Theano Logo
1.0
  • Release Notes
  • Theano at a Glance
  • Requirements
  • Installing Theano
  • Updating Theano
  • Tutorial
  • Extending Theano
  • Developer Start Guide
  • Optimizations
  • API Documentation
    • compile – Transforming Expression Graphs to Functions
    • config – Theano Configuration
    • d3viz – d3viz: Interactive visualization of Theano compute graphs
    • gof – Theano Internals [doc TODO]
    • gpuarray – The (new) GPU backend
    • gradient – Symbolic Differentiation
    • misc.pkl_utils - Tools for serialization.
    • printing – Graph Printing and Symbolic Print Statement
    • sandbox – Experimental Code
    • scalar – Symbolic Scalar Types, Ops [doc TODO]
    • scan – Looping in Theano
    • sparse – Symbolic Sparse Matrices
    • sparse – Sparse Op
    • sparse.sandbox – Sparse Op Sandbox
    • tensor – Types and Ops for Symbolic numpy
      • Basic Tensor Functionality
      • nnet – Ops related to neural networks
      • raw_random – Low-level random numbers
      • shared_randomstreams – Friendly random numbers
      • signal – Signal Processing
      • tensor.utils – Tensor Utils
      • tensor.elemwise – Tensor Elemwise
      • tensor.extra_ops – Tensor Extra Ops
      • tensor.io – Tensor IO Ops
      • tensor.opt – Tensor Optimizations
      • tensor.slinalg – Linear Algebra Ops Using Scipy
      • tensor.nlinalg – Linear Algebra Ops Using Numpy
      • tensor.fft – Fast Fourier Transforms
    • typed_list – Typed List
    • tests – Tests
  • Troubleshooting
  • Glossary
  • Links
  • Internal Documentation
  • Acknowledgements
  • LICENSE
Theano
  • Docs »
  • API Documentation »
  • tensor – Types and Ops for Symbolic numpy
  • View page source

tensor – Types and Ops for Symbolic numpy¶

Theano’s strength is in expressing symbolic calculations involving tensors. There are many types of symbolic expressions for tensors. They are grouped into the following sections:

  • Basic Tensor Functionality
  • nnet – Ops related to neural networks
  • raw_random – Low-level random numbers
  • shared_randomstreams – Friendly random numbers
  • signal – Signal Processing
  • tensor.utils – Tensor Utils
  • tensor.elemwise – Tensor Elemwise
  • tensor.extra_ops – Tensor Extra Ops
  • tensor.io – Tensor IO Ops
  • tensor.opt – Tensor Optimizations
  • tensor.slinalg – Linear Algebra Ops Using Scipy
  • tensor.nlinalg – Linear Algebra Ops Using Numpy
  • tensor.fft – Fast Fourier Transforms
Next Previous

© Copyright 2008--2019, LISA lab Last updated on Feb 04, 2020.

Built with Sphinx using a theme provided by Read the Docs.