
OGR

Contents

Chapter 1

OGR Simple Feature Library

The OGR Simple Features Library is a C++ open source library (and commandline tools) providing read (and
sometimes write) access to a variety of vector file formats including ESRI Shapefiles, S-57, SDTS, PostGIS, Oracle
Spatial, and Mapinfo mid/mif and TAB formats.

OGR is a part of the GDAL library.

Resources

• OGR Supported Formats : ESRI Shapefile, ESRI ArcSDE, MapInfo (tab and mid/mif), GML, KML,
PostGIS, Oracle Spatial, ...

• OGR Utility Programs : ogrinfo, ogr2ogr, ogrtindex

• OGR Class Documentation

• OGR C++ API Read/Write Tutorial

• OGR Driver Implementation Tutorial

• ogr_api.h: OGR C API

• ogr_srs_api.h: OSR C API

• OGR Projections Tutorial

• OGR Architecture

• OGR SQL dialect and SQLITE SQL dialect

• OGR - Feature Style Specification

• Adam's 2.5 D Simple Features Proposal (OGC 99-402r2)

• Adam's SRS WKT Clarification Proposal in html or doc format.

Download

Ready to Use Executables

The best way to get OGR utilities in ready-to-use form is to download the latest FWTools kit for your platform.
While large, these include builds of the OGR utilities with lots of optional components built-in. Once downloaded
follow the included instructions to setup your path and other environment variables correctly, and then you can use
the various OGR utilities from the command line. The kits also include OpenEV, a viewer that will display OGR
supported vector files.

2 OGR Simple Feature Library

Source

The source code for this effort is intended to be available as OpenSource using an X Consortium style license. The
OGR library is currently a loosely coupled subcomponent of the GDAL library, so you get all of GDAL for the "price"
of OGR. See the GDAL Download and Building pages for details on getting the source and building it.

Bug Reporting

GDAL/OGR bugs can be reported, and can be listed using Trac.

Mailing Lists

A gdal-announce mailing list subscription is a low volume way of keeping track of major developments with
the GDAL/OGR project.

The gdal-dev@lists.osgeo.org mailing list can be used for discussion of development and user issues
related to OGR and related technologies. Subscriptions can be done, and archives reviewed on the web.

Alternative Bindings for the OGR API

In addition to the C++ API primarily addressed in the online documentation, there is also a slightly less complete C
API implemented on top of the C++ API, and access available from Python.

The C API is primarily intended to provide a less fragile API since slight changes in the C++ API (such as const
correctness changes) can cause changes in method and class signatures that prevent use of new DLLs with older
clients. The C API is also generally easy to call from other languages which allow call out to DLLs functions, such
as Visual Basic, or Delphi. The API can be explored in the ogr_api.h include file. The gdal/ogr/ogr_capi_test.c
is a small sample program demonstrating use of the C API.

The Python API isn't really well documented at this time, but parallels the C/C++ APIs. The interface classes can
be browsed in the pymod/ogr.py (simple features) and pymod/osr.py (coordinate systems) python modules. The
pymod/samples/assemblepoly.py sample script is one demonstration of using the python API.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

Chapter 2

OGR API Tutorial

This document is intended to document using the OGR C++ classes to read and write data from a file. It is strongly
advised that the read first review the OGR Architecture document describing the key classes and their roles
in OGR.

It also includes code snippets for the corresponding functions in C and Python.

2.1 Reading From OGR

For purposes of demonstrating reading with OGR, we will construct a small utility for dumping point layers from an
OGR data source to stdout in comma-delimited format.

Initially it is necessary to register all the format drivers that are desired. This is normally accomplished by calling
OGRRegisterAll() (p. ??) which registers all format drivers built into GDAL/OGR.

In C++ :

#include "ogrsf_frmts.h"

int main()

{
OGRRegisterAll();

In C :

#include "ogr_api.h"

int main()

{
OGRRegisterAll();

Next we need to open the input OGR datasource. Datasources can be files, RDBMSes, directories full of files, or
even remote web services depending on the driver being used. However, the datasource name is always a single
string. In this case we are hardcoded to open a particular shapefile. The second argument (FALSE) tells the O←↩

GRSFDriverRegistrar::Open() (p. ??) method that we don't require update access. On failure NULL is returned,
and we report an error.

In C++ :

OGRDataSource *poDS;

poDS = OGRSFDriverRegistrar::Open("point.shp", FALSE);
if(poDS == NULL)
{

printf("Open failed.\n");
exit(1);

}

4 OGR API Tutorial

In C :

OGRDataSourceH hDS;

hDS = OGROpen("point.shp", FALSE, NULL);
if(hDS == NULL)
{

printf("Open failed.\n");
exit(1);

}

An OGRDataSource (p. ??) can potentially have many layers associated with it. The number of layers available
can be queried with OGRDataSource::GetLayerCount() (p. ??) and individual layers fetched by index using OG←↩

RDataSource::GetLayer() (p. ??). However, we will just fetch the layer by name.

In C++ :

OGRLayer *poLayer;

poLayer = poDS->GetLayerByName("point");

In C :

OGRLayerH hLayer;

hLayer = OGR_DS_GetLayerByName(hDS, "point");

Now we want to start reading features from the layer. Before we start we could assign an attribute or spatial filter to
the layer to restrict the set of feature we get back, but for now we are interested in getting all features.

While it isn't strictly necessary in this circumstance since we are starting fresh with the layer, it is often wise to
call OGRLayer::ResetReading() (p. ??) to ensure we are starting at the beginning of the layer. We iterate through
all the features in the layer using OGRLayer::GetNextFeature() (p. ??). It will return NULL when we run out of
features.

In C++ :

OGRFeature *poFeature;

poLayer->ResetReading();
while((poFeature = poLayer->GetNextFeature()) != NULL)
{

In C :

OGRFeatureH hFeature;

OGR_L_ResetReading(hLayer);
while((hFeature = OGR_L_GetNextFeature(hLayer)) != NULL)
{

In order to dump all the attribute fields of the feature, it is helpful to get the OGRFeatureDefn (p. ??). This is an
object, associated with the layer, containing the definitions of all the fields. We loop over all the fields, and fetch and
report the attributes based on their type.

In C++ :

OGRFeatureDefn *poFDefn = poLayer->GetLayerDefn();
int iField;

for(iField = 0; iField < poFDefn->GetFieldCount(); iField++)
{

OGRFieldDefn *poFieldDefn = poFDefn->GetFieldDefn(iField);

if(poFieldDefn->GetType() == OFTInteger)
printf("%d,", poFeature->GetFieldAsInteger(iField));

else if(poFieldDefn->GetType() == OFTReal)
printf("%.3f,", poFeature->GetFieldAsDouble(iField));

else if(poFieldDefn->GetType() == OFTString)
printf("%s,", poFeature->GetFieldAsString(iField));

else
printf("%s,", poFeature->GetFieldAsString(iField));

}

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

2.1 Reading From OGR 5

In C :

OGRFeatureDefnH hFDefn = OGR_L_GetLayerDefn(hLayer);
int iField;

for(iField = 0; iField < OGR_FD_GetFieldCount(hFDefn); iField++)
{

OGRFieldDefnH hFieldDefn = OGR_FD_GetFieldDefn(hFDefn, iField);

if(OGR_Fld_GetType(hFieldDefn) == OFTInteger)
printf("%d,", OGR_F_GetFieldAsInteger(hFeature, iField));

else if(OGR_Fld_GetType(hFieldDefn) == OFTReal)
printf("%.3f,", OGR_F_GetFieldAsDouble(hFeature, iField));

else if(OGR_Fld_GetType(hFieldDefn) == OFTString)
printf("%s,", OGR_F_GetFieldAsString(hFeature, iField));

else
printf("%s,", OGR_F_GetFieldAsString(hFeature, iField));

}

There are a few more field types than those explicitly handled above, but a reasonable representation of them can
be fetched with the OGRFeature::GetFieldAsString() (p. ??) method. In fact we could shorten the above by using
OGRFeature::GetFieldAsString() (p. ??) for all the types.

Next we want to extract the geometry from the feature, and write out the point geometry x and y. Geometries are
returned as a generic OGRGeometry (p. ??) pointer. We then determine the specific geometry type, and if it is a
point, we cast it to point and operate on it. If it is something else we write placeholders.

In C++ :

OGRGeometry *poGeometry;

poGeometry = poFeature->GetGeometryRef();
if(poGeometry != NULL

&& wkbFlatten(poGeometry->getGeometryType()) == wkbPoint)
{

OGRPoint *poPoint = (OGRPoint *) poGeometry;

printf("%.3f,%3.f\n", poPoint->getX(), poPoint->getY());
}
else
{

printf("no point geometry\n");
}

In C :

OGRGeometryH hGeometry;

hGeometry = OGR_F_GetGeometryRef(hFeature);
if(hGeometry != NULL

&& wkbFlatten(OGR_G_GetGeometryType(hGeometry)) == wkbPoint)
{

printf("%.3f,%3.f\n", OGR_G_GetX(hGeometry, 0), OGR_G_GetY(hGeometry, 0));
}
else
{

printf("no point geometry\n");
}

The wkbFlatten() macro is used above to convert the type for a wkbPoint25D (a point with a z coordinate) into the
base 2D geometry type code (wkbPoint). For each 2D geometry type there is a corresponding 2.5D type code. The
2D and 2.5D geometry cases are handled by the same C++ class, so our code will handle 2D or 3D cases properly.

Starting with OGR 1.11, several geometry fields can be associated to a feature.

In C++ :

OGRGeometry *poGeometry;
int iGeomField;
int nGeomFieldCount;

nGeomFieldCount = poFeature->GetGeomFieldCount();
for(iGeomField = 0; iGeomField < nGeomFieldCount; iGeomField ++)
{

poGeometry = poFeature->GetGeomFieldRef(iGeomField);
if(poGeometry != NULL

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

6 OGR API Tutorial

&& wkbFlatten(poGeometry->getGeometryType()) == wkbPoint)
{

OGRPoint *poPoint = (OGRPoint *) poGeometry;

printf("%.3f,%3.f\n", poPoint->getX(), poPoint->getY());
}
else
{

printf("no point geometry\n");
}

}

In C :

OGRGeometryH hGeometry;
int iGeomField;
int nGeomFieldCount;

nGeomFieldCount = OGR_F_GetGeomFieldCount(hFeature);
for(iGeomField = 0; iGeomField < nGeomFieldCount; iGeomField ++)
{

hGeometry = OGR_F_GetGeomFieldRef(hFeature, iGeomField);
if(hGeometry != NULL

&& wkbFlatten(OGR_G_GetGeometryType(hGeometry)) == wkbPoint)
{

printf("%.3f,%3.f\n", OGR_G_GetX(hGeometry, 0),
OGR_G_GetY(hGeometry, 0));

}
else
{

printf("no point geometry\n");
}

}

In Python:

nGeomFieldCount = feat.GetGeomFieldCount()
for iGeomField in range(nGeomFieldCount):

geom = feat.GetGeomFieldRef(iGeomField)
if geom is not None and geom.GetGeometryType() == ogr.wkbPoint:

print "%.3f, %.3f" % (geom.GetX(), geom.GetY())
else:

print "no point geometry\n"

Note that OGRFeature::GetGeometryRef() (p. ??) and OGRFeature::GetGeomFieldRef() (p. ??) return a pointer
to the internal geometry owned by the OGRFeature (p. ??). There we don't actually deleted the return geometry.
However, the OGRLayer::GetNextFeature() (p. ??) method returns a copy of the feature that is now owned by us.
So at the end of use we must free the feature. We could just "delete" it, but this can cause problems in windows
builds where the GDAL DLL has a different "heap" from the main program. To be on the safe side we use a GDAL
function to delete the feature.

In C++ :

OGRFeature::DestroyFeature(poFeature);
}

In C :

OGR_F_Destroy(hFeature);
}

The OGRLayer (p. ??) returned by OGRDataSource::GetLayerByName() (p. ??) is also a reference to an internal
layer owned by the OGRDataSource (p. ??) so we don't need to delete it. But we do need to delete the datasource
in order to close the input file. Once again we do this with a custom delete method to avoid special win32 heap
issus.

In C++ :

OGRDataSource::DestroyDataSource(poDS);
}

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

2.1 Reading From OGR 7

In C :

OGR_DS_Destroy(hDS);
}

All together our program looks like this.

In C++ :

#include "ogrsf_frmts.h"

int main()

{
OGRRegisterAll();

OGRDataSource *poDS;

poDS = OGRSFDriverRegistrar::Open("point.shp", FALSE);
if(poDS == NULL)
{

printf("Open failed.\n");
exit(1);

}

OGRLayer *poLayer;

poLayer = poDS->GetLayerByName("point");

OGRFeature *poFeature;

poLayer->ResetReading();
while((poFeature = poLayer->GetNextFeature()) != NULL)
{

OGRFeatureDefn *poFDefn = poLayer->GetLayerDefn();
int iField;

for(iField = 0; iField < poFDefn->GetFieldCount(); iField++)
{

OGRFieldDefn *poFieldDefn = poFDefn->GetFieldDefn(iField);

if(poFieldDefn->GetType() == OFTInteger)
printf("%d,", poFeature->GetFieldAsInteger(iField));

else if(poFieldDefn->GetType() == OFTReal)
printf("%.3f,", poFeature->GetFieldAsDouble(iField));

else if(poFieldDefn->GetType() == OFTString)
printf("%s,", poFeature->GetFieldAsString(iField));

else
printf("%s,", poFeature->GetFieldAsString(iField));

}

OGRGeometry *poGeometry;

poGeometry = poFeature->GetGeometryRef();
if(poGeometry != NULL

&& wkbFlatten(poGeometry->getGeometryType()) == wkbPoint)
{

OGRPoint *poPoint = (OGRPoint *) poGeometry;

printf("%.3f,%3.f\n", poPoint->getX(), poPoint->getY());
}
else
{

printf("no point geometry\n");
}
OGRFeature::DestroyFeature(poFeature);

}

OGRDataSource::DestroyDataSource(poDS);
}

In C :

#include "ogr_api.h"

int main()

{
OGRRegisterAll();

OGRDataSourceH hDS;
OGRLayerH hLayer;

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

8 OGR API Tutorial

OGRFeatureH hFeature;

hDS = OGROpen("point.shp", FALSE, NULL);
if(hDS == NULL)
{

printf("Open failed.\n");
exit(1);

}

hLayer = OGR_DS_GetLayerByName(hDS, "point");

OGR_L_ResetReading(hLayer);
while((hFeature = OGR_L_GetNextFeature(hLayer)) != NULL)
{

OGRFeatureDefnH hFDefn;
int iField;
OGRGeometryH hGeometry;

hFDefn = OGR_L_GetLayerDefn(hLayer);

for(iField = 0; iField < OGR_FD_GetFieldCount(hFDefn); iField++)
{

OGRFieldDefnH hFieldDefn = OGR_FD_GetFieldDefn(hFDefn, iField);

if(OGR_Fld_GetType(hFieldDefn) == OFTInteger)
printf("%d,", OGR_F_GetFieldAsInteger(hFeature, iField));

else if(OGR_Fld_GetType(hFieldDefn) == OFTReal)
printf("%.3f,", OGR_F_GetFieldAsDouble(hFeature, iField));

else if(OGR_Fld_GetType(hFieldDefn) == OFTString)
printf("%s,", OGR_F_GetFieldAsString(hFeature, iField));

else
printf("%s,", OGR_F_GetFieldAsString(hFeature, iField));

}

hGeometry = OGR_F_GetGeometryRef(hFeature);
if(hGeometry != NULL

&& wkbFlatten(OGR_G_GetGeometryType(hGeometry)) == wkbPoint)
{

printf("%.3f,%3.f\n", OGR_G_GetX(hGeometry, 0), OGR_G_GetY(hGeometry, 0));
}
else
{

printf("no point geometry\n");
}

OGR_F_Destroy(hFeature);
}

OGR_DS_Destroy(hDS);
}

In Python:

import sys
import ogr

ds = ogr.Open("point.shp")
if ds is None:

print "Open failed.\n"
sys.exit(1)

lyr = ds.GetLayerByName("point")

lyr.ResetReading()

for feat in lyr:

feat_defn = lyr.GetLayerDefn()
for i in range(feat_defn.GetFieldCount()):

field_defn = feat_defn.GetFieldDefn(i)

Tests below can be simplified with just :
print feat.GetField(i)
if field_defn.GetType() == ogr.OFTInteger:

print "%d" % feat.GetFieldAsInteger(i)
elif field_defn.GetType() == ogr.OFTReal:

print "%.3f" % feat.GetFieldAsDouble(i)
elif field_defn.GetType() == ogr.OFTString:

print "%s" % feat.GetFieldAsString(i)
else:

print "%s" % feat.GetFieldAsString(i)

geom = feat.GetGeometryRef()
if geom is not None and geom.GetGeometryType() == ogr.wkbPoint:

print "%.3f, %.3f" % (geom.GetX(), geom.GetY())

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

2.2 Writing To OGR 9

else:
print "no point geometry\n"

ds = None

2.2 Writing To OGR

As an example of writing through OGR, we will do roughly the opposite of the above. A short program that reads
comma separated values from input text will be written to a point shapefile via OGR.

As usual, we start by registering all the drivers, and then fetch the Shapefile driver as we will need it to create our
output file.

In C++ :

#include "ogrsf_frmts.h"

int main()
{

const char *pszDriverName = "ESRI Shapefile";
OGRSFDriver *poDriver;

OGRRegisterAll();

poDriver = OGRSFDriverRegistrar::GetRegistrar()->GetDriverByName(
pszDriverName);

if(poDriver == NULL)
{

printf("%s driver not available.\n", pszDriverName);
exit(1);

}

In C :

#include "ogr_api.h"

int main()
{

const char *pszDriverName = "ESRI Shapefile";
OGRSFDriverH hDriver;

OGRRegisterAll();

hDriver = OGRGetDriverByName(pszDriverName);
if(hDriver == NULL)
{

printf("%s driver not available.\n", pszDriverName);
exit(1);

}

Next we create the datasource. The ESRI Shapefile driver allows us to create a directory full of shapefiles, or a
single shapefile as a datasource. In this case we will explicitly create a single file by including the extension in the
name. Other drivers behave differently. The second argument to the call is a list of option values, but we will just be
using defaults in this case. Details of the options supported are also format specific.

In C ++ :

OGRDataSource *poDS;

poDS = poDriver->CreateDataSource("point_out.shp", NULL);
if(poDS == NULL)
{

printf("Creation of output file failed.\n");
exit(1);

}

In C :

OGRDataSourceH hDS;

hDS = OGR_Dr_CreateDataSource(hDriver, "point_out.shp", NULL);
if(hDS == NULL)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

10 OGR API Tutorial

{
printf("Creation of output file failed.\n");
exit(1);

}

Now we create the output layer. In this case since the datasource is a single file, we can only have one layer. We
pass wkbPoint to specify the type of geometry supported by this layer. In this case we aren't passing any coordinate
system information or other special layer creation options.

In C++ :

OGRLayer *poLayer;

poLayer = poDS->CreateLayer("point_out", NULL, wkbPoint, NULL);
if(poLayer == NULL)
{

printf("Layer creation failed.\n");
exit(1);

}

In C :

OGRLayerH hLayer;

hLayer = OGR_DS_CreateLayer(hDS, "point_out", NULL, wkbPoint, NULL);
if(hLayer == NULL)
{

printf("Layer creation failed.\n");
exit(1);

}

Now that the layer exists, we need to create any attribute fields that should appear on the layer. Fields must be
added to the layer before any features are written. To create a field we initialize an OGRField (p. ??) object with the
information about the field. In the case of Shapefiles, the field width and precision is significant in the creation of
the output .dbf file, so we set it specifically, though generally the defaults are OK. For this example we will just have
one attribute, a name string associated with the x,y point.

Note that the template OGRField (p. ??) we pass to CreateField() is copied internally. We retain ownership of the
object.

In C++:

OGRFieldDefn oField("Name", OFTString);

oField.SetWidth(32);

if(poLayer->CreateField(&oField) != OGRERR_NONE)
{

printf("Creating Name field failed.\n");
exit(1);

}

In C:

OGRFieldDefnH hFieldDefn;

hFieldDefn = OGR_Fld_Create("Name", OFTString);

OGR_Fld_SetWidth(hFieldDefn, 32);

if(OGR_L_CreateField(hLayer, hFieldDefn, TRUE) != OGRERR_NONE)
{

printf("Creating Name field failed.\n");
exit(1);

}

OGR_Fld_Destroy(hFieldDefn);

The following snipping loops reading lines of the form "x,y,name" from stdin, and parsing them.

In C++ and in C :

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

2.2 Writing To OGR 11

double x, y;
char szName[33];

while(!feof(stdin)
&& fscanf(stdin, "%lf,%lf,%32s", &x, &y, szName) == 3)

{

To write a feature to disk, we must create a local OGRFeature (p. ??), set attributes and attach geometry before
trying to write it to the layer. It is imperative that this feature be instantiated from the OGRFeatureDefn (p. ??)
associated with the layer it will be written to.

In C++ :

OGRFeature *poFeature;

poFeature = OGRFeature::CreateFeature(poLayer->GetLayerDefn());
poFeature->SetField("Name", szName);

In C :

OGRFeatureH hFeature;

hFeature = OGR_F_Create(OGR_L_GetLayerDefn(hLayer));
OGR_F_SetFieldString(hFeature, OGR_F_GetFieldIndex(hFeature, "Name"), szName);

We create a local geometry object, and assign its copy (indirectly) to the feature. The OGRFeature::Set←↩

GeometryDirectly() (p. ??) differs from OGRFeature::SetGeometry() (p. ??) in that the direct method gives own-
ership of the geometry to the feature. This is generally more efficient as it avoids an extra deep object copy of the
geometry.

In C++ :

OGRPoint pt;
pt.setX(x);
pt.setY(y);

poFeature->SetGeometry(&pt);

In C :

OGRGeometryH hPt;
hPt = OGR_G_CreateGeometry(wkbPoint);
OGR_G_SetPoint_2D(hPt, 0, x, y);

OGR_F_SetGeometry(hFeature, hPt);
OGR_G_DestroyGeometry(hPt);

Now we create a feature in the file. The OGRLayer::CreateFeature() (p. ??) does not take ownership of our feature
so we clean it up when done with it.

In C++ :

if(poLayer->CreateFeature(poFeature) != OGRERR_NONE)
{

printf("Failed to create feature in shapefile.\n");
exit(1);

}

OGRFeature::DestroyFeature(poFeature);
}

In C :

if(OGR_L_CreateFeature(hLayer, hFeature) != OGRERR_NONE)
{

printf("Failed to create feature in shapefile.\n");
exit(1);

}

OGR_F_Destroy(hFeature);
}

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12 OGR API Tutorial

Finally we need to close down the datasource in order to ensure headers are written out in an orderly way and all
resources are recovered.

In C++ :

OGRDataSource::DestroyDataSource(poDS);
}

In C :

OGR_DS_Destroy(hDS);
}

The same program all in one block looks like this:

In C++ :

#include "ogrsf_frmts.h"

int main()
{

const char *pszDriverName = "ESRI Shapefile";
OGRSFDriver *poDriver;

OGRRegisterAll();

poDriver = OGRSFDriverRegistrar::GetRegistrar()->GetDriverByName(
pszDriverName);

if(poDriver == NULL)
{

printf("%s driver not available.\n", pszDriverName);
exit(1);

}

OGRDataSource *poDS;

poDS = poDriver->CreateDataSource("point_out.shp", NULL);
if(poDS == NULL)
{

printf("Creation of output file failed.\n");
exit(1);

}

OGRLayer *poLayer;

poLayer = poDS->CreateLayer("point_out", NULL, wkbPoint, NULL);
if(poLayer == NULL)
{

printf("Layer creation failed.\n");
exit(1);

}

OGRFieldDefn oField("Name", OFTString);

oField.SetWidth(32);

if(poLayer->CreateField(&oField) != OGRERR_NONE)
{

printf("Creating Name field failed.\n");
exit(1);

}

double x, y;
char szName[33];

while(!feof(stdin)
&& fscanf(stdin, "%lf,%lf,%32s", &x, &y, szName) == 3)

{
OGRFeature *poFeature;

poFeature = OGRFeature::CreateFeature(poLayer->GetLayerDefn());
poFeature->SetField("Name", szName);

OGRPoint pt;

pt.setX(x);
pt.setY(y);

poFeature->SetGeometry(&pt);

if(poLayer->CreateFeature(poFeature) != OGRERR_NONE)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

2.2 Writing To OGR 13

{
printf("Failed to create feature in shapefile.\n");
exit(1);

}

OGRFeature::DestroyFeature(poFeature);
}

OGRDataSource::DestroyDataSource(poDS);
}

In C :

#include "ogr_api.h"

int main()
{

const char *pszDriverName = "ESRI Shapefile";
OGRSFDriverH hDriver;
OGRDataSourceH hDS;
OGRLayerH hLayer;
OGRFieldDefnH hFieldDefn;
double x, y;
char szName[33];

OGRRegisterAll();

hDriver = OGRGetDriverByName(pszDriverName);
if(hDriver == NULL)
{

printf("%s driver not available.\n", pszDriverName);
exit(1);

}

hDS = OGR_Dr_CreateDataSource(hDriver, "point_out.shp", NULL);
if(hDS == NULL)
{

printf("Creation of output file failed.\n");
exit(1);

}

hLayer = OGR_DS_CreateLayer(hDS, "point_out", NULL, wkbPoint, NULL);
if(hLayer == NULL)
{

printf("Layer creation failed.\n");
exit(1);

}

hFieldDefn = OGR_Fld_Create("Name", OFTString);

OGR_Fld_SetWidth(hFieldDefn, 32);

if(OGR_L_CreateField(hLayer, hFieldDefn, TRUE) != OGRERR_NONE)
{

printf("Creating Name field failed.\n");
exit(1);

}

OGR_Fld_Destroy(hFieldDefn);

while(!feof(stdin)
&& fscanf(stdin, "%lf,%lf,%32s", &x, &y, szName) == 3)

{
OGRFeatureH hFeature;
OGRGeometryH hPt;

hFeature = OGR_F_Create(OGR_L_GetLayerDefn(hLayer));
OGR_F_SetFieldString(hFeature, OGR_F_GetFieldIndex(hFeature, "Name"), szName);

hPt = OGR_G_CreateGeometry(wkbPoint);
OGR_G_SetPoint_2D(hPt, 0, x, y);

OGR_F_SetGeometry(hFeature, hPt);
OGR_G_DestroyGeometry(hPt);

if(OGR_L_CreateFeature(hLayer, hFeature) != OGRERR_NONE)
{

printf("Failed to create feature in shapefile.\n");
exit(1);

}

OGR_F_Destroy(hFeature);
}

OGR_DS_Destroy(hDS);
}

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

14 OGR API Tutorial

In Python :

import sys
import ogr
import string

driverName = "ESRI Shapefile"
drv = ogr.GetDriverByName(driverName)
if drv is None:

print "%s driver not available.\n" % driverName
sys.exit(1)

ds = drv.CreateDataSource("point_out.shp")
if ds is None:

print "Creation of output file failed.\n"
sys.exit(1)

lyr = ds.CreateLayer("point_out", None, ogr.wkbPoint)
if lyr is None:

print "Layer creation failed.\n"
sys.exit(1)

field_defn = ogr.FieldDefn("Name", ogr.OFTString)
field_defn.SetWidth(32)

if lyr.CreateField (field_defn) != 0:
print "Creating Name field failed.\n"
sys.exit(1)

Expected format of user input: x y name
linestring = raw_input()
linelist = string.split(linestring)

while len(linelist) == 3:
x = float(linelist[0])
y = float(linelist[1])
name = linelist[2]

feat = ogr.Feature(lyr.GetLayerDefn())
feat.SetField("Name", name)

pt = ogr.Geometry(ogr.wkbPoint)
pt.SetPoint_2D(0, x, y)

feat.SetGeometry(pt)

if lyr.CreateFeature(feat) != 0:
print "Failed to create feature in shapefile.\n"
sys.exit(1)

feat.Destroy()

linestring = raw_input()
linelist = string.split(linestring)

ds = None

Starting with OGR 1.11, several geometry fields can be associated to a feature. This capability is just
available for a few file formats, such as PostGIS.

To create such datasources, geometry fields must be first created. Spatial reference system objects can be associ-
ated to each geometry field.

In C++ :

OGRGeomFieldDefn oPointField("PointField", wkbPoint);
OGRSpatialReference* poSRS = new OGRSpatialReference();
poSRS->importFromEPSG(4326);
oPointField.SetSpatialRef(poSRS);
poSRS->Release();

if(poLayer->CreateGeomField(&oPointField) != OGRERR_NONE)
{

printf("Creating field PointField failed.\n");
exit(1);

}

OGRGeomFieldDefn oFieldPoint2("PointField2", wkbPoint);
poSRS = new OGRSpatialReference();
poSRS->importFromEPSG(32631);
oPointField2.SetSpatialRef(poSRS);
poSRS->Release();

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

2.2 Writing To OGR 15

if(poLayer->CreateGeomField(&oPointField2) != OGRERR_NONE)
{

printf("Creating field PointField2 failed.\n");
exit(1);

}

In C :

OGRGeomFieldDefnH hPointField;
OGRGeomFieldDefnH hPointField2;
OGRSpatialReferenceH hSRS;

hPointField = OGR_GFld_Create("PointField", wkbPoint);
hSRS = OSRNewSpatialReference(NULL);
OSRImportFromEPSG(hSRS, 4326);
OGR_GFld_SetSpatialRef(hPointField, hSRS);
OSRRelease(hSRS);

if(OGR_L_CreateGeomField(hLayer, hPointField) != OGRERR_NONE)
{

printf("Creating field PointField failed.\n");
exit(1);

}

OGR_GFld_Destroy(hPointField);

hPointField2 = OGR_GFld_Create("PointField2", wkbPoint);
OSRImportFromEPSG(hSRS, 32631);
OGR_GFld_SetSpatialRef(hPointField2, hSRS);
OSRRelease(hSRS);

if(OGR_L_CreateGeomField(hLayer, hPointField2) != OGRERR_NONE)
{

printf("Creating field PointField2 failed.\n");
exit(1);

}

OGR_GFld_Destroy(hPointField2);

To write a feature to disk, we must create a local OGRFeature (p. ??), set attributes and attach geometries before
trying to write it to the layer. It is imperative that this feature be instantiated from the OGRFeatureDefn (p. ??)
associated with the layer it will be written to.

In C++ :

OGRFeature *poFeature;
OGRGeometry *poGeometry;
char* pszWKT;

poFeature = OGRFeature::CreateFeature(poLayer->GetLayerDefn());

pszWKT = (char*) "POINT (2 49)";
OGRGeometryFactory::createFromWkt(&pszWKT, NULL, &poGeometry);
poFeature->SetGeomFieldDirectly("PointField", poGeometry);

pszWKT = (char*) "POINT (500000 4500000)";
OGRGeometryFactory::createFromWkt(&pszWKT, NULL, &poGeometry);
poFeature->SetGeomFieldDirectly("PointField2", poGeometry);

if(poLayer->CreateFeature(poFeature) != OGRERR_NONE)
{

printf("Failed to create feature.\n");
exit(1);

}

OGRFeature::DestroyFeature(poFeature);

In C :

OGRFeatureH hFeature;
OGRGeometryH hGeometry;
char* pszWKT;

poFeature = OGR_F_Create(OGR_L_GetLayerDefn(hLayer));

pszWKT = (char*) "POINT (2 49)";
OGR_G_CreateFromWkt(&pszWKT, NULL, &hGeometry);
OGR_F_SetGeomFieldDirectly(hFeature,

OGR_F_GetGeomFieldIndex(hFeature, "PointField"), hGeometry);

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

16 OGR API Tutorial

pszWKT = (char*) "POINT (500000 4500000)";
OGR_G_CreateFromWkt(&pszWKT, NULL, &hGeometry);
OGR_F_SetGeomFieldDirectly(hFeature,

OGR_F_GetGeomFieldIndex(hFeature, "PointField2"), hGeometry);

if(OGR_L_CreateFeature(hFeature) != OGRERR_NONE)
{

printf("Failed to create feature.\n");
exit(1);

}

OGR_F_Destroy(hFeature);

In Python :

feat = ogr.Feature(lyr.GetLayerDefn())

feat.SetGeomFieldDirectly("PointField",
ogr.CreateGeometryFromWkt("POINT (2 49)"))

feat.SetGeomFieldDirectly("PointField2",
ogr.CreateGeometryFromWkt("POINT (500000 4500000)"))

if lyr.CreateFeature(feat) != 0)
{

print("Failed to create feature.\n");
sys.exit(1);

}

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

Chapter 3

OGR Architecture

This document is intended to document the OGR classes. The OGR classes are intended to be generic (not specific
to OLE DB or COM or Windows) but are used as a foundation for implementing OLE DB Provider support, as well
as client side support for SFCOM. It is intended that these same OGR classes could be used by an implementation
of SFCORBA for instance or used directly by C++ programs wanting to use an OpenGIS simple features inspired
API.

Because OGR is modelled on the OpenGIS simple features data model, it is very helpful to review the S←↩

FCOM, or other simple features interface specifications which can be retrieved from the Open Geospatial
Consortium web site. Data types, and method names are modelled on those from the interface specifications.

3.1 Class Overview

• Geometry (ogr_geometry.h): The geometry classes (OGRGeometry (p. ??), etc) encapsulate the
OpenGIS model vector data as well as providing some geometry operations, and translation to/from well
known binary and text format. A geometry includes a spatial reference system (projection).

• Spatial Reference (ogr_spatialref.h): An OGRSpatialReference (p. ??) encapsulates the definition
of a projection and datum.

• Feature (ogr_feature.h): The OGRFeature (p. ??) encapsulates the definition of a whole feature, that
is a geometry and a set of attributes.

• Feature Class Definition (ogr_feature.h): The OGRFeatureDefn (p. ??) class captures the schema
(set of field definitions) for a group of related features (normally a whole layer).

• Layer (ogrsf_frmts.h): OGRLayer (p. ??) is an abstract base class represent a layer of features in an
OGRDataSource (p. ??).

• Data Source (ogrsf_frmts.h): An OGRDataSource (p. ??) is an abstract base class representing a file
or database containing one or more OGRLayer (p. ??) objects.

• Drivers (ogrsf_frmts.h): An OGRSFDriver (p. ??) represents a translator for a specific format, opening
OGRDataSource (p. ??) objects. All available drivers are managed by the OGRSFDriverRegistrar (p. ??).

3.2 Geometry

The geometry classes are represent various kinds of vector geometry. All the geometry classes derived from
OGRGeometry (p. ??) which defines the common services of all geometries. Types of geometry include OGR←↩

Point (p. ??), OGRLineString (p. ??), OGRPolygon (p. ??), OGRGeometryCollection (p. ??), OGRMultiPolygon
(p. ??), OGRMultiPoint (p. ??), and OGRMultiLineString (p. ??).

18 OGR Architecture

Additional intermediate abstract base classes contain functionality that could eventually be implemented by other
geometry types. These include OGRCurve (p. ??) (base class for OGRLineString (p. ??)) and OGRSurface (p. ??)
(base class for OGRPolygon (p. ??)). Some intermediate interfaces modelled in the simple features abstract model
and SFCOM are not modelled in OGR at this time. In most cases the methods are aggregated into other classes.
This may change.

The OGRGeometryFactory (p. ??) is used to convert well known text, and well known binary format data into
geometries. These are predefined ASCII and binary formats for representing all the types of simple features ge-
ometries.

In a manner based on the geometry object in SFCOM, the OGRGeometry (p. ??) includes a reference to an O←↩

GRSpatialReference (p. ??) object, defining the spatial reference system of that geometry. This is normally a
reference to a shared spatial reference object with reference counting for each of the OGRGeometry (p. ??) objects
using it.

Many of the spatial analysis methods (such as computing overlaps and so forth) are not implemented at this time
for OGRGeometry (p. ??).

While it is theoretically possible to derive other or more specific geometry classes from the existing OGRGeometry
(p. ??) classes, this isn't an aspect that has been well thought out. In particular, it would be possible to create
specialized classes using the OGRGeometryFactory (p. ??) without modifying it.

3.3 Spatial Reference

The OGRSpatialReference (p. ??) class is intended to store an OpenGIS Spatial Reference System definition.
Currently local, geographic and projected coordinate systems are supported. Vertical coordinate systems, geocen-
tric coordinate systems, and compound (horizontal + vertical) coordinate systems are as well supported in recent
GDAL versions.

The spatial coordinate system data model is inherited from the OpenGIS Well Known Text format. A simple form
of this is defined in the Simple Features specifications. A more sophisticated form is found in the Coordinate Trans-
formation specification. The OGRSpatialReference (p. ??) is built on the features of the Coordinate Transformation
specification but is intended to be compatible with the earlier simple features form.

There is also an associated OGRCoordinateTransformation (p. ??) class that encapsulates use of PROJ.4 for
converting between different coordinate systems. There is a tutorial available describing how to use the OG←↩

RSpatialReference (p. ??) class.

3.4 Feature / Feature Definition

The OGRGeometry (p. ??) captures the geometry of a vector feature ... the spatial position/region of a feature. The
OGRFeature (p. ??) contains this geometry, and adds feature attributes, feature id, and a feature class identifier.
Starting with OGR 1.11, several geometries can be associated to a OGRFeature (p. ??).

The set of attributes, their types, names and so forth is represented via the OGRFeatureDefn (p. ??) class. One O←↩

GRFeatureDefn (p. ??) normally exists for a layer of features. The same definition is shared in a reference counted
manner by the feature of that type (or feature class).

The feature id (FID) of a feature is intended to be a unique identifier for the feature within the layer it is a member of.
Freestanding features, or features not yet written to a layer may have a null (OGRNullFID) feature id. The feature
ids are modelled in OGR as a long integer; however, this is not sufficiently expressive to model the natural feature
ids in some formats. For instance, the GML feature id is a string, and the row id in Oracle is larger than 4 bytes.

The feature class also contains an indicator of the types of geometry allowed for that feature class (returned as an
OGRwkbGeometryType from OGRFeatureDefn::GetGeomType() (p. ??)). If this is wkbUnknown then any type of
geometry is allowed. This implies that features in a given layer can potentially be of different geometry types though
they will always share a common attribute schema.

Starting with OGR 1.11, several geometry fields can be associated to a feature class. Each geometry field has
its own indicator of geometry type allowed, returned by OGRGeomFieldDefn::GetType() (p. ??), and its spatial

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

3.5 Layer 19

reference system, returned by OGRGeomFieldDefn::GetSpatialRef() (p. ??).

The OGRFeatureDefn (p. ??) also contains a feature class name (normally used as a layer name).

3.5 Layer

An OGRLayer (p. ??) represents a layer of features within a data source. All features in an OGRLayer (p. ??)
share a common schema and are of the same OGRFeatureDefn (p. ??). An OGRLayer (p. ??) class also contains
methods for reading features from the data source. The OGRLayer (p. ??) can be thought of as a gateway for
reading and writing features from an underlying data source, normally a file format. In SFCOM and other table
based simple features implementation an OGRLayer (p. ??) represents a spatial table.

The OGRLayer (p. ??) includes methods for sequential and random reading and writing. Read access (via the O←↩

GRLayer::GetNextFeature() (p. ??) method) normally reads all features, one at a time sequentially; however, it can
be limited to return features intersecting a particular geographic region by installing a spatial filter on the OGRLayer
(p. ??) (via the OGRLayer::SetSpatialFilter() (p. ??) method).

One flaw in the current OGR architecture is that the spatial filter is set directly on the OGRLayer (p. ??) which is
intended to be the only representative of a given layer in a data source. This means it isn't possible to have multiple
read operations active at one time with different spatial filters on each. This aspect may be revised in the future to
introduce an OGRLayerView class or something similar.

Another question that might arise is why the OGRLayer (p. ??) and OGRFeatureDefn (p. ??) classes are distinct.
An OGRLayer (p. ??) always has a one-to-one relationship to an OGRFeatureDefn (p. ??), so why not amalgamate
the classes. There are two reasons:

1. As defined now OGRFeature (p. ??) and OGRFeatureDefn (p. ??) don't depend on OGRLayer (p. ??), so
they can exist independently in memory without regard to a particular layer in a data store.

2. The SF CORBA model does not have a concept of a layer with a single fixed schema the way that the SFC←↩

OM and SFSQL models do. The fact that features belong to a feature collection that is potentially not directly
related to their current feature grouping may be important to implementing SFCORBA support using OGR.

The OGRLayer (p. ??) class is an abstract base class. An implementation is expected to be subclassed for each file
format driver implemented. OGRLayers are normally owned directly by their OGRDataSource (p. ??), and aren't
instantiated or destroyed directly.

3.6 Data Source

An OGRDataSource (p. ??) represents a set of OGRLayer (p. ??) objects. This usually represents a single file, set
of files, database or gateway. An OGRDataSource (p. ??) has a list of OGRLayers which it owns but can return
references to.

OGRDataSource (p. ??) is an abstract base class. An implementation is expected to be subclassed for each file
format driver implemented. OGRDataSource (p. ??) objects are not normally instantiated directly but rather with
the assistance of an OGRSFDriver (p. ??). Deleting an OGRDataSource (p. ??) closes access to the underlying
persistent data source, but does not normally result in deletion of that file.

An OGRDataSource (p. ??) has a name (usually a filename) that can be used to reopen the data source with an
OGRSFDriver (p. ??).

The OGRDataSource (p. ??) also has support for executing a datasource specific command, normally a form of S←↩

QL. This is accomplished via the OGRDataSource::ExecuteSQL() (p. ??) method. While some datasources (such
as PostGIS and Oracle) pass the SQL through to an underlying database, OGR also includes support for evaluating
a subset of the SQL SELECT statement against any datasource.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

20 OGR Architecture

3.7 Drivers

An OGRSFDriver (p. ??) object is instantiated for each file format supported. The OGRSFDriver (p. ??) objects
are registered with the OGRSFDriverRegistrar (p. ??), a singleton class that is normally used to open new data
sources.

It is intended that a new OGRSFDriver (p. ??) derived class be implemented for each file format to be supported
(along with a file format specific OGRDataSource (p. ??), and OGRLayer (p. ??) classes).

On application startup registration functions are normally called for each desired file format. These functions in-
stantiate the appropriate OGRSFDriver (p. ??) objects, and register them with the OGRSFDriverRegistrar (p. ??).
When a data source is to be opened, the registrar will normally try each OGRSFDriver (p. ??) in turn, until one
succeeds, returning an OGRDataSource (p. ??) object.

It is not intended that the OGRSFDriverRegistrar (p. ??) be derived from.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

Chapter 4

OGR Driver Implementation Tutorial

4.1 Overall Approach

In general new formats are added to OGR by implementing format specific drivers with subclasses of OGRSFDriver
(p. ??), OGRDataSource (p. ??) and OGRLayer (p. ??). The OGRSFDriver (p. ??) subclass is registered with the
OGRSFDriverRegistrar (p. ??) at runtime.

Before following this tutorial to implement an OGR driver, please review the OGR Architecture document
carefully.

The tutorial will be based on implementing a simple ascii point format.

4.2 Contents

1. Implementing OGRSFDriver (p. ??)

2. Basic Read Only Data Source (p. ??)

3. Read Only Layer (p. ??)

4.3 Implementing OGRSFDriver

The format specific driver class is implemented as a subclass of OGRSFDriver (p. ??). One instance of the driver
will normally be created, and registered with the OGRSFDriverRegistrar() (p. ??). The instantiation of the driver is
normally handled by a global C callable registration function, similar to the following placed in the same file as the
driver class.

void RegisterOGRSPF()

{
OGRSFDriverRegistrar::GetRegistrar()->RegisterDriver(new OGRSPFDriver);

}

The driver class declaration generally looks something like this for a format with read or read and update access
(the Open() method), creation support (the CreateDataSource() method), and the ability to delete a datasource (the
DeleteDataSource() method).

class OGRSPFDriver : public OGRSFDriver
{

public:
~OGRSPFDriver();

22 OGR Driver Implementation Tutorial

const char *GetName();
OGRDataSource *Open(const char *, int);
OGRDataSource *CreateDataSource(const char *, char **);
OGRErr DeleteDataSource(const char *pszName);
int TestCapability(const char *);

};

The constructor generally does nothing. The OGRSFDriver::GetName() (p. ??) method returns a static string with
the name of the driver. This name is specified on the commandline when creating datasources so it is generally
good to keep it short and without any special characters or spaces.

OGRSPFDriver::~OGRSPFDriver()

{
}

const char *OGRSPFDriver::GetName()
{

return "SPF";
}

The Open() method is called by OGRSFDriverRegistrar::Open() (p. ??), or from the C API OGROpen() (p. ??).
The OGRSFDriver::Open() (p. ??) method should quietly return NULL if the passed filename is not of the format
supported by the driver. If it is the target format, then a new OGRDataSource (p. ??) object for the datasource
should be returned.

It is common for the Open() method to be delegated to an Open() method on the actual format's OGRDataSource
(p. ??) class.

OGRDataSource *OGRSPFDriver::Open(const char * pszFilename, int bUpdate)
{

OGRSPFDataSource *poDS = new OGRSPFDataSource();

if(!poDS->Open(pszFilename, bUpdate))
{

delete poDS;
return NULL;

}
else

return poDS;
}

In OGR the capabilities of drivers, datasources and layers are determined by calling TestCapability() on the various
objects with names strings representing specific optional capabilities. For the driver the only two capabilities cur-
rently tested for are the ability to create datasources and to delete them. In our first pass as a read only SPF driver,
these are both disabled. The default return value for unrecognised capabilities should always be FALSE, and the
symbolic #defines for capability names (defined in ogr_core.h (p. ??)) should be used instead of the literal strings
to avoid typos.

int OGRSPFDriver::TestCapability(const char * pszCap)

{
if(EQUAL(pszCap,ODrCCreateDataSource))

return FALSE;
else if(EQUAL(pszCap,ODrCDeleteDataSource))

return FALSE;
else

return FALSE;
}

Examples of the CreateDataSource() and DeleteDataSource() methods are left for the section on creation and
update.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

4.4 Basic Read Only Data Source 23

4.4 Basic Read Only Data Source

We will start implementing a minimal read-only datasource. No attempt is made to optimize operations, and default
implementations of many methods inherited from OGRDataSource (p. ??) are used.

The primary responsibility of the datasource is to manage the list of layers. In the case of the SPF format a
datasource is a single file representing one layer so there is at most one layer. The "name" of a datasource should
generally be the name passed to the Open() method.

The Open() method below is not overriding a base class method, but we have it to implement the open operation
delegated by the driver class.

For this simple case we provide a stub TestCapability() that returns FALSE for all extended capabilities. The Test←↩

Capability() method is pure virtual, so it does need to be implemented.

class OGRSPFDataSource : public OGRDataSource
{

char *pszName;

OGRSPFLayer **papoLayers;
int nLayers;

public:
OGRSPFDataSource();
~OGRSPFDataSource();

int Open(const char * pszFilename, int bUpdate);

const char *GetName() { return pszName; }

int GetLayerCount() { return nLayers; }
OGRLayer *GetLayer(int);

int TestCapability(const char *) { return FALSE; }
};

The constructor is a simple initializer to a default state. The Open() will take care of actually attaching it to a file.
The destructor is responsible for orderly cleanup of layers.

OGRSPFDataSource::OGRSPFDataSource()

{
papoLayers = NULL;
nLayers = 0;

pszName = NULL;
}

OGRSPFDataSource::~OGRSPFDataSource()

{
for(int i = 0; i < nLayers; i++)

delete papoLayers[i];
CPLFree(papoLayers);

CPLFree(pszName);
}

The Open() method is the most important one on the datasource, though in this particular instance it passes most
of it's work off to the OGRSPFLayer constructor if it believes the file is of the desired format.

Note that Open() methods should try and determine that a file isn't of the identified format as efficiently as possible,
since many drivers may be invoked with files of the wrong format before the correct driver is reached. In this
particular Open() we just test the file extension but this is generally a poor way of identifying a file format. If
available, checking "magic header values" or something similar is preferrable.

In the case of the SPF format, update in place is not supported, so we always fail if bUpdate is FALSE.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

24 OGR Driver Implementation Tutorial

int OGRSPFDataSource::Open(const char *pszFilename, int bUpdate)

{
// --
// Does this appear to be an .spf file?
// --

if(!EQUAL(CPLGetExtension(pszFilename), "spf"))
return FALSE;

if(bUpdate)
{

CPLError(CE_Failure, CPLE_OpenFailed,
"Update access not supported by the SPF driver.");

return FALSE;
}

// --
// Create a corresponding layer.
// --

nLayers = 1;
papoLayers = (OGRSPFLayer **) CPLMalloc(sizeof(void*));

papoLayers[0] = new OGRSPFLayer(pszFilename);

pszName = CPLStrdup(pszFilename);

return TRUE;
}

A GetLayer() method also needs to be implemented. Since the layer list is created in the Open() this is just a lookup
with some safety testing.

OGRLayer *OGRSPFDataSource::GetLayer(int iLayer)

{
if(iLayer < 0 || iLayer >= nLayers)

return NULL;
else

return papoLayers[iLayer];
}

4.5 Read Only Layer

The OGRSPFLayer is implements layer semantics for an .spf file. It provides access to a set of feature objects in a
consistent coordinate system with a particular set of attribute columns. Our class definition looks like this:

class OGRSPFLayer : public OGRLayer
{

OGRFeatureDefn *poFeatureDefn;

FILE *fp;

int nNextFID;

public:
OGRSPFLayer(const char *pszFilename);
~OGRSPFLayer();

void ResetReading();
OGRFeature * GetNextFeature();

OGRFeatureDefn * GetLayerDefn() { return poFeatureDefn; }

int TestCapability(const char *) { return FALSE; }
};

The layer constructor is responsible for initialization. The most important initialization is setting up the OGR←↩

FeatureDefn (p. ??) for the layer. This defines the list of fields and their types, the geometry type and the coordinate

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

4.5 Read Only Layer 25

system for the layer. In the SPF format the set of fields is fixed - a single string field and we have no coordinate
system info to set.

Pay particular attention to the reference counting of the OGRFeatureDefn (p. ??). As OGRFeature (p. ??)'s for this
layer will also take a reference to this definition it is important that we also establish a reference on behalf of the
layer itself.

OGRSPFLayer::OGRSPFLayer(const char *pszFilename)

{
nNextFID = 0;

poFeatureDefn = new OGRFeatureDefn(CPLGetBasename(pszFilename));
poFeatureDefn->Reference();
poFeatureDefn->SetGeomType(wkbPoint);

OGRFieldDefn oFieldTemplate("Name", OFTString);

poFeatureDefn->AddFieldDefn(&oFieldTemplate);

fp = VSIFOpenL(pszFilename, "r");
if(fp == NULL)

return;
}

Note that the destructor uses Release() on the OGRFeatureDefn (p. ??). This will destroy the feature definition if
the reference count drops to zero, but if the application is still holding onto a feature from this layer, then that feature
will hold a reference to the feature definition and it will not be destroyed here (which is good!).

OGRSPFLayer::~OGRSPFLayer()

{
poFeatureDefn->Release();
if(fp != NULL)

VSIFCloseL(fp);
}

The GetNextFeature() method is usually the work horse of OGRLayer (p. ??) implementations. It is responsible for
reading the next feature according to the current spatial and attribute filters installed.

The while() loop is present to loop until we find a satisfactory feature. The first section of code is for parsing a single
line of the SPF text file and establishing the x, y and name for the line.

OGRFeature *OGRSPFLayer::GetNextFeature()

{
// --
// Loop till we find a feature matching our requirements.
// --
while(TRUE)
{

const char *pszLine;
const char *pszName;

pszLine = CPLReadLineL(fp);

// Are we at end of file (out of features)?
if(pszLine == NULL)

return NULL;

double dfX;
double dfY;

dfX = atof(pszLine);

pszLine = strstr(pszLine,"|");
if(pszLine == NULL)

continue; // we should issue an error!
else

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

26 OGR Driver Implementation Tutorial

pszLine++;

dfY = atof(pszLine);

pszLine = strstr(pszLine,"|");
if(pszLine == NULL)

continue; // we should issue an error!
else

pszName = pszLine+1;

The next section turns the x, y and name into a feature. Also note that we assign a linearly incremented feature id.
In our case we started at zero for the first feature, though some drivers start at 1.

OGRFeature *poFeature = new OGRFeature(poFeatureDefn);

poFeature->SetGeometryDirectly(new OGRPoint(dfX, dfY));
poFeature->SetField(0, pszName);
poFeature->SetFID(nNextFID++);

Next we check if the feature matches our current attribute or spatial filter if we have them. Methods on the OGR←↩

Layer (p. ??) base class support maintain filters in the OGRLayer (p. ??) member fields m_poFilterGeom (spatial
filter) and m_poAttrQuery (attribute filter) so we can just use these values here if they are non-NULL. The following
test is essentially "stock" and done the same in all formats. Some formats also do some spatial filtering ahead of
time using a spatial index.

If the feature meets our criteria we return it. Otherwise we destroy it, and return to the top of the loop to fetch another
to try.

if((m_poFilterGeom == NULL
|| FilterGeometry(poFeature->GetGeometryRef()))
&& (m_poAttrQuery == NULL

|| m_poAttrQuery->Evaluate(poFeature)))
return poFeature;

delete poFeature;
}

}

While in the middle of reading a feature set from a layer, or at any other time the application can call ResetReading()
which is intended to restart reading at the beginning of the feature set. We implement this by seeking back to the
beginning of the file, and resetting our feature id counter.

void OGRSPFLayer::ResetReading()

{
VSIFSeekL(fp, 0, SEEK_SET);
nNextFID = 0;

}

In this implementation we do not provide a custom implementation for the GetFeature() method. This means an
attempt to read a particular feature by it's feature id will result in many calls to GetNextFeature() till the desired
feature is found. However, in a sequential text format like spf there is little else we could do anyway.

There! We have completed a simple read-only feature file format driver.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

Chapter 5

OGR SQL

The OGRDataSource (p. ??) supports executing commands against a datasource via the OGRDataSource::←↩

ExecuteSQL() (p. ??) method. While in theory any sort of command could be handled this way, in practice the
mechanism is used to provide a subset of SQL SELECT capability to applications. This page discusses the generic
SQL implementation implemented within OGR, and issue with driver specific SQL support.

Since GDAL/OGR 1.10, an alternate "dialect", the SQLite dialect, can be used instead of the OGRSQL dialect.
Refer to the SQLite SQL dialect page for more details.

The OGRLayer (p. ??) class also supports applying an attribute query filter to features returned using the OGR←↩

Layer::SetAttributeFilter() (p. ??) method. The syntax for the attribute filter is the same as the WHERE clause in
the OGR SQL SELECT statement. So everything here with regard to the WHERE clause applies in the context of
the SetAttributeFilter() method.

NOTE: OGR SQL has been reimplemented for GDAL/OGR 1.8.0. Many features discussed below, notably arith-
metic expressions, and expressions in the field list, were not support in GDAL/OGR 1.7.x and earlier. See RFC 28
for details of the new features in GDAL/OGR 1.8.0.

5.1 SELECT

The SELECT statement is used to fetch layer features (analogous to table rows in an RDBMS) with the result of
the query represented as a temporary layer of features. The layers of the datasource are analogous to tables in an
RDBMS and feature attributes are analogous to column values. The simplest form of OGR SQL SELECT statement
looks like this:

SELECT * FROM polylayer

In this case all features are fetched from the layer named "polylayer", and all attributes of those features are returned.
This is essentially equivalent to accessing the layer directly. In this example the "∗" is the list of fields to fetch from
the layer, with "∗" meaning that all fields should be fetched.

This slightly more sophisticated form still pulls all features from the layer but the schema will only contain the EA←↩

S_ID and PROP_VALUE attributes. Any other attributes would be discarded.

SELECT eas_id, prop_value FROM polylayer

A much more ambitious SELECT, restricting the features fetched with a WHERE clause, and sorting the results
might look like:

SELECT * from polylayer WHERE prop_value > 220000.0 ORDER BY prop_value DESC

This select statement will produce a table with just one feature, with one attribute (named something like "count_←↩

eas_id") containing the number of distinct values of the eas_id attribute.

SELECT COUNT(DISTINCT eas_id) FROM polylayer

28 OGR SQL

5.1.1 Field List Operators

The field list is a comma separate list of the fields to be carried into the output features from the source layer. They
will appear on output features in the order they appear on in the field list, so the field list may be used to re-order
the fields.

A special form of the field list uses the DISTINCT keyword. This returns a list of all the distinct values of the named
attribute. When the DISTINCT keyword is used, only one attribute may appear in the field list. The DISTINC←↩

T keyword may be used against any type of field. Currently the distinctness test against a string value is case
insensitive in OGR SQL. The result of a SELECT with a DISTINCT keyword is a layer with one column (named the
same as the field operated on), and one feature per distinct value. Geometries are discarded. The distinct values
are assembled in memory, so alot of memory may be used for datasets with a large number of distinct values.

SELECT DISTINCT areacode FROM polylayer

There are also several summarization operators that may be applied to columns. When a summarization operator
is applied to any field, then all fields must have summarization operators applied. The summarization operators
are COUNT (a count of instances), AVG (numerical average), SUM (numerical sum), MIN (lexical or numerical
minimum), and MAX (lexical or numerical maximum). This example produces a variety of sumarization information
on parcel property values:

SELECT MIN(prop_value), MAX(prop_value), AVG(prop_value), SUM(prop_value),
COUNT(prop_value) FROM polylayer WHERE prov_name = "Ontario"

It is also possible to apply the COUNT() operator to a DISTINCT SELECT to get a count of distinct values, for
instance:

SELECT COUNT(DISTINCT areacode) FROM polylayer

Note: prior to OGR 1.9.0, null values were counted in COUNT(column_name) or COUNT(DISTINCT column_←↩

name), which was not conformant with the SQL standard. Since OGR 1.9.0, only non-null values are counted.

As a special case, the COUNT() operator can be given a "∗" argument instead of a field name which is a short form
for count all the records.

SELECT COUNT(*) FROM polylayer

Field names can also be prefixed by a table name though this is only really meaningful when performing joins. It is
further demonstrated in the JOIN section.

Field definitions can also be complex expressions using arithmetic, and functional operators. However, the DI←↩

STINCT keyword, and summarization operators like MIN, MAX, AVG and SUM may not be applied to expression
fields.

SELECT cost+tax from invoice

or

SELECT CONCAT(owner_first_name,’ ’,owner_last_name) from properties

5.1.1.1 Functions

Starting with OGR 1.8.2, the SUBSTR function can be used to extract a substring from a string. Its syntax is the
following one : SUBSTR(string_expr, start_offset [, length]). It extracts a substring of string_expr, starting at offset
start_offset (1 being the first character of string_expr, 2 the second one, etc...). If start_offset is a negative value,
the substring is extracted from the end of the string (-1 is the last character of the string, -2 the character before
the last character, ...). If length is specified, up to length characters are extracted from the string. Otherwise the
remainder of the string is extracted.

Note: for the time being, the character as considered to be equivalent to bytes, which may not be appropriate for
multi-byte encodings like UTF-8.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

5.1 SELECT 29

SELECT SUBSTR(’abcdef’,1,2) FROM xxx --> ’ab’
SELECT SUBSTR(’abcdef’,4) FROM xxx --> ’def’
SELECT SUBSTR(’abcdef’,-2) FROM xxx --> ’ef’

5.1.1.2 Using the field name alias

OGR SQL supports renaming the fields following the SQL92 specification by using the AS keyword according to the
following example:

SELECT *, OGR_STYLE AS STYLE FROM polylayer

The field name alias can be used as the last operation in the column specification. Therefore we cannot rename the
fields inside an operator, but we can rename whole column expression, like these two:

SELECT COUNT(areacode) AS ’count’ FROM polylayer
SELECT dollars/100.0 AS cents FROM polylayer

5.1.1.3 Changing the type of the fields

Starting with GDAL 1.6.0, OGR SQL supports changing the type of the columns by using the SQL92 compliant
CAST operator according to the following example:

SELECT *, CAST(OGR_STYLE AS character(255)) FROM rivers

Currently casting to the following target types are supported:

1. character(field_length). By default, field_length=1.

2. float(field_length)

3. numeric(field_length, field_precision)

4. integer(field_length)

5. date(field_length)

6. time(field_length)

7. timestamp(field_length)

8. geometry, geometry(geometry_type), geometry(geometry_type,epsg_code)

Specifying the field_length and/or the field_precision is optional. An explicit value of zero can be used as the width
for character() to indicate variable width. Conversion to the 'integer list', 'double list' and 'string list' OGR data types
are not supported, which doesn't conform to the SQL92 specification.

While the CAST operator can be applied anywhere in an expression, including in a WHERE clause, the detailed
control of output field format is only supported if the CAST operator is the "outer most" operators on a field in the
field definition list. In other contexts it is still useful to convert between numeric, string and date data types.

Starting with OGR 1.11, casting a WKT string to a geometry is allowed. geometry_type can be POINT[Z], LINES←↩

TRING[Z], POLYGON[Z], MULTIPOINT[Z], MULTILINESTRING[Z], MULTIPOLYGON[Z], GEOMETRYCOLLEC←↩

TION[Z] or GEOMETRY[Z].

5.1.2 WHERE

The argument to the WHERE clause is a logical expression used select records from the source layer. In addition to
its use within the WHERE statement, the WHERE clause handling is also used for OGR attribute queries on regular
layers via OGRLayer::SetAttributeFilter() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

30 OGR SQL

In addition to the arithmetic and other functional operators available in expressions in the field selection clause of
the SELECT statement, in the WHERE context logical operators are also available and the evaluated value of the
expression should be logical (true or false).

The available logical operators are =, !=, <>, <, >, <=, >=, LIKE and ILIKE, BETWEEN and IN. Most of the
operators are self explanitory, but is is worth nothing that != is the same as <>, the string equality is case insensitive,
but the <, >, <= and >= operators are case sensitive. Both the LIKE and ILIKE operators are case insensitive.

The value argument to the LIKE operator is a pattern against which the value string is matched. In this pattern
percent (%) matches any number of characters, and underscore (_) matches any one character. An optional ES←↩

CAPE escape_char clause can be added so that the percent or underscore characters can be searched as regular
characters, by being preceded with the escape_char.

String Pattern Matches?
------ ------- --------
Alberta ALB% Yes
Alberta _lberta Yes
St. Alberta _lberta No
St. Alberta %lberta Yes
Robarts St. %Robarts% Yes
12345 123%45 Yes
123.45 12?45 No
N0N 1P0 %N0N% Yes
L4C 5E2 %N0N% No

The IN takes a list of values as it's argument and tests the attribute value for membership in the provided set.

Value Value Set Matches?
------ ------- --------
321 IN (456,123) No
"Ontario" IN ("Ontario","BC") Yes
"Ont" IN ("Ontario","BC") No
1 IN (0,2,4,6) No

The syntax of the BETWEEN operator is "field_name BETWEEN value1 AND value2" and it is equivalent to "field←↩

_name >= value1 AND field_name <= value2".

In addition to the above binary operators, there are additional operators for testing if a field is null or not. These are
the IS NULL and IS NOT NULL operators.

Basic field tests can be combined in more complicated predicates using logical operators include AND, OR, and
the unary logical NOT. Subexpressions should be bracketed to make precedence clear. Some more complicated
predicates are:

SELECT * FROM poly WHERE (prop_value >= 100000) AND (prop_value < 200000)
SELECT * FROM poly WHERE NOT (area_code LIKE "N0N%")
SELECT * FROM poly WHERE (prop_value IS NOT NULL) AND (prop_value < 100000)

5.1.3 WHERE Limitations

1. Fields must all come from the primary table (the one listed in the FROM clause).

2. All string comparisons are case insensitive except for <, >, <= and >=.

5.1.4 ORDER BY

The ORDER BY clause is used force the returned features to be reordered into sorted order (ascending or descend-
ing) on one of the field values. Ascending (increasing) order is the default if neither the ASC or DESC keyword is
provided. For example:

SELECT * FROM property WHERE class_code = 7 ORDER BY prop_value DESC
SELECT * FROM property ORDER BY prop_value
SELECT * FROM property ORDER BY prop_value ASC
SELECT DISTINCT zip_code FROM property ORDER BY zip_code

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

5.1 SELECT 31

Note that ORDER BY clauses cause two passes through the feature set. One to build an in-memory table of field
values corresponded with feature ids, and a second pass to fetch the features by feature id in the sorted order. For
formats which cannot efficiently randomly read features by feature id this can be a very expensive operation.

Sorting of string field values is case sensitive, not case insensitive like in most other parts of OGR SQL.

5.1.5 JOINs

OGR SQL supports a limited form of one to one JOIN. This allows records from a secondary table to be looked up
based on a shared key between it and the primary table being queried. For instance, a table of city locations might
include a nation_id column that can be used as a reference into a secondary nation table to fetch a nation name. A
joined query might look like:

SELECT city.*, nation.name FROM city
LEFT JOIN nation ON city.nation_id = nation.id

This query would result in a table with all the fields from the city table, and an additional "nation.name" field with the
nation name pulled from the nation table by looking for the record in the nation table that has the "id" field with the
same value as the city.nation_id field.

Joins introduce a number of additional issues. One is the concept of table qualifiers on field names. For instance,
referring to city.nation_id instead of just nation_id to indicate the nation_id field from the city layer. The table name
qualifiers may only be used in the field list, and within the ON clause of the join.

Wildcards are also somewhat more involved. All fields from the primary table (city in this case) and the secondary
table (nation in this case) may be selected using the usual ∗ wildcard. But the fields of just one of the primary or
secondary table may be selected by prefixing the asterix with the table name.

The field names in the resulting query layer will be qualified by the table name, if the table name is given as a qualifier
in the field list. In addition field names will be qualified with a table name if they would conflict with earlier fields. For
instance, the following select would result might result in a results set with a name, nation_id, nation.nation_id and
nation.name field if the city and nation tables both have the nation_id and name fieldnames.

SELECT * FROM city LEFT JOIN nation ON city.nation_id = nation.nation_id

On the other hand if the nation table had a continent_id field, but the city table did not, then that field would not need
to be qualified in the result set. However, if the selected instead looked like the following statement, all result fields
would be qualified by the table name.

SELECT city.*, nation.* FROM city
LEFT JOIN nation ON city.nation_id = nation.nation_id

In the above examples, the nation table was found in the same datasource as the city table. However, the OGR join
support includes the ability to join against a table in a different data source, potentially of a different format. This is
indicated by qualifying the secondary table name with a datasource name. In this case the secondary datasource is
opened using normal OGR semantics and utilized to access the secondary table until the query result is no longer
needed.

SELECT * FROM city
LEFT JOIN ’/usr2/data/nation.dbf’.nation ON city.nation_id = nation.nation_id

While not necessarily very useful, it is also possible to introduce table aliases to simplify some SELECT statements.
This can also be useful to disambiguate situations where tables of the same name are being used from different
data sources. For instance, if the actual tables names were messy we might want to do something like:

SELECT c.name, n.name FROM project_615_city c
LEFT JOIN ’/usr2/data/project_615_nation.dbf’.project_615_nation n

ON c.nation_id = n.nation_id

It is possible to do multiple joins in a single query.

SELECT city.name, prov.name, nation.name FROM city
LEFT JOIN province ON city.prov_id = province.id
LEFT JOIN nation ON city.nation_id = nation.id

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

32 OGR SQL

5.1.6 JOIN Limitations

1. Joins can be very expensive operations if the secondary table is not indexed on the key field being used.

2. Joined fields may not be used in WHERE clauses, or ORDER BY clauses at this time. The join is essentially
evaluated after all primary table subsetting is complete, and after the ORDER BY pass.

3. Joined fields may not be used as keys in later joins. So you could not use the province id in a city to lookup the
province record, and then use a nation id from the province id to lookup the nation record. This is a sensible
thing to want and could be implemented, but is not currently supported.

4. Datasource names for joined tables are evaluated relative to the current processes working directory, not the
path to the primary datasource.

5. These are not true LEFT or RIGHT joins in the RDBMS sense. Whether or not a secondary record exists for
the join key or not, one and only one copy of the primary record is returned in the result set. If a secondary
record cannot be found, the secondary derived fields will be NULL. If more than one matching secondary field
is found only the first will be used.

5.2 UNION ALL

(OGR >= 1.10.0)

The SQL engine can deal with several SELECT combined with UNION ALL. The effect of UNION ALL is to concate-
nate the rows returned by the right SELECT statement to the rows returned by the left SELECT statement.

[(] SELECT field_list FROM first_layer [WHERE where_expr] [)]
UNION ALL [(] SELECT field_list FROM second_layer [WHERE where_expr] [)]
[UNION ALL [(] SELECT field_list FROM third_layer [WHERE where_expr] [)]]*

5.2.1 UNION ALL restrictions

The processing of UNION ALL in OGR differs from the SQL standard, in which it accepts that the columns from
the various SELECT are not identical. In that case, it will return a super-set of all the fields from each SELECT
statement.

There is also a restriction : ORDER BY can only be specified for each SELECT, and not at the level of the result of
the union.

5.3 SPECIAL FIELDS

The OGR SQL query processor treats some of the attributes of the features as built-in special fields can be used
in the SQL statements likewise the other fields. These fields can be placed in the select list, the WHERE clause
and the ORDER BY clause respectively. The special field will not be included in the result by default but it may
be explicitly included by adding it to the select list. When accessing the field values the special fields will take
precedence over the other fields with the same names in the data source.

5.3.1 FID

Normally the feature id is a special property of a feature and not treated as an attribute of the feature. In some
cases it is convenient to be able to utilize the feature id in queries and result sets as a regular field. To do so use
the name FID. The field wildcard expansions will not include the feature id, but it may be explicitly included using a
syntax like:

SELECT FID, * FROM nation

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

5.4 CREATE INDEX 33

5.3.2 OGR_GEOMETRY

Some of the data sources (like MapInfo tab) can handle geometries of different types within the same layer. The
OGR_GEOMETRY special field represents the geometry type returned by OGRGeometry::getGeometryName()
(p. ??) and can be used to distinguish the various types. By using this field one can select particular types of the
geometries like:

SELECT * FROM nation WHERE OGR_GEOMETRY=’POINT’ OR OGR_GEOMETRY=’POLYGON’

5.3.3 OGR_GEOM_WKT

The Well Known Text representation of the geometry can also be used as a special field. To select the WKT of the
geometry OGR_GEOM_WKT might be included in the select list, like:

SELECT OGR_GEOM_WKT, * FROM nation

Using the OGR_GEOM_WKT and the LIKE operator in the WHERE clause we can get similar effect as using
OGR_GEOMETRY:

SELECT OGR_GEOM_WKT, * FROM nation WHERE OGR_GEOM_WKT
LIKE ’POINT%’ OR OGR_GEOM_WKT LIKE ’POLYGON%’

5.3.4 OGR_GEOM_AREA

(Since GDAL 1.7.0)

The OGR_GEOM_AREA special field returns the area of the feature's geometry computed by the OGRSurface←↩

::get_Area() (p. ??) method. For OGRGeometryCollection (p. ??) and OGRMultiPolygon (p. ??) the value is the
sum of the areas of its members. For non-surface geometries the returned area is 0.0.

For example, to select only polygon features larger than a given area:

SELECT * FROM nation WHERE OGR_GEOM_AREA > 10000000’

5.3.5 OGR_STYLE

The OGR_STYLE special field represents the style string of the feature returned by OGRFeature::GetStyleString()
(p. ??). By using this field and the LIKE operator the result of the query can be filtered by the style. For example we
can select the annotation features as:

SELECT * FROM nation WHERE OGR_STYLE LIKE ’LABEL%’

5.4 CREATE INDEX

Some OGR SQL drivers support creating of attribute indexes. Currently this includes the Shapefile driver. An index
accelerates very simple attribute queries of the form fieldname = value, which is what is used by the JOIN capability.
To create an attribute index on the nation_id field of the nation table a command like this would be used:

CREATE INDEX ON nation USING nation_id

5.4.1 Index Limitations

1. Indexes are not maintained dynamically when new features are added to or removed from a layer.

2. Very long strings (longer than 256 characters?) cannot currently be indexed.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

34 OGR SQL

3. To recreate an index it is necessary to drop all indexes on a layer and then recreate all the indexes.

4. Indexes are not used in any complex queries. Currently the only query the will accelerate is a simple "field =
value" query.

5.5 DROP INDEX

The OGR SQL DROP INDEX command can be used to drop all indexes on a particular table, or just the index for a
particular column.

DROP INDEX ON nation USING nation_id
DROP INDEX ON nation

5.6 ALTER TABLE

(OGR >= 1.9.0)

The following OGR SQL ALTER TABLE commands can be used.

1. "ALTER TABLE tablename ADD [COLUMN] columnname columntype" to add a new field. Supported if the
layer declares the OLCCreateField capability.

2. "ALTER TABLE tablename RENAME [COLUMN] oldcolumnname TO newcolumnname" to rename an exist-
ing field. Supported if the layer declares the OLCAlterFieldDefn capability.

3. "ALTER TABLE tablename ALTER [COLUMN] columnname TYPE columntype" to change the type of an
existing field. Supported if the layer declares the OLCAlterFieldDefn capability.

4. "ALTER TABLE tablename DROP [COLUMN] columnname" to delete an existing field. Supported if the layer
declares the OLCDeleteField capability.

The columntype value follows the syntax of the types supported by the CAST operator described above.

ALTER TABLE nation ADD COLUMN myfield integer
ALTER TABLE nation RENAME COLUMN myfield TO myfield2
ALTER TABLE nation ALTER COLUMN myfield2 TYPE character(15)
ALTER TABLE nation DROP COLUMN myfield2

5.7 DROP TABLE

(OGR >= 1.9.0)

The OGR SQL DROP TABLE command can be used to delete a table. This is only supported on datasources that
declare the ODsCDeleteLayer capability.

DROP TABLE nation

5.8 ExecuteSQL()

SQL is executed against an OGRDataSource (p. ??), not against a specific layer. The call looks like this:

OGRLayer * OGRDataSource::ExecuteSQL(const char *pszSQLCommand,
OGRGeometry *poSpatialFilter,
const char *pszDialect);

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

5.9 Non-OGR SQL 35

The pszDialect argument is in theory intended to allow for support of different command languages against a
provider, but for now applications should always pass an empty (not NULL) string to get the default dialect.

The poSpatialFilter argument is a geometry used to select a bounding rectangle for features to be returned in a
manner similar to the OGRLayer::SetSpatialFilter() (p. ??) method. It may be NULL for no special spatial restric-
tion.

The result of an ExecuteSQL() call is usually a temporary OGRLayer (p. ??) representing the results set from
the statement. This is the case for a SELECT statement for instance. The returned temporary layer should be
released with OGRDataSource::ReleaseResultsSet() method when no longer needed. Failure to release it before
the datasource is destroyed may result in a crash.

