frePPLev2.0
open source Production PLanning
  • Home
  • Documentation
    • Getting started
    • Modeling guide
    • User guide
    • Installation guide
    • Developer guide
    • FAQ
  • C++ API

Compiling on Windows

Different options exist to compile Frepple under windows:

  • Microsoft Visual C++ Compiler
  • Cygwin Compiler

Note that executables and extension modules created by these compilers are not compatible with each other.

Compiling using Microsoft Visual C++ compiler

FrePPLe comes with Microsoft Visual C++ projects and workspaces to compile the code.
The solution file is contrib/vc/frepple.sln and more detailed build instructions are provided in the README.txt file in this directory.

The project configuration files are generated with version Visual Studio Express C++ 2008 (aka vc9), which can be downloaded freely from the Microsoft website.

For the Windows build, you will also need to install:

  • Python 2.7
  • Xerces-C 3.1 (best is to install the precompiled binaries for vc9)
  • Optional, glpk 4.25 or higher (easy to compile from source code with its build script)

A convenience script contrib/vc/build.bat is provided to rebuild the source code from the command line. The script needs to edited to point to the installation folders of all components.

To compile from the IDE, the include and library directories of these 2 external projects need to configured to point to the install directory of all components.

Warning: Compiling with Visual Studio C++ 2010 will NOT work. This is because Python and all its extension modules are compiled with vc9, and mixing CRTs from different compilers is never a good idea.

Compiling using the Cygwin compiler

Cygwin is a Linux-like environment for Windows. The Cygwin environment can be downloaded free of charge from http://www.cygwin.com.

The build instructions on Cygwin are identical to the Linux and Unix platforms.

Compared to the other platforms and compilers, the Cygwin executables are considerably slower.
The Cygwin build is not recommended for production environments on Windows. It should be seen as a test and development setup for a *nix environment.

    • Getting started
    • Modeling guide
      • Simplified domain model
      • Detailed domain model
      • Environment variables
      • Python interpreter
      • Global parameters
      • Buffer
      • Calendar
      • Customer
      • Demand
      • Flow
      • Item
      • Load
      • Location
      • Operation
      • Suboperation
      • Operationplan
      • Problem
      • Resource
      • SetupMatrix
      • Skill
      • Resource skill
      • Solver
      • Extension modules
        • Forecast module
        • REST web service module
        • Linear programming solver module
        • OpenERP connector module
    • User guide
      • Main features
      • Supported browsers
      • Getting around
        • Logging in
        • Logging out
        • Changing password
        • Navigation
          • Menu bar
          • Jump search
          • Context menus
          • Browser bookmarks
        • Filtering data
        • Sorting data
        • Selecting time buckets
        • Exporting data
        • Importing data
        • User preferences
        • User permissions and roles
      • Screens
        • Data input
        • Supply Path / Where Used
        • Comments
        • History – Audit trail
        • Plan analysis
          • Problem report
          • Constraint report
          • Inventory report
          • Inventory detail report
          • Resource report
          • Resource Gantt report
          • Resource detail report
          • Operation report
          • Operation detail report
          • Demand report
          • Demand detail report
          • Demand Gantt report
          • Forecast report
          • Performance indicator report
        • Execute
      • Batch commands
        • manage.py (manage.exe on Windows)
        • frepple (frepple.exe on Windows)
        • freppleservice.exe (Windows only)
    • Installation guide
      • Windows installer
      • Compiling on Windows
      • Linux binary packages
      • Compiling on Linux
      • Compiling on debian-based linux
      • Compiling on Red Hat based Linux
      • Compiling from the subversion source code repository
      • Running the VMWare virtual machine
      • Other platforms
      • Configuring the user interface
      • Configuring multiple models in the user interface
      • Configuring as a Python extension module
    • FAQ
    • Developer guide
      • Code structure
      • Class diagram
      • Solver
        • Solver features
        • Planning algorithm
          • Top level loop
          • Demand solver
          • Buffer solver
          • Flow solver
          • Load solver
          • Operation solver
          • Resource solver
        • Cluster and level algorithm
      • Extension modules
      • Version control
      • Style guide
      • Portability
      • Security
      • Internationalization
      • Translating the user interface
      • Adding or customizing a report
      • Unit tests
        • buffer_procure_1
        • calendar
        • callback
        • cluster
        • constraints_combined_1
        • constraints_combined_2
        • constraints_leadtime_1
        • constraints_material_1
        • constraints_material_2
        • constraints_material_3
        • constraints_material_4
        • constraints_resource_1
        • constraints_resource_2
        • constraints_resource_3
        • constraints_resource_4
        • constraints_resource_5
        • datetime
        • deletion
        • demand_policy
        • flow_alternate_1
        • flow_alternate_2
        • flow_effective
        • forecast_1
        • forecast_2
        • forecast_3
        • forecast_4
        • forecast_5
        • forecast_6
        • jobshop
        • load_alternate
        • load_effective
        • lpsolver_1
        • multithreading
        • name
        • operation_alternate
        • operation_available
        • operation_effective
        • operation_pre_post
        • operation_routing
        • pegging
        • problems
        • python_1
        • python_2
        • python_3
        • safety_stock
        • sample_module
        • scalability_1
        • scalability_2
        • scalability_3
        • setup_1
        • setup_2
        • skill
        • xml
        • xml_remote
    • License
      • GNU Affero General Public License
      • GNU Free Documentation License
    • Third party add-ons
  • Copyright © 2010-2013 frePPLe bvba