Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

9 Simplicial groups
 9.1 Crossed modules
 9.2 Eilenberg-MacLane spaces

9 Simplicial groups

9.1 Crossed modules

The following example concerns the crossed module

∂: G→ Aut(G), g↦ (x↦ gxg^-1)

associated to the dihedral group G of order 16. This crossed module represents, up to homotopy type, a connected space X with π_iX=0 for ige 3, π_2X=Z(G), π_1X = Aut(G)/Inn(G). The space X can be represented, up to homotopy, by a simplicial group. That simplicial group is used in the example to compute

H_1(X, Z)= Z_2 ⊕ Z_2,

H_2(X, Z)= Z_2,

H_3(X, Z)= Z_2 ⊕ Z_2 ⊕ Z_2,

H_4(X, Z)= Z_2 ⊕ Z_2 ⊕ Z_2,

H_5(X, Z)= Z_2 ⊕ Z_2 ⊕ Z_2 ⊕ Z_2⊕ Z_2⊕ Z_2.

The simplicial group is obtained by viewing the crossed module as a crossed complex and using a nonabelian version of the Dold-Kan theorem.

gap> C:=AutomorphismGroupAsCatOneGroup(DihedralGroup(16));
Cat-1-group with underlying group Group( 
[ f1, f2, f3, f4, f5, f6, f7, f8, f9 ] ) . 

gap> Size(C);
512
gap> Q:=QuasiIsomorph(C);
Cat-1-group with underlying group Group( [ f9, f8, f1, f2*f3, f5 ] ) . 

gap> Size(Q);
32

gap> N:=NerveOfCatOneGroup(Q,6);
Simplicial group of length 6

gap> K:=ChainComplexOfSimplicialGroup(N);
Chain complex of length 6 in characteristic 0 . 

gap> Homology(K,1);
[ 2, 2 ]
gap> Homology(K,2);
[ 2 ]
gap> Homology(K,3);
[ 2, 2, 2 ]
gap> Homology(K,4);
[ 2, 2, 2 ]
gap> Homology(K,5);
[ 2, 2, 2, 2, 2, 2 ]

9.2 Eilenberg-MacLane spaces

The following example concerns the Eilenberg-MacLane space X=K( Z,3) which is a path-connected space with π_3X= Z, π_iX=0 for 3ne ige 1. This space is represented by a simplicial group, and perturbation techniques are used to compute

H_7(X, Z)= Z_3.

gap> A:=AbelianPcpGroup([0]);;AbelianInvariants(A);
[ 0 ]
gap> K:=EilenbergMacLaneSimplicialGroup(A,3,8);
Simplicial group of length 8

gap> C:=ChainComplexOfSimplicialGroup(K);
Chain complex of length 8 in characteristic 0 . 

gap> Homology(C,7);
[ 3 ]

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 7 8 9 10 Bib Ind

generated by GAPDoc2HTML