39 #ifndef PCL_RANGE_IMAGE_IMPL_HPP_
40 #define PCL_RANGE_IMAGE_IMPL_HPP_
42 #include <pcl/pcl_macros.h>
54 static_cast<float> (pcl_lrintf ( (
static_cast<float> (
lookup_table_size-1) / 2.0f) * value)) +
65 if (fabsf (x) < fabsf (y))
69 static_cast<float> (pcl_lrintf ( (
static_cast<float> (
lookup_table_size-1) / 2.0f) * (x / y))) +
71 ret =
static_cast<float> (x*y > 0 ? M_PI/2-ret : -M_PI/2-ret);
76 static_cast<float> (pcl_lrintf ( (
static_cast<float> (
lookup_table_size-1) / 2.0f) * (y / x))) +
79 ret =
static_cast<float> (y < 0 ? ret-M_PI : ret+M_PI);
88 int cell_idx =
static_cast<int> (pcl_lrintf ( (
static_cast<float> (
lookup_table_size-1)) * fabsf (value) / (2.0f *
static_cast<float> (M_PI))));
93 template <
typename Po
intCloudType>
void
95 float max_angle_width,
float max_angle_height,
97 float noise_level,
float min_range,
int border_size)
99 createFromPointCloud (point_cloud, angular_resolution, angular_resolution, max_angle_width, max_angle_height,
100 sensor_pose, coordinate_frame, noise_level, min_range, border_size);
104 template <
typename Po
intCloudType>
void
106 float angular_resolution_x,
float angular_resolution_y,
107 float max_angle_width,
float max_angle_height,
109 float noise_level,
float min_range,
int border_size)
133 doZBuffer (point_cloud, noise_level, min_range, top, right, bottom, left);
135 cropImage (border_size, top, right, bottom, left);
141 template <
typename Po
intCloudType>
void
143 const Eigen::Vector3f& point_cloud_center,
float point_cloud_radius,
145 float noise_level,
float min_range,
int border_size)
148 sensor_pose, coordinate_frame, noise_level, min_range, border_size);
152 template <
typename Po
intCloudType>
void
154 float angular_resolution_x,
float angular_resolution_y,
155 const Eigen::Vector3f& point_cloud_center,
float point_cloud_radius,
157 float noise_level,
float min_range,
int border_size)
164 if ((point_cloud_center-sensor_pose.translation()).norm() <= point_cloud_radius) {
167 sensor_pose, coordinate_frame, noise_level, min_range, border_size);
177 float max_angle_size =
getMaxAngleSize (sensor_pose, point_cloud_center, point_cloud_radius);
180 width = 2*pixel_radius_x;
181 height = 2*pixel_radius_y;
185 int center_pixel_x, center_pixel_y;
186 getImagePoint (point_cloud_center, center_pixel_x, center_pixel_y);
194 doZBuffer (point_cloud, noise_level, min_range, top, right, bottom, left);
196 cropImage (border_size, top, right, bottom, left);
202 template <
typename Po
intCloudTypeWithViewpo
ints>
void
204 float angular_resolution,
205 float max_angle_width,
float max_angle_height,
207 float noise_level,
float min_range,
int border_size)
210 max_angle_width, max_angle_height, coordinate_frame,
211 noise_level, min_range, border_size);
215 template <
typename Po
intCloudTypeWithViewpo
ints>
void
217 float angular_resolution_x,
float angular_resolution_y,
218 float max_angle_width,
float max_angle_height,
220 float noise_level,
float min_range,
int border_size)
223 Eigen::Affine3f sensor_pose =
static_cast<Eigen::Affine3f
> (Eigen::Translation3f (average_viewpoint));
224 createFromPointCloud (point_cloud, angular_resolution_x, angular_resolution_y, max_angle_width, max_angle_height,
225 sensor_pose, coordinate_frame, noise_level, min_range, border_size);
229 template <
typename Po
intCloudType>
void
230 RangeImage::doZBuffer (
const PointCloudType& point_cloud,
float noise_level,
float min_range,
int& top,
int& right,
int& bottom,
int& left)
232 typedef typename PointCloudType::PointType PointType2;
236 int* counters =
new int[
size];
237 ERASE_ARRAY (counters,
size);
241 float x_real, y_real, range_of_current_point;
249 this->
getImagePoint (current_point, x_real, y_real, range_of_current_point);
252 if (range_of_current_point < min_range|| !