5.9 Non-OGR SQL

All OGR drivers for database systems: MySQL, PostgreSQL and PostGIS (PG), Oracle (OCI), SQLite, ODBC,
ESRI Personal Geodatabase (PGeo) and MS SQL Spatial (MSSQLSpatial), override the OGRDataSource←↩

::ExecuteSQL() (p. ??) function with dedicated implementation and, by default, pass the SQL statements directly
to the underlying RDBMS. In these cases the SQL syntax varies in some particulars from OGR SQL. Also, any-
thing possible in SQL can then be accomplished for these particular databases. Only the result of SQL WHERE
statements will be returned as layers.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

36 OGR SQL

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

Chapter 6

SQLite SQL dialect

Since GDAL/OGR 1.10, the SQLite "dialect" can be used as an alternate SQL dialect to the OGR SQL dialect.
This assumes that GDAL/OGR is built with support for SQLite (>= 3.6), and preferably with Spatialite support
too to benefit from spatial functions.

The SQLite dialect may be used with any OGR datasource, like the OGR SQL dialect. It is available through the
OGRDataSource::ExecuteSQL() (p. ??) method by specifying the pszDialect to "SQLITE". For the ogrinfo or
ogr2ogr utility, you must specify the "-dialect SQLITE" option.

This is mainly aimed to execute SELECT statements, but, for datasources that support update, INSERT/UPDAT←↩

E/DELETE statements can also be run.

The syntax of the SQL statements is fully the one of the SQLite SQL engine. You can refer to the following pages:

• SELECT documentation

• INSERT documentation

• UPDATE documentation

• DELETE documentation

6.1 SELECT statement

The SELECT statement is used to fetch layer features (analogous to table rows in an RDBMS) with the result of
the query represented as a temporary layer of features. The layers of the datasource are analogous to tables in
an RDBMS and feature attributes are analogous to column values. The simplest form of OGR SQLITE SELECT
statement looks like this:

SELECT * FROM polylayer

More complex statements can of course be used, including WHERE, JOIN, USING, GROUP BY, ORDER BY, sub
SELECT, ...

The table names that can be used are the layer names available in the datasource on which the ExecuteSQL()
method is called.

Similarly to OGRSQL, it is also possible to refer to layers of other datasources with the following syntax : "other_←↩

datasource_name"."layer_name".

SELECT p.*, NAME FROM poly p JOIN "idlink.dbf"."idlink" il USING (eas_id)

The column names that can be used in the result column list, in WHERE, JOIN, ... clauses are the field names of
the layers. Expressions, SQLite functions can also be used, spatial functions, etc...

38 SQLite SQL dialect

The conditions on fields expressed in WHERE clauses, or in JOINs are translated, as far as possible, as attribute
filters that are applied on the underlying OGR layers. Joins can be very expensive operations if the secondary table
is not indexed on the key field being used.

6.1.1 Geometry field

The GEOMETRY special field represents the geometry of the feature returned by OGRFeature::GetGeometry←↩

Ref() (p. ??). It can be explicitly specified in the result column list of a SELECT, and is automatically selected if the
wildcard is used.

For OGR layers that have a non-empty geometry column name (generally for RDBMS datasources), as returned by
OGRLayer::GetGeometryColumn() (p. ??), the name of the geometry special field in the SQL statement will be
the name of the geometry column of the underlying OGR layer.

SELECT EAS_ID, GEOMETRY FROM poly

returns:

OGRFeature(SELECT):0
EAS_ID (Real) = 168
POLYGON ((479819.84375 4765180.5,479690.1875 4765259.5,[...],479819.84375 4765180.5))

SELECT * FROM poly

returns:

OGRFeature(SELECT):0
AREA (Real) = 215229.266
EAS_ID (Real) = 168
PRFEDEA (String) = 35043411
POLYGON ((479819.84375 4765180.5,479690.1875 4765259.5,[...],479819.84375 4765180.5))

6.1.2 OGR_STYLE special field

The OGR_STYLE special field represents the style string of the feature returned by OGRFeature::GetStyleString()
(p. ??). By using this field and the LIKE operator the result of the query can be filtered by the style. For example we
can select the annotation features as:

SELECT * FROM nation WHERE OGR_STYLE LIKE ’LABEL%’

6.1.3 Spatialite SQL functions

When GDAL/OGR is build with support for the Spatialite library, a lot of extra SQL functions, in par-
ticular spatial functions, can be used in results column fields, WHERE clauses, etc....

SELECT EAS_ID, ST_Area(GEOMETRY) AS area FROM poly WHERE
ST_Intersects(GEOMETRY, BuildCircleMbr(479750.6875,4764702.0,100))

returns:

OGRFeature(SELECT):0
EAS_ID (Real) = 169
area (Real) = 101429.9765625

OGRFeature(SELECT):1
EAS_ID (Real) = 165
area (Real) = 596610.3359375

OGRFeature(SELECT):2
EAS_ID (Real) = 170
area (Real) = 5268.8125

6.1.4 OGR datasource SQL functions

The ogr_datasource_load_layers(datasource_name[, update_mode[, prefix]]) function can be used to auto-
matically load all the layers of a datasource as VirtualOGR tables.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

6.1 SELECT statement 39

sqlite> SELECT load_extension(’libgdal.so’);

sqlite> SELECT load_extension(’libspatialite.so’);

sqlite> SELECT ogr_datasource_load_layers(’poly.shp’);
1
sqlite> SELECT * FROM sqlite_master;
table|poly|poly|0|CREATE VIRTUAL TABLE "poly" USING VirtualOGR(’poly.shp’, 0, ’poly’)

6.1.5 OGR layer SQL functions

The following SQL functions are available and operate on a layer name : ogr_layer_Extent(), ogr_layer_SRID(),
ogr_layer_GeometryType() and ogr_layer_FeatureCount()

SELECT ogr_layer_Extent(’poly’), ogr_layer_SRID(’poly’) AS srid,
ogr_layer_GeometryType(’poly’) AS geomtype, ogr_layer_FeatureCount(’poly’) AS count

returns:

OGRFeature(SELECT):0
srid (Integer) = 40004
geomtype (String) = POLYGON
count (Integer) = 10
POLYGON ((478315.53125 4762880.5,481645.3125 4762880.5,481645.3125 4765610.5,478315.53125 4765610.5,47831

5.53125 4762880.5))

6.1.6 OGR compression functions

ogr_deflate(text_or_blob[, compression_level]) returns a binary blob compressed with the ZLib deflate algo-
rithm. See CPLZLibDeflate() (p. ??)

ogr_inflate(compressed_blob) returns the decompressed binary blob, from a blob compressed with the ZLib
deflate algorithm. If the decompressed binary is a string, use CAST(ogr_inflate(compressed_blob) AS VARCHAR).
See CPLZLibInflate() (p. ??).

6.1.7 OGR geocoding functions

The following SQL functions are available : ogr_geocode(...) and ogr_geocode_reverse(...).

ogr_geocode(name_to_geocode [, field_to_return [, option1 [, option2, ...]]]) where name_to_geocode is a
literal or a column name that must be geocoded. field_to_return if specified can be "geometry" for the geometry
(default), or a field name of the layer returned by OGRGeocode() (p. ??). The special field "raw" can also be used
to return the raw response (XML string) of the geocoding service. option1, option2, etc.. must be of the key=value
format, and are options understood by OGRGeocodeCreateSession() (p. ??) or OGRGeocode() (p. ??).

This function internally uses the OGRGeocode() (p. ??) API. Refer to it for more details.

SELECT ST_Centroid(ogr_geocode(’Paris’))

returns:

OGRFeature(SELECT):0
POINT (2.342878767069653 48.85661793020374)

ogrinfo cities.csv -dialect sqlite -sql "SELECT *, ogr_geocode(city, ’country’) AS country,
ST_Centroid(ogr_geocode(city)) FROM cities"

returns:

OGRFeature(SELECT):0
id (Real) = 1
city (String) = Paris
country (String) = France métropolitaine
POINT (2.342878767069653 48.85661793020374)

OGRFeature(SELECT):1
id (Real) = 2
city (String) = London
country (String) = United Kingdom
POINT (-0.109369427546499 51.500506667319407)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

40 SQLite SQL dialect

OGRFeature(SELECT):2
id (Real) = 3
city (String) = Rennes
country (String) = France métropolitaine
POINT (-1.68185153381778 48.111663929761093)

OGRFeature(SELECT):3
id (Real) = 4
city (String) = Strasbourg
country (String) = France métropolitaine
POINT (7.767762859150757 48.571233274141846)

OGRFeature(SELECT):4
id (Real) = 5
city (String) = New York
country (String) = United States of America
POINT (-73.938140243499049 40.663799577449979)

OGRFeature(SELECT):5
id (Real) = 6
city (String) = Berlin
country (String) = Deutschland
POINT (13.402306623451983 52.501470321410636)

OGRFeature(SELECT):6
id (Real) = 7
city (String) = Beijing
country (String) =
POINT (116.391195 39.9064702)

OGRFeature(SELECT):7
id (Real) = 8
city (String) = Brasilia
country (String) = Brasil
POINT (-52.830435216371839 -10.828214867369699)

OGRFeature(SELECT):8
id (Real) = 9
city (String) = Moscow
country (String) =
POINT (37.367988106866868 55.556208255649558)

ogr_geocode_reverse(longitude, latitude, field_to_return [, option1 [, option2, ...]]) where longitude, latitude
is the coordinate to query. field_to_return must be a field name of the layer returned by OGRGeocodeReverse()
(p. ??) (for example 'display_name'). The special field "raw" can also be used to return the raw response (X←↩

ML string) of the geocoding service. option1, option2, etc.. must be of the key=value format, and are options
understood by OGRGeocodeCreateSession() (p. ??) or OGRGeocodeReverse() (p. ??).

ogr_geocode_reverse(geometry, field_to_return [, option1 [, option2, ...]]) is also accepted as an alternate
syntax where geometry is a (Spatialite) point geometry.

This function internally uses the OGRGeocodeReverse() (p. ??) API. Refer to it for more details.

6.1.8 Spatialite spatial index

Spatialite spatial index mechanism can be triggered by making sure a spatial index virtual table is mentioned in
the SQL (of the form idx_layername_geometrycolumn), or by using the more recent SpatialIndex from the Virtual←↩

SpatialIndex extension. In which case, a in-memory RTree will be built to be used to speed up the spatial queries.

For example, a spatial intersection between 2 layers, by using a spatial index on one of the layers to limit the number
of actual geometry intersection computations :

SELECT city_name, region_name FROM cities, regions WHERE
ST_Area(ST_Intersection(cities.geometry, regions.geometry)) > 0 AND
regions.rowid IN (

SELECT pkid FROM idx_regions_geometry WHERE
xmax >= MbrMinX(cities.geometry) AND xmin <= MbrMaxX(cities.geometry) AND
ymax >= MbrMinY(cities.geometry) AND ymin <= MbrMaxY(cities.geometry))

or more elegantly :

SELECT city_name, region_name FROM cities, regions WHERE
ST_Area(ST_Intersection(cities.geometry, regions.geometry)) > 0 AND
regions.rowid IN (

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

6.1 SELECT statement 41

SELECT rowid FROM SpatialIndex WHERE
f_table_name = ’regions’ AND search_frame = cities.geometry)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

42 SQLite SQL dialect

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

Chapter 7

OGR Projections Tutorial

7.1 Introduction

The OGRSpatialReference (p. ??), and OGRCoordinateTransformation (p. ??) classes provide services to rep-
resent coordinate systems (projections and datums) and to transform between them. These services are loosely
modelled on the OpenGIS Coordinate Transformations specification, and use the same Well Known Text format for
describing coordinate systems.

Some background on OpenGIS coordinate systems and services can be found in the Simple Features for COM, and
Spatial Reference Systems Abstract Model documents available from the Open Geospatial Consortium.
The GeoTIFF Projections Transform List may also be of assistance in understanding formulations of
projections in WKT. The EPSG Geodesy web page is also a useful resource.

7.2 Defining a Geographic Coordinate System

Coordinate systems are encapsulated in the OGRSpatialReference (p. ??) class. There are a number of ways of
initializing an OGRSpatialReference (p. ??) object to a valid coordinate system. There are two primary kinds of
coordinate systems. The first is geographic (positions are measured in long/lat) and the second is projected (such
as UTM - positions are measured in meters or feet).

A Geographic coordinate system contains information on the datum (which implies an spheroid described by a
semi-major axis, and inverse flattening), prime meridian(normally Greenwich), and an angular units type which is
normally degrees. The following code initializes a geographic coordinate system on supplying all this information
along with a user visible name for the geographic coordinate system.

OGRSpatialReference oSRS;

oSRS.SetGeogCS("My geographic coordinate system",
"WGS_1984",
"My WGS84 Spheroid",
SRS_WGS84_SEMIMAJOR, SRS_WGS84_INVFLATTENING,
"Greenwich", 0.0,
"degree", SRS_UA_DEGREE_CONV);

Of these values, the names "My geographic coordinate system", "My WGS84 Spheroid", "Greenwich" and "degree"
are not keys, but are used for display to the user. However, the datum name "WGS_1984" is used as a key to
identify the datum, and there are rules on what values can be used. NOTE: Prepare writeup somewhere on valid
datums!

The OGRSpatialReference (p. ??) has built in support for a few well known coordinate systems, which include
"NAD27", "NAD83", "WGS72" and "WGS84" which can be defined in a single call to SetWellKnownGeogCS().

oSRS.SetWellKnownGeogCS("WGS84");

Furthermore, any geographic coordinate system in the EPSG database can be set by it's GCS code number if the
EPSG database is available.

44 OGR Projections Tutorial

oSRS.SetWellKnownGeogCS("EPSG:4326");

For serializization, and transmission of projection definitions to other packages, the OpenGIS Well Known Text
format for coordinate systems is used. An OGRSpatialReference (p. ??) can be initialized from well known text, or
converted back into well known text.

char *pszWKT = NULL;

oSRS.SetWellKnownGeogCS("WGS84");
oSRS.exportToWkt(&pszWKT);
printf("%s\n", pszWKT);

gives something like:

GEOGCS["WGS 84",DATUM["WGS_1984",SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG",7030]],TOWGS84[0,0,0,0,0,0,0],AUTHORITY["EPSG",6326]],
PRIMEM["Greenwich",0,AUTHORITY["EPSG",8901]],UNIT["DMSH",0.0174532925199433,
AUTHORITY["EPSG",9108]],AXIS["Lat",NORTH],AXIS["Long",EAST],AUTHORITY["EPSG",
4326]]

or in more readable form:

GEOGCS["WGS 84",
DATUM["WGS_1984",

SPHEROID["WGS 84",6378137,298.257223563,
AUTHORITY["EPSG",7030]],

TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG",6326]],

PRIMEM["Greenwich",0,AUTHORITY["EPSG",8901]],
UNIT["DMSH",0.0174532925199433,AUTHORITY["EPSG",9108]],
AXIS["Lat",NORTH],
AXIS["Long",EAST],
AUTHORITY["EPSG",4326]]

The OGRSpatialReference::importFromWkt() (p. ??) method can be used to set an OGRSpatialReference
(p. ??) from a WKT coordinate system definition.

7.3 Defining a Projected Coordinate System

A projected coordinate system (such as UTM, Lambert Conformal Conic, etc) requires and underlying geographic
coordinate system as well as a definition for the projection transform used to translate between linear positions (in
meters or feet) and angular long/lat positions. The following code defines a UTM zone 17 projected coordinate
system with and underlying geographic coordinate system (datum) of WGS84.

OGRSpatialReference oSRS;

oSRS.SetProjCS("UTM 17 (WGS84) in northern hemisphere.");
oSRS.SetWellKnownGeogCS("WGS84");
oSRS.SetUTM(17, TRUE);

Calling SetProjCS() sets a user name for the projected coordinate system and establishes that the system is pro-
jected. The SetWellKnownGeogCS() associates a geographic coordinate system, and the SetUTM() call sets de-
tailed projection transformation parameters. At this time the above order is important in order to create a valid
definition, but in the future the object will automatically reorder the internal representation as needed to remain
valid. For now be careful of the order of steps defining an OGRSpatialReference!

The above definition would give a WKT version that looks something like the following. Note that the UTM 17 was
expanded into the details transverse mercator definition of the UTM zone.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

7.4 Querying Coordinate System 45

PROJCS["UTM 17 (WGS84) in northern hemisphere.",
GEOGCS["WGS 84",

DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,

AUTHORITY["EPSG",7030]],
TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG",6326]],

PRIMEM["Greenwich",0,AUTHORITY["EPSG",8901]],
UNIT["DMSH",0.0174532925199433,AUTHORITY["EPSG",9108]],
AXIS["Lat",NORTH],
AXIS["Long",EAST],
AUTHORITY["EPSG",4326]],

PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",-81],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",0]]

There are methods for many projection methods including SetTM() (Transverse Mercator), SetLCC() (Lambert Con-
formal Conic), and SetMercator().

7.4 Querying Coordinate System

Once an OGRSpatialReference (p. ??) has been established, various information about it can be queried. It
can be established if it is a projected or geographic coordinate system using the OGRSpatialReference::Is←↩

Projected() (p. ??) and OGRSpatialReference::IsGeographic() (p. ??) methods. The OGRSpatialReference←↩

::GetSemiMajor() (p. ??), OGRSpatialReference::GetSemiMinor() (p. ??) and OGRSpatialReference::GetInv←↩

Flattening() (p. ??) methods can be used to get information about the spheroid. The OGRSpatialReference::←↩

GetAttrValue() (p. ??) method can be used to get the PROJCS, GEOGCS, DATUM, SPHEROID, and PROJECT←↩

ION names strings. The OGRSpatialReference::GetProjParm() (p. ??) method can be used to get the projection
parameters. The OGRSpatialReference::GetLinearUnits() (p. ??) method can be used to fetch the linear units
type, and translation to meters.

The following code (from ogr_srs_proj4.cpp) demonstrates use of GetAttrValue() to get the projection, and GetProj←↩

Parm() to get projection parameters. The GetAttrValue() method searches for the first "value" node associated with
the named entry in the WKT text representation. The #define'ed constants for projection parameters (such as S←↩

RS_PP_CENTRAL_MERIDIAN) should be used when fetching projection parameter with GetProjParm(). The code
for the Set methods of the various projections in ogrspatialreference.cpp can be consulted to find which parameters
apply to which projections.

const char *pszProjection = poSRS->GetAttrValue("PROJECTION");

if(pszProjection == NULL)
{

if(poSRS->IsGeographic())
sprintf(szProj4+strlen(szProj4), "+proj=longlat ");

else
sprintf(szProj4+strlen(szProj4), "unknown ");

}
else if(EQUAL(pszProjection,SRS_PT_CYLINDRICAL_EQUAL_AREA))
{

sprintf(szProj4+strlen(szProj4),
"+proj=cea +lon_0=%.9f +lat_ts=%.9f +x_0=%.3f +y_0=%.3f ",

poSRS->GetProjParm(SRS_PP_CENTRAL_MERIDIAN,0.0),
poSRS->GetProjParm(SRS_PP_STANDARD_PARALLEL_1,0.0),
poSRS->GetProjParm(SRS_PP_FALSE_EASTING,0.0),
poSRS->GetProjParm(SRS_PP_FALSE_NORTHING,0.0));

}
...

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

46 OGR Projections Tutorial

7.5 Coordinate Transformation

The OGRCoordinateTransformation (p. ??) class is used for translating positions between different coordinate
systems. New transformation objects are created using OGRCreateCoordinateTransformation() (p. ??), and then
the OGRCoordinateTransformation::Transform() (p. ??) method can be used to convert points between coordi-
nate systems.

OGRSpatialReference oSourceSRS, oTargetSRS;
OGRCoordinateTransformation *poCT;
double x, y;

oSourceSRS.importFromEPSG(atoi(papszArgv[i+1]));
oTargetSRS.importFromEPSG(atoi(papszArgv[i+2]));

poCT = OGRCreateCoordinateTransformation(&oSourceSRS,
&oTargetSRS);

x = atof(papszArgv[i+3]);
y = atof(papszArgv[i+4]);

if(poCT == NULL || !poCT->Transform(1, &x, &y))
printf("Transformation failed.\n");

else
printf("(%f,%f) -> (%f,%f)\n",

atof(papszArgv[i+3]),
atof(papszArgv[i+4]),
x, y);

There are a couple of points at which transformations can fail. First, OGRCreateCoordinateTransformation()
(p. ??) may fail, generally because the internals recognise that no transformation between the indicated systems
can be established. This might be due to use of a projection not supported by the internal PROJ.4 library, differing
datums for which no relationship is known, or one of the coordinate systems being inadequately defined. If OGR←↩

CreateCoordinateTransformation() (p. ??) fails it will return a NULL.

The OGRCoordinateTransformation::Transform() (p. ??) method itself can also fail. This may be as a delayed
result of one of the above problems, or as a result of an operation being numerically undefined for one or more of
the passed in points. The Transform() function will return TRUE on success, or FALSE if any of the points fail to
transform. The point array is left in an indeterminate state on error.

Though not shown above, the coordinate transformation service can take 3D points, and will adjust elevations for
elevation differents in spheroids, and datums. At some point in the future shifts between different vertical datums
may also be applied. If no Z is passed, it is assume that the point is on the geoide.

The following example shows how to conveniently create a lat/long coordinate system using the same geographic
coordinate system as a projected coordinate system, and using that to transform between projected coordinates
and lat/long.

OGRSpatialReference oUTM, *poLatLong;
OGRCoordinateTransformation *poTransform;

oUTM.SetProjCS("UTM 17 / WGS84");
oUTM.SetWellKnownGeogCS("WGS84");
oUTM.SetUTM(17);

poLatLong = oUTM.CloneGeogCS();

poTransform = OGRCreateCoordinateTransformation(&oUTM, poLatLong);
if(poTransform == NULL)
{

...
}

...

if(!poTransform->Transform(nPoints, x, y, z))
...

7.6 Alternate Interfaces

A C interface to the coordinate system services is defined in ogr_srs_api.h (p. ??), and Python bindings are avail-
able via the osr.py module. Methods are close analogs of the C++ methods but C and Python bindings are missing
for some C++ methods.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

7.6 Alternate Interfaces 47

C Bindings

typedef void *OGRSpatialReferenceH;
typedef void *OGRCoordinateTransformationH;

OGRSpatialReferenceH OSRNewSpatialReference(const char *);
void OSRDestroySpatialReference(OGRSpatialReferenceH);

int OSRReference(OGRSpatialReferenceH);
int OSRDereference(OGRSpatialReferenceH);

OGRErr OSRImportFromEPSG(OGRSpatialReferenceH, int);
OGRErr OSRImportFromWkt(OGRSpatialReferenceH, char **);
OGRErr OSRExportToWkt(OGRSpatialReferenceH, char **);

OGRErr OSRSetAttrValue(OGRSpatialReferenceH hSRS, const char * pszNodePath,
const char * pszNewNodeValue);

const char *OSRGetAttrValue(OGRSpatialReferenceH hSRS,
const char * pszName, int iChild);

OGRErr OSRSetLinearUnits(OGRSpatialReferenceH, const char *, double);
double OSRGetLinearUnits(OGRSpatialReferenceH, char **);

int OSRIsGeographic(OGRSpatialReferenceH);
int OSRIsProjected(OGRSpatialReferenceH);
int OSRIsSameGeogCS(OGRSpatialReferenceH, OGRSpatialReferenceH);
int OSRIsSame(OGRSpatialReferenceH, OGRSpatialReferenceH);

OGRErr OSRSetProjCS(OGRSpatialReferenceH hSRS, const char * pszName);
OGRErr OSRSetWellKnownGeogCS(OGRSpatialReferenceH hSRS,

const char * pszName);

OGRErr OSRSetGeogCS(OGRSpatialReferenceH hSRS,
const char * pszGeogName,
const char * pszDatumName,
const char * pszEllipsoidName,
double dfSemiMajor, double dfInvFlattening,
const char * pszPMName ,
double dfPMOffset ,
const char * pszUnits,
double dfConvertToRadians);

double OSRGetSemiMajor(OGRSpatialReferenceH, OGRErr *);
double OSRGetSemiMinor(OGRSpatialReferenceH, OGRErr *);
double OSRGetInvFlattening(OGRSpatialReferenceH, OGRErr *);

OGRErr OSRSetAuthority(OGRSpatialReferenceH hSRS,
const char * pszTargetKey,
const char * pszAuthority,
int nCode);

OGRErr OSRSetProjParm(OGRSpatialReferenceH, const char *, double);
double OSRGetProjParm(OGRSpatialReferenceH hSRS,

const char * pszParmName,
double dfDefault,
OGRErr *);

OGRErr OSRSetUTM(OGRSpatialReferenceH hSRS, int nZone, int bNorth);
int OSRGetUTMZone(OGRSpatialReferenceH hSRS, int *pbNorth);

OGRCoordinateTransformationH
OCTNewCoordinateTransformation(OGRSpatialReferenceH hSourceSRS,

OGRSpatialReferenceH hTargetSRS);
void OCTDestroyCoordinateTransformation(OGRCoordinateTransformationH);

int OCTTransform(OGRCoordinateTransformationH hCT,
int nCount, double *x, double *y, double *z);

Python Bindings

class osr.SpatialReference
def __init__(self,obj=None):
def ImportFromWkt(self, wkt):
def ExportToWkt(self):
def ImportFromEPSG(self,code):
def IsGeographic(self):
def IsProjected(self):
def GetAttrValue(self, name, child = 0):
def SetAttrValue(self, name, value):
def SetWellKnownGeogCS(self, name):
def SetProjCS(self, name = "unnamed"):
def IsSameGeogCS(self, other):
def IsSame(self, other):
def SetLinearUnits(self, units_name, to_meters):
def SetUTM(self, zone, is_north = 1):

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

48 OGR Projections Tutorial

class CoordinateTransformation:
def __init__(self,source,target):
def TransformPoint(self, x, y, z = 0):
def TransformPoints(self, points):

7.7 Internal Implementation

The OGRCoordinateTransformation (p. ??) service is implemented on top of the PROJ.4 library originally written
by Gerald Evenden of the USGS.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

Chapter 8

Deprecated List

globalScope> Member OGR_G_GetArea (p. ??) (OGRGeometryH) CPL_WARN_DEPRECATED("Non stan-
dard method. Use OGR_G_Area() instead")

See also

OGR_G_Area() (p. ??)

globalScope> Member OGR_G_GetBoundary (p. ??) (OGRGeometryH) CPL_WARN_DEPRECATED("Non
standard method. Use OGR_G_Boundary() instead")

globalScope> Member OGR_G_SymmetricDifference (p. ??) (OGRGeometryH, OGRGeometryH) CPL_W←↩

ARN_DEPRECATED("Non standard method. Use OGR_G_SymDifference() instead")

Member OGRGeometry::getBoundary (p. ??) () const CPL_WARN_DEPRECATED("Non standard method.
Use Boundary() instead")

Member OGRGeometry::SymmetricDifference (p. ??) (const OGRGeometry (p. ??) ∗) const CPL_WARN_←↩

DEPRECATED("Non standard method. Use SymDifference() instead")

Member OGRLayer::GetInfo (p. ??) (const char ∗)

Member OGRSpatialReference::importFromOzi (p. ??) (const char ∗, const char ∗, const char ∗)
Use importFromOzi(const char ∗ const∗ papszLines) (p. ??) instead

Member OGRSpatialReference::∼OGRSpatialReference (p. ??) ()

50 Deprecated List

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

Chapter 9

Hierarchical Index

9.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

_CPLHashSet . ??
_CPLList . ??
_CPLQuadTree . ??
_CPLSpawnedProcess . ??
_MutexLinkedElt . ??
_OGRGeocodingSessionHS . ??
_QuadTreeNode . ??
_sPolyExtended . ??
CachedConnection . ??
CachedDirList . ??
CachedFileProp . ??
CachedRegion . ??
CPLErrorContext . ??
CPLHTTPResult . ??
CPLKeywordParser . ??
CPLLocaleC . ??
CPLMimePart . ??
CPLMutexHolder . ??
CPLODBCDriverInstaller . ??
CPLODBCSession . ??
CPLODBCStatement . ??
CPLRectObj . ??
CPLSharedFileInfo . ??
CPLSharedFileInfoExtra . ??
CPLStdCallThreadInfo . ??
CPLStringList . ??
CPLXMLNode . ??
CPLZip . ??
ctb . ??
curfile_info . ??
DefaultCSVFileNameTLS . ??
errHandler . ??
file_in_zip_read_info_s . ??
FindFileTLS . ??
GDALScaledProgressInfo . ??
GZipSnapshot . ??
linkedlist_data_s . ??
linkedlist_datablock_internal_s . ??

52 Hierarchical Index

OGR_SRSNode . ??
ogr_style_param . ??
ogr_style_value . ??
OGRAttrIndex . ??

OGRMIAttrIndex . ??
OGRCoordinateTransformation . ??

OGRProj4CT . ??
OGRDataSource . ??

OGRMutexedDataSource . ??
OGREnvelope . ??

OGREnvelope3D . ??
OGRFeature . ??
OGRFeatureDefn . ??
OGRFeatureQuery . ??
OGRField . ??
OGRFieldDefn . ??
OGRGeometry . ??

OGRCurve . ??
OGRLineString . ??

OGRLinearRing . ??
OGRGeometryCollection . ??

OGRMultiLineString . ??
OGRMultiPoint . ??
OGRMultiPolygon . ??

OGRPoint . ??
OGRSurface . ??

OGRPolygon . ??
OGRGeometryFactory . ??
OGRGeomFieldDefn . ??

OGRGenSQLGeomFieldDefn . ??
OGRUnionLayerGeomFieldDefn . ??

OGRLayer . ??
OGRAbstractProxiedLayer . ??

OGRProxiedLayer . ??
OGRGenSQLResultsLayer . ??
OGRLayerDecorator . ??

OGRMutexedLayer . ??
OGRWarpedLayer . ??

OGRUnionLayer . ??
OGRLayerAttrIndex . ??

OGRMILayerAttrIndex . ??
OGRLayerPool . ??
OGRProj4Datum . ??
OGRProj4PM . ??
OGRRawPoint . ??
OGRSFDriver . ??
OGRSFDriverRegistrar . ??
OGRSpatialReference . ??
OGRStyleMgr . ??
OGRStyleTable . ??
OGRStyleTool . ??

OGRStyleBrush . ??
OGRStyleLabel . ??
OGRStylePen . ??
OGRStyleSymbol . ??

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

9.1 Class Hierarchy 53

osr_cs_wkt_parse_context . ??
osr_cs_wkt_tokens . ??
ParseContext . ??
PCIDatums . ??
projUV . ??
RingBuffer . ??
SFRegion . ??
StackContext . ??
string

CPLString . ??
swq_col_def . ??
swq_expr_node . ??
swq_field_list . ??
swq_join_def . ??
swq_op_registrar . ??
swq_operation . ??
swq_order_def . ??
swq_parse_context . ??
swq_select . ??
swq_summary . ??
swq_table_def . ??
tm_unz_s . ??
tm_zip_s . ??
unz_file_info_internal_s . ??
unz_file_info_s . ??
unz_file_pos_s . ??
unz_global_info_s . ??
unz_s . ??
VSIArchiveContent . ??
VSIArchiveEntry . ??
VSIArchiveEntryFileOffset . ??

VSITarEntryFileOffset . ??
VSIZipEntryFileOffset . ??

VSIArchiveReader . ??

VSITarReader . ??
VSIZipReader . ??

VSICacheChunk . ??
VSIDIR . ??
VSIFileManager . ??
VSIFilesystemHandler . ??

VSIArchiveFilesystemHandler . ??
VSITarFilesystemHandler . ??
VSIZipFilesystemHandler . ??

VSICurlFilesystemHandler . ??
VSICurlStreamingFSHandler . ??
VSIGZipFilesystemHandler . ??
VSIMemFilesystemHandler . ??
VSISparseFileFilesystemHandler . ??
VSIStdinFilesystemHandler . ??
VSIStdoutFilesystemHandler . ??
VSIStdoutRedirectFilesystemHandler . ??
VSISubFileFilesystemHandler . ??
VSIUnixStdioFilesystemHandler . ??

VSIMemFile . ??
VSIReadDirRecursiveTask . ??
VSIVirtualHandle . ??

VSIBufferedReaderHandle . ??

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

54 Hierarchical Index

VSICachedFile . ??
VSICurlHandle . ??
VSICurlStreamingHandle . ??
VSIGZipHandle . ??
VSIGZipWriteHandle . ??
VSIMemHandle . ??
VSISparseFileHandle . ??
VSIStdinHandle . ??
VSIStdoutHandle . ??
VSIStdoutRedirectHandle . ??
VSISubFileHandle . ??
VSIUnixStdioHandle . ??
VSIZipWriteHandle . ??

WriteFuncStruct . ??
yyalloc . ??
zip_fileinfo . ??
zip_internal . ??
zlib_filefunc_def_s . ??

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

Chapter 10

Class Index

10.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

_CPLHashSet . ??
_CPLList . ??
_CPLQuadTree . ??
_CPLSpawnedProcess . ??
_MutexLinkedElt . ??
_OGRGeocodingSessionHS . ??
_QuadTreeNode . ??
_sPolyExtended . ??
CachedConnection . ??
CachedDirList . ??
CachedFileProp . ??
CachedRegion . ??
CPLErrorContext . ??
CPLHTTPResult . ??
CPLKeywordParser . ??
CPLLocaleC . ??
CPLMimePart . ??
CPLMutexHolder . ??
CPLODBCDriverInstaller . ??
CPLODBCSession . ??
CPLODBCStatement . ??
CPLRectObj . ??
CPLSharedFileInfo . ??
CPLSharedFileInfoExtra . ??
CPLStdCallThreadInfo . ??
CPLString

Convenient string class based on std::string . ??
CPLStringList

String list class designed around our use of C "char∗∗" string lists ??
CPLXMLNode . ??
CPLZip . ??
ctb . ??
curfile_info . ??
DefaultCSVFileNameTLS . ??
errHandler . ??
file_in_zip_read_info_s . ??
FindFileTLS . ??
GDALScaledProgressInfo . ??

56 Class Index

GZipSnapshot . ??
linkedlist_data_s . ??
linkedlist_datablock_internal_s . ??
OGR_SRSNode . ??
ogr_style_param . ??
ogr_style_value . ??
OGRAbstractProxiedLayer . ??
OGRAttrIndex . ??
OGRCoordinateTransformation . ??
OGRCurve . ??
OGRDataSource . ??
OGREnvelope . ??
OGREnvelope3D . ??
OGRFeature . ??
OGRFeatureDefn . ??
OGRFeatureQuery . ??
OGRField . ??
OGRFieldDefn . ??
OGRGenSQLGeomFieldDefn . ??
OGRGenSQLResultsLayer . ??
OGRGeometry . ??
OGRGeometryCollection . ??
OGRGeometryFactory . ??
OGRGeomFieldDefn . ??
OGRLayer . ??
OGRLayerAttrIndex . ??
OGRLayerDecorator . ??
OGRLayerPool . ??
OGRLinearRing . ??
OGRLineString . ??
OGRMIAttrIndex . ??
OGRMILayerAttrIndex . ??
OGRMultiLineString . ??
OGRMultiPoint . ??
OGRMultiPolygon . ??
OGRMutexedDataSource . ??
OGRMutexedLayer . ??
OGRPoint . ??
OGRPolygon . ??
OGRProj4CT . ??
OGRProj4Datum . ??
OGRProj4PM . ??
OGRProxiedLayer . ??
OGRRawPoint . ??
OGRSFDriver . ??
OGRSFDriverRegistrar . ??
OGRSpatialReference . ??
OGRStyleBrush . ??
OGRStyleLabel . ??
OGRStyleMgr . ??
OGRStylePen . ??
OGRStyleSymbol . ??
OGRStyleTable . ??
OGRStyleTool . ??
OGRSurface . ??
OGRUnionLayer . ??
OGRUnionLayerGeomFieldDefn . ??
OGRWarpedLayer . ??

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

10.1 Class List 57

osr_cs_wkt_parse_context . ??
osr_cs_wkt_tokens . ??
ParseContext . ??
PCIDatums . ??
projUV . ??
RingBuffer . ??
SFRegion . ??
StackContext . ??
swq_col_def . ??
swq_expr_node . ??
swq_field_list . ??
swq_join_def . ??
swq_op_registrar . ??
swq_operation . ??
swq_order_def . ??
swq_parse_context . ??
swq_select . ??
swq_summary . ??
swq_table_def . ??
tm_unz_s . ??
tm_zip_s . ??
unz_file_info_internal_s . ??
unz_file_info_s . ??
unz_file_pos_s . ??
unz_global_info_s . ??
unz_s . ??
VSIArchiveContent . ??
VSIArchiveEntry . ??
VSIArchiveEntryFileOffset . ??
VSIArchiveFilesystemHandler . ??
VSIArchiveReader . ??
VSIBufferedReaderHandle . ??
VSICacheChunk . ??
VSICachedFile . ??
VSICurlFilesystemHandler . ??
VSICurlHandle . ??
VSICurlStreamingFSHandler . ??
VSICurlStreamingHandle . ??
VSIDIR . ??
VSIFileManager . ??
VSIFilesystemHandler . ??
VSIGZipFilesystemHandler . ??
VSIGZipHandle . ??
VSIGZipWriteHandle . ??
VSIMemFile . ??
VSIMemFilesystemHandler . ??
VSIMemHandle . ??
VSIReadDirRecursiveTask . ??
VSISparseFileFilesystemHandler . ??
VSISparseFileHandle . ??
VSIStdinFilesystemHandler . ??
VSIStdinHandle . ??
VSIStdoutFilesystemHandler . ??
VSIStdoutHandle . ??
VSIStdoutRedirectFilesystemHandler . ??
VSIStdoutRedirectHandle . ??
VSISubFileFilesystemHandler . ??
VSISubFileHandle . ??

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

58 Class Index

VSITarEntryFileOffset . ??
VSITarFilesystemHandler . ??
VSITarReader . ??
VSIUnixStdioFilesystemHandler . ??
VSIUnixStdioHandle . ??
VSIVirtualHandle . ??
VSIZipEntryFileOffset . ??
VSIZipFilesystemHandler . ??
VSIZipReader . ??
VSIZipWriteHandle . ??
WriteFuncStruct . ??
yyalloc . ??
zip_fileinfo . ??
zip_internal . ??
zlib_filefunc_def_s . ??

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

Chapter 11

File Index

11.1 File List

Here is a list of all documented files with brief descriptions:

cpl_atomic_ops.h . ??
cpl_config.h . ??
cpl_config_extras.h . ??
cpl_conv.h . ??
cpl_csv.h . ??
cpl_error.h . ??
cpl_hash_set.h . ??
cpl_http.h . ??
cpl_list.h . ??
cpl_minixml.h . ??
cpl_minizip_ioapi.h . ??
cpl_minizip_unzip.h . ??
cpl_minizip_zip.h . ??
cpl_multiproc.h . ??
cpl_odbc.h . ??
cpl_port.h . ??
cpl_progress.h . ??
cpl_quad_tree.h . ??
cpl_spawn.h . ??
cpl_string.h . ??
cpl_time.h . ??
cpl_virtualmem.h . ??
cpl_vsi.h . ??
cpl_vsi_virtual.h . ??
cpl_vsil_curl_priv.h . ??
cpl_win32ce_api.h . ??
cpl_wince.h . ??
cplkeywordparser.h . ??
gdal_csv.h . ??
ogr_api.h . ??
ogr_attrind.h . ??
ogr_core.h . ??
ogr_expat.h . ??
ogr_feature.h . ??
ogr_featurestyle.h . ??
ogr_gensql.h . ??
ogr_geocoding.h . ??
ogr_geometry.h . ??

60 File Index

ogr_geos.h . ??
ogr_p.h . ??
ogr_spatialref.h . ??
ogr_srs_api.h . ??
ogr_srs_esri_names.h . ??
ogrgeomediageometry.h . ??
ogrlayerdecorator.h . ??
ogrlayerpool.h . ??
ogrmutexeddatasource.h . ??
ogrmutexedlayer.h . ??
ogrpgeogeometry.h . ??
ogrsf_frmts.h . ??
ogrunionlayer.h . ??
ogrwarpedlayer.h . ??
osr_cs_wkt.h . ??
osr_cs_wkt_parser.h . ??
swq.h . ??

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

Chapter 12

Class Documentation

12.1 _CPLHashSet Struct Reference

The documentation for this struct was generated from the following file:

• cpl_hash_set.cpp

12.2 _CPLList Struct Reference

#include <cpl_list.h>

Public Attributes

• void ∗ pData
• struct _CPLList ∗ psNext

12.2.1 Detailed Description

List element structure.

12.2.2 Member Data Documentation

12.2.2.1 void∗ _CPLList::pData

Pointer to the data object. Should be allocated and freed by the caller.

Referenced by CPLHashSetDestroy(), CPLHashSetForeach(), CPLHashSetRemove(), CPLListAppend(), CPL←↩

ListGetData(), and CPLListInsert().

12.2.2.2 struct _CPLList∗ _CPLList::psNext

Pointer to the next element in list. NULL, if current element is the last one.

Referenced by CPLHashSetDestroy(), CPLHashSetForeach(), CPLHashSetRemove(), CPLListAppend(), CPL←↩

ListCount(), CPLListDestroy(), CPLListGet(), CPLListGetLast(), CPLListGetNext(), CPLListInsert(), and CPLList←↩

Remove().

The documentation for this struct was generated from the following file:

62 Class Documentation

• cpl_list.h

12.3 _CPLQuadTree Struct Reference

The documentation for this struct was generated from the following file:

• cpl_quad_tree.cpp

12.4 _CPLSpawnedProcess Struct Reference

The documentation for this struct was generated from the following file:

• cpl_spawn.cpp

12.5 _MutexLinkedElt Struct Reference

The documentation for this struct was generated from the following file:

• cpl_multiproc.cpp

12.6 _OGRGeocodingSessionHS Struct Reference

The documentation for this struct was generated from the following file:

• ogr_geocoding.cpp

12.7 _QuadTreeNode Struct Reference

The documentation for this struct was generated from the following file:

• cpl_quad_tree.cpp

12.8 _sPolyExtended Struct Reference

The documentation for this struct was generated from the following file:

• ogrgeometryfactory.cpp

12.9 CachedConnection Struct Reference

The documentation for this struct was generated from the following file:

• cpl_vsil_curl.cpp

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.10 CachedDirList Struct Reference 63

12.10 CachedDirList Struct Reference

The documentation for this struct was generated from the following file:

• cpl_vsil_curl.cpp

12.11 CachedFileProp Struct Reference

The documentation for this struct was generated from the following files:

• cpl_vsil_curl.cpp

• cpl_vsil_curl_streaming.cpp

12.12 CachedRegion Struct Reference

The documentation for this struct was generated from the following file:

• cpl_vsil_curl.cpp

12.13 CPLErrorContext Struct Reference

The documentation for this struct was generated from the following file:

• cpl_error.cpp

12.14 CPLHTTPResult Struct Reference

#include <cpl_http.h>

Public Attributes

• int nStatus

• char ∗ pszContentType

• char ∗ pszErrBuf

• int nDataLen

• GByte ∗ pabyData

• char ∗∗ papszHeaders

• int nMimePartCount

• CPLMimePart ∗ pasMimePart

12.14.1 Detailed Description

Describe the result of a CPLHTTPFetch() (p. ??) call

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

64 Class Documentation

12.14.2 Member Data Documentation

12.14.2.1 int CPLHTTPResult::nDataLen

Length of the pabyData buffer

Referenced by CPLHTTPFetch(), CPLHTTPParseMultipartMime(), and OGRSpatialReference::importFromUrl().

12.14.2.2 int CPLHTTPResult::nMimePartCount

Number of parts in a multipart message

Referenced by CPLHTTPDestroyResult(), and CPLHTTPParseMultipartMime().

12.14.2.3 int CPLHTTPResult::nStatus

cURL error code : 0=success, non-zero if request failed

Referenced by CPLHTTPFetch(), and OGRSpatialReference::importFromUrl().

12.14.2.4 GByte∗ CPLHTTPResult::pabyData

Buffer with downloaded data

Referenced by CPLHTTPDestroyResult(), CPLHTTPParseMultipartMime(), GOA2GetAccessToken(), GOA2Get←↩

RefreshToken(), and OGRSpatialReference::importFromUrl().

12.14.2.5 char∗∗ CPLHTTPResult::papszHeaders

Headers returned

Referenced by CPLHTTPDestroyResult(), and CPLHTTPFetch().

12.14.2.6 CPLMimePart∗ CPLHTTPResult::pasMimePart

Array of parts (resolved by CPLHTTPParseMultipartMime() (p. ??))

Referenced by CPLHTTPDestroyResult(), and CPLHTTPParseMultipartMime().

12.14.2.7 char∗ CPLHTTPResult::pszContentType

Content-Type of the response

Referenced by CPLHTTPDestroyResult(), CPLHTTPFetch(), and CPLHTTPParseMultipartMime().

12.14.2.8 char∗ CPLHTTPResult::pszErrBuf

Error message from curl, or NULL

Referenced by CPLHTTPDestroyResult(), CPLHTTPFetch(), GOA2GetAccessToken(), GOA2GetRefreshToken(),
and OGRSpatialReference::importFromUrl().

The documentation for this struct was generated from the following file:

• cpl_http.h

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.15 CPLKeywordParser Class Reference 65

12.15 CPLKeywordParser Class Reference

The documentation for this class was generated from the following files:

• cplkeywordparser.h
• cplkeywordparser.cpp

12.16 CPLLocaleC Class Reference

The documentation for this class was generated from the following files:

• cpl_conv.h
• cpl_conv.cpp

12.17 CPLMimePart Struct Reference

#include <cpl_http.h>

Public Attributes

• char ∗∗ papszHeaders
• GByte ∗ pabyData
• int nDataLen

12.17.1 Detailed Description

Describe a part of a multipart message

12.17.2 Member Data Documentation

12.17.2.1 int CPLMimePart::nDataLen

Buffer length

Referenced by CPLHTTPParseMultipartMime().

12.17.2.2 GByte∗ CPLMimePart::pabyData

Buffer with data of the part

Referenced by CPLHTTPParseMultipartMime().

12.17.2.3 char∗∗ CPLMimePart::papszHeaders

NULL terminated array of headers

Referenced by CPLHTTPDestroyResult(), and CPLHTTPParseMultipartMime().

The documentation for this struct was generated from the following file:

• cpl_http.h

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

66 Class Documentation

12.18 CPLMutexHolder Class Reference

The documentation for this class was generated from the following files:

• cpl_multiproc.h
• cpl_multiproc.cpp

12.19 CPLODBCDriverInstaller Class Reference

#include <cpl_odbc.h>

Public Member Functions

• int InstallDriver (const char ∗pszDriver, const char ∗pszPathIn, WORD fRequest=ODBC_INSTALL_COM←↩

PLETE)
• int RemoveDriver (const char ∗pszDriverName, int fRemoveDSN=0)

12.19.1 Detailed Description

A class providing functions to install or remove ODBC driver.

12.19.2 Member Function Documentation

12.19.2.1 int CPLODBCDriverInstaller::InstallDriver (const char ∗ pszDriver, const char ∗ pszPathIn, WORD fRequest =
ODBC_INSTALL_COMPLETE)

Installs ODBC driver or updates definition of already installed driver. Interanally, it calls ODBC's SQLInstallDriverEx
function.

Parameters

pszDriver - The driver definition as a list of keyword-value pairs describing the driver (See ODBC API
Reference).

pszPathIn - Full path of the target directory of the installation, or a null pointer (for unixODBC, NULL is
passed).

fRequest - The fRequest argument must contain one of the following values: ODBC_INSTALL_C←↩

OMPLETE - (default) complete the installation request ODBC_INSTALL_INQUIRY - inquire
about where a driver can be installed

Returns

TRUE indicates success, FALSE if it fails.

References CPLDebug(), and CPLMalloc().

12.19.2.2 int CPLODBCDriverInstaller::RemoveDriver (const char ∗ pszDriverName, int fRemoveDSN = 0)

Removes or changes information about the driver from the Odbcinst.ini entry in the system information.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.20 CPLODBCSession Class Reference 67

Parameters

pszDriverName - The name of the driver as registered in the Odbcinst.ini key of the system information.
fRemoveDSN - TRUE: Remove DSNs associated with the driver specified in lpszDriver. FALSE: Do not

remove DSNs associated with the driver specified in lpszDriver.

Returns

The function returns TRUE if it is successful, FALSE if it fails. If no entry exists in the system information when
this function is called, the function returns FALSE. In order to obtain usage count value, call GetUsageCount().

The documentation for this class was generated from the following files:

• cpl_odbc.h
• cpl_odbc.cpp

12.20 CPLODBCSession Class Reference

#include <cpl_odbc.h>

Public Member Functions

• int EstablishSession (const char ∗pszDSN, const char ∗pszUserid, const char ∗pszPassword)
• const char ∗ GetLastError ()

12.20.1 Detailed Description

A class representing an ODBC database session.

Includes error collection services.

12.20.2 Member Function Documentation

12.20.2.1 int CPLODBCSession::EstablishSession (const char ∗ pszDSN, const char ∗ pszUserid, const char ∗ pszPassword)

Connect to database and logon.

Parameters

pszDSN The name of the DSN being used to connect. This is not optional.
pszUserid the userid to logon as, may be NULL if not not required, or provided by the DSN.

pszPassword the password to logon with. May be NULL if not required or provided by the DSN.

Returns

TRUE on success or FALSE on failure. Call GetLastError() (p. ??) to get details on failure.

References CPLDebug(), and GetLastError().

12.20.2.2 const char ∗ CPLODBCSession::GetLastError ()

Returns the last ODBC error message.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

68 Class Documentation

Returns

pointer to an internal buffer with the error message in it. Do not free or alter. Will be an empty (but not NULL)
string if there is no pending error info.

Referenced by EstablishSession(), and CPLODBCStatement::Fetch().

The documentation for this class was generated from the following files:

• cpl_odbc.h
• cpl_odbc.cpp

12.21 CPLODBCStatement Class Reference

#include <cpl_odbc.h>

Public Member Functions

• void Clear ()
• void AppendEscaped (const char ∗)
• void Append (const char ∗)
• void Append (int)
• void Append (double)
• int Appendf (const char ∗,...)
• int ExecuteSQL (const char ∗=0)
• int Fetch (int nOrientation=SQL_FETCH_NEXT, int nOffset=0)
• int GetColCount ()
• const char ∗ GetColName (int)
• short GetColType (int)
• const char ∗ GetColTypeName (int)
• short GetColSize (int)
• short GetColPrecision (int)
• short GetColNullable (int)
• int GetColId (const char ∗)
• const char ∗ GetColData (int, const char ∗=0)
• const char ∗ GetColData (const char ∗, const char ∗=0)
• int GetColumns (const char ∗pszTable, const char ∗pszCatalog=0, const char ∗pszSchema=0)
• int GetPrimaryKeys (const char ∗pszTable, const char ∗pszCatalog=0, const char ∗pszSchema=0)
• int GetTables (const char ∗pszCatalog=0, const char ∗pszSchema=0)
• void DumpResult (FILE ∗fp, int bShowSchema=0)

Static Public Member Functions

• static CPLString GetTypeName (int)
• static SQLSMALLINT GetTypeMapping (SQLSMALLINT)

12.21.1 Detailed Description

Abstraction for statement, and resultset.

Includes methods for executing an SQL statement, and for accessing the resultset from that statement. Also pro-
vides for executing other ODBC requests that produce results sets such as SQLColumns() and SQLTables() re-
quests.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.21 CPLODBCStatement Class Reference 69

12.21.2 Member Function Documentation

12.21.2.1 void CPLODBCStatement::Append (const char ∗ pszText)

Append text to internal command.

The passed text is appended to the internal SQL command text.

Parameters

pszText text to append.

Referenced by Append(), AppendEscaped(), Appendf(), and ExecuteSQL().

12.21.2.2 void CPLODBCStatement::Append (int nValue)

Append to internal command.

The passed value is formatted and appended to the internal SQL command text.

Parameters

nValue value to append to the command.

References Append().

12.21.2.3 void CPLODBCStatement::Append (double dfValue)

Append to internal command.

The passed value is formatted and appended to the internal SQL command text.

Parameters

dfValue value to append to the command.

References Append().

12.21.2.4 void CPLODBCStatement::AppendEscaped (const char ∗ pszText)

Append text to internal command.

The passed text is appended to the internal SQL command text after escaping any special characters so it can be
used as a character string in an SQL statement.

Parameters

pszText text to append.

References Append().

12.21.2.5 int CPLODBCStatement::Appendf (const char ∗ pszFormat, ...)

Append to internal command.

The passed format is used to format other arguments and the result is appended to the internal command text.
Long results may not be formatted properly, and should be appended with the direct Append() (p. ??) methods.

Parameters

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

70 Class Documentation

pszFormat printf() style format string.

Returns

FALSE if formatting fails dueto result being too large.

References Append().

12.21.2.6 void CPLODBCStatement::Clear ()

Clear internal command text and result set definitions.

References CSLDestroy().

Referenced by ExecuteSQL().

12.21.2.7 void CPLODBCStatement::DumpResult (FILE ∗ fp, int bShowSchema = 0)

Dump resultset to file.

The contents of the current resultset are dumped in a simply formatted form to the provided file. If requested, the
schema definition will be written first.

Parameters

fp the file to write to. stdout or stderr are acceptable.
bShowSchema TRUE to force writing schema information for the rowset before the rowset data itself. Default

is FALSE.

References Fetch(), GetColCount(), GetColData(), GetColName(), GetColNullable(), GetColPrecision(), GetCol←↩

Size(), GetColType(), and GetTypeName().

12.21.2.8 int CPLODBCStatement::ExecuteSQL (const char ∗ pszStatement = 0)

Execute an SQL statement.

This method will execute the passed (or stored) SQL statement, and initialize information about the resultset if there
is one. If a NULL statement is passed, the internal stored statement that has been previously set via Append()
(p. ??) or Appendf() (p. ??) calls will be used.

Parameters

pszStatement the SQL statement to execute, or NULL if the internally saved one should be used.

Returns

TRUE on success or FALSE if there is an error. Error details can be fetched with OGRODBCSession::Get←↩

LastError().

References Append(), and Clear().

12.21.2.9 int CPLODBCStatement::Fetch (int nOrientation = SQL_FETCH_NEXT, int nOffset = 0)

Fetch a new record.

Requests the next row in the current resultset using the SQLFetchScroll() call. Note that many ODBC drivers
only support the default forward fetching one record at a time. Only SQL_FETCH_NEXT (the default) should be
considered reliable on all drivers.

Currently it isn't clear how to determine whether an error or a normal out of data condition has occured if Fetch()
(p. ??) fails.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.21 CPLODBCStatement Class Reference 71

Parameters

nOrientation One of SQL_FETCH_NEXT, SQL_FETCH_LAST, SQL_FETCH_PRIOR, SQL_FETCH_A←↩

BSOLUTE, or SQL_FETCH_RELATIVE (default is SQL_FETCH_NEXT).
nOffset the offset (number of records), ignored for some orientations.

Returns

TRUE if a new row is successfully fetched, or FALSE if not.

References CPLError(), CPLMalloc(), CPLRealloc(), CPLRecodeFromWChar(), CPLODBCSession::GetLast←↩

Error(), and GetTypeMapping().

Referenced by DumpResult().

12.21.2.10 int CPLODBCStatement::GetColCount ()

Fetch the resultset column count.

Returns

the column count, or zero if there is no resultset.

Referenced by DumpResult().

12.21.2.11 const char ∗ CPLODBCStatement::GetColData (int iCol, const char ∗ pszDefault = 0)

Fetch column data.

Fetches the data contents of the requested column for the currently loaded row. The result is returned as a string
regardless of the column type. NULL is returned if an illegal column is given, or if the actual column is "NULL".

Parameters

iCol the zero based column to fetch.
pszDefault the value to return if the column does not exist, or is NULL. Defaults to NULL.

Returns

pointer to internal column data or NULL on failure.

Referenced by DumpResult(), and GetColData().

12.21.2.12 const char ∗ CPLODBCStatement::GetColData (const char ∗ pszColName, const char ∗ pszDefault = 0)

Fetch column data.

Fetches the data contents of the requested column for the currently loaded row. The result is returned as a string
regardless of the column type. NULL is returned if an illegal column is given, or if the actual column is "NULL".

Parameters

pszColName the name of the column requested.
pszDefault the value to return if the column does not exist, or is NULL. Defaults to NULL.

Returns

pointer to internal column data or NULL on failure.

References GetColData(), and GetColId().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

72 Class Documentation

12.21.2.13 int CPLODBCStatement::GetColId (const char ∗ pszColName)

Fetch column index.

Gets the column index corresponding with the passed name. The name comparisons are case insensitive.

Parameters

pszColName the name to search for.

Returns

the column index, or -1 if not found.

Referenced by GetColData().

12.21.2.14 const char ∗ CPLODBCStatement::GetColName (int iCol)

Fetch a column name.

Parameters

iCol the zero based column index.

Returns

NULL on failure (out of bounds column), or a pointer to an internal copy of the column name.

Referenced by DumpResult().

12.21.2.15 short CPLODBCStatement::GetColNullable (int iCol)

Fetch the column nullability.

Parameters

iCol the zero based column index.

Returns

TRUE if the column may contains or FALSE otherwise.

Referenced by DumpResult().

12.21.2.16 short CPLODBCStatement::GetColPrecision (int iCol)

Fetch the column precision.

Parameters

iCol the zero based column index.

Returns

column precision, may be zero or the same as column size for columns to which it does not apply.

Referenced by DumpResult().

12.21.2.17 short CPLODBCStatement::GetColSize (int iCol)

Fetch the column width.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.21 CPLODBCStatement Class Reference 73

Parameters

iCol the zero based column index.

Returns

column width, zero for unknown width columns.

Referenced by DumpResult().

12.21.2.18 short CPLODBCStatement::GetColType (int iCol)

Fetch a column data type.

The return type code is a an ODBC SQL_ code, one of SQL_UNKNOWN_TYPE, SQL_CHAR, SQL_NUMERIC,
SQL_DECIMAL, SQL_INTEGER, SQL_SMALLINT, SQL_FLOAT, SQL_REAL, SQL_DOUBLE, SQL_DATETIME,
SQL_VARCHAR, SQL_TYPE_DATE, SQL_TYPE_TIME, SQL_TYPE_TIMESTAMPT.

Parameters

iCol the zero based column index.

Returns

type code or -1 if the column is illegal.

Referenced by DumpResult().

12.21.2.19 const char ∗ CPLODBCStatement::GetColTypeName (int iCol)

Fetch a column data type name.

Returns data source-dependent data type name; for example, "CHAR", "VARCHAR", "MONEY", "LONG VARBI←↩

NAR", or "CHAR () FOR BIT DATA".

Parameters

iCol the zero based column index.

Returns

NULL on failure (out of bounds column), or a pointer to an internal copy of the column dat type name.

12.21.2.20 int CPLODBCStatement::GetColumns (const char ∗ pszTable, const char ∗ pszCatalog = 0, const char ∗
pszSchema = 0)

Fetch column definitions for a table.

The SQLColumn() method is used to fetch the definitions for the columns of a table (or other queriable object such
as a view). The column definitions are digested and used to populate the CPLODBCStatement (p. ??) column
definitions essentially as if a "SELECT ∗ FROM tablename" had been done; however, no resultset will be available.

Parameters

pszTable the name of the table to query information on. This should not be empty.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

74 Class Documentation

pszCatalog the catalog to find the table in, use NULL (the default) if no catalog is available.
pszSchema the schema to find the table in, use NULL (the default) if no schema is available.

Returns

TRUE on success or FALSE on failure.

References CPLCalloc(), and CPLStrdup().

12.21.2.21 int CPLODBCStatement::GetPrimaryKeys (const char ∗ pszTable, const char ∗ pszCatalog = 0, const char ∗
pszSchema = 0)

Fetch primary keys for a table.

The SQLPrimaryKeys() function is used to fetch a list of fields forming the primary key. The result is returned as a
result set matching the SQLPrimaryKeys() function result set. The 4th column in the result set is the column name
of the key, and if the result set contains only one record then that single field will be the complete primary key.

Parameters

pszTable the name of the table to query information on. This should not be empty.
pszCatalog the catalog to find the table in, use NULL (the default) if no catalog is available.
pszSchema the schema to find the table in, use NULL (the default) if no schema is available.

Returns

TRUE on success or FALSE on failure.

12.21.2.22 int CPLODBCStatement::GetTables (const char ∗ pszCatalog = 0, const char ∗ pszSchema = 0)

Fetch tables in database.

The SQLTables() function is used to fetch a list tables in the database. The result is returned as a result set matching
the SQLTables() function result set. The 3rd column in the result set is the table name. Only tables of type "TABLE"
are returned.

Parameters

pszCatalog the catalog to find the table in, use NULL (the default) if no catalog is available.
pszSchema the schema to find the table in, use NULL (the default) if no schema is available.

Returns

TRUE on success or FALSE on failure.

References CPLDebug().

12.21.2.23 SQLSMALLINT CPLODBCStatement::GetTypeMapping (SQLSMALLINT nTypeCode) [static]

Get appropriate C data type for SQL column type.

Returns a C data type code, corresponding to the indicated SQL data type code (as returned from CPLODBC←↩

Statement::GetColType() (p. ??)).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.22 CPLRectObj Struct Reference 75

Parameters

nTypeCode the SQL_ code, such as SQL_CHAR.

Returns

data type code. The valid code is always returned. If SQL code is not recognised, SQL_C_BINARY will be
returned.

Referenced by Fetch().

12.21.2.24 CPLString CPLODBCStatement::GetTypeName (int nTypeCode) [static]

Get name for SQL column type.

Returns a string name for the indicated type code (as returned from CPLODBCStatement::GetColType() (p. ??)).

Parameters

nTypeCode the SQL_ code, such as SQL_CHAR.

Returns

internal string, "UNKNOWN" if code not recognised.

Referenced by DumpResult().

The documentation for this class was generated from the following files:

• cpl_odbc.h
• cpl_odbc.cpp

12.22 CPLRectObj Struct Reference

The documentation for this struct was generated from the following file:

• cpl_quad_tree.h

12.23 CPLSharedFileInfo Struct Reference

The documentation for this struct was generated from the following file:

• cpl_conv.h

12.24 CPLSharedFileInfoExtra Struct Reference

The documentation for this struct was generated from the following file:

• cpl_conv.cpp

12.25 CPLStdCallThreadInfo Struct Reference

The documentation for this struct was generated from the following file:

• cpl_multiproc.cpp

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

76 Class Documentation

12.26 CPLString Class Reference

Convenient string class based on std::string.

#include <cpl_string.h>

Inheritance diagram for CPLString:

CPLString

string

Public Member Functions

• CPLString & FormatC (double dfValue, const char ∗pszFormat=0)
• CPLString & Trim ()
• size_t ifind (const std::string &str, size_t pos=0) const
• size_t ifind (const char ∗s, size_t pos=0) const
• CPLString & toupper (void)
• CPLString & tolower (void)

12.26.1 Detailed Description

Convenient string class based on std::string.

12.26.2 Member Function Documentation

12.26.2.1 CPLString & CPLString::FormatC (double dfValue, const char ∗ pszFormat = 0)

Format double in C locale.

The passed value is formatted using the C locale (period as decimal seperator) and appended to the target CPL←↩

String (p. ??).

Parameters

dfValue the value to format.
pszFormat the sprintf() style format to use or omit for default. Note that this format string should only

include one substitution argument and it must be for a double (f or g).

Returns

a reference to the CPLString (p. ??).

12.26.2.2 size_t CPLString::ifind (const std::string & str, size_t pos = 0) const

Case insensitive find() alternative.

Parameters

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.26 CPLString Class Reference 77

str substring to find.
pos offset in the string at which the search starts.

Returns

the position of substring in the string or std::string::npos if not found.

Since

GDAL 1.9.0

Referenced by CPLURLAddKVP(), and CPLURLGetValue().

12.26.2.3 size_t CPLString::ifind (const char ∗ s, size_t nPos = 0) const

Case insensitive find() alternative.

Parameters

s substring to find.
nPos offset in the string at which the search starts.

Returns

the position of the substring in the string or std::string::npos if not found.

Since

GDAL 1.9.0

References tolower().

12.26.2.4 CPLString & CPLString::tolower (void)

Convert to lower case in place.

Referenced by ifind().

12.26.2.5 CPLString & CPLString::toupper (void)

Convert to upper case in place.

12.26.2.6 CPLString & CPLString::Trim ()

Trim white space.

Trims white space off the let and right of the string. White space is any of a space, a tab, a newline ('
') or a carriage control ('').

Returns

a reference to the CPLString (p. ??).

The documentation for this class was generated from the following files:

• cpl_string.h
• cplstring.cpp

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

78 Class Documentation

12.27 CPLStringList Class Reference

String list class designed around our use of C "char∗∗" string lists.

#include <cpl_string.h>

Public Member Functions

• CPLStringList (char ∗∗papszList, int bTakeOwnership=1)
• CPLStringList (const CPLStringList &oOther)

Copy constructor.

• CPLStringList & Clear ()
• int Count () const
• CPLStringList & AddString (const char ∗pszNewString)
• CPLStringList & AddStringDirectly (char ∗pszNewString)
• CPLStringList & InsertString (int nInsertAtLineNo, const char ∗pszNewLine)

Insert into the list at identified location.

• CPLStringList & InsertStringDirectly (int nInsertAtLineNo, char ∗pszNewLine)
• int FindName (const char ∗pszName) const
• int FetchBoolean (const char ∗pszKey, int bDefault) const
• const char ∗ FetchNameValue (const char ∗pszKey) const
• const char ∗ FetchNameValueDef (const char ∗pszKey, const char ∗pszDefault) const
• CPLStringList & AddNameValue (const char ∗pszKey, const char ∗pszValue)
• CPLStringList & SetNameValue (const char ∗pszKey, const char ∗pszValue)
• CPLStringList & Assign (char ∗∗papszList, int bTakeOwnership=1)
• char ∗ operator[] (int i)
• char ∗∗ StealList ()
• CPLStringList & Sort ()

12.27.1 Detailed Description

String list class designed around our use of C "char∗∗" string lists.

12.27.2 Constructor & Destructor Documentation

12.27.2.1 CPLStringList::CPLStringList (char ∗∗ papszListIn, int bTakeOwnership = 1)

CPLStringList (p. ??) constructor.

Parameters

papszListIn the NULL terminated list of strings to consume.
bTakeOwnership TRUE if the CPLStringList (p. ??) should take ownership of the list of strings which implies

responsibility to free them.

References Assign().

12.27.3 Member Function Documentation

12.27.3.1 CPLStringList & CPLStringList::AddNameValue (const char ∗ pszKey, const char ∗ pszValue)

A a name=value entry to the list.

A key=value string is prepared and appended to the list. There is no check for other values for the same key in the
list.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.27 CPLStringList Class Reference 79

Parameters

pszKey the key name to add.
pszValue the key value to add.

References AddStringDirectly(), CPLMalloc(), and InsertStringDirectly().

Referenced by SetNameValue().

12.27.3.2 CPLStringList & CPLStringList::AddString (const char ∗ pszNewString)

Add a string to the list.

A copy of the passed in string is made and inserted in the list.

Parameters

pszNewString the string to add to the list.

References AddStringDirectly(), and CPLStrdup().

Referenced by CSLTokenizeString2(), GOA2GetAccessToken(), GOA2GetRefreshToken(), and VSIReadDir←↩

Recursive().

12.27.3.3 CPLStringList & CPLStringList::AddStringDirectly (char ∗ pszNewString)

Add a string to the list.

This method is similar to AddString() (p. ??), but ownership of the pszNewString is transferred to the CPLStringList
(p. ??) class.

Parameters

pszNewString the string to add to the list.

References Count().

Referenced by AddNameValue(), and AddString().

12.27.3.4 CPLStringList & CPLStringList::Assign (char ∗∗ papszListIn, int bTakeOwnership = 1)

Assign a list of strings.

Parameters

papszListIn the NULL terminated list of strings to consume.
bTakeOwnership TRUE if the CPLStringList (p. ??) should take ownership of the list of strings which implies

responsibility to free them.

Returns

a reference to the CPLStringList (p. ??) on which it was invoked.

References Clear().

Referenced by CPLStringList(), and CSLTokenizeString2().

12.27.3.5 CPLStringList & CPLStringList::Clear ()

Clear the string list.

References CSLDestroy().

Referenced by Assign().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

80 Class Documentation

12.27.3.6 int CPLStringList::Count () const

Returns

count of strings in the list, zero if empty.

References CSLCount().

Referenced by AddStringDirectly(), CSLTokenizeString2(), InsertStringDirectly(), operator[](), SetNameValue(), and
Sort().

12.27.3.7 int CPLStringList::FetchBoolean (const char ∗ pszKey, int bDefault) const

Check for boolean key value.

In a CPLStringList (p. ??) of "Name=Value" pairs, look to see if there is a key with the given name, and if it can be
interpreted as being TRUE. If the key appears without any "=Value" portion it will be considered true. If the value is
NO, FALSE or 0 it will be considered FALSE otherwise if the key appears in the list it will be considered TRUE. If
the key doesn't appear at all, the indicated default value will be returned.

Parameters

pszKey the key value to look for (case insensitive).
bDefault the value to return if the key isn't found at all.

Returns

TRUE or FALSE

References CSLTestBoolean(), and FetchNameValue().

12.27.3.8 const char ∗ CPLStringList::FetchNameValue (const char ∗ pszName) const

Fetch value associated with this key name.

If this list sorted, a fast binary search is done, otherwise a linear scan is done. Name lookup is case insensitive.

Parameters

pszName the key name to search for.

Returns

the corresponding value or NULL if not found. The returned string should not be modified and points into
internal object state that may change on future calls.

References FindName().

Referenced by FetchBoolean(), and FetchNameValueDef().

12.27.3.9 const char ∗ CPLStringList::FetchNameValueDef (const char ∗ pszName, const char ∗ pszDefault) const

Fetch value associated with this key name.

If this list sorted, a fast binary search is done, otherwise a linear scan is done. Name lookup is case insensitive.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.27 CPLStringList Class Reference 81

Parameters

pszName the key name to search for.
pszDefault the default value returned if the named entry isn't found.

Returns

the corresponding value or the passed default if not found.

References FetchNameValue().

Referenced by GOA2GetAccessToken(), and GOA2GetRefreshToken().

12.27.3.10 int CPLStringList::FindName (const char ∗ pszKey) const

Get index of given name/value keyword.

Note that this search is for a line in the form name=value or name:value. Use FindString() or PartialFindString() for
searches not based on name=value pairs.

Parameters

pszKey the name to search for.

Returns

the string list index of this name, or -1 on failure.

References CSLFindName().

Referenced by FetchNameValue(), and SetNameValue().

12.27.3.11 CPLStringList ∗ CPLStringList::InsertString (int nInsertAtLineNo, const char ∗ pszNewLine) [inline]

Insert into the list at identified location.

This method will insert a string into the list at the identified location. The insertion point must be within or at the end
of the list. The following entries are pushed down to make space.

Parameters

nInsertAtLineNo the line to insert at, zero to insert at front.
pszNewLine to the line to insert. This string will be copied.

References CPLStrdup().

12.27.3.12 CPLStringList & CPLStringList::InsertStringDirectly (int nInsertAtLineNo, char ∗ pszNewLine)

Insert into the list at identified location.

This method will insert a string into the list at the identified location. The insertion point must be within or at the end
of the list. The following entries are pushed down to make space.

Parameters

nInsertAtLineNo the line to insert at, zero to insert at front.
pszNewLine to the line to insert, the ownership of this string will be taken over the by the object. It must

have been allocated on the heap.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

82 Class Documentation

References Count(), and CPLError().

Referenced by AddNameValue().

12.27.3.13 char ∗ CPLStringList::operator[] (int i)

Fetch entry "i".

Fetches the requested item in the list. Note that the returned string remains owned by the CPLStringList (p. ??). If
"i" is out of range NULL is returned.

Parameters

i the index of the list item to return.

Returns

selected entry in the list.

References Count().

12.27.3.14 CPLStringList & CPLStringList::SetNameValue (const char ∗ pszKey, const char ∗ pszValue)

Set name=value entry in the list.

Similar to AddNameValue() (p. ??), except if there is already a value for the key in the list it is replaced instead of
adding a new entry to the list. If pszValue is NULL any existing key entry is removed.

Parameters

pszKey the key name to add.
pszValue the key value to add.

References AddNameValue(), Count(), CPLMalloc(), and FindName().

12.27.3.15 CPLStringList & CPLStringList::Sort ()

Sort the entries in the list and mark list sorted.

Note that once put into "sorted" mode, the CPLStringList (p. ??) will attempt to keep things in sorted order through
calls to AddString() (p. ??), AddStringDirectly() (p. ??), AddNameValue() (p. ??), SetNameValue() (p. ??). Com-
plete list assignments (via Assign() (p. ??) and operator= will clear the sorting state. When in sorted order Find←↩

Name() (p. ??), FetchNameValue() (p. ??) and FetchNameValueDef() (p. ??) will do a binary search to find the
key, substantially improve lookup performance in large lists.

References Count().

12.27.3.16 char ∗∗ CPLStringList::StealList ()

Seize ownership of underlying string array.

This method is simmilar to List(), except that the returned list is now owned by the caller and the CPLStringList
(p. ??) is emptied.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.28 CPLXMLNode Struct Reference 83

Returns

the C style string list.

Referenced by CSLTokenizeString2(), and VSIReadDirRecursive().

The documentation for this class was generated from the following files:

• cpl_string.h
• cplstringlist.cpp

12.28 CPLXMLNode Struct Reference

#include <cpl_minixml.h>

Public Attributes

• CPLXMLNodeType eType

Node type.

• char ∗ pszValue

Node value.

• struct CPLXMLNode ∗ psNext

Next sibling.

• struct CPLXMLNode ∗ psChild

Child node.

12.28.1 Detailed Description

Document node structure.

This C structure is used to hold a single text fragment representing a component of the document when parsed.
It should be allocated with the appropriate CPL function, and freed with CPLDestroyXMLNode() (p. ??). The
structure contents should not normally be altered by application code, but may be freely examined by application
code.

Using the psChild and psNext pointers, a heirarchical tree structure for a document can be represented as a tree of
CPLXMLNode (p. ??) structures.

12.28.2 Member Data Documentation

12.28.2.1 CPLXMLNodeType CPLXMLNode::eType

Node type.

One of CXT_Element, CXT_Text, CXT_Attribute, CXT_Comment, or CXT_Literal.

Referenced by CPLAddXMLChild(), CPLCloneXMLTree(), CPLCreateXMLNode(), CPLGetXMLNode(), CPLGet←↩

XMLValue(), CPLSearchXMLNode(), CPLSetXMLValue(), and CPLStripXMLNamespace().

12.28.2.2 struct CPLXMLNode∗ CPLXMLNode::psChild

Child node.

