtr
pcl::PointCloud< PointNT >::Ptr PointCloudNPtr
SampleConsensusModelSphere defines a model for 3D sphere segmentation.