isInImage (x, y))
257 int floor_x = pcl_lrint (floor (x_real)), floor_y = pcl_lrint (floor (y_real)),
258 ceil_x = pcl_lrint (ceil (x_real)), ceil_y = pcl_lrint (ceil (y_real));
260 int neighbor_x[4], neighbor_y[4];
261 neighbor_x[0]=floor_x; neighbor_y[0]=floor_y;
262 neighbor_x[1]=floor_x; neighbor_y[1]=ceil_y;
263 neighbor_x[2]=ceil_x; neighbor_y[2]=floor_y;
264 neighbor_x[3]=ceil_x; neighbor_y[3]=ceil_y;
267 for (
int i=0; i<4; ++i)
269 int n_x=neighbor_x[i], n_y=neighbor_y[i];
271 if (n_x==x && n_y==y)
275 int neighbor_array_pos = n_y*
width + n_x;
276 if (counters[neighbor_array_pos]==0)
278 float& neighbor_range =
points[neighbor_array_pos].range;
279 neighbor_range = (pcl_isinf (neighbor_range) ? range_of_current_point : (std::min) (neighbor_range, range_of_current_point));
280 top= (std::min) (top, n_y); right= (std::max) (right, n_x); bottom= (std::max) (bottom, n_y); left= (std::min) (left, n_x);
287 int arrayPos = y*
width + x;
288 float& range_at_image_point =
points[arrayPos].range;
289 int& counter = counters[arrayPos];
290 bool addCurrentPoint=
false, replace_with_current_point=
false;
294 replace_with_current_point =
true;
298 if (range_of_current_point < range_at_image_point-noise_level)
300 replace_with_current_point =
true;
302 else if (fabs (range_of_current_point-range_at_image_point)<=noise_level)
304 addCurrentPoint =
true;
308 if (replace_with_current_point)
311 range_at_image_point = range_of_current_point;
312 top= (std::min) (top, y); right= (std::max) (right, x); bottom= (std::max) (bottom, y); left= (std::min) (left, x);
315 else if (addCurrentPoint)
318 range_at_image_point += (range_of_current_point-range_at_image_point)/counter;
329 Eigen::Vector3f point (x, y, z);
345 float image_x_float, image_y_float;
347 real2DToInt2D (image_x_float, image_y_float, image_x, image_y);
355 range = transformedPoint.norm ();
356 float angle_x =
atan2LookUp (transformedPoint[0], transformedPoint[2]),
357 angle_y =
asinLookUp (transformedPoint[1]/range);
367 float image_x_float, image_y_float;
369 real2DToInt2D (image_x_float, image_y_float, image_x, image_y);
384 float image_x_float, image_y_float;
386 real2DToInt2D (image_x_float, image_y_float, image_x, image_y);
393 int image_x, image_y;
399 point_in_image =
getPoint (image_x, image_y);
407 int image_x, image_y;
411 return -std::numeric_limits<float>::infinity ();
413 if (pcl_isinf (image_point_range))
415 if (image_point_range > 0.0f)
416 return std::numeric_limits<float>::infinity ();
418 return -std::numeric_limits<float>::infinity ();
420 return image_point_range - range;
435 xInt =
static_cast<int> (pcl_lrintf (x));
436 yInt =
static_cast<int> (pcl_lrintf (y));
443 return (x >= 0 && x <
static_cast<int> (
width) && y >= 0 && y <
static_cast<int> (
height));
457 return pcl_isfinite (
getPoint (index).range);
474 return pcl_isinf (range) && range>0.0f;
538 point =
getPoint (image_x, image_y).getVector3fMap ();
545 point =
getPoint (index).getVector3fMap ();
549 const Eigen::Map<const Eigen::Vector3f>
552 return getPoint (x, y).getVector3fMap ();
556 const Eigen::Map<const Eigen::Vector3f>
559 return getPoint (index).getVector3fMap ();
566 float angle_x, angle_y;
570 float cosY = cosf (angle_y);
571 point = Eigen::Vector3f (range * sinf (angle_x) * cosY, range * sinf (angle_y), range * cosf (angle_x)*cosY);
587 Eigen::Vector3f tmp_point;
589 point.x=tmp_point[0]; point.y=tmp_point[1]; point.z=tmp_point[2];
605 float cos_angle_y = cosf (angle_y);
614 return -std::numeric_limits<float>::infinity ();
622 return -std::numeric_limits<float>::infinity ();
624 float r1 = (std::min) (point1.
range, point2.
range),
626 float impact_angle =
static_cast<float> (0.5f * M_PI);
630 if (r2 > 0.0f && !pcl_isinf (r1))
633 else if (!pcl_isinf (r1))
638 d = std::sqrt (dSqr);
639 float cos_impact_angle = (r2Sqr + dSqr - r1Sqr)/ (2.0f*r2*d);
640 cos_impact_angle = (std::max) (0.0f, (std::min) (1.0f, cos_impact_angle));
641 impact_angle = acosf (cos_impact_angle);
645 impact_angle = -impact_angle;
655 if (pcl_isinf (impact_angle))
656 return -std::numeric_limits<float>::infinity ();
657 float ret = 1.0f - float (fabs (impact_angle)/ (0.5f*M_PI));
658 if (impact_angle < 0.0f)
670 return -std::numeric_limits<float>::infinity ();
675 const Eigen::Vector3f
685 angle_change_x = angle_change_y = -std::numeric_limits<float>::infinity ();
688 Eigen::Vector3f point;
694 Eigen::Vector3f transformed_left;
696 transformed_left = Eigen::Vector3f (0.0f, 0.0f, -1.0f);
699 Eigen::Vector3f left;
701 transformed_left = - (transformation * left);
703 transformed_left[1] = 0.0f;
704 transformed_left.normalize ();
707 Eigen::Vector3f transformed_right;
709 transformed_right = Eigen::Vector3f (0.0f, 0.0f, 1.0f);
712 Eigen::Vector3f right;
714 transformed_right = transformation * right;
716 transformed_right[1] = 0.0f;
717 transformed_right.normalize ();
719 angle_change_x = transformed_left.dot (transformed_right);
720 angle_change_x = (std::max) (0.0f, (std::min) (1.0f, angle_change_x));
721 angle_change_x = acosf (angle_change_x);
726 Eigen::Vector3f transformed_top;
728 transformed_top = Eigen::Vector3f (0.0f, 0.0f, -1.0f);
733 transformed_top = - (transformation * top);
735 transformed_top[0] = 0.0f;
736 transformed_top.normalize ();
739 Eigen::Vector3f transformed_bottom;
741 transformed_bottom = Eigen::Vector3f (0.0f, 0.0f, 1.0f);
744 Eigen::Vector3f bottom;
746 transformed_bottom = transformation * bottom;
748 transformed_bottom[0] = 0.0f;
749 transformed_bottom.normalize ();
751 angle_change_y = transformed_top.dot (transformed_bottom);
752 angle_change_y = (std::max) (0.0f, (std::min) (1.0f, angle_change_y));
753 angle_change_y = acosf (angle_change_y);
790 return 2.0f * asinf (radius/ (viewer_pose.translation ()-center).norm ());
797 return Eigen::Vector3f (point.x, point.y, point.z);
806 float weight_sum = 1.0f;
808 if (pcl_isinf (average_point.
range))
810 if (average_point.
range>0.0f)
813 average_point.x = average_point.y = average_point.z = average_point.
range = 0.0f;
817 Vector4fMap average_point_eigen = average_point.getVector4fMap ();
819 for (
int step=1; step<no_of_points; ++step)
822 x2+=delta_x; y2+=delta_y;
826 average_point_eigen+=p.getVector4fMap (); average_point.
range+=p.
range;
829 if (weight_sum<= 0.0f)
834 float normalization_factor = 1.0f/weight_sum;
835 average_point_eigen *= normalization_factor;
836 average_point.
range *= normalization_factor;
845 return -std::numeric_limits<float>::infinity ();
848 if (pcl_isinf (point1.
range) && pcl_isinf (point2.range))
850 if (pcl_isinf (point1.
range) || pcl_isinf (point2.range))
851 return std::numeric_limits<float>::infinity ();
859 float average_pixel_distance = 0.0f;
861 for (
int i=0; i<max_steps; ++i)
863 int x1=x+i*offset_x, y1=y+i*offset_y;
864 int x2=x+ (i+1)*offset_x, y2=y+ (i+1)*offset_y;
866 if (!pcl_isfinite (pixel_distance))
870 return pixel_distance;
876 average_pixel_distance += std::sqrt (pixel_distance);
878 average_pixel_distance /= weight;
880 return average_pixel_distance;
888 return -std::numeric_limits<float>::infinity ();
890 int no_of_nearest_neighbors =
static_cast<int> (pow (
static_cast<double> ( (radius + 1.0)), 2.0));
891 Eigen::Vector3f normal;
893 return -std::numeric_limits<float>::infinity ();
903 for (
int y2=y-radius; y2<=y+radius; y2+=step_size)
905 for (
int x2=x-radius; x2<=x+radius; x2+=step_size)
910 if (!pcl_isfinite (point.
range))
912 vector_average.
add (Eigen::Vector3f (point.x, point.y, point.z));
917 Eigen::Vector3f eigen_values, eigen_vector2, eigen_vector3;
918 vector_average.
doPCA (eigen_values, normal, eigen_vector2, eigen_vector3);
929 if (pcl_isinf (impact_angle))
930 return -std::numeric_limits<float>::infinity ();
931 float ret = 1.0f -
static_cast<float> ( (impact_angle / (0.5f * M_PI)));
939 int no_of_nearest_neighbors, Eigen::Vector3f& normal,
int step_size)
const
941 return getNormalForClosestNeighbors (x, y, radius, Eigen::Vector3f (point.x, point.y, point.z), no_of_nearest_neighbors, normal, NULL, step_size);
950 int no_of_nearest_neighbors =
static_cast<int> (pow (
static_cast<double> (radius + 1.0), 2.0));
956 struct NeighborWithDistance
960 bool operator < (
const NeighborWithDistance& other)
const {
return distance<other.distance;}
967 float& max_closest_neighbor_distance_squared,
968 Eigen::Vector3f& normal, Eigen::Vector3f& mean, Eigen::Vector3f& eigen_values,
969 Eigen::Vector3f* normal_all_neighbors, Eigen::Vector3f* mean_all_neighbors,
970 Eigen::Vector3f* eigen_values_all_neighbors)
const
972 max_closest_neighbor_distance_squared=0.0f;
973 normal.setZero (); mean.setZero (); eigen_values.setZero ();
974 if (normal_all_neighbors!=NULL)
975 normal_all_neighbors->setZero ();
976 if (mean_all_neighbors!=NULL)
977 mean_all_neighbors->setZero ();
978 if (eigen_values_all_neighbors!=NULL)
979 eigen_values_all_neighbors->setZero ();
981 int blocksize =
static_cast<int> (pow (
static_cast<double> ( (2.0 * radius + 1.0)), 2.0));
984 given_point.x=point[0]; given_point.y=point[1]; given_point.z=point[2];
986 std::vector<NeighborWithDistance> ordered_neighbors (blocksize);
987 int neighbor_counter = 0;
988 for (
int y2=y-radius; y2<=y+radius; y2+=step_size)
990 for (
int x2=x-radius; x2<=x+radius; x2+=step_size)
994 NeighborWithDistance& neighbor_with_distance = ordered_neighbors[neighbor_counter];
995 neighbor_with_distance.neighbor = &
getPoint (x2, y2);
1000 no_of_closest_neighbors = (std::min) (neighbor_counter, no_of_closest_neighbors);
1002 std::sort (ordered_neighbors.begin (), ordered_neighbors.begin () + neighbor_counter);
1006 max_closest_neighbor_distance_squared = ordered_neighbors[no_of_closest_neighbors-1].distance;
1008 float max_distance_squared = max_closest_neighbor_distance_squared*4.0f;
1014 for (neighbor_idx=0; neighbor_idx<neighbor_counter; ++neighbor_idx)
1016 if (ordered_neighbors[neighbor_idx].
distance > max_distance_squared)
1019 vector_average.
add (ordered_neighbors[neighbor_idx].neighbor->getVector3fMap ());
1025 Eigen::Vector3f eigen_vector2, eigen_vector3;
1026 vector_average.
doPCA (eigen_values, normal, eigen_vector2, eigen_vector3);
1027 Eigen::Vector3f viewing_direction = (
getSensorPos ()-point).normalized ();
1028 if (normal.dot (viewing_direction) < 0.0f)
1030 mean = vector_average.
getMean ();
1032 if (normal_all_neighbors==NULL)
1036 for (
int neighbor_idx2=neighbor_idx; neighbor_idx2<neighbor_counter; ++neighbor_idx2)
1037 vector_average.
add (ordered_neighbors[neighbor_idx2].neighbor->getVector3fMap ());
1039 vector_average.
doPCA (*eigen_values_all_neighbors, *normal_all_neighbors, eigen_vector2, eigen_vector3);
1041 if (normal_all_neighbors->dot (viewing_direction) < 0.0f)
1042 *normal_all_neighbors *= -1.0f;
1043 *mean_all_neighbors = vector_average.
getMean ();
1055 if (!pcl_isfinite (point.
range))
1056 return -std::numeric_limits<float>::infinity ();
1058 int blocksize =
static_cast<int> (pow (
static_cast<double> (2.0 * radius + 1.0), 2.0));
1059 std::vector<float> neighbor_distances (blocksize);
1060 int neighbor_counter = 0;
1061 for (
int y2=y-radius; y2<=y+radius; y2+=step_size)
1063 for (
int x2=x-radius; x2<=x+radius; x2+=step_size)
1065 if (!
isValid (x2, y2) || (x2==x&&y2==y))
1068 float& neighbor_distance = neighbor_distances[neighbor_counter++];
1072 std::sort (neighbor_distances.begin (), neighbor_distances.begin () + neighbor_counter);
1074 n = (std::min) (neighbor_counter, n);
1075 return neighbor_distances[n-1];
1082 Eigen::Vector3f& normal, Eigen::Vector3f* point_on_plane,
int step_size)
const
1084 Eigen::Vector3f mean, eigen_values;
1085 float used_squared_max_distance;
1086 bool ret =
getSurfaceInformation (x, y, radius, point, no_of_nearest_neighbors, step_size, used_squared_max_distance,
1087 normal, mean, eigen_values);
1091 if (point_on_plane != NULL)
1092 *point_on_plane = (normal.dot (mean) - normal.dot (point))*normal + point;
1103 for (
int y2=y-radius; y2<=y+radius; y2+=step_size)
1105 for (
int x2=x-radius; x2<=x+radius; x2+=step_size)
1110 if (!pcl_isfinite (point.
range))
1112 vector_average.
add (Eigen::Vector3f (point.x, point.y, point.z));
1117 Eigen::Vector3f eigen_values;
1118 vector_average.
doPCA (eigen_values);
1119 return eigen_values[0]/eigen_values.sum ();
1124 template <
typename Po
intCloudTypeWithViewpo
ints> Eigen::Vector3f
1127 Eigen::Vector3f average_viewpoint (0,0,0);
1128 int point_counter = 0;
1129 for (
unsigned int point_idx=0; point_idx<point_cloud.points.size (); ++point_idx)
1131 const typename PointCloudTypeWithViewpoints::PointType& point = point_cloud.points[point_idx];
1132 if (!pcl_isfinite (point.vp_x) || !pcl_isfinite (point.vp_y) || !pcl_isfinite (point.vp_z))
1134 average_viewpoint[0] += point.vp_x;
1135 average_viewpoint[1] += point.vp_y;
1136 average_viewpoint[2] += point.vp_z;
1139 average_viewpoint /= point_counter;
1141 return average_viewpoint;
1158 viewing_direction = (point-
getSensorPos ()).normalized ();
1165 Eigen::Affine3f transformation;
1167 return transformation;
1174 Eigen::Vector3f viewing_direction = (point-
getSensorPos ()).normalized ();
1182 Eigen::Vector3f viewing_direction = (point-
getSensorPos ()).normalized ();
1221 template <
typename Po
intCloudType>
void
1224 float x_real, y_real, range_of_current_point;
1225 for (
typename PointCloudType::const_iterator it = far_ranges.points.begin (); it != far_ranges.points.end (); ++it)
1231 this->
getImagePoint (current_point, x_real, y_real, range_of_current_point);
1233 int floor_x =
static_cast<int> (pcl_lrint (floor (x_real))),
1234 floor_y =
static_cast<int> (pcl_lrint (floor (y_real))),
1235 ceil_x =
static_cast<int> (pcl_lrint (ceil (x_real))),
1236 ceil_y =
static_cast<int> (pcl_lrint (ceil (y_real)));
1238 int neighbor_x[4], neighbor_y[4];
1239 neighbor_x[0]=floor_x; neighbor_y[0]=floor_y;
1240 neighbor_x[1]=floor_x; neighbor_y[1]=ceil_y;
1241 neighbor_x[2]=ceil_x; neighbor_y[2]=floor_y;
1242 neighbor_x[3]=ceil_x; neighbor_y[3]=ceil_y;
1244 for (
int i=0; i<4; ++i)
1246 int x=neighbor_x[i], y=neighbor_y[i];
1250 if (!pcl_isfinite (image_point.
range))
1251 image_point.
range = std::numeric_limits<float>::infinity ();