Pointer to first child node, if any. Only CXT_Element and CXT_Attribute nodes should have children. For CXT_←↩

Attribute it should be a single CXT_Text value node, while CXT_Element can have any kind of child. The full list of
children for a node are identified by walking the psNext's starting with the psChild node.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

84 Class Documentation

Referenced by CPLAddXMLChild(), CPLCloneXMLTree(), CPLCreateXMLNode(), CPLDestroyXMLNode(), CP←↩

LGetXMLNode(), CPLGetXMLValue(), CPLRemoveXMLChild(), CPLSearchXMLNode(), CPLSetXMLValue(), and
CPLStripXMLNamespace().

12.28.2.3 struct CPLXMLNode∗ CPLXMLNode::psNext

Next sibling.

Pointer to next sibling, that is the next node appearing after this one that has the same parent as this node. NULL if
this node is the last child of the parent element.

Referenced by CPLAddXMLChild(), CPLAddXMLSibling(), CPLCloneXMLTree(), CPLCreateXMLNode(), CPL←↩

DestroyXMLNode(), CPLGetXMLNode(), CPLGetXMLValue(), CPLRemoveXMLChild(), CPLSearchXMLNode(),
CPLSerializeXMLTree(), CPLSetXMLValue(), CPLStripXMLNamespace(), and OGRSpatialReference::import←↩

FromXML().

12.28.2.4 char∗ CPLXMLNode::pszValue

Node value.

For CXT_Element this is the name of the element, without the angle brackets. Note there is a single CXT_Element
even when the document contains a start and end element tag. The node represents the pair. All text or other
elements between the start and end tag will appear as children nodes of this CXT_Element node.

For CXT_Attribute the pszValue is the attribute name. The value of the attribute will be a CXT_Text child.

For CXT_Text this is the text itself (value of an attribute, or a text fragment between an element start and end tags.

For CXT_Literal it is all the literal text. Currently this is just used for !DOCTYPE lines, and the value would be the
entire line.

For CXT_Comment the value is all the literal text within the comment, but not including the comment start/end
indicators ("<--" and "-->").

Referenced by CPLCloneXMLTree(), CPLCreateXMLNode(), CPLDestroyXMLNode(), CPLGetXMLNode(), CPL←↩

GetXMLValue(), CPLParseXMLString(), CPLSearchXMLNode(), CPLSetXMLValue(), CPLStripXMLNamespace(),
and OGRSpatialReference::importFromXML().

The documentation for this struct was generated from the following file:

• cpl_minixml.h

12.29 CPLZip Struct Reference

The documentation for this struct was generated from the following file:

• cpl_minizip_zip.cpp

12.30 ctb Struct Reference

The documentation for this struct was generated from the following file:

• cpl_csv.cpp

12.31 curfile_info Struct Reference

The documentation for this struct was generated from the following file:

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.32 DefaultCSVFileNameTLS Struct Reference 85

• cpl_minizip_zip.cpp

12.32 DefaultCSVFileNameTLS Struct Reference

The documentation for this struct was generated from the following file:

• cpl_csv.cpp

12.33 errHandler Struct Reference

The documentation for this struct was generated from the following file:

• cpl_error.cpp

12.34 file_in_zip_read_info_s Struct Reference

The documentation for this struct was generated from the following file:

• cpl_minizip_unzip.cpp

12.35 FindFileTLS Struct Reference

The documentation for this struct was generated from the following file:

• cpl_findfile.cpp

12.36 GDALScaledProgressInfo Struct Reference

The documentation for this struct was generated from the following file:

• cpl_progress.cpp

12.37 GZipSnapshot Struct Reference

The documentation for this struct was generated from the following file:

• cpl_vsil_gzip.cpp

12.38 linkedlist_data_s Struct Reference

The documentation for this struct was generated from the following file:

• cpl_minizip_zip.cpp

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

86 Class Documentation

12.39 linkedlist_datablock_internal_s Struct Reference

The documentation for this struct was generated from the following file:

• cpl_minizip_zip.cpp

12.40 OGR_SRSNode Class Reference

#include <ogr_spatialref.h>

Public Member Functions

• OGR_SRSNode (const char ∗=NULL)
• int GetChildCount () const
• OGR_SRSNode ∗ GetChild (int)
• OGR_SRSNode ∗ GetNode (const char ∗)
• void InsertChild (OGR_SRSNode ∗, int)
• void AddChild (OGR_SRSNode ∗)
• int FindChild (const char ∗) const
• void DestroyChild (int)
• void StripNodes (const char ∗)
• const char ∗ GetValue () const
• void SetValue (const char ∗)
• void MakeValueSafe ()
• OGRErr FixupOrdering ()
• OGR_SRSNode ∗ Clone () const
• OGRErr importFromWkt (char ∗∗)
• OGRErr exportToWkt (char ∗∗) const
• OGRErr applyRemapper (const char ∗pszNode, char ∗∗papszSrcValues, char ∗∗papszDstValues, int n←↩

StepSize=1, int bChildOfHit=FALSE)

12.40.1 Detailed Description

Objects of this class are used to represent value nodes in the parsed representation of the WKT SRS format. For
instance UNIT["METER",1] would be rendered into three OGR_SRSNodes. The root node would have a value of
UNIT, and two children, the first with a value of METER, and the second with a value of 1.

Normally application code just interacts with the OGRSpatialReference (p. ??) object, which uses the OGR_←↩

SRSNode (p. ??) to implement it's data structure; however, this class is user accessable for detailed access to
components of an SRS definition.

12.40.2 Constructor & Destructor Documentation

12.40.2.1 OGR_SRSNode::OGR_SRSNode (const char ∗ pszValueIn = NULL)

Constructor.

Parameters

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.40 OGR_SRSNode Class Reference 87

pszValueIn this optional parameter can be used to initialize the value of the node upon creation. If omitted
the node will be created with a value of "". Newly created OGR_SRSNodes have no children.

References CPLStrdup().

Referenced by Clone().

12.40.3 Member Function Documentation

12.40.3.1 void OGR_SRSNode::AddChild (OGR_SRSNode ∗ poNew)

Add passed node as a child of target node.

Note that ownership of the passed node is assumed by the node on which the method is invoked ... use the Clone()
(p. ??) method if the original is to be preserved. New children are always added at the end of the list.

Parameters

poNew the node to add as a child.

References InsertChild().

Referenced by Clone(), OGRSpatialReference::CloneGeogCS(), OGRSpatialReference::importFromCRSURL(),
OGRSpatialReference::importFromProj4(), OGRSpatialReference::importFromURN(), OGRSpatialReference←↩

::importFromWkt(), OGRSpatialReference::morphFromESRI(), OGRSpatialReference::morphToESRI(), OGR←↩

SpatialReference::SetAngularUnits(), OGRSpatialReference::SetAuthority(), OGRSpatialReference::SetAxes(),
OGRSpatialReference::SetCompoundCS(), OGRSpatialReference::SetExtension(), OGRSpatialReference::←↩

SetFromUserInput(), OGRSpatialReference::SetGeogCS(), OGRSpatialReference::SetNode(), OGRSpatial←↩

Reference::SetProjParm(), OGRSpatialReference::SetTargetLinearUnits(), OGRSpatialReference::SetTOWG←↩

S84(), and OGRSpatialReference::SetVertCS().

12.40.3.2 OGRErr OGR_SRSNode::applyRemapper (const char ∗ pszNode, char ∗∗ papszSrcValues, char ∗∗ papszDstValues,
int nStepSize = 1, int bChildOfHit = FALSE)

Remap node values matching list.

Remap the value of this node or any of it's children if it matches one of the values in the source list to the corre-
sponding value from the destination list. If the pszNode value is set, only do so if the parent node matches that
value. Even if a replacement occurs, searching continues.

Parameters

pszNode Restrict remapping to children of this type of node (eg. "PROJECTION")
papszSrcValues a NULL terminated array of source string. If the node value matches one of these (case

insensitive) then replacement occurs.
papszDstValues an array of destination strings. On a match, the one corresponding to a source value will be

used to replace a node.
nStepSize increment when stepping through source and destination arrays, allowing source and desti-

nation arrays to be one interleaved array for instances. Defaults to 1.
bChildOfHit Only TRUE if we the current node is the child of a match, and so needs to be set. Application

code would normally pass FALSE for this argument.

Returns

returns OGRERR_NONE unless something bad happens. There is no indication returned about whether any
replacement occured.

References applyRemapper(), GetChild(), GetChildCount(), and SetValue().

Referenced by applyRemapper(), OGRSpatialReference::morphFromESRI(), and OGRSpatialReference::morph←↩

ToESRI().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

88 Class Documentation

12.40.3.3 OGR_SRSNode ∗ OGR_SRSNode::Clone () const

Make a duplicate of this node, and it's children.

Returns

a new node tree, which becomes the responsiblity of the caller.

References AddChild(), and OGR_SRSNode().

Referenced by OGRSpatialReference::Clone(), OGRSpatialReference::CloneGeogCS(), OGRSpatialReference←↩

::CopyGeogCSFrom(), OGRSpatialReference::importFromCRSURL(), OGRSpatialReference::importFromProj4(),
OGRSpatialReference::importFromURN(), OGRSpatialReference::morphFromESRI(), OGRSpatialReference::←↩

SetCompoundCS(), OGRSpatialReference::SetFromUserInput(), OGRSpatialReference::SetGeocCS(), and OG←↩

RSpatialReference::StripVertical().

12.40.3.4 void OGR_SRSNode::DestroyChild (int iChild)

Remove a child node, and it's subtree.

Note that removing a child node will result in children after it being renumbered down one.

Parameters

iChild the index of the child.

Referenced by OGRSpatialReference::CopyGeogCSFrom(), OGRSpatialReference::importFromESRI(), OG←↩

RSpatialReference::morphFromESRI(), OGRSpatialReference::morphToESRI(), OGRSpatialReference::Set←↩

Authority(), OGRSpatialReference::SetAxes(), OGRSpatialReference::SetGeogCS(), OGRSpatialReference←↩

::SetStatePlane(), OGRSpatialReference::SetTargetLinearUnits(), OGRSpatialReference::SetTOWGS84(), and
StripNodes().

12.40.3.5 OGRErr OGR_SRSNode::exportToWkt (char ∗∗ ppszResult) const

Convert this tree of nodes into WKT format.

Note that the returned WKT string should be freed with OGRFree() or CPLFree() when no longer needed. It is the
responsibility of the caller.

Parameters

ppszResult the resulting string is returned in this pointer.

Returns

currently OGRERR_NONE is always returned, but the future it is possible error conditions will develop.

References CPLCalloc(), CPLMalloc(), CSLDestroy(), and exportToWkt().

Referenced by exportToWkt(), and OGRSpatialReference::exportToWkt().

12.40.3.6 int OGR_SRSNode::FindChild (const char ∗ pszValue) const

Find the index of the child matching the given string.

Note that the node value must match pszValue with the exception of case. The comparison is case insensitive.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.40 OGR_SRSNode Class Reference 89

Parameters

pszValue the node value being searched for.

Returns

the child index, or -1 on failure.

Referenced by OGRSpatialReference::CopyGeogCSFrom(), OGRSpatialReference::Fixup(), OGRSpatial←↩

Reference::GetAuthorityCode(), OGRSpatialReference::GetAuthorityName(), OGRSpatialReference::morph←↩

FromESRI(), OGRSpatialReference::SetAngularUnits(), OGRSpatialReference::SetAuthority(), OGRSpatial←↩

Reference::SetAxes(), OGRSpatialReference::SetGeogCS(), OGRSpatialReference::SetStatePlane(), OGR←↩

SpatialReference::SetTargetLinearUnits(), OGRSpatialReference::SetTOWGS84(), and StripNodes().

12.40.3.7 OGRErr OGR_SRSNode::FixupOrdering ()

Correct parameter ordering to match CT Specification.

Some mechanisms to create WKT using OGRSpatialReference (p. ??), and some imported WKT fail to maintain
the order of parameters required according to the BNF definitions in the OpenGIS SF-SQL and CT Specifications.
This method attempts to massage things back into the required order.

This method will reorder the children of the node it is invoked on and then recurse to all children to fix up their
children.

Returns

OGRERR_NONE on success or an error code if something goes wrong.

References CPLCalloc(), CPLDebug(), CSLFindString(), FixupOrdering(), GetChild(), GetChildCount(), and Get←↩

Value().

Referenced by FixupOrdering(), and OGRSpatialReference::FixupOrdering().

12.40.3.8 OGR_SRSNode ∗ OGR_SRSNode::GetChild (int iChild)

Fetch requested child.

Parameters

iChild the index of the child to fetch, from 0 to GetChildCount() (p. ??) - 1.

Returns

a pointer to the child OGR_SRSNode (p. ??), or NULL if there is no such child.

Referenced by applyRemapper(), OGRSpatialReference::EPSGTreatsAsLatLong(), OGRSpatialReference::EPS←↩

GTreatsAsNorthingEasting(), OGRSpatialReference::exportToPCI(), OGRSpatialReference::exportToProj4(), O←↩

GRSpatialReference::FindProjParm(), FixupOrdering(), OGRSpatialReference::GetAngularUnits(), OGRSpatial←↩

Reference::GetAttrValue(), OGRSpatialReference::GetAuthorityCode(), OGRSpatialReference::GetAuthority←↩

Name(), OGRSpatialReference::GetAxis(), OGRSpatialReference::GetExtension(), OGRSpatialReference::←↩

GetInvFlattening(), OGRSpatialReference::GetPrimeMeridian(), OGRSpatialReference::GetProjParm(), OG←↩

RSpatialReference::GetSemiMajor(), OGRSpatialReference::GetTargetLinearUnits(), OGRSpatialReference←↩

::GetTOWGS84(), OGRSpatialReference::importFromProj4(), OGRSpatialReference::importFromURN(), O←↩

GRSpatialReference::IsSame(), MakeValueSafe(), OGRSpatialReference::morphFromESRI(), OGRSpatial←↩

Reference::morphToESRI(), OGRSpatialReference::SetAngularUnits(), OGRSpatialReference::SetExtension(),
OGRSpatialReference::SetFromUserInput(), OGRSpatialReference::SetLinearUnitsAndUpdateParameters(), O←↩

GRSpatialReference::SetNode(), OGRSpatialReference::SetProjParm(), OGRSpatialReference::SetTargetLinear←↩

Units(), StripNodes(), and OGRSpatialReference::StripVertical().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

90 Class Documentation

12.40.3.9 int OGR_SRSNode::GetChildCount () const [inline]

Get number of children nodes.

Returns

0 for leaf nodes, or the number of children nodes.

Referenced by applyRemapper(), OGRSpatialReference::EPSGTreatsAsLatLong(), OGRSpatialReference::EPS←↩

GTreatsAsNorthingEasting(), OGRSpatialReference::exportToPCI(), OGRSpatialReference::exportToProj4(), O←↩

GRSpatialReference::FindProjParm(), FixupOrdering(), OGRSpatialReference::GetAngularUnits(), OGRSpatial←↩

Reference::GetAttrValue(), OGRSpatialReference::GetAuthorityCode(), OGRSpatialReference::GetAuthority←↩

Name(), OGRSpatialReference::GetAxis(), OGRSpatialReference::GetExtension(), OGRSpatialReference::←↩

GetInvFlattening(), OGRSpatialReference::GetPrimeMeridian(), OGRSpatialReference::GetSemiMajor(), OG←↩

RSpatialReference::GetTargetLinearUnits(), OGRSpatialReference::GetTOWGS84(), OGRSpatialReference←↩

::importFromProj4(), OGRSpatialReference::IsSame(), MakeValueSafe(), OGRSpatialReference::morphToESRI(),
OGRSpatialReference::SetAngularUnits(), OGRSpatialReference::SetExtension(), OGRSpatialReference::Set←↩

LinearUnitsAndUpdateParameters(), OGRSpatialReference::SetNode(), OGRSpatialReference::SetProjParm(),
OGRSpatialReference::SetTargetLinearUnits(), OGRSpatialReference::SetTOWGS84(), and StripNodes().

12.40.3.10 OGR_SRSNode ∗ OGR_SRSNode::GetNode (const char ∗ pszName)

Find named node in tree.

This method does a pre-order traversal of the node tree searching for a node with this exact value (case insensitive),
and returns it. Leaf nodes are not considered, under the assumption that they are just attribute value nodes.

If a node appears more than once in the tree (such as UNIT for instance), the first encountered will be returned.
Use GetNode() (p. ??) on a subtree to be more specific.

Parameters

pszName the name of the node to search for.

Returns

a pointer to the node found, or NULL if none.

References GetNode().

Referenced by OGRSpatialReference::exportToProj4(), OGRSpatialReference::GetAttrNode(), GetNode(), and O←↩

GRSpatialReference::SetGeocCS().

12.40.3.11 const char ∗ OGR_SRSNode::GetValue () const [inline]

Fetch value string for this node.

Returns

A non-NULL string is always returned. The returned pointer is to the internal value of this node, and should
not be modified, or freed.

Referenced by OGRSpatialReference::EPSGTreatsAsLatLong(), OGRSpatialReference::EPSGTreatsAsNorthing←↩

Easting(), OGRSpatialReference::exportToPCI(), OGRSpatialReference::exportToProj4(), OGRSpatialReference←↩

::FindProjParm(), FixupOrdering(), OGRSpatialReference::GetAngularUnits(), OGRSpatialReference::GetAttr←↩

Value(), OGRSpatialReference::GetAuthorityCode(), OGRSpatialReference::GetAuthorityName(), OGRSpatial←↩

Reference::GetAxis(), OGRSpatialReference::GetExtension(), OGRSpatialReference::GetInvFlattening(), OG←↩

RSpatialReference::GetPrimeMeridian(), OGRSpatialReference::GetProjParm(), OGRSpatialReference::Get←↩

SemiMajor(), OGRSpatialReference::GetTargetLinearUnits(), OGRSpatialReference::GetTOWGS84(), OGR←↩

SpatialReference::importFromCRSURL(), OGRSpatialReference::importFromProj4(), OGRSpatialReference←↩

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.40 OGR_SRSNode Class Reference 91

::importFromURN(), OGRSpatialReference::IsCompound(), OGRSpatialReference::IsGeocentric(), OGRSpatial←↩

Reference::IsGeographic(), OGRSpatialReference::IsProjected(), OGRSpatialReference::IsSame(), OGRSpatial←↩

Reference::IsVertical(), OGRSpatialReference::morphFromESRI(), OGRSpatialReference::morphToESRI(), O←↩

GRSpatialReference::SetExtension(), OGRSpatialReference::SetFromUserInput(), OGRSpatialReference::Set←↩

GeocCS(), OGRSpatialReference::SetLinearUnitsAndUpdateParameters(), OGRSpatialReference::SetNode(),
OGRSpatialReference::SetProjCS(), OGRSpatialReference::SetProjection(), OGRSpatialReference::SetProj←↩

Parm(), OGRSpatialReference::SetVertCS(), and OGRSpatialReference::StripCTParms().

12.40.3.12 OGRErr OGR_SRSNode::importFromWkt (char ∗∗ ppszInput)

Import from WKT string.

This method will wipe the existing children and value of this node, and reassign them based on the contents of the
passed WKT string. Only as much of the input string as needed to construct this node, and it's children is consumed
from the input string, and the input string pointer is then updated to point to the remaining (unused) input.

Parameters

ppszInput Pointer to pointer to input. The pointer is updated to point to remaining unused input text.

Returns

OGRERR_NONE if import succeeds, or OGRERR_CORRUPT_DATA if it fails for any reason.

12.40.3.13 void OGR_SRSNode::InsertChild (OGR_SRSNode ∗ poNew, int iChild)

Insert the passed node as a child of target node, at the indicated position.

Note that ownership of the passed node is assumed by the node on which the method is invoked ... use the Clone()
(p. ??) method if the original is to be preserved. All existing children at location iChild and beyond are push down
one space to make space for the new child.

Parameters

poNew the node to add as a child.
iChild position to insert, use 0 to insert at the beginning.

References CPLRealloc().

Referenced by AddChild(), OGRSpatialReference::CopyGeogCSFrom(), OGRSpatialReference::morphFromESR←↩

I(), OGRSpatialReference::SetGeocCS(), OGRSpatialReference::SetGeogCS(), OGRSpatialReference::SetProj←↩

CS(), OGRSpatialReference::SetProjection(), and OGRSpatialReference::SetTOWGS84().

12.40.3.14 void OGR_SRSNode::MakeValueSafe ()

Massage value string, stripping special characters so it will be a database safe string.

The operation is also applies to all subnodes of the current node.

References GetChild(), GetChildCount(), and MakeValueSafe().

Referenced by MakeValueSafe().

12.40.3.15 void OGR_SRSNode::SetValue (const char ∗ pszNewValue)

Set the node value.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

92 Class Documentation

Parameters

pszNewValue the new value to assign to this node. The passed string is duplicated and remains the re-
sponsibility of the caller.

References CPLStrdup().

Referenced by applyRemapper(), OGRSpatialReference::morphFromESRI(), OGRSpatialReference::morphToE←↩

SRI(), OGRSpatialReference::SetAngularUnits(), OGRSpatialReference::SetExtension(), OGRSpatialReference←↩

::SetNode(), OGRSpatialReference::SetProjParm(), and OGRSpatialReference::SetTargetLinearUnits().

12.40.3.16 void OGR_SRSNode::StripNodes (const char ∗ pszName)

Strip child nodes matching name.

Removes any decendent nodes of this node that match the given name. Of course children of removed nodes are
also discarded.

Parameters

pszName the name for nodes that should be removed.

References DestroyChild(), FindChild(), GetChild(), GetChildCount(), and StripNodes().

Referenced by OGRSpatialReference::exportToPrettyWkt(), OGRSpatialReference::importFromEPSG(), OGR←↩

SpatialReference::StripCTParms(), and StripNodes().

The documentation for this class was generated from the following files:

• ogr_spatialref.h
• ogr_srsnode.cpp

12.41 ogr_style_param Struct Reference

The documentation for this struct was generated from the following file:

• ogr_featurestyle.h

12.42 ogr_style_value Struct Reference

The documentation for this struct was generated from the following file:

• ogr_featurestyle.h

12.43 OGRAbstractProxiedLayer Class Reference

Inheritance diagram for OGRAbstractProxiedLayer:

OGRAbstractProxiedLayer

OGRLayer

OGRProxiedLayer

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.44 OGRAttrIndex Class Reference 93

Friends

• class OGRLayerPool

Additional Inherited Members

The documentation for this class was generated from the following files:

• ogrlayerpool.h
• ogrlayerpool.cpp

12.44 OGRAttrIndex Class Reference

Inheritance diagram for OGRAttrIndex:

OGRAttrIndex

OGRMIAttrIndex

The documentation for this class was generated from the following files:

• ogr_attrind.h
• ogr_attrind.cpp

12.45 OGRCoordinateTransformation Class Reference

#include <ogr_spatialref.h>

Inheritance diagram for OGRCoordinateTransformation:

OGRCoordinateTransformation

OGRProj4CT

Public Member Functions

• virtual OGRSpatialReference ∗ GetSourceCS ()=0
• virtual OGRSpatialReference ∗ GetTargetCS ()=0
• virtual int Transform (int nCount, double ∗x, double ∗y, double ∗z=NULL)=0
• virtual int TransformEx (int nCount, double ∗x, double ∗y, double ∗z=NULL, int ∗pabSuccess=NULL)=0

Static Public Member Functions

• static void DestroyCT (OGRCoordinateTransformation ∗poCT)

OGRCoordinateTransformation (p. ??) destructor.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

94 Class Documentation

12.45.1 Detailed Description

Interface for transforming between coordinate systems.

Currently, the only implementation within OGR is OGRProj4CT (p. ??), which requires the PROJ.4 library to be
available at run-time.

Also, see OGRCreateCoordinateTransformation() (p. ??) for creating transformations.

12.45.2 Member Function Documentation

12.45.2.1 void OGRCoordinateTransformation::DestroyCT (OGRCoordinateTransformation ∗ poCT) [static]

OGRCoordinateTransformation (p. ??) destructor.

This function is the same as OGRCoordinateTransformation::∼OGRCoordinateTransformation() and OCT←↩

DestroyCoordinateTransformation() (p. ??)

This static method will destroy a OGRCoordinateTransformation (p. ??). It is equivalent to calling delete on the
object, but it ensures that the deallocation is properly executed within the OGR libraries heap on platforms where
this can matter (win32).

Parameters

poCT the object to delete

Since

GDAL 1.7.0

12.45.2.2 virtual OGRSpatialReference∗ OGRCoordinateTransformation::GetSourceCS () [pure virtual]

Fetch internal source coordinate system.

Implemented in OGRProj4CT (p. ??).

12.45.2.3 virtual OGRSpatialReference∗ OGRCoordinateTransformation::GetTargetCS () [pure virtual]

Fetch internal target coordinate system.

Implemented in OGRProj4CT (p. ??).

Referenced by OGRPoint::transform(), OGRLineString::transform(), OGRPolygon::transform(), and OGR←↩

GeometryCollection::transform().

12.45.2.4 virtual int OGRCoordinateTransformation::Transform (int nCount, double ∗ x, double ∗ y, double ∗ z = NULL)
[pure virtual]

Transform points from source to destination space.

This method is the same as the C function OCTTransform().

The method TransformEx() (p. ??) allows extended success information to be captured indicating which points
failed to transform.

Parameters

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.46 OGRCurve Class Reference 95

nCount number of points to transform.
x array of nCount X vertices, modified in place.
y array of nCount Y vertices, modified in place.
z array of nCount Z vertices, modified in place.

Returns

TRUE on success, or FALSE if some or all points fail to transform.

Implemented in OGRProj4CT (p. ??).

Referenced by OGRPoint::transform().

12.45.2.5 virtual int OGRCoordinateTransformation::TransformEx (int nCount, double ∗ x, double ∗ y, double ∗ z = NULL, int
∗ pabSuccess = NULL) [pure virtual]

Transform points from source to destination space.

This method is the same as the C function OCTTransformEx().

Parameters

nCount number of points to transform.
x array of nCount X vertices, modified in place.
y array of nCount Y vertices, modified in place.
z array of nCount Z vertices, modified in place.

pabSuccess array of per-point flags set to TRUE if that point transforms, or FALSE if it does not.

Returns

TRUE if some or all points transform successfully, or FALSE if if none transform.

Implemented in OGRProj4CT (p. ??).

Referenced by OGRLineString::transform().

The documentation for this class was generated from the following files:

• ogr_spatialref.h
• ogrct.cpp

12.46 OGRCurve Class Reference

#include <ogr_geometry.h>

Inheritance diagram for OGRCurve:

OGRCurve

OGRGeometry

OGRLineString

OGRLinearRing

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

96 Class Documentation

Public Member Functions

• virtual double get_Length () const =0

Returns the length of the curve.

• virtual void StartPoint (OGRPoint ∗) const =0

Return the curve start point.

• virtual void EndPoint (OGRPoint ∗) const =0

Return the curve end point.

• virtual int get_IsClosed () const

Return TRUE if curve is closed.

• virtual void Value (double, OGRPoint ∗) const =0

Fetch point at given distance along curve.

12.46.1 Detailed Description

Abstract curve base class.

12.46.2 Member Function Documentation

12.46.2.1 void OGRCurve::EndPoint (OGRPoint ∗ poPoint) const [pure virtual]

Return the curve end point.

This method relates to the SF COM ICurve::get_EndPoint() method.

Parameters

poPoint the point to be assigned the end location.

Implemented in OGRLineString (p. ??).

Referenced by get_IsClosed().

12.46.2.2 int OGRCurve::get_IsClosed () const [virtual]

Return TRUE if curve is closed.

Tests if a curve is closed. A curve is closed if its start point is equal to its end point.

This method relates to the SFCOM ICurve::get_IsClosed() method.

Returns

TRUE if closed, else FALSE.

References EndPoint(), OGRPoint::getX(), OGRPoint::getY(), and StartPoint().

12.46.2.3 double OGRCurve::get_Length () const [pure virtual]

Returns the length of the curve.

This method relates to the SFCOM ICurve::get_Length() method.

Returns

the length of the curve, zero if the curve hasn't been initialized.

Implemented in OGRLineString (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.47 OGRDataSource Class Reference 97

12.46.2.4 void OGRCurve::StartPoint (OGRPoint ∗ poPoint) const [pure virtual]

Return the curve start point.

This method relates to the SF COM ICurve::get_StartPoint() method.

Parameters

poPoint the point to be assigned the start location.

Implemented in OGRLineString (p. ??).

Referenced by get_IsClosed().

12.46.2.5 void OGRCurve::Value (double dfDistance, OGRPoint ∗ poPoint) const [pure virtual]

Fetch point at given distance along curve.

This method relates to the SF COM ICurve::get_Value() method.

Parameters

dfDistance distance along the curve at which to sample position. This distance should be between zero
and get_Length() (p. ??) for this curve.

poPoint the point to be assigned the curve position.

Implemented in OGRLineString (p. ??).

The documentation for this class was generated from the following files:

• ogr_geometry.h
• ogrcurve.cpp

12.47 OGRDataSource Class Reference

#include <ogrsf_frmts.h>

Inheritance diagram for OGRDataSource:

OGRDataSource

OGRMutexedDataSource

Public Member Functions

• virtual const char ∗ GetName ()=0

Returns the name of the data source.

• virtual int GetLayerCount ()=0

Get the number of layers in this data source.

• virtual OGRLayer ∗ GetLayer (int)=0

Fetch a layer by index.

• virtual OGRLayer ∗ GetLayerByName (const char ∗)
Fetch a layer by name.

• virtual OGRErr DeleteLayer (int)

Delete the indicated layer from the datasource.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

98 Class Documentation

• virtual int TestCapability (const char ∗)=0

Test if capability is available.
• virtual OGRLayer ∗ CreateLayer (const char ∗pszName, OGRSpatialReference ∗poSpatialRef=NULL, O←↩

GRwkbGeometryType eGType=wkbUnknown, char ∗∗papszOptions=NULL)

This method attempts to create a new layer on the data source with the indicated name, coordinate system, geometry
type.

• virtual OGRLayer ∗ CopyLayer (OGRLayer ∗poSrcLayer, const char ∗pszNewName, char ∗∗papsz←↩

Options=NULL)

Duplicate an existing layer.
• virtual OGRStyleTable ∗ GetStyleTable ()

Returns data source style table.
• virtual void SetStyleTableDirectly (OGRStyleTable ∗poStyleTable)

Set data source style table.
• virtual void SetStyleTable (OGRStyleTable ∗poStyleTable)

Set data source style table.
• virtual OGRLayer ∗ ExecuteSQL (const char ∗pszStatement, OGRGeometry ∗poSpatialFilter, const char
∗pszDialect)

Execute an SQL statement against the data store.
• virtual void ReleaseResultSet (OGRLayer ∗poResultsSet)

Release results of ExecuteSQL() (p. ??).
• virtual OGRErr SyncToDisk ()

Flush pending changes to disk.
• int Reference ()

Increment datasource reference count.
• int Dereference ()

Decrement datasource reference count.
• int GetRefCount () const

Fetch reference count.
• int GetSummaryRefCount () const

Fetch reference count of datasource and all owned layers.
• OGRErr Release ()

Drop a reference to this datasource, and if the reference count drops to zero close (destroy) the datasource.
• OGRSFDriver ∗ GetDriver () const

Returns the driver that the dataset was opened with.
• void SetDriver (OGRSFDriver ∗poDriver)

Sets the driver that the dataset was created or opened with.

Static Public Member Functions

• static void DestroyDataSource (OGRDataSource ∗)
Closes opened datasource and releases allocated resources.

Friends

• class OGRSFDriverRegistrar

12.47.1 Detailed Description

This class represents a data source. A data source potentially consists of many layers (OGRLayer (p. ??)). A data
source normally consists of one, or a related set of files, though the name doesn't have to be a real item in the file
system.

When an OGRDataSource (p. ??) is destroyed, all it's associated OGRLayers objects are also destroyed.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.47 OGRDataSource Class Reference 99

12.47.2 Member Function Documentation

12.47.2.1 OGRLayer ∗ OGRDataSource::CopyLayer (OGRLayer ∗ poSrcLayer, const char ∗ pszNewName, char ∗∗
papszOptions = NULL) [virtual]

Duplicate an existing layer.

This method creates a new layer, duplicate the field definitions of the source layer and then duplicate each features
of the source layer. The papszOptions argument can be used to control driver specific creation options. These
options are normally documented in the format specific documentation. The source layer may come from another
dataset.

This method is the same as the C function OGR_DS_CopyLayer() (p. ??).

Parameters

poSrcLayer source layer.
pszNewName the name of the layer to create.
papszOptions a StringList of name=value options. Options are driver specific.

Returns

an handle to the layer, or NULL if an error occurs.

Reimplemented in OGRMutexedDataSource (p. ??).

References CPLCalloc(), CPLError(), CPLErrorReset(), CPLMalloc(), OGRLayer::CreateFeature(), OGRFeature←↩

::CreateFeature(), OGRLayer::CreateField(), OGRLayer::CreateGeomField(), CreateLayer(), OGRFeature::←↩

DestroyFeature(), OGRFeature::GetFID(), OGRFeatureDefn::GetFieldCount(), OGRFeatureDefn::GetField←↩

Defn(), OGRFeatureDefn::GetFieldIndex(), OGRFeatureDefn::GetGeomFieldCount(), OGRFeatureDefn::Get←↩

GeomFieldDefn(), OGRFeatureDefn::GetGeomType(), OGRLayer::GetLayerDefn(), OGRFeatureDefn::GetName(),
OGRFieldDefn::GetNameRef(), OGRLayer::GetNextFeature(), OGRLayer::GetSpatialRef(), OGRLayer::Reset←↩

Reading(), OGRFeature::SetFID(), OGRFeature::SetFrom(), OGRLayer::TestCapability(), TestCapability(), and
wkbNone.

Referenced by OGRSFDriver::CopyDataSource(), and OGRMutexedDataSource::CopyLayer().

12.47.2.2 OGRLayer ∗ OGRDataSource::CreateLayer (const char ∗ pszName, OGRSpatialReference ∗ poSpatialRef =
NULL, OGRwkbGeometryType eGType = wkbUnknown, char ∗∗ papszOptions = NULL) [virtual]

This method attempts to create a new layer on the data source with the indicated name, coordinate system, geom-
etry type.

The papszOptions argument can be used to control driver specific creation options. These options are normally
documented in the format specific documentation.

Parameters

pszName the name for the new layer. This should ideally not match any existing layer on the datasource.
poSpatialRef the coordinate system to use for the new layer, or NULL if no coordinate system is available.

eGType the geometry type for the layer. Use wkbUnknown if there are no constraints on the types
geometry to be written.

papszOptions a StringList of name=value options. Options are driver specific.

Returns

NULL is returned on failure, or a new OGRLayer (p. ??) handle on success.

Example:

#include "ogrsf_frmts.h"
#include "cpl_string.h"

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

100 Class Documentation

...

OGRLayer *poLayer;
char **papszOptions;

if(!poDS->TestCapability(ODsCCreateLayer))
{
...
}

papszOptions = CSLSetNameValue(papszOptions, "DIM", "2");
poLayer = poDS->CreateLayer("NewLayer", NULL, wkbUnknown,

papszOptions);
CSLDestroy(papszOptions);

if(poLayer == NULL)
{

...
}

Reimplemented in OGRMutexedDataSource (p. ??).

References CPLError().

Referenced by CopyLayer(), and OGRMutexedDataSource::CreateLayer().

12.47.2.3 OGRErr OGRDataSource::DeleteLayer (int iLayer) [virtual]

Delete the indicated layer from the datasource.

If this method is supported the ODsCDeleteLayer capability will test TRUE on the OGRDataSource (p. ??).

This method is the same as the C function OGR_DS_DeleteLayer() (p. ??).

Parameters

iLayer the index of the layer to delete.

Returns

OGRERR_NONE on success, or OGRERR_UNSUPPORTED_OPERATION if deleting layers is not sup-
ported for this datasource.

Reimplemented in OGRMutexedDataSource (p. ??).

References CPLError().

Referenced by OGRMutexedDataSource::DeleteLayer().

12.47.2.4 int OGRDataSource::Dereference ()

Decrement datasource reference count.

This method is the same as the C function OGR_DS_Dereference().

Returns

the reference count after decrementing.

12.47.2.5 void OGRDataSource::DestroyDataSource (OGRDataSource ∗ poDS) [static]

Closes opened datasource and releases allocated resources.

This static method will close and destroy a datasource. It is equivelent to calling delete on the object, but it ensures
that the deallocation is properly executed within the GDAL libraries heap on platforms where this can matter (win32).

This method is the same as the C function OGR_DS_Destroy() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.47 OGRDataSource Class Reference 101

Parameters

poDS pointer to allocated datasource object.

12.47.2.6 OGRLayer ∗ OGRDataSource::ExecuteSQL (const char ∗ pszStatement, OGRGeometry ∗ poSpatialFilter,
const char ∗ pszDialect) [virtual]

Execute an SQL statement against the data store.

The result of an SQL query is either NULL for statements that are in error, or that have no results set, or an OGR←↩

Layer (p. ??) pointer representing a results set from the query. Note that this OGRLayer (p. ??) is in addition to the
layers in the data store and must be destroyed with OGRDataSource::ReleaseResultSet() (p. ??) before the data
source is closed (destroyed).

This method is the same as the C function OGR_DS_ExecuteSQL() (p. ??).

For more information on the SQL dialect supported internally by OGR review the OGR SQL document. Some
drivers (ie. Oracle and PostGIS) pass the SQL directly through to the underlying RDBMS.

Starting with OGR 1.10, the SQLITE dialect can also be used.

Parameters

pszStatement the SQL statement to execute.
poSpatialFilter geometry which represents a spatial filter. Can be NULL.

pszDialect allows control of the statement dialect. If set to NULL, the OGR SQL engine will be used,
except for RDBMS drivers that will use their dedicated SQL engine, unless OGRSQL is ex-
plicitely passed as the dialect. Starting with OGR 1.10, the SQLITE dialect can also be used.

Returns

an OGRLayer (p. ??) containing the results of the query. Deallocate with ReleaseResultSet() (p. ??).

Reimplemented in OGRMutexedDataSource (p. ??).

References CPLError(), CPLRealloc(), CSLCount(), and CSLDestroy().

Referenced by OGRMutexedDataSource::ExecuteSQL().

12.47.2.7 OGRSFDriver ∗ OGRDataSource::GetDriver () const

Returns the driver that the dataset was opened with.

This method is the same as the C function OGR_DS_GetDriver() (p. ??).

Returns

NULL if driver info is not available, or pointer to a driver owned by the OGRSFDriverManager.

Referenced by OGRSFDriver::CopyDataSource(), OGR_Dr_CopyDataSource(), OGR_Dr_CreateDataSource(),
OGR_Dr_Open(), and OGRSFDriverRegistrar::Open().

12.47.2.8 OGRLayer ∗ OGRDataSource::GetLayer (int iLayer) [pure virtual]

Fetch a layer by index.

The returned layer remains owned by the OGRDataSource (p. ??) and should not be deleted by the application.

This method is the same as the C function OGR_DS_GetLayer() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

102 Class Documentation

Parameters

iLayer a layer number between 0 and GetLayerCount() (p. ??)-1.

Returns

the layer, or NULL if iLayer is out of range or an error occurs.

Implemented in OGRMutexedDataSource (p. ??).

Referenced by OGRSFDriver::CopyDataSource(), OGRMutexedDataSource::GetLayer(), GetLayerByName(),
GetSummaryRefCount(), and SyncToDisk().

12.47.2.9 OGRLayer ∗ OGRDataSource::GetLayerByName (const char ∗ pszLayerName) [virtual]

Fetch a layer by name.

The returned layer remains owned by the OGRDataSource (p. ??) and should not be deleted by the application.

This method is the same as the C function OGR_DS_GetLayerByName() (p. ??).

Parameters

pszLayerName the layer name of the layer to fetch.

Returns

the layer, or NULL if Layer is not found or an error occurs.

Reimplemented in OGRMutexedDataSource (p. ??).

References GetLayer(), GetLayerCount(), and OGRLayer::GetName().

Referenced by OGRMutexedDataSource::GetLayerByName().

12.47.2.10 int OGRDataSource::GetLayerCount () [pure virtual]

Get the number of layers in this data source.

This method is the same as the C function OGR_DS_GetLayerCount() (p. ??).

Returns

layer count.

Implemented in OGRMutexedDataSource (p. ??).

Referenced by OGRSFDriver::CopyDataSource(), GetLayerByName(), OGRMutexedDataSource::GetLayer←↩

Count(), GetSummaryRefCount(), and SyncToDisk().

12.47.2.11 const char ∗ OGRDataSource::GetName () [pure virtual]

Returns the name of the data source.

This string should be sufficient to open the data source if passed to the same OGRSFDriver (p. ??) that this data
source was opened with, but it need not be exactly the same string that was used to open the data source. Normally
this is a filename.

This method is the same as the C function OGR_DS_GetName() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.47 OGRDataSource Class Reference 103

Returns

pointer to an internal name string which should not be modified or freed by the caller.

Implemented in OGRMutexedDataSource (p. ??).

Referenced by OGRMutexedDataSource::GetName().

12.47.2.12 int OGRDataSource::GetRefCount () const

Fetch reference count.

This method is the same as the C function OGR_DS_GetRefCount().

Returns

the current reference count for the datasource object itself.

12.47.2.13 OGRStyleTable ∗ OGRDataSource::GetStyleTable () [virtual]

Returns data source style table.

This method is the same as the C function OGR_DS_GetStyleTable().

Returns

pointer to a style table which should not be modified or freed by the caller.

Reimplemented in OGRMutexedDataSource (p. ??).

Referenced by OGRMutexedDataSource::GetStyleTable().

12.47.2.14 int OGRDataSource::GetSummaryRefCount () const

Fetch reference count of datasource and all owned layers.

This method is the same as the C function OGR_DS_GetSummaryRefCount().

Returns

the current summary reference count for the datasource and its layers.

References GetLayer(), GetLayerCount(), and OGRLayer::GetRefCount().

12.47.2.15 int OGRDataSource::Reference ()

Increment datasource reference count.

This method is the same as the C function OGR_DS_Reference().

Returns

the reference count after incrementing.

Referenced by OGRSFDriverRegistrar::Open().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

104 Class Documentation

12.47.2.16 OGRErr OGRDataSource::Release ()

Drop a reference to this datasource, and if the reference count drops to zero close (destroy) the datasource.

Internally this actually calls the OGRSFDriverRegistrar::ReleaseDataSource() method. This method is essentially a
convenient alias.

This method is the same as the C function OGRReleaseDataSource() (p. ??).

Returns

OGRERR_NONE on success or an error code.

References OGRSFDriverRegistrar::GetRegistrar().

12.47.2.17 void OGRDataSource::ReleaseResultSet (OGRLayer ∗ poResultsSet) [virtual]

Release results of ExecuteSQL() (p. ??).

This method should only be used to deallocate OGRLayers resulting from an ExecuteSQL() (p. ??) call on the
same OGRDataSource (p. ??). Failure to deallocate a results set before destroying the OGRDataSource (p. ??)
may cause errors.

This method is the same as the C function OGR_L_ReleaseResultSet().

Parameters

poResultsSet the result of a previous ExecuteSQL() (p. ??) call.

Reimplemented in OGRMutexedDataSource (p. ??).

Referenced by OGRMutexedDataSource::ReleaseResultSet().

12.47.2.18 void OGRDataSource::SetDriver (OGRSFDriver ∗ poDriver)

Sets the driver that the dataset was created or opened with.

Note

This method is not exposed as the OGR C API function.

Parameters

poDriver pointer to driver instance associated with the data source.

Referenced by OGRSFDriver::CopyDataSource(), OGR_Dr_CopyDataSource(), OGR_Dr_CreateDataSource(),
and OGR_Dr_Open().

12.47.2.19 void OGRDataSource::SetStyleTable (OGRStyleTable ∗ poStyleTable) [virtual]

Set data source style table.

This method operate exactly as OGRDataSource::SetStyleTableDirectly() (p. ??) except that it does not assume
ownership of the passed table.

This method is the same as the C function OGR_DS_SetStyleTable().

Parameters

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.47 OGRDataSource Class Reference 105

poStyleTable pointer to style table to set

Reimplemented in OGRMutexedDataSource (p. ??).

References OGRStyleTable::Clone().

Referenced by OGRMutexedDataSource::SetStyleTable().

12.47.2.20 void OGRDataSource::SetStyleTableDirectly (OGRStyleTable ∗ poStyleTable) [virtual]

Set data source style table.

This method operate exactly as OGRDataSource::SetStyleTable() (p. ??) except that it assumes ownership of the
passed table.

This method is the same as the C function OGR_DS_SetStyleTableDirectly().

Parameters

poStyleTable pointer to style table to set

Reimplemented in OGRMutexedDataSource (p. ??).

Referenced by OGRMutexedDataSource::SetStyleTableDirectly().

12.47.2.21 OGRErr OGRDataSource::SyncToDisk () [virtual]

Flush pending changes to disk.

This call is intended to force the datasource to flush any pending writes to disk, and leave the disk file in a consistent
state. It would not normally have any effect on read-only datasources.

Some data sources do not implement this method, and will still return OGRERR_NONE. An error is only returned if
an error occurs while attempting to flush to disk.

The default implementation of this method just calls the SyncToDisk() (p. ??) method on each of the layers. Con-
ceptionally, calling SyncToDisk() (p. ??) on a datasource should include any work that might be accomplished by
calling SyncToDisk() (p. ??) on layers in that data source.

In any event, you should always close any opened datasource with OGRDataSource::DestroyDataSource() (p. ??)
that will ensure all data is correctly flushed.

This method is the same as the C function OGR_DS_SyncToDisk() (p. ??).

Returns

OGRERR_NONE if no error occurs (even if nothing is done) or an error code.

Reimplemented in OGRMutexedDataSource (p. ??).

References GetLayer(), GetLayerCount(), and OGRLayer::SyncToDisk().

Referenced by OGRMutexedDataSource::SyncToDisk().

12.47.2.22 int OGRDataSource::TestCapability (const char ∗ pszCapability) [pure virtual]

Test if capability is available.

One of the following data source capability names can be passed into this method, and a TRUE or FALSE value
will be returned indicating whether or not the capability is available for this object.

• ODsCCreateLayer: True if this datasource can create new layers.

• ODsCDeleteLayer: True if this datasource can delete existing layers.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

106 Class Documentation

• ODsCCreateGeomFieldAfterCreateLayer: True if the layers of this datasource support CreateGeomField()
just after layer creation.

The #define macro forms of the capability names should be used in preference to the strings themselves to avoid
mispelling.

This method is the same as the C function OGR_DS_TestCapability() (p. ??).

Parameters

pszCapability the capability to test.

Returns

TRUE if capability available otherwise FALSE.

Implemented in OGRMutexedDataSource (p. ??).

Referenced by CopyLayer(), and OGRMutexedDataSource::TestCapability().

The documentation for this class was generated from the following files:

• ogrsf_frmts.h
• ogrsf_frmts.dox
• ogrdatasource.cpp

12.48 OGREnvelope Class Reference

#include <ogr_core.h>

Inheritance diagram for OGREnvelope:

OGREnvelope

OGREnvelope3D

12.48.1 Detailed Description

Simple container for a bounding region.

The documentation for this class was generated from the following file:

• ogr_core.h

12.49 OGREnvelope3D Class Reference

#include <ogr_core.h>

Inheritance diagram for OGREnvelope3D:

OGREnvelope3D

OGREnvelope

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.50 OGRFeature Class Reference 107

12.49.1 Detailed Description

Simple container for a bounding region in 3D.

The documentation for this class was generated from the following file:

• ogr_core.h

12.50 OGRFeature Class Reference

#include <ogr_feature.h>

Public Member Functions

• OGRFeature (OGRFeatureDefn ∗)
Constructor.

• OGRFeatureDefn ∗ GetDefnRef ()

Fetch feature definition.

• OGRErr SetGeometryDirectly (OGRGeometry ∗)
Set feature geometry.

• OGRErr SetGeometry (OGRGeometry ∗)
Set feature geometry.

• OGRGeometry ∗ GetGeometryRef ()

Fetch pointer to feature geometry.

• OGRGeometry ∗ StealGeometry ()

Take away ownership of geometry.

• int GetGeomFieldCount ()

Fetch number of geometry fields on this feature. This will always be the same as the geometry field count for the
OGRFeatureDefn (p. ??).

• OGRGeomFieldDefn ∗ GetGeomFieldDefnRef (int iField)

Fetch definition for this geometry field.

• int GetGeomFieldIndex (const char ∗pszName)

Fetch the geometry field index given geometry field name.

• OGRGeometry ∗ GetGeomFieldRef (int iField)

Fetch pointer to feature geometry.

• OGRGeometry ∗ GetGeomFieldRef (const char ∗pszFName)

Fetch pointer to feature geometry.

• OGRErr SetGeomFieldDirectly (int iField, OGRGeometry ∗)
Set feature geometry of a specified geometry field.

• OGRErr SetGeomField (int iField, OGRGeometry ∗)
Set feature geometry of a specified geometry field.

• OGRFeature ∗ Clone ()

Duplicate feature.

• virtual OGRBoolean Equal (OGRFeature ∗poFeature)

Test if two features are the same.

• int GetFieldCount ()

Fetch number of fields on this feature. This will always be the same as the field count for the OGRFeatureDefn
(p. ??).

• OGRFieldDefn ∗ GetFieldDefnRef (int iField)

Fetch definition for this field.

• int GetFieldIndex (const char ∗pszName)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

108 Class Documentation

Fetch the field index given field name.

• int IsFieldSet (int iField)

Test if a field has ever been assigned a value or not.

• void UnsetField (int iField)

Clear a field, marking it as unset.

• OGRField ∗ GetRawFieldRef (int i)

Fetch a pointer to the internal field value given the index.

• int GetFieldAsInteger (int i)

Fetch field value as integer.

• double GetFieldAsDouble (int i)

Fetch field value as a double.

• const char ∗ GetFieldAsString (int i)

Fetch field value as a string.

• const int ∗ GetFieldAsIntegerList (int i, int ∗pnCount)

Fetch field value as a list of integers.

• const double ∗ GetFieldAsDoubleList (int i, int ∗pnCount)

Fetch field value as a list of doubles.

• char ∗∗ GetFieldAsStringList (int i)

Fetch field value as a list of strings.

• GByte ∗ GetFieldAsBinary (int i, int ∗pnCount)

Fetch field value as binary data.

• int GetFieldAsDateTime (int i, int ∗pnYear, int ∗pnMonth, int ∗pnDay, int ∗pnHour, int ∗pnMinute, int ∗pn←↩

Second, int ∗pnTZFlag)

Fetch field value as date and time.

• void SetField (int i, int nValue)

Set field to integer value.

• void SetField (int i, double dfValue)

Set field to double value.

• void SetField (int i, const char ∗pszValue)

Set field to string value.

• void SetField (int i, int nCount, int ∗panValues)

Set field to list of integers value.

• void SetField (int i, int nCount, double ∗padfValues)

Set field to list of doubles value.

• void SetField (int i, char ∗∗papszValues)

Set field to list of strings value.

• void SetField (int i, OGRField ∗puValue)

Set field.

• void SetField (int i, int nCount, GByte ∗pabyBinary)

Set field to binary data.

• void SetField (int i, int nYear, int nMonth, int nDay, int nHour=0, int nMinute=0, int nSecond=0, int nTZFlag=0)

Set field to date.

• long GetFID ()

Get feature identifier.

• virtual OGRErr SetFID (long nFID)

Set the feature identifier.

• void DumpReadable (FILE ∗, char ∗∗papszOptions=NULL)

Dump this feature in a human readable form.

• OGRErr SetFrom (OGRFeature ∗, int=TRUE)

Set one feature from another.

• OGRErr SetFrom (OGRFeature ∗, int ∗, int=TRUE)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.50 OGRFeature Class Reference 109

Set one feature from another.

• OGRErr SetFieldsFrom (OGRFeature ∗, int ∗, int=TRUE)

Set fields from another feature.

• virtual const char ∗ GetStyleString ()

Fetch style string for this feature.

• virtual void SetStyleString (const char ∗)
Set feature style string. This method operate exactly as OGRFeature::SetStyleStringDirectly() (p. ??) except that
it does not assume ownership of the passed string, but instead makes a copy of it.

• virtual void SetStyleStringDirectly (char ∗)
Set feature style string. This method operate exactly as OGRFeature::SetStyleString() (p. ??) except that it assumes
ownership of the passed string.

Static Public Member Functions

• static OGRFeature ∗ CreateFeature (OGRFeatureDefn ∗)
Feature factory.

• static void DestroyFeature (OGRFeature ∗)
Destroy feature.

12.50.1 Detailed Description

A simple feature, including geometry and attributes.

12.50.2 Constructor & Destructor Documentation

12.50.2.1 OGRFeature::OGRFeature (OGRFeatureDefn ∗ poDefnIn)

Constructor.

Note that the OGRFeature (p. ??) will increment the reference count of it's defining OGRFeatureDefn (p. ??).
Destruction of the OGRFeatureDefn (p. ??) before destruction of all OGRFeatures that depend on it is likely to
result in a crash.

This method is the same as the C function OGR_F_Create() (p. ??).

Parameters

poDefnIn feature class (layer) definition to which the feature will adhere.

References CPLCalloc(), CPLMalloc(), OGRFeatureDefn::GetFieldCount(), OGRFeatureDefn::GetGeomField←↩

Count(), and OGRFeatureDefn::Reference().

Referenced by Clone(), and CreateFeature().

12.50.3 Member Function Documentation

12.50.3.1 OGRFeature ∗ OGRFeature::Clone ()

Duplicate feature.

The newly created feature is owned by the caller, and will have it's own reference to the OGRFeatureDefn (p. ??).

This method is the same as the C function OGR_F_Clone() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

110 Class Documentation

Returns

new feature, exactly matching this feature.

References GetFID(), OGRFeatureDefn::GetFieldCount(), OGRFeatureDefn::GetGeomFieldCount(), GetStyle←↩

String(), OGRFeature(), SetFID(), SetField(), SetGeomField(), and SetStyleString().

Referenced by OGRGenSQLResultsLayer::GetFeature().

12.50.3.2 OGRFeature ∗ OGRFeature::CreateFeature (OGRFeatureDefn ∗ poDefn) [static]

Feature factory.

This is essentially a feature factory, useful for applications creating features but wanting to ensure they are created
out of the OGR/GDAL heap.

This method is the same as the C function OGR_F_Create() (p. ??).

Parameters

poDefn Feature definition defining schema.

Returns

new feature object with null fields and no geometry. May be deleted with delete.

References OGRFeature().

Referenced by OGRDataSource::CopyLayer().

12.50.3.3 void OGRFeature::DestroyFeature (OGRFeature ∗ poFeature) [static]

Destroy feature.

The feature is deleted, but within the context of the GDAL/OGR heap. This is necessary when higher level applica-
tions use GDAL/OGR from a DLL and they want to delete a feature created within the DLL. If the delete is done in
the calling application the memory will be freed onto the application heap which is inappropriate.

This method is the same as the C function OGR_F_Destroy() (p. ??).

Parameters

poFeature the feature to delete.

Referenced by OGRDataSource::CopyLayer().

12.50.3.4 void OGRFeature::DumpReadable (FILE ∗ fpOut, char ∗∗ papszOptions = NULL)

Dump this feature in a human readable form.

This dumps the attributes, and geometry; however, it doesn't definition information (other than field types and
names), nor does it report the geometry spatial reference system.

A few options can be defined to change the default dump :

• DISPLAY_FIELDS=NO : to hide the dump of the attributes

• DISPLAY_STYLE=NO : to hide the dump of the style string

• DISPLAY_GEOMETRY=NO : to hide the dump of the geometry

• DISPLAY_GEOMETRY=SUMMARY : to get only a summary of the geometry

This method is the same as the C function OGR_F_DumpReadable() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.50 OGRFeature Class Reference 111

Parameters

fpOut the stream to write to, such as stdout. If NULL stdout will be used.
papszOptions NULL terminated list of options (may be NULL)

References CSLTestBoolean(), OGRGeometry::dumpReadable(), GetFID(), GetFieldAsString(), GetFieldCount(),
OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetFieldTypeName(), GetGeomFieldCount(), OGRFeature←↩

Defn::GetGeomFieldDefn(), OGRFeatureDefn::GetName(), OGRFieldDefn::GetNameRef(), OGRGeomField←↩

Defn::GetNameRef(), GetStyleString(), OGRFieldDefn::GetType(), and IsFieldSet().

12.50.3.5 OGRBoolean OGRFeature::Equal (OGRFeature ∗ poFeature) [virtual]

Test if two features are the same.

Two features are considered equal if the share them (pointer equality) same OGRFeatureDefn (p. ??), have the
same field values, and the same geometry (as tested by OGRGeometry::Equal()) as well as the same feature id.

This method is the same as the C function OGR_F_Equal() (p. ??).

Parameters

poFeature the other feature to test this one against.

Returns

TRUE if they are equal, otherwise FALSE.

References CSLCount(), OGRGeometry::Equals(), GetDefnRef(), GetFID(), GetFieldAsBinary(), GetFieldAs←↩

DateTime(), GetFieldAsDouble(), GetFieldAsDoubleList(), GetFieldAsInteger(), GetFieldAsIntegerList(), GetField←↩

AsString(), GetFieldAsStringList(), OGRFeatureDefn::GetFieldCount(), OGRFeatureDefn::GetFieldDefn(), Get←↩

GeomFieldCount(), GetGeomFieldRef(), OGRFieldDefn::GetType(), IsFieldSet(), OFTBinary, OFTDate, OFTDate←↩

Time, OFTInteger, OFTIntegerList, OFTReal, OFTRealList, OFTString, OFTStringList, and OFTTime.

12.50.3.6 OGRFeatureDefn ∗ OGRFeature::GetDefnRef () [inline]

Fetch feature definition.

This method is the same as the C function OGR_F_GetDefnRef() (p. ??).

Returns

a reference to the feature definition object.

Referenced by Equal().

12.50.3.7 long OGRFeature::GetFID () [inline]

Get feature identifier.

This method is the same as the C function OGR_F_GetFID() (p. ??).

Returns

feature id or OGRNullFID if none has been assigned.

Referenced by Clone(), OGRDataSource::CopyLayer(), OGRUnionLayer::CreateFeature(), DumpReadable(),
Equal(), OGRLayer::GetFeature(), GetFieldAsDouble(), GetFieldAsInteger(), GetFieldAsString(), and OGRUnion←↩

Layer::SetFeature().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

112 Class Documentation

12.50.3.8 GByte ∗ OGRFeature::GetFieldAsBinary (int iField, int ∗ pnBytes)

Fetch field value as binary data.

Currently this method only works for OFTBinary fields.

This method is the same as the C function OGR_F_GetFieldAsBinary() (p. ??).

Parameters

iField the field to fetch, from 0 to GetFieldCount() (p. ??)-1.
pnBytes location to put the number of bytes returned.

Returns

the field value. This data is internal, and should not be modified, or freed. Its lifetime may be very brief.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), and OFTBinary.

Referenced by Equal().

12.50.3.9 int OGRFeature::GetFieldAsDateTime (int iField, int ∗ pnYear, int ∗ pnMonth, int ∗ pnDay, int ∗ pnHour, int ∗
pnMinute, int ∗ pnSecond, int ∗ pnTZFlag)

Fetch field value as date and time.

Currently this method only works for OFTDate, OFTTime and OFTDateTime fields.

This method is the same as the C function OGR_F_GetFieldAsDateTime() (p. ??).

Parameters

iField the field to fetch, from 0 to GetFieldCount() (p. ??)-1.
pnYear (including century)

pnMonth (1-12)
pnDay (1-31)

pnHour (0-23)
pnMinute (0-59)

pnSecond (0-59)
pnTZFlag (0=unknown, 1=localtime, 100=GMT, see data model for details)

Returns

TRUE on success or FALSE on failure.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), OFTDate, OFTDateTime,
and OFTTime.

Referenced by Equal().

12.50.3.10 double OGRFeature::GetFieldAsDouble (int iField)

Fetch field value as a double.

OFTString features will be translated using atof(). OFTInteger fields will be cast to double. Other field types, or
errors will result in a return value of zero.

This method is the same as the C function OGR_F_GetFieldAsDouble() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.50 OGRFeature Class Reference 113

Parameters

iField the field to fetch, from 0 to GetFieldCount() (p. ??)-1.

Returns

the field value.

References GetFID(), OGRFeatureDefn::GetFieldCount(), OGRFeatureDefn::GetFieldDefn(), GetGeomField←↩

Count(), OGRFieldDefn::GetType(), IsFieldSet(), OFTInteger, OFTReal, OFTString, and OGR_G_Area().

Referenced by Equal(), and SetFieldsFrom().

12.50.3.11 const double ∗ OGRFeature::GetFieldAsDoubleList (int iField, int ∗ pnCount)

Fetch field value as a list of doubles.

Currently this method only works for OFTRealList fields.

This method is the same as the C function OGR_F_GetFieldAsDoubleList() (p. ??).

Parameters

iField the field to fetch, from 0 to GetFieldCount() (p. ??)-1.
pnCount an integer to put the list count (number of doubles) into.

Returns

the field value. This list is internal, and should not be modified, or freed. Its lifetime may be very brief. If
∗pnCount is zero on return the returned pointer may be NULL or non-NULL.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), and OFTRealList.

Referenced by Equal(), and SetFieldsFrom().

12.50.3.12 int OGRFeature::GetFieldAsInteger (int iField)

Fetch field value as integer.

OFTString features will be translated using atoi(). OFTReal fields will be cast to integer. Other field types, or errors
will result in a return value of zero.

This method is the same as the C function OGR_F_GetFieldAsInteger() (p. ??).

Parameters

iField the field to fetch, from 0 to GetFieldCount() (p. ??)-1.

Returns

the field value.

References GetFID(), OGRFeatureDefn::GetFieldCount(), OGRFeatureDefn::GetFieldDefn(), GetGeomField←↩

Count(), OGRFieldDefn::GetType(), IsFieldSet(), OFTInteger, OFTReal, OFTString, and OGR_G_Area().

Referenced by Equal(), and SetFieldsFrom().

12.50.3.13 const int ∗ OGRFeature::GetFieldAsIntegerList (int iField, int ∗ pnCount)

Fetch field value as a list of integers.

Currently this method only works for OFTIntegerList fields.

This method is the same as the C function OGR_F_GetFieldAsIntegerList() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

114 Class Documentation

Parameters

iField the field to fetch, from 0 to GetFieldCount() (p. ??)-1.
pnCount an integer to put the list count (number of integers) into.

Returns

the field value. This list is internal, and should not be modified, or freed. Its lifetime may be very brief. If
∗pnCount is zero on return the returned pointer may be NULL or non-NULL.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), and OFTIntegerList.

Referenced by Equal(), and SetFieldsFrom().

12.50.3.14 const char ∗ OGRFeature::GetFieldAsString (int iField)

Fetch field value as a string.

OFTReal and OFTInteger fields will be translated to string using sprintf(), but not necessarily using the established
formatting rules. Other field types, or errors will result in a return value of zero.

This method is the same as the C function OGR_F_GetFieldAsString() (p. ??).

Parameters

iField the field to fetch, from 0 to GetFieldCount() (p. ??)-1.

Returns

the field value. This string is internal, and should not be modified, or freed. Its lifetime may be very brief.

References CPLBinaryToHex(), CPLStrdup(), GetFID(), OGRFeatureDefn::GetFieldCount(), OGRFeatureDefn←↩

::GetFieldDefn(), OGRGeometry::getGeometryName(), GetGeomFieldCount(), OGRFieldDefn::GetPrecision(),
GetStyleString(), OGRFieldDefn::GetType(), OGRFieldDefn::GetWidth(), IsFieldSet(), OFTBinary, OFTDate, O←↩

FTDateTime, OFTInteger, OFTIntegerList, OFTReal, OFTRealList, OFTString, OFTStringList, OFTTime, and
OGR_G_Area().

Referenced by OGRUnionLayer::CreateFeature(), DumpReadable(), Equal(), GetStyleString(), OGRUnionLayer←↩

::SetFeature(), and SetFieldsFrom().

12.50.3.15 char ∗∗ OGRFeature::GetFieldAsStringList (int iField)

Fetch field value as a list of strings.

Currently this method only works for OFTStringList fields.

The returned list is terminated by a NULL pointer. The number of elements can also be calculated using CSL←↩

Count() (p. ??).

This method is the same as the C function OGR_F_GetFieldAsStringList() (p. ??).

Parameters

iField the field to fetch, from 0 to GetFieldCount() (p. ??)-1.

Returns

the field value. This list is internal, and should not be modified, or freed. Its lifetime may be very brief.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), and OFTStringList.

Referenced by Equal().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.50 OGRFeature Class Reference 115

12.50.3.16 int OGRFeature::GetFieldCount () [inline]

Fetch number of fields on this feature. This will always be the same as the field count for the OGRFeatureDefn
(p. ??).

This method is the same as the C function OGR_F_GetFieldCount() (p. ??).

Returns

count of fields.

References OGRFeatureDefn::GetFieldCount().

Referenced by DumpReadable(), OGR_F_IsFieldSet(), SetFieldsFrom(), and SetFrom().

12.50.3.17 OGRFieldDefn ∗ OGRFeature::GetFieldDefnRef (int iField) [inline]

Fetch definition for this field.

This method is the same as the C function OGR_F_GetFieldDefnRef() (p. ??).

Parameters

iField the field to fetch, from 0 to GetFieldCount() (p. ??)-1.

Returns

the field definition (from the OGRFeatureDefn (p. ??)). This is an internal reference, and should not be deleted
or modified.

References OGRFeatureDefn::GetFieldDefn().

Referenced by SetFieldsFrom(), and SetFrom().

12.50.3.18 int OGRFeature::GetFieldIndex (const char ∗ pszName) [inline]

Fetch the field index given field name.

This is a cover for the OGRFeatureDefn::GetFieldIndex() (p. ??) method.

This method is the same as the C function OGR_F_GetFieldIndex() (p. ??).

Parameters

pszName the name of the field to search for.

Returns

the field index, or -1 if no matching field is found.

References OGRFeatureDefn::GetFieldIndex().

Referenced by GetStyleString(), and SetFrom().

12.50.3.19 OGRGeometry ∗ OGRFeature::GetGeometryRef ()

Fetch pointer to feature geometry.

This method is the same as the C function OGR_F_GetGeometryRef() (p. ??).

Starting with GDAL 1.11, this is equivalent to calling OGRFeature::GetGeomFieldRef(0).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

116 Class Documentation

Returns

pointer to internal feature geometry. This object should not be modified.

References GetGeomFieldCount(), and GetGeomFieldRef().

Referenced by OGRLayer::Clip(), and OGRLayer::Erase().

12.50.3.20 int OGRFeature::GetGeomFieldCount () [inline]

Fetch number of geometry fields on this feature. This will always be the same as the geometry field count for the
OGRFeatureDefn (p. ??).

This method is the same as the C function OGR_F_GetGeomFieldCount() (p. ??).

Returns

count of geometry fields.

Since

GDAL 1.11

References OGRFeatureDefn::GetGeomFieldCount().

Referenced by DumpReadable(), Equal(), GetFieldAsDouble(), GetFieldAsInteger(), GetFieldAsString(), Get←↩

GeometryRef(), GetGeomFieldRef(), IsFieldSet(), SetFrom(), SetGeometry(), SetGeometryDirectly(), SetGeom←↩

Field(), SetGeomFieldDirectly(), and StealGeometry().

12.50.3.21 OGRGeomFieldDefn ∗ OGRFeature::GetGeomFieldDefnRef (int iGeomField) [inline]

Fetch definition for this geometry field.

This method is the same as the C function OGR_F_GetGeomFieldDefnRef() (p. ??).

Parameters

iGeomField the field to fetch, from 0 to GetGeomFieldCount() (p. ??)-1.

Returns

the field definition (from the OGRFeatureDefn (p. ??)). This is an internal reference, and should not be deleted
or modified.

Since

GDAL 1.11

References OGRFeatureDefn::GetGeomFieldDefn().

Referenced by SetFrom().

12.50.3.22 int OGRFeature::GetGeomFieldIndex (const char ∗ pszName) [inline]

Fetch the geometry field index given geometry field name.

This is a cover for the OGRFeatureDefn::GetGeomFieldIndex() (p. ??) method.

This method is the same as the C function OGR_F_GetGeomFieldIndex() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.50 OGRFeature Class Reference 117

Parameters

pszName the name of the geometry field to search for.

Returns

the geometry field index, or -1 if no matching geometry field is found.

Since

GDAL 1.11

References OGRFeatureDefn::GetGeomFieldIndex().

Referenced by GetGeomFieldRef(), and SetFrom().

12.50.3.23 OGRGeometry ∗ OGRFeature::GetGeomFieldRef (int iField)

Fetch pointer to feature geometry.

This method is the same as the C function OGR_F_GetGeomFieldRef() (p. ??).

Parameters

iField geometry field to get.

Returns

pointer to internal feature geometry. This object should not be modified.

Since

GDAL 1.11

References GetGeomFieldCount().

Referenced by Equal(), GetGeometryRef(), OGRWarpedLayer::GetNextFeature(), OGRGenSQLResultsLayer::←↩

GetNextFeature(), OGRUnionLayer::GetNextFeature(), and SetFrom().

12.50.3.24 OGRGeometry ∗ OGRFeature::GetGeomFieldRef (const char ∗ pszFName)

Fetch pointer to feature geometry.

Parameters

pszFName name of geometry field to get.

Returns

pointer to internal feature geometry. This object should not be modified.

Since

GDAL 1.11

References GetGeomFieldIndex().

12.50.3.25 OGRField ∗ OGRFeature::GetRawFieldRef (int iField) [inline]

Fetch a pointer to the internal field value given the index.

This method is the same as the C function OGR_F_GetRawFieldRef() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

118 Class Documentation

Parameters

iField the field to fetch, from 0 to GetFieldCount() (p. ??)-1.

Returns

the returned pointer is to an internal data structure, and should not be freed, or modified.

Referenced by SetFieldsFrom().

12.50.3.26 const char ∗ OGRFeature::GetStyleString () [virtual]

Fetch style string for this feature.

Set the OGR Feature Style Specification for details on the format of this string, and ogr_featurestyle.h (p. ??) for
services available to parse it.

This method is the same as the C function OGR_F_GetStyleString() (p. ??).

Returns

a reference to a representation in string format, or NULL if there isn't one.

References GetFieldAsString(), and GetFieldIndex().

Referenced by Clone(), DumpReadable(), GetFieldAsString(), OGRStyleMgr::InitFromFeature(), and SetFrom().

12.50.3.27 int OGRFeature::IsFieldSet (int iField)

Test if a field has ever been assigned a value or not.

This method is the same as the C function OGR_F_IsFieldSet() (p. ??).

Parameters

iField the field to test.

Returns

TRUE if the field has been set, otherwise false.

References OGRFeatureDefn::GetFieldCount(), GetGeomFieldCount(), and OGR_G_Area().

Referenced by OGRUnionLayer::CreateFeature(), DumpReadable(), Equal(), GetFieldAsBinary(), GetFieldAs←↩

DateTime(), GetFieldAsDouble(), GetFieldAsDoubleList(), GetFieldAsInteger(), GetFieldAsIntegerList(), GetField←↩

AsString(), GetFieldAsStringList(), OGR_F_IsFieldSet(), OGRUnionLayer::SetFeature(), SetField(), SetFields←↩

From(), and UnsetField().

12.50.3.28 OGRErr OGRFeature::SetFID (long nFID) [virtual]

Set the feature identifier.

For specific types of features this operation may fail on illegal features ids. Generally it always succeeds. Feature
ids should be greater than or equal to zero, with the exception of OGRNullFID (-1) indicating that the feature id is
unknown.

This method is the same as the C function OGR_F_SetFID() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.50 OGRFeature Class Reference 119

Parameters

nFID the new feature identifier value to assign.

Returns

On success OGRERR_NONE, or on failure some other value.

Referenced by Clone(), OGRDataSource::CopyLayer(), OGRUnionLayer::CreateFeature(), OGRGenSQLResults←↩

Layer::GetFeature(), OGRUnionLayer::SetFeature(), and SetFrom().

12.50.3.29 void OGRFeature::SetField (int iField, int nValue)

Set field to integer value.

OFTInteger and OFTReal fields will be set directly. OFTString fields will be assigned a string representation of
the value, but not necessarily taking into account formatting constraints on this field. Other field types may be
unaffected.

This method is the same as the C function OGR_F_SetFieldInteger() (p. ??).

Parameters

iField the field to fetch, from 0 to GetFieldCount() (p. ??)-1.
nValue the value to assign.

References CPLStrdup(), OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), OFTInteger,
OFTIntegerList, OFTReal, OFTRealList, and OFTString.

Referenced by Clone(), OGRGenSQLResultsLayer::GetFeature(), SetField(), and SetFieldsFrom().

12.50.3.30 void OGRFeature::SetField (int iField, double dfValue)

Set field to double value.

OFTInteger and OFTReal fields will be set directly. OFTString fields will be assigned a string representation of
the value, but not necessarily taking into account formatting constraints on this field. Other field types may be
unaffected.

This method is the same as the C function OGR_F_SetFieldDouble() (p. ??).

Parameters

iField the field to fetch, from 0 to GetFieldCount() (p. ??)-1.
dfValue the value to assign.

References CPLStrdup(), OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), OFTInteger,
OFTIntegerList, OFTReal, OFTRealList, OFTString, and SetField().

12.50.3.31 void OGRFeature::SetField (int iField, const char ∗ pszValue)

Set field to string value.

OFTInteger fields will be set based on an atoi() conversion of the string. OFTReal fields will be set based on an
atof() conversion of the string. Other field types may be unaffected.

This method is the same as the C function OGR_F_SetFieldString() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

120 Class Documentation

Parameters

iField the field to fetch, from 0 to GetFieldCount() (p. ??)-1.
pszValue the value to assign.

References CPLError(), CPLGetConfigOption(), CPLStrdup(), CPLStrtod(), CSLCount(), CSLDestroy(), CSLTest←↩

Boolean(), CSLTokenizeString2(), OGRFeatureDefn::GetFieldDefn(), OGRFeatureDefn::GetName(), OGRField←↩

Defn::GetNameRef(), OGRFieldDefn::GetType(), IsFieldSet(), OFTDate, OFTDateTime, OFTInteger, OFTInteger←↩

List, OFTReal, OFTRealList, OFTString, OFTStringList, OFTTime, and SetField().

12.50.3.32 void OGRFeature::SetField (int iField, int nCount, int ∗ panValues)

Set field to list of integers value.

This method currently on has an effect of OFTIntegerList fields.

This method is the same as the C function OGR_F_SetFieldIntegerList() (p. ??).

Parameters

iField the field to set, from 0 to GetFieldCount() (p. ??)-1.
nCount the number of values in the list being assigned.

panValues the values to assign.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), OFTInteger, OFTIntegerList, OFTReal,
OFTRealList, and SetField().

12.50.3.33 void OGRFeature::SetField (int iField, int nCount, double ∗ padfValues)

Set field to list of doubles value.

This method currently on has an effect of OFTRealList fields.

This method is the same as the C function OGR_F_SetFieldDoubleList() (p. ??).

Parameters

iField the field to set, from 0 to GetFieldCount() (p. ??)-1.
nCount the number of values in the list being assigned.

padfValues the values to assign.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), OFTInteger, OFTIntegerList, OFTReal,
OFTRealList, and SetField().

12.50.3.34 void OGRFeature::SetField (int iField, char ∗∗ papszValues)

Set field to list of strings value.

This method currently on has an effect of OFTStringList fields.

This method is the same as the C function OGR_F_SetFieldStringList() (p. ??).

Parameters

iField the field to set, from 0 to GetFieldCount() (p. ??)-1.
papszValues the values to assign.

References CSLCount(), OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), OFTStringList, and Set←↩

Field().

12.50.3.35 void OGRFeature::SetField (int iField, OGRField ∗ puValue)

Set field.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.50 OGRFeature Class Reference 121

The passed value OGRField (p. ??) must be of exactly the same type as the target field, or an application crash
may occur. The passed value is copied, and will not be affected. It remains the responsibility of the caller.

This method is the same as the C function OGR_F_SetFieldRaw() (p. ??).

Parameters

iField the field to fetch, from 0 to GetFieldCount() (p. ??)-1.
puValue the value to assign.

References CPLMalloc(), CPLStrdup(), CSLCount(), CSLDestroy(), CSLDuplicate(), OGRFeatureDefn::GetField←↩

Defn(), OGRFieldDefn::GetType(), IsFieldSet(), OFTBinary, OFTDate, OFTDateTime, OFTInteger, OFTIntegerList,
OFTReal, OFTRealList, OFTString, OFTStringList, and OFTTime.

12.50.3.36 void OGRFeature::SetField (int iField, int nBytes, GByte ∗ pabyData)

Set field to binary data.

This method currently on has an effect of OFTBinary fields.

This method is the same as the C function OGR_F_SetFieldBinary() (p. ??).

Parameters

iField the field to set, from 0 to GetFieldCount() (p. ??)-1.
nBytes bytes of data being set.

pabyData the raw data being applied.

References OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), OFTBinary, and SetField().

12.50.3.37 void OGRFeature::SetField (int iField, int nYear, int nMonth, int nDay, int nHour = 0, int nMinute = 0, int nSecond
= 0, int nTZFlag = 0)

Set field to date.

This method currently only has an effect for OFTDate, OFTTime and OFTDateTime fields.

This method is the same as the C function OGR_F_SetFieldDateTime() (p. ??).

Parameters

iField the field to set, from 0 to GetFieldCount() (p. ??)-1.
nYear (including century)

nMonth (1-12)
nDay (1-31)

nHour (0-23)
nMinute (0-59)

nSecond (0-59)
nTZFlag (0=unknown, 1=localtime, 100=GMT, see data model for details)

References CPLError(), OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), OFTDate, OFTDateTime,
and OFTTime.

12.50.3.38 OGRErr OGRFeature::SetFieldsFrom (OGRFeature ∗ poSrcFeature, int ∗ panMap, int bForgiving = TRUE)

Set fields from another feature.

Overwrite the fields of this feature from the attributes of another. The FID and the style string are not set. The
poSrcFeature does not need to have the same OGRFeatureDefn (p. ??). Field values are copied according to the
provided indices map. Field types do not have to exactly match. SetField() (p. ??) method conversion rules will be
applied as needed. This is more efficient than OGR_F_SetFrom() (p. ??) in that this doesn't lookup the fields by
their names. Particularly useful when the field names don't match.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

122 Class Documentation

Parameters

poSrcFeature the feature from which geometry, and field values will be copied.
panMap Array of the indices of the feature's fields stored at the corresponding index of the source

feature's fields. A value of -1 should be used to ignore the source's field. The array should
not be NULL and be as long as the number of fields in the source feature.

bForgiving TRUE if the operation should continue despite lacking output fields matching some of the
source fields.

Returns

OGRERR_NONE if the operation succeeds, even if some values are not transferred, otherwise an error code.

References GetFieldAsDouble(), GetFieldAsDoubleList(), GetFieldAsInteger(), GetFieldAsIntegerList(), GetField←↩

AsString(), GetFieldCount(), GetFieldDefnRef(), GetRawFieldRef(), OGRFieldDefn::GetType(), IsFieldSet(), OF←↩

TDate, OFTDateTime, OFTInteger, OFTIntegerList, OFTReal, OFTRealList, OFTString, OFTTime, SetField(), and
UnsetField().

Referenced by OGRLayer::Clip(), OGRLayer::Erase(), OGRLayer::Identity(), OGRLayer::Intersection(), SetFrom(),
OGRLayer::SymDifference(), OGRLayer::Union(), and OGRLayer::Update().

12.50.3.39 OGRErr OGRFeature::SetFrom (OGRFeature ∗ poSrcFeature, int bForgiving = TRUE)

Set one feature from another.

Overwrite the contents of this feature from the geometry and attributes of another. The poSrcFeature does not need
to have the same OGRFeatureDefn (p. ??). Field values are copied by corresponding field names. Field types do
not have to exactly match. SetField() (p. ??) method conversion rules will be applied as needed.

This method is the same as the C function OGR_F_SetFrom() (p. ??).

Parameters

poSrcFeature the feature from which geometry, and field values will be copied.
bForgiving TRUE if the operation should continue despite lacking output fields matching some of the

source fields.

Returns

OGRERR_NONE if the operation succeeds, even if some values are not transferred, otherwise an error code.

References GetFieldCount(), GetFieldDefnRef(), GetFieldIndex(), and OGRFieldDefn::GetNameRef().

Referenced by OGRDataSource::CopyLayer(), OGRUnionLayer::CreateFeature(), and OGRUnionLayer::Set←↩

Feature().

12.50.3.40 OGRErr OGRFeature::SetFrom (OGRFeature ∗ poSrcFeature, int ∗ panMap, int bForgiving = TRUE)

Set one feature from another.

Overwrite the contents of this feature from the geometry and attributes of another. The poSrcFeature does not need
to have the same OGRFeatureDefn (p. ??). Field values are copied according to the provided indices map. Field
types do not have to exactly match. SetField() (p. ??) method conversion rules will be applied as needed. This
is more efficient than OGR_F_SetFrom() (p. ??) in that this doesn't lookup the fields by their names. Particularly
useful when the field names don't match.

This method is the same as the C function OGR_F_SetFromWithMap() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.50 OGRFeature Class Reference 123

Parameters

poSrcFeature the feature from which geometry, and field values will be copied.
panMap Array of the indices of the feature's fields stored at the corresponding index of the source

feature's fields. A value of -1 should be used to ignore the source's field. The array should
not be NULL and be as long as the number of fields in the source feature.

bForgiving TRUE if the operation should continue despite lacking output fields matching some of the
source fields.

Returns

OGRERR_NONE if the operation succeeds, even if some values are not transferred, otherwise an error code.

References GetGeomFieldCount(), GetGeomFieldDefnRef(), GetGeomFieldIndex(), GetGeomFieldRef(), OG←↩

RGeomFieldDefn::GetNameRef(), GetStyleString(), SetFID(), SetFieldsFrom(), SetGeomField(), and SetStyle←↩

String().

12.50.3.41 OGRErr OGRFeature::SetGeometry (OGRGeometry ∗ poGeomIn)

Set feature geometry.

This method updates the features geometry, and operate exactly as SetGeometryDirectly() (p. ??), except that this
method does not assume ownership of the passed geometry, but instead makes a copy of it.

This method is the same as the C function OGR_F_SetGeometry() (p. ??).

Parameters

poGeomIn new geometry to apply to feature. Passing NULL value here is correct and it will result in
deallocation of currently assigned geometry without assigning new one.

Returns

OGRERR_NONE if successful, or OGR_UNSUPPORTED_GEOMETRY_TYPE if the geometry type is illegal
for the OGRFeatureDefn (p. ??) (checking not yet implemented).

References GetGeomFieldCount(), and SetGeomField().

Referenced by OGRLayer::Update().

12.50.3.42 OGRErr OGRFeature::SetGeometryDirectly (OGRGeometry ∗ poGeomIn)

Set feature geometry.

This method updates the features geometry, and operate exactly as SetGeometry() (p. ??), except that this method
assumes ownership of the passed geometry (even in case of failure of that function).

This method is the same as the C function OGR_F_SetGeometryDirectly() (p. ??).

Parameters

poGeomIn new geometry to apply to feature. Passing NULL value here is correct and it will result in
deallocation of currently assigned geometry without assigning new one.

Returns

OGRERR_NONE if successful, or OGR_UNSUPPORTED_GEOMETRY_TYPE if the geometry type is illegal
for the OGRFeatureDefn (p. ??) (checking not yet implemented).

References GetGeomFieldCount(), and SetGeomFieldDirectly().

Referenced by OGRLayer::Clip(), OGRLayer::Erase(), OGRLayer::Identity(), OGRLayer::Intersection(), OGR←↩

Layer::SymDifference(), OGRLayer::Union(), and OGRLayer::Update().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

124 Class Documentation

12.50.3.43 OGRErr OGRFeature::SetGeomField (int iField, OGRGeometry ∗ poGeomIn)

Set feature geometry of a specified geometry field.

This method updates the features geometry, and operate exactly as SetGeomFieldDirectly() (p. ??), except that
this method does not assume ownership of the passed geometry, but instead makes a copy of it.

This method is the same as the C function OGR_F_SetGeomField() (p. ??).

Parameters

iField geometry field to set.
poGeomIn new geometry to apply to feature. Passing NULL value here is correct and it will result in

deallocation of currently assigned geometry without assigning new one.

Returns

OGRERR_NONE if successful, or OGRERR_FAILURE if the index is invalid, or OGR_UNSUPPORTED_←↩

GEOMETRY_TYPE if the geometry type is illegal for the OGRFeatureDefn (p. ??) (checking not yet imple-
mented).

Since

GDAL 1.11

References OGRGeometry::clone(), and GetGeomFieldCount().

Referenced by Clone(), SetFrom(), and SetGeometry().

12.50.3.44 OGRErr OGRFeature::SetGeomFieldDirectly (int iField, OGRGeometry ∗ poGeomIn)

Set feature geometry of a specified geometry field.

This method updates the features geometry, and operate exactly as SetGeomField() (p. ??), except that this method
assumes ownership of the passed geometry (even in case of failure of that function).

This method is the same as the C function OGR_F_SetGeomFieldDirectly() (p. ??).

Parameters

iField geometry field to set.
poGeomIn new geometry to apply to feature. Passing NULL value here is correct and it will result in

deallocation of currently assigned geometry without assigning new one.

Returns

OGRERR_NONE if successful, or OGRERR_FAILURE if the index is invalid, or OGR_UNSUPPORTED_←↩

GEOMETRY_TYPE if the geometry type is illegal for the OGRFeatureDefn (p. ??) (checking not yet imple-
mented).

Since

GDAL 1.11

References GetGeomFieldCount().

Referenced by SetGeometryDirectly().

12.50.3.45 void OGRFeature::SetStyleString (const char ∗ pszString) [virtual]

Set feature style string. This method operate exactly as OGRFeature::SetStyleStringDirectly() (p. ??) except that
it does not assume ownership of the passed string, but instead makes a copy of it.

This method is the same as the C function OGR_F_SetStyleString() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.51 OGRFeatureDefn Class Reference 125

Parameters

pszString the style string to apply to this feature, cannot be NULL.

References CPLStrdup().

Referenced by Clone(), OGRStyleMgr::SetFeatureStyleString(), and SetFrom().

12.50.3.46 void OGRFeature::SetStyleStringDirectly (char ∗ pszString) [virtual]

Set feature style string. This method operate exactly as OGRFeature::SetStyleString() (p. ??) except that it as-
sumes ownership of the passed string.

This method is the same as the C function OGR_F_SetStyleStringDirectly() (p. ??).

Parameters

pszString the style string to apply to this feature, cannot be NULL.

12.50.3.47 OGRGeometry ∗ OGRFeature::StealGeometry ()

Take away ownership of geometry.

Fetch the geometry from this feature, and clear the reference to the geometry on the feature. This is a mechanism
for the application to take over ownship of the geometry from the feature without copying. Sort of an inverse to
SetGeometryDirectly() (p. ??).

After this call the OGRFeature (p. ??) will have a NULL geometry.

Returns

the pointer to the geometry.

References GetGeomFieldCount().

12.50.3.48 void OGRFeature::UnsetField (int iField)

Clear a field, marking it as unset.

This method is the same as the C function OGR_F_UnsetField() (p. ??).

Parameters

iField the field to unset.

References CSLDestroy(), OGRFeatureDefn::GetFieldDefn(), OGRFieldDefn::GetType(), IsFieldSet(), OFTBinary,
OFTIntegerList, OFTRealList, OFTString, and OFTStringList.

Referenced by OGRGenSQLResultsLayer::GetFeature(), and SetFieldsFrom().

The documentation for this class was generated from the following files:

• ogr_feature.h

• ogrfeature.cpp

12.51 OGRFeatureDefn Class Reference

#include <ogr_feature.h>

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

126 Class Documentation

Public Member Functions

• OGRFeatureDefn (const char ∗pszName=NULL)

Constructor.

• virtual const char ∗ GetName ()

Get name of this OGRFeatureDefn (p. ??).

• virtual int GetFieldCount ()

Fetch number of fields on this feature.

• virtual OGRFieldDefn ∗ GetFieldDefn (int i)

Fetch field definition.

• virtual int GetFieldIndex (const char ∗)
Find field by name.

• virtual void AddFieldDefn (OGRFieldDefn ∗)
Add a new field definition.

• virtual OGRErr DeleteFieldDefn (int iField)

Delete an existing field definition.

• virtual OGRErr ReorderFieldDefns (int ∗panMap)

Reorder the field definitions in the array of the feature definition.

• virtual int GetGeomFieldCount ()

Fetch number of geometry fields on this feature.

• virtual OGRGeomFieldDefn ∗ GetGeomFieldDefn (int i)

Fetch geometry field definition.

• virtual int GetGeomFieldIndex (const char ∗)
Find geometry field by name.

• virtual void AddGeomFieldDefn (OGRGeomFieldDefn ∗, int bCopy=TRUE)

Add a new geometry field definition.

• virtual OGRErr DeleteGeomFieldDefn (int iGeomField)

Delete an existing geometry field definition.

• virtual OGRwkbGeometryType GetGeomType ()

Fetch the geometry base type.

• virtual void SetGeomType (OGRwkbGeometryType)

Assign the base geometry type for this layer.

• virtual OGRFeatureDefn ∗ Clone ()

Create a copy of this feature definition.

• int Reference ()

Increments the reference count by one.

• int Dereference ()

Decrements the reference count by one.

• int GetReferenceCount ()

Fetch current reference count.

• void Release ()

Drop a reference to this object, and destroy if no longer referenced.

• virtual int IsGeometryIgnored ()

Determine whether the geometry can be omitted when fetching features.

• virtual void SetGeometryIgnored (int bIgnore)

Set whether the geometry can be omitted when fetching features.

• virtual int IsStyleIgnored ()

Determine whether the style can be omitted when fetching features.

• virtual void SetStyleIgnored (int bIgnore)

Set whether the style can be omitted when fetching features.

• virtual int IsSame (OGRFeatureDefn ∗poOtherFeatureDefn)

Test if the feature definition is identical to the other one.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.51 OGRFeatureDefn Class Reference 127

12.51.1 Detailed Description

Definition of a feature class or feature layer.

This object contains schema information for a set of OGRFeatures. In table based systems, an OGRFeatureDefn
(p. ??) is essentially a layer. In more object oriented approaches (such as SF CORBA) this can represent a class of
features but doesn't necessarily relate to all of a layer, or just one layer.

This object also can contain some other information such as a name, the base geometry type and potentially other
metadata.

Starting with GDAL 1.11, in addition to attribute fields, it can also contain multiple geometry fields.

It is reasonable for different translators to derive classes from OGRFeatureDefn (p. ??) with additional translator
specific information.

12.51.2 Constructor & Destructor Documentation

12.51.2.1 OGRFeatureDefn::OGRFeatureDefn (const char ∗ pszName = NULL)

Constructor.

The OGRFeatureDefn (p. ??) maintains a reference count, but this starts at zero. It is mainly intended to represent
a count of OGRFeature (p. ??)'s based on this definition.

This method is the same as the C function OGR_FD_Create() (p. ??).

Parameters

pszName the name to be assigned to this layer/class. It does not need to be unique.

References CPLMalloc(), CPLStrdup(), and wkbUnknown.

Referenced by Clone().

12.51.3 Member Function Documentation

12.51.3.1 void OGRFeatureDefn::AddFieldDefn (OGRFieldDefn ∗ poNewDefn) [virtual]

Add a new field definition.

To add a new field definition to a layer definition, do not use this function directly, but use OGRLayer::CreateField()
(p. ??) instead.

This method should only be called while there are no OGRFeature (p. ??) objects in existance based on this O←↩

GRFeatureDefn (p. ??). The OGRFieldDefn (p. ??) passed in is copied, and remains the responsibility of the
caller.

This method is the same as the C function OGR_FD_AddFieldDefn() (p. ??).

Parameters

poNewDefn the definition of the new field.

References CPLRealloc(), and GetFieldCount().

Referenced by Clone(), and OGRUnionLayer::GetLayerDefn().

12.51.3.2 void OGRFeatureDefn::AddGeomFieldDefn (OGRGeomFieldDefn ∗ poNewDefn, int bCopy = TRUE)
[virtual]

Add a new geometry field definition.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

128 Class Documentation

To add a new geometry field definition to a layer definition, do not use this function directly, but use OGRLayer::←↩

CreateGeomField() (p. ??) instead.

This method does an internal copy of the passed geometry field definition, unless bCopy is set to FALSE (in which
case it takes ownership of the field definition.

This method should only be called while there are no OGRFeature (p. ??) objects in existance based on this OG←↩

RFeatureDefn (p. ??). The OGRGeomFieldDefn (p. ??) passed in is copied, and remains the responsibility of the
caller.

This method is the same as the C function OGR_FD_AddGeomFieldDefn() (p. ??).

Parameters

poNewDefn the definition of the new geometry field.
bCopy whether poNewDefn should be copied.

Since

GDAL 1.11

References CPLRealloc(), and GetGeomFieldCount().

Referenced by Clone(), OGRUnionLayer::GetLayerDefn(), and SetGeomType().

12.51.3.3 OGRFeatureDefn ∗ OGRFeatureDefn::Clone () [virtual]

Create a copy of this feature definition.

Creates a deep copy of the feature definition.

Returns

the copy.

References AddFieldDefn(), AddGeomFieldDefn(), DeleteGeomFieldDefn(), GetFieldCount(), GetFieldDefn(),
GetGeomFieldCount(), GetGeomFieldDefn(), GetName(), and OGRFeatureDefn().

Referenced by OGRWarpedLayer::GetLayerDefn().

12.51.3.4 OGRErr OGRFeatureDefn::DeleteFieldDefn (int iField) [virtual]

Delete an existing field definition.

To delete an existing field definition from a layer definition, do not use this function directly, but use OGRLayer::←↩

DeleteField() (p. ??) instead.

This method should only be called while there are no OGRFeature (p. ??) objects in existance based on this OG←↩

RFeatureDefn (p. ??).

This method is the same as the C function OGR_FD_DeleteFieldDefn() (p. ??).

Parameters

iField the index of the field defintion.

Returns

OGRERR_NONE in case of success.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.51 OGRFeatureDefn Class Reference 129

Since

OGR 1.9.0

References GetFieldCount().

Referenced by OGRUnionLayer::GetLayerDefn().

12.51.3.5 OGRErr OGRFeatureDefn::DeleteGeomFieldDefn (int iGeomField) [virtual]

Delete an existing geometry field definition.

To delete an existing field definition from a layer definition, do not use this function directly, but use OGRLayer::←↩

DeleteGeomField() instead.

This method should only be called while there are no OGRFeature (p. ??) objects in existance based on this OG←↩

RFeatureDefn (p. ??).

This method is the same as the C function OGR_FD_DeleteGeomFieldDefn() (p. ??).

Parameters

iGeomField the index of the geometry field defintion.

Returns

OGRERR_NONE in case of success.

Since

GDAL 1.11

References GetGeomFieldCount().

Referenced by Clone(), OGRUnionLayer::GetLayerDefn(), and SetGeomType().

12.51.3.6 int OGRFeatureDefn::Dereference () [inline]

Decrements the reference count by one.

This method is the same as the C function OGR_FD_Dereference() (p. ??).

Returns

the updated reference count.

Referenced by Release().

12.51.3.7 int OGRFeatureDefn::GetFieldCount () [virtual]

Fetch number of fields on this feature.

This method is the same as the C function OGR_FD_GetFieldCount() (p. ??).

Returns

count of fields.

Referenced by AddFieldDefn(), Clone(), OGRFeature::Clone(), OGRDataSource::CopyLayer(), DeleteFieldDefn(),
OGRFeature::Equal(), OGRFeature::GetFieldAsDouble(), OGRFeature::GetFieldAsInteger(), OGRFeature::Get←↩

FieldAsString(), OGRFeature::GetFieldCount(), GetFieldDefn(), GetFieldIndex(), OGRUnionLayer::GetLayerDefn(),
OGRFeature::IsFieldSet(), IsSame(), OGRFeature::OGRFeature(), OGRLayer::ReorderField(), ReorderField←↩

Defns(), and OGRLayer::SetIgnoredFields().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

130 Class Documentation

12.51.3.8 OGRFieldDefn ∗ OGRFeatureDefn::GetFieldDefn (int iField) [virtual]

Fetch field definition.

This method is the same as the C function OGR_FD_GetFieldDefn() (p. ??).

Starting with GDAL 1.7.0, this method will also issue an error if the index is not valid.

Parameters

iField the field to fetch, between 0 and GetFieldCount() (p. ??)-1.

Returns

a pointer to an internal field definition object or NULL if invalid index. This object should not be modified or
freed by the application.

References CPLError(), and GetFieldCount().

Referenced by Clone(), OGRDataSource::CopyLayer(), OGRFeature::DumpReadable(), OGRFeature::Equal(), O←↩

GRFeature::GetFieldAsBinary(), OGRFeature::GetFieldAsDateTime(), OGRFeature::GetFieldAsDouble(), OGR←↩

Feature::GetFieldAsDoubleList(), OGRFeature::GetFieldAsInteger(), OGRFeature::GetFieldAsIntegerList(), OG←↩

RFeature::GetFieldAsString(), OGRFeature::GetFieldAsStringList(), OGRFeature::GetFieldDefnRef(), GetField←↩

Index(), OGRUnionLayer::GetLayerDefn(), IsSame(), OGRFeature::SetField(), OGRLayer::SetIgnoredFields(), and
OGRFeature::UnsetField().

12.51.3.9 int OGRFeatureDefn::GetFieldIndex (const char ∗ pszFieldName) [virtual]

Find field by name.

The field index of the first field matching the passed field name (case insensitively) is returned.

This method is the same as the C function OGR_FD_GetFieldIndex() (p. ??).

Parameters

pszFieldName the field name to search for.

Returns

the field index, or -1 if no match found.

References GetFieldCount(), and GetFieldDefn().

Referenced by OGRDataSource::CopyLayer(), OGRLayer::FindFieldIndex(), OGRFeature::GetFieldIndex(), OG←↩

RUnionLayer::GetLayerDefn(), and OGRLayer::SetIgnoredFields().

12.51.3.10 int OGRFeatureDefn::GetGeomFieldCount () [virtual]

Fetch number of geometry fields on this feature.

This method is the same as the C function OGR_FD_GetGeomFieldCount() (p. ??).

Returns

count of geometry fields.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.51 OGRFeatureDefn Class Reference 131

Since

GDAL 1.11

Referenced by AddGeomFieldDefn(), Clone(), OGRFeature::Clone(), OGRDataSource::CopyLayer(), Delete←↩

GeomFieldDefn(), OGRGenSQLResultsLayer::GetExtent(), OGRFeature::GetGeomFieldCount(), GetGeomField←↩

Defn(), GetGeomFieldIndex(), GetGeomType(), OGRWarpedLayer::GetLayerDefn(), OGRUnionLayer::GetLayer←↩

Defn(), IsGeometryIgnored(), IsSame(), OGRFeature::OGRFeature(), SetGeometryIgnored(), and SetGeomType().

12.51.3.11 OGRGeomFieldDefn ∗ OGRFeatureDefn::GetGeomFieldDefn (int iGeomField) [virtual]

Fetch geometry field definition.

This method is the same as the C function OGR_FD_GetGeomFieldDefn() (p. ??).

Parameters

iGeomField the geometry field to fetch, between 0 and GetGeomFieldCount() (p. ??)-1.

Returns

a pointer to an internal field definition object or NULL if invalid index. This object should not be modified or
freed by the application.

Since

GDAL 1.11

References CPLError(), and GetGeomFieldCount().

Referenced by Clone(), OGRDataSource::CopyLayer(), OGRFeature::DumpReadable(), OGRGenSQLResults←↩

Layer::GetExtent(), OGRLayer::GetGeometryColumn(), OGRFeature::GetGeomFieldDefnRef(), GetGeomField←↩

Index(), GetGeomType(), OGRWarpedLayer::GetLayerDefn(), OGRUnionLayer::GetLayerDefn(), OGRLayer::←↩

GetSpatialRef(), IsGeometryIgnored(), IsSame(), SetGeometryIgnored(), SetGeomType(), and OGRLayer::Set←↩

IgnoredFields().

12.51.3.12 int OGRFeatureDefn::GetGeomFieldIndex (const char ∗ pszGeomFieldName) [virtual]

Find geometry field by name.

The geometry field index of the first geometry field matching the passed field name (case insensitively) is returned.

This method is the same as the C function OGR_FD_GetGeomFieldIndex() (p. ??).

Parameters

pszGeomField←↩

Name
the geometry field name to search for.

Returns

the geometry field index, or -1 if no match found.

References GetGeomFieldCount(), and GetGeomFieldDefn().

Referenced by OGRUnionLayer::GetExtent(), OGRFeature::GetGeomFieldIndex(), OGRUnionLayer::GetLayer←↩

Defn(), and OGRLayer::SetIgnoredFields().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

132 Class Documentation

12.51.3.13 OGRwkbGeometryType OGRFeatureDefn::GetGeomType () [virtual]

Fetch the geometry base type.

Note that some drivers are unable to determine a specific geometry type for a layer, in which case wkbUnknown is
returned. A value of wkbNone indicates no geometry is available for the layer at all. Many drivers do not properly
mark the geometry type as 25D even if some or all geometries are in fact 25D. A few (broken) drivers return wkb←↩

Polygon for layers that also include wkbMultiPolygon.

Starting with GDAL 1.11, this method returns GetGeomFieldDefn(0)->GetType().

This method is the same as the C function OGR_FD_GetGeomType() (p. ??).

Returns

the base type for all geometry related to this definition.

References GetGeomFieldCount(), GetGeomFieldDefn(), OGRGeomFieldDefn::GetType(), and wkbNone.

Referenced by OGRDataSource::CopyLayer(), and OGRLayer::GetGeomType().

12.51.3.14 const char ∗ OGRFeatureDefn::GetName () [virtual]

Get name of this OGRFeatureDefn (p. ??).

This method is the same as the C function OGR_FD_GetName() (p. ??).

Returns

the name. This name is internal and should not be modified, or freed.

Referenced by Clone(), OGRSFDriver::CopyDataSource(), OGRDataSource::CopyLayer(), OGRFeature::Dump←↩

Readable(), OGRLayer::GetName(), IsSame(), and OGRFeature::SetField().

12.51.3.15 int OGRFeatureDefn::GetReferenceCount () [inline]

Fetch current reference count.

This method is the same as the C function OGR_FD_GetReferenceCount() (p. ??).

Returns

the current reference count.

12.51.3.16 int OGRFeatureDefn::IsGeometryIgnored () [virtual]

Determine whether the geometry can be omitted when fetching features.

This method is the same as the C function OGR_FD_IsGeometryIgnored() (p. ??).

Starting with GDAL 1.11, this method returns GetGeomFieldDefn(0)->IsIgnored().

Returns

ignore state

References GetGeomFieldCount(), GetGeomFieldDefn(), and OGRGeomFieldDefn::IsIgnored().

12.51.3.17 int OGRFeatureDefn::IsSame (OGRFeatureDefn ∗ poOtherFeatureDefn) [virtual]

Test if the feature definition is identical to the other one.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.51 OGRFeatureDefn Class Reference 133

Parameters

poOther←↩

FeatureDefn
the other feature definition to compare to.

Returns

TRUE if the feature definition is identical to the other one.

References GetFieldCount(), GetFieldDefn(), GetGeomFieldCount(), GetGeomFieldDefn(), GetName(), OGR←↩

FieldDefn::IsSame(), and OGRGeomFieldDefn::IsSame().

12.51.3.18 int OGRFeatureDefn::IsStyleIgnored () [inline], [virtual]

Determine whether the style can be omitted when fetching features.

This method is the same as the C function OGR_FD_IsStyleIgnored() (p. ??).

Returns

ignore state

12.51.3.19 int OGRFeatureDefn::Reference () [inline]

Increments the reference count by one.

The reference count is used keep track of the number of OGRFeature (p. ??) objects referencing this definition.

This method is the same as the C function OGR_FD_Reference() (p. ??).

Returns

the updated reference count.

Referenced by OGRWarpedLayer::GetLayerDefn(), OGRProxiedLayer::GetLayerDefn(), OGRUnionLayer::Get←↩

LayerDefn(), and OGRFeature::OGRFeature().

12.51.3.20 OGRErr OGRFeatureDefn::ReorderFieldDefns (int ∗ panMap) [virtual]

Reorder the field definitions in the array of the feature definition.

To reorder the field definitions in a layer definition, do not use this function directly, but use OGR_L_ReorderFields()
(p. ??) instead.

This method should only be called while there are no OGRFeature (p. ??) objects in existance based on this OG←↩

RFeatureDefn (p. ??).

This method is the same as the C function OGR_FD_ReorderFieldDefns().

Parameters

panMap an array of GetFieldCount() (p. ??) elements which is a permutation of [0, GetFieldCount()
(p. ??)-1]. panMap is such that, for each field definition at position i after reordering, its
position before reordering was panMap[i].

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

134 Class Documentation

Returns

OGRERR_NONE in case of success.

Since

OGR 1.9.0

References CPLMalloc(), and GetFieldCount().

12.51.3.21 void OGRFeatureDefn::SetGeometryIgnored (int bIgnore) [virtual]

Set whether the geometry can be omitted when fetching features.

This method is the same as the C function OGR_FD_SetGeometryIgnored() (p. ??).

Starting with GDAL 1.11, this method calls GetGeomFieldDefn(0)->SetIgnored().

Parameters

bIgnore ignore state

References GetGeomFieldCount(), GetGeomFieldDefn(), and OGRGeomFieldDefn::SetIgnored().

Referenced by OGRLayer::SetIgnoredFields().

12.51.3.22 void OGRFeatureDefn::SetGeomType (OGRwkbGeometryType eNewType) [virtual]

Assign the base geometry type for this layer.

All geometry objects using this type must be of the defined type or a derived type. The default upon creation is
wkbUnknown which allows for any geometry type. The geometry type should generally not be changed after any
OGRFeatures have been created against this definition.

This method is the same as the C function OGR_FD_SetGeomType() (p. ??).

Starting with GDAL 1.11, this method calls GetGeomFieldDefn(0)->SetType().

Parameters

eNewType the new type to assign.

References AddGeomFieldDefn(), DeleteGeomFieldDefn(), GetGeomFieldCount(), GetGeomFieldDefn(), OGR←↩

GeomFieldDefn::SetType(), and wkbNone.

Referenced by OGRUnionLayer::GetLayerDefn().

12.51.3.23 void OGRFeatureDefn::SetStyleIgnored (int bIgnore) [inline], [virtual]

Set whether the style can be omitted when fetching features.

This method is the same as the C function OGR_FD_SetStyleIgnored() (p. ??).

Parameters

bIgnore ignore state

Referenced by OGRLayer::SetIgnoredFields().

The documentation for this class was generated from the following files:

• ogr_feature.h
• ogrfeaturedefn.cpp

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.52 OGRFeatureQuery Class Reference 135

12.52 OGRFeatureQuery Class Reference

Public Member Functions

• char ∗∗ GetUsedFields ()

12.52.1 Member Function Documentation

12.52.1.1 char ∗∗ OGRFeatureQuery::GetUsedFields ()

Returns lists of fields in expression.

All attribute fields are used in the expression of this feature query are returned as a StringList of field names. This
function would primarily be used within drivers to recognise special case conditions depending only on attribute
fields that can be very efficiently fetched.

NOTE: If any fields in the expression are from tables other than the primary table then NULL is returned indicating
an error. In succesful use, no non-empty expression should return an empty list.

Returns

list of field names. Free list with CSLDestroy() (p. ??) when no longer required.

The documentation for this class was generated from the following files:

• ogr_feature.h
• ogrfeaturequery.cpp

12.53 OGRField Union Reference

#include <ogr_core.h>

12.53.1 Detailed Description

OGRFeature (p. ??) field attribute value union.

The documentation for this union was generated from the following file:

• ogr_core.h

12.54 OGRFieldDefn Class Reference

#include <ogr_feature.h>

Public Member Functions

• OGRFieldDefn (const char ∗, OGRFieldType)

Constructor.

• OGRFieldDefn (OGRFieldDefn ∗)
Constructor.

• void SetName (const char ∗)
Reset the name of this field.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

136 Class Documentation

• const char ∗ GetNameRef ()

Fetch name of this field.

• OGRFieldType GetType ()

Fetch type of this field.

• void SetType (OGRFieldType eTypeIn)

Set the type of this field. This should never be done to an OGRFieldDefn (p. ??) that is already part of an OGR←↩

FeatureDefn (p. ??).

• OGRJustification GetJustify ()

Get the justification for this field.

• void SetJustify (OGRJustification eJustifyIn)

Set the justification for this field.

• int GetWidth ()

Get the formatting width for this field.

• void SetWidth (int nWidthIn)

Set the formatting width for this field in characters.

• int GetPrecision ()

Get the formatting precision for this field. This should normally be zero for fields of types other than OFTReal.

• void SetPrecision (int nPrecisionIn)

Set the formatting precision for this field in characters.

• void Set (const char ∗, OGRFieldType, int=0, int=0, OGRJustification=OJUndefined)

Set defining parameters for a field in one call.

• void SetDefault (const OGRField ∗)
Set default field value.

• int IsIgnored ()

Return whether this field should be omitted when fetching features.

• void SetIgnored (int bIgnore)

Set whether this field should be omitted when fetching features.

• int IsSame (const OGRFieldDefn ∗) const

Test if the field definition is identical to the other one.

Static Public Member Functions

• static const char ∗ GetFieldTypeName (OGRFieldType)

Fetch human readable name for a field type.

12.54.1 Detailed Description

Definition of an attribute of an OGRFeatureDefn (p. ??).

12.54.2 Constructor & Destructor Documentation

12.54.2.1 OGRFieldDefn::OGRFieldDefn (const char ∗ pszNameIn, OGRFieldType eTypeIn)

Constructor.

Parameters

pszNameIn the name of the new field.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.54 OGRFieldDefn Class Reference 137

eTypeIn the type of the new field.

12.54.2.2 OGRFieldDefn::OGRFieldDefn (OGRFieldDefn ∗ poPrototype)

Constructor.

Create by cloning an existing field definition.

Parameters

poPrototype the field definition to clone.

References GetJustify(), GetNameRef(), GetPrecision(), GetType(), GetWidth(), SetJustify(), SetPrecision(), and
SetWidth().

12.54.3 Member Function Documentation

12.54.3.1 const char ∗ OGRFieldDefn::GetFieldTypeName (OGRFieldType eType) [static]

Fetch human readable name for a field type.

This static method is the same as the C function OGR_GetFieldTypeName() (p. ??).

Parameters

eType the field type to get name for.

Returns

pointer to an internal static name string. It should not be modified or freed.

References OFTBinary, OFTDate, OFTDateTime, OFTInteger, OFTIntegerList, OFTReal, OFTRealList, OFTString,
OFTStringList, and OFTTime.

Referenced by OGRFeature::DumpReadable(), and OGR_GetFieldTypeName().

12.54.3.2 OGRJustification OGRFieldDefn::GetJustify () [inline]

Get the justification for this field.

This method is the same as the C function OGR_Fld_GetJustify() (p. ??).

Returns

the justification.

Referenced by OGRFieldDefn().

12.54.3.3 const char ∗ OGRFieldDefn::GetNameRef () [inline]

Fetch name of this field.

This method is the same as the C function OGR_Fld_GetNameRef() (p. ??).

Returns

pointer to an internal name string that should not be freed or modified.

Referenced by OGRDataSource::CopyLayer(), OGRFeature::DumpReadable(), OGRUnionLayer::GetLayerDefn(),
OGRFieldDefn(), OGRFeature::SetField(), and OGRFeature::SetFrom().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

138 Class Documentation

12.54.3.4 int OGRFieldDefn::GetPrecision () [inline]

Get the formatting precision for this field. This should normally be zero for fields of types other than OFTReal.

This method is the same as the C function OGR_Fld_GetPrecision() (p. ??).

Returns

the precision.

Referenced by OGRFeature::GetFieldAsString(), and OGRFieldDefn().

12.54.3.5 OGRFieldType OGRFieldDefn::GetType () [inline]

Fetch type of this field.

This method is the same as the C function OGR_Fld_GetType() (p. ??).

Returns

field type.

Referenced by OGRFeature::DumpReadable(), OGRFeature::Equal(), OGRFeature::GetFieldAsBinary(), OG←↩

RFeature::GetFieldAsDateTime(), OGRFeature::GetFieldAsDouble(), OGRFeature::GetFieldAsDoubleList(), O←↩

GRFeature::GetFieldAsInteger(), OGRFeature::GetFieldAsIntegerList(), OGRFeature::GetFieldAsString(), OG←↩

RFeature::GetFieldAsStringList(), OGRFieldDefn(), OGRFeature::SetField(), OGRFeature::SetFieldsFrom(), and
OGRFeature::UnsetField().

12.54.3.6 int OGRFieldDefn::GetWidth () [inline]

Get the formatting width for this field.

This method is the same as the C function OGR_Fld_GetWidth() (p. ??).

Returns

the width, zero means no specified width.

Referenced by OGRFeature::GetFieldAsString(), and OGRFieldDefn().

12.54.3.7 int OGRFieldDefn::IsIgnored () [inline]

Return whether this field should be omitted when fetching features.

This method is the same as the C function OGR_Fld_IsIgnored() (p. ??).

Returns

ignore state

12.54.3.8 int OGRFieldDefn::IsSame (const OGRFieldDefn ∗ poOtherFieldDefn) const

Test if the field definition is identical to the other one.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.54 OGRFieldDefn Class Reference 139

Parameters

poOtherField←↩

Defn
the other field definition to compare to.

Returns

TRUE if the field definition is identical to the other one.

Referenced by OGRFeatureDefn::IsSame().

12.54.3.9 void OGRFieldDefn::Set (const char ∗ pszNameIn, OGRFieldType eTypeIn, int nWidthIn = 0, int nPrecisionIn = 0,
OGRJustification eJustifyIn = OJUndefined)

Set defining parameters for a field in one call.

This method is the same as the C function OGR_Fld_Set() (p. ??).

Parameters

pszNameIn the new name to assign.
eTypeIn the new type (one of the OFT values like OFTInteger).

nWidthIn the preferred formatting width. Defaults to zero indicating undefined.
nPrecisionIn number of decimals places for formatting, defaults to zero indicating undefined.

eJustifyIn the formatting justification (OJLeft or OJRight), defaults to OJUndefined.

References SetJustify(), SetName(), SetPrecision(), SetType(), and SetWidth().

12.54.3.10 void OGRFieldDefn::SetDefault (const OGRField ∗ puDefaultIn)

Set default field value.

Currently use of OGRFieldDefn (p. ??) "defaults" is discouraged. This feature may be fleshed out in the future.

References OFTInteger, OFTReal, and OFTString.

12.54.3.11 void OGRFieldDefn::SetIgnored (int ignore) [inline]

Set whether this field should be omitted when fetching features.

This method is the same as the C function OGR_Fld_SetIgnored() (p. ??).

Parameters

ignore ignore state

Referenced by OGRLayer::SetIgnoredFields().

12.54.3.12 void OGRFieldDefn::SetJustify (OGRJustification eJustify) [inline]

Set the justification for this field.

This method is the same as the C function OGR_Fld_SetJustify() (p. ??).

Parameters

eJustify the new justification.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

140 Class Documentation

Referenced by OGRFieldDefn(), and Set().

12.54.3.13 void OGRFieldDefn::SetName (const char ∗ pszNameIn)

Reset the name of this field.

This method is the same as the C function OGR_Fld_SetName() (p. ??).

Parameters

pszNameIn the new name to apply.

References CPLStrdup().

Referenced by Set().

12.54.3.14 void OGRFieldDefn::SetPrecision (int nPrecision) [inline]

Set the formatting precision for this field in characters.

This should normally be zero for fields of types other than OFTReal.

This method is the same as the C function OGR_Fld_SetPrecision() (p. ??).

Parameters

nPrecision the new precision.

Referenced by OGRFieldDefn(), and Set().

12.54.3.15 void OGRFieldDefn::SetType (OGRFieldType eType) [inline]

Set the type of this field. This should never be done to an OGRFieldDefn (p. ??) that is already part of an OGR←↩

FeatureDefn (p. ??).

This method is the same as the C function OGR_Fld_SetType() (p. ??).

Parameters

eType the new field type.

Referenced by Set().

12.54.3.16 void OGRFieldDefn::SetWidth (int nWidth) [inline]

Set the formatting width for this field in characters.

This method is the same as the C function OGR_Fld_SetWidth() (p. ??).

Parameters

nWidth the new width.

Referenced by OGRFieldDefn(), and Set().

The documentation for this class was generated from the following files:

• ogr_feature.h

• ogrfielddefn.cpp

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.55 OGRGenSQLGeomFieldDefn Class Reference 141

12.55 OGRGenSQLGeomFieldDefn Class Reference

Inheritance diagram for OGRGenSQLGeomFieldDefn:

OGRGenSQLGeomFieldDefn

OGRGeomFieldDefn

Additional Inherited Members

The documentation for this class was generated from the following file:

• ogr_gensql.cpp

12.56 OGRGenSQLResultsLayer Class Reference

Inheritance diagram for OGRGenSQLResultsLayer:

OGRGenSQLResultsLayer

OGRLayer

Public Member Functions

• virtual OGRGeometry ∗ GetSpatialFilter ()

This method returns the current spatial filter for this layer.

• virtual void ResetReading ()

Reset feature reading to start on the first feature.

• virtual OGRFeature ∗ GetNextFeature ()

Fetch the next available feature from this layer.

• virtual OGRErr SetNextByIndex (long nIndex)

Move read cursor to the nIndex'th feature in the current resultset.

• virtual OGRFeature ∗ GetFeature (long nFID)

Fetch a feature by its identifier.

• virtual OGRFeatureDefn ∗ GetLayerDefn ()

Fetch the schema information for this layer.

• virtual int GetFeatureCount (int bForce=TRUE)

Fetch the feature count in this layer.

• virtual OGRErr GetExtent (OGREnvelope ∗psExtent, int bForce=TRUE)

Fetch the extent of this layer.

• virtual OGRErr GetExtent (int iGeomField, OGREnvelope ∗psExtent, int bForce=TRUE)

Fetch the extent of this layer, on the specified geometry field.

• virtual int TestCapability (const char ∗)
Test if this layer supported the named capability.

• virtual void SetSpatialFilter (OGRGeometry ∗poGeom)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

142 Class Documentation

Set a new spatial filter.

• virtual void SetSpatialFilter (int iGeomField, OGRGeometry ∗)
Set a new spatial filter.

• virtual OGRErr SetAttributeFilter (const char ∗)
Set a new attribute query.

12.56.1 Member Function Documentation

12.56.1.1 virtual OGRErr OGRGenSQLResultsLayer::GetExtent (OGREnvelope ∗ psExtent, int bForce = TRUE)
[inline], [virtual]

Fetch the extent of this layer.

Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and it would be expensive to establish the
extent then OGRERR_FAILURE will be returned indicating that the extent isn't know. If bForce is TRUE then some
implementations will actually scan the entire layer once to compute the MBR of all the features in the layer.

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is safer to call
GetExtent() (p. ??) without setting a spatial filter.

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents could be
collected.

Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetExtent() (p. ??).

Parameters

psExtent the structure in which the extent value will be returned.
bForce Flag indicating whether the extent should be computed even if it is expensive.

Returns

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

Reimplemented from OGRLayer (p. ??).

References GetExtent().

Referenced by GetExtent().

12.56.1.2 OGRErr OGRGenSQLResultsLayer::GetExtent (int iGeomField, OGREnvelope ∗ psExtent, int bForce = TRUE)
[virtual]

Fetch the extent of this layer, on the specified geometry field.

Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and it would be expensive to establish the
extent then OGRERR_FAILURE will be returned indicating that the extent isn't know. If bForce is TRUE then some
implementations will actually scan the entire layer once to compute the MBR of all the features in the layer.

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is safer to call
GetExtent() (p. ??) without setting a spatial filter.

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents could be
collected.

Note that some implementations of this method may alter the read cursor of the layer.

Note to driver implementators: if you implement GetExtent(int,OGREnvelope∗,int) (p. ??), you must also imple-
ment GetExtent(OGREnvelope∗, int) (p. ??) to make it call GetExtent(0,OGREnvelope∗,int).

This method is the same as the C function OGR_L_GetExtentEx() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.56 OGRGenSQLResultsLayer Class Reference 143

Parameters

iGeomField the index of the geometry field on which to compute the extent.
psExtent the structure in which the extent value will be returned.

bForce Flag indicating whether the extent should be computed even if it is expensive.

Returns

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

Reimplemented from OGRLayer (p. ??).

References CPLError(), OGRLayer::GetExtent(), OGRFeatureDefn::GetGeomFieldCount(), OGRFeatureDefn::←↩

GetGeomFieldDefn(), GetLayerDefn(), OGRGeomFieldDefn::GetType(), and wkbNone.

12.56.1.3 OGRFeature ∗ OGRGenSQLResultsLayer::GetFeature (long nFID) [virtual]

Fetch a feature by its identifier.

This function will attempt to read the identified feature. The nFID value cannot be OGRNullFID. Success or failure
of this operation is unaffected by the spatial or attribute filters (and specialized implementations in drivers should
make sure that they do not take into account spatial or attribute filters).

If this method returns a non-NULL feature, it is guaranteed that its feature id (OGRFeature::GetFID() (p. ??)) will
be the same as nFID.

Use OGRLayer::TestCapability(OLCRandomRead) to establish if this layer supports efficient random access reading
via GetFeature() (p. ??); however, the call should always work if the feature exists as a fallback implementation just
scans all the features in the layer looking for the desired feature.

Sequential reads (with GetNextFeature() (p. ??)) are generally considered interrupted by a GetFeature() (p. ??)
call.

The returned feature should be free with OGRFeature::DestroyFeature() (p. ??).

This method is the same as the C function OGR_L_GetFeature() (p. ??).

Parameters

nFID the feature id of the feature to read.

Returns

a feature now owned by the caller, or NULL on failure.

Reimplemented from OGRLayer (p. ??).

References OGRFeature::Clone(), OGRLayer::GetFeature(), OGRFeature::SetFID(), OGRFeature::SetField(), and
OGRFeature::UnsetField().

Referenced by GetNextFeature().

12.56.1.4 int OGRGenSQLResultsLayer::GetFeatureCount (int bForce = TRUE) [virtual]

Fetch the feature count in this layer.

Returns the number of features in the layer. For dynamic databases the count may not be exact. If bForce is FALSE,
and it would be expensive to establish the feature count a value of -1 may be returned indicating that the count isn't
know. If bForce is TRUE some implementations will actually scan the entire layer once to count objects.

The returned count takes the spatial filter into account.

Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetFeatureCount() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

144 Class Documentation

Parameters

bForce Flag indicating whether the count should be computed even if it is expensive.

Returns

feature count, -1 if count not known.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::GetFeatureCount().

12.56.1.5 OGRFeatureDefn ∗ OGRGenSQLResultsLayer::GetLayerDefn () [virtual]

Fetch the schema information for this layer.

The returned OGRFeatureDefn (p. ??) is owned by the OGRLayer (p. ??), and should not be modified or freed by
the application. It encapsulates the attribute schema of the features of the layer.

This method is the same as the C function OGR_L_GetLayerDefn() (p. ??).

Returns

feature definition.

Implements OGRLayer (p. ??).

Referenced by GetExtent().

12.56.1.6 OGRFeature ∗ OGRGenSQLResultsLayer::GetNextFeature () [virtual]

Fetch the next available feature from this layer.

The returned feature becomes the responsiblity of the caller to delete with OGRFeature::DestroyFeature() (p. ??).
It is critical that all features associated with an OGRLayer (p. ??) (more specifically an OGRFeatureDefn (p. ??))
be deleted before that layer/datasource is deleted.

Only features matching the current spatial filter (set with SetSpatialFilter() (p. ??)) will be returned.

This method implements sequential access to the features of a layer. The ResetReading() (p. ??) method can be
used to start at the beginning again.

This method is the same as the C function OGR_L_GetNextFeature() (p. ??).

Returns

a feature, or NULL if no more features are available.

Implements OGRLayer (p. ??).

References GetFeature(), OGRFeature::GetGeomFieldRef(), and OGRLayer::GetNextFeature().

12.56.1.7 OGRGeometry ∗ OGRGenSQLResultsLayer::GetSpatialFilter () [virtual]

This method returns the current spatial filter for this layer.

The returned pointer is to an internally owned object, and should not be altered or deleted by the caller.

This method is the same as the C function OGR_L_GetSpatialFilter() (p. ??).

Returns

spatial filter geometry.

Reimplemented from OGRLayer (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.56 OGRGenSQLResultsLayer Class Reference 145

12.56.1.8 void OGRGenSQLResultsLayer::ResetReading () [virtual]

Reset feature reading to start on the first feature.

This affects GetNextFeature() (p. ??).

This method is the same as the C function OGR_L_ResetReading() (p. ??).

Implements OGRLayer (p. ??).

12.56.1.9 OGRErr OGRGenSQLResultsLayer::SetAttributeFilter (const char ∗ pszQuery) [virtual]

Set a new attribute query.

This method sets the attribute query string to be used when fetching features via the GetNextFeature() (p. ??)
method. Only features for which the query evaluates as true will be returned.

The query string should be in the format of an SQL WHERE clause. For instance "population > 1000000 and
population < 5000000" where population is an attribute in the layer. The query format is normally a restricted form
of SQL WHERE clause as described in the "WHERE" section of the OGR SQL tutorial. In some cases (RDBMS
backed drivers) the native capabilities of the database may be used to interprete the WHERE clause in which case
the capabilities will be broader than those of OGR SQL.

Note that installing a query string will generally result in resetting the current reading position (ala ResetReading()
(p. ??)).

This method is the same as the C function OGR_L_SetAttributeFilter() (p. ??).

Parameters

pszQuery query in restricted SQL WHERE format, or NULL to clear the current query.

Returns

OGRERR_NONE if successfully installed, or an error code if the query expression is in error, or some other
failure occurs.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::SetAttributeFilter().

12.56.1.10 OGRErr OGRGenSQLResultsLayer::SetNextByIndex (long nIndex) [virtual]

Move read cursor to the nIndex'th feature in the current resultset.

This method allows positioning of a layer such that the GetNextFeature() (p. ??) call will read the requested feature,
where nIndex is an absolute index into the current result set. So, setting it to 3 would mean the next feature read
with GetNextFeature() (p. ??) would have been the 4th feature to have been read if sequential reading took place
from the beginning of the layer, including accounting for spatial and attribute filters.

Only in rare circumstances is SetNextByIndex() (p. ??) efficiently implemented. In all other cases the default
implementation which calls ResetReading() (p. ??) and then calls GetNextFeature() (p. ??) nIndex times is used.
To determine if fast seeking is available on the current layer use the TestCapability() (p. ??) method with a value of
OLCFastSetNextByIndex.

This method is the same as the C function OGR_L_SetNextByIndex() (p. ??).

Parameters

nIndex the index indicating how many steps into the result set to seek.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

146 Class Documentation

Returns

OGRERR_NONE on success or an error code.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::SetNextByIndex().

12.56.1.11 virtual void OGRGenSQLResultsLayer::SetSpatialFilter (OGRGeometry ∗ poFilter) [inline],
[virtual]

Set a new spatial filter.

This method set the geometry to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the filter geometry will be returned.

Currently this test is may be inaccurately implemented, but it is guaranteed that all features who's envelope (as
returned by OGRGeometry::getEnvelope() (p. ??)) overlaps the envelope of the spatial filter will be returned. This
can result in more shapes being returned that should strictly be the case.

This method makes an internal copy of the passed geometry. The passed geometry remains the responsibility of
the caller, and may be safely destroyed.

For the time being the passed filter geometry should be in the same SRS as the layer (as returned by OGRLayer←↩

::GetSpatialRef() (p. ??)). In the future this may be generalized.

This method is the same as the C function OGR_L_SetSpatialFilter() (p. ??).

Parameters

poFilter the geometry to use as a filtering region. NULL may be passed indicating that the current
spatial filter should be cleared, but no new one instituted.

Reimplemented from OGRLayer (p. ??).

References SetSpatialFilter().

Referenced by SetSpatialFilter().

12.56.1.12 void OGRGenSQLResultsLayer::SetSpatialFilter (int iGeomField, OGRGeometry ∗ poFilter) [virtual]

Set a new spatial filter.

This method set the geometry to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the filter geometry will be returned.

Currently this test is may be inaccurately implemented, but it is guaranteed that all features who's envelope (as
returned by OGRGeometry::getEnvelope() (p. ??)) overlaps the envelope of the spatial filter will be returned. This
can result in more shapes being returned that should strictly be the case.

This method makes an internal copy of the passed geometry. The passed geometry remains the responsibility of
the caller, and may be safely destroyed.

For the time being the passed filter geometry should be in the same SRS as the geometry field definition it cor-
responds to (as returned by GetLayerDefn() (p. ??)->GetGeomFieldDefn(iGeomField)->GetSpatialRef() (p. ??)).
In the future this may be generalized.

Note that only the last spatial filter set is applied, even if several successive calls are done with different iGeomField
values.

Note to driver implementators: if you implement SetSpatialFilter(int,OGRGeometry∗) (p. ??), you must also im-
plement SetSpatialFilter(OGRGeometry∗) (p. ??) to make it call SetSpatialFilter(0,OGRGeometry∗).

This method is the same as the C function OGR_L_SetSpatialFilterEx() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.56 OGRGenSQLResultsLayer Class Reference 147

Parameters

iGeomField index of the geometry field on which the spatial filter operates.
poFilter the geometry to use as a filtering region. NULL may be passed indicating that the current

spatial filter should be cleared, but no new one instituted.

Since

GDAL 1.11

Reimplemented from OGRLayer (p. ??).

References OGRLayer::SetSpatialFilter().

12.56.1.13 int OGRGenSQLResultsLayer::TestCapability (const char ∗ pszCap) [virtual]

Test if this layer supported the named capability.

The capability codes that can be tested are represented as strings, but #defined constants exists to ensure correct
spelling. Specific layer types may implement class specific capabilities, but this can't generally be discovered by the
caller.

• OLCRandomRead / "RandomRead": TRUE if the GetFeature() (p. ??) method is implemented in an opti-
mized way for this layer, as opposed to the default implementation using ResetReading() (p. ??) and Get←↩

NextFeature() (p. ??) to find the requested feature id.

• OLCSequentialWrite / "SequentialWrite": TRUE if the CreateFeature() (p. ??) method works for this layer.
Note this means that this particular layer is writable. The same OGRLayer (p. ??) class may returned FALSE
for other layer instances that are effectively read-only.

• OLCRandomWrite / "RandomWrite": TRUE if the SetFeature() (p. ??) method is operational on this layer.
Note this means that this particular layer is writable. The same OGRLayer (p. ??) class may returned FALSE
for other layer instances that are effectively read-only.

• OLCFastSpatialFilter / "FastSpatialFilter": TRUE if this layer implements spatial filtering efficiently. Layers
that effectively read all features, and test them with the OGRFeature (p. ??) intersection methods should
return FALSE. This can be used as a clue by the application whether it should build and maintain its own
spatial index for features in this layer.

• OLCFastFeatureCount / "FastFeatureCount": TRUE if this layer can return a feature count (via Get←↩

FeatureCount() (p. ??)) efficiently ... ie. without counting the features. In some cases this will return TRUE
until a spatial filter is installed after which it will return FALSE.

• OLCFastGetExtent / "FastGetExtent": TRUE if this layer can return its data extent (via GetExtent() (p. ??))
efficiently ... ie. without scanning all the features. In some cases this will return TRUE until a spatial filter is
installed after which it will return FALSE.

• OLCFastSetNextByIndex / "FastSetNextByIndex": TRUE if this layer can perform the SetNextByIndex()
(p. ??) call efficiently, otherwise FALSE.

• OLCCreateField / "CreateField": TRUE if this layer can create new fields on the current layer using Create←↩

Field() (p. ??), otherwise FALSE.

• OLCCreateGeomField / "CreateGeomField": (GDAL >= 1.11) TRUE if this layer can create new geometry
fields on the current layer using CreateGeomField() (p. ??), otherwise FALSE.

• OLCDeleteField / "DeleteField": TRUE if this layer can delete existing fields on the current layer using
DeleteField() (p. ??), otherwise FALSE.

• OLCReorderFields / "ReorderFields": TRUE if this layer can reorder existing fields on the current layer using
ReorderField() (p. ??) or ReorderFields() (p. ??), otherwise FALSE.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

148 Class Documentation

• OLCAlterFieldDefn / "AlterFieldDefn": TRUE if this layer can alter the definition of an existing field on the
current layer using AlterFieldDefn() (p. ??), otherwise FALSE.

• OLCDeleteFeature / "DeleteFeature": TRUE if the DeleteFeature() (p. ??) method is supported on this layer,
otherwise FALSE.

• OLCStringsAsUTF8 / "StringsAsUTF8": TRUE if values of OFTString fields are assured to be in UTF-8
format. If FALSE the encoding of fields is uncertain, though it might still be UTF-8.

• OLCTransactions / "Transactions": TRUE if the StartTransaction(), CommitTransaction() and Rollback←↩

Transaction() methods work in a meaningful way, otherwise FALSE.

• OLCIgnoreFields / "IgnoreFields": TRUE if fields, geometry and style will be omitted when fetching features
as set by SetIgnoredFields() (p. ??) method.

This method is the same as the C function OGR_L_TestCapability() (p. ??).

Parameters

pszCap the name of the capability to test.

Returns

TRUE if the layer has the requested capability, or FALSE otherwise. OGRLayers will return FALSE for any
unrecognised capabilities.

Implements OGRLayer (p. ??).

References OGRLayer::TestCapability().

The documentation for this class was generated from the following files:

• ogr_gensql.h
• ogr_gensql.cpp

12.57 OGRGeometry Class Reference

#include <ogr_geometry.h>

Inheritance diagram for OGRGeometry:

OGRGeometry

OGRCurve OGRGeometryCollection OGRPoint OGRSurface

OGRLineString OGRMultiLineString OGRMultiPoint OGRMultiPolygon OGRPolygon

OGRLinearRing

Public Member Functions

• virtual int getDimension () const =0

Get the dimension of this object.

• virtual int getCoordinateDimension () const

Get the dimension of the coordinates in this object.

• virtual OGRBoolean IsEmpty () const =0

Returns TRUE (non-zero) if the object has no points.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.57 OGRGeometry Class Reference 149

• virtual OGRBoolean IsValid () const

Test if the geometry is valid.

• virtual OGRBoolean IsSimple () const

Test if the geometry is simple.

• virtual OGRBoolean IsRing () const

Test if the geometry is a ring.

• virtual void empty ()=0

Clear geometry information. This restores the geometry to it's initial state after construction, and before assignment
of actual geometry.

• virtual OGRGeometry ∗ clone () const =0

Make a copy of this object.

• virtual void getEnvelope (OGREnvelope ∗psEnvelope) const =0

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure.

• virtual void getEnvelope (OGREnvelope3D ∗psEnvelope) const =0

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.

• virtual int WkbSize () const =0

Returns size of related binary representation.

• virtual OGRErr importFromWkb (unsigned char ∗, int=-1)=0

Assign geometry from well known binary data.

• virtual OGRErr exportToWkb (OGRwkbByteOrder, unsigned char ∗, OGRwkbVariant=wkbVariantOgc)
const =0

Convert a geometry into well known binary format.

• virtual OGRErr importFromWkt (char ∗∗ppszInput)=0

Assign geometry from well known text data.

• virtual OGRErr exportToWkt (char ∗∗ppszDstText) const =0

Convert a geometry into well known text format.

• virtual OGRwkbGeometryType getGeometryType () const =0

Fetch geometry type.

• virtual const char ∗ getGeometryName () const =0

Fetch WKT name for geometry type.

• virtual void dumpReadable (FILE ∗, const char ∗=NULL, char ∗∗papszOptions=NULL) const

Dump geometry in well known text format to indicated output file.

• virtual void flattenTo2D ()=0

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0.

• virtual char ∗ exportToGML (const char ∗const ∗papszOptions=NULL) const

Convert a geometry into GML format.

• virtual char ∗ exportToKML () const

Convert a geometry into KML format.

• virtual char ∗ exportToJson () const

Convert a geometry into GeoJSON format.

• virtual void closeRings ()

Force rings to be closed.

• virtual void setCoordinateDimension (int nDimension)

Set the coordinate dimension.

• void assignSpatialReference (OGRSpatialReference ∗poSR)

Assign spatial reference to this object.

• OGRSpatialReference ∗ getSpatialReference (void) const

Returns spatial reference system for object.

• virtual OGRErr transform (OGRCoordinateTransformation ∗poCT)=0

Apply arbitrary coordinate transformation to geometry.

• OGRErr transformTo (OGRSpatialReference ∗poSR)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

150 Class Documentation

Transform geometry to new spatial reference system.
• virtual void segmentize (double dfMaxLength)

Modify the geometry such it has no segment longer then the given distance.
• virtual OGRBoolean Intersects (OGRGeometry ∗) const

Do these features intersect?
• virtual OGRBoolean Equals (OGRGeometry ∗) const =0

Returns TRUE if two geometries are equivalent.
• virtual OGRBoolean Disjoint (const OGRGeometry ∗) const

Test for disjointness.
• virtual OGRBoolean Touches (const OGRGeometry ∗) const

Test for touching.
• virtual OGRBoolean Crosses (const OGRGeometry ∗) const

Test for crossing.
• virtual OGRBoolean Within (const OGRGeometry ∗) const

Test for containment.
• virtual OGRBoolean Contains (const OGRGeometry ∗) const

Test for containment.
• virtual OGRBoolean Overlaps (const OGRGeometry ∗) const

Test for overlap.
• virtual OGRGeometry ∗ Boundary () const

Compute boundary.
• virtual double Distance (const OGRGeometry ∗) const

Compute distance between two geometries.
• virtual OGRGeometry ∗ ConvexHull () const

Compute convex hull.
• virtual OGRGeometry ∗ Buffer (double dfDist, int nQuadSegs=30) const

Compute buffer of geometry.
• virtual OGRGeometry ∗ Intersection (const OGRGeometry ∗) const

Compute intersection.
• virtual OGRGeometry ∗ Union (const OGRGeometry ∗) const

Compute union.
• virtual OGRGeometry ∗ UnionCascaded () const

Compute union using cascading.
• virtual OGRGeometry ∗ Difference (const OGRGeometry ∗) const

Compute difference.
• virtual OGRGeometry ∗ SymDifference (const OGRGeometry ∗) const

Compute symmetric difference.
• virtual OGRErr Centroid (OGRPoint ∗poPoint) const

Compute the geometry centroid.
• virtual OGRGeometry ∗ Simplify (double dTolerance) const

Simplify the geometry.
• OGRGeometry ∗ SimplifyPreserveTopology (double dTolerance) const

Simplify the geometry while preserving topology.
• virtual OGRGeometry ∗ Polygonize () const

Polygonizes a set of sparse edges.
• virtual OGRGeometry ∗ SymmetricDifference (const OGRGeometry ∗) const CPL_WARN_DEPRECAT←↩

ED("Non standard method. Use SymDifference() instead")

Compute symmetric difference (deprecated)
• virtual OGRGeometry ∗ getBoundary () const CPL_WARN_DEPRECATED("Non standard method. Use

Boundary() instead")

Compute boundary (deprecated)
• virtual void swapXY ()

Swap x and y coordinates.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.57 OGRGeometry Class Reference 151

12.57.1 Detailed Description

Abstract base class for all geometry classes.

Some spatial analysis methods require that OGR is built on the GEOS library to work properly. The precise meaning
of methods that describe spatial relationships between geometries is described in the SFCOM, or other simple
features interface specifications, like "OpenGIS® Implementation Specification for Geographic information - Simple
feature access - Part 1: Common architecture" (OGC 06-103r3)

12.57.2 Member Function Documentation

12.57.2.1 void OGRGeometry::assignSpatialReference (OGRSpatialReference ∗ poSR)

Assign spatial reference to this object.

Any existing spatial reference is replaced, but under no circumstances does this result in the object being re-
projected. It is just changing the interpretation of the existing geometry. Note that assigning a spatial reference
increments the reference count on the OGRSpatialReference (p. ??), but does not copy it.

This is similar to the SFCOM IGeometry::put_SpatialReference() method.

This method is the same as the C function OGR_G_AssignSpatialReference() (p. ??).

Parameters

poSR new spatial reference system to apply.

References OGRSpatialReference::Reference(), and OGRSpatialReference::Release().

Referenced by Boundary(), Buffer(), Centroid(), OGRPoint::clone(), OGRLineString::clone(), OGRLinearRing←↩

::clone(), OGRPolygon::clone(), OGRGeometryCollection::clone(), OGRMultiPolygon::clone(), OGRMultiPoint←↩

::clone(), OGRMultiLineString::clone(), ConvexHull(), OGRGeometryFactory::createFromWkb(), OGRGeometry←↩

Factory::createFromWkt(), Difference(), OGRGeometryFactory::forceToMultiLineString(), OGRGeometryFactory←↩

::forceToMultiPoint(), OGRGeometryFactory::forceToMultiPolygon(), OGRGeometryFactory::forceToPolygon(),
OGRLineString::getSubLine(), Intersection(), OGR_G_PointOnSurface(), Polygonize(), Simplify(), Simplify←↩

PreserveTopology(), SymDifference(), OGRPoint::transform(), OGRLineString::transform(), OGRPolygon←↩

::transform(), OGRGeometryCollection::transform(), Union(), and UnionCascaded().

12.57.2.2 OGRGeometry ∗ OGRGeometry::Boundary () const [virtual]

Compute boundary.

A new geometry object is created and returned containing the boundary of the geometry on which the method is
invoked.

This method is the same as the C function OGR_G_Boundary() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Returns

a newly allocated geometry now owned by the caller, or NULL on failure.

Since

OGR 1.8.0

References assignSpatialReference(), CPLError(), and getSpatialReference().

Referenced by getBoundary().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

152 Class Documentation

12.57.2.3 OGRGeometry ∗ OGRGeometry::Buffer (double dfDist, int nQuadSegs = 30) const [virtual]

Compute buffer of geometry.

Builds a new geometry containing the buffer region around the geometry on which it is invoked. The buffer is a
polygon containing the region within the buffer distance of the original geometry.

Some buffer sections are properly described as curves, but are converted to approximate polygons. The nQuad←↩

Segs parameter can be used to control how many segements should be used to define a 90 degree curve - a
quadrant of a circle. A value of 30 is a reasonable default. Large values result in large numbers of vertices in the
resulting buffer geometry while small numbers reduce the accuracy of the result.

This method is the same as the C function OGR_G_Buffer() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Parameters

dfDist the buffer distance to be applied. Should be expressed into the same unit as the coordinates
of the geometry.

nQuadSegs the number of segments used to approximate a 90 degree (quadrant) of curvature.

Returns

the newly created geometry, or NULL if an error occurs.

References assignSpatialReference(), CPLError(), and getSpatialReference().

12.57.2.4 int OGRGeometry::Centroid (OGRPoint ∗ poPoint) const [virtual]

Compute the geometry centroid.

The centroid location is applied to the passed in OGRPoint (p. ??) object. The centroid is not necessarily within the
geometry.

This method relates to the SFCOM ISurface::get_Centroid() method however the current implementation based on
GEOS can operate on other geometry types such as multipoint, linestring, geometrycollection such as multipoly-
gons. OGC SF SQL 1.1 defines the operation for surfaces (polygons). SQL/MM-Part 3 defines the operation for
surfaces and multisurfaces (multipolygons).

This function is the same as the C function OGR_G_Centroid() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Returns

OGRERR_NONE on success or OGRERR_FAILURE on error.

Since

OGR 1.8.0 as a OGRGeometry (p. ??) method (previously was restricted to OGRPolygon (p. ??))

References assignSpatialReference(), CPLError(), OGRPoint::empty(), getGeometryType(), getSpatialReference(),
OGRPoint::getX(), OGRPoint::getY(), OGRPoint::IsEmpty(), OGRPoint::setX(), OGRPoint::setY(), and wkbPoint.

Referenced by OGR_G_Centroid().

12.57.2.5 OGRGeometry ∗ OGRGeometry::clone () const [pure virtual]

Make a copy of this object.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.57 OGRGeometry Class Reference 153

This method relates to the SFCOM IGeometry::clone() method.

This method is the same as the C function OGR_G_Clone() (p. ??).

Returns

a new object instance with the same geometry, and spatial reference system as the original.

Implemented in OGRMultiLineString (p. ??), OGRMultiPoint (p. ??), OGRMultiPolygon (p. ??), OGR←↩

GeometryCollection (p. ??), OGRPolygon (p. ??), OGRLinearRing (p. ??), OGRLineString (p. ??), and OG←↩

RPoint (p. ??).

Referenced by OGRGeometryCollection::addGeometry(), OGRLayer::Clip(), OGRLayer::Erase(), OGRLayer::←↩

GetFeature(), OGRLayer::Identity(), OGRFeature::SetGeomField(), OGRLayer::SymDifference(), OGRLayer::←↩

Union(), and OGRLayer::Update().

12.57.2.6 void OGRGeometry::closeRings () [virtual]

Force rings to be closed.

If this geometry, or any contained geometries has polygon rings that are not closed, they will be closed by adding
the starting point at the end.

Reimplemented in OGRGeometryCollection (p. ??), OGRPolygon (p. ??), and OGRLinearRing (p. ??).

12.57.2.7 OGRBoolean OGRGeometry::Contains (const OGRGeometry ∗ poOtherGeom) const [virtual]

Test for containment.

Tests if actual geometry object contains the passed geometry.

This method is the same as the C function OGR_G_Contains() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Parameters

poOtherGeom the geometry to compare to this geometry.

Returns

TRUE if poOtherGeom contains this geometry, otherwise FALSE.

References CPLError().

12.57.2.8 OGRGeometry ∗ OGRGeometry::ConvexHull () const [virtual]

Compute convex hull.

A new geometry object is created and returned containing the convex hull of the geometry on which the method is
invoked.

This method is the same as the C function OGR_G_ConvexHull() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Returns

a newly allocated geometry now owned by the caller, or NULL on failure.

References assignSpatialReference(), CPLError(), and getSpatialReference().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

154 Class Documentation

12.57.2.9 OGRBoolean OGRGeometry::Crosses (const OGRGeometry ∗ poOtherGeom) const [virtual]

Test for crossing.

Tests if this geometry and the other passed into the method are crossing.

This method is the same as the C function OGR_G_Crosses() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Parameters

poOtherGeom the geometry to compare to this geometry.

Returns

TRUE if they are crossing, otherwise FALSE.

References CPLError().

12.57.2.10 OGRGeometry ∗ OGRGeometry::Difference (const OGRGeometry ∗ poOtherGeom) const [virtual]

Compute difference.

Generates a new geometry which is the region of this geometry with the region of the second geometry removed.

This method is the same as the C function OGR_G_Difference() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Parameters

poOtherGeom the other geometry removed from "this" geometry.

Returns

a new geometry representing the difference or NULL if the difference is empty or an error occurs.

References assignSpatialReference(), CPLError(), getSpatialReference(), and OGRSpatialReference::IsSame().

Referenced by OGRLayer::Erase(), OGRLayer::Identity(), OGRLayer::SymDifference(), OGRLayer::Union(), and
OGRLayer::Update().

12.57.2.11 OGRBoolean OGRGeometry::Disjoint (const OGRGeometry ∗ poOtherGeom) const [virtual]

Test for disjointness.

Tests if this geometry and the other passed into the method are disjoint.

This method is the same as the C function OGR_G_Disjoint() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Parameters

poOtherGeom the geometry to compare to this geometry.

Returns

TRUE if they are disjoint, otherwise FALSE.

References CPLError().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.57 OGRGeometry Class Reference 155

12.57.2.12 double OGRGeometry::Distance (const OGRGeometry ∗ poOtherGeom) const [virtual]

Compute distance between two geometries.

Returns the shortest distance between the two geometries. The distance is expressed into the same unit as the
coordinates of the geometries.

This method is the same as the C function OGR_G_Distance() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Parameters

poOtherGeom the other geometry to compare against.

Returns

the distance between the geometries or -1 if an error occurs.

References CPLDebug(), and CPLError().

12.57.2.13 void OGRGeometry::dumpReadable (FILE ∗ fp, const char ∗ pszPrefix = NULL, char ∗∗ papszOptions = NULL)
const [virtual]

Dump geometry in well known text format to indicated output file.

A few options can be defined to change the default dump :

• DISPLAY_GEOMETRY=NO : to hide the dump of the geometry

• DISPLAY_GEOMETRY=WKT or YES (default) : dump the geometry as a WKT

• DISPLAY_GEOMETRY=SUMMARY : to get only a summary of the geometry

This method is the same as the C function OGR_G_DumpReadable() (p. ??).

Parameters

fp the text file to write the geometry to.
pszPrefix the prefix to put on each line of output.

papszOptions NULL terminated list of options (may be NULL)

References CSLTestBoolean(), dumpReadable(), exportToWkt(), OGRPolygon::getExteriorRing(), getGeometry←↩

Name(), OGRGeometryCollection::getGeometryRef(), getGeometryType(), OGRPolygon::getInteriorRing(), OGR←↩

GeometryCollection::getNumGeometries(), OGRPolygon::getNumInteriorRings(), OGRLineString::getNumPoints(),
wkbGeometryCollection, wkbGeometryCollection25D, wkbLinearRing, wkbLineString, wkbLineString25D, wkb←↩

MultiLineString, wkbMultiLineString25D, wkbMultiPoint, wkbMultiPoint25D, wkbMultiPolygon, wkbMultiPolygon25D,
wkbNone, wkbPoint, wkbPoint25D, wkbPolygon, wkbPolygon25D, and wkbUnknown.

Referenced by dumpReadable(), and OGRFeature::DumpReadable().

12.57.2.14 void OGRGeometry::empty () [pure virtual]

Clear geometry information. This restores the geometry to it's initial state after construction, and before assignment
of actual geometry.

This method relates to the SFCOM IGeometry::Empty() method.

This method is the same as the C function OGR_G_Empty() (p. ??).

Implemented in OGRGeometryCollection (p. ??), OGRPolygon (p. ??), OGRLineString (p. ??), and OGRPoint
(p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

156 Class Documentation

12.57.2.15 int OGRGeometry::Equals (OGRGeometry ∗ poOtherGeom) const [pure virtual]

Returns TRUE if two geometries are equivalent.

This method is the same as the C function OGR_G_Equals() (p. ??).

Returns

TRUE if equivalent or FALSE otherwise.

Implemented in OGRGeometryCollection (p. ??), OGRPolygon (p. ??), OGRLineString (p. ??), and OGRPoint
(p. ??).

Referenced by OGRFeature::Equal(), and OGRGeometryCollection::Equals().

12.57.2.16 char ∗ OGRGeometry::exportToGML (const char ∗const ∗ papszOptions = NULL) const [virtual]

Convert a geometry into GML format.

The GML geometry is expressed directly in terms of GML basic data types assuming the this is available in the gml
namespace. The returned string should be freed with CPLFree() when no longer required.

The supported options in OGR 1.8.0 are :

• FORMAT=GML3. Otherwise it will default to GML 2.1.2 output.

• GML3_LINESTRING_ELEMENT=curve. (Only valid for FORMAT=GML3) To use gml:Curve element for
linestrings. Otherwise gml:LineString will be used .

• GML3_LONGSRS=YES/NO. (Only valid for FORMAT=GML3) Default to YES. If YES, SRS with EPSG au-
thority will be written with the "urn:ogc:def:crs:EPSG::" prefix. In the case, if the SRS is a geographic SRS
without explicit AXIS order, but that the same SRS authority code imported with ImportFromEPSGA() should
be treated as lat/long, then the function will take care of coordinate order swapping. If set to NO, SRS with
EPSG authority will be written with the "EPSG:" prefix, even if they are in lat/long order.

This method is the same as the C function OGR_G_ExportToGMLEx() (p. ??).

Parameters

papszOptions NULL-terminated list of options.

Returns

A GML fragment or NULL in case of error.

References OGR_G_ExportToGMLEx().

12.57.2.17 char ∗ OGRGeometry::exportToJson () const [virtual]

Convert a geometry into GeoJSON format.

The returned string should be freed with CPLFree() when no longer required.

This method is the same as the C function OGR_G_ExportToJson() (p. ??).

Returns

A GeoJSON fragment or NULL in case of error.

References CPLError(), and OGR_G_ExportToJson().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.57 OGRGeometry Class Reference 157

12.57.2.18 char ∗ OGRGeometry::exportToKML () const [virtual]

Convert a geometry into KML format.

The returned string should be freed with CPLFree() when no longer required.

This method is the same as the C function OGR_G_ExportToKML() (p. ??).

Returns

A KML fragment or NULL in case of error.

References CPLError(), and OGR_G_ExportToKML().

12.57.2.19 OGRErr OGRGeometry::exportToWkb (OGRwkbByteOrder eByteOrder, unsigned char ∗ pabyData,
OGRwkbVariant eWkbVariant = wkbVariantOgc) const [pure virtual]

Convert a geometry into well known binary format.

This method relates to the SFCOM IWks::ExportToWKB() method.

This method is the same as the C function OGR_G_ExportToWkb() (p. ??).

Parameters

eByteOrder One of wkbXDR or wkbNDR indicating MSB or LSB byte order respectively.
pabyData a buffer into which the binary representation is written. This buffer must be at least OGR←↩

Geometry::WkbSize() (p. ??) byte in size.
eWkbVariant What standard to use when exporting geometries with three dimensions (or more). The

default wkbVariantOgc is the historical OGR variant. wkbVariantIso is the variant defined in
ISO SQL/MM and adopted by OGC for SFSQL 1.2.

Returns

Currently OGRERR_NONE is always returned.

Implemented in OGRGeometryCollection (p. ??), OGRPolygon (p. ??), OGRLinearRing (p. ??), OGRLine←↩

String (p. ??), and OGRPoint (p. ??).

Referenced by OGRGeometryCollection::exportToWkb().

12.57.2.20 OGRErr OGRGeometry::exportToWkt (char ∗∗ ppszDstText) const [pure virtual]

Convert a geometry into well known text format.

This method relates to the SFCOM IWks::ExportToWKT() method.

This method is the same as the C function OGR_G_ExportToWkt() (p. ??).

Parameters

ppszDstText a text buffer is allocated by the program, and assigned to the passed pointer. After use,
∗ppszDstText should be freed with OGRFree().

Returns

Currently OGRERR_NONE is always returned.

Implemented in OGRMultiLineString (p. ??), OGRMultiPoint (p. ??), OGRMultiPolygon (p. ??), OGR←↩

GeometryCollection (p. ??), OGRPolygon (p. ??), OGRLineString (p. ??), and OGRPoint (p. ??).

Referenced by dumpReadable(), OGRGeometryCollection::exportToWkt(), OGRMultiPolygon::exportToWkt(), and
OGRMultiLineString::exportToWkt().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

158 Class Documentation

12.57.2.21 void OGRGeometry::flattenTo2D () [pure virtual]

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0.

This method is the same as the C function OGR_G_FlattenTo2D() (p. ??).

Implemented in OGRGeometryCollection (p. ??), OGRPolygon (p. ??), OGRLineString (p. ??), and OGRPoint
(p. ??).

12.57.2.22 OGRGeometry ∗ OGRGeometry::getBoundary () const [virtual]

Compute boundary (deprecated)

Deprecated

See also

Boundary() (p. ??)

References Boundary().

12.57.2.23 int OGRGeometry::getCoordinateDimension () const [virtual]

Get the dimension of the coordinates in this object.

This method corresponds to the SFCOM IGeometry::GetDimension() method.

This method is the same as the C function OGR_G_GetCoordinateDimension() (p. ??).

Returns

in practice this will return 2 or 3. It can also return 0 in the case of an empty point.

Referenced by OGRGeometryCollection::addGeometryDirectly(), OGRLineString::addPoint(), OGRPolygon←↩

::addRing(), OGRPolygon::addRingDirectly(), OGRLineString::clone(), OGRLineString::exportToWkb(), OGR←↩

Polygon::exportToWkb(), OGRLineString::exportToWkt(), OGRPolygon::exportToWkt(), OGRMultiPoint::export←↩

ToWkt(), OGRGeometryCollection::getGeometryType(), OGRMultiPolygon::getGeometryType(), OGRMultiPoint←↩

::getGeometryType(), OGRMultiLineString::getGeometryType(), OGRLineString::getPoint(), OGRLineString::get←↩

SubLine(), OGRLineString::segmentize(), OGRLineString::setNumPoints(), OGRLineString::setPoint(), OGRLine←↩

String::setPoints(), OGRLineString::Value(), OGRLineString::WkbSize(), and OGRPolygon::WkbSize().

12.57.2.24 int OGRGeometry::getDimension () const [pure virtual]

Get the dimension of this object.

This method corresponds to the SFCOM IGeometry::GetDimension() method. It indicates the dimension of the ob-
ject, but does not indicate the dimension of the underlying space (as indicated by OGRGeometry::getCoordinate←↩

Dimension() (p. ??)).

This method is the same as the C function OGR_G_GetDimension() (p. ??).

Returns

0 for points, 1 for lines and 2 for surfaces.

Implemented in OGRMultiLineString (p. ??), OGRMultiPoint (p. ??), OGRMultiPolygon (p. ??), OGR←↩

GeometryCollection (p. ??), OGRPolygon (p. ??), OGRLineString (p. ??), and OGRPoint (p. ??).

Referenced by OGRGeometryCollection::getDimension(), OGRLayer::Identity(), OGRLayer::Intersection(), and O←↩

GRLayer::Union().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.57 OGRGeometry Class Reference 159

12.57.2.25 void OGRGeometry::getEnvelope (OGREnvelope ∗ psEnvelope) const [pure virtual]

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure.

This method is the same as the C function OGR_G_GetEnvelope() (p. ??).

Parameters

psEnvelope the structure in which to place the results.

Implemented in OGRGeometryCollection (p. ??), OGRPolygon (p. ??), OGRLineString (p. ??), and OGRPoint
(p. ??).

Referenced by OGRGeometryCollection::getEnvelope(), OGRLayer::Intersection(), Intersects(), OGRGeometry←↩

Factory::organizePolygons(), and OGRWarpedLayer::SetSpatialFilter().

12.57.2.26 void OGRGeometry::getEnvelope (OGREnvelope3D ∗ psEnvelope) const [pure virtual]

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.

This method is the same as the C function OGR_G_GetEnvelope3D() (p. ??).

Parameters

psEnvelope the structure in which to place the results.

Since

OGR 1.9.0

Implemented in OGRGeometryCollection (p. ??), OGRPolygon (p. ??), OGRLineString (p. ??), and OGRPoint
(p. ??).

12.57.2.27 const char ∗ OGRGeometry::getGeometryName () const [pure virtual]

Fetch WKT name for geometry type.

There is no SFCOM analog to this method.

This method is the same as the C function OGR_G_GetGeometryName() (p. ??).

Returns

name used for this geometry type in well known text format. The returned pointer is to a static internal string
and should not be modified or freed.

Implemented in OGRMultiLineString (p. ??), OGRMultiPoint (p. ??), OGRMultiPolygon (p. ??), OGR←↩

GeometryCollection (p. ??), OGRPolygon (p. ??), OGRLinearRing (p. ??), OGRLineString (p. ??), and OG←↩

RPoint (p. ??).

Referenced by dumpReadable(), and OGRFeature::GetFieldAsString().

12.57.2.28 OGRwkbGeometryType OGRGeometry::getGeometryType () const [pure virtual]

Fetch geometry type.

Note that the geometry type may include the 2.5D flag. To get a 2D flattened version of the geometry type apply the
wkbFlatten() macro to the return result.

This method is the same as the C function OGR_G_GetGeometryType() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

160 Class Documentation

Returns

the geometry type code.

Implemented in OGRMultiLineString (p. ??), OGRMultiPoint (p. ??), OGRMultiPolygon (p. ??), OGR←↩

GeometryCollection (p. ??), OGRPolygon (p. ??), OGRLineString (p. ??), and OGRPoint (p. ??).

Referenced by OGRMultiPolygon::addGeometryDirectly(), OGRMultiPoint::addGeometryDirectly(), OGRMulti←↩

LineString::addGeometryDirectly(), Centroid(), dumpReadable(), OGRPoint::Equals(), OGRLineString::Equals(),
OGRPolygon::Equals(), OGRGeometryCollection::Equals(), OGRGeometryFactory::forceToLineString(), OGR←↩

GeometryFactory::forceToMultiLineString(), OGRGeometryFactory::forceToMultiPoint(), OGRGeometryFactory←↩

::forceToMultiPolygon(), OGRGeometryFactory::forceToPolygon(), OGRGeometryCollection::get_Area(), OGR←↩

GeometryCollection::get_Length(), OGR_G_PointOnSurface(), OGRBuildPolygonFromEdges(), and Polygonize().

12.57.2.29 OGRSpatialReference ∗ OGRGeometry::getSpatialReference (void) const [inline]

Returns spatial reference system for object.

This method relates to the SFCOM IGeometry::get_SpatialReference() method.

This method is the same as the C function OGR_G_GetSpatialReference() (p. ??).

Returns

a reference to the spatial reference object. The object may be shared with many geometry objects, and should
not be modified.

Referenced by Boundary(), Buffer(), Centroid(), OGRPoint::clone(), OGRLineString::clone(), OGRLinearRing←↩

::clone(), OGRPolygon::clone(), OGRGeometryCollection::clone(), OGRMultiPolygon::clone(), OGRMultiPoint←↩

::clone(), OGRMultiLineString::clone(), ConvexHull(), Difference(), OGRGeometryFactory::forceToMultiLineString(),
OGRGeometryFactory::forceToMultiPoint(), OGRGeometryFactory::forceToMultiPolygon(), OGRGeometry←↩

Factory::forceToPolygon(), OGRLineString::getSubLine(), Intersection(), OGR_G_PointOnSurface(), Polygonize(),
Simplify(), SimplifyPreserveTopology(), SymDifference(), transformTo(), Union(), and UnionCascaded().

12.57.2.30 OGRErr OGRGeometry::importFromWkb (unsigned char ∗ pabyData, int nSize = -1) [pure virtual]

Assign geometry from well known binary data.

The object must have already been instantiated as the correct derived type of geometry object to match the binaries
type. This method is used by the OGRGeometryFactory (p. ??) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKB() method.

This method is the same as the C function OGR_G_ImportFromWkb() (p. ??).

Parameters

pabyData the binary input data.
nSize the size of pabyData in bytes, or zero if not known.

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Implemented in OGRGeometryCollection (p. ??), OGRPolygon (p. ??), OGRLinearRing (p. ??), OGRLine←↩

String (p. ??), and OGRPoint (p. ??).

Referenced by OGRGeometryFactory::createFromWkb().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.57 OGRGeometry Class Reference 161

12.57.2.31 OGRErr OGRGeometry::importFromWkt (char ∗∗ ppszInput) [pure virtual]

Assign geometry from well known text data.

The object must have already been instantiated as the correct derived type of geometry object to match the text
type. This method is used by the OGRGeometryFactory (p. ??) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKT() method.

This method is the same as the C function OGR_G_ImportFromWkt() (p. ??).

Parameters

ppszInput pointer to a pointer to the source text. The pointer is updated to pointer after the consumed
text.

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Implemented in OGRMultiLineString (p. ??), OGRMultiPoint (p. ??), OGRMultiPolygon (p. ??), OGR←↩

GeometryCollection (p. ??), OGRPolygon (p. ??), OGRLineString (p. ??), and OGRPoint (p. ??).

Referenced by OGRGeometryFactory::createFromWkt().

12.57.2.32 OGRGeometry ∗ OGRGeometry::Intersection (const OGRGeometry ∗ poOtherGeom) const [virtual]

Compute intersection.

Generates a new geometry which is the region of intersection of the two geometries operated on. The Intersects()
(p. ??) method can be used to test if two geometries intersect.

This method is the same as the C function OGR_G_Intersection() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Parameters

poOtherGeom the other geometry intersected with "this" geometry.

Returns

a new geometry representing the intersection or NULL if there is no intersection or an error occurs.

References assignSpatialReference(), CPLError(), getSpatialReference(), and OGRSpatialReference::IsSame().

Referenced by OGRLayer::Clip(), OGRLayer::Identity(), OGRLayer::Intersection(), and OGRLayer::Union().

12.57.2.33 OGRBoolean OGRGeometry::Intersects (OGRGeometry ∗ poOtherGeom) const [virtual]

Do these features intersect?

Determines whether two geometries intersect. If GEOS is enabled, then this is done in rigerous fashion otherwise
TRUE is returned if the envelopes (bounding boxes) of the two features overlap.

The poOtherGeom argument may be safely NULL, but in this case the method will always return TRUE. That is, a
NULL geometry is treated as being everywhere.

This method is the same as the C function OGR_G_Intersects() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

162 Class Documentation

Parameters

poOtherGeom the other geometry to test against.

Returns

TRUE if the geometries intersect, otherwise FALSE.

References getEnvelope().

12.57.2.34 OGRBoolean OGRGeometry::IsEmpty () const [pure virtual]

Returns TRUE (non-zero) if the object has no points.

Normally this returns FALSE except between when an object is instantiated and points have been assigned.

This method relates to the SFCOM IGeometry::IsEmpty() method.

Returns

TRUE if object is empty, otherwise FALSE.

Implemented in OGRGeometryCollection (p. ??), OGRPolygon (p. ??), OGRLineString (p. ??), and OGRPoint
(p. ??).

Referenced by OGRLayer::Clip(), OGRPoint::Equals(), OGRLineString::Equals(), OGRPolygon::Equals(), OGR←↩

GeometryCollection::Equals(), OGRLayer::Erase(), OGRLayer::Identity(), OGRLayer::Intersection(), OGRLayer::←↩

SymDifference(), OGRLayer::Union(), and OGRLayer::Update().

12.57.2.35 OGRBoolean OGRGeometry::IsRing () const [virtual]

Test if the geometry is a ring.

This method is the same as the C function OGR_G_IsRing() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this method will always return FALSE.

Returns

TRUE if the geometry has no points, otherwise FALSE.

12.57.2.36 OGRBoolean OGRGeometry::IsSimple () const [virtual]

Test if the geometry is simple.

This method is the same as the C function OGR_G_IsSimple() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this method will always return FALSE.

Returns

TRUE if the geometry has no points, otherwise FALSE.

12.57.2.37 OGRBoolean OGRGeometry::IsValid () const [virtual]

Test if the geometry is valid.

This method is the same as the C function OGR_G_IsValid() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this method will always return FALSE.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.57 OGRGeometry Class Reference 163

Returns

TRUE if the geometry has no points, otherwise FALSE.

12.57.2.38 OGRBoolean OGRGeometry::Overlaps (const OGRGeometry ∗ poOtherGeom) const [virtual]

Test for overlap.

Tests if this geometry and the other passed into the method overlap, that is their intersection has a non-zero area.

This method is the same as the C function OGR_G_Overlaps() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Parameters

poOtherGeom the geometry to compare to this geometry.

Returns

TRUE if they are overlapping, otherwise FALSE.

References CPLError().

Referenced by OGRGeometryFactory::organizePolygons().

12.57.2.39 OGRGeometry ∗ OGRGeometry::Polygonize () const [virtual]

Polygonizes a set of sparse edges.

A new geometry object is created and returned containing a collection of reassembled Polygons: NULL will be
returned if the input collection doesn't corresponds to a MultiLinestring, or when reassembling Edges into Polygons
is impossible due to topogical inconsistencies.

This method is the same as the C function OGR_G_Polygonize() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Returns

a newly allocated geometry now owned by the caller, or NULL on failure.

Since

OGR 1.9.0

References assignSpatialReference(), CPLError(), OGRGeometryCollection::getGeometryRef(), getGeometry←↩

Type(), OGRGeometryCollection::getNumGeometries(), getSpatialReference(), wkbGeometryCollection, wkb←↩

LineString, and wkbMultiLineString.

12.57.2.40 void OGRGeometry::segmentize (double dfMaxLength) [virtual]

Modify the geometry such it has no segment longer then the given distance.

Interpolated points will have Z and M values (if needed) set to 0. Distance computation is performed in 2d only

This function is the same as the C function OGR_G_Segmentize() (p. ??)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

164 Class Documentation

Parameters

dfMaxLength the maximum distance between 2 points after segmentization

Reimplemented in OGRGeometryCollection (p. ??), OGRPolygon (p. ??), and OGRLineString (p. ??).

12.57.2.41 void OGRGeometry::setCoordinateDimension (int nNewDimension) [virtual]

Set the coordinate dimension.

This method sets the explicit coordinate dimension. Setting the coordinate dimension of a geometry to 2 should
zero out any existing Z values. Setting the dimension of a geometry collection will not necessarily affect the children
geometries.

Parameters

nNewDimension New coordinate dimension value, either 2 or 3.

Reimplemented in OGRGeometryCollection (p. ??), OGRPolygon (p. ??), OGRLineString (p. ??), and OGR←↩

Point (p. ??).

Referenced by OGRPolygon::setCoordinateDimension(), and OGRGeometryCollection::setCoordinateDimension().

12.57.2.42 OGRGeometry ∗ OGRGeometry::Simplify (double dTolerance) const [virtual]

Simplify the geometry.

This function is the same as the C function OGR_G_Simplify() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters

dTolerance the distance tolerance for the simplification.

Returns

the simplified geometry or NULL if an error occurs.

Since

OGR 1.8.0

References assignSpatialReference(), CPLError(), and getSpatialReference().

12.57.2.43 OGRGeometry ∗ OGRGeometry::SimplifyPreserveTopology (double dTolerance) const

Simplify the geometry while preserving topology.

This function is the same as the C function OGR_G_SimplifyPreserveTopology() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters

dTolerance the distance tolerance for the simplification.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.57 OGRGeometry Class Reference 165

Returns

the simplified geometry or NULL if an error occurs.

Since

OGR 1.9.0

References assignSpatialReference(), CPLError(), and getSpatialReference().

12.57.2.44 void OGRGeometry::swapXY () [virtual]

Swap x and y coordinates.

Since

OGR 1.8.0

Reimplemented in OGRGeometryCollection (p. ??), OGRPolygon (p. ??), OGRLineString (p. ??), and OGR←↩

Point (p. ??).

12.57.2.45 OGRGeometry ∗ OGRGeometry::SymDifference (const OGRGeometry ∗ poOtherGeom) const
[virtual]

Compute symmetric difference.

Generates a new geometry which is the symmetric difference of this geometry and the second geometry passed
into the method.

This method is the same as the C function OGR_G_SymDifference() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Parameters

poOtherGeom the other geometry.

Returns

a new geometry representing the symmetric difference or NULL if the difference is empty or an error occurs.

Since

OGR 1.8.0

References assignSpatialReference(), CPLError(), getSpatialReference(), and OGRSpatialReference::IsSame().

Referenced by SymmetricDifference().

12.57.2.46 OGRGeometry ∗ OGRGeometry::SymmetricDifference (const OGRGeometry ∗ poOtherGeom) const
[virtual]

Compute symmetric difference (deprecated)

Deprecated

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

166 Class Documentation

See also

OGRGeometry::SymDifference() (p. ??)

References SymDifference().

12.57.2.47 OGRBoolean OGRGeometry::Touches (const OGRGeometry ∗ poOtherGeom) const [virtual]

Test for touching.

Tests if this geometry and the other passed into the method are touching.

This method is the same as the C function OGR_G_Touches() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Parameters

poOtherGeom the geometry to compare to this geometry.

Returns

TRUE if they are touching, otherwise FALSE.

References CPLError().

12.57.2.48 OGRErr OGRGeometry::transform (OGRCoordinateTransformation ∗ poCT) [pure virtual]

Apply arbitrary coordinate transformation to geometry.

This method will transform the coordinates of a geometry from their current spatial reference system to a new
target spatial reference system. Normally this means reprojecting the vectors, but it could include datum shifts, and
changes of units.

Note that this method does not require that the geometry already have a spatial reference system. It will be assumed
that they can be treated as having the source spatial reference system of the OGRCoordinateTransformation
(p. ??) object, and the actual SRS of the geometry will be ignored. On successful completion the output OGR←↩

SpatialReference (p. ??) of the OGRCoordinateTransformation (p. ??) will be assigned to the geometry.

This method is the same as the C function OGR_G_Transform() (p. ??).

Parameters

poCT the transformation to apply.

Returns

OGRERR_NONE on success or an error code.

Implemented in OGRGeometryCollection (p. ??), OGRPolygon (p. ??), OGRLineString (p. ??), and OGRPoint
(p. ??).

Referenced by OGRGeometryCollection::transform(), and transformTo().

12.57.2.49 OGRErr OGRGeometry::transformTo (OGRSpatialReference ∗ poSR)

Transform geometry to new spatial reference system.

This method will transform the coordinates of a geometry from their current spatial reference system to a new
target spatial reference system. Normally this means reprojecting the vectors, but it could include datum shifts, and
changes of units.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.57 OGRGeometry Class Reference 167

This method will only work if the geometry already has an assigned spatial reference system, and if it is trans-
formable to the target coordinate system.

Because this method requires internal creation and initialization of an OGRCoordinateTransformation (p. ??) ob-
ject it is significantly more expensive to use this method to transform many geometries than it is to create the
OGRCoordinateTransformation (p. ??) in advance, and call transform() (p. ??) with that transformation. This
method exists primarily for convenience when only transforming a single geometry.

This method is the same as the C function OGR_G_TransformTo() (p. ??).

Parameters

poSR spatial reference system to transform to.

Returns

OGRERR_NONE on success, or an error code.

References getSpatialReference(), OGRCreateCoordinateTransformation(), and transform().

12.57.2.50 OGRGeometry ∗ OGRGeometry::Union (const OGRGeometry ∗ poOtherGeom) const [virtual]

Compute union.

Generates a new geometry which is the region of union of the two geometries operated on.

This method is the same as the C function OGR_G_Union() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Parameters

poOtherGeom the other geometry unioned with "this" geometry.

Returns

a new geometry representing the union or NULL if an error occurs.

References assignSpatialReference(), CPLError(), getSpatialReference(), and OGRSpatialReference::IsSame().

Referenced by OGRLayer::Clip(), and OGRLayer::Erase().

12.57.2.51 OGRGeometry ∗ OGRGeometry::UnionCascaded () const [virtual]

Compute union using cascading.

This method is the same as the C function OGR_G_UnionCascaded() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Returns

a new geometry representing the union or NULL if an error occurs.

Since

OGR 1.8.0

References assignSpatialReference(), CPLError(), and getSpatialReference().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

168 Class Documentation

12.57.2.52 OGRBoolean OGRGeometry::Within (const OGRGeometry ∗ poOtherGeom) const [virtual]

Test for containment.

Tests if actual geometry object is within the passed geometry.

This method is the same as the C function OGR_G_Within() (p. ??).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Parameters

poOtherGeom the geometry to compare to this geometry.

Returns

TRUE if poOtherGeom is within this geometry, otherwise FALSE.

References CPLError().

12.57.2.53 int OGRGeometry::WkbSize () const [pure virtual]

Returns size of related binary representation.

This method returns the exact number of bytes required to hold the well known binary representation of this geom-
etry object. Its computation may be slightly expensive for complex geometries.

This method relates to the SFCOM IWks::WkbSize() method.

This method is the same as the C function OGR_G_WkbSize() (p. ??).

Returns

size of binary representation in bytes.

Implemented in OGRGeometryCollection (p. ??), OGRPolygon (p. ??), OGRLinearRing (p. ??), OGRLine←↩

String (p. ??), and OGRPoint (p. ??).

Referenced by OGRGeometryCollection::exportToWkb(), and OGRGeometryCollection::WkbSize().

The documentation for this class was generated from the following files:

• ogr_geometry.h
• ogrgeometry.cpp

12.58 OGRGeometryCollection Class Reference

#include <ogr_geometry.h>

Inheritance diagram for OGRGeometryCollection:

OGRGeometryCollection

OGRGeometry

OGRMultiLineString OGRMultiPoint OGRMultiPolygon

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.58 OGRGeometryCollection Class Reference 169

Public Member Functions

• OGRGeometryCollection ()

Create an empty geometry collection.

• virtual const char ∗ getGeometryName () const

Fetch WKT name for geometry type.

• virtual OGRwkbGeometryType getGeometryType () const

Fetch geometry type.

• virtual OGRGeometry ∗ clone () const

Make a copy of this object.

• virtual void empty ()

Clear geometry information. This restores the geometry to it's initial state after construction, and before assignment
of actual geometry.

• virtual OGRErr transform (OGRCoordinateTransformation ∗poCT)

Apply arbitrary coordinate transformation to geometry.

• virtual void flattenTo2D ()

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0.

• virtual OGRBoolean IsEmpty () const

Returns TRUE (non-zero) if the object has no points.

• virtual void segmentize (double dfMaxLength)

Modify the geometry such it has no segment longer then the given distance.

• virtual int WkbSize () const

Returns size of related binary representation.

• virtual OGRErr importFromWkb (unsigned char ∗, int=-1)

Assign geometry from well known binary data.

• virtual OGRErr exportToWkb (OGRwkbByteOrder, unsigned char ∗, OGRwkbVariant=wkbVariantOgc)
const

Convert a geometry into well known binary format.

• virtual OGRErr importFromWkt (char ∗∗)
Assign geometry from well known text data.

• virtual OGRErr exportToWkt (char ∗∗ppszDstText) const

Convert a geometry into well known text format.

• virtual double get_Length () const

Compute the length of a multicurve.

• virtual double get_Area () const

Compute area of geometry collection.

• virtual int getDimension () const

Get the dimension of this object.

• virtual void getEnvelope (OGREnvelope ∗psEnvelope) const

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure.

• virtual void getEnvelope (OGREnvelope3D ∗psEnvelope) const

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.

• int getNumGeometries () const

Fetch number of geometries in container.

• OGRGeometry ∗ getGeometryRef (int)

Fetch geometry from container.

• virtual OGRBoolean Equals (OGRGeometry ∗) const

Returns TRUE if two geometries are equivalent.

• virtual void setCoordinateDimension (int nDimension)

Set the coordinate dimension.

• virtual OGRErr addGeometry (const OGRGeometry ∗)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

170 Class Documentation

Add a geometry to the container.

• virtual OGRErr addGeometryDirectly (OGRGeometry ∗)
Add a geometry directly to the container.

• virtual OGRErr removeGeometry (int iIndex, int bDelete=TRUE)

Remove a geometry from the container.

• void closeRings ()

Force rings to be closed.

• virtual void swapXY ()

Swap x and y coordinates.

12.58.1 Detailed Description

A collection of 1 or more geometry objects.

All geometries must share a common spatial reference system, and Subclasses may impose additional restrictions
on the contents.

12.58.2 Member Function Documentation

12.58.2.1 OGRErr OGRGeometryCollection::addGeometry (const OGRGeometry ∗ poNewGeom) [virtual]

Add a geometry to the container.

Some subclasses of OGRGeometryCollection (p. ??) restrict the types of geometry that can be added, and may
return an error. The passed geometry is cloned to make an internal copy.

There is no SFCOM analog to this method.

This method is the same as the C function OGR_G_AddGeometry() (p. ??).

Parameters

poNewGeom geometry to add to the container.

Returns

OGRERR_NONE if successful, or OGRERR_UNSUPPORTED_GEOMETRY_TYPE if the geometry type is
illegal for the type of geometry container.

References addGeometryDirectly(), and OGRGeometry::clone().

Referenced by clone(), OGRMultiPolygon::clone(), OGRMultiPoint::clone(), and OGRMultiLineString::clone().

12.58.2.2 OGRErr OGRGeometryCollection::addGeometryDirectly (OGRGeometry ∗ poNewGeom) [virtual]

Add a geometry directly to the container.

Some subclasses of OGRGeometryCollection (p. ??) restrict the types of geometry that can be added, and may
return an error. Ownership of the passed geometry is taken by the container rather than cloning as addGeometry()
(p. ??) does.

This method is the same as the C function OGR_G_AddGeometryDirectly() (p. ??).

There is no SFCOM analog to this method.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.58 OGRGeometryCollection Class Reference 171

Parameters

poNewGeom geometry to add to the container.

Returns

OGRERR_NONE if successful, or OGRERR_UNSUPPORTED_GEOMETRY_TYPE if the geometry type is
illegal for the type of geometry container.

Reimplemented in OGRMultiLineString (p. ??), OGRMultiPoint (p. ??), and OGRMultiPolygon (p. ??).

References OGRGeometry::getCoordinateDimension().

Referenced by addGeometry(), OGRMultiPolygon::addGeometryDirectly(), OGRMultiPoint::addGeometryDirectly(),
and OGRMultiLineString::addGeometryDirectly().

12.58.2.3 OGRGeometry ∗ OGRGeometryCollection::clone () const [virtual]

Make a copy of this object.

This method relates to the SFCOM IGeometry::clone() method.

This method is the same as the C function OGR_G_Clone() (p. ??).

Returns

a new object instance with the same geometry, and spatial reference system as the original.

Implements OGRGeometry (p. ??).

Reimplemented in OGRMultiLineString (p. ??), OGRMultiPoint (p. ??), and OGRMultiPolygon (p. ??).

References addGeometry(), OGRGeometry::assignSpatialReference(), OGRGeometry::getSpatialReference(),
and OGRGeometryCollection().

12.58.2.4 void OGRGeometryCollection::closeRings () [virtual]

Force rings to be closed.

If this geometry, or any contained geometries has polygon rings that are not closed, they will be closed by adding
the starting point at the end.

Reimplemented from OGRGeometry (p. ??).

References getGeometryType(), and wkbPolygon.

12.58.2.5 void OGRGeometryCollection::empty () [virtual]

Clear geometry information. This restores the geometry to it's initial state after construction, and before assignment
of actual geometry.

This method relates to the SFCOM IGeometry::Empty() method.

This method is the same as the C function OGR_G_Empty() (p. ??).

Implements OGRGeometry (p. ??).

Referenced by OGRMultiPolygon::importFromWkt(), OGRMultiPoint::importFromWkt(), and OGRMultiLineString←↩

::importFromWkt().

12.58.2.6 OGRBoolean OGRGeometryCollection::Equals (OGRGeometry ∗ poOtherGeom) const [virtual]

Returns TRUE if two geometries are equivalent.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

172 Class Documentation

This method is the same as the C function OGR_G_Equals() (p. ??).

Returns

TRUE if equivalent or FALSE otherwise.

Implements OGRGeometry (p. ??).

References OGRGeometry::Equals(), getGeometryRef(), OGRGeometry::getGeometryType(), getGeometryType(),
getNumGeometries(), OGRGeometry::IsEmpty(), and IsEmpty().

12.58.2.7 OGRErr OGRGeometryCollection::exportToWkb (OGRwkbByteOrder eByteOrder, unsigned char ∗ pabyData,
OGRwkbVariant eWkbVariant = wkbVariantOgc) const [virtual]

Convert a geometry into well known binary format.

This method relates to the SFCOM IWks::ExportToWKB() method.

This method is the same as the C function OGR_G_ExportToWkb() (p. ??).

Parameters

eByteOrder One of wkbXDR or wkbNDR indicating MSB or LSB byte order respectively.
pabyData a buffer into which the binary representation is written. This buffer must be at least OGR←↩

Geometry::WkbSize() (p. ??) byte in size.
eWkbVariant What standard to use when exporting geometries with three dimensions (or more). The

default wkbVariantOgc is the historical OGR variant. wkbVariantIso is the variant defined in
ISO SQL/MM and adopted by OGC for SFSQL 1.2.

Returns

Currently OGRERR_NONE is always returned.

Implements OGRGeometry (p. ??).

References OGRGeometry::exportToWkb(), getGeometryType(), OGRGeometry::WkbSize(), and wkbVariantIso.

12.58.2.8 OGRErr OGRGeometryCollection::exportToWkt (char ∗∗ ppszDstText) const [virtual]

Convert a geometry into well known text format.

This method relates to the SFCOM IWks::ExportToWKT() method.

This method is the same as the C function OGR_G_ExportToWkt() (p. ??).

Parameters

ppszDstText a text buffer is allocated by the program, and assigned to the passed pointer. After use,
∗ppszDstText should be freed with OGRFree().

Returns

Currently OGRERR_NONE is always returned.

Implements OGRGeometry (p. ??).

Reimplemented in OGRMultiLineString (p. ??), OGRMultiPoint (p. ??), and OGRMultiPolygon (p. ??).

References CPLCalloc(), CPLStrdup(), OGRGeometry::exportToWkt(), getGeometryName(), and getNum←↩

Geometries().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.58 OGRGeometryCollection Class Reference 173

12.58.2.9 void OGRGeometryCollection::flattenTo2D () [virtual]

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0.

This method is the same as the C function OGR_G_FlattenTo2D() (p. ??).

Implements OGRGeometry (p. ??).

12.58.2.10 double OGRGeometryCollection::get_Area () const [virtual]

Compute area of geometry collection.

The area is computed as the sum of the areas of all members in this collection.

Note

No warning will be issued if a member of the collection does not support the get_Area method.

Returns

computed area.

Reimplemented in OGRMultiPolygon (p. ??).

References getGeometryName(), OGRGeometry::getGeometryType(), wkbGeometryCollection, wkbLinearRing,
wkbLineString, wkbMultiPolygon, and wkbPolygon.

12.58.2.11 double OGRGeometryCollection::get_Length () const [virtual]

Compute the length of a multicurve.

The length is computed as the sum of the length of all members in this collection.

Note

No warning will be issued if a member of the collection does not support the get_Length method.

Returns

computed area.

References OGRGeometry::getGeometryType(), wkbGeometryCollection, wkbLinearRing, and wkbLineString.

12.58.2.12 int OGRGeometryCollection::getDimension () const [virtual]

Get the dimension of this object.

This method corresponds to the SFCOM IGeometry::GetDimension() method. It indicates the dimension of the ob-
ject, but does not indicate the dimension of the underlying space (as indicated by OGRGeometry::getCoordinate←↩

Dimension() (p. ??)).

This method is the same as the C function OGR_G_GetDimension() (p. ??).

Returns

0 for points, 1 for lines and 2 for surfaces.

Implements OGRGeometry (p. ??).

Reimplemented in OGRMultiLineString (p. ??), OGRMultiPoint (p. ??), and OGRMultiPolygon (p. ??).

References OGRGeometry::getDimension().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

174 Class Documentation

12.58.2.13 void OGRGeometryCollection::getEnvelope (OGREnvelope ∗ psEnvelope) const [virtual]

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure.

This method is the same as the C function OGR_G_GetEnvelope() (p. ??).

Parameters

psEnvelope the structure in which to place the results.

Implements OGRGeometry (p. ??).

References OGRGeometry::getEnvelope(), and IsEmpty().

12.58.2.14 void OGRGeometryCollection::getEnvelope (OGREnvelope3D ∗ psEnvelope) const [virtual]

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.

This method is the same as the C function OGR_G_GetEnvelope3D() (p. ??).

Parameters

psEnvelope the structure in which to place the results.

Since

OGR 1.9.0

Implements OGRGeometry (p. ??).

References OGRGeometry::getEnvelope(), and IsEmpty().

12.58.2.15 const char ∗ OGRGeometryCollection::getGeometryName () const [virtual]

Fetch WKT name for geometry type.

There is no SFCOM analog to this method.

This method is the same as the C function OGR_G_GetGeometryName() (p. ??).

Returns

name used for this geometry type in well known text format. The returned pointer is to a static internal string
and should not be modified or freed.

Implements OGRGeometry (p. ??).

Reimplemented in OGRMultiLineString (p. ??), OGRMultiPoint (p. ??), and OGRMultiPolygon (p. ??).

Referenced by exportToWkt(), and get_Area().

12.58.2.16 OGRGeometry ∗ OGRGeometryCollection::getGeometryRef (int i)

Fetch geometry from container.

This method returns a pointer to an geometry within the container. The returned geometry remains owned by the
container, and should not be modified. The pointer is only valid untill the next change to the geometry container.
Use IGeometry::clone() to make a copy.

This method relates to the SFCOM IGeometryCollection::get_Geometry() method.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.58 OGRGeometryCollection Class Reference 175

Parameters

i the index of the geometry to fetch, between 0 and getNumGeometries() (p. ??) - 1.

Returns

pointer to requested geometry.

Referenced by OGRMultiPolygon::clone(), OGRMultiPoint::clone(), OGRMultiLineString::clone(), OGRGeometry←↩

::dumpReadable(), Equals(), OGRMultiPolygon::exportToWkt(), OGRMultiPoint::exportToWkt(), OGRMulti←↩

LineString::exportToWkt(), OGRGeometryFactory::forceToLineString(), OGRGeometryFactory::forceToMulti←↩

LineString(), OGRGeometryFactory::forceToMultiPoint(), OGRGeometryFactory::forceToMultiPolygon(), OGR←↩

GeometryFactory::forceToPolygon(), OGRMultiPolygon::get_Area(), OGRBuildPolygonFromEdges(), and OGR←↩

Geometry::Polygonize().

12.58.2.17 OGRwkbGeometryType OGRGeometryCollection::getGeometryType () const [virtual]

Fetch geometry type.

Note that the geometry type may include the 2.5D flag. To get a 2D flattened version of the geometry type apply the
wkbFlatten() macro to the return result.

This method is the same as the C function OGR_G_GetGeometryType() (p. ??).

Returns

the geometry type code.

Implements OGRGeometry (p. ??).

Reimplemented in OGRMultiLineString (p. ??), OGRMultiPoint (p. ??), and OGRMultiPolygon (p. ??).

References OGRGeometry::getCoordinateDimension(), wkbGeometryCollection, and wkbGeometryCollection25D.

Referenced by closeRings(), Equals(), and exportToWkb().

12.58.2.18 int OGRGeometryCollection::getNumGeometries () const

Fetch number of geometries in container.

This method relates to the SFCOM IGeometryCollect::get_NumGeometries() method.

Returns

count of children geometries. May be zero.

Referenced by OGRMultiPolygon::clone(), OGRMultiPoint::clone(), OGRMultiLineString::clone(), OGRGeometry←↩

::dumpReadable(), Equals(), exportToWkt(), OGRMultiPolygon::exportToWkt(), OGRMultiPoint::exportToWkt(), O←↩

GRMultiLineString::exportToWkt(), OGRGeometryFactory::forceToLineString(), OGRGeometryFactory::forceTo←↩

MultiLineString(), OGRGeometryFactory::forceToMultiPoint(), OGRGeometryFactory::forceToMultiPolygon(), OG←↩

RGeometryFactory::forceToPolygon(), OGRMultiPolygon::get_Area(), OGRBuildPolygonFromEdges(), and OGR←↩

Geometry::Polygonize().

12.58.2.19 OGRErr OGRGeometryCollection::importFromWkb (unsigned char ∗ pabyData, int nSize = -1) [virtual]

Assign geometry from well known binary data.

The object must have already been instantiated as the correct derived type of geometry object to match the binaries
type. This method is used by the OGRGeometryFactory (p. ??) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKB() method.

This method is the same as the C function OGR_G_ImportFromWkb() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

176 Class Documentation

Parameters

pabyData the binary input data.
nSize the size of pabyData in bytes, or zero if not known.

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Implements OGRGeometry (p. ??).

12.58.2.20 OGRErr OGRGeometryCollection::importFromWkt (char ∗∗ ppszInput) [virtual]

Assign geometry from well known text data.

The object must have already been instantiated as the correct derived type of geometry object to match the text
type. This method is used by the OGRGeometryFactory (p. ??) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKT() method.

This method is the same as the C function OGR_G_ImportFromWkt() (p. ??).

Parameters

ppszInput pointer to a pointer to the source text. The pointer is updated to pointer after the consumed
text.

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Implements OGRGeometry (p. ??).

Reimplemented in OGRMultiLineString (p. ??), OGRMultiPoint (p. ??), and OGRMultiPolygon (p. ??).

12.58.2.21 OGRBoolean OGRGeometryCollection::IsEmpty () const [virtual]

Returns TRUE (non-zero) if the object has no points.

Normally this returns FALSE except between when an object is instantiated and points have been assigned.

This method relates to the SFCOM IGeometry::IsEmpty() method.

Returns

TRUE if object is empty, otherwise FALSE.

Implements OGRGeometry (p. ??).

Referenced by Equals(), OGRMultiPoint::exportToWkt(), and getEnvelope().

12.58.2.22 OGRErr OGRGeometryCollection::removeGeometry (int iGeom, int bDelete = TRUE) [virtual]

Remove a geometry from the container.

Removing a geometry will cause the geometry count to drop by one, and all "higher" geometries will shuffle down
one in index.

There is no SFCOM analog to this method.

This method is the same as the C function OGR_G_RemoveGeometry() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.58 OGRGeometryCollection Class Reference 177

Parameters

iGeom the index of the geometry to delete. A value of -1 is a special flag meaning that all geometries
should be removed.

bDelete if TRUE the geometry will be deallocated, otherwise it will not. The default is TRUE as the
container is considered to own the geometries in it.

Returns

OGRERR_NONE if successful, or OGRERR_FAILURE if the index is out of range.

Referenced by OGRGeometryFactory::forceToLineString(), OGRGeometryFactory::forceToMultiLineString(), OG←↩

RGeometryFactory::forceToMultiPoint(), and OGRGeometryFactory::forceToMultiPolygon().

12.58.2.23 void OGRGeometryCollection::segmentize (double dfMaxLength) [virtual]

Modify the geometry such it has no segment longer then the given distance.

Interpolated points will have Z and M values (if needed) set to 0. Distance computation is performed in 2d only

This function is the same as the C function OGR_G_Segmentize() (p. ??)

Parameters

dfMaxLength the maximum distance between 2 points after segmentization

Reimplemented from OGRGeometry (p. ??).

12.58.2.24 void OGRGeometryCollection::setCoordinateDimension (int nNewDimension) [virtual]

Set the coordinate dimension.

This method sets the explicit coordinate dimension. Setting the coordinate dimension of a geometry to 2 should
zero out any existing Z values. Setting the dimension of a geometry collection will not necessarily affect the children
geometries.

Parameters

nNewDimension New coordinate dimension value, either 2 or 3.

Reimplemented from OGRGeometry (p. ??).

References OGRGeometry::setCoordinateDimension().

12.58.2.25 void OGRGeometryCollection::swapXY () [virtual]

Swap x and y coordinates.

Since

OGR 1.8.0

Reimplemented from OGRGeometry (p. ??).

12.58.2.26 OGRErr OGRGeometryCollection::transform (OGRCoordinateTransformation ∗ poCT) [virtual]

Apply arbitrary coordinate transformation to geometry.

This method will transform the coordinates of a geometry from their current spatial reference system to a new
target spatial reference system. Normally this means reprojecting the vectors, but it could include datum shifts, and
changes of units.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

178 Class Documentation

Note that this method does not require that the geometry already have a spatial reference system. It will be assumed
that they can be treated as having the source spatial reference system of the OGRCoordinateTransformation
(p. ??) object, and the actual SRS of the geometry will be ignored. On successful completion the output OGR←↩

SpatialReference (p. ??) of the OGRCoordinateTransformation (p. ??) will be assigned to the geometry.

This method is the same as the C function OGR_G_Transform() (p. ??).

Parameters

poCT the transformation to apply.

Returns

OGRERR_NONE on success or an error code.

Implements OGRGeometry (p. ??).

References OGRGeometry::assignSpatialReference(), CPLDebug(), OGRCoordinateTransformation::GetTarget←↩

CS(), and OGRGeometry::transform().

12.58.2.27 int OGRGeometryCollection::WkbSize () const [virtual]

Returns size of related binary representation.

This method returns the exact number of bytes required to hold the well known binary representation of this geom-
etry object. Its computation may be slightly expensive for complex geometries.

This method relates to the SFCOM IWks::WkbSize() method.

This method is the same as the C function OGR_G_WkbSize() (p. ??).

Returns

size of binary representation in bytes.

Implements OGRGeometry (p. ??).

References OGRGeometry::WkbSize().

The documentation for this class was generated from the following files:

• ogr_geometry.h
• ogrgeometrycollection.cpp

12.59 OGRGeometryFactory Class Reference

#include <ogr_geometry.h>

Static Public Member Functions

• static OGRErr createFromWkb (unsigned char ∗, OGRSpatialReference ∗, OGRGeometry ∗∗, int=-1)

Create a geometry object of the appropriate type from it's well known binary representation.

• static OGRErr createFromWkt (char ∗∗, OGRSpatialReference ∗, OGRGeometry ∗∗)
Create a geometry object of the appropriate type from it's well known text representation.

• static OGRErr createFromFgf (unsigned char ∗, OGRSpatialReference ∗, OGRGeometry ∗∗, int=-1, int
∗=NULL)

Create a geometry object of the appropriate type from it's FGF (FDO Geometry Format) binary representation.

• static OGRGeometry ∗ createFromGML (const char ∗)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.59 OGRGeometryFactory Class Reference 179

Create geometry from GML.

• static void destroyGeometry (OGRGeometry ∗)
Destroy geometry object.

• static OGRGeometry ∗ createGeometry (OGRwkbGeometryType)

Create an empty geometry of desired type.

• static OGRGeometry ∗ forceToPolygon (OGRGeometry ∗)
Convert to polygon.

• static OGRGeometry ∗ forceToLineString (OGRGeometry ∗, bool bOnlyInOrder=true)

Convert to line string.

• static OGRGeometry ∗ forceToMultiPolygon (OGRGeometry ∗)
Convert to multipolygon.

• static OGRGeometry ∗ forceToMultiPoint (OGRGeometry ∗)
Convert to multipoint.

• static OGRGeometry ∗ forceToMultiLineString (OGRGeometry ∗)
Convert to multilinestring.

• static OGRGeometry ∗ organizePolygons (OGRGeometry ∗∗papoPolygons, int nPolygonCount, int ∗pb←↩

ResultValidGeometry, const char ∗∗papszOptions=NULL)

Organize polygons based on geometries.

• static int haveGEOS ()

Test if GEOS enabled.

• static OGRGeometry ∗ approximateArcAngles (double dfX, double dfY, double dfZ, double dfPrimary←↩

Radius, double dfSecondaryAxis, double dfRotation, double dfStartAngle, double dfEndAngle, double df←↩

MaxAngleStepSizeDegrees)

12.59.1 Detailed Description

Create geometry objects from well known text/binary.

12.59.2 Member Function Documentation

12.59.2.1 OGRGeometry ∗ OGRGeometryFactory::approximateArcAngles (double dfCenterX, double dfCenterY, double
dfZ, double dfPrimaryRadius, double dfSecondaryRadius, double dfRotation, double dfStartAngle, double
dfEndAngle, double dfMaxAngleStepSizeDegrees) [static]

Stroke arc to linestring.

Stroke an arc of a circle to a linestring based on a center point, radius, start angle and end angle, all angles in
degrees.

If the dfMaxAngleStepSizeDegrees is zero, then a default value will be used. This is currently 4 degrees unless the
user has overridden the value with the OGR_ARC_STEPSIZE configuration variable.

See also

CPLSetConfigOption() (p. ??)

Parameters

dfCenterX center X
dfCenterY center Y

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

180 Class Documentation

dfZ center Z
dfPrimaryRadius X radius of ellipse.

dfSecondary←↩

Radius
Y radius of ellipse.

dfRotation rotation of the ellipse clockwise.
dfStartAngle angle to first point on arc (clockwise of X-positive)
dfEndAngle angle to last point on arc (clockwise of X-positive)

dfMaxAngle←↩

StepSize←↩

Degrees

the largest step in degrees along the arc, zero to use the default setting.

Returns

OGRLineString (p. ??) geometry representing an approximation of the arc.

Since

OGR 1.8.0

References CPLGetConfigOption(), and OGRLineString::setPoint().

Referenced by OGR_G_ApproximateArcAngles().

12.59.2.2 OGRErr OGRGeometryFactory::createFromFgf (unsigned char ∗ pabyData, OGRSpatialReference ∗ poSR,
OGRGeometry ∗∗ ppoReturn, int nBytes = -1, int ∗ pnBytesConsumed = NULL) [static]

Create a geometry object of the appropriate type from it's FGF (FDO Geometry Format) binary representation.

Also note that this is a static method, and that there is no need to instantiate an OGRGeometryFactory (p. ??)
object.

The C function OGR_G_CreateFromFgf() is the same as this method.

Parameters

pabyData pointer to the input BLOB data.
poSR pointer to the spatial reference to be assigned to the created geometry object. This may be

NULL.
ppoReturn the newly created geometry object will be assigned to the indicated pointer on return. This

will be NULL in case of failure.
nBytes the number of bytes available in pabyData.

pnBytes←↩

Consumed
if not NULL, it will be set to the number of bytes consumed (at most nBytes).

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

12.59.2.3 OGRGeometry ∗ OGRGeometryFactory::createFromGML (const char ∗ pszData) [static]

Create geometry from GML.

This method translates a fragment of GML containing only the geometry portion into a corresponding OGR←↩

Geometry (p. ??). There are many limitations on the forms of GML geometries supported by this parser, but
they are too numerous to list here.

The following GML2 elements are parsed : Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon,
MultiGeometry.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.59 OGRGeometryFactory Class Reference 181

(OGR >= 1.8.0) The following GML3 elements are parsed : Surface, MultiSurface, PolygonPatch, Triangle,
Rectangle, Curve, MultiCurve, LineStringSegment, Arc, Circle, CompositeSurface, OrientableSurface, Solid, Tin,
TriangulatedSurface.

Arc and Circle elements are stroked to linestring, by using a 4 degrees step, unless the user has overridden the
value with the OGR_ARC_STEPSIZE configuration variable.

The C function OGR_G_CreateFromGML() (p. ??) is the same as this method.

Parameters

pszData The GML fragment for the geometry.

Returns

a geometry on succes, or NULL on error.

References OGR_G_CreateFromGML().

12.59.2.4 OGRErr OGRGeometryFactory::createFromWkb (unsigned char ∗ pabyData, OGRSpatialReference ∗ poSR,
OGRGeometry ∗∗ ppoReturn, int nBytes = -1) [static]

Create a geometry object of the appropriate type from it's well known binary representation.

Note that if nBytes is passed as zero, no checking can be done on whether the pabyData is sufficient. This can
result in a crash if the input data is corrupt. This function returns no indication of the number of bytes from the data
source actually used to represent the returned geometry object. Use OGRGeometry::WkbSize() (p. ??) on the
returned geometry to establish the number of bytes it required in WKB format.

Also note that this is a static method, and that there is no need to instantiate an OGRGeometryFactory (p. ??)
object.

The C function OGR_G_CreateFromWkb() (p. ??) is the same as this method.

Parameters

pabyData pointer to the input BLOB data.
poSR pointer to the spatial reference to be assigned to the created geometry object. This may be

NULL.
ppoReturn the newly created geometry object will be assigned to the indicated pointer on return. This will

be NULL in case of failure. If not NULL, ∗ppoReturn should be freed with OGRGeometry←↩

Factory::destroyGeometry() (p. ??) after use.
nBytes the number of bytes available in pabyData, or -1 if it isn't known.

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

References OGRGeometry::assignSpatialReference(), CPLDebug(), createGeometry(), and OGRGeometry←↩

::importFromWkb().

Referenced by OGR_G_CreateFromWkb().

12.59.2.5 OGRErr OGRGeometryFactory::createFromWkt (char ∗∗ ppszData, OGRSpatialReference ∗ poSR,
OGRGeometry ∗∗ ppoReturn) [static]

Create a geometry object of the appropriate type from it's well known text representation.

The C function OGR_G_CreateFromWkt() (p. ??) is the same as this method.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

182 Class Documentation

Parameters

ppszData input zero terminated string containing well known text representation of the geometry to be
created. The pointer is updated to point just beyond that last character consumed.

poSR pointer to the spatial reference to be assigned to the created geometry object. This may be
NULL.

ppoReturn the newly created geometry object will be assigned to the indicated pointer on return. This will
be NULL if the method fails. If not NULL, ∗ppoReturn should be freed with OGRGeometry←↩

Factory::destroyGeometry() (p. ??) after use.

Example:

const char* wkt= "POINT(0 0)";

// cast because OGR_G_CreateFromWkt will move the pointer
char* pszWkt = (char*) wkt;
OGRSpatialReferenceH ref = OSRNewSpatialReference(NULL);
OGRGeometryH new_geom;
OGRErr err = OGR_G_CreateFromWkt(&pszWkt, ref, &new_geom);

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

References OGRGeometry::assignSpatialReference(), and OGRGeometry::importFromWkt().

Referenced by OGR_G_CreateFromWkt().

12.59.2.6 OGRGeometry ∗ OGRGeometryFactory::createGeometry (OGRwkbGeometryType eGeometryType)
[static]

Create an empty geometry of desired type.

This is equivalent to allocating the desired geometry with new, but the allocation is guaranteed to take place in the
context of the GDAL/OGR heap.

This method is the same as the C function OGR_G_CreateGeometry() (p. ??).

Parameters

eGeometryType the type code of the geometry class to be instantiated.

Returns

the newly create geometry or NULL on failure. Should be freed with OGRGeometryFactory::destroy←↩

Geometry() (p. ??) after use.

References wkbGeometryCollection, wkbLinearRing, wkbLineString, wkbMultiLineString, wkbMultiPoint, wkb←↩

MultiPolygon, wkbPoint, and wkbPolygon.

Referenced by createFromWkb(), and OGR_G_CreateGeometry().

12.59.2.7 void OGRGeometryFactory::destroyGeometry (OGRGeometry ∗ poGeom) [static]

Destroy geometry object.

Equivalent to invoking delete on a geometry, but it guaranteed to take place within the context of the GDAL/OGR
heap.

This method is the same as the C function OGR_G_DestroyGeometry() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.59 OGRGeometryFactory Class Reference 183

Parameters

poGeom the geometry to deallocate.

Referenced by OGR_G_DestroyGeometry().

12.59.2.8 OGRGeometry ∗ OGRGeometryFactory::forceToLineString (OGRGeometry ∗ poGeom, bool bOnlyInOrder =
true) [static]

Convert to line string.

Tries to force the provided geometry to be a line string. Currently this just effects a change on multilinestrings. The
passed in geometry is consumed and a new one returned (or potentially the same one).

Parameters

poGeom the input geometry - ownership is passed to the method.
bOnlyInOrder flag that, if set to FALSE, indicate that the order of points in a linestring might be reversed if

it enables to match the extremity of another linestring. If set to TRUE, the start of a linestring
must match the end of another linestring.

Returns

new geometry.

References OGRLineString::addSubLineString(), OGRLineString::EndPoint(), OGRPoint::Equals(), OGR←↩

GeometryCollection::getGeometryRef(), OGRGeometry::getGeometryType(), OGRGeometryCollection::getNum←↩

Geometries(), OGRLineString::getNumPoints(), OGRGeometryCollection::removeGeometry(), OGRLineString←↩

::reversePoints(), OGRLineString::StartPoint(), wkbGeometryCollection, wkbLineString, and wkbMultiLineString.

Referenced by OGR_G_ForceToLineString().

12.59.2.9 OGRGeometry ∗ OGRGeometryFactory::forceToMultiLineString (OGRGeometry ∗ poGeom) [static]

Convert to multilinestring.

Tries to force the provided geometry to be a multilinestring.

• linestrings are placed in a multilinestring.

• geometry collections will be converted to multilinestring if they only contain linestrings.

• polygons will be changed to a collection of linestrings (one per ring).

The passed in geometry is consumed and a new one returned (or potentially the same one).

Returns

new geometry.

References OGRMultiLineString::addGeometryDirectly(), OGRLineString::addSubLineString(), OGRGeometry←↩

::assignSpatialReference(), OGRPolygon::getExteriorRing(), OGRGeometryCollection::getGeometryRef(), OG←↩

RGeometry::getGeometryType(), OGRPolygon::getInteriorRing(), OGRGeometryCollection::getNumGeometries(),
OGRPolygon::getNumInteriorRings(), OGRLineString::getNumPoints(), OGRGeometry::getSpatialReference(),
OGRGeometryCollection::removeGeometry(), wkbGeometryCollection, wkbLineString, wkbMultiLineString, wkb←↩

MultiPolygon, and wkbPolygon.

Referenced by OGR_G_ForceToMultiLineString().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

184 Class Documentation

12.59.2.10 OGRGeometry ∗ OGRGeometryFactory::forceToMultiPoint (OGRGeometry ∗ poGeom) [static]

Convert to multipoint.

Tries to force the provided geometry to be a multipoint. Currently this just effects a change on points. The passed
in geometry is consumed and a new one returned (or potentially the same one).

Returns

new geometry.

References OGRMultiPoint::addGeometryDirectly(), OGRGeometry::assignSpatialReference(), OGRGeometry←↩

Collection::getGeometryRef(), OGRGeometry::getGeometryType(), OGRGeometryCollection::getNumGeometries(),
OGRGeometry::getSpatialReference(), OGRGeometryCollection::removeGeometry(), wkbGeometryCollection,
wkbMultiPoint, and wkbPoint.

Referenced by OGR_G_ForceToMultiPoint().

12.59.2.11 OGRGeometry ∗ OGRGeometryFactory::forceToMultiPolygon (OGRGeometry ∗ poGeom) [static]

Convert to multipolygon.

Tries to force the provided geometry to be a multipolygon. Currently this just effects a change on polygons. The
passed in geometry is consumed and a new one returned (or potentially the same one).

Returns

new geometry.

References OGRMultiPolygon::addGeometryDirectly(), OGRGeometry::assignSpatialReference(), OGR←↩

GeometryCollection::getGeometryRef(), OGRGeometry::getGeometryType(), OGRGeometryCollection::get←↩

NumGeometries(), OGRGeometry::getSpatialReference(), OGRGeometryCollection::removeGeometry(), wkb←↩

GeometryCollection, wkbMultiPolygon, and wkbPolygon.

Referenced by OGR_G_ForceToMultiPolygon().

12.59.2.12 OGRGeometry ∗ OGRGeometryFactory::forceToPolygon (OGRGeometry ∗ poGeom) [static]

Convert to polygon.

Tries to force the provided geometry to be a polygon. Currently this just effects a change on multipolygons. The
passed in geometry is consumed and a new one returned (or potentially the same one).

Parameters

poGeom the input geometry - ownership is passed to the method.

Returns

new geometry.

References OGRPolygon::addRingDirectly(), OGRGeometry::assignSpatialReference(), OGRPolygon::get←↩

ExteriorRing(), OGRGeometryCollection::getGeometryRef(), OGRGeometry::getGeometryType(), OGR←↩

GeometryCollection::getNumGeometries(), OGRPolygon::getNumInteriorRings(), OGRGeometry::getSpatial←↩

Reference(), OGRPolygon::stealExteriorRing(), OGRPolygon::stealInteriorRing(), wkbGeometryCollection, wkb←↩

MultiPolygon, and wkbPolygon.

Referenced by OGR_G_ForceToPolygon().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.59 OGRGeometryFactory Class Reference 185

12.59.2.13 int OGRGeometryFactory::haveGEOS () [static]

Test if GEOS enabled.

This static method returns TRUE if GEOS support is built into OGR, otherwise it returns FALSE.

Returns

TRUE if available, otherwise FALSE.

Referenced by OGRLayer::Clip(), OGRLayer::Erase(), OGRLayer::Identity(), OGRLayer::Intersection(), organize←↩

Polygons(), OGRLayer::SymDifference(), OGRLayer::Union(), and OGRLayer::Update().

12.59.2.14 OGRGeometry ∗ OGRGeometryFactory::organizePolygons (OGRGeometry ∗∗ papoPolygons, int
nPolygonCount, int ∗ pbIsValidGeometry, const char ∗∗ papszOptions = NULL) [static]

Organize polygons based on geometries.

Analyse a set of rings (passed as simple polygons), and based on a geometric analysis convert them into a polygon
with inner rings, (or a MultiPolygon if dealing with more than one polygon) that follow the OGC Simple Feature
specification.

All the input geometries must be OGRPolygons with only a valid exterior ring (at least 4 points) and no interior rings.

The passed in geometries become the responsibility of the method, but the papoPolygons "pointer array" remains
owned by the caller.

For faster computation, a polygon is considered to be inside another one if a single point of its external ring is
included into the other one. (unless 'OGR_DEBUG_ORGANIZE_POLYGONS' configuration option is set to TRUE.
In that case, a slower algorithm that tests exact topological relationships is used if GEOS is available.)

In cases where a big number of polygons is passed to this function, the default processing may be really slow. You
can skip the processing by adding METHOD=SKIP to the option list (the result of the function will be a multi-polygon
with all polygons as toplevel polygons) or only make it analyze counterclockwise polygons by adding METHO←↩

D=ONLY_CCW to the option list if you can assume that the outline of holes is counterclockwise defined (this is the
convention for example in shapefiles, Personal Geodatabases or File Geodatabases).

For FileGDB, in most cases, but not always, a faster method than ONLY_CCW can be used. It is CCW_INNER_J←↩

UST_AFTER_CW_OUTER. When using it, inner rings are assumed to be counterclockwise oriented, and following
immediately the outer ring (clockwise oriented) that they belong to. If that assumption is not met, an inner ring could
be attached to the wrong outer ring, so this method must be used with care.

If the OGR_ORGANIZE_POLYGONS configuration option is defined, its value will override the value of the MET←↩

HOD option of papszOptions (usefull to modify the behaviour of the shapefile driver)

Parameters

papoPolygons array of geometry pointers - should all be OGRPolygons. Ownership of the geometries is
passed, but not of the array itself.

nPolygonCount number of items in papoPolygons
pbIsValid←↩

Geometry
value will be set TRUE if result is valid or FALSE otherwise.

papszOptions a list of strings for passing options

Returns

a single resulting geometry (either OGRPolygon (p. ??) or OGRMultiPolygon (p. ??)).

References OGRMultiPolygon::addGeometryDirectly(), OGRPolygon::addRingDirectly(), CPLDebug(), CPL←↩

Error(), CPLGetConfigOption(), CSLTestBoolean(), OGRPolygon::exportToWkt(), OGRPolygon::get_Area(), OG←↩

RGeometry::getEnvelope(), OGRPolygon::getExteriorRing(), OGRLineString::getNumPoints(), OGRLineString←↩

::getPoint(), OGRPoint::getX(), OGRPoint::getY(), haveGEOS(), OGRLinearRing::isClockwise(), OGRGeometry←↩

::Overlaps(), OGRPoint::setX(), OGRPoint::setY(), and wkbPolygon.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

186 Class Documentation

The documentation for this class was generated from the following files:

• ogr_geometry.h
• ogrgeometryfactory.cpp

12.60 OGRGeomFieldDefn Class Reference

#include <ogr_feature.h>

Inheritance diagram for OGRGeomFieldDefn:

OGRGeomFieldDefn

OGRGenSQLGeomFieldDefn OGRUnionLayerGeomFieldDefn

Public Member Functions

• OGRGeomFieldDefn (const char ∗pszNameIn, OGRwkbGeometryType eGeomTypeIn)

Constructor.

• OGRGeomFieldDefn (OGRGeomFieldDefn ∗)
Constructor.

• void SetName (const char ∗)
Reset the name of this field.

• const char ∗ GetNameRef ()

Fetch name of this field.

• OGRwkbGeometryType GetType ()

Fetch geometry type of this field.

• void SetType (OGRwkbGeometryType eTypeIn)

Set the geometry type of this field. This should never be done to an OGRGeomFieldDefn (p. ??) that is already part
of an OGRFeatureDefn (p. ??).

• virtual OGRSpatialReference ∗ GetSpatialRef ()

Fetch spatial reference system of this field.

• void SetSpatialRef (OGRSpatialReference ∗poSRS)

Set the spatial reference of this field.

• int IsIgnored ()

Return whether this field should be omitted when fetching features.

• void SetIgnored (int bIgnore)

Set whether this field should be omitted when fetching features.

• int IsSame (OGRGeomFieldDefn ∗)
Test if the geometry field definition is identical to the other one.

12.60.1 Detailed Description

Definition of a geometry field of an OGRFeatureDefn (p. ??). A geometry field is described by a name, a geometry
type and a spatial reference system.

Since

OGR 2.0

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.60 OGRGeomFieldDefn Class Reference 187

12.60.2 Constructor & Destructor Documentation

12.60.2.1 OGRGeomFieldDefn::OGRGeomFieldDefn (const char ∗ pszNameIn, OGRwkbGeometryType eGeomTypeIn)

Constructor.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

188 Class Documentation

Parameters

pszNameIn the name of the new field.
eGeomTypeIn the type of the new field.

Since

GDAL 1.11

12.60.2.2 OGRGeomFieldDefn::OGRGeomFieldDefn (OGRGeomFieldDefn ∗ poPrototype)

Constructor.

Create by cloning an existing geometry field definition.

Parameters

poPrototype the geometry field definition to clone.

Since

GDAL 1.11

References GetNameRef(), GetSpatialRef(), GetType(), and SetSpatialRef().

12.60.3 Member Function Documentation

12.60.3.1 const char ∗ OGRGeomFieldDefn::GetNameRef () [inline]

Fetch name of this field.

This method is the same as the C function OGR_GFld_GetNameRef() (p. ??).

Returns

pointer to an internal name string that should not be freed or modified.

Since

GDAL 1.11

Referenced by OGRFeature::DumpReadable(), OGRLayer::GetGeometryColumn(), OGRUnionLayer::GetLayer←↩

Defn(), IsSame(), OGRGeomFieldDefn(), and OGRFeature::SetFrom().

12.60.3.2 OGRSpatialReference ∗ OGRGeomFieldDefn::GetSpatialRef () [virtual]

Fetch spatial reference system of this field.

This method is the same as the C function OGR_GFld_GetSpatialRef() (p. ??).

Returns

field spatial reference system.

Since

GDAL 1.11

Referenced by OGRUnionLayer::GetLayerDefn(), OGRLayer::GetSpatialRef(), OGRUnionLayer::GetSpatialRef(),
IsSame(), and OGRGeomFieldDefn().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.60 OGRGeomFieldDefn Class Reference 189

12.60.3.3 OGRwkbGeometryType OGRGeomFieldDefn::GetType () [inline]

Fetch geometry type of this field.

This method is the same as the C function OGR_GFld_GetType() (p. ??).

Returns

field geometry type.

Since

GDAL 1.11

Referenced by OGRGenSQLResultsLayer::GetExtent(), OGRUnionLayer::GetGeomType(), OGRFeatureDefn::←↩

GetGeomType(), OGRUnionLayer::GetLayerDefn(), IsSame(), and OGRGeomFieldDefn().

12.60.3.4 int OGRGeomFieldDefn::IsIgnored () [inline]

Return whether this field should be omitted when fetching features.

This method is the same as the C function OGR_GFld_IsIgnored() (p. ??).

Returns

ignore state

Since

GDAL 1.11

Referenced by OGRFeatureDefn::IsGeometryIgnored().

12.60.3.5 int OGRGeomFieldDefn::IsSame (OGRGeomFieldDefn ∗ poOtherFieldDefn)

Test if the geometry field definition is identical to the other one.

Parameters

poOtherField←↩

Defn
the other field definition to compare to.

Returns

TRUE if the geometry field definition is identical to the other one.

Since

GDAL 1.11

References GetNameRef(), GetSpatialRef(), GetType(), and OGRSpatialReference::IsSame().

Referenced by OGRFeatureDefn::IsSame().

12.60.3.6 void OGRGeomFieldDefn::SetIgnored (int ignore) [inline]

Set whether this field should be omitted when fetching features.

This method is the same as the C function OGR_GFld_SetIgnored() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

190 Class Documentation

Parameters

ignore ignore state

Since

GDAL 1.11

Referenced by OGRFeatureDefn::SetGeometryIgnored(), and OGRLayer::SetIgnoredFields().

12.60.3.7 void OGRGeomFieldDefn::SetName (const char ∗ pszNameIn)

Reset the name of this field.

This method is the same as the C function OGR_GFld_SetName() (p. ??).

Parameters

pszNameIn the new name to apply.

Since

GDAL 1.11

References CPLStrdup().

12.60.3.8 void OGRGeomFieldDefn::SetSpatialRef (OGRSpatialReference ∗ poSRSIn)

Set the spatial reference of this field.

This method is the same as the C function OGR_GFld_SetSpatialRef() (p. ??).

This method drops the reference of the previously set SRS object and acquires a new reference on the passed
object (if non-NULL).

Parameters

poSRSIn the new SRS to apply.

Since

GDAL 1.11

References OGRSpatialReference::Reference(), and OGRSpatialReference::Release().

Referenced by OGRWarpedLayer::GetLayerDefn(), OGRUnionLayer::GetLayerDefn(), and OGRGeomFieldDefn().

12.60.3.9 void OGRGeomFieldDefn::SetType (OGRwkbGeometryType eType)

Set the geometry type of this field. This should never be done to an OGRGeomFieldDefn (p. ??) that is already
part of an OGRFeatureDefn (p. ??).

This method is the same as the C function OGR_GFld_SetType() (p. ??).

Parameters

eType the new field geometry type.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.61 OGRLayer Class Reference 191

Since

GDAL 1.11

Referenced by OGRUnionLayer::GetLayerDefn(), and OGRFeatureDefn::SetGeomType().

The documentation for this class was generated from the following files:

• ogr_feature.h
• ogrgeomfielddefn.cpp

12.61 OGRLayer Class Reference

#include <ogrsf_frmts.h>

Inheritance diagram for OGRLayer:

OGRLayer

OGRAbstractProxiedLayer OGRGenSQLResultsLayer OGRLayerDecorator OGRUnionLayer

OGRProxiedLayer OGRMutexedLayer OGRWarpedLayer

Public Member Functions

• virtual OGRGeometry ∗ GetSpatialFilter ()

This method returns the current spatial filter for this layer.

• virtual void SetSpatialFilter (OGRGeometry ∗)
Set a new spatial filter.

• virtual void SetSpatialFilterRect (double dfMinX, double dfMinY, double dfMaxX, double dfMaxY)

Set a new rectangular spatial filter.

• virtual void SetSpatialFilter (int iGeomField, OGRGeometry ∗)
Set a new spatial filter.

• virtual void SetSpatialFilterRect (int iGeomField, double dfMinX, double dfMinY, double dfMaxX, double df←↩

MaxY)

Set a new rectangular spatial filter.

• virtual OGRErr SetAttributeFilter (const char ∗)
Set a new attribute query.

• virtual void ResetReading ()=0

Reset feature reading to start on the first feature.

• virtual OGRFeature ∗ GetNextFeature ()=0

Fetch the next available feature from this layer.

• virtual OGRErr SetNextByIndex (long nIndex)

Move read cursor to the nIndex'th feature in the current resultset.

• virtual OGRFeature ∗ GetFeature (long nFID)

Fetch a feature by its identifier.

• virtual OGRErr SetFeature (OGRFeature ∗poFeature)

Rewrite an existing feature.

• virtual OGRErr CreateFeature (OGRFeature ∗poFeature)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

192 Class Documentation

Create and write a new feature within a layer.

• virtual OGRErr DeleteFeature (long nFID)

Delete feature from layer.

• virtual const char ∗ GetName ()

Return the layer name.

• virtual OGRwkbGeometryType GetGeomType ()

Return the layer geometry type.

• virtual OGRFeatureDefn ∗ GetLayerDefn ()=0

Fetch the schema information for this layer.

• virtual int FindFieldIndex (const char ∗pszFieldName, int bExactMatch)

Find the index of field in the layer.

• virtual OGRSpatialReference ∗ GetSpatialRef ()

Fetch the spatial reference system for this layer.

• virtual int GetFeatureCount (int bForce=TRUE)

Fetch the feature count in this layer.

• virtual OGRErr GetExtent (OGREnvelope ∗psExtent, int bForce=TRUE)

Fetch the extent of this layer.

• virtual OGRErr GetExtent (int iGeomField, OGREnvelope ∗psExtent, int bForce=TRUE)

Fetch the extent of this layer, on the specified geometry field.

• virtual int TestCapability (const char ∗)=0

Test if this layer supported the named capability.

• virtual const char ∗ GetInfo (const char ∗)
Fetch metadata from layer.

• virtual OGRErr CreateField (OGRFieldDefn ∗poField, int bApproxOK=TRUE)

Create a new field on a layer.

• virtual OGRErr DeleteField (int iField)

Delete an existing field on a layer.

• virtual OGRErr ReorderFields (int ∗panMap)

Reorder all the fields of a layer.

• virtual OGRErr AlterFieldDefn (int iField, OGRFieldDefn ∗poNewFieldDefn, int nFlags)

Alter the definition of an existing field on a layer.

• virtual OGRErr CreateGeomField (OGRGeomFieldDefn ∗poField, int bApproxOK=TRUE)

Create a new geometry field on a layer.

• virtual OGRErr SyncToDisk ()

Flush pending changes to disk.

• virtual OGRStyleTable ∗ GetStyleTable ()

Returns layer style table.

• virtual void SetStyleTableDirectly (OGRStyleTable ∗poStyleTable)

Set layer style table.

• virtual void SetStyleTable (OGRStyleTable ∗poStyleTable)

Set layer style table.

• virtual const char ∗ GetFIDColumn ()

This method returns the name of the underlying database column being used as the FID column, or "" if not supported.

• virtual const char ∗ GetGeometryColumn ()

This method returns the name of the underlying database column being used as the geometry column, or "" if not
supported.

• virtual OGRErr SetIgnoredFields (const char ∗∗papszFields)

Set which fields can be omitted when retrieving features from the layer.

• OGRErr Intersection (OGRLayer ∗pLayerMethod, OGRLayer ∗pLayerResult, char ∗∗papszOptions=NULL,
GDALProgressFunc pfnProgress=NULL, void ∗pProgressArg=NULL)

Intersection of two layers.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.61 OGRLayer Class Reference 193

• OGRErr Union (OGRLayer ∗pLayerMethod, OGRLayer ∗pLayerResult, char ∗∗papszOptions=NULL, GD←↩

ALProgressFunc pfnProgress=NULL, void ∗pProgressArg=NULL)

Union of two layers.

• OGRErr SymDifference (OGRLayer ∗pLayerMethod, OGRLayer ∗pLayerResult, char ∗∗papszOptions, G←↩

DALProgressFunc pfnProgress, void ∗pProgressArg)

Symmetrical difference of two layers.

• OGRErr Identity (OGRLayer ∗pLayerMethod, OGRLayer ∗pLayerResult, char ∗∗papszOptions=NULL, G←↩

DALProgressFunc pfnProgress=NULL, void ∗pProgressArg=NULL)

Identify the features of this layer with the ones from the identity layer.

• OGRErr Update (OGRLayer ∗pLayerMethod, OGRLayer ∗pLayerResult, char ∗∗papszOptions=NULL, G←↩

DALProgressFunc pfnProgress=NULL, void ∗pProgressArg=NULL)

Update this layer with features from the update layer.

• OGRErr Clip (OGRLayer ∗pLayerMethod, OGRLayer ∗pLayerResult, char ∗∗papszOptions=NULL, GDA←↩

LProgressFunc pfnProgress=NULL, void ∗pProgressArg=NULL)

Clip off areas that are not covered by the method layer.

• OGRErr Erase (OGRLayer ∗pLayerMethod, OGRLayer ∗pLayerResult, char ∗∗papszOptions=NULL, GD←↩

ALProgressFunc pfnProgress=NULL, void ∗pProgressArg=NULL)

Remove areas that are covered by the method layer.

• int Reference ()

Increment layer reference count.

• int Dereference ()

Decrement layer reference count.

• int GetRefCount () const

Fetch reference count.

• OGRErr ReorderField (int iOldFieldPos, int iNewFieldPos)

Reorder an existing field on a layer.

12.61.1 Detailed Description

This class represents a layer of simple features, with access methods.

12.61.2 Member Function Documentation

12.61.2.1 OGRErr OGRLayer::AlterFieldDefn (int iField, OGRFieldDefn ∗ poNewFieldDefn, int nFlags) [virtual]

Alter the definition of an existing field on a layer.

You must use this to alter the definition of an existing field of a real layer. Internally the OGRFeatureDefn (p. ??) for
the layer will be updated to reflect the altered field. Applications should never modify the OGRFeatureDefn (p. ??)
used by a layer directly.

This method should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCAlterFieldDefn
capability. Some drivers may only support this method while there are still no features in the layer. When it is
supported, the existings features of the backing file/database should be updated accordingly. Some drivers might
also not support all update flags.

This function is the same as the C function OGR_L_AlterFieldDefn() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

194 Class Documentation

Parameters

iField index of the field whose definition must be altered.
poNewFieldDefn new field definition

nFlags combination of ALTER_NAME_FLAG, ALTER_TYPE_FLAG and ALTER_WIDTH_PRECI←↩

SION_FLAG to indicate which of the name and/or type and/or width and precision fields from
the new field definition must be taken into account.

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

Reimplemented in OGRProxiedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

References CPLError().

Referenced by OGRLayerDecorator::AlterFieldDefn(), and OGRProxiedLayer::AlterFieldDefn().

12.61.2.2 OGRErr OGRLayer::Clip (OGRLayer ∗ pLayerMethod, OGRLayer ∗ pLayerResult, char ∗∗ papszOptions =
NULL, GDALProgressFunc pfnProgress = NULL, void ∗ pProgressArg = NULL)

Clip off areas that are not covered by the method layer.

The result layer contains features whose geometries represent areas that are in the input layer and in the method
layer. The features in the result layer have the (possibly clipped) areas of features in the input layer and the attributes
from the same features. The schema of the result layer can be set by the user or, if it is empty, is initialized to contain
all fields in the input layer.

Note

For best performance use the minimum amount of features in the method layer and copy it into a memory
layer.
This method relies on GEOS support. Do not use unless the GEOS support is compiled in.

The recognized list of options is :

• SKIP_FAILURES=YES/NO. Set it to YES to go on, even when a feature could not be inserted.

• PROMOTE_TO_MULTI=YES/NO. Set it to YES to convert Polygons into MultiPolygons, or LineStrings to
MultiLineStrings.

• INPUT_PREFIX=string. Set a prefix for the field names that will be created from the fields of the input layer.

• METHOD_PREFIX=string. Set a prefix for the field names that will be created from the fields of the method
layer.

This method is the same as the C function OGR_L_Clip() (p. ??).

Parameters

pLayerMethod the method layer. Should not be NULL.
pLayerResult the layer where the features resulting from the operation are inserted. Should not be NULL.

See above the note about the schema.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.61 OGRLayer Class Reference 195

papszOptions NULL terminated list of options (may be NULL).
pfnProgress a GDALProgressFunc() compatible callback function for reporting progress or NULL.

pProgressArg argument to be passed to pfnProgress. May be NULL.

Returns

an error code if there was an error or the execution was interrupted, OGRERR_NONE otherwise.

Since

OGR 1.10

References OGRGeometry::clone(), CPLError(), CPLErrorReset(), CreateFeature(), CSLTestBoolean(), Get←↩

FeatureCount(), OGRFeature::GetGeometryRef(), GetLayerDefn(), GetNextFeature(), OGRGeometryFactory←↩

::haveGEOS(), OGRGeometry::Intersection(), OGRGeometry::IsEmpty(), ResetReading(), OGRFeature::Set←↩

FieldsFrom(), OGRFeature::SetGeometryDirectly(), SetSpatialFilter(), and OGRGeometry::Union().

12.61.2.3 OGRErr OGRLayer::CreateFeature (OGRFeature ∗ poFeature) [virtual]

Create and write a new feature within a layer.

The passed feature is written to the layer as a new feature, rather than overwriting an existing one. If the feature
has a feature id other than OGRNullFID, then the native implementation may use that as the feature id of the new
feature, but not necessarily. Upon successful return the passed feature will have been updated with the new feature
id.

This method is the same as the C function OGR_L_CreateFeature() (p. ??).

Parameters

poFeature the feature to write to disk.

Returns

OGRERR_NONE on success.

Reimplemented in OGRUnionLayer (p. ??), OGRProxiedLayer (p. ??), OGRWarpedLayer (p. ??), OGR←↩

MutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

Referenced by Clip(), OGRDataSource::CopyLayer(), OGRLayerDecorator::CreateFeature(), OGRWarpedLayer←↩

::CreateFeature(), OGRProxiedLayer::CreateFeature(), OGRUnionLayer::CreateFeature(), Erase(), Identity(), Inter-
section(), SymDifference(), Union(), and Update().

12.61.2.4 OGRErr OGRLayer::CreateField (OGRFieldDefn ∗ poField, int bApproxOK = TRUE) [virtual]

Create a new field on a layer.

You must use this to create new fields on a real layer. Internally the OGRFeatureDefn (p. ??) for the layer will be
updated to reflect the new field. Applications should never modify the OGRFeatureDefn (p. ??) used by a layer
directly.

This method should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCCreateField capability.
Some drivers may only support this method while there are still no features in the layer. When it is supported, the
existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_CreateField() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

196 Class Documentation

Parameters

poField field definition to write to disk.
bApproxOK If TRUE, the field may be created in a slightly different form depending on the limitations of

the format driver.

Returns

OGRERR_NONE on success.

Reimplemented in OGRProxiedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

References CPLError().

Referenced by OGRDataSource::CopyLayer(), OGRLayerDecorator::CreateField(), and OGRProxiedLayer::←↩

CreateField().

12.61.2.5 OGRErr OGRLayer::CreateGeomField (OGRGeomFieldDefn ∗ poField, int bApproxOK = TRUE)
[virtual]

Create a new geometry field on a layer.

You must use this to create new geometry fields on a real layer. Internally the OGRFeatureDefn (p. ??) for the layer
will be updated to reflect the new field. Applications should never modify the OGRFeatureDefn (p. ??) used by a
layer directly.

This method should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCCreateGeomField
capability. Some drivers may only support this method while there are still no features in the layer. When it is
supported, the existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_CreateGeomField() (p. ??).

Parameters

poField geometry field definition to write to disk.
bApproxOK If TRUE, the field may be created in a slightly different form depending on the limitations of

the format driver.

Returns

OGRERR_NONE on success.

Since

OGR 1.11

References CPLError().

Referenced by OGRDataSource::CopyLayer().

12.61.2.6 OGRErr OGRLayer::DeleteFeature (long nFID) [virtual]

Delete feature from layer.

The feature with the indicated feature id is deleted from the layer if supported by the driver. Most drivers do not
support feature deletion, and will return OGRERR_UNSUPPORTED_OPERATION. The TestCapability() (p. ??)
layer method may be called with OLCDeleteFeature to check if the driver supports feature deletion.

This method is the same as the C function OGR_L_DeleteFeature() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.61 OGRLayer Class Reference 197

Parameters

nFID the feature id to be deleted from the layer

Returns

OGRERR_NONE on success.

Reimplemented in OGRProxiedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

Referenced by OGRLayerDecorator::DeleteFeature(), and OGRProxiedLayer::DeleteFeature().

12.61.2.7 OGRErr OGRLayer::DeleteField (int iField) [virtual]

Delete an existing field on a layer.

You must use this to delete existing fields on a real layer. Internally the OGRFeatureDefn (p. ??) for the layer will be
updated to reflect the deleted field. Applications should never modify the OGRFeatureDefn (p. ??) used by a layer
directly.

This method should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCDeleteField capability.
Some drivers may only support this method while there are still no features in the layer. When it is supported, the
existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_DeleteField() (p. ??).

Parameters

iField index of the field to delete.

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

Reimplemented in OGRProxiedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

References CPLError().

Referenced by OGRLayerDecorator::DeleteField(), and OGRProxiedLayer::DeleteField().

12.61.2.8 int OGRLayer::Dereference ()

Decrement layer reference count.

This method is the same as the C function OGR_L_Dereference().

Returns

the reference count after decrementing.

12.61.2.9 OGRErr OGRLayer::Erase (OGRLayer ∗ pLayerMethod, OGRLayer ∗ pLayerResult, char ∗∗ papszOptions =
NULL, GDALProgressFunc pfnProgress = NULL, void ∗ pProgressArg = NULL)

Remove areas that are covered by the method layer.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

198 Class Documentation

The result layer contains features whose geometries represent areas that are in the input layer but not in the method
layer. The features in the result layer have attributes from the input layer. The schema of the result layer can be set
by the user or, if it is empty, is initialized to contain all fields in the input layer.

Note

For best performance use the minimum amount of features in the method layer and copy it into a memory
layer.
This method relies on GEOS support. Do not use unless the GEOS support is compiled in.

The recognized list of options is :

• SKIP_FAILURES=YES/NO. Set it to YES to go on, even when a feature could not be inserted.

• PROMOTE_TO_MULTI=YES/NO. Set it to YES to convert Polygons into MultiPolygons, or LineStrings to
MultiLineStrings.

• INPUT_PREFIX=string. Set a prefix for the field names that will be created from the fields of the input layer.

• METHOD_PREFIX=string. Set a prefix for the field names that will be created from the fields of the method
layer.

This method is the same as the C function OGR_L_Erase() (p. ??).

Parameters

pLayerMethod the method layer. Should not be NULL.
pLayerResult the layer where the features resulting from the operation are inserted. Should not be NULL.

See above the note about the schema.
papszOptions NULL terminated list of options (may be NULL).

pfnProgress a GDALProgressFunc() compatible callback function for reporting progress or NULL.
pProgressArg argument to be passed to pfnProgress. May be NULL.

Returns

an error code if there was an error or the execution was interrupted, OGRERR_NONE otherwise.

Since

OGR 1.10

References OGRGeometry::clone(), CPLError(), CPLErrorReset(), CreateFeature(), CSLTestBoolean(), OGR←↩

Geometry::Difference(), GetFeatureCount(), OGRFeature::GetGeometryRef(), GetLayerDefn(), GetNextFeature(),
OGRGeometryFactory::haveGEOS(), OGRGeometry::IsEmpty(), ResetReading(), OGRFeature::SetFieldsFrom(),
OGRFeature::SetGeometryDirectly(), SetSpatialFilter(), and OGRGeometry::Union().

12.61.2.10 int OGRLayer::FindFieldIndex (const char ∗ pszFieldName, int bExactMatch) [virtual]

Find the index of field in the layer.

The returned number is the index of the field in the layers, or -1 if the field doesn't exist.

If bExactMatch is set to FALSE and the field doesn't exists in the given form the driver might apply some changes
to make it match, like those it might do if the layer was created (eg. like LAUNDER in the OCI driver).

This method is the same as the C function OGR_L_FindFieldIndex() (p. ??).

Returns

field index, or -1 if the field doesn't exist

References OGRFeatureDefn::GetFieldIndex(), and GetLayerDefn().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.61 OGRLayer Class Reference 199

12.61.2.11 OGRErr OGRLayer::GetExtent (OGREnvelope ∗ psExtent, int bForce = TRUE) [virtual]

Fetch the extent of this layer.

Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and it would be expensive to establish the
extent then OGRERR_FAILURE will be returned indicating that the extent isn't know. If bForce is TRUE then some
implementations will actually scan the entire layer once to compute the MBR of all the features in the layer.

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is safer to call
GetExtent() (p. ??) without setting a spatial filter.

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents could be
collected.

Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetExtent() (p. ??).

Parameters

psExtent the structure in which the extent value will be returned.
bForce Flag indicating whether the extent should be computed even if it is expensive.

Returns

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

Reimplemented in OGRUnionLayer (p. ??), OGRProxiedLayer (p. ??), OGRGenSQLResultsLayer (p. ??), O←↩

GRWarpedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

Referenced by OGRLayerDecorator::GetExtent(), OGRWarpedLayer::GetExtent(), GetExtent(), OGRGenSQL←↩

ResultsLayer::GetExtent(), OGRProxiedLayer::GetExtent(), and Intersection().

12.61.2.12 OGRErr OGRLayer::GetExtent (int iGeomField, OGREnvelope ∗ psExtent, int bForce = TRUE)
[virtual]

Fetch the extent of this layer, on the specified geometry field.

Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and it would be expensive to establish the
extent then OGRERR_FAILURE will be returned indicating that the extent isn't know. If bForce is TRUE then some
implementations will actually scan the entire layer once to compute the MBR of all the features in the layer.

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is safer to call
GetExtent() (p. ??) without setting a spatial filter.

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents could be
collected.

Note that some implementations of this method may alter the read cursor of the layer.

Note to driver implementators: if you implement GetExtent(int,OGREnvelope∗,int) (p. ??), you must also imple-
ment GetExtent(OGREnvelope∗, int) (p. ??) to make it call GetExtent(0,OGREnvelope∗,int).

This method is the same as the C function OGR_L_GetExtentEx() (p. ??).

Parameters

iGeomField the index of the geometry field on which to compute the extent.
psExtent the structure in which the extent value will be returned.

bForce Flag indicating whether the extent should be computed even if it is expensive.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

200 Class Documentation

Returns

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

Reimplemented in OGRUnionLayer (p. ??), OGRProxiedLayer (p. ??), OGRGenSQLResultsLayer (p. ??), O←↩

GRWarpedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

References GetExtent().

12.61.2.13 OGRFeature ∗ OGRLayer::GetFeature (long nFID) [virtual]

Fetch a feature by its identifier.

This function will attempt to read the identified feature. The nFID value cannot be OGRNullFID. Success or failure
of this operation is unaffected by the spatial or attribute filters (and specialized implementations in drivers should
make sure that they do not take into account spatial or attribute filters).

If this method returns a non-NULL feature, it is guaranteed that its feature id (OGRFeature::GetFID() (p. ??)) will
be the same as nFID.

Use OGRLayer::TestCapability(OLCRandomRead) to establish if this layer supports efficient random access reading
via GetFeature() (p. ??); however, the call should always work if the feature exists as a fallback implementation just
scans all the features in the layer looking for the desired feature.

Sequential reads (with GetNextFeature() (p. ??)) are generally considered interrupted by a GetFeature() (p. ??)
call.

The returned feature should be free with OGRFeature::DestroyFeature() (p. ??).

This method is the same as the C function OGR_L_GetFeature() (p. ??).

Parameters

nFID the feature id of the feature to read.

Returns

a feature now owned by the caller, or NULL on failure.

Reimplemented in OGRUnionLayer (p. ??), OGRProxiedLayer (p. ??), OGRGenSQLResultsLayer (p. ??), O←↩

GRWarpedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

References OGRGeometry::clone(), CPLStrdup(), OGRFeature::GetFID(), GetNextFeature(), ResetReading(),
SetAttributeFilter(), and SetSpatialFilter().

Referenced by OGRLayerDecorator::GetFeature(), OGRWarpedLayer::GetFeature(), OGRGenSQLResultsLayer←↩

::GetFeature(), OGRProxiedLayer::GetFeature(), and OGRUnionLayer::GetFeature().

12.61.2.14 int OGRLayer::GetFeatureCount (int bForce = TRUE) [virtual]

Fetch the feature count in this layer.

Returns the number of features in the layer. For dynamic databases the count may not be exact. If bForce is FALSE,
and it would be expensive to establish the feature count a value of -1 may be returned indicating that the count isn't
know. If bForce is TRUE some implementations will actually scan the entire layer once to count objects.

The returned count takes the spatial filter into account.

Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetFeatureCount() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.61 OGRLayer Class Reference 201

Parameters

bForce Flag indicating whether the count should be computed even if it is expensive.

Returns

feature count, -1 if count not known.

Reimplemented in OGRUnionLayer (p. ??), OGRProxiedLayer (p. ??), OGRGenSQLResultsLayer (p. ??), O←↩

GRWarpedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

References GetNextFeature(), and ResetReading().

Referenced by Clip(), Erase(), OGRLayerDecorator::GetFeatureCount(), OGRWarpedLayer::GetFeatureCount(),
OGRGenSQLResultsLayer::GetFeatureCount(), OGRProxiedLayer::GetFeatureCount(), OGRUnionLayer::Get←↩

FeatureCount(), Identity(), Intersection(), SymDifference(), Union(), and Update().

12.61.2.15 const char ∗ OGRLayer::GetFIDColumn () [virtual]

This method returns the name of the underlying database column being used as the FID column, or "" if not
supported.

This method is the same as the C function OGR_L_GetFIDColumn() (p. ??).

Returns

fid column name.

Reimplemented in OGRProxiedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

Referenced by OGRLayerDecorator::GetFIDColumn(), and OGRProxiedLayer::GetFIDColumn().

12.61.2.16 const char ∗ OGRLayer::GetGeometryColumn () [virtual]

This method returns the name of the underlying database column being used as the geometry column, or "" if not
supported.

This method is the same as the C function OGR_L_GetGeometryColumn() (p. ??).

Returns

geometry column name.

Reimplemented in OGRProxiedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

References OGRFeatureDefn::GetGeomFieldDefn(), GetLayerDefn(), and OGRGeomFieldDefn::GetNameRef().

Referenced by OGRLayerDecorator::GetGeometryColumn(), and OGRProxiedLayer::GetGeometryColumn().

12.61.2.17 OGRwkbGeometryType OGRLayer::GetGeomType () [virtual]

Return the layer geometry type.

This returns the same result as GetLayerDefn() (p. ??)->GetGeomType() (p. ??), but for a few drivers, calling
GetGeomType() (p. ??) directly can avoid lengthy layer definition initialization.

This method is the same as the C function OGR_L_GetGeomType() (p. ??).

If this method is derived in a driver, it must be done such that it returns the same content as GetLayerDefn()
(p. ??)->GetGeomType() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

202 Class Documentation

Returns

the geometry type

Since

OGR 1.8.0

Reimplemented in OGRProxiedLayer (p. ??), OGRUnionLayer (p. ??), OGRMutexedLayer (p. ??), and OGR←↩

LayerDecorator (p. ??).

References OGRFeatureDefn::GetGeomType(), and GetLayerDefn().

Referenced by OGRLayerDecorator::GetGeomType(), OGRUnionLayer::GetGeomType(), and OGRProxiedLayer←↩

::GetGeomType().

12.61.2.18 const char ∗ OGRLayer::GetInfo (const char ∗ pszTag) [virtual]

Fetch metadata from layer.

This method can be used to fetch various kinds of metadata or layer specific information encoded as a string. It
is anticipated that various tag values will be defined with well known semantics, while other tags will be used for
driver/application specific purposes.

This method is deprecated and will be replaced with a more general metadata model in the future. At this time no
drivers return information via the GetInfo() (p. ??) call.

Parameters

pszTag the tag for which information is being requested.

Returns

the value of the requested tag, or NULL if that tag does not have a value, or is unknown.

Deprecated

12.61.2.19 OGRFeatureDefn ∗ OGRLayer::GetLayerDefn () [pure virtual]

Fetch the schema information for this layer.

The returned OGRFeatureDefn (p. ??) is owned by the OGRLayer (p. ??), and should not be modified or freed by
the application. It encapsulates the attribute schema of the features of the layer.

This method is the same as the C function OGR_L_GetLayerDefn() (p. ??).

Returns

feature definition.

Implemented in OGRUnionLayer (p. ??), OGRProxiedLayer (p. ??), OGRGenSQLResultsLayer (p. ??), OG←↩

RWarpedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

Referenced by Clip(), OGRSFDriver::CopyDataSource(), OGRDataSource::CopyLayer(), Erase(), FindFieldIndex(),
OGRUnionLayer::GetExtent(), GetGeometryColumn(), GetGeomType(), OGRLayerDecorator::GetLayerDefn(),
OGRWarpedLayer::GetLayerDefn(), OGRProxiedLayer::GetLayerDefn(), OGRUnionLayer::GetLayerDefn(), Get←↩

Name(), GetSpatialRef(), Identity(), Intersection(), ReorderField(), SetAttributeFilter(), SetIgnoredFields(), Set←↩

SpatialFilter(), SymDifference(), Union(), and Update().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.61 OGRLayer Class Reference 203

12.61.2.20 const char ∗ OGRLayer::GetName () [virtual]

Return the layer name.

This returns the same content as GetLayerDefn() (p. ??)->GetName() (p. ??), but for a few drivers, calling Get←↩

Name() (p. ??) directly can avoid lengthy layer definition initialization.

This method is the same as the C function OGR_L_GetName() (p. ??).

If this method is derived in a driver, it must be done such that it returns the same content as GetLayerDefn()
(p. ??)->GetName() (p. ??).

Returns

the layer name (must not been freed)

Since

OGR 1.8.0

Reimplemented in OGRProxiedLayer (p. ??), OGRUnionLayer (p. ??), OGRMutexedLayer (p. ??), and OGR←↩

LayerDecorator (p. ??).

References GetLayerDefn(), and OGRFeatureDefn::GetName().

Referenced by OGRDataSource::GetLayerByName(), OGRLayerDecorator::GetName(), and OGRProxiedLayer::←↩

GetName().

12.61.2.21 OGRFeature ∗ OGRLayer::GetNextFeature () [pure virtual]

Fetch the next available feature from this layer.

The returned feature becomes the responsiblity of the caller to delete with OGRFeature::DestroyFeature() (p. ??).
It is critical that all features associated with an OGRLayer (p. ??) (more specifically an OGRFeatureDefn (p. ??))
be deleted before that layer/datasource is deleted.

Only features matching the current spatial filter (set with SetSpatialFilter() (p. ??)) will be returned.

This method implements sequential access to the features of a layer. The ResetReading() (p. ??) method can be
used to start at the beginning again.

This method is the same as the C function OGR_L_GetNextFeature() (p. ??).

Returns

a feature, or NULL if no more features are available.

Implemented in OGRUnionLayer (p. ??), OGRProxiedLayer (p. ??), OGRGenSQLResultsLayer (p. ??), OG←↩

RWarpedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

Referenced by Clip(), OGRDataSource::CopyLayer(), Erase(), GetFeature(), GetFeatureCount(), OGRLayer←↩

Decorator::GetNextFeature(), OGRWarpedLayer::GetNextFeature(), OGRGenSQLResultsLayer::GetNext←↩

Feature(), OGRProxiedLayer::GetNextFeature(), OGRUnionLayer::GetNextFeature(), Identity(), Intersection(),
SetNextByIndex(), SymDifference(), Union(), and Update().

12.61.2.22 int OGRLayer::GetRefCount () const

Fetch reference count.

This method is the same as the C function OGR_L_GetRefCount().

Returns

the current reference count for the layer object itself.

Referenced by OGRDataSource::GetSummaryRefCount().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

204 Class Documentation

12.61.2.23 OGRGeometry ∗ OGRLayer::GetSpatialFilter () [virtual]

This method returns the current spatial filter for this layer.

The returned pointer is to an internally owned object, and should not be altered or deleted by the caller.

This method is the same as the C function OGR_L_GetSpatialFilter() (p. ??).

Returns

spatial filter geometry.

Reimplemented in OGRProxiedLayer (p. ??), OGRGenSQLResultsLayer (p. ??), OGRMutexedLayer (p. ??),
and OGRLayerDecorator (p. ??).

Referenced by OGRLayerDecorator::GetSpatialFilter(), and OGRProxiedLayer::GetSpatialFilter().

12.61.2.24 OGRSpatialReference ∗ OGRLayer::GetSpatialRef () [virtual]

Fetch the spatial reference system for this layer.

The returned object is owned by the OGRLayer (p. ??) and should not be modified or freed by the application.

Starting with OGR 1.11, several geometry fields can be associated to a feature definition. Each geometry field can
have its own spatial reference system, which is returned by OGRGeomFieldDefn::GetSpatialRef() (p. ??). OGR←↩

Layer::GetSpatialRef() (p. ??) is equivalent to GetLayerDefn() (p. ??)->GetGeomFieldDefn(0)->GetSpatialRef()
(p. ??)

This method is the same as the C function OGR_L_GetSpatialRef() (p. ??).

Returns

spatial reference, or NULL if there isn't one.

Reimplemented in OGRUnionLayer (p. ??), OGRProxiedLayer (p. ??), OGRWarpedLayer (p. ??), OGR←↩

MutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

References OGRFeatureDefn::GetGeomFieldDefn(), GetLayerDefn(), and OGRGeomFieldDefn::GetSpatialRef().

Referenced by OGRDataSource::CopyLayer(), OGRLayerDecorator::GetSpatialRef(), OGRWarpedLayer::Get←↩

SpatialRef(), OGRProxiedLayer::GetSpatialRef(), and OGRUnionLayer::GetSpatialRef().

12.61.2.25 OGRStyleTable ∗ OGRLayer::GetStyleTable () [virtual]

Returns layer style table.

This method is the same as the C function OGR_L_GetStyleTable().

Returns

pointer to a style table which should not be modified or freed by the caller.

Reimplemented in OGRProxiedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

Referenced by OGRLayerDecorator::GetStyleTable(), and OGRProxiedLayer::GetStyleTable().

12.61.2.26 OGRErr OGRLayer::Identity (OGRLayer ∗ pLayerMethod, OGRLayer ∗ pLayerResult, char ∗∗ papszOptions =
NULL, GDALProgressFunc pfnProgress = NULL, void ∗ pProgressArg = NULL)

Identify the features of this layer with the ones from the identity layer.

The result layer contains features whose geometries represent areas that are in the input layer. The features in the
result layer have attributes from both input and method layers. The schema of the result layer can be set by the user
or, if it is empty, is initialized to contain all fields in input and method layers.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.61 OGRLayer Class Reference 205

Note

If the schema of the result is set by user and contains fields that have the same name as a field in input and
in method layer, then the attribute in the result feature will get the value from the feature of the method layer
(even if it is undefined).
For best performance use the minimum amount of features in the method layer and copy it into a memory
layer.
This method relies on GEOS support. Do not use unless the GEOS support is compiled in.

The recognized list of options is :

• SKIP_FAILURES=YES/NO. Set it to YES to go on, even when a feature could not be inserted.

• PROMOTE_TO_MULTI=YES/NO. Set it to YES to convert Polygons into MultiPolygons, or LineStrings to
MultiLineStrings.

• INPUT_PREFIX=string. Set a prefix for the field names that will be created from the fields of the input layer.

• METHOD_PREFIX=string. Set a prefix for the field names that will be created from the fields of the method
layer.

This method is the same as the C function OGR_L_Identity() (p. ??).

Parameters

pLayerMethod the method layer. Should not be NULL.
pLayerResult the layer where the features resulting from the operation are inserted. Should not be NULL.

See above the note about the schema.
papszOptions NULL terminated list of options (may be NULL).

pfnProgress a GDALProgressFunc() compatible callback function for reporting progress or NULL.
pProgressArg argument to be passed to pfnProgress. May be NULL.

Returns

an error code if there was an error or the execution was interrupted, OGRERR_NONE otherwise.

Since

OGR 1.10

References OGRGeometry::clone(), CPLError(), CPLErrorReset(), CreateFeature(), CSLTestBoolean(), OGR←↩

Geometry::Difference(), OGRGeometry::getDimension(), GetFeatureCount(), GetLayerDefn(), GetNextFeature(),
OGRGeometryFactory::haveGEOS(), OGRGeometry::Intersection(), OGRGeometry::IsEmpty(), ResetReading(),
OGRFeature::SetFieldsFrom(), OGRFeature::SetGeometryDirectly(), and SetSpatialFilter().

12.61.2.27 OGRErr OGRLayer::Intersection (OGRLayer ∗ pLayerMethod, OGRLayer ∗ pLayerResult, char ∗∗
papszOptions = NULL, GDALProgressFunc pfnProgress = NULL, void ∗ pProgressArg = NULL)

Intersection of two layers.

The result layer contains features whose geometries represent areas that are common between features in the input
layer and in the method layer. The features in the result layer have attributes from both input and method layers.
The schema of the result layer can be set by the user or, if it is empty, is initialized to contain all fields in the input
and method layers.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

206 Class Documentation

Note

If the schema of the result is set by user and contains fields that have the same name as a field in input and
in method layer, then the attribute in the result feature will get the value from the feature of the method layer.
For best performance use the minimum amount of features in the method layer and copy it into a memory
layer.
This method relies on GEOS support. Do not use unless the GEOS support is compiled in.

The recognized list of options is :

• SKIP_FAILURES=YES/NO. Set it to YES to go on, even when a feature could not be inserted.

• PROMOTE_TO_MULTI=YES/NO. Set it to YES to convert Polygons into MultiPolygons, or LineStrings to
MultiLineStrings.

• INPUT_PREFIX=string. Set a prefix for the field names that will be created from the fields of the input layer.

• METHOD_PREFIX=string. Set a prefix for the field names that will be created from the fields of the method
layer.

This method is the same as the C function OGR_L_Intersection() (p. ??).

Parameters

pLayerMethod the method layer. Should not be NULL.
pLayerResult the layer where the features resulting from the operation are inserted. Should not be NULL.

See above the note about the schema.
papszOptions NULL terminated list of options (may be NULL).

pfnProgress a GDALProgressFunc() compatible callback function for reporting progress or NULL.
pProgressArg argument to be passed to pfnProgress. May be NULL.

Returns

an error code if there was an error or the execution was interrupted, OGRERR_NONE otherwise.

Since

OGR 1.10

References CPLError(), CPLErrorReset(), CreateFeature(), CSLTestBoolean(), OGRGeometry::getDimension(),
OGRGeometry::getEnvelope(), GetExtent(), GetFeatureCount(), GetLayerDefn(), GetNextFeature(), OGR←↩

GeometryFactory::haveGEOS(), OGRGeometry::Intersection(), OGRGeometry::IsEmpty(), ResetReading(), OG←↩

RFeature::SetFieldsFrom(), OGRFeature::SetGeometryDirectly(), and SetSpatialFilter().

12.61.2.28 int OGRLayer::Reference ()

Increment layer reference count.

This method is the same as the C function OGR_L_Reference().

Returns

the reference count after incrementing.

12.61.2.29 OGRErr OGRLayer::ReorderField (int iOldFieldPos, int iNewFieldPos)

Reorder an existing field on a layer.

This method is a conveniency wrapper of ReorderFields() (p. ??) dedicated to move a single field. It is a non-virtual
method, so drivers should implement ReorderFields() (p. ??) instead.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.61 OGRLayer Class Reference 207

You must use this to reorder existing fields on a real layer. Internally the OGRFeatureDefn (p. ??) for the layer will
be updated to reflect the reordering of the fields. Applications should never modify the OGRFeatureDefn (p. ??)
used by a layer directly.

This method should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

The field definition that was at initial position iOldFieldPos will be moved at position iNewFieldPos, and elements
between will be shuffled accordingly.

For example, let suppose the fields were "0","1","2","3","4" initially. ReorderField(1, 3) will reorder them as
"0","2","3","1","4".

Not all drivers support this method. You can query a layer to check if it supports it with the OLCReorderFields
capability. Some drivers may only support this method while there are still no features in the layer. When it is
supported, the existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_ReorderField() (p. ??).

Parameters

iOldFieldPos previous position of the field to move. Must be in the range [0,GetFieldCount()-1].
iNewFieldPos new position of the field to move. Must be in the range [0,GetFieldCount()-1].

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

References CPLError(), CPLMalloc(), OGRFeatureDefn::GetFieldCount(), GetLayerDefn(), and ReorderFields().

12.61.2.30 OGRErr OGRLayer::ReorderFields (int ∗ panMap) [virtual]

Reorder all the fields of a layer.

You must use this to reorder existing fields on a real layer. Internally the OGRFeatureDefn (p. ??) for the layer will
be updated to reflect the reordering of the fields. Applications should never modify the OGRFeatureDefn (p. ??)
used by a layer directly.

This method should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

panMap is such that,for each field definition at position i after reordering, its position before reordering was pan←↩

Map[i].

For example, let suppose the fields were "0","1","2","3","4" initially. ReorderFields([0,2,3,1,4]) will reorder them as
"0","2","3","1","4".

Not all drivers support this method. You can query a layer to check if it supports it with the OLCReorderFields
capability. Some drivers may only support this method while there are still no features in the layer. When it is
supported, the existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_ReorderFields() (p. ??).

Parameters

panMap an array of GetLayerDefn() (p. ??)->GetFieldCount() elements which is a permutation of [0,
GetLayerDefn() (p. ??)->GetFieldCount()-1].

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

208 Class Documentation

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

Reimplemented in OGRProxiedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

References CPLError().

Referenced by ReorderField(), OGRLayerDecorator::ReorderFields(), and OGRProxiedLayer::ReorderFields().

12.61.2.31 void OGRLayer::ResetReading () [pure virtual]

Reset feature reading to start on the first feature.

This affects GetNextFeature() (p. ??).

This method is the same as the C function OGR_L_ResetReading() (p. ??).

Implemented in OGRUnionLayer (p. ??), OGRProxiedLayer (p. ??), OGRGenSQLResultsLayer (p. ??), OG←↩

RMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

Referenced by Clip(), OGRDataSource::CopyLayer(), Erase(), GetFeature(), GetFeatureCount(), Identity(), In-
tersection(), OGRLayerDecorator::ResetReading(), OGRProxiedLayer::ResetReading(), SetAttributeFilter(), Set←↩

NextByIndex(), SetSpatialFilter(), SymDifference(), Union(), and Update().

12.61.2.32 OGRErr OGRLayer::SetAttributeFilter (const char ∗ pszQuery) [virtual]

Set a new attribute query.

This method sets the attribute query string to be used when fetching features via the GetNextFeature() (p. ??)
method. Only features for which the query evaluates as true will be returned.

The query string should be in the format of an SQL WHERE clause. For instance "population > 1000000 and
population < 5000000" where population is an attribute in the layer. The query format is normally a restricted form
of SQL WHERE clause as described in the "WHERE" section of the OGR SQL tutorial. In some cases (RDBMS
backed drivers) the native capabilities of the database may be used to interprete the WHERE clause in which case
the capabilities will be broader than those of OGR SQL.

Note that installing a query string will generally result in resetting the current reading position (ala ResetReading()
(p. ??)).

This method is the same as the C function OGR_L_SetAttributeFilter() (p. ??).

Parameters

pszQuery query in restricted SQL WHERE format, or NULL to clear the current query.

Returns

OGRERR_NONE if successfully installed, or an error code if the query expression is in error, or some other
failure occurs.

Reimplemented in OGRUnionLayer (p. ??), OGRGenSQLResultsLayer (p. ??), OGRProxiedLayer (p. ??), O←↩

GRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

References CPLStrdup(), GetLayerDefn(), and ResetReading().

Referenced by GetFeature(), OGRLayerDecorator::SetAttributeFilter(), OGRProxiedLayer::SetAttributeFilter(), O←↩

GRGenSQLResultsLayer::SetAttributeFilter(), and OGRUnionLayer::SetAttributeFilter().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.61 OGRLayer Class Reference 209

12.61.2.33 OGRErr OGRLayer::SetFeature (OGRFeature ∗ poFeature) [virtual]

Rewrite an existing feature.

This method will write a feature to the layer, based on the feature id within the OGRFeature (p. ??).

Use OGRLayer::TestCapability(OLCRandomWrite) to establish if this layer supports random access writing via
SetFeature() (p. ??).

This method is the same as the C function OGR_L_SetFeature() (p. ??).

Parameters

poFeature the feature to write.

Returns

OGRERR_NONE if the operation works, otherwise an appropriate error code.

Reimplemented in OGRUnionLayer (p. ??), OGRProxiedLayer (p. ??), OGRWarpedLayer (p. ??), OGR←↩

MutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

Referenced by OGRLayerDecorator::SetFeature(), OGRWarpedLayer::SetFeature(), OGRProxiedLayer::Set←↩

Feature(), and OGRUnionLayer::SetFeature().

12.61.2.34 OGRErr OGRLayer::SetIgnoredFields (const char ∗∗ papszFields) [virtual]

Set which fields can be omitted when retrieving features from the layer.

If the driver supports this functionality (testable using OLCIgnoreFields capability), it will not fetch the specified fields
in subsequent calls to GetFeature() (p. ??) / GetNextFeature() (p. ??) and thus save some processing time and/or
bandwidth.

Besides field names of the layers, the following special fields can be passed: "OGR_GEOMETRY" to ignore geom-
etry and "OGR_STYLE" to ignore layer style.

By default, no fields are ignored.

This method is the same as the C function OGR_L_SetIgnoredFields() (p. ??)

Parameters

papszFields an array of field names terminated by NULL item. If NULL is passed, the ignored list is
cleared.

Returns

OGRERR_NONE if all field names have been resolved (even if the driver does not support this method)

Reimplemented in OGRProxiedLayer (p. ??), OGRUnionLayer (p. ??), OGRMutexedLayer (p. ??), and OGR←↩

LayerDecorator (p. ??).

References OGRFeatureDefn::GetFieldCount(), OGRFeatureDefn::GetFieldDefn(), OGRFeatureDefn::GetField←↩

Index(), OGRFeatureDefn::GetGeomFieldDefn(), OGRFeatureDefn::GetGeomFieldIndex(), GetLayerDefn(), OG←↩

RFeatureDefn::SetGeometryIgnored(), OGRFieldDefn::SetIgnored(), OGRGeomFieldDefn::SetIgnored(), and O←↩

GRFeatureDefn::SetStyleIgnored().

Referenced by OGRLayerDecorator::SetIgnoredFields(), OGRUnionLayer::SetIgnoredFields(), and OGRProxied←↩

Layer::SetIgnoredFields().

12.61.2.35 OGRErr OGRLayer::SetNextByIndex (long nIndex) [virtual]

Move read cursor to the nIndex'th feature in the current resultset.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

210 Class Documentation

This method allows positioning of a layer such that the GetNextFeature() (p. ??) call will read the requested feature,
where nIndex is an absolute index into the current result set. So, setting it to 3 would mean the next feature read
with GetNextFeature() (p. ??) would have been the 4th feature to have been read if sequential reading took place
from the beginning of the layer, including accounting for spatial and attribute filters.

Only in rare circumstances is SetNextByIndex() (p. ??) efficiently implemented. In all other cases the default
implementation which calls ResetReading() (p. ??) and then calls GetNextFeature() (p. ??) nIndex times is used.
To determine if fast seeking is available on the current layer use the TestCapability() (p. ??) method with a value of
OLCFastSetNextByIndex.

This method is the same as the C function OGR_L_SetNextByIndex() (p. ??).

Parameters

nIndex the index indicating how many steps into the result set to seek.

Returns

OGRERR_NONE on success or an error code.

Reimplemented in OGRProxiedLayer (p. ??), OGRGenSQLResultsLayer (p. ??), OGRMutexedLayer (p. ??),
and OGRLayerDecorator (p. ??).

References GetNextFeature(), and ResetReading().

Referenced by OGRLayerDecorator::SetNextByIndex(), OGRGenSQLResultsLayer::SetNextByIndex(), and OG←↩

RProxiedLayer::SetNextByIndex().

12.61.2.36 void OGRLayer::SetSpatialFilter (OGRGeometry ∗ poFilter) [virtual]

Set a new spatial filter.

This method set the geometry to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the filter geometry will be returned.

Currently this test is may be inaccurately implemented, but it is guaranteed that all features who's envelope (as
returned by OGRGeometry::getEnvelope() (p. ??)) overlaps the envelope of the spatial filter will be returned. This
can result in more shapes being returned that should strictly be the case.

This method makes an internal copy of the passed geometry. The passed geometry remains the responsibility of
the caller, and may be safely destroyed.

For the time being the passed filter geometry should be in the same SRS as the layer (as returned by OGRLayer←↩

::GetSpatialRef() (p. ??)). In the future this may be generalized.

This method is the same as the C function OGR_L_SetSpatialFilter() (p. ??).

Parameters

poFilter the geometry to use as a filtering region. NULL may be passed indicating that the current
spatial filter should be cleared, but no new one instituted.

Reimplemented in OGRUnionLayer (p. ??), OGRGenSQLResultsLayer (p. ??), OGRProxiedLayer (p. ??), O←↩

GRWarpedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

References ResetReading().

Referenced by Clip(), Erase(), GetFeature(), Identity(), Intersection(), OGRLayerDecorator::SetSpatialFilter(), OG←↩

RWarpedLayer::SetSpatialFilter(), SetSpatialFilter(), OGRProxiedLayer::SetSpatialFilter(), OGRGenSQLResults←↩

Layer::SetSpatialFilter(), SetSpatialFilterRect(), SymDifference(), Union(), and Update().

12.61.2.37 void OGRLayer::SetSpatialFilter (int iGeomField, OGRGeometry ∗ poFilter) [virtual]

Set a new spatial filter.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.61 OGRLayer Class Reference 211

This method set the geometry to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the filter geometry will be returned.

Currently this test is may be inaccurately implemented, but it is guaranteed that all features who's envelope (as
returned by OGRGeometry::getEnvelope() (p. ??)) overlaps the envelope of the spatial filter will be returned. This
can result in more shapes being returned that should strictly be the case.

This method makes an internal copy of the passed geometry. The passed geometry remains the responsibility of
the caller, and may be safely destroyed.

For the time being the passed filter geometry should be in the same SRS as the geometry field definition it cor-
responds to (as returned by GetLayerDefn() (p. ??)->GetGeomFieldDefn(iGeomField)->GetSpatialRef() (p. ??)).
In the future this may be generalized.

Note that only the last spatial filter set is applied, even if several successive calls are done with different iGeomField
values.

Note to driver implementators: if you implement SetSpatialFilter(int,OGRGeometry∗) (p. ??), you must also im-
plement SetSpatialFilter(OGRGeometry∗) (p. ??) to make it call SetSpatialFilter(0,OGRGeometry∗).

This method is the same as the C function OGR_L_SetSpatialFilterEx() (p. ??).

Parameters

iGeomField index of the geometry field on which the spatial filter operates.
poFilter the geometry to use as a filtering region. NULL may be passed indicating that the current

spatial filter should be cleared, but no new one instituted.

Since

GDAL 1.11

Reimplemented in OGRUnionLayer (p. ??), OGRGenSQLResultsLayer (p. ??), OGRProxiedLayer (p. ??), O←↩

GRWarpedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

References CPLError(), GetLayerDefn(), ResetReading(), and SetSpatialFilter().

12.61.2.38 void OGRLayer::SetSpatialFilterRect (double dfMinX, double dfMinY, double dfMaxX, double dfMaxY)
[virtual]

Set a new rectangular spatial filter.

This method set rectangle to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the given rectangle will be returned.

The x/y values should be in the same coordinate system as the layer as a whole (as returned by OGRLayer::←↩

GetSpatialRef() (p. ??)). Internally this method is normally implemented as creating a 5 vertex closed rectangular
polygon and passing it to OGRLayer::SetSpatialFilter() (p. ??). It exists as a convenience.

The only way to clear a spatial filter set with this method is to call OGRLayer::SetSpatialFilter(NULL).

This method is the same as the C function OGR_L_SetSpatialFilterRect() (p. ??).

Parameters

dfMinX the minimum X coordinate for the rectangular region.
dfMinY the minimum Y coordinate for the rectangular region.

dfMaxX the maximum X coordinate for the rectangular region.
dfMaxY the maximum Y coordinate for the rectangular region.

Reimplemented in OGRWarpedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

Referenced by OGRWarpedLayer::SetSpatialFilter(), OGRLayerDecorator::SetSpatialFilterRect(), and OGR←↩

WarpedLayer::SetSpatialFilterRect().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

212 Class Documentation

12.61.2.39 void OGRLayer::SetSpatialFilterRect (int iGeomField, double dfMinX, double dfMinY, double dfMaxX, double
dfMaxY) [virtual]

Set a new rectangular spatial filter.

This method set rectangle to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the given rectangle will be returned.

The x/y values should be in the same coordinate system as as the geometry field definition it corresponds to (as
returned by GetLayerDefn() (p. ??)->GetGeomFieldDefn(iGeomField)->GetSpatialRef() (p. ??)). Internally this
method is normally implemented as creating a 5 vertex closed rectangular polygon and passing it to OGRLayer←↩

::SetSpatialFilter() (p. ??). It exists as a convenience.

The only way to clear a spatial filter set with this method is to call OGRLayer::SetSpatialFilter(NULL).

This method is the same as the C function OGR_L_SetSpatialFilterRectEx() (p. ??).

Parameters

iGeomField index of the geometry field on which the spatial filter operates.
dfMinX the minimum X coordinate for the rectangular region.
dfMinY the minimum Y coordinate for the rectangular region.

dfMaxX the maximum X coordinate for the rectangular region.
dfMaxY the maximum Y coordinate for the rectangular region.

Since

GDAL 1.11

Reimplemented in OGRWarpedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

References OGRLineString::addPoint(), OGRPolygon::addRing(), and SetSpatialFilter().

12.61.2.40 void OGRLayer::SetStyleTable (OGRStyleTable ∗ poStyleTable) [virtual]

Set layer style table.

This method operate exactly as OGRLayer::SetStyleTableDirectly() (p. ??) except that it does not assume owner-
ship of the passed table.

This method is the same as the C function OGR_L_SetStyleTable().

Parameters

poStyleTable pointer to style table to set

Reimplemented in OGRProxiedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

References OGRStyleTable::Clone().

Referenced by OGRLayerDecorator::SetStyleTable(), and OGRProxiedLayer::SetStyleTable().

12.61.2.41 void OGRLayer::SetStyleTableDirectly (OGRStyleTable ∗ poStyleTable) [virtual]

Set layer style table.

This method operate exactly as OGRLayer::SetStyleTable() (p. ??) except that it assumes ownership of the passed
table.

This method is the same as the C function OGR_L_SetStyleTableDirectly().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.61 OGRLayer Class Reference 213

Parameters

poStyleTable pointer to style table to set

Reimplemented in OGRProxiedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

Referenced by OGRLayerDecorator::SetStyleTableDirectly(), and OGRProxiedLayer::SetStyleTableDirectly().

12.61.2.42 OGRErr OGRLayer::SymDifference (OGRLayer ∗ pLayerMethod, OGRLayer ∗ pLayerResult, char ∗∗
papszOptions, GDALProgressFunc pfnProgress, void ∗ pProgressArg)

Symmetrical difference of two layers.

The result layer contains features whose geometries represent areas that are in either in the input layer or in the
method layer but not in both. The features in the result layer have attributes from both input and method layers.
For features which represent areas that are only in the input or in the method layer the respective attributes have
undefined values. The schema of the result layer can be set by the user or, if it is empty, is initialized to contain all
fields in the input and method layers.

Note

If the schema of the result is set by user and contains fields that have the same name as a field in input and
in method layer, then the attribute in the result feature will get the value from the feature of the method layer
(even if it is undefined).
For best performance use the minimum amount of features in the method layer and copy it into a memory
layer.
This method relies on GEOS support. Do not use unless the GEOS support is compiled in.

The recognized list of options is :

• SKIP_FAILURES=YES/NO. Set it to YES to go on, even when a feature could not be inserted.

• PROMOTE_TO_MULTI=YES/NO. Set it to YES to convert Polygons into MultiPolygons, or LineStrings to
MultiLineStrings.

• INPUT_PREFIX=string. Set a prefix for the field names that will be created from the fields of the input layer.

• METHOD_PREFIX=string. Set a prefix for the field names that will be created from the fields of the method
layer.

This method is the same as the C function OGR_L_SymDifference() (p. ??).

Parameters

pLayerMethod the method layer. Should not be NULL.
pLayerResult the layer where the features resulting from the operation are inserted. Should not be NULL.

See above the note about the schema.
papszOptions NULL terminated list of options (may be NULL).

pfnProgress a GDALProgressFunc() compatible callback function for reporting progress or NULL.
pProgressArg argument to be passed to pfnProgress. May be NULL.

Returns

an error code if there was an error or the execution was interrupted, OGRERR_NONE otherwise.

Since

OGR 1.10

References OGRGeometry::clone(), CPLError(), CPLErrorReset(), CreateFeature(), CSLTestBoolean(), OGR←↩

Geometry::Difference(), GetFeatureCount(), GetLayerDefn(), GetNextFeature(), OGRGeometryFactory::haveG←↩

EOS(), OGRGeometry::IsEmpty(), ResetReading(), OGRFeature::SetFieldsFrom(), OGRFeature::SetGeometry←↩

Directly(), and SetSpatialFilter().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

214 Class Documentation

12.61.2.43 OGRErr OGRLayer::SyncToDisk () [virtual]

Flush pending changes to disk.

This call is intended to force the layer to flush any pending writes to disk, and leave the disk file in a consistent state.
It would not normally have any effect on read-only datasources.

Some layers do not implement this method, and will still return OGRERR_NONE. The default implementation just
returns OGRERR_NONE. An error is only returned if an error occurs while attempting to flush to disk.

In any event, you should always close any opened datasource with OGRDataSource::DestroyDataSource() (p. ??)
that will ensure all data is correctly flushed.

This method is the same as the C function OGR_L_SyncToDisk() (p. ??).

Returns

OGRERR_NONE if no error occurs (even if nothing is done) or an error code.

Reimplemented in OGRUnionLayer (p. ??), OGRProxiedLayer (p. ??), OGRMutexedLayer (p. ??), and OGR←↩

LayerDecorator (p. ??).

Referenced by OGRLayerDecorator::SyncToDisk(), OGRProxiedLayer::SyncToDisk(), OGRUnionLayer::SyncTo←↩

Disk(), and OGRDataSource::SyncToDisk().

12.61.2.44 int OGRLayer::TestCapability (const char ∗ pszCap) [pure virtual]

Test if this layer supported the named capability.

The capability codes that can be tested are represented as strings, but #defined constants exists to ensure correct
spelling. Specific layer types may implement class specific capabilities, but this can't generally be discovered by the
caller.

• OLCRandomRead / "RandomRead": TRUE if the GetFeature() (p. ??) method is implemented in an opti-
mized way for this layer, as opposed to the default implementation using ResetReading() (p. ??) and Get←↩

NextFeature() (p. ??) to find the requested feature id.

• OLCSequentialWrite / "SequentialWrite": TRUE if the CreateFeature() (p. ??) method works for this layer.
Note this means that this particular layer is writable. The same OGRLayer (p. ??) class may returned FALSE
for other layer instances that are effectively read-only.

• OLCRandomWrite / "RandomWrite": TRUE if the SetFeature() (p. ??) method is operational on this layer.
Note this means that this particular layer is writable. The same OGRLayer (p. ??) class may returned FALSE
for other layer instances that are effectively read-only.

• OLCFastSpatialFilter / "FastSpatialFilter": TRUE if this layer implements spatial filtering efficiently. Layers
that effectively read all features, and test them with the OGRFeature (p. ??) intersection methods should
return FALSE. This can be used as a clue by the application whether it should build and maintain its own
spatial index for features in this layer.

• OLCFastFeatureCount / "FastFeatureCount": TRUE if this layer can return a feature count (via Get←↩

FeatureCount() (p. ??)) efficiently ... ie. without counting the features. In some cases this will return TRUE
until a spatial filter is installed after which it will return FALSE.

• OLCFastGetExtent / "FastGetExtent": TRUE if this layer can return its data extent (via GetExtent() (p. ??))
efficiently ... ie. without scanning all the features. In some cases this will return TRUE until a spatial filter is
installed after which it will return FALSE.

• OLCFastSetNextByIndex / "FastSetNextByIndex": TRUE if this layer can perform the SetNextByIndex()
(p. ??) call efficiently, otherwise FALSE.

• OLCCreateField / "CreateField": TRUE if this layer can create new fields on the current layer using Create←↩

Field() (p. ??), otherwise FALSE.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.61 OGRLayer Class Reference 215

• OLCCreateGeomField / "CreateGeomField": (GDAL >= 1.11) TRUE if this layer can create new geometry
fields on the current layer using CreateGeomField() (p. ??), otherwise FALSE.

• OLCDeleteField / "DeleteField": TRUE if this layer can delete existing fields on the current layer using
DeleteField() (p. ??), otherwise FALSE.

• OLCReorderFields / "ReorderFields": TRUE if this layer can reorder existing fields on the current layer using
ReorderField() (p. ??) or ReorderFields() (p. ??), otherwise FALSE.

• OLCAlterFieldDefn / "AlterFieldDefn": TRUE if this layer can alter the definition of an existing field on the
current layer using AlterFieldDefn() (p. ??), otherwise FALSE.

• OLCDeleteFeature / "DeleteFeature": TRUE if the DeleteFeature() (p. ??) method is supported on this layer,
otherwise FALSE.

• OLCStringsAsUTF8 / "StringsAsUTF8": TRUE if values of OFTString fields are assured to be in UTF-8
format. If FALSE the encoding of fields is uncertain, though it might still be UTF-8.

• OLCTransactions / "Transactions": TRUE if the StartTransaction(), CommitTransaction() and Rollback←↩

Transaction() methods work in a meaningful way, otherwise FALSE.

• OLCIgnoreFields / "IgnoreFields": TRUE if fields, geometry and style will be omitted when fetching features
as set by SetIgnoredFields() (p. ??) method.

This method is the same as the C function OGR_L_TestCapability() (p. ??).

Parameters

pszCap the name of the capability to test.

Returns

TRUE if the layer has the requested capability, or FALSE otherwise. OGRLayers will return FALSE for any
unrecognised capabilities.

Implemented in OGRUnionLayer (p. ??), OGRProxiedLayer (p. ??), OGRGenSQLResultsLayer (p. ??), OG←↩

RWarpedLayer (p. ??), OGRMutexedLayer (p. ??), and OGRLayerDecorator (p. ??).

Referenced by OGRDataSource::CopyLayer(), OGRLayerDecorator::TestCapability(), OGRWarpedLayer::Test←↩

Capability(), OGRGenSQLResultsLayer::TestCapability(), and OGRProxiedLayer::TestCapability().

12.61.2.45 OGRErr OGRLayer::Union (OGRLayer ∗ pLayerMethod, OGRLayer ∗ pLayerResult, char ∗∗ papszOptions =
NULL, GDALProgressFunc pfnProgress = NULL, void ∗ pProgressArg = NULL)

Union of two layers.

The result layer contains features whose geometries represent areas that are in either in the input layer or in the
method layer. The features in the result layer have attributes from both input and method layers. For features which
represent areas that are only in the input or in the method layer the respective attributes have undefined values.
The schema of the result layer can be set by the user or, if it is empty, is initialized to contain all fields in the input
and method layers.

Note

If the schema of the result is set by user and contains fields that have the same name as a field in input and
in method layer, then the attribute in the result feature will get the value from the feature of the method layer
(even if it is undefined).
For best performance use the minimum amount of features in the method layer and copy it into a memory
layer.
This method relies on GEOS support. Do not use unless the GEOS support is compiled in.

The recognized list of options is :

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

216 Class Documentation

• SKIP_FAILURES=YES/NO. Set it to YES to go on, even when a feature could not be inserted.

• PROMOTE_TO_MULTI=YES/NO. Set it to YES to convert Polygons into MultiPolygons, or LineStrings to
MultiLineStrings.

• INPUT_PREFIX=string. Set a prefix for the field names that will be created from the fields of the input layer.

• METHOD_PREFIX=string. Set a prefix for the field names that will be created from the fields of the method
layer.

This method is the same as the C function OGR_L_Union() (p. ??).

Parameters

pLayerMethod the method layer. Should not be NULL.
pLayerResult the layer where the features resulting from the operation are inserted. Should not be NULL.

See above the note about the schema.
papszOptions NULL terminated list of options (may be NULL).

pfnProgress a GDALProgressFunc() compatible callback function for reporting progress or NULL.
pProgressArg argument to be passed to pfnProgress. May be NULL.

Returns

an error code if there was an error or the execution was interrupted, OGRERR_NONE otherwise.

Since

OGR 1.10

References OGRGeometry::clone(), CPLError(), CPLErrorReset(), CreateFeature(), CSLTestBoolean(), OGR←↩

Geometry::Difference(), OGRGeometry::getDimension(), GetFeatureCount(), GetLayerDefn(), GetNextFeature(),
OGRGeometryFactory::haveGEOS(), OGRGeometry::Intersection(), OGRGeometry::IsEmpty(), ResetReading(),
OGRFeature::SetFieldsFrom(), OGRFeature::SetGeometryDirectly(), and SetSpatialFilter().

12.61.2.46 OGRErr OGRLayer::Update (OGRLayer ∗ pLayerMethod, OGRLayer ∗ pLayerResult, char ∗∗ papszOptions =
NULL, GDALProgressFunc pfnProgress = NULL, void ∗ pProgressArg = NULL)

Update this layer with features from the update layer.

The result layer contains features whose geometries represent areas that are either in the input layer or in the
method layer. The features in the result layer have areas of the features of the method layer or those ares of the
features of the input layer that are not covered by the method layer. The features of the result layer get their attributes
from the input layer. The schema of the result layer can be set by the user or, if it is empty, is initialized to contain all
fields in the input layer.

Note

If the schema of the result is set by user and contains fields that have the same name as a field in the method
layer, then the attribute in the result feature the originates from the method layer will get the value from the
feature of the method layer.
For best performance use the minimum amount of features in the method layer and copy it into a memory
layer.
This method relies on GEOS support. Do not use unless the GEOS support is compiled in.

The recognized list of options is :

• SKIP_FAILURES=YES/NO. Set it to YES to go on, even when a feature could not be inserted.

• PROMOTE_TO_MULTI=YES/NO. Set it to YES to convert Polygons into MultiPolygons, or LineStrings to
MultiLineStrings.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.62 OGRLayerAttrIndex Class Reference 217

• INPUT_PREFIX=string. Set a prefix for the field names that will be created from the fields of the input layer.

• METHOD_PREFIX=string. Set a prefix for the field names that will be created from the fields of the method
layer.

This method is the same as the C function OGR_L_Update() (p. ??).

Parameters

pLayerMethod the method layer. Should not be NULL.
pLayerResult the layer where the features resulting from the operation are inserted. Should not be NULL.

See above the note about the schema.
papszOptions NULL terminated list of options (may be NULL).

pfnProgress a GDALProgressFunc() compatible callback function for reporting progress or NULL.
pProgressArg argument to be passed to pfnProgress. May be NULL.

Returns

an error code if there was an error or the execution was interrupted, OGRERR_NONE otherwise.

Since

OGR 1.10

References OGRGeometry::clone(), CPLError(), CPLErrorReset(), CreateFeature(), CSLTestBoolean(), OGR←↩

Geometry::Difference(), GetFeatureCount(), GetLayerDefn(), GetNextFeature(), OGRGeometryFactory::haveG←↩

EOS(), OGRGeometry::IsEmpty(), ResetReading(), OGRFeature::SetFieldsFrom(), OGRFeature::SetGeometry(),
OGRFeature::SetGeometryDirectly(), and SetSpatialFilter().

The documentation for this class was generated from the following files:

• ogrsf_frmts.h
• ogrsf_frmts.dox
• ogrlayer.cpp

12.62 OGRLayerAttrIndex Class Reference

Inheritance diagram for OGRLayerAttrIndex:

OGRLayerAttrIndex

OGRMILayerAttrIndex

The documentation for this class was generated from the following files:

• ogr_attrind.h
• ogr_attrind.cpp

12.63 OGRLayerDecorator Class Reference

Inheritance diagram for OGRLayerDecorator:

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

218 Class Documentation

OGRLayerDecorator

OGRLayer

OGRMutexedLayer OGRWarpedLayer

Public Member Functions

• virtual OGRGeometry ∗ GetSpatialFilter ()

This method returns the current spatial filter for this layer.

• virtual void SetSpatialFilter (OGRGeometry ∗)
Set a new spatial filter.

• virtual void SetSpatialFilterRect (double dfMinX, double dfMinY, double dfMaxX, double dfMaxY)

Set a new rectangular spatial filter.

• virtual void SetSpatialFilter (int iGeomField, OGRGeometry ∗)
Set a new spatial filter.

• virtual void SetSpatialFilterRect (int iGeomField, double dfMinX, double dfMinY, double dfMaxX, double df←↩

MaxY)

Set a new rectangular spatial filter.

• virtual OGRErr SetAttributeFilter (const char ∗)
Set a new attribute query.

• virtual void ResetReading ()

Reset feature reading to start on the first feature.

• virtual OGRFeature ∗ GetNextFeature ()

Fetch the next available feature from this layer.

• virtual OGRErr SetNextByIndex (long nIndex)

Move read cursor to the nIndex'th feature in the current resultset.

• virtual OGRFeature ∗ GetFeature (long nFID)

Fetch a feature by its identifier.

• virtual OGRErr SetFeature (OGRFeature ∗poFeature)

Rewrite an existing feature.

• virtual OGRErr CreateFeature (OGRFeature ∗poFeature)

Create and write a new feature within a layer.

• virtual OGRErr DeleteFeature (long nFID)

Delete feature from layer.

• virtual const char ∗ GetName ()

Return the layer name.

• virtual OGRwkbGeometryType GetGeomType ()

Return the layer geometry type.

• virtual OGRFeatureDefn ∗ GetLayerDefn ()

Fetch the schema information for this layer.

• virtual OGRSpatialReference ∗ GetSpatialRef ()

Fetch the spatial reference system for this layer.

• virtual int GetFeatureCount (int bForce=TRUE)

Fetch the feature count in this layer.

• virtual OGRErr GetExtent (int iGeomField, OGREnvelope ∗psExtent, int bForce=TRUE)

Fetch the extent of this layer, on the specified geometry field.

• virtual OGRErr GetExtent (OGREnvelope ∗psExtent, int bForce=TRUE)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.63 OGRLayerDecorator Class Reference 219

Fetch the extent of this layer.

• virtual int TestCapability (const char ∗)
Test if this layer supported the named capability.

• virtual OGRErr CreateField (OGRFieldDefn ∗poField, int bApproxOK=TRUE)

Create a new field on a layer.

• virtual OGRErr DeleteField (int iField)

Delete an existing field on a layer.

• virtual OGRErr ReorderFields (int ∗panMap)

Reorder all the fields of a layer.

• virtual OGRErr AlterFieldDefn (int iField, OGRFieldDefn ∗poNewFieldDefn, int nFlags)

Alter the definition of an existing field on a layer.

• virtual OGRErr SyncToDisk ()

Flush pending changes to disk.

• virtual OGRStyleTable ∗ GetStyleTable ()

Returns layer style table.

• virtual void SetStyleTableDirectly (OGRStyleTable ∗poStyleTable)

Set layer style table.

• virtual void SetStyleTable (OGRStyleTable ∗poStyleTable)

Set layer style table.

• virtual const char ∗ GetFIDColumn ()

This method returns the name of the underlying database column being used as the FID column, or "" if not supported.

• virtual const char ∗ GetGeometryColumn ()

This method returns the name of the underlying database column being used as the geometry column, or "" if not
supported.

• virtual OGRErr SetIgnoredFields (const char ∗∗papszFields)

Set which fields can be omitted when retrieving features from the layer.

12.63.1 Member Function Documentation

12.63.1.1 OGRErr OGRLayerDecorator::AlterFieldDefn (int iField, OGRFieldDefn ∗ poNewFieldDefn, int nFlags)
[virtual]

Alter the definition of an existing field on a layer.

You must use this to alter the definition of an existing field of a real layer. Internally the OGRFeatureDefn (p. ??) for
the layer will be updated to reflect the altered field. Applications should never modify the OGRFeatureDefn (p. ??)
used by a layer directly.

This method should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCAlterFieldDefn
capability. Some drivers may only support this method while there are still no features in the layer. When it is
supported, the existings features of the backing file/database should be updated accordingly. Some drivers might
also not support all update flags.

This function is the same as the C function OGR_L_AlterFieldDefn() (p. ??).

Parameters

iField index of the field whose definition must be altered.
poNewFieldDefn new field definition

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

220 Class Documentation

nFlags combination of ALTER_NAME_FLAG, ALTER_TYPE_FLAG and ALTER_WIDTH_PRECI←↩

SION_FLAG to indicate which of the name and/or type and/or width and precision fields from
the new field definition must be taken into account.

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRMutexedLayer (p. ??).

References OGRLayer::AlterFieldDefn().

Referenced by OGRMutexedLayer::AlterFieldDefn().

12.63.1.2 OGRErr OGRLayerDecorator::CreateFeature (OGRFeature ∗ poFeature) [virtual]

Create and write a new feature within a layer.

The passed feature is written to the layer as a new feature, rather than overwriting an existing one. If the feature
has a feature id other than OGRNullFID, then the native implementation may use that as the feature id of the new
feature, but not necessarily. Upon successful return the passed feature will have been updated with the new feature
id.

This method is the same as the C function OGR_L_CreateFeature() (p. ??).

Parameters

poFeature the feature to write to disk.

Returns

OGRERR_NONE on success.

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRWarpedLayer (p. ??), and OGRMutexedLayer (p. ??).

References OGRLayer::CreateFeature().

Referenced by OGRMutexedLayer::CreateFeature().

12.63.1.3 OGRErr OGRLayerDecorator::CreateField (OGRFieldDefn ∗ poField, int bApproxOK = TRUE) [virtual]

Create a new field on a layer.

You must use this to create new fields on a real layer. Internally the OGRFeatureDefn (p. ??) for the layer will be
updated to reflect the new field. Applications should never modify the OGRFeatureDefn (p. ??) used by a layer
directly.

This method should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCCreateField capability.
Some drivers may only support this method while there are still no features in the layer. When it is supported, the
existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_CreateField() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.63 OGRLayerDecorator Class Reference 221

Parameters

poField field definition to write to disk.
bApproxOK If TRUE, the field may be created in a slightly different form depending on the limitations of

the format driver.

Returns

OGRERR_NONE on success.

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRMutexedLayer (p. ??).

References OGRLayer::CreateField().

Referenced by OGRMutexedLayer::CreateField().

12.63.1.4 OGRErr OGRLayerDecorator::DeleteFeature (long nFID) [virtual]

Delete feature from layer.

The feature with the indicated feature id is deleted from the layer if supported by the driver. Most drivers do not
support feature deletion, and will return OGRERR_UNSUPPORTED_OPERATION. The TestCapability() (p. ??)
layer method may be called with OLCDeleteFeature to check if the driver supports feature deletion.

This method is the same as the C function OGR_L_DeleteFeature() (p. ??).

Parameters

nFID the feature id to be deleted from the layer

Returns

OGRERR_NONE on success.

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRMutexedLayer (p. ??).

References OGRLayer::DeleteFeature().

Referenced by OGRMutexedLayer::DeleteFeature().

12.63.1.5 OGRErr OGRLayerDecorator::DeleteField (int iField) [virtual]

Delete an existing field on a layer.

You must use this to delete existing fields on a real layer. Internally the OGRFeatureDefn (p. ??) for the layer will be
updated to reflect the deleted field. Applications should never modify the OGRFeatureDefn (p. ??) used by a layer
directly.

This method should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCDeleteField capability.
Some drivers may only support this method while there are still no features in the layer. When it is supported, the
existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_DeleteField() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

222 Class Documentation

Parameters

iField index of the field to delete.

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRMutexedLayer (p. ??).

References OGRLayer::DeleteField().

Referenced by OGRMutexedLayer::DeleteField().

12.63.1.6 OGRErr OGRLayerDecorator::GetExtent (int iGeomField, OGREnvelope ∗ psExtent, int bForce = TRUE)
[virtual]

Fetch the extent of this layer, on the specified geometry field.

Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and it would be expensive to establish the
extent then OGRERR_FAILURE will be returned indicating that the extent isn't know. If bForce is TRUE then some
implementations will actually scan the entire layer once to compute the MBR of all the features in the layer.

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is safer to call
GetExtent() (p. ??) without setting a spatial filter.

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents could be
collected.

Note that some implementations of this method may alter the read cursor of the layer.

Note to driver implementators: if you implement GetExtent(int,OGREnvelope∗,int) (p. ??), you must also imple-
ment GetExtent(OGREnvelope∗, int) (p. ??) to make it call GetExtent(0,OGREnvelope∗,int).

This method is the same as the C function OGR_L_GetExtentEx() (p. ??).

Parameters

iGeomField the index of the geometry field on which to compute the extent.
psExtent the structure in which the extent value will be returned.

bForce Flag indicating whether the extent should be computed even if it is expensive.

Returns

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRWarpedLayer (p. ??), and OGRMutexedLayer (p. ??).

References OGRLayer::GetExtent().

Referenced by OGRMutexedLayer::GetExtent().

12.63.1.7 OGRErr OGRLayerDecorator::GetExtent (OGREnvelope ∗ psExtent, int bForce = TRUE) [virtual]

Fetch the extent of this layer.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.63 OGRLayerDecorator Class Reference 223

Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and it would be expensive to establish the
extent then OGRERR_FAILURE will be returned indicating that the extent isn't know. If bForce is TRUE then some
implementations will actually scan the entire layer once to compute the MBR of all the features in the layer.

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is safer to call
GetExtent() (p. ??) without setting a spatial filter.

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents could be
collected.

Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetExtent() (p. ??).

Parameters

psExtent the structure in which the extent value will be returned.
bForce Flag indicating whether the extent should be computed even if it is expensive.

Returns

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRWarpedLayer (p. ??), and OGRMutexedLayer (p. ??).

References OGRLayer::GetExtent().

12.63.1.8 OGRFeature ∗ OGRLayerDecorator::GetFeature (long nFID) [virtual]

Fetch a feature by its identifier.

This function will attempt to read the identified feature. The nFID value cannot be OGRNullFID. Success or failure
of this operation is unaffected by the spatial or attribute filters (and specialized implementations in drivers should
make sure that they do not take into account spatial or attribute filters).

If this method returns a non-NULL feature, it is guaranteed that its feature id (OGRFeature::GetFID() (p. ??)) will
be the same as nFID.

Use OGRLayer::TestCapability(OLCRandomRead) to establish if this layer supports efficient random access reading
via GetFeature() (p. ??); however, the call should always work if the feature exists as a fallback implementation just
scans all the features in the layer looking for the desired feature.

Sequential reads (with GetNextFeature() (p. ??)) are generally considered interrupted by a GetFeature() (p. ??)
call.

The returned feature should be free with OGRFeature::DestroyFeature() (p. ??).

This method is the same as the C function OGR_L_GetFeature() (p. ??).

Parameters

nFID the feature id of the feature to read.

Returns

a feature now owned by the caller, or NULL on failure.

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRWarpedLayer (p. ??), and OGRMutexedLayer (p. ??).

References OGRLayer::GetFeature().

Referenced by OGRMutexedLayer::GetFeature().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

224 Class Documentation

12.63.1.9 int OGRLayerDecorator::GetFeatureCount (int bForce = TRUE) [virtual]

Fetch the feature count in this layer.

Returns the number of features in the layer. For dynamic databases the count may not be exact. If bForce is FALSE,
and it would be expensive to establish the feature count a value of -1 may be returned indicating that the count isn't
know. If bForce is TRUE some implementations will actually scan the entire layer once to count objects.

The returned count takes the spatial filter into account.

Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetFeatureCount() (p. ??).

Parameters

bForce Flag indicating whether the count should be computed even if it is expensive.

Returns

feature count, -1 if count not known.

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRWarpedLayer (p. ??), and OGRMutexedLayer (p. ??).

References OGRLayer::GetFeatureCount().

Referenced by OGRMutexedLayer::GetFeatureCount().

12.63.1.10 const char ∗ OGRLayerDecorator::GetFIDColumn () [virtual]

This method returns the name of the underlying database column being used as the FID column, or "" if not
supported.

This method is the same as the C function OGR_L_GetFIDColumn() (p. ??).

Returns

fid column name.

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRMutexedLayer (p. ??).

References OGRLayer::GetFIDColumn().

Referenced by OGRMutexedLayer::GetFIDColumn().

12.63.1.11 const char ∗ OGRLayerDecorator::GetGeometryColumn () [virtual]

This method returns the name of the underlying database column being used as the geometry column, or "" if not
supported.

This method is the same as the C function OGR_L_GetGeometryColumn() (p. ??).

Returns

geometry column name.

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRMutexedLayer (p. ??).

References OGRLayer::GetGeometryColumn().

Referenced by OGRMutexedLayer::GetGeometryColumn().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.63 OGRLayerDecorator Class Reference 225

12.63.1.12 OGRwkbGeometryType OGRLayerDecorator::GetGeomType () [virtual]

Return the layer geometry type.

This returns the same result as GetLayerDefn() (p. ??)->GetGeomType() (p. ??), but for a few drivers, calling
GetGeomType() (p. ??) directly can avoid lengthy layer definition initialization.

This method is the same as the C function OGR_L_GetGeomType() (p. ??).

If this method is derived in a driver, it must be done such that it returns the same content as GetLayerDefn()
(p. ??)->GetGeomType() (p. ??).

Returns

the geometry type

Since

OGR 1.8.0

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRMutexedLayer (p. ??).

References OGRLayer::GetGeomType().

Referenced by OGRMutexedLayer::GetGeomType().

12.63.1.13 OGRFeatureDefn ∗ OGRLayerDecorator::GetLayerDefn () [virtual]

Fetch the schema information for this layer.

The returned OGRFeatureDefn (p. ??) is owned by the OGRLayer (p. ??), and should not be modified or freed by
the application. It encapsulates the attribute schema of the features of the layer.

This method is the same as the C function OGR_L_GetLayerDefn() (p. ??).

Returns

feature definition.

Implements OGRLayer (p. ??).

Reimplemented in OGRWarpedLayer (p. ??), and OGRMutexedLayer (p. ??).

References OGRLayer::GetLayerDefn().

Referenced by OGRMutexedLayer::GetLayerDefn().

12.63.1.14 const char ∗ OGRLayerDecorator::GetName () [virtual]

Return the layer name.

This returns the same content as GetLayerDefn() (p. ??)->GetName() (p. ??), but for a few drivers, calling Get←↩

Name() (p. ??) directly can avoid lengthy layer definition initialization.

This method is the same as the C function OGR_L_GetName() (p. ??).

If this method is derived in a driver, it must be done such that it returns the same content as GetLayerDefn()
(p. ??)->GetName() (p. ??).

Returns

the layer name (must not been freed)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

226 Class Documentation

Since

OGR 1.8.0

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRMutexedLayer (p. ??).

References OGRLayer::GetName().

Referenced by OGRMutexedLayer::GetName().

12.63.1.15 OGRFeature ∗ OGRLayerDecorator::GetNextFeature () [virtual]

Fetch the next available feature from this layer.

The returned feature becomes the responsiblity of the caller to delete with OGRFeature::DestroyFeature() (p. ??).
It is critical that all features associated with an OGRLayer (p. ??) (more specifically an OGRFeatureDefn (p. ??))
be deleted before that layer/datasource is deleted.

Only features matching the current spatial filter (set with SetSpatialFilter() (p. ??)) will be returned.

This method implements sequential access to the features of a layer. The ResetReading() (p. ??) method can be
used to start at the beginning again.

This method is the same as the C function OGR_L_GetNextFeature() (p. ??).

Returns

a feature, or NULL if no more features are available.

Implements OGRLayer (p. ??).

Reimplemented in OGRWarpedLayer (p. ??), and OGRMutexedLayer (p. ??).

References OGRLayer::GetNextFeature().

Referenced by OGRMutexedLayer::GetNextFeature().

12.63.1.16 OGRGeometry ∗ OGRLayerDecorator::GetSpatialFilter () [virtual]

This method returns the current spatial filter for this layer.

The returned pointer is to an internally owned object, and should not be altered or deleted by the caller.

This method is the same as the C function OGR_L_GetSpatialFilter() (p. ??).

Returns

spatial filter geometry.

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRMutexedLayer (p. ??).

References OGRLayer::GetSpatialFilter().

Referenced by OGRMutexedLayer::GetSpatialFilter().

12.63.1.17 OGRSpatialReference ∗ OGRLayerDecorator::GetSpatialRef () [virtual]

Fetch the spatial reference system for this layer.

The returned object is owned by the OGRLayer (p. ??) and should not be modified or freed by the application.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.63 OGRLayerDecorator Class Reference 227

Starting with OGR 1.11, several geometry fields can be associated to a feature definition. Each geometry field can
have its own spatial reference system, which is returned by OGRGeomFieldDefn::GetSpatialRef() (p. ??). OGR←↩

Layer::GetSpatialRef() (p. ??) is equivalent to GetLayerDefn() (p. ??)->GetGeomFieldDefn(0)->GetSpatialRef()
(p. ??)

This method is the same as the C function OGR_L_GetSpatialRef() (p. ??).

Returns

spatial reference, or NULL if there isn't one.

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRWarpedLayer (p. ??), and OGRMutexedLayer (p. ??).

References OGRLayer::GetSpatialRef().

Referenced by OGRMutexedLayer::GetSpatialRef().

12.63.1.18 OGRStyleTable ∗ OGRLayerDecorator::GetStyleTable () [virtual]

Returns layer style table.

This method is the same as the C function OGR_L_GetStyleTable().

Returns

pointer to a style table which should not be modified or freed by the caller.

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRMutexedLayer (p. ??).

References OGRLayer::GetStyleTable().

Referenced by OGRMutexedLayer::GetStyleTable().

12.63.1.19 OGRErr OGRLayerDecorator::ReorderFields (int ∗ panMap) [virtual]

Reorder all the fields of a layer.

You must use this to reorder existing fields on a real layer. Internally the OGRFeatureDefn (p. ??) for the layer will
be updated to reflect the reordering of the fields. Applications should never modify the OGRFeatureDefn (p. ??)
used by a layer directly.

This method should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

panMap is such that,for each field definition at position i after reordering, its position before reordering was pan←↩

Map[i].

For example, let suppose the fields were "0","1","2","3","4" initially. ReorderFields([0,2,3,1,4]) will reorder them as
"0","2","3","1","4".

Not all drivers support this method. You can query a layer to check if it supports it with the OLCReorderFields
capability. Some drivers may only support this method while there are still no features in the layer. When it is
supported, the existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_ReorderFields() (p. ??).

Parameters

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

228 Class Documentation

panMap an array of GetLayerDefn() (p. ??)->GetFieldCount() elements which is a permutation of [0,
GetLayerDefn() (p. ??)->GetFieldCount()-1].

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRMutexedLayer (p. ??).

References OGRLayer::ReorderFields().

Referenced by OGRMutexedLayer::ReorderFields().

12.63.1.20 void OGRLayerDecorator::ResetReading () [virtual]

Reset feature reading to start on the first feature.

This affects GetNextFeature() (p. ??).

This method is the same as the C function OGR_L_ResetReading() (p. ??).

Implements OGRLayer (p. ??).

Reimplemented in OGRMutexedLayer (p. ??).

References OGRLayer::ResetReading().

Referenced by OGRMutexedLayer::ResetReading(), and OGRWarpedLayer::SetSpatialFilter().

12.63.1.21 OGRErr OGRLayerDecorator::SetAttributeFilter (const char ∗ pszQuery) [virtual]

Set a new attribute query.

This method sets the attribute query string to be used when fetching features via the GetNextFeature() (p. ??)
method. Only features for which the query evaluates as true will be returned.

The query string should be in the format of an SQL WHERE clause. For instance "population > 1000000 and
population < 5000000" where population is an attribute in the layer. The query format is normally a restricted form
of SQL WHERE clause as described in the "WHERE" section of the OGR SQL tutorial. In some cases (RDBMS
backed drivers) the native capabilities of the database may be used to interprete the WHERE clause in which case
the capabilities will be broader than those of OGR SQL.

Note that installing a query string will generally result in resetting the current reading position (ala ResetReading()
(p. ??)).

This method is the same as the C function OGR_L_SetAttributeFilter() (p. ??).

Parameters

pszQuery query in restricted SQL WHERE format, or NULL to clear the current query.

Returns

OGRERR_NONE if successfully installed, or an error code if the query expression is in error, or some other
failure occurs.

Reimplemented from OGRLayer (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.63 OGRLayerDecorator Class Reference 229

Reimplemented in OGRMutexedLayer (p. ??).

References OGRLayer::SetAttributeFilter().

Referenced by OGRMutexedLayer::SetAttributeFilter().

12.63.1.22 OGRErr OGRLayerDecorator::SetFeature (OGRFeature ∗ poFeature) [virtual]

Rewrite an existing feature.

This method will write a feature to the layer, based on the feature id within the OGRFeature (p. ??).

Use OGRLayer::TestCapability(OLCRandomWrite) to establish if this layer supports random access writing via
SetFeature() (p. ??).

This method is the same as the C function OGR_L_SetFeature() (p. ??).

Parameters

poFeature the feature to write.

Returns

OGRERR_NONE if the operation works, otherwise an appropriate error code.

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRWarpedLayer (p. ??), and OGRMutexedLayer (p. ??).

References OGRLayer::SetFeature().

Referenced by OGRMutexedLayer::SetFeature().

12.63.1.23 OGRErr OGRLayerDecorator::SetIgnoredFields (const char ∗∗ papszFields) [virtual]

Set which fields can be omitted when retrieving features from the layer.

If the driver supports this functionality (testable using OLCIgnoreFields capability), it will not fetch the specified fields
in subsequent calls to GetFeature() (p. ??) / GetNextFeature() (p. ??) and thus save some processing time and/or
bandwidth.

Besides field names of the layers, the following special fields can be passed: "OGR_GEOMETRY" to ignore geom-
etry and "OGR_STYLE" to ignore layer style.

By default, no fields are ignored.

This method is the same as the C function OGR_L_SetIgnoredFields() (p. ??)

Parameters

papszFields an array of field names terminated by NULL item. If NULL is passed, the ignored list is
cleared.

Returns

OGRERR_NONE if all field names have been resolved (even if the driver does not support this method)

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRMutexedLayer (p. ??).

References OGRLayer::SetIgnoredFields().

Referenced by OGRMutexedLayer::SetIgnoredFields().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

230 Class Documentation

12.63.1.24 OGRErr OGRLayerDecorator::SetNextByIndex (long nIndex) [virtual]

Move read cursor to the nIndex'th feature in the current resultset.

This method allows positioning of a layer such that the GetNextFeature() (p. ??) call will read the requested feature,
where nIndex is an absolute index into the current result set. So, setting it to 3 would mean the next feature read
with GetNextFeature() (p. ??) would have been the 4th feature to have been read if sequential reading took place
from the beginning of the layer, including accounting for spatial and attribute filters.

Only in rare circumstances is SetNextByIndex() (p. ??) efficiently implemented. In all other cases the default
implementation which calls ResetReading() (p. ??) and then calls GetNextFeature() (p. ??) nIndex times is used.
To determine if fast seeking is available on the current layer use the TestCapability() (p. ??) method with a value of
OLCFastSetNextByIndex.

This method is the same as the C function OGR_L_SetNextByIndex() (p. ??).

Parameters

nIndex the index indicating how many steps into the result set to seek.

Returns

OGRERR_NONE on success or an error code.

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRMutexedLayer (p. ??).

References OGRLayer::SetNextByIndex().

Referenced by OGRMutexedLayer::SetNextByIndex().

12.63.1.25 void OGRLayerDecorator::SetSpatialFilter (OGRGeometry ∗ poFilter) [virtual]

Set a new spatial filter.

This method set the geometry to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the filter geometry will be returned.

Currently this test is may be inaccurately implemented, but it is guaranteed that all features who's envelope (as
returned by OGRGeometry::getEnvelope() (p. ??)) overlaps the envelope of the spatial filter will be returned. This
can result in more shapes being returned that should strictly be the case.

This method makes an internal copy of the passed geometry. The passed geometry remains the responsibility of
the caller, and may be safely destroyed.

For the time being the passed filter geometry should be in the same SRS as the layer (as returned by OGRLayer←↩

::GetSpatialRef() (p. ??)). In the future this may be generalized.

This method is the same as the C function OGR_L_SetSpatialFilter() (p. ??).

Parameters

poFilter the geometry to use as a filtering region. NULL may be passed indicating that the current
spatial filter should be cleared, but no new one instituted.

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRWarpedLayer (p. ??), and OGRMutexedLayer (p. ??).

References OGRLayer::SetSpatialFilter().

Referenced by OGRMutexedLayer::SetSpatialFilter().

12.63.1.26 void OGRLayerDecorator::SetSpatialFilter (int iGeomField, OGRGeometry ∗ poFilter) [virtual]

Set a new spatial filter.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.63 OGRLayerDecorator Class Reference 231

This method set the geometry to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the filter geometry will be returned.

Currently this test is may be inaccurately implemented, but it is guaranteed that all features who's envelope (as
returned by OGRGeometry::getEnvelope() (p. ??)) overlaps the envelope of the spatial filter will be returned. This
can result in more shapes being returned that should strictly be the case.

This method makes an internal copy of the passed geometry. The passed geometry remains the responsibility of
the caller, and may be safely destroyed.

For the time being the passed filter geometry should be in the same SRS as the geometry field definition it cor-
responds to (as returned by GetLayerDefn() (p. ??)->GetGeomFieldDefn(iGeomField)->GetSpatialRef() (p. ??)).
In the future this may be generalized.

Note that only the last spatial filter set is applied, even if several successive calls are done with different iGeomField
values.

Note to driver implementators: if you implement SetSpatialFilter(int,OGRGeometry∗) (p. ??), you must also im-
plement SetSpatialFilter(OGRGeometry∗) (p. ??) to make it call SetSpatialFilter(0,OGRGeometry∗).

This method is the same as the C function OGR_L_SetSpatialFilterEx() (p. ??).

Parameters

iGeomField index of the geometry field on which the spatial filter operates.
poFilter the geometry to use as a filtering region. NULL may be passed indicating that the current

spatial filter should be cleared, but no new one instituted.

Since

GDAL 1.11

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRWarpedLayer (p. ??), and OGRMutexedLayer (p. ??).

References OGRLayer::SetSpatialFilter().

12.63.1.27 void OGRLayerDecorator::SetSpatialFilterRect (double dfMinX, double dfMinY, double dfMaxX, double dfMaxY)
[virtual]

Set a new rectangular spatial filter.

This method set rectangle to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the given rectangle will be returned.

The x/y values should be in the same coordinate system as the layer as a whole (as returned by OGRLayer::←↩

GetSpatialRef() (p. ??)). Internally this method is normally implemented as creating a 5 vertex closed rectangular
polygon and passing it to OGRLayer::SetSpatialFilter() (p. ??). It exists as a convenience.

The only way to clear a spatial filter set with this method is to call OGRLayer::SetSpatialFilter(NULL).

This method is the same as the C function OGR_L_SetSpatialFilterRect() (p. ??).

Parameters

dfMinX the minimum X coordinate for the rectangular region.
dfMinY the minimum Y coordinate for the rectangular region.

dfMaxX the maximum X coordinate for the rectangular region.
dfMaxY the maximum Y coordinate for the rectangular region.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

232 Class Documentation

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRWarpedLayer (p. ??), and OGRMutexedLayer (p. ??).

References OGRLayer::SetSpatialFilterRect().

Referenced by OGRMutexedLayer::SetSpatialFilterRect().

12.63.1.28 void OGRLayerDecorator::SetSpatialFilterRect (int iGeomField, double dfMinX, double dfMinY, double dfMaxX,
double dfMaxY) [virtual]

Set a new rectangular spatial filter.

This method set rectangle to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the given rectangle will be returned.

The x/y values should be in the same coordinate system as as the geometry field definition it corresponds to (as
returned by GetLayerDefn() (p. ??)->GetGeomFieldDefn(iGeomField)->GetSpatialRef() (p. ??)). Internally this
method is normally implemented as creating a 5 vertex closed rectangular polygon and passing it to OGRLayer←↩

::SetSpatialFilter() (p. ??). It exists as a convenience.

The only way to clear a spatial filter set with this method is to call OGRLayer::SetSpatialFilter(NULL).

This method is the same as the C function OGR_L_SetSpatialFilterRectEx() (p. ??).

Parameters

iGeomField index of the geometry field on which the spatial filter operates.
dfMinX the minimum X coordinate for the rectangular region.
dfMinY the minimum Y coordinate for the rectangular region.

dfMaxX the maximum X coordinate for the rectangular region.
dfMaxY the maximum Y coordinate for the rectangular region.

Since

GDAL 1.11

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRWarpedLayer (p. ??), and OGRMutexedLayer (p. ??).

References OGRLayer::SetSpatialFilterRect().

12.63.1.29 void OGRLayerDecorator::SetStyleTable (OGRStyleTable ∗ poStyleTable) [virtual]

Set layer style table.

This method operate exactly as OGRLayer::SetStyleTableDirectly() (p. ??) except that it does not assume owner-
ship of the passed table.

This method is the same as the C function OGR_L_SetStyleTable().

Parameters

poStyleTable pointer to style table to set

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRMutexedLayer (p. ??).

References OGRLayer::SetStyleTable().

Referenced by OGRMutexedLayer::SetStyleTable().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.63 OGRLayerDecorator Class Reference 233

12.63.1.30 void OGRLayerDecorator::SetStyleTableDirectly (OGRStyleTable ∗ poStyleTable) [virtual]

Set layer style table.

This method operate exactly as OGRLayer::SetStyleTable() (p. ??) except that it assumes ownership of the passed
table.

This method is the same as the C function OGR_L_SetStyleTableDirectly().

Parameters

poStyleTable pointer to style table to set

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRMutexedLayer (p. ??).

References OGRLayer::SetStyleTableDirectly().

Referenced by OGRMutexedLayer::SetStyleTableDirectly().

12.63.1.31 OGRErr OGRLayerDecorator::SyncToDisk () [virtual]

Flush pending changes to disk.

This call is intended to force the layer to flush any pending writes to disk, and leave the disk file in a consistent state.
It would not normally have any effect on read-only datasources.

Some layers do not implement this method, and will still return OGRERR_NONE. The default implementation just
returns OGRERR_NONE. An error is only returned if an error occurs while attempting to flush to disk.

In any event, you should always close any opened datasource with OGRDataSource::DestroyDataSource() (p. ??)
that will ensure all data is correctly flushed.

This method is the same as the C function OGR_L_SyncToDisk() (p. ??).

Returns

OGRERR_NONE if no error occurs (even if nothing is done) or an error code.

Reimplemented from OGRLayer (p. ??).

Reimplemented in OGRMutexedLayer (p. ??).

References OGRLayer::SyncToDisk().

Referenced by OGRMutexedLayer::SyncToDisk().

12.63.1.32 int OGRLayerDecorator::TestCapability (const char ∗ pszCap) [virtual]

Test if this layer supported the named capability.

The capability codes that can be tested are represented as strings, but #defined constants exists to ensure correct
spelling. Specific layer types may implement class specific capabilities, but this can't generally be discovered by the
caller.

• OLCRandomRead / "RandomRead": TRUE if the GetFeature() (p. ??) method is implemented in an opti-
mized way for this layer, as opposed to the default implementation using ResetReading() (p. ??) and Get←↩

NextFeature() (p. ??) to find the requested feature id.

• OLCSequentialWrite / "SequentialWrite": TRUE if the CreateFeature() (p. ??) method works for this layer.
Note this means that this particular layer is writable. The same OGRLayer (p. ??) class may returned FALSE
for other layer instances that are effectively read-only.

• OLCRandomWrite / "RandomWrite": TRUE if the SetFeature() (p. ??) method is operational on this layer.
Note this means that this particular layer is writable. The same OGRLayer (p. ??) class may returned FALSE
for other layer instances that are effectively read-only.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

234 Class Documentation

• OLCFastSpatialFilter / "FastSpatialFilter": TRUE if this layer implements spatial filtering efficiently. Layers
that effectively read all features, and test them with the OGRFeature (p. ??) intersection methods should
return FALSE. This can be used as a clue by the application whether it should build and maintain its own
spatial index for features in this layer.

• OLCFastFeatureCount / "FastFeatureCount": TRUE if this layer can return a feature count (via Get←↩

FeatureCount() (p. ??)) efficiently ... ie. without counting the features. In some cases this will return TRUE
until a spatial filter is installed after which it will return FALSE.

• OLCFastGetExtent / "FastGetExtent": TRUE if this layer can return its data extent (via GetExtent() (p. ??))
efficiently ... ie. without scanning all the features. In some cases this will return TRUE until a spatial filter is
installed after which it will return FALSE.

• OLCFastSetNextByIndex / "FastSetNextByIndex": TRUE if this layer can perform the SetNextByIndex()
(p. ??) call efficiently, otherwise FALSE.

• OLCCreateField / "CreateField": TRUE if this layer can create new fields on the current layer using Create←↩

Field() (p. ??), otherwise FALSE.

• OLCCreateGeomField / "CreateGeomField": (GDAL >= 1.11) TRUE if this layer can create new geometry
fields on the current layer using CreateGeomField() (p. ??), otherwise FALSE.

• OLCDeleteField / "DeleteField": TRUE if this layer can delete existing fields on the current layer using
DeleteField() (p. ??), otherwise FALSE.

• OLCReorderFields / "ReorderFields": TRUE if this layer can reorder existing fields on the current layer using
ReorderField() (p. ??) or ReorderFields() (p. ??), otherwise FALSE.

• OLCAlterFieldDefn / "AlterFieldDefn": TRUE if this layer can alter the definition of an existing field on the
current layer using AlterFieldDefn() (p. ??), otherwise FALSE.

• OLCDeleteFeature / "DeleteFeature": TRUE if the DeleteFeature() (p. ??) method is supported on this layer,
otherwise FALSE.

• OLCStringsAsUTF8 / "StringsAsUTF8": TRUE if values of OFTString fields are assured to be in UTF-8
format. If FALSE the encoding of fields is uncertain, though it might still be UTF-8.

• OLCTransactions / "Transactions": TRUE if the StartTransaction(), CommitTransaction() and Rollback←↩

Transaction() methods work in a meaningful way, otherwise FALSE.

• OLCIgnoreFields / "IgnoreFields": TRUE if fields, geometry and style will be omitted when fetching features
as set by SetIgnoredFields() (p. ??) method.

This method is the same as the C function OGR_L_TestCapability() (p. ??).

Parameters

pszCap the name of the capability to test.

Returns

TRUE if the layer has the requested capability, or FALSE otherwise. OGRLayers will return FALSE for any
unrecognised capabilities.

Implements OGRLayer (p. ??).

Reimplemented in OGRWarpedLayer (p. ??), and OGRMutexedLayer (p. ??).

References OGRLayer::TestCapability().

Referenced by OGRMutexedLayer::TestCapability().

The documentation for this class was generated from the following files:

• ogrlayerdecorator.h
• ogrlayerdecorator.cpp

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.64 OGRLayerPool Class Reference 235

12.64 OGRLayerPool Class Reference

The documentation for this class was generated from the following files:

• ogrlayerpool.h

• ogrlayerpool.cpp

12.65 OGRLinearRing Class Reference

#include <ogr_geometry.h>

Inheritance diagram for OGRLinearRing:

OGRLinearRing

OGRLineString

OGRCurve

OGRGeometry

Public Member Functions

• virtual const char ∗ getGeometryName () const

Fetch WKT name for geometry type.

• virtual OGRGeometry ∗ clone () const

Make a copy of this object.

• virtual int isClockwise () const

Returns TRUE if the ring has clockwise winding (or less than 2 points)

• virtual void closeRings ()

Force rings to be closed.

• virtual double get_Area () const

Compute area of ring.

• virtual int WkbSize () const

Returns size of related binary representation.

• virtual OGRErr importFromWkb (unsigned char ∗, int=-1)

Assign geometry from well known binary data.

• virtual OGRErr exportToWkb (OGRwkbByteOrder, unsigned char ∗, OGRwkbVariant=wkbVariantOgc)
const

Convert a geometry into well known binary format.

Friends

• class OGRPolygon

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

236 Class Documentation

12.65.1 Detailed Description

Concrete representation of a closed ring.

This class is functionally equivelent to an OGRLineString (p. ??), but has a separate identity to maintain alignment
with the OpenGIS simple feature data model. It exists to serve as a component of an OGRPolygon (p. ??).

The OGRLinearRing (p. ??) has no corresponding free standing well known binary representation, so import←↩

FromWkb() (p. ??) and exportToWkb() (p. ??) will not actually work. There is a non-standard GDAL WKT repre-
sentation though.

Because OGRLinearRing (p. ??) is not a "proper" free standing simple features object, it cannot be directly used
on a feature via SetGeometry(), and cannot genearally be used with GEOS for operations like Intersects() (p. ??).
Instead the polygon should be used, or the OGRLinearRing (p. ??) should be converted to an OGRLineString
(p. ??) for such operations.

12.65.2 Member Function Documentation

12.65.2.1 OGRGeometry ∗ OGRLinearRing::clone () const [virtual]

Make a copy of this object.

This method relates to the SFCOM IGeometry::clone() method.

This method is the same as the C function OGR_G_Clone() (p. ??).

Returns

a new object instance with the same geometry, and spatial reference system as the original.

Reimplemented from OGRLineString (p. ??).

References OGRGeometry::assignSpatialReference(), OGRGeometry::getSpatialReference(), and OGRLine←↩

String::setPoints().

12.65.2.2 void OGRLinearRing::closeRings () [virtual]

Force rings to be closed.

If this geometry, or any contained geometries has polygon rings that are not closed, they will be closed by adding
the starting point at the end.

Reimplemented from OGRGeometry (p. ??).

References OGRLineString::addPoint(), OGRLineString::getPoint(), OGRLineString::getX(), OGRLineString::get←↩

Y(), and OGRLineString::getZ().

12.65.2.3 OGRErr OGRLinearRing::exportToWkb (OGRwkbByteOrder eByteOrder, unsigned char ∗ pabyData,
OGRwkbVariant eWkbVariant = wkbVariantOgc) const [virtual]

Convert a geometry into well known binary format.

This method relates to the SFCOM IWks::ExportToWKB() method.

This method is the same as the C function OGR_G_ExportToWkb() (p. ??).

Parameters

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.65 OGRLinearRing Class Reference 237

eByteOrder One of wkbXDR or wkbNDR indicating MSB or LSB byte order respectively.
pabyData a buffer into which the binary representation is written. This buffer must be at least OGR←↩

Geometry::WkbSize() (p. ??) byte in size.
eWkbVariant What standard to use when exporting geometries with three dimensions (or more). The

default wkbVariantOgc is the historical OGR variant. wkbVariantIso is the variant defined in
ISO SQL/MM and adopted by OGC for SFSQL 1.2.

Returns

Currently OGRERR_NONE is always returned.

Reimplemented from OGRLineString (p. ??).

12.65.2.4 double OGRLinearRing::get_Area () const [virtual]

Compute area of ring.

The area is computed according to Green's Theorem:

Area is "Sum(x(i)∗(y(i+1) - y(i-1)))/2" for i = 0 to pointCount-1, assuming the last point is a duplicate of the first.

Returns

computed area.

Referenced by OGRPolygon::get_Area().

12.65.2.5 const char ∗ OGRLinearRing::getGeometryName () const [virtual]

Fetch WKT name for geometry type.

There is no SFCOM analog to this method.

This method is the same as the C function OGR_G_GetGeometryName() (p. ??).

Returns

name used for this geometry type in well known text format. The returned pointer is to a static internal string
and should not be modified or freed.

Reimplemented from OGRLineString (p. ??).

12.65.2.6 OGRErr OGRLinearRing::importFromWkb (unsigned char ∗ pabyData, int nSize = -1) [virtual]

Assign geometry from well known binary data.

The object must have already been instantiated as the correct derived type of geometry object to match the binaries
type. This method is used by the OGRGeometryFactory (p. ??) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKB() method.

This method is the same as the C function OGR_G_ImportFromWkb() (p. ??).

Parameters

pabyData the binary input data.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

238 Class Documentation

nSize the size of pabyData in bytes, or zero if not known.

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Reimplemented from OGRLineString (p. ??).

12.65.2.7 int OGRLinearRing::isClockwise () const [virtual]

Returns TRUE if the ring has clockwise winding (or less than 2 points)

Returns

TRUE if clockwise otherwise FALSE.

Referenced by OGRGeometryFactory::organizePolygons().

12.65.2.8 int OGRLinearRing::WkbSize () const [virtual]

Returns size of related binary representation.

This method returns the exact number of bytes required to hold the well known binary representation of this geom-
etry object. Its computation may be slightly expensive for complex geometries.

This method relates to the SFCOM IWks::WkbSize() method.

This method is the same as the C function OGR_G_WkbSize() (p. ??).

Returns

size of binary representation in bytes.

Reimplemented from OGRLineString (p. ??).

The documentation for this class was generated from the following files:

• ogr_geometry.h
• ogrlinearring.cpp

12.66 OGRLineString Class Reference

#include <ogr_geometry.h>

Inheritance diagram for OGRLineString:

OGRLineString

OGRCurve

OGRGeometry

OGRLinearRing

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.66 OGRLineString Class Reference 239

Public Member Functions

• OGRLineString ()

Create an empty line string.

• virtual int WkbSize () const

Returns size of related binary representation.

• virtual OGRErr importFromWkb (unsigned char ∗, int=-1)

Assign geometry from well known binary data.

• virtual OGRErr exportToWkb (OGRwkbByteOrder, unsigned char ∗, OGRwkbVariant=wkbVariantOgc)
const

Convert a geometry into well known binary format.

• virtual OGRErr importFromWkt (char ∗∗)
Assign geometry from well known text data.

• virtual OGRErr exportToWkt (char ∗∗ppszDstText) const

Convert a geometry into well known text format.

• virtual int getDimension () const

Get the dimension of this object.

• virtual OGRGeometry ∗ clone () const

Make a copy of this object.

• virtual void empty ()

Clear geometry information. This restores the geometry to it's initial state after construction, and before assignment
of actual geometry.

• virtual void getEnvelope (OGREnvelope ∗psEnvelope) const

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure.

• virtual void getEnvelope (OGREnvelope3D ∗psEnvelope) const

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.

• virtual OGRBoolean IsEmpty () const

Returns TRUE (non-zero) if the object has no points.

• virtual double get_Length () const

Returns the length of the curve.

• virtual void StartPoint (OGRPoint ∗) const

Return the curve start point.

• virtual void EndPoint (OGRPoint ∗) const

Return the curve end point.

• virtual void Value (double, OGRPoint ∗) const

Fetch point at given distance along curve.

• virtual double Project (const OGRPoint ∗) const

Project point on linestring.

• virtual OGRLineString ∗ getSubLine (double, double, int) const

Get the portion of linestring.

• int getNumPoints () const

Fetch vertex count.

• void getPoint (int, OGRPoint ∗) const

Fetch a point in line string.

• double getX (int i) const

Get X at vertex.

• double getY (int i) const

Get Y at vertex.

• double getZ (int i) const

Get Z at vertex.

• virtual OGRBoolean Equals (OGRGeometry ∗) const

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

240 Class Documentation

Returns TRUE if two geometries are equivalent.

• virtual void setCoordinateDimension (int nDimension)

Set the coordinate dimension.

• void setNumPoints (int nNewPointCount, int bZeroizeNewContent=TRUE)

Set number of points in geometry.

• void setPoint (int, OGRPoint ∗)
Set the location of a vertex in line string.

• void setPoint (int, double, double, double)

Set the location of a vertex in line string.

• void setPoints (int, OGRRawPoint ∗, double ∗=NULL)

Assign all points in a line string.

• void setPoints (int, double ∗padfX, double ∗padfY, double ∗padfZ=NULL)

Assign all points in a line string.

• void addPoint (OGRPoint ∗)
Add a point to a line string.

• void addPoint (double, double, double)

Add a point to a line string.

• void getPoints (OGRRawPoint ∗, double ∗=NULL) const

Returns all points of line string.

• void getPoints (void ∗pabyX, int nXStride, void ∗pabyY, int nYStride, void ∗pabyZ=NULL, int nZStride=0)
const

Returns all points of line string.

• void addSubLineString (const OGRLineString ∗, int nStartVertex=0, int nEndVertex=-1)

Add a segment of another linestring to this one.

• void reversePoints (void)

Reverse point order.

• virtual OGRwkbGeometryType getGeometryType () const

Fetch geometry type.

• virtual const char ∗ getGeometryName () const

Fetch WKT name for geometry type.

• virtual OGRErr transform (OGRCoordinateTransformation ∗poCT)

Apply arbitrary coordinate transformation to geometry.

• virtual void flattenTo2D ()

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0.

• virtual void segmentize (double dfMaxLength)

Modify the geometry such it has no segment longer then the given distance.

• virtual void swapXY ()

Swap x and y coordinates.

12.66.1 Detailed Description

Concrete representation of a multi-vertex line.

12.66.2 Member Function Documentation

12.66.2.1 void OGRLineString::addPoint (OGRPoint ∗ poPoint)

Add a point to a line string.

The vertex count of the line string is increased by one, and assigned from the passed location value.

There is no SFCOM analog to this method.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.66 OGRLineString Class Reference 241

Parameters

poPoint the point to assign to the new vertex.

References OGRGeometry::getCoordinateDimension(), OGRPoint::getX(), OGRPoint::getY(), OGRPoint::getZ(),
and setPoint().

Referenced by OGRLinearRing::closeRings(), getSubLine(), OGRBuildPolygonFromEdges(), and OGRLayer::Set←↩

SpatialFilterRect().

12.66.2.2 void OGRLineString::addPoint (double x, double y, double z)

Add a point to a line string.

The vertex count of the line string is increased by one, and assigned from the passed location value.

There is no SFCOM analog to this method.

Parameters

x the X coordinate to assign to the new point.
y the Y coordinate to assign to the new point.
z the Z coordinate to assign to the new point (defaults to zero).

References setPoint().

12.66.2.3 void OGRLineString::addSubLineString (const OGRLineString ∗ poOtherLine, int nStartVertex = 0, int
nEndVertex = -1)

Add a segment of another linestring to this one.

Adds the request range of vertices to the end of this line string in an efficient manner. If the nStartVertex is larger
than the nEndVertex then the vertices will be reversed as they are copied.

Parameters

poOtherLine the other OGRLineString (p. ??).
nStartVertex the first vertex to copy, defaults to 0 to start with the first vertex in the other linestring.
nEndVertex the last vertex to copy, defaults to -1 indicating the last vertex of the other line string.

References getNumPoints(), and setNumPoints().

Referenced by OGRGeometryFactory::forceToLineString(), and OGRGeometryFactory::forceToMultiLineString().

12.66.2.4 OGRGeometry ∗ OGRLineString::clone () const [virtual]

Make a copy of this object.

This method relates to the SFCOM IGeometry::clone() method.

This method is the same as the C function OGR_G_Clone() (p. ??).

Returns

a new object instance with the same geometry, and spatial reference system as the original.

Implements OGRGeometry (p. ??).

Reimplemented in OGRLinearRing (p. ??).

References OGRGeometry::assignSpatialReference(), OGRGeometry::getCoordinateDimension(), OGR←↩

Geometry::getSpatialReference(), OGRLineString(), setCoordinateDimension(), and setPoints().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

242 Class Documentation

12.66.2.5 void OGRLineString::empty () [virtual]

Clear geometry information. This restores the geometry to it's initial state after construction, and before assignment
of actual geometry.

This method relates to the SFCOM IGeometry::Empty() method.

This method is the same as the C function OGR_G_Empty() (p. ??).

Implements OGRGeometry (p. ??).

References setNumPoints().

Referenced by importFromWkt().

12.66.2.6 void OGRLineString::EndPoint (OGRPoint ∗ poPoint) const [virtual]

Return the curve end point.

This method relates to the SF COM ICurve::get_EndPoint() method.

Parameters

poPoint the point to be assigned the end location.

Implements OGRCurve (p. ??).

References getPoint().

Referenced by OGRGeometryFactory::forceToLineString(), and Value().

12.66.2.7 OGRBoolean OGRLineString::Equals (OGRGeometry ∗ poOtherGeom) const [virtual]

Returns TRUE if two geometries are equivalent.

This method is the same as the C function OGR_G_Equals() (p. ??).

Returns

TRUE if equivalent or FALSE otherwise.

Implements OGRGeometry (p. ??).

References OGRGeometry::getGeometryType(), getGeometryType(), getNumPoints(), getX(), getY(), getZ(), OG←↩

RGeometry::IsEmpty(), and IsEmpty().

Referenced by OGRPolygon::Equals().

12.66.2.8 OGRErr OGRLineString::exportToWkb (OGRwkbByteOrder eByteOrder, unsigned char ∗ pabyData,
OGRwkbVariant eWkbVariant = wkbVariantOgc) const [virtual]

Convert a geometry into well known binary format.

This method relates to the SFCOM IWks::ExportToWKB() method.

This method is the same as the C function OGR_G_ExportToWkb() (p. ??).

Parameters

eByteOrder One of wkbXDR or wkbNDR indicating MSB or LSB byte order respectively.
pabyData a buffer into which the binary representation is written. This buffer must be at least OGR←↩

Geometry::WkbSize() (p. ??) byte in size.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.66 OGRLineString Class Reference 243

eWkbVariant What standard to use when exporting geometries with three dimensions (or more). The
default wkbVariantOgc is the historical OGR variant. wkbVariantIso is the variant defined in
ISO SQL/MM and adopted by OGC for SFSQL 1.2.

Returns

Currently OGRERR_NONE is always returned.

Implements OGRGeometry (p. ??).

Reimplemented in OGRLinearRing (p. ??).

References OGRGeometry::getCoordinateDimension(), getGeometryType(), and wkbVariantIso.

12.66.2.9 OGRErr OGRLineString::exportToWkt (char ∗∗ ppszDstText) const [virtual]

Convert a geometry into well known text format.

This method relates to the SFCOM IWks::ExportToWKT() method.

This method is the same as the C function OGR_G_ExportToWkt() (p. ??).

Parameters

ppszDstText a text buffer is allocated by the program, and assigned to the passed pointer. After use,
∗ppszDstText should be freed with OGRFree().

Returns

Currently OGRERR_NONE is always returned.

Implements OGRGeometry (p. ??).

References CPLDebug(), CPLStrdup(), OGRGeometry::getCoordinateDimension(), getGeometryName(), and Is←↩

Empty().

Referenced by OGRPolygon::exportToWkt().

12.66.2.10 void OGRLineString::flattenTo2D () [virtual]

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0.

This method is the same as the C function OGR_G_FlattenTo2D() (p. ??).

Implements OGRGeometry (p. ??).

12.66.2.11 double OGRLineString::get_Length () const [virtual]

Returns the length of the curve.

This method relates to the SFCOM ICurve::get_Length() method.

Returns

the length of the curve, zero if the curve hasn't been initialized.

Implements OGRCurve (p. ??).

Referenced by getSubLine().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

244 Class Documentation

12.66.2.12 int OGRLineString::getDimension () const [virtual]

Get the dimension of this object.

This method corresponds to the SFCOM IGeometry::GetDimension() method. It indicates the dimension of the ob-
ject, but does not indicate the dimension of the underlying space (as indicated by OGRGeometry::getCoordinate←↩

Dimension() (p. ??)).

This method is the same as the C function OGR_G_GetDimension() (p. ??).

Returns

0 for points, 1 for lines and 2 for surfaces.

Implements OGRGeometry (p. ??).

12.66.2.13 void OGRLineString::getEnvelope (OGREnvelope ∗ psEnvelope) const [virtual]

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure.

This method is the same as the C function OGR_G_GetEnvelope() (p. ??).

Parameters

psEnvelope the structure in which to place the results.

Implements OGRGeometry (p. ??).

References IsEmpty().

Referenced by getEnvelope(), and OGRPolygon::getEnvelope().

12.66.2.14 void OGRLineString::getEnvelope (OGREnvelope3D ∗ psEnvelope) const [virtual]

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.

This method is the same as the C function OGR_G_GetEnvelope3D() (p. ??).

Parameters

psEnvelope the structure in which to place the results.

Since

OGR 1.9.0

Implements OGRGeometry (p. ??).

References getEnvelope(), and IsEmpty().

12.66.2.15 const char ∗ OGRLineString::getGeometryName () const [virtual]

Fetch WKT name for geometry type.

There is no SFCOM analog to this method.

This method is the same as the C function OGR_G_GetGeometryName() (p. ??).

Returns

name used for this geometry type in well known text format. The returned pointer is to a static internal string
and should not be modified or freed.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.66 OGRLineString Class Reference 245

Implements OGRGeometry (p. ??).

Reimplemented in OGRLinearRing (p. ??).

Referenced by exportToWkt(), and importFromWkt().

12.66.2.16 OGRwkbGeometryType OGRLineString::getGeometryType () const [virtual]

Fetch geometry type.

Note that the geometry type may include the 2.5D flag. To get a 2D flattened version of the geometry type apply the
wkbFlatten() macro to the return result.

This method is the same as the C function OGR_G_GetGeometryType() (p. ??).

Returns

the geometry type code.

Implements OGRGeometry (p. ??).

References wkbLineString, and wkbLineString25D.

Referenced by Equals(), and exportToWkb().

12.66.2.17 int OGRLineString::getNumPoints () const [inline]

Fetch vertex count.

Returns the number of vertices in the line string.

Returns

vertex count.

Referenced by addSubLineString(), OGRGeometry::dumpReadable(), Equals(), OGRGeometryFactory::forceTo←↩

LineString(), OGRGeometryFactory::forceToMultiLineString(), getSubLine(), OGR_G_GetPoint(), OGR_G_Get←↩

PointCount(), OGR_G_GetPoints(), OGR_G_GetX(), OGR_G_GetY(), OGR_G_GetZ(), OGRBuildPolygonFrom←↩

Edges(), and OGRGeometryFactory::organizePolygons().

12.66.2.18 void OGRLineString::getPoint (int i, OGRPoint ∗ poPoint) const

Fetch a point in line string.

This method relates to the SFCOM ILineString::get_Point() method.

Parameters

i the vertex to fetch, from 0 to getNumPoints() (p. ??)-1.
poPoint a point to initialize with the fetched point.

References OGRGeometry::getCoordinateDimension(), OGRPoint::setX(), OGRPoint::setY(), and OGRPoint::set←↩

Z().

Referenced by OGRLinearRing::closeRings(), EndPoint(), OGRGeometryFactory::organizePolygons(), and Start←↩

Point().

12.66.2.19 void OGRLineString::getPoints (OGRRawPoint ∗ paoPointsOut, double ∗ padfZ = NULL) const

Returns all points of line string.

This method copies all points into user list. This list must be at least sizeof(OGRRawPoint) ∗ OGRGeometry::get←↩

NumPoints() byte in size. It also copies all Z coordinates.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

246 Class Documentation

There is no SFCOM analog to this method.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.66 OGRLineString Class Reference 247

Parameters

paoPointsOut a buffer into which the points is written.
padfZ the Z values that go with the points (optional, may be NULL).

Referenced by getPoints(), and OGR_G_GetPoints().

12.66.2.20 void OGRLineString::getPoints (void ∗ pabyX, int nXStride, void ∗ pabyY, int nYStride, void ∗ pabyZ = NULL, int
nZStride = 0) const

Returns all points of line string.

This method copies all points into user arrays. The user provides the stride between 2 consecutives elements of
the array.

On some CPU architectures, care must be taken so that the arrays are properly aligned.

There is no SFCOM analog to this method.

Parameters

pabyX a buffer of at least (sizeof(double) ∗ nXStride ∗ nPointCount) bytes, may be NULL.
nXStride the number of bytes between 2 elements of pabyX.

pabyY a buffer of at least (sizeof(double) ∗ nYStride ∗ nPointCount) bytes, may be NULL.
nYStride the number of bytes between 2 elements of pabyY.

pabyZ a buffer of at last size (sizeof(double) ∗ nZStride ∗ nPointCount) bytes, may be NULL.
nZStride the number of bytes between 2 elements of pabyZ.

Since

OGR 1.9.0

References getPoints().

12.66.2.21 OGRLineString ∗ OGRLineString::getSubLine (double dfDistanceFrom, double dfDistanceTo, int bAsRatio)
const [virtual]

Get the portion of linestring.

The portion of the linestring extracted to new one. The input distances (maybe present as ratio of length of linestring)
set begin and end of extracted portion.

Parameters

dfDistanceFrom The distance from the origin of linestring, where the subline should begins
dfDistanceTo The distance from the origin of linestring, where the subline should ends

bAsRatio The flag indicating that distances are the ratio of the linestring length.

Returns

a newly allocated linestring now owned by the caller, or NULL on failure.

Since

OGR 1.11.0

References addPoint(), OGRGeometry::assignSpatialReference(), CPLError(), get_Length(), OGRGeometry←↩

::getCoordinateDimension(), getNumPoints(), OGRGeometry::getSpatialReference(), OGRLineString(), and set←↩

CoordinateDimension().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

248 Class Documentation

12.66.2.22 double OGRLineString::getX (int iVertex) const [inline]

Get X at vertex.

Returns the X value at the indicated vertex. If iVertex is out of range a crash may occur, no internal range checking
is performed.

Parameters

iVertex the vertex to return, between 0 and getNumPoints() (p. ??)-1.

Returns

X value.

Referenced by OGRLinearRing::closeRings(), Equals(), OGR_G_GetPoint(), OGR_G_GetX(), and OGRBuild←↩

PolygonFromEdges().

12.66.2.23 double OGRLineString::getY (int iVertex) const [inline]

Get Y at vertex.

Returns the Y value at the indicated vertex. If iVertex is out of range a crash may occur, no internal range checking
is performed.

Parameters

iVertex the vertex to return, between 0 and getNumPoints() (p. ??)-1.

Returns

X value.

Referenced by OGRLinearRing::closeRings(), Equals(), OGR_G_GetPoint(), OGR_G_GetY(), and OGRBuild←↩

PolygonFromEdges().

12.66.2.24 double OGRLineString::getZ (int iVertex) const

Get Z at vertex.

Returns the Z (elevation) value at the indicated vertex. If no Z value is available, 0.0 is returned. If iVertex is out of
range a crash may occur, no internal range checking is performed.

Parameters

iVertex the vertex to return, between 0 and getNumPoints() (p. ??)-1.

Returns

Z value.

Referenced by OGRLinearRing::closeRings(), Equals(), OGR_G_GetPoint(), OGR_G_GetZ(), and OGRBuild←↩

PolygonFromEdges().

12.66.2.25 OGRErr OGRLineString::importFromWkb (unsigned char ∗ pabyData, int nSize = -1) [virtual]

Assign geometry from well known binary data.

The object must have already been instantiated as the correct derived type of geometry object to match the binaries
type. This method is used by the OGRGeometryFactory (p. ??) class, but not normally called by application code.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.66 OGRLineString Class Reference 249

This method relates to the SFCOM IWks::ImportFromWKB() method.

This method is the same as the C function OGR_G_ImportFromWkb() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

250 Class Documentation

Parameters

pabyData the binary input data.
nSize the size of pabyData in bytes, or zero if not known.

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Implements OGRGeometry (p. ??).

Reimplemented in OGRLinearRing (p. ??).

References CPLError(), setNumPoints(), and wkbLineString.

12.66.2.26 OGRErr OGRLineString::importFromWkt (char ∗∗ ppszInput) [virtual]

Assign geometry from well known text data.

The object must have already been instantiated as the correct derived type of geometry object to match the text
type. This method is used by the OGRGeometryFactory (p. ??) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKT() method.

This method is the same as the C function OGR_G_ImportFromWkt() (p. ??).

Parameters

ppszInput pointer to a pointer to the source text. The pointer is updated to pointer after the consumed
text.

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Implements OGRGeometry (p. ??).

References empty(), and getGeometryName().

12.66.2.27 OGRBoolean OGRLineString::IsEmpty () const [virtual]

Returns TRUE (non-zero) if the object has no points.

Normally this returns FALSE except between when an object is instantiated and points have been assigned.

This method relates to the SFCOM IGeometry::IsEmpty() method.

Returns

TRUE if object is empty, otherwise FALSE.

Implements OGRGeometry (p. ??).

Referenced by Equals(), exportToWkt(), and getEnvelope().

12.66.2.28 double OGRLineString::Project (const OGRPoint ∗ poPoint) const [virtual]

Project point on linestring.

The input point projeted on linestring. This is the shortest distance from point to the linestring. The distance from
begin of linestring to the point projection returned.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.66 OGRLineString Class Reference 251

This method is built on the GEOS library (GEOS >= 3.2.0), check it for the definition of the geometry operation. If
OGR is built without the GEOS library, this method will always return -1, issuing a CPLE_NotSupported error.

Returns

a distance from the begin of the linestring to the projected point.

Since

OGR 1.11.0

References CPLError().

12.66.2.29 void OGRLineString::reversePoints (void)

Reverse point order.

This method updates the points in this line string in place reversing the point ordering (first for last, etc).

Referenced by OGRGeometryFactory::forceToLineString().

12.66.2.30 void OGRLineString::segmentize (double dfMaxLength) [virtual]

Modify the geometry such it has no segment longer then the given distance.

Interpolated points will have Z and M values (if needed) set to 0. Distance computation is performed in 2d only

This function is the same as the C function OGR_G_Segmentize() (p. ??)

Parameters

dfMaxLength the maximum distance between 2 points after segmentization

Reimplemented from OGRGeometry (p. ??).

References CPLError(), and OGRGeometry::getCoordinateDimension().

12.66.2.31 void OGRLineString::setCoordinateDimension (int nNewDimension) [virtual]

Set the coordinate dimension.

This method sets the explicit coordinate dimension. Setting the coordinate dimension of a geometry to 2 should
zero out any existing Z values. Setting the dimension of a geometry collection will not necessarily affect the children
geometries.

Parameters

nNewDimension New coordinate dimension value, either 2 or 3.

Reimplemented from OGRGeometry (p. ??).

Referenced by clone(), OGRPolygon::exportToWkt(), and getSubLine().

12.66.2.32 void OGRLineString::setNumPoints (int nNewPointCount, int bZeroizeNewContent = TRUE)

Set number of points in geometry.

This method primary exists to preset the number of points in a linestring geometry before setPoint() (p. ??) is used
to assign them to avoid reallocating the array larger with each call to addPoint() (p. ??).

This method has no SFCOM analog.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

252 Class Documentation

Parameters

nNewPointCount the new number of points for geometry.

References CPLError(), and OGRGeometry::getCoordinateDimension().

Referenced by addSubLineString(), empty(), importFromWkb(), OGR_G_SetPointCount(), OGR_G_SetPoints(),
setPoint(), and setPoints().

12.66.2.33 void OGRLineString::setPoint (int iPoint, OGRPoint ∗ poPoint)

Set the location of a vertex in line string.

If iPoint is larger than the number of necessary the number of existing points in the line string, the point count will
be increased to accomodate the request.

There is no SFCOM analog to this method.

Parameters

iPoint the index of the vertex to assign (zero based).
poPoint the value to assign to the vertex.

References OGRGeometry::getCoordinateDimension(), OGRPoint::getX(), OGRPoint::getY(), and OGRPoint←↩

::getZ().

Referenced by addPoint(), OGRGeometryFactory::approximateArcAngles(), and OGR_G_SetPoints().

12.66.2.34 void OGRLineString::setPoint (int iPoint, double xIn, double yIn, double zIn)

Set the location of a vertex in line string.

If iPoint is larger than the number of necessary the number of existing points in the line string, the point count will
be increased to accomodate the request.

There is no SFCOM analog to this method.

Parameters

iPoint the index of the vertex to assign (zero based).
xIn input X coordinate to assign.
yIn input Y coordinate to assign.
zIn input Z coordinate to assign (defaults to zero).

References OGRGeometry::getCoordinateDimension(), and setNumPoints().

12.66.2.35 void OGRLineString::setPoints (int nPointsIn, OGRRawPoint ∗ paoPointsIn, double ∗ padfZ = NULL)

Assign all points in a line string.

This method clears any existing points assigned to this line string, and assigns a whole new set. It is the most
efficient way of assigning the value of a line string.

There is no SFCOM analog to this method.

Parameters

nPointsIn number of points being passed in paoPointsIn
paoPointsIn list of points being assigned.

padfZ the Z values that go with the points (optional, may be NULL).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.66 OGRLineString Class Reference 253

References OGRGeometry::getCoordinateDimension(), and setNumPoints().

Referenced by clone(), OGRLinearRing::clone(), OGRPolygon::importFromWkt(), OGRMultiPolygon::importFrom←↩

Wkt(), OGRMultiLineString::importFromWkt(), OGR_G_SetPoints(), and transform().

12.66.2.36 void OGRLineString::setPoints (int nPointsIn, double ∗ padfX, double ∗ padfY, double ∗ padfZ = NULL)

Assign all points in a line string.

This method clear any existing points assigned to this line string, and assigns a whole new set.

There is no SFCOM analog to this method.

Parameters

nPointsIn number of points being passed in padfX and padfY.
padfX list of X coordinates of points being assigned.
padfY list of Y coordinates of points being assigned.
padfZ list of Z coordinates of points being assigned (defaults to NULL for 2D objects).

References setNumPoints().

12.66.2.37 void OGRLineString::StartPoint (OGRPoint ∗ poPoint) const [virtual]

Return the curve start point.

This method relates to the SF COM ICurve::get_StartPoint() method.

Parameters

poPoint the point to be assigned the start location.

Implements OGRCurve (p. ??).

References getPoint().

Referenced by OGRGeometryFactory::forceToLineString(), and Value().

12.66.2.38 void OGRLineString::swapXY () [virtual]

Swap x and y coordinates.

Since

OGR 1.8.0

Reimplemented from OGRGeometry (p. ??).

12.66.2.39 OGRErr OGRLineString::transform (OGRCoordinateTransformation ∗ poCT) [virtual]

Apply arbitrary coordinate transformation to geometry.

This method will transform the coordinates of a geometry from their current spatial reference system to a new
target spatial reference system. Normally this means reprojecting the vectors, but it could include datum shifts, and
changes of units.

Note that this method does not require that the geometry already have a spatial reference system. It will be assumed
that they can be treated as having the source spatial reference system of the OGRCoordinateTransformation
(p. ??) object, and the actual SRS of the geometry will be ignored. On successful completion the output OGR←↩

SpatialReference (p. ??) of the OGRCoordinateTransformation (p. ??) will be assigned to the geometry.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

254 Class Documentation

This method is the same as the C function OGR_G_Transform() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.67 OGRMIAttrIndex Class Reference 255

Parameters

poCT the transformation to apply.

Returns

OGRERR_NONE on success or an error code.

Implements OGRGeometry (p. ??).

References OGRGeometry::assignSpatialReference(), CPLError(), CPLGetConfigOption(), CSLTestBoolean(), O←↩

GRCoordinateTransformation::GetTargetCS(), setPoints(), and OGRCoordinateTransformation::TransformEx().

Referenced by OGRPolygon::transform().

12.66.2.40 void OGRLineString::Value (double dfDistance, OGRPoint ∗ poPoint) const [virtual]

Fetch point at given distance along curve.

This method relates to the SF COM ICurve::get_Value() method.

Parameters

dfDistance distance along the curve at which to sample position. This distance should be between zero
and get_Length() (p. ??) for this curve.

poPoint the point to be assigned the curve position.

Implements OGRCurve (p. ??).

References EndPoint(), OGRGeometry::getCoordinateDimension(), OGRPoint::setX(), OGRPoint::setY(), OGR←↩

Point::setZ(), and StartPoint().

12.66.2.41 int OGRLineString::WkbSize () const [virtual]

Returns size of related binary representation.

This method returns the exact number of bytes required to hold the well known binary representation of this geom-
etry object. Its computation may be slightly expensive for complex geometries.

This method relates to the SFCOM IWks::WkbSize() method.

This method is the same as the C function OGR_G_WkbSize() (p. ??).

Returns

size of binary representation in bytes.

Implements OGRGeometry (p. ??).

Reimplemented in OGRLinearRing (p. ??).

References OGRGeometry::getCoordinateDimension().

The documentation for this class was generated from the following files:

• ogr_geometry.h
• ogrlinestring.cpp

12.67 OGRMIAttrIndex Class Reference

Inheritance diagram for OGRMIAttrIndex:

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

256 Class Documentation

OGRMIAttrIndex

OGRAttrIndex

The documentation for this class was generated from the following file:

• ogr_miattrind.cpp

12.68 OGRMILayerAttrIndex Class Reference

Inheritance diagram for OGRMILayerAttrIndex:

OGRMILayerAttrIndex

OGRLayerAttrIndex

The documentation for this class was generated from the following file:

• ogr_miattrind.cpp

12.69 OGRMultiLineString Class Reference

#include <ogr_geometry.h>

Inheritance diagram for OGRMultiLineString:

OGRMultiLineString

OGRGeometryCollection

OGRGeometry

Public Member Functions

• virtual const char ∗ getGeometryName () const

Fetch WKT name for geometry type.

• virtual OGRwkbGeometryType getGeometryType () const

Fetch geometry type.

• virtual OGRGeometry ∗ clone () const

Make a copy of this object.

• virtual OGRErr importFromWkt (char ∗∗)
Assign geometry from well known text data.

• virtual OGRErr exportToWkt (char ∗∗) const

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.69 OGRMultiLineString Class Reference 257

Convert a geometry into well known text format.

• virtual int getDimension () const

Get the dimension of this object.

• virtual OGRErr addGeometryDirectly (OGRGeometry ∗)
Add a geometry directly to the container.

12.69.1 Detailed Description

A collection of OGRLineStrings.

12.69.2 Member Function Documentation

12.69.2.1 OGRErr OGRMultiLineString::addGeometryDirectly (OGRGeometry ∗ poNewGeom) [virtual]

Add a geometry directly to the container.

Some subclasses of OGRGeometryCollection (p. ??) restrict the types of geometry that can be added, and may
return an error. Ownership of the passed geometry is taken by the container rather than cloning as addGeometry()
(p. ??) does.

This method is the same as the C function OGR_G_AddGeometryDirectly() (p. ??).

There is no SFCOM analog to this method.

Parameters

poNewGeom geometry to add to the container.

Returns

OGRERR_NONE if successful, or OGRERR_UNSUPPORTED_GEOMETRY_TYPE if the geometry type is
illegal for the type of geometry container.

Reimplemented from OGRGeometryCollection (p. ??).

References OGRGeometryCollection::addGeometryDirectly(), OGRGeometry::getGeometryType(), wkbLineString,
and wkbLineString25D.

Referenced by OGRGeometryFactory::forceToMultiLineString(), and importFromWkt().

12.69.2.2 OGRGeometry ∗ OGRMultiLineString::clone () const [virtual]

Make a copy of this object.

This method relates to the SFCOM IGeometry::clone() method.

This method is the same as the C function OGR_G_Clone() (p. ??).

Returns

a new object instance with the same geometry, and spatial reference system as the original.

Reimplemented from OGRGeometryCollection (p. ??).

References OGRGeometryCollection::addGeometry(), OGRGeometry::assignSpatialReference(), OGR←↩

GeometryCollection::getGeometryRef(), OGRGeometryCollection::getNumGeometries(), and OGRGeometry←↩

::getSpatialReference().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

258 Class Documentation

12.69.2.3 OGRErr OGRMultiLineString::exportToWkt (char ∗∗ ppszDstText) const [virtual]

Convert a geometry into well known text format.

This method relates to the SFCOM IWks::ExportToWKT() method.

This method is the same as the C function OGR_G_ExportToWkt() (p. ??).

Parameters

ppszDstText a text buffer is allocated by the program, and assigned to the passed pointer. After use,
∗ppszDstText should be freed with OGRFree().

Returns

Currently OGRERR_NONE is always returned.

Reimplemented from OGRGeometryCollection (p. ??).

References CPLCalloc(), CPLDebug(), CPLStrdup(), OGRGeometry::exportToWkt(), OGRGeometryCollection←↩

::getGeometryRef(), and OGRGeometryCollection::getNumGeometries().

12.69.2.4 int OGRMultiLineString::getDimension () const [virtual]

Get the dimension of this object.

This method corresponds to the SFCOM IGeometry::GetDimension() method. It indicates the dimension of the ob-
ject, but does not indicate the dimension of the underlying space (as indicated by OGRGeometry::getCoordinate←↩

Dimension() (p. ??)).

This method is the same as the C function OGR_G_GetDimension() (p. ??).

Returns

0 for points, 1 for lines and 2 for surfaces.

Reimplemented from OGRGeometryCollection (p. ??).

12.69.2.5 const char ∗ OGRMultiLineString::getGeometryName () const [virtual]

Fetch WKT name for geometry type.

There is no SFCOM analog to this method.

This method is the same as the C function OGR_G_GetGeometryName() (p. ??).

Returns

name used for this geometry type in well known text format. The returned pointer is to a static internal string
and should not be modified or freed.

Reimplemented from OGRGeometryCollection (p. ??).

Referenced by importFromWkt().

12.69.2.6 OGRwkbGeometryType OGRMultiLineString::getGeometryType () const [virtual]

Fetch geometry type.

Note that the geometry type may include the 2.5D flag. To get a 2D flattened version of the geometry type apply the
wkbFlatten() macro to the return result.

This method is the same as the C function OGR_G_GetGeometryType() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.70 OGRMultiPoint Class Reference 259

Returns

the geometry type code.

Reimplemented from OGRGeometryCollection (p. ??).

References OGRGeometry::getCoordinateDimension(), wkbMultiLineString, and wkbMultiLineString25D.

12.69.2.7 OGRErr OGRMultiLineString::importFromWkt (char ∗∗ ppszInput) [virtual]

Assign geometry from well known text data.

The object must have already been instantiated as the correct derived type of geometry object to match the text
type. This method is used by the OGRGeometryFactory (p. ??) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKT() method.

This method is the same as the C function OGR_G_ImportFromWkt() (p. ??).

Parameters

ppszInput pointer to a pointer to the source text. The pointer is updated to pointer after the consumed
text.

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Reimplemented from OGRGeometryCollection (p. ??).

References addGeometryDirectly(), OGRGeometryCollection::empty(), getGeometryName(), and OGRLine←↩

String::setPoints().

The documentation for this class was generated from the following files:

• ogr_geometry.h
• ogrmultilinestring.cpp

12.70 OGRMultiPoint Class Reference

#include <ogr_geometry.h>

Inheritance diagram for OGRMultiPoint:

OGRMultiPoint

OGRGeometryCollection

OGRGeometry

Public Member Functions

• virtual const char ∗ getGeometryName () const

Fetch WKT name for geometry type.

• virtual OGRwkbGeometryType getGeometryType () const

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

260 Class Documentation

Fetch geometry type.

• virtual OGRGeometry ∗ clone () const

Make a copy of this object.

• virtual OGRErr importFromWkt (char ∗∗)
Assign geometry from well known text data.

• virtual OGRErr exportToWkt (char ∗∗) const

Convert a geometry into well known text format.

• virtual int getDimension () const

Get the dimension of this object.

• virtual OGRErr addGeometryDirectly (OGRGeometry ∗)
Add a geometry directly to the container.

12.70.1 Detailed Description

A collection of OGRPoints.

12.70.2 Member Function Documentation

12.70.2.1 OGRErr OGRMultiPoint::addGeometryDirectly (OGRGeometry ∗ poNewGeom) [virtual]

Add a geometry directly to the container.

Some subclasses of OGRGeometryCollection (p. ??) restrict the types of geometry that can be added, and may
return an error. Ownership of the passed geometry is taken by the container rather than cloning as addGeometry()
(p. ??) does.

This method is the same as the C function OGR_G_AddGeometryDirectly() (p. ??).

There is no SFCOM analog to this method.

Parameters

poNewGeom geometry to add to the container.

Returns

OGRERR_NONE if successful, or OGRERR_UNSUPPORTED_GEOMETRY_TYPE if the geometry type is
illegal for the type of geometry container.

Reimplemented from OGRGeometryCollection (p. ??).

References OGRGeometryCollection::addGeometryDirectly(), OGRGeometry::getGeometryType(), wkbPoint, and
wkbPoint25D.

Referenced by OGRGeometryFactory::forceToMultiPoint(), and importFromWkt().

12.70.2.2 OGRGeometry ∗ OGRMultiPoint::clone () const [virtual]

Make a copy of this object.

This method relates to the SFCOM IGeometry::clone() method.

This method is the same as the C function OGR_G_Clone() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.70 OGRMultiPoint Class Reference 261

Returns

a new object instance with the same geometry, and spatial reference system as the original.

Reimplemented from OGRGeometryCollection (p. ??).

References OGRGeometryCollection::addGeometry(), OGRGeometry::assignSpatialReference(), OGR←↩

GeometryCollection::getGeometryRef(), OGRGeometryCollection::getNumGeometries(), and OGRGeometry←↩

::getSpatialReference().

12.70.2.3 OGRErr OGRMultiPoint::exportToWkt (char ∗∗ ppszDstText) const [virtual]

Convert a geometry into well known text format.

This method relates to the SFCOM IWks::ExportToWKT() method.

This method is the same as the C function OGR_G_ExportToWkt() (p. ??).

Parameters

ppszDstText a text buffer is allocated by the program, and assigned to the passed pointer. After use,
∗ppszDstText should be freed with OGRFree().

Returns

Currently OGRERR_NONE is always returned.

Reimplemented from OGRGeometryCollection (p. ??).

References CPLDebug(), CPLRealloc(), CPLStrdup(), OGRGeometry::getCoordinateDimension(), getGeometry←↩

Name(), OGRGeometryCollection::getGeometryRef(), OGRGeometryCollection::getNumGeometries(), OGR←↩

Point::getX(), OGRPoint::getY(), OGRPoint::getZ(), OGRPoint::IsEmpty(), and OGRGeometryCollection::IsEmpty().

12.70.2.4 int OGRMultiPoint::getDimension () const [virtual]

Get the dimension of this object.

This method corresponds to the SFCOM IGeometry::GetDimension() method. It indicates the dimension of the ob-
ject, but does not indicate the dimension of the underlying space (as indicated by OGRGeometry::getCoordinate←↩

Dimension() (p. ??)).

This method is the same as the C function OGR_G_GetDimension() (p. ??).

Returns

0 for points, 1 for lines and 2 for surfaces.

Reimplemented from OGRGeometryCollection (p. ??).

12.70.2.5 const char ∗ OGRMultiPoint::getGeometryName () const [virtual]

Fetch WKT name for geometry type.

There is no SFCOM analog to this method.

This method is the same as the C function OGR_G_GetGeometryName() (p. ??).

Returns

name used for this geometry type in well known text format. The returned pointer is to a static internal string
and should not be modified or freed.

Reimplemented from OGRGeometryCollection (p. ??).

Referenced by exportToWkt(), and importFromWkt().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

262 Class Documentation

12.70.2.6 OGRwkbGeometryType OGRMultiPoint::getGeometryType () const [virtual]

Fetch geometry type.

Note that the geometry type may include the 2.5D flag. To get a 2D flattened version of the geometry type apply the
wkbFlatten() macro to the return result.

This method is the same as the C function OGR_G_GetGeometryType() (p. ??).

Returns

the geometry type code.

Reimplemented from OGRGeometryCollection (p. ??).

References OGRGeometry::getCoordinateDimension(), wkbMultiPoint, and wkbMultiPoint25D.

12.70.2.7 OGRErr OGRMultiPoint::importFromWkt (char ∗∗ ppszInput) [virtual]

Assign geometry from well known text data.

The object must have already been instantiated as the correct derived type of geometry object to match the text
type. This method is used by the OGRGeometryFactory (p. ??) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKT() method.

This method is the same as the C function OGR_G_ImportFromWkt() (p. ??).

Parameters

ppszInput pointer to a pointer to the source text. The pointer is updated to pointer after the consumed
text.

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Reimplemented from OGRGeometryCollection (p. ??).

References addGeometryDirectly(), OGRGeometryCollection::empty(), and getGeometryName().

The documentation for this class was generated from the following files:

• ogr_geometry.h
• ogrmultipoint.cpp

12.71 OGRMultiPolygon Class Reference

#include <ogr_geometry.h>

Inheritance diagram for OGRMultiPolygon:

OGRMultiPolygon

OGRGeometryCollection

OGRGeometry

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.71 OGRMultiPolygon Class Reference 263

Public Member Functions

• virtual const char ∗ getGeometryName () const

Fetch WKT name for geometry type.

• virtual OGRwkbGeometryType getGeometryType () const

Fetch geometry type.

• virtual OGRGeometry ∗ clone () const

Make a copy of this object.

• virtual OGRErr importFromWkt (char ∗∗)
Assign geometry from well known text data.

• virtual OGRErr exportToWkt (char ∗∗) const

Convert a geometry into well known text format.

• virtual int getDimension () const

Get the dimension of this object.

• virtual OGRErr addGeometryDirectly (OGRGeometry ∗)
Add a geometry directly to the container.

• virtual double get_Area () const

12.71.1 Detailed Description

A collection of non-overlapping OGRPolygons.

Note that the IMultiSurface class hasn't been modelled, nor have any of it's methods.

12.71.2 Member Function Documentation

12.71.2.1 OGRErr OGRMultiPolygon::addGeometryDirectly (OGRGeometry ∗ poNewGeom) [virtual]

Add a geometry directly to the container.

Some subclasses of OGRGeometryCollection (p. ??) restrict the types of geometry that can be added, and may
return an error. Ownership of the passed geometry is taken by the container rather than cloning as addGeometry()
(p. ??) does.

This method is the same as the C function OGR_G_AddGeometryDirectly() (p. ??).

There is no SFCOM analog to this method.

Parameters

poNewGeom geometry to add to the container.

Returns

OGRERR_NONE if successful, or OGRERR_UNSUPPORTED_GEOMETRY_TYPE if the geometry type is
illegal for the type of geometry container.

Reimplemented from OGRGeometryCollection (p. ??).

References OGRGeometryCollection::addGeometryDirectly(), OGRGeometry::getGeometryType(), wkbPolygon,
and wkbPolygon25D.

Referenced by OGRGeometryFactory::forceToMultiPolygon(), importFromWkt(), and OGRGeometryFactory←↩

::organizePolygons().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

264 Class Documentation

12.71.2.2 OGRGeometry ∗ OGRMultiPolygon::clone () const [virtual]

Make a copy of this object.

This method relates to the SFCOM IGeometry::clone() method.

This method is the same as the C function OGR_G_Clone() (p. ??).

Returns

a new object instance with the same geometry, and spatial reference system as the original.

Reimplemented from OGRGeometryCollection (p. ??).

References OGRGeometryCollection::addGeometry(), OGRGeometry::assignSpatialReference(), OGR←↩

GeometryCollection::getGeometryRef(), OGRGeometryCollection::getNumGeometries(), and OGRGeometry←↩

::getSpatialReference().

12.71.2.3 OGRErr OGRMultiPolygon::exportToWkt (char ∗∗ ppszDstText) const [virtual]

Convert a geometry into well known text format.

This method relates to the SFCOM IWks::ExportToWKT() method.

This method is the same as the C function OGR_G_ExportToWkt() (p. ??).

Parameters

ppszDstText a text buffer is allocated by the program, and assigned to the passed pointer. After use,
∗ppszDstText should be freed with OGRFree().

Returns

Currently OGRERR_NONE is always returned.

Reimplemented from OGRGeometryCollection (p. ??).

References CPLCalloc(), CPLDebug(), CPLStrdup(), OGRGeometry::exportToWkt(), OGRGeometryCollection←↩

::getGeometryRef(), and OGRGeometryCollection::getNumGeometries().

12.71.2.4 double OGRMultiPolygon::get_Area () const [virtual]

Compute area of multipolygon.

The area is computed as the sum of the areas of all polygon members in this collection.

Returns

computed area.

Reimplemented from OGRGeometryCollection (p. ??).

References OGRPolygon::get_Area(), OGRGeometryCollection::getGeometryRef(), and OGRGeometry←↩

Collection::getNumGeometries().

12.71.2.5 int OGRMultiPolygon::getDimension () const [virtual]

Get the dimension of this object.

This method corresponds to the SFCOM IGeometry::GetDimension() method. It indicates the dimension of the ob-
ject, but does not indicate the dimension of the underlying space (as indicated by OGRGeometry::getCoordinate←↩

Dimension() (p. ??)).

This method is the same as the C function OGR_G_GetDimension() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.71 OGRMultiPolygon Class Reference 265

Returns

0 for points, 1 for lines and 2 for surfaces.

Reimplemented from OGRGeometryCollection (p. ??).

12.71.2.6 const char ∗ OGRMultiPolygon::getGeometryName () const [virtual]

Fetch WKT name for geometry type.

There is no SFCOM analog to this method.

This method is the same as the C function OGR_G_GetGeometryName() (p. ??).

Returns

name used for this geometry type in well known text format. The returned pointer is to a static internal string
and should not be modified or freed.

Reimplemented from OGRGeometryCollection (p. ??).

Referenced by importFromWkt().

12.71.2.7 OGRwkbGeometryType OGRMultiPolygon::getGeometryType () const [virtual]

Fetch geometry type.

Note that the geometry type may include the 2.5D flag. To get a 2D flattened version of the geometry type apply the
wkbFlatten() macro to the return result.

This method is the same as the C function OGR_G_GetGeometryType() (p. ??).

Returns

the geometry type code.

Reimplemented from OGRGeometryCollection (p. ??).

References OGRGeometry::getCoordinateDimension(), wkbMultiPolygon, and wkbMultiPolygon25D.

12.71.2.8 OGRErr OGRMultiPolygon::importFromWkt (char ∗∗ ppszInput) [virtual]

Assign geometry from well known text data.

The object must have already been instantiated as the correct derived type of geometry object to match the text
type. This method is used by the OGRGeometryFactory (p. ??) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKT() method.

This method is the same as the C function OGR_G_ImportFromWkt() (p. ??).

Parameters

ppszInput pointer to a pointer to the source text. The pointer is updated to pointer after the consumed
text.

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Reimplemented from OGRGeometryCollection (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

266 Class Documentation

References addGeometryDirectly(), OGRPolygon::addRingDirectly(), OGRGeometryCollection::empty(), get←↩

GeometryName(), and OGRLineString::setPoints().

The documentation for this class was generated from the following files:

• ogr_geometry.h
• ogrmultipolygon.cpp

12.72 OGRMutexedDataSource Class Reference

#include <ogrmutexeddatasource.h>

Inheritance diagram for OGRMutexedDataSource:

OGRMutexedDataSource

OGRDataSource

Public Member Functions

• virtual const char ∗ GetName ()

Returns the name of the data source.
• virtual int GetLayerCount ()

Get the number of layers in this data source.
• virtual OGRLayer ∗ GetLayer (int)

Fetch a layer by index.
• virtual OGRLayer ∗ GetLayerByName (const char ∗)

Fetch a layer by name.
• virtual OGRErr DeleteLayer (int)

Delete the indicated layer from the datasource.
• virtual int TestCapability (const char ∗)

Test if capability is available.
• virtual OGRLayer ∗ CreateLayer (const char ∗pszName, OGRSpatialReference ∗poSpatialRef=NULL, O←↩

GRwkbGeometryType eGType=wkbUnknown, char ∗∗papszOptions=NULL)

This method attempts to create a new layer on the data source with the indicated name, coordinate system, geometry
type.

• virtual OGRLayer ∗ CopyLayer (OGRLayer ∗poSrcLayer, const char ∗pszNewName, char ∗∗papsz←↩

Options=NULL)

Duplicate an existing layer.
• virtual OGRStyleTable ∗ GetStyleTable ()

Returns data source style table.
• virtual void SetStyleTableDirectly (OGRStyleTable ∗poStyleTable)

Set data source style table.
• virtual void SetStyleTable (OGRStyleTable ∗poStyleTable)

Set data source style table.
• virtual OGRLayer ∗ ExecuteSQL (const char ∗pszStatement, OGRGeometry ∗poSpatialFilter, const char
∗pszDialect)

Execute an SQL statement against the data store.
• virtual void ReleaseResultSet (OGRLayer ∗poResultsSet)

Release results of ExecuteSQL() (p. ??).
• virtual OGRErr SyncToDisk ()

Flush pending changes to disk.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.72 OGRMutexedDataSource Class Reference 267

Additional Inherited Members

12.72.1 Detailed Description

OGRMutexedDataSource (p. ??) class protects all virtual methods of OGRDataSource (p. ??) with a mutex. If the
passed mutex is NULL, then no locking will be done.

Note that the constructors and destructors are not explictely protected by the mutex∗

12.72.2 Member Function Documentation

12.72.2.1 OGRLayer ∗ OGRMutexedDataSource::CopyLayer (OGRLayer ∗ poSrcLayer, const char ∗ pszNewName, char
∗∗ papszOptions = NULL) [virtual]

Duplicate an existing layer.

This method creates a new layer, duplicate the field definitions of the source layer and then duplicate each features
of the source layer. The papszOptions argument can be used to control driver specific creation options. These
options are normally documented in the format specific documentation. The source layer may come from another
dataset.

This method is the same as the C function OGR_DS_CopyLayer() (p. ??).

Parameters

poSrcLayer source layer.
pszNewName the name of the layer to create.
papszOptions a StringList of name=value options. Options are driver specific.

Returns

an handle to the layer, or NULL if an error occurs.

Reimplemented from OGRDataSource (p. ??).

References OGRDataSource::CopyLayer().

12.72.2.2 OGRLayer ∗ OGRMutexedDataSource::CreateLayer (const char ∗ pszName, OGRSpatialReference ∗
poSpatialRef = NULL, OGRwkbGeometryType eGType = wkbUnknown, char ∗∗ papszOptions = NULL)
[virtual]

This method attempts to create a new layer on the data source with the indicated name, coordinate system, geom-
etry type.

The papszOptions argument can be used to control driver specific creation options. These options are normally
documented in the format specific documentation.

Parameters

pszName the name for the new layer. This should ideally not match any existing layer on the datasource.
poSpatialRef the coordinate system to use for the new layer, or NULL if no coordinate system is available.

eGType the geometry type for the layer. Use wkbUnknown if there are no constraints on the types
geometry to be written.

papszOptions a StringList of name=value options. Options are driver specific.

Returns

NULL is returned on failure, or a new OGRLayer (p. ??) handle on success.

Example:

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

268 Class Documentation

#include "ogrsf_frmts.h"
#include "cpl_string.h"

...

OGRLayer *poLayer;
char **papszOptions;

if(!poDS->TestCapability(ODsCCreateLayer))
{
...
}

papszOptions = CSLSetNameValue(papszOptions, "DIM", "2");
poLayer = poDS->CreateLayer("NewLayer", NULL, wkbUnknown,

papszOptions);
CSLDestroy(papszOptions);

if(poLayer == NULL)
{

...
}

Reimplemented from OGRDataSource (p. ??).

References OGRDataSource::CreateLayer().

12.72.2.3 OGRErr OGRMutexedDataSource::DeleteLayer (int iLayer) [virtual]

Delete the indicated layer from the datasource.

If this method is supported the ODsCDeleteLayer capability will test TRUE on the OGRDataSource (p. ??).

This method is the same as the C function OGR_DS_DeleteLayer() (p. ??).

Parameters

iLayer the index of the layer to delete.

Returns

OGRERR_NONE on success, or OGRERR_UNSUPPORTED_OPERATION if deleting layers is not sup-
ported for this datasource.

Reimplemented from OGRDataSource (p. ??).

References OGRDataSource::DeleteLayer().

12.72.2.4 OGRLayer ∗ OGRMutexedDataSource::ExecuteSQL (const char ∗ pszStatement, OGRGeometry ∗
poSpatialFilter, const char ∗ pszDialect) [virtual]

Execute an SQL statement against the data store.

The result of an SQL query is either NULL for statements that are in error, or that have no results set, or an OGR←↩

Layer (p. ??) pointer representing a results set from the query. Note that this OGRLayer (p. ??) is in addition to the
layers in the data store and must be destroyed with OGRDataSource::ReleaseResultSet() (p. ??) before the data
source is closed (destroyed).

This method is the same as the C function OGR_DS_ExecuteSQL() (p. ??).

For more information on the SQL dialect supported internally by OGR review the OGR SQL document. Some
drivers (ie. Oracle and PostGIS) pass the SQL directly through to the underlying RDBMS.

Starting with OGR 1.10, the SQLITE dialect can also be used.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.72 OGRMutexedDataSource Class Reference 269

Parameters

pszStatement the SQL statement to execute.
poSpatialFilter geometry which represents a spatial filter. Can be NULL.

pszDialect allows control of the statement dialect. If set to NULL, the OGR SQL engine will be used,
except for RDBMS drivers that will use their dedicated SQL engine, unless OGRSQL is ex-
plicitely passed as the dialect. Starting with OGR 1.10, the SQLITE dialect can also be used.

Returns

an OGRLayer (p. ??) containing the results of the query. Deallocate with ReleaseResultSet() (p. ??).

Reimplemented from OGRDataSource (p. ??).

References OGRDataSource::ExecuteSQL().

12.72.2.5 OGRLayer ∗ OGRMutexedDataSource::GetLayer (int iLayer) [virtual]

Fetch a layer by index.

The returned layer remains owned by the OGRDataSource (p. ??) and should not be deleted by the application.

This method is the same as the C function OGR_DS_GetLayer() (p. ??).

Parameters

iLayer a layer number between 0 and GetLayerCount() (p. ??)-1.

Returns

the layer, or NULL if iLayer is out of range or an error occurs.

Implements OGRDataSource (p. ??).

References OGRDataSource::GetLayer().

12.72.2.6 OGRLayer ∗ OGRMutexedDataSource::GetLayerByName (const char ∗ pszLayerName) [virtual]

Fetch a layer by name.

The returned layer remains owned by the OGRDataSource (p. ??) and should not be deleted by the application.

This method is the same as the C function OGR_DS_GetLayerByName() (p. ??).

Parameters

pszLayerName the layer name of the layer to fetch.

Returns

the layer, or NULL if Layer is not found or an error occurs.

Reimplemented from OGRDataSource (p. ??).

References OGRDataSource::GetLayerByName().

12.72.2.7 int OGRMutexedDataSource::GetLayerCount () [virtual]

Get the number of layers in this data source.

This method is the same as the C function OGR_DS_GetLayerCount() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

270 Class Documentation

Returns

layer count.

Implements OGRDataSource (p. ??).

References OGRDataSource::GetLayerCount().

12.72.2.8 const char ∗ OGRMutexedDataSource::GetName () [virtual]

Returns the name of the data source.

This string should be sufficient to open the data source if passed to the same OGRSFDriver (p. ??) that this data
source was opened with, but it need not be exactly the same string that was used to open the data source. Normally
this is a filename.

This method is the same as the C function OGR_DS_GetName() (p. ??).

Returns

pointer to an internal name string which should not be modified or freed by the caller.

Implements OGRDataSource (p. ??).

References OGRDataSource::GetName().

12.72.2.9 OGRStyleTable ∗ OGRMutexedDataSource::GetStyleTable () [virtual]

Returns data source style table.

This method is the same as the C function OGR_DS_GetStyleTable().

Returns

pointer to a style table which should not be modified or freed by the caller.

Reimplemented from OGRDataSource (p. ??).

References OGRDataSource::GetStyleTable().

12.72.2.10 void OGRMutexedDataSource::ReleaseResultSet (OGRLayer ∗ poResultsSet) [virtual]

Release results of ExecuteSQL() (p. ??).

This method should only be used to deallocate OGRLayers resulting from an ExecuteSQL() (p. ??) call on the
same OGRDataSource (p. ??). Failure to deallocate a results set before destroying the OGRDataSource (p. ??)
may cause errors.

This method is the same as the C function OGR_L_ReleaseResultSet().

Parameters

poResultsSet the result of a previous ExecuteSQL() (p. ??) call.

Reimplemented from OGRDataSource (p. ??).

References OGRDataSource::ReleaseResultSet().

12.72.2.11 void OGRMutexedDataSource::SetStyleTable (OGRStyleTable ∗ poStyleTable) [virtual]

Set data source style table.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.72 OGRMutexedDataSource Class Reference 271

This method operate exactly as OGRDataSource::SetStyleTableDirectly() (p. ??) except that it does not assume
ownership of the passed table.

This method is the same as the C function OGR_DS_SetStyleTable().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

272 Class Documentation

Parameters

poStyleTable pointer to style table to set

Reimplemented from OGRDataSource (p. ??).

References OGRDataSource::SetStyleTable().

12.72.2.12 void OGRMutexedDataSource::SetStyleTableDirectly (OGRStyleTable ∗ poStyleTable) [virtual]

Set data source style table.

This method operate exactly as OGRDataSource::SetStyleTable() (p. ??) except that it assumes ownership of the
passed table.

This method is the same as the C function OGR_DS_SetStyleTableDirectly().

Parameters

poStyleTable pointer to style table to set

Reimplemented from OGRDataSource (p. ??).

References OGRDataSource::SetStyleTableDirectly().

12.72.2.13 OGRErr OGRMutexedDataSource::SyncToDisk () [virtual]

Flush pending changes to disk.

This call is intended to force the datasource to flush any pending writes to disk, and leave the disk file in a consistent
state. It would not normally have any effect on read-only datasources.

Some data sources do not implement this method, and will still return OGRERR_NONE. An error is only returned if
an error occurs while attempting to flush to disk.

The default implementation of this method just calls the SyncToDisk() (p. ??) method on each of the layers. Con-
ceptionally, calling SyncToDisk() (p. ??) on a datasource should include any work that might be accomplished by
calling SyncToDisk() (p. ??) on layers in that data source.

In any event, you should always close any opened datasource with OGRDataSource::DestroyDataSource() (p. ??)
that will ensure all data is correctly flushed.

This method is the same as the C function OGR_DS_SyncToDisk() (p. ??).

Returns

OGRERR_NONE if no error occurs (even if nothing is done) or an error code.

Reimplemented from OGRDataSource (p. ??).

References OGRDataSource::SyncToDisk().

12.72.2.14 int OGRMutexedDataSource::TestCapability (const char ∗ pszCapability) [virtual]

Test if capability is available.

One of the following data source capability names can be passed into this method, and a TRUE or FALSE value
will be returned indicating whether or not the capability is available for this object.

• ODsCCreateLayer: True if this datasource can create new layers.

• ODsCDeleteLayer: True if this datasource can delete existing layers.

• ODsCCreateGeomFieldAfterCreateLayer: True if the layers of this datasource support CreateGeomField()
just after layer creation.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.73 OGRMutexedLayer Class Reference 273

The #define macro forms of the capability names should be used in preference to the strings themselves to avoid
mispelling.

This method is the same as the C function OGR_DS_TestCapability() (p. ??).

Parameters

pszCapability the capability to test.

Returns

TRUE if capability available otherwise FALSE.

Implements OGRDataSource (p. ??).

References OGRDataSource::TestCapability().

The documentation for this class was generated from the following files:

• ogrmutexeddatasource.h
• ogrmutexeddatasource.cpp

12.73 OGRMutexedLayer Class Reference

#include <ogrmutexedlayer.h>

Inheritance diagram for OGRMutexedLayer:

OGRMutexedLayer

OGRLayerDecorator

OGRLayer

Public Member Functions

• virtual OGRGeometry ∗ GetSpatialFilter ()

This method returns the current spatial filter for this layer.

• virtual void SetSpatialFilter (OGRGeometry ∗)
Set a new spatial filter.

• virtual void SetSpatialFilterRect (double dfMinX, double dfMinY, double dfMaxX, double dfMaxY)

Set a new rectangular spatial filter.

• virtual void SetSpatialFilter (int iGeomField, OGRGeometry ∗)
Set a new spatial filter.

• virtual void SetSpatialFilterRect (int iGeomField, double dfMinX, double dfMinY, double dfMaxX, double df←↩

MaxY)

Set a new rectangular spatial filter.

• virtual OGRErr SetAttributeFilter (const char ∗)
Set a new attribute query.

• virtual void ResetReading ()

Reset feature reading to start on the first feature.

• virtual OGRFeature ∗ GetNextFeature ()

Fetch the next available feature from this layer.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

274 Class Documentation

• virtual OGRErr SetNextByIndex (long nIndex)

Move read cursor to the nIndex'th feature in the current resultset.

• virtual OGRFeature ∗ GetFeature (long nFID)

Fetch a feature by its identifier.

• virtual OGRErr SetFeature (OGRFeature ∗poFeature)

Rewrite an existing feature.

• virtual OGRErr CreateFeature (OGRFeature ∗poFeature)

Create and write a new feature within a layer.

• virtual OGRErr DeleteFeature (long nFID)

Delete feature from layer.

• virtual const char ∗ GetName ()

Return the layer name.

• virtual OGRwkbGeometryType GetGeomType ()

Return the layer geometry type.

• virtual OGRFeatureDefn ∗ GetLayerDefn ()

Fetch the schema information for this layer.

• virtual OGRSpatialReference ∗ GetSpatialRef ()

Fetch the spatial reference system for this layer.

• virtual int GetFeatureCount (int bForce=TRUE)

Fetch the feature count in this layer.

• virtual OGRErr GetExtent (int iGeomField, OGREnvelope ∗psExtent, int bForce=TRUE)

Fetch the extent of this layer, on the specified geometry field.

• virtual OGRErr GetExtent (OGREnvelope ∗psExtent, int bForce=TRUE)

Fetch the extent of this layer.

• virtual int TestCapability (const char ∗)
Test if this layer supported the named capability.

• virtual OGRErr CreateField (OGRFieldDefn ∗poField, int bApproxOK=TRUE)

Create a new field on a layer.

• virtual OGRErr DeleteField (int iField)

Delete an existing field on a layer.

• virtual OGRErr ReorderFields (int ∗panMap)

Reorder all the fields of a layer.

• virtual OGRErr AlterFieldDefn (int iField, OGRFieldDefn ∗poNewFieldDefn, int nFlags)

Alter the definition of an existing field on a layer.

• virtual OGRErr SyncToDisk ()

Flush pending changes to disk.

• virtual OGRStyleTable ∗ GetStyleTable ()

Returns layer style table.

• virtual void SetStyleTableDirectly (OGRStyleTable ∗poStyleTable)

Set layer style table.

• virtual void SetStyleTable (OGRStyleTable ∗poStyleTable)

Set layer style table.

• virtual const char ∗ GetFIDColumn ()

This method returns the name of the underlying database column being used as the FID column, or "" if not supported.

• virtual const char ∗ GetGeometryColumn ()

This method returns the name of the underlying database column being used as the geometry column, or "" if not
supported.

• virtual OGRErr SetIgnoredFields (const char ∗∗papszFields)

Set which fields can be omitted when retrieving features from the layer.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.73 OGRMutexedLayer Class Reference 275

12.73.1 Detailed Description

OGRMutexedLayer (p. ??) class protects all virtual methods of OGRLayer (p. ??) with a mutex.

If the passed mutex is NULL, then no locking will be done.

Note that the constructors and destructors are not explictely protected by the mutex.

12.73.2 Member Function Documentation

12.73.2.1 OGRErr OGRMutexedLayer::AlterFieldDefn (int iField, OGRFieldDefn ∗ poNewFieldDefn, int nFlags)
[virtual]

Alter the definition of an existing field on a layer.

You must use this to alter the definition of an existing field of a real layer. Internally the OGRFeatureDefn (p. ??) for
the layer will be updated to reflect the altered field. Applications should never modify the OGRFeatureDefn (p. ??)
used by a layer directly.

This method should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCAlterFieldDefn
capability. Some drivers may only support this method while there are still no features in the layer. When it is
supported, the existings features of the backing file/database should be updated accordingly. Some drivers might
also not support all update flags.

This function is the same as the C function OGR_L_AlterFieldDefn() (p. ??).

Parameters

iField index of the field whose definition must be altered.
poNewFieldDefn new field definition

nFlags combination of ALTER_NAME_FLAG, ALTER_TYPE_FLAG and ALTER_WIDTH_PRECI←↩

SION_FLAG to indicate which of the name and/or type and/or width and precision fields from
the new field definition must be taken into account.

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::AlterFieldDefn().

12.73.2.2 OGRErr OGRMutexedLayer::CreateFeature (OGRFeature ∗ poFeature) [virtual]

Create and write a new feature within a layer.

The passed feature is written to the layer as a new feature, rather than overwriting an existing one. If the feature
has a feature id other than OGRNullFID, then the native implementation may use that as the feature id of the new
feature, but not necessarily. Upon successful return the passed feature will have been updated with the new feature
id.

This method is the same as the C function OGR_L_CreateFeature() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

276 Class Documentation

Parameters

poFeature the feature to write to disk.

Returns

OGRERR_NONE on success.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::CreateFeature().

12.73.2.3 OGRErr OGRMutexedLayer::CreateField (OGRFieldDefn ∗ poField, int bApproxOK = TRUE) [virtual]

Create a new field on a layer.

You must use this to create new fields on a real layer. Internally the OGRFeatureDefn (p. ??) for the layer will be
updated to reflect the new field. Applications should never modify the OGRFeatureDefn (p. ??) used by a layer
directly.

This method should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCCreateField capability.
Some drivers may only support this method while there are still no features in the layer. When it is supported, the
existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_CreateField() (p. ??).

Parameters

poField field definition to write to disk.
bApproxOK If TRUE, the field may be created in a slightly different form depending on the limitations of

the format driver.

Returns

OGRERR_NONE on success.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::CreateField().

12.73.2.4 OGRErr OGRMutexedLayer::DeleteFeature (long nFID) [virtual]

Delete feature from layer.

The feature with the indicated feature id is deleted from the layer if supported by the driver. Most drivers do not
support feature deletion, and will return OGRERR_UNSUPPORTED_OPERATION. The TestCapability() (p. ??)
layer method may be called with OLCDeleteFeature to check if the driver supports feature deletion.

This method is the same as the C function OGR_L_DeleteFeature() (p. ??).

Parameters

nFID the feature id to be deleted from the layer

Returns

OGRERR_NONE on success.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::DeleteFeature().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.73 OGRMutexedLayer Class Reference 277

12.73.2.5 OGRErr OGRMutexedLayer::DeleteField (int iField) [virtual]

Delete an existing field on a layer.

You must use this to delete existing fields on a real layer. Internally the OGRFeatureDefn (p. ??) for the layer will be
updated to reflect the deleted field. Applications should never modify the OGRFeatureDefn (p. ??) used by a layer
directly.

This method should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCDeleteField capability.
Some drivers may only support this method while there are still no features in the layer. When it is supported, the
existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_DeleteField() (p. ??).

Parameters

iField index of the field to delete.

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::DeleteField().

12.73.2.6 OGRErr OGRMutexedLayer::GetExtent (int iGeomField, OGREnvelope ∗ psExtent, int bForce = TRUE)
[virtual]

Fetch the extent of this layer, on the specified geometry field.

Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and it would be expensive to establish the
extent then OGRERR_FAILURE will be returned indicating that the extent isn't know. If bForce is TRUE then some
implementations will actually scan the entire layer once to compute the MBR of all the features in the layer.

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is safer to call
GetExtent() (p. ??) without setting a spatial filter.

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents could be
collected.

Note that some implementations of this method may alter the read cursor of the layer.

Note to driver implementators: if you implement GetExtent(int,OGREnvelope∗,int) (p. ??), you must also imple-
ment GetExtent(OGREnvelope∗, int) (p. ??) to make it call GetExtent(0,OGREnvelope∗,int).

This method is the same as the C function OGR_L_GetExtentEx() (p. ??).

Parameters

iGeomField the index of the geometry field on which to compute the extent.
psExtent the structure in which the extent value will be returned.

bForce Flag indicating whether the extent should be computed even if it is expensive.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

278 Class Documentation

Returns

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::GetExtent().

12.73.2.7 OGRErr OGRMutexedLayer::GetExtent (OGREnvelope ∗ psExtent, int bForce = TRUE) [virtual]

Fetch the extent of this layer.

Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and it would be expensive to establish the
extent then OGRERR_FAILURE will be returned indicating that the extent isn't know. If bForce is TRUE then some
implementations will actually scan the entire layer once to compute the MBR of all the features in the layer.

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is safer to call
GetExtent() (p. ??) without setting a spatial filter.

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents could be
collected.

Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetExtent() (p. ??).

Parameters

psExtent the structure in which the extent value will be returned.
bForce Flag indicating whether the extent should be computed even if it is expensive.

Returns

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::GetExtent().

12.73.2.8 OGRFeature ∗ OGRMutexedLayer::GetFeature (long nFID) [virtual]

Fetch a feature by its identifier.

This function will attempt to read the identified feature. The nFID value cannot be OGRNullFID. Success or failure
of this operation is unaffected by the spatial or attribute filters (and specialized implementations in drivers should
make sure that they do not take into account spatial or attribute filters).

If this method returns a non-NULL feature, it is guaranteed that its feature id (OGRFeature::GetFID() (p. ??)) will
be the same as nFID.

Use OGRLayer::TestCapability(OLCRandomRead) to establish if this layer supports efficient random access reading
via GetFeature() (p. ??); however, the call should always work if the feature exists as a fallback implementation just
scans all the features in the layer looking for the desired feature.

Sequential reads (with GetNextFeature() (p. ??)) are generally considered interrupted by a GetFeature() (p. ??)
call.

The returned feature should be free with OGRFeature::DestroyFeature() (p. ??).

This method is the same as the C function OGR_L_GetFeature() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.73 OGRMutexedLayer Class Reference 279

Parameters

nFID the feature id of the feature to read.

Returns

a feature now owned by the caller, or NULL on failure.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::GetFeature().

12.73.2.9 int OGRMutexedLayer::GetFeatureCount (int bForce = TRUE) [virtual]

Fetch the feature count in this layer.

Returns the number of features in the layer. For dynamic databases the count may not be exact. If bForce is FALSE,
and it would be expensive to establish the feature count a value of -1 may be returned indicating that the count isn't
know. If bForce is TRUE some implementations will actually scan the entire layer once to count objects.

The returned count takes the spatial filter into account.

Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetFeatureCount() (p. ??).

Parameters

bForce Flag indicating whether the count should be computed even if it is expensive.

Returns

feature count, -1 if count not known.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::GetFeatureCount().

12.73.2.10 const char ∗ OGRMutexedLayer::GetFIDColumn () [virtual]

This method returns the name of the underlying database column being used as the FID column, or "" if not
supported.

This method is the same as the C function OGR_L_GetFIDColumn() (p. ??).

Returns

fid column name.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::GetFIDColumn().

12.73.2.11 const char ∗ OGRMutexedLayer::GetGeometryColumn () [virtual]

This method returns the name of the underlying database column being used as the geometry column, or "" if not
supported.

This method is the same as the C function OGR_L_GetGeometryColumn() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

280 Class Documentation

Returns

geometry column name.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::GetGeometryColumn().

12.73.2.12 OGRwkbGeometryType OGRMutexedLayer::GetGeomType () [virtual]

Return the layer geometry type.

This returns the same result as GetLayerDefn() (p. ??)->GetGeomType() (p. ??), but for a few drivers, calling
GetGeomType() (p. ??) directly can avoid lengthy layer definition initialization.

This method is the same as the C function OGR_L_GetGeomType() (p. ??).

If this method is derived in a driver, it must be done such that it returns the same content as GetLayerDefn()
(p. ??)->GetGeomType() (p. ??).

Returns

the geometry type

Since

OGR 1.8.0

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::GetGeomType().

12.73.2.13 OGRFeatureDefn ∗ OGRMutexedLayer::GetLayerDefn () [virtual]

Fetch the schema information for this layer.

The returned OGRFeatureDefn (p. ??) is owned by the OGRLayer (p. ??), and should not be modified or freed by
the application. It encapsulates the attribute schema of the features of the layer.

This method is the same as the C function OGR_L_GetLayerDefn() (p. ??).

Returns

feature definition.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::GetLayerDefn().

12.73.2.14 const char ∗ OGRMutexedLayer::GetName () [virtual]

Return the layer name.

This returns the same content as GetLayerDefn() (p. ??)->GetName() (p. ??), but for a few drivers, calling Get←↩

Name() (p. ??) directly can avoid lengthy layer definition initialization.

This method is the same as the C function OGR_L_GetName() (p. ??).

If this method is derived in a driver, it must be done such that it returns the same content as GetLayerDefn()
(p. ??)->GetName() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.73 OGRMutexedLayer Class Reference 281

Returns

the layer name (must not been freed)

Since

OGR 1.8.0

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::GetName().

12.73.2.15 OGRFeature ∗ OGRMutexedLayer::GetNextFeature () [virtual]

Fetch the next available feature from this layer.

The returned feature becomes the responsiblity of the caller to delete with OGRFeature::DestroyFeature() (p. ??).
It is critical that all features associated with an OGRLayer (p. ??) (more specifically an OGRFeatureDefn (p. ??))
be deleted before that layer/datasource is deleted.

Only features matching the current spatial filter (set with SetSpatialFilter() (p. ??)) will be returned.

This method implements sequential access to the features of a layer. The ResetReading() (p. ??) method can be
used to start at the beginning again.

This method is the same as the C function OGR_L_GetNextFeature() (p. ??).

Returns

a feature, or NULL if no more features are available.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::GetNextFeature().

12.73.2.16 OGRGeometry ∗ OGRMutexedLayer::GetSpatialFilter () [virtual]

This method returns the current spatial filter for this layer.

The returned pointer is to an internally owned object, and should not be altered or deleted by the caller.

This method is the same as the C function OGR_L_GetSpatialFilter() (p. ??).

Returns

spatial filter geometry.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::GetSpatialFilter().

12.73.2.17 OGRSpatialReference ∗ OGRMutexedLayer::GetSpatialRef () [virtual]

Fetch the spatial reference system for this layer.

The returned object is owned by the OGRLayer (p. ??) and should not be modified or freed by the application.

Starting with OGR 1.11, several geometry fields can be associated to a feature definition. Each geometry field can
have its own spatial reference system, which is returned by OGRGeomFieldDefn::GetSpatialRef() (p. ??). OGR←↩

Layer::GetSpatialRef() (p. ??) is equivalent to GetLayerDefn() (p. ??)->GetGeomFieldDefn(0)->GetSpatialRef()
(p. ??)

This method is the same as the C function OGR_L_GetSpatialRef() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

282 Class Documentation

Returns

spatial reference, or NULL if there isn't one.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::GetSpatialRef().

12.73.2.18 OGRStyleTable ∗ OGRMutexedLayer::GetStyleTable () [virtual]

Returns layer style table.

This method is the same as the C function OGR_L_GetStyleTable().

Returns

pointer to a style table which should not be modified or freed by the caller.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::GetStyleTable().

12.73.2.19 OGRErr OGRMutexedLayer::ReorderFields (int ∗ panMap) [virtual]

Reorder all the fields of a layer.

You must use this to reorder existing fields on a real layer. Internally the OGRFeatureDefn (p. ??) for the layer will
be updated to reflect the reordering of the fields. Applications should never modify the OGRFeatureDefn (p. ??)
used by a layer directly.

This method should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

panMap is such that,for each field definition at position i after reordering, its position before reordering was pan←↩

Map[i].

For example, let suppose the fields were "0","1","2","3","4" initially. ReorderFields([0,2,3,1,4]) will reorder them as
"0","2","3","1","4".

Not all drivers support this method. You can query a layer to check if it supports it with the OLCReorderFields
capability. Some drivers may only support this method while there are still no features in the layer. When it is
supported, the existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_ReorderFields() (p. ??).

Parameters

panMap an array of GetLayerDefn() (p. ??)->GetFieldCount() elements which is a permutation of [0,
GetLayerDefn() (p. ??)->GetFieldCount()-1].

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::ReorderFields().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.73 OGRMutexedLayer Class Reference 283

12.73.2.20 void OGRMutexedLayer::ResetReading () [virtual]

Reset feature reading to start on the first feature.

This affects GetNextFeature() (p. ??).

This method is the same as the C function OGR_L_ResetReading() (p. ??).

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::ResetReading().

12.73.2.21 OGRErr OGRMutexedLayer::SetAttributeFilter (const char ∗ pszQuery) [virtual]

Set a new attribute query.

This method sets the attribute query string to be used when fetching features via the GetNextFeature() (p. ??)
method. Only features for which the query evaluates as true will be returned.

The query string should be in the format of an SQL WHERE clause. For instance "population > 1000000 and
population < 5000000" where population is an attribute in the layer. The query format is normally a restricted form
of SQL WHERE clause as described in the "WHERE" section of the OGR SQL tutorial. In some cases (RDBMS
backed drivers) the native capabilities of the database may be used to interprete the WHERE clause in which case
the capabilities will be broader than those of OGR SQL.

Note that installing a query string will generally result in resetting the current reading position (ala ResetReading()
(p. ??)).

This method is the same as the C function OGR_L_SetAttributeFilter() (p. ??).

Parameters

pszQuery query in restricted SQL WHERE format, or NULL to clear the current query.

Returns

OGRERR_NONE if successfully installed, or an error code if the query expression is in error, or some other
failure occurs.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::SetAttributeFilter().

12.73.2.22 OGRErr OGRMutexedLayer::SetFeature (OGRFeature ∗ poFeature) [virtual]

Rewrite an existing feature.

This method will write a feature to the layer, based on the feature id within the OGRFeature (p. ??).

Use OGRLayer::TestCapability(OLCRandomWrite) to establish if this layer supports random access writing via
SetFeature() (p. ??).

This method is the same as the C function OGR_L_SetFeature() (p. ??).

Parameters

poFeature the feature to write.

Returns

OGRERR_NONE if the operation works, otherwise an appropriate error code.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::SetFeature().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

284 Class Documentation

12.73.2.23 OGRErr OGRMutexedLayer::SetIgnoredFields (const char ∗∗ papszFields) [virtual]

Set which fields can be omitted when retrieving features from the layer.

If the driver supports this functionality (testable using OLCIgnoreFields capability), it will not fetch the specified fields
in subsequent calls to GetFeature() (p. ??) / GetNextFeature() (p. ??) and thus save some processing time and/or
bandwidth.

Besides field names of the layers, the following special fields can be passed: "OGR_GEOMETRY" to ignore geom-
etry and "OGR_STYLE" to ignore layer style.

By default, no fields are ignored.

This method is the same as the C function OGR_L_SetIgnoredFields() (p. ??)

Parameters

papszFields an array of field names terminated by NULL item. If NULL is passed, the ignored list is
cleared.

Returns

OGRERR_NONE if all field names have been resolved (even if the driver does not support this method)

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::SetIgnoredFields().

12.73.2.24 OGRErr OGRMutexedLayer::SetNextByIndex (long nIndex) [virtual]

Move read cursor to the nIndex'th feature in the current resultset.

This method allows positioning of a layer such that the GetNextFeature() (p. ??) call will read the requested feature,
where nIndex is an absolute index into the current result set. So, setting it to 3 would mean the next feature read
with GetNextFeature() (p. ??) would have been the 4th feature to have been read if sequential reading took place
from the beginning of the layer, including accounting for spatial and attribute filters.

Only in rare circumstances is SetNextByIndex() (p. ??) efficiently implemented. In all other cases the default
implementation which calls ResetReading() (p. ??) and then calls GetNextFeature() (p. ??) nIndex times is used.
To determine if fast seeking is available on the current layer use the TestCapability() (p. ??) method with a value of
OLCFastSetNextByIndex.

This method is the same as the C function OGR_L_SetNextByIndex() (p. ??).

Parameters

nIndex the index indicating how many steps into the result set to seek.

Returns

OGRERR_NONE on success or an error code.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::SetNextByIndex().

12.73.2.25 void OGRMutexedLayer::SetSpatialFilter (OGRGeometry ∗ poFilter) [virtual]

Set a new spatial filter.

This method set the geometry to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the filter geometry will be returned.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.73 OGRMutexedLayer Class Reference 285

Currently this test is may be inaccurately implemented, but it is guaranteed that all features who's envelope (as
returned by OGRGeometry::getEnvelope() (p. ??)) overlaps the envelope of the spatial filter will be returned. This
can result in more shapes being returned that should strictly be the case.

This method makes an internal copy of the passed geometry. The passed geometry remains the responsibility of
the caller, and may be safely destroyed.

For the time being the passed filter geometry should be in the same SRS as the layer (as returned by OGRLayer←↩

::GetSpatialRef() (p. ??)). In the future this may be generalized.

This method is the same as the C function OGR_L_SetSpatialFilter() (p. ??).

Parameters

poFilter the geometry to use as a filtering region. NULL may be passed indicating that the current
spatial filter should be cleared, but no new one instituted.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::SetSpatialFilter().

12.73.2.26 void OGRMutexedLayer::SetSpatialFilter (int iGeomField, OGRGeometry ∗ poFilter) [virtual]

Set a new spatial filter.

This method set the geometry to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the filter geometry will be returned.

Currently this test is may be inaccurately implemented, but it is guaranteed that all features who's envelope (as
returned by OGRGeometry::getEnvelope() (p. ??)) overlaps the envelope of the spatial filter will be returned. This
can result in more shapes being returned that should strictly be the case.

This method makes an internal copy of the passed geometry. The passed geometry remains the responsibility of
the caller, and may be safely destroyed.

For the time being the passed filter geometry should be in the same SRS as the geometry field definition it cor-
responds to (as returned by GetLayerDefn() (p. ??)->GetGeomFieldDefn(iGeomField)->GetSpatialRef() (p. ??)).
In the future this may be generalized.

Note that only the last spatial filter set is applied, even if several successive calls are done with different iGeomField
values.

Note to driver implementators: if you implement SetSpatialFilter(int,OGRGeometry∗) (p. ??), you must also im-
plement SetSpatialFilter(OGRGeometry∗) (p. ??) to make it call SetSpatialFilter(0,OGRGeometry∗).

This method is the same as the C function OGR_L_SetSpatialFilterEx() (p. ??).

Parameters

iGeomField index of the geometry field on which the spatial filter operates.
poFilter the geometry to use as a filtering region. NULL may be passed indicating that the current

spatial filter should be cleared, but no new one instituted.

Since

GDAL 1.11

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::SetSpatialFilter().

12.73.2.27 void OGRMutexedLayer::SetSpatialFilterRect (double dfMinX, double dfMinY, double dfMaxX, double dfMaxY)
[virtual]

Set a new rectangular spatial filter.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

286 Class Documentation

This method set rectangle to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the given rectangle will be returned.

The x/y values should be in the same coordinate system as the layer as a whole (as returned by OGRLayer::←↩

GetSpatialRef() (p. ??)). Internally this method is normally implemented as creating a 5 vertex closed rectangular
polygon and passing it to OGRLayer::SetSpatialFilter() (p. ??). It exists as a convenience.

The only way to clear a spatial filter set with this method is to call OGRLayer::SetSpatialFilter(NULL).

This method is the same as the C function OGR_L_SetSpatialFilterRect() (p. ??).

Parameters

dfMinX the minimum X coordinate for the rectangular region.
dfMinY the minimum Y coordinate for the rectangular region.

dfMaxX the maximum X coordinate for the rectangular region.
dfMaxY the maximum Y coordinate for the rectangular region.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::SetSpatialFilterRect().

12.73.2.28 void OGRMutexedLayer::SetSpatialFilterRect (int iGeomField, double dfMinX, double dfMinY, double dfMaxX,
double dfMaxY) [virtual]

Set a new rectangular spatial filter.

This method set rectangle to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the given rectangle will be returned.

The x/y values should be in the same coordinate system as as the geometry field definition it corresponds to (as
returned by GetLayerDefn() (p. ??)->GetGeomFieldDefn(iGeomField)->GetSpatialRef() (p. ??)). Internally this
method is normally implemented as creating a 5 vertex closed rectangular polygon and passing it to OGRLayer←↩

::SetSpatialFilter() (p. ??). It exists as a convenience.

The only way to clear a spatial filter set with this method is to call OGRLayer::SetSpatialFilter(NULL).

This method is the same as the C function OGR_L_SetSpatialFilterRectEx() (p. ??).

Parameters

iGeomField index of the geometry field on which the spatial filter operates.
dfMinX the minimum X coordinate for the rectangular region.
dfMinY the minimum Y coordinate for the rectangular region.

dfMaxX the maximum X coordinate for the rectangular region.
dfMaxY the maximum Y coordinate for the rectangular region.

Since

GDAL 1.11

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::SetSpatialFilterRect().

12.73.2.29 void OGRMutexedLayer::SetStyleTable (OGRStyleTable ∗ poStyleTable) [virtual]

Set layer style table.

This method operate exactly as OGRLayer::SetStyleTableDirectly() (p. ??) except that it does not assume owner-
ship of the passed table.

This method is the same as the C function OGR_L_SetStyleTable().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.73 OGRMutexedLayer Class Reference 287

Parameters

poStyleTable pointer to style table to set

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::SetStyleTable().

12.73.2.30 void OGRMutexedLayer::SetStyleTableDirectly (OGRStyleTable ∗ poStyleTable) [virtual]

Set layer style table.

This method operate exactly as OGRLayer::SetStyleTable() (p. ??) except that it assumes ownership of the passed
table.

This method is the same as the C function OGR_L_SetStyleTableDirectly().

Parameters

poStyleTable pointer to style table to set

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::SetStyleTableDirectly().

12.73.2.31 OGRErr OGRMutexedLayer::SyncToDisk () [virtual]

Flush pending changes to disk.

This call is intended to force the layer to flush any pending writes to disk, and leave the disk file in a consistent state.
It would not normally have any effect on read-only datasources.

Some layers do not implement this method, and will still return OGRERR_NONE. The default implementation just
returns OGRERR_NONE. An error is only returned if an error occurs while attempting to flush to disk.

In any event, you should always close any opened datasource with OGRDataSource::DestroyDataSource() (p. ??)
that will ensure all data is correctly flushed.

This method is the same as the C function OGR_L_SyncToDisk() (p. ??).

Returns

OGRERR_NONE if no error occurs (even if nothing is done) or an error code.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::SyncToDisk().

12.73.2.32 int OGRMutexedLayer::TestCapability (const char ∗ pszCap) [virtual]

Test if this layer supported the named capability.

The capability codes that can be tested are represented as strings, but #defined constants exists to ensure correct
spelling. Specific layer types may implement class specific capabilities, but this can't generally be discovered by the
caller.

• OLCRandomRead / "RandomRead": TRUE if the GetFeature() (p. ??) method is implemented in an opti-
mized way for this layer, as opposed to the default implementation using ResetReading() (p. ??) and Get←↩

NextFeature() (p. ??) to find the requested feature id.

• OLCSequentialWrite / "SequentialWrite": TRUE if the CreateFeature() (p. ??) method works for this layer.
Note this means that this particular layer is writable. The same OGRLayer (p. ??) class may returned FALSE
for other layer instances that are effectively read-only.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

288 Class Documentation

• OLCRandomWrite / "RandomWrite": TRUE if the SetFeature() (p. ??) method is operational on this layer.
Note this means that this particular layer is writable. The same OGRLayer (p. ??) class may returned FALSE
for other layer instances that are effectively read-only.

• OLCFastSpatialFilter / "FastSpatialFilter": TRUE if this layer implements spatial filtering efficiently. Layers
that effectively read all features, and test them with the OGRFeature (p. ??) intersection methods should
return FALSE. This can be used as a clue by the application whether it should build and maintain its own
spatial index for features in this layer.

• OLCFastFeatureCount / "FastFeatureCount": TRUE if this layer can return a feature count (via Get←↩

FeatureCount() (p. ??)) efficiently ... ie. without counting the features. In some cases this will return TRUE
until a spatial filter is installed after which it will return FALSE.

• OLCFastGetExtent / "FastGetExtent": TRUE if this layer can return its data extent (via GetExtent() (p. ??))
efficiently ... ie. without scanning all the features. In some cases this will return TRUE until a spatial filter is
installed after which it will return FALSE.

• OLCFastSetNextByIndex / "FastSetNextByIndex": TRUE if this layer can perform the SetNextByIndex()
(p. ??) call efficiently, otherwise FALSE.

• OLCCreateField / "CreateField": TRUE if this layer can create new fields on the current layer using Create←↩

Field() (p. ??), otherwise FALSE.

• OLCCreateGeomField / "CreateGeomField": (GDAL >= 1.11) TRUE if this layer can create new geometry
fields on the current layer using CreateGeomField() (p. ??), otherwise FALSE.

• OLCDeleteField / "DeleteField": TRUE if this layer can delete existing fields on the current layer using
DeleteField() (p. ??), otherwise FALSE.

• OLCReorderFields / "ReorderFields": TRUE if this layer can reorder existing fields on the current layer using
ReorderField() (p. ??) or ReorderFields() (p. ??), otherwise FALSE.

• OLCAlterFieldDefn / "AlterFieldDefn": TRUE if this layer can alter the definition of an existing field on the
current layer using AlterFieldDefn() (p. ??), otherwise FALSE.

• OLCDeleteFeature / "DeleteFeature": TRUE if the DeleteFeature() (p. ??) method is supported on this layer,
otherwise FALSE.

• OLCStringsAsUTF8 / "StringsAsUTF8": TRUE if values of OFTString fields are assured to be in UTF-8
format. If FALSE the encoding of fields is uncertain, though it might still be UTF-8.

• OLCTransactions / "Transactions": TRUE if the StartTransaction(), CommitTransaction() and Rollback←↩

Transaction() methods work in a meaningful way, otherwise FALSE.

• OLCIgnoreFields / "IgnoreFields": TRUE if fields, geometry and style will be omitted when fetching features
as set by SetIgnoredFields() (p. ??) method.

This method is the same as the C function OGR_L_TestCapability() (p. ??).

Parameters

pszCap the name of the capability to test.

Returns

TRUE if the layer has the requested capability, or FALSE otherwise. OGRLayers will return FALSE for any
unrecognised capabilities.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayerDecorator::TestCapability().

The documentation for this class was generated from the following files:

• ogrmutexedlayer.h
• ogrmutexedlayer.cpp

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.74 OGRPoint Class Reference 289

12.74 OGRPoint Class Reference

#include <ogr_geometry.h>

Inheritance diagram for OGRPoint:

OGRPoint

OGRGeometry

Public Member Functions

• OGRPoint ()

Create a (0,0) point.

• virtual int WkbSize () const

Returns size of related binary representation.

• virtual OGRErr importFromWkb (unsigned char ∗, int=-1)

Assign geometry from well known binary data.

• virtual OGRErr exportToWkb (OGRwkbByteOrder, unsigned char ∗, OGRwkbVariant=wkbVariantOgc)
const

Convert a geometry into well known binary format.

• virtual OGRErr importFromWkt (char ∗∗)
Assign geometry from well known text data.

• virtual OGRErr exportToWkt (char ∗∗ppszDstText) const

Convert a geometry into well known text format.

• virtual int getDimension () const

Get the dimension of this object.

• virtual OGRGeometry ∗ clone () const

Make a copy of this object.

• virtual void empty ()

Clear geometry information. This restores the geometry to it's initial state after construction, and before assignment
of actual geometry.

• virtual void getEnvelope (OGREnvelope ∗psEnvelope) const

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure.

• virtual void getEnvelope (OGREnvelope3D ∗psEnvelope) const

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.

• virtual OGRBoolean IsEmpty () const

Returns TRUE (non-zero) if the object has no points.

• double getX () const

Fetch X coordinate.

• double getY () const

Fetch Y coordinate.

• double getZ () const

Fetch Z coordinate.

• virtual void setCoordinateDimension (int nDimension)

Set the coordinate dimension.

• void setX (double xIn)

Assign point X coordinate.

• void setY (double yIn)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

290 Class Documentation

Assign point Y coordinate.

• void setZ (double zIn)

Assign point Z coordinate. Calling this method will force the geometry coordinate dimension to 3D (wkbPoint|wkbZ).

• virtual OGRBoolean Equals (OGRGeometry ∗) const

Returns TRUE if two geometries are equivalent.

• virtual const char ∗ getGeometryName () const

Fetch WKT name for geometry type.

• virtual OGRwkbGeometryType getGeometryType () const

Fetch geometry type.

• virtual OGRErr transform (OGRCoordinateTransformation ∗poCT)

Apply arbitrary coordinate transformation to geometry.

• virtual void flattenTo2D ()

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0.

• virtual void swapXY ()

Swap x and y coordinates.

12.74.1 Detailed Description

Point class.

Implements SFCOM IPoint methods.

12.74.2 Member Function Documentation

12.74.2.1 OGRGeometry ∗ OGRPoint::clone () const [virtual]

Make a copy of this object.

This method relates to the SFCOM IGeometry::clone() method.

This method is the same as the C function OGR_G_Clone() (p. ??).

Returns

a new object instance with the same geometry, and spatial reference system as the original.

Implements OGRGeometry (p. ??).

References OGRGeometry::assignSpatialReference(), OGRGeometry::getSpatialReference(), OGRPoint(), and
setCoordinateDimension().

12.74.2.2 void OGRPoint::empty () [virtual]

Clear geometry information. This restores the geometry to it's initial state after construction, and before assignment
of actual geometry.

This method relates to the SFCOM IGeometry::Empty() method.

This method is the same as the C function OGR_G_Empty() (p. ??).

Implements OGRGeometry (p. ??).

Referenced by OGRGeometry::Centroid(), importFromWkt(), OGRPoint(), and OGRPolygon::PointOnSurface().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.74 OGRPoint Class Reference 291

12.74.2.3 OGRBoolean OGRPoint::Equals (OGRGeometry ∗ poOtherGeom) const [virtual]

Returns TRUE if two geometries are equivalent.

This method is the same as the C function OGR_G_Equals() (p. ??).

Returns

TRUE if equivalent or FALSE otherwise.

Implements OGRGeometry (p. ??).

References OGRGeometry::getGeometryType(), getGeometryType(), getX(), getY(), getZ(), OGRGeometry::Is←↩

Empty(), and IsEmpty().

Referenced by OGRGeometryFactory::forceToLineString().

12.74.2.4 OGRErr OGRPoint::exportToWkb (OGRwkbByteOrder eByteOrder, unsigned char ∗ pabyData, OGRwkbVariant
eWkbVariant = wkbVariantOgc) const [virtual]

Convert a geometry into well known binary format.

This method relates to the SFCOM IWks::ExportToWKB() method.

This method is the same as the C function OGR_G_ExportToWkb() (p. ??).

Parameters

eByteOrder One of wkbXDR or wkbNDR indicating MSB or LSB byte order respectively.
pabyData a buffer into which the binary representation is written. This buffer must be at least OGR←↩

Geometry::WkbSize() (p. ??) byte in size.
eWkbVariant What standard to use when exporting geometries with three dimensions (or more). The

default wkbVariantOgc is the historical OGR variant. wkbVariantIso is the variant defined in
ISO SQL/MM and adopted by OGC for SFSQL 1.2.

Returns

Currently OGRERR_NONE is always returned.

Implements OGRGeometry (p. ??).

References getGeometryType(), IsEmpty(), and wkbVariantIso.

12.74.2.5 OGRErr OGRPoint::exportToWkt (char ∗∗ ppszDstText) const [virtual]

Convert a geometry into well known text format.

This method relates to the SFCOM IWks::ExportToWKT() method.

This method is the same as the C function OGR_G_ExportToWkt() (p. ??).

Parameters

ppszDstText a text buffer is allocated by the program, and assigned to the passed pointer. After use,
∗ppszDstText should be freed with OGRFree().

Returns

Currently OGRERR_NONE is always returned.

Implements OGRGeometry (p. ??).

References CPLStrdup(), and IsEmpty().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

292 Class Documentation

12.74.2.6 void OGRPoint::flattenTo2D () [virtual]

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0.

This method is the same as the C function OGR_G_FlattenTo2D() (p. ??).

Implements OGRGeometry (p. ??).

12.74.2.7 int OGRPoint::getDimension () const [virtual]

Get the dimension of this object.

This method corresponds to the SFCOM IGeometry::GetDimension() method. It indicates the dimension of the ob-
ject, but does not indicate the dimension of the underlying space (as indicated by OGRGeometry::getCoordinate←↩

Dimension() (p. ??)).

This method is the same as the C function OGR_G_GetDimension() (p. ??).

Returns

0 for points, 1 for lines and 2 for surfaces.

Implements OGRGeometry (p. ??).

12.74.2.8 void OGRPoint::getEnvelope (OGREnvelope ∗ psEnvelope) const [virtual]

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure.

This method is the same as the C function OGR_G_GetEnvelope() (p. ??).

Parameters

psEnvelope the structure in which to place the results.

Implements OGRGeometry (p. ??).

References getX(), and getY().

12.74.2.9 void OGRPoint::getEnvelope (OGREnvelope3D ∗ psEnvelope) const [virtual]

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.

This method is the same as the C function OGR_G_GetEnvelope3D() (p. ??).

Parameters

psEnvelope the structure in which to place the results.

Since

OGR 1.9.0

Implements OGRGeometry (p. ??).

References getX(), getY(), and getZ().

12.74.2.10 const char ∗ OGRPoint::getGeometryName () const [virtual]

Fetch WKT name for geometry type.

There is no SFCOM analog to this method.

This method is the same as the C function OGR_G_GetGeometryName() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.74 OGRPoint Class Reference 293

Returns

name used for this geometry type in well known text format. The returned pointer is to a static internal string
and should not be modified or freed.

Implements OGRGeometry (p. ??).

12.74.2.11 OGRwkbGeometryType OGRPoint::getGeometryType () const [virtual]

Fetch geometry type.

Note that the geometry type may include the 2.5D flag. To get a 2D flattened version of the geometry type apply the
wkbFlatten() macro to the return result.

This method is the same as the C function OGR_G_GetGeometryType() (p. ??).

Returns

the geometry type code.

Implements OGRGeometry (p. ??).

References wkbPoint, and wkbPoint25D.

Referenced by Equals(), exportToWkb(), and OGR_G_Centroid().

12.74.2.12 double OGRPoint::getX () const [inline]

Fetch X coordinate.

Relates to the SFCOM IPoint::get_X() method.

Returns

the X coordinate of this point.

Referenced by OGRLineString::addPoint(), OGRGeometry::Centroid(), Equals(), OGRMultiPoint::exportToWkt(),
OGRCurve::get_IsClosed(), getEnvelope(), OGRGeometryFactory::organizePolygons(), OGRPolygon::PointOn←↩

Surface(), and OGRLineString::setPoint().

12.74.2.13 double OGRPoint::getY () const [inline]

Fetch Y coordinate.

Relates to the SFCOM IPoint::get_Y() method.

Returns

the Y coordinate of this point.

Referenced by OGRLineString::addPoint(), OGRGeometry::Centroid(), Equals(), OGRMultiPoint::exportToWkt(),
OGRCurve::get_IsClosed(), getEnvelope(), OGRGeometryFactory::organizePolygons(), OGRPolygon::PointOn←↩

Surface(), and OGRLineString::setPoint().

12.74.2.14 double OGRPoint::getZ () const [inline]

Fetch Z coordinate.

Relates to the SFCOM IPoint::get_Z() method.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

294 Class Documentation

Returns

the Z coordinate of this point, or zero if it is a 2D point.

Referenced by OGRLineString::addPoint(), Equals(), OGRMultiPoint::exportToWkt(), getEnvelope(), and OGR←↩

LineString::setPoint().

12.74.2.15 OGRErr OGRPoint::importFromWkb (unsigned char ∗ pabyData, int nSize = -1) [virtual]

Assign geometry from well known binary data.

The object must have already been instantiated as the correct derived type of geometry object to match the binaries
type. This method is used by the OGRGeometryFactory (p. ??) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKB() method.

This method is the same as the C function OGR_G_ImportFromWkb() (p. ??).

Parameters

pabyData the binary input data.
nSize the size of pabyData in bytes, or zero if not known.

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Implements OGRGeometry (p. ??).

References wkbPoint.

12.74.2.16 OGRErr OGRPoint::importFromWkt (char ∗∗ ppszInput) [virtual]

Assign geometry from well known text data.

The object must have already been instantiated as the correct derived type of geometry object to match the text
type. This method is used by the OGRGeometryFactory (p. ??) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKT() method.

This method is the same as the C function OGR_G_ImportFromWkt() (p. ??).

Parameters

ppszInput pointer to a pointer to the source text. The pointer is updated to pointer after the consumed
text.

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Implements OGRGeometry (p. ??).

References empty().

12.74.2.17 OGRBoolean OGRPoint::IsEmpty () const [virtual]

Returns TRUE (non-zero) if the object has no points.

Normally this returns FALSE except between when an object is instantiated and points have been assigned.

This method relates to the SFCOM IGeometry::IsEmpty() method.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.74 OGRPoint Class Reference 295

Returns

TRUE if object is empty, otherwise FALSE.

Implements OGRGeometry (p. ??).

Referenced by OGRGeometry::Centroid(), Equals(), exportToWkb(), exportToWkt(), OGRMultiPoint::exportToWkt(),
and OGRPolygon::PointOnSurface().

12.74.2.18 void OGRPoint::setCoordinateDimension (int nNewDimension) [virtual]

Set the coordinate dimension.

This method sets the explicit coordinate dimension. Setting the coordinate dimension of a geometry to 2 should
zero out any existing Z values. Setting the dimension of a geometry collection will not necessarily affect the children
geometries.

Parameters

nNewDimension New coordinate dimension value, either 2 or 3.

Reimplemented from OGRGeometry (p. ??).

Referenced by clone().

12.74.2.19 void OGRPoint::setX (double xIn) [inline]

Assign point X coordinate.

There is no corresponding SFCOM method.

Referenced by OGRGeometry::Centroid(), OGRLineString::getPoint(), OGRGeometryFactory::organizePolygons(),
OGRPolygon::PointOnSurface(), and OGRLineString::Value().

12.74.2.20 void OGRPoint::setY (double yIn) [inline]

Assign point Y coordinate.

There is no corresponding SFCOM method.

Referenced by OGRGeometry::Centroid(), OGRLineString::getPoint(), OGRGeometryFactory::organizePolygons(),
OGRPolygon::PointOnSurface(), and OGRLineString::Value().

12.74.2.21 void OGRPoint::setZ (double zIn) [inline]

Assign point Z coordinate. Calling this method will force the geometry coordinate dimension to 3D (wkbPoint|wkbZ).

There is no corresponding SFCOM method.

Referenced by OGRLineString::getPoint(), and OGRLineString::Value().

12.74.2.22 void OGRPoint::swapXY () [virtual]

Swap x and y coordinates.

Since

OGR 1.8.0

Reimplemented from OGRGeometry (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

296 Class Documentation

12.74.2.23 OGRErr OGRPoint::transform (OGRCoordinateTransformation ∗ poCT) [virtual]

Apply arbitrary coordinate transformation to geometry.

This method will transform the coordinates of a geometry from their current spatial reference system to a new
target spatial reference system. Normally this means reprojecting the vectors, but it could include datum shifts, and
changes of units.

Note that this method does not require that the geometry already have a spatial reference system. It will be assumed
that they can be treated as having the source spatial reference system of the OGRCoordinateTransformation
(p. ??) object, and the actual SRS of the geometry will be ignored. On successful completion the output OGR←↩

SpatialReference (p. ??) of the OGRCoordinateTransformation (p. ??) will be assigned to the geometry.

This method is the same as the C function OGR_G_Transform() (p. ??).

Parameters

poCT the transformation to apply.

Returns

OGRERR_NONE on success or an error code.

Implements OGRGeometry (p. ??).

References OGRGeometry::assignSpatialReference(), OGRCoordinateTransformation::GetTargetCS(), and OG←↩

RCoordinateTransformation::Transform().

12.74.2.24 int OGRPoint::WkbSize () const [virtual]

Returns size of related binary representation.

This method returns the exact number of bytes required to hold the well known binary representation of this geom-
etry object. Its computation may be slightly expensive for complex geometries.

This method relates to the SFCOM IWks::WkbSize() method.

This method is the same as the C function OGR_G_WkbSize() (p. ??).

Returns

size of binary representation in bytes.

Implements OGRGeometry (p. ??).

The documentation for this class was generated from the following files:

• ogr_geometry.h

• ogrpoint.cpp

12.75 OGRPolygon Class Reference

#include <ogr_geometry.h>

Inheritance diagram for OGRPolygon:

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.75 OGRPolygon Class Reference 297

OGRPolygon

OGRSurface

OGRGeometry

Public Member Functions

• OGRPolygon ()

Create an empty polygon.

• virtual const char ∗ getGeometryName () const

Fetch WKT name for geometry type.

• virtual OGRwkbGeometryType getGeometryType () const

Fetch geometry type.

• virtual OGRGeometry ∗ clone () const

Make a copy of this object.

• virtual void empty ()

Clear geometry information. This restores the geometry to it's initial state after construction, and before assignment
of actual geometry.

• virtual OGRErr transform (OGRCoordinateTransformation ∗poCT)

Apply arbitrary coordinate transformation to geometry.

• virtual void flattenTo2D ()

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0.

• virtual OGRBoolean IsEmpty () const

Returns TRUE (non-zero) if the object has no points.

• virtual void segmentize (double dfMaxLength)

Modify the geometry such it has no segment longer then the given distance.

• virtual double get_Area () const

Compute area of polygon.

• virtual int PointOnSurface (OGRPoint ∗poPoint) const

This method relates to the SFCOM ISurface::get_PointOnSurface() method.

• virtual int WkbSize () const

Returns size of related binary representation.

• virtual OGRErr importFromWkb (unsigned char ∗, int=-1)

Assign geometry from well known binary data.

• virtual OGRErr exportToWkb (OGRwkbByteOrder, unsigned char ∗, OGRwkbVariant=wkbVariantOgc)
const

Convert a geometry into well known binary format.

• virtual OGRErr importFromWkt (char ∗∗)
Assign geometry from well known text data.

• virtual OGRErr exportToWkt (char ∗∗ppszDstText) const

Convert a geometry into well known text format.

• virtual int getDimension () const

Get the dimension of this object.

• virtual void getEnvelope (OGREnvelope ∗psEnvelope) const

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure.

• virtual void getEnvelope (OGREnvelope3D ∗psEnvelope) const

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.

• virtual OGRBoolean Equals (OGRGeometry ∗) const

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

298 Class Documentation

Returns TRUE if two geometries are equivalent.
• virtual void setCoordinateDimension (int nDimension)

Set the coordinate dimension.
• void addRing (OGRLinearRing ∗)

Add a ring to a polygon.
• void addRingDirectly (OGRLinearRing ∗)

Add a ring to a polygon.
• OGRLinearRing ∗ getExteriorRing ()

Fetch reference to external polygon ring.
• int getNumInteriorRings () const

Fetch the number of internal rings.
• OGRLinearRing ∗ getInteriorRing (int)

Fetch reference to indicated internal ring.
• OGRLinearRing ∗ stealExteriorRing ()

"Steal" reference to external polygon ring.
• OGRLinearRing ∗ stealInteriorRing (int)

"Steal" reference to indicated interior ring.
• virtual void closeRings ()

Force rings to be closed.
• virtual void swapXY ()

Swap x and y coordinates.

12.75.1 Detailed Description

Concrete class representing polygons.

Note that the OpenGIS simple features polygons consist of one outer ring, and zero or more inner rings. A polygon
cannot represent disconnected regions (such as multiple islands in a political body). The OGRMultiPolygon (p. ??)
must be used for this.

12.75.2 Member Function Documentation

12.75.2.1 void OGRPolygon::addRing (OGRLinearRing ∗ poNewRing)

Add a ring to a polygon.

If the polygon has no external ring (it is empty) this will be used as the external ring, otherwise it is used as an
internal ring. The passed OGRLinearRing (p. ??) remains the responsibility of the caller (an internal copy is made).

This method has no SFCOM analog.

Parameters

poNewRing ring to be added to the polygon.

References OGRGeometry::getCoordinateDimension().

Referenced by clone(), and OGRLayer::SetSpatialFilterRect().

12.75.2.2 void OGRPolygon::addRingDirectly (OGRLinearRing ∗ poNewRing)

Add a ring to a polygon.

If the polygon has no external ring (it is empty) this will be used as the external ring, otherwise it is used as an
internal ring. Ownership of the passed ring is assumed by the OGRPolygon (p. ??), but otherwise this method
operates the same as OGRPolygon::AddRing().

This method has no SFCOM analog.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.75 OGRPolygon Class Reference 299

Parameters

poNewRing ring to be added to the polygon.

References OGRGeometry::getCoordinateDimension().

Referenced by OGRGeometryFactory::forceToPolygon(), OGRMultiPolygon::importFromWkt(), OGRBuild←↩

PolygonFromEdges(), and OGRGeometryFactory::organizePolygons().

12.75.2.3 OGRGeometry ∗ OGRPolygon::clone () const [virtual]

Make a copy of this object.

This method relates to the SFCOM IGeometry::clone() method.

This method is the same as the C function OGR_G_Clone() (p. ??).

Returns

a new object instance with the same geometry, and spatial reference system as the original.

Implements OGRGeometry (p. ??).

References addRing(), OGRGeometry::assignSpatialReference(), OGRGeometry::getSpatialReference(), and O←↩

GRPolygon().

12.75.2.4 void OGRPolygon::closeRings () [virtual]

Force rings to be closed.

If this geometry, or any contained geometries has polygon rings that are not closed, they will be closed by adding
the starting point at the end.

Reimplemented from OGRGeometry (p. ??).

12.75.2.5 void OGRPolygon::empty () [virtual]

Clear geometry information. This restores the geometry to it's initial state after construction, and before assignment
of actual geometry.

This method relates to the SFCOM IGeometry::Empty() method.

This method is the same as the C function OGR_G_Empty() (p. ??).

Implements OGRGeometry (p. ??).

Referenced by importFromWkt().

12.75.2.6 OGRBoolean OGRPolygon::Equals (OGRGeometry ∗ poOtherGeom) const [virtual]

Returns TRUE if two geometries are equivalent.

This method is the same as the C function OGR_G_Equals() (p. ??).

Returns

TRUE if equivalent or FALSE otherwise.

Implements OGRGeometry (p. ??).

References OGRLineString::Equals(), getExteriorRing(), OGRGeometry::getGeometryType(), getGeometryType(),
getInteriorRing(), getNumInteriorRings(), OGRGeometry::IsEmpty(), and IsEmpty().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

300 Class Documentation

12.75.2.7 OGRErr OGRPolygon::exportToWkb (OGRwkbByteOrder eByteOrder, unsigned char ∗ pabyData, OGRwkbVariant
eWkbVariant = wkbVariantOgc) const [virtual]

Convert a geometry into well known binary format.

This method relates to the SFCOM IWks::ExportToWKB() method.

This method is the same as the C function OGR_G_ExportToWkb() (p. ??).

Parameters

eByteOrder One of wkbXDR or wkbNDR indicating MSB or LSB byte order respectively.
pabyData a buffer into which the binary representation is written. This buffer must be at least OGR←↩

Geometry::WkbSize() (p. ??) byte in size.
eWkbVariant What standard to use when exporting geometries with three dimensions (or more). The

default wkbVariantOgc is the historical OGR variant. wkbVariantIso is the variant defined in
ISO SQL/MM and adopted by OGC for SFSQL 1.2.

Returns

Currently OGRERR_NONE is always returned.

Implements OGRGeometry (p. ??).

References OGRGeometry::getCoordinateDimension(), getGeometryType(), and wkbVariantIso.

12.75.2.8 OGRErr OGRPolygon::exportToWkt (char ∗∗ ppszDstText) const [virtual]

Convert a geometry into well known text format.

This method relates to the SFCOM IWks::ExportToWKT() method.

This method is the same as the C function OGR_G_ExportToWkt() (p. ??).

Parameters

ppszDstText a text buffer is allocated by the program, and assigned to the passed pointer. After use,
∗ppszDstText should be freed with OGRFree().

Returns

Currently OGRERR_NONE is always returned.

Implements OGRGeometry (p. ??).

References CPLCalloc(), CPLDebug(), CPLStrdup(), OGRLineString::exportToWkt(), OGRGeometry::get←↩

CoordinateDimension(), getExteriorRing(), IsEmpty(), and OGRLineString::setCoordinateDimension().

Referenced by OGRGeometryFactory::organizePolygons().

12.75.2.9 void OGRPolygon::flattenTo2D () [virtual]

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0.

This method is the same as the C function OGR_G_FlattenTo2D() (p. ??).

Implements OGRGeometry (p. ??).

12.75.2.10 double OGRPolygon::get_Area () const [virtual]

Compute area of polygon.

The area is computed as the area of the outer ring less the area of all internal rings.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.75 OGRPolygon Class Reference 301

Returns

computed area.

Implements OGRSurface (p. ??).

References OGRLinearRing::get_Area(), getExteriorRing(), getInteriorRing(), and getNumInteriorRings().

Referenced by OGRMultiPolygon::get_Area(), and OGRGeometryFactory::organizePolygons().

12.75.2.11 int OGRPolygon::getDimension () const [virtual]

Get the dimension of this object.

This method corresponds to the SFCOM IGeometry::GetDimension() method. It indicates the dimension of the ob-
ject, but does not indicate the dimension of the underlying space (as indicated by OGRGeometry::getCoordinate←↩

Dimension() (p. ??)).

This method is the same as the C function OGR_G_GetDimension() (p. ??).

Returns

0 for points, 1 for lines and 2 for surfaces.

Implements OGRGeometry (p. ??).

12.75.2.12 void OGRPolygon::getEnvelope (OGREnvelope ∗ psEnvelope) const [virtual]

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure.

This method is the same as the C function OGR_G_GetEnvelope() (p. ??).

Parameters

psEnvelope the structure in which to place the results.

Implements OGRGeometry (p. ??).

References OGRLineString::getEnvelope(), and IsEmpty().

12.75.2.13 void OGRPolygon::getEnvelope (OGREnvelope3D ∗ psEnvelope) const [virtual]

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.

This method is the same as the C function OGR_G_GetEnvelope3D() (p. ??).

Parameters

psEnvelope the structure in which to place the results.

Since

OGR 1.9.0

Implements OGRGeometry (p. ??).

References OGRLineString::getEnvelope(), and IsEmpty().

12.75.2.14 OGRLinearRing ∗ OGRPolygon::getExteriorRing ()

Fetch reference to external polygon ring.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

302 Class Documentation

Note that the returned ring pointer is to an internal data object of the OGRPolygon (p. ??). It should not be modified
or deleted by the application, and the pointer is only valid till the polygon is next modified. Use the OGRGeometry←↩

::clone() (p. ??) method to make a separate copy within the application.

Relates to the SFCOM IPolygon::get_ExteriorRing() method.

Returns

pointer to external ring. May be NULL if the OGRPolygon (p. ??) is empty.

Referenced by OGRGeometry::dumpReadable(), Equals(), exportToWkt(), OGRGeometryFactory::forceTo←↩

MultiLineString(), OGRGeometryFactory::forceToPolygon(), get_Area(), and OGRGeometryFactory::organize←↩

Polygons().

12.75.2.15 const char ∗ OGRPolygon::getGeometryName () const [virtual]

Fetch WKT name for geometry type.

There is no SFCOM analog to this method.

This method is the same as the C function OGR_G_GetGeometryName() (p. ??).

Returns

name used for this geometry type in well known text format. The returned pointer is to a static internal string
and should not be modified or freed.

Implements OGRGeometry (p. ??).

12.75.2.16 OGRwkbGeometryType OGRPolygon::getGeometryType () const [virtual]

Fetch geometry type.

Note that the geometry type may include the 2.5D flag. To get a 2D flattened version of the geometry type apply the
wkbFlatten() macro to the return result.

This method is the same as the C function OGR_G_GetGeometryType() (p. ??).

Returns

the geometry type code.

Implements OGRGeometry (p. ??).

References wkbPolygon, and wkbPolygon25D.

Referenced by Equals(), and exportToWkb().

12.75.2.17 OGRLinearRing ∗ OGRPolygon::getInteriorRing (int iRing)

Fetch reference to indicated internal ring.

Note that the returned ring pointer is to an internal data object of the OGRPolygon (p. ??). It should not be modified
or deleted by the application, and the pointer is only valid till the polygon is next modified. Use the OGRGeometry←↩

::clone() (p. ??) method to make a separate copy within the application.

Relates to the SFCOM IPolygon::get_InternalRing() method.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.75 OGRPolygon Class Reference 303

Parameters

iRing internal ring index from 0 to getNumInternalRings() - 1.

Returns

pointer to interior ring. May be NULL.

Referenced by OGRGeometry::dumpReadable(), Equals(), OGRGeometryFactory::forceToMultiLineString(), and
get_Area().

12.75.2.18 int OGRPolygon::getNumInteriorRings () const

Fetch the number of internal rings.

Relates to the SFCOM IPolygon::get_NumInteriorRings() method.

Returns

count of internal rings, zero or more.

Referenced by OGRGeometry::dumpReadable(), Equals(), OGRGeometryFactory::forceToMultiLineString(), OG←↩

RGeometryFactory::forceToPolygon(), and get_Area().

12.75.2.19 OGRErr OGRPolygon::importFromWkb (unsigned char ∗ pabyData, int nSize = -1) [virtual]

Assign geometry from well known binary data.

The object must have already been instantiated as the correct derived type of geometry object to match the binaries
type. This method is used by the OGRGeometryFactory (p. ??) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKB() method.

This method is the same as the C function OGR_G_ImportFromWkb() (p. ??).

Parameters

pabyData the binary input data.
nSize the size of pabyData in bytes, or zero if not known.

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Implements OGRGeometry (p. ??).

References CPLError(), VSIMalloc2(), and wkbPolygon.

12.75.2.20 OGRErr OGRPolygon::importFromWkt (char ∗∗ ppszInput) [virtual]

Assign geometry from well known text data.

The object must have already been instantiated as the correct derived type of geometry object to match the text
type. This method is used by the OGRGeometryFactory (p. ??) class, but not normally called by application code.

This method relates to the SFCOM IWks::ImportFromWKT() method.

This method is the same as the C function OGR_G_ImportFromWkt() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

304 Class Documentation

Parameters

ppszInput pointer to a pointer to the source text. The pointer is updated to pointer after the consumed
text.

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

Implements OGRGeometry (p. ??).

References CPLRealloc(), empty(), and OGRLineString::setPoints().

12.75.2.21 OGRBoolean OGRPolygon::IsEmpty () const [virtual]

Returns TRUE (non-zero) if the object has no points.

Normally this returns FALSE except between when an object is instantiated and points have been assigned.

This method relates to the SFCOM IGeometry::IsEmpty() method.

Returns

TRUE if object is empty, otherwise FALSE.

Implements OGRGeometry (p. ??).

Referenced by Equals(), exportToWkt(), and getEnvelope().

12.75.2.22 int OGRPolygon::PointOnSurface (OGRPoint ∗ poPoint) const [virtual]

This method relates to the SFCOM ISurface::get_PointOnSurface() method.

NOTE: Only implemented when GEOS included in build.

Parameters

poPoint point to be set with an internal point.

Returns

OGRERR_NONE if it succeeds or OGRERR_FAILURE otherwise.

Implements OGRSurface (p. ??).

References OGRPoint::empty(), OGRPoint::getX(), OGRPoint::getY(), OGRPoint::IsEmpty(), OGR_G_PointOn←↩

Surface(), OGRPoint::setX(), and OGRPoint::setY().

12.75.2.23 void OGRPolygon::segmentize (double dfMaxLength) [virtual]

Modify the geometry such it has no segment longer then the given distance.

Interpolated points will have Z and M values (if needed) set to 0. Distance computation is performed in 2d only

This function is the same as the C function OGR_G_Segmentize() (p. ??)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.75 OGRPolygon Class Reference 305

Parameters

dfMaxLength the maximum distance between 2 points after segmentization

Reimplemented from OGRGeometry (p. ??).

12.75.2.24 void OGRPolygon::setCoordinateDimension (int nNewDimension) [virtual]

Set the coordinate dimension.

This method sets the explicit coordinate dimension. Setting the coordinate dimension of a geometry to 2 should
zero out any existing Z values. Setting the dimension of a geometry collection will not necessarily affect the children
geometries.

Parameters

nNewDimension New coordinate dimension value, either 2 or 3.

Reimplemented from OGRGeometry (p. ??).

References OGRGeometry::setCoordinateDimension().

12.75.2.25 OGRLinearRing ∗ OGRPolygon::stealExteriorRing ()

"Steal" reference to external polygon ring.

After the call to that function, only call to stealInteriorRing() (p. ??) or destruction of the OGRPolygon (p. ??) is
valid. Other operations may crash.

Returns

pointer to external ring. May be NULL if the OGRPolygon (p. ??) is empty.

Referenced by OGRGeometryFactory::forceToPolygon().

12.75.2.26 OGRLinearRing ∗ OGRPolygon::stealInteriorRing (int iRing)

"Steal" reference to indicated interior ring.

After the call to that function, only call to stealInteriorRing() (p. ??) or destruction of the OGRPolygon (p. ??) is
valid. Other operations may crash.

Parameters

iRing internal ring index from 0 to getNumInternalRings() - 1.

Returns

pointer to interior ring. May be NULL.

Referenced by OGRGeometryFactory::forceToPolygon().

12.75.2.27 void OGRPolygon::swapXY () [virtual]

Swap x and y coordinates.

Since

OGR 1.8.0

Reimplemented from OGRGeometry (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

306 Class Documentation

12.75.2.28 OGRErr OGRPolygon::transform (OGRCoordinateTransformation ∗ poCT) [virtual]

Apply arbitrary coordinate transformation to geometry.

This method will transform the coordinates of a geometry from their current spatial reference system to a new
target spatial reference system. Normally this means reprojecting the vectors, but it could include datum shifts, and
changes of units.

Note that this method does not require that the geometry already have a spatial reference system. It will be assumed
that they can be treated as having the source spatial reference system of the OGRCoordinateTransformation
(p. ??) object, and the actual SRS of the geometry will be ignored. On successful completion the output OGR←↩

SpatialReference (p. ??) of the OGRCoordinateTransformation (p. ??) will be assigned to the geometry.

This method is the same as the C function OGR_G_Transform() (p. ??).

Parameters

poCT the transformation to apply.

Returns

OGRERR_NONE on success or an error code.

Implements OGRGeometry (p. ??).

References OGRGeometry::assignSpatialReference(), CPLDebug(), OGRCoordinateTransformation::GetTarget←↩

CS(), and OGRLineString::transform().

12.75.2.29 int OGRPolygon::WkbSize () const [virtual]

Returns size of related binary representation.

This method returns the exact number of bytes required to hold the well known binary representation of this geom-
etry object. Its computation may be slightly expensive for complex geometries.

This method relates to the SFCOM IWks::WkbSize() method.

This method is the same as the C function OGR_G_WkbSize() (p. ??).

Returns

size of binary representation in bytes.

Implements OGRGeometry (p. ??).

References OGRGeometry::getCoordinateDimension().

The documentation for this class was generated from the following files:

• ogr_geometry.h
• ogrpolygon.cpp

12.76 OGRProj4CT Class Reference

Inheritance diagram for OGRProj4CT:

OGRProj4CT

OGRCoordinateTransformation

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.76 OGRProj4CT Class Reference 307

Public Member Functions

• virtual OGRSpatialReference ∗ GetSourceCS ()
• virtual OGRSpatialReference ∗ GetTargetCS ()
• virtual int Transform (int nCount, double ∗x, double ∗y, double ∗z=NULL)
• virtual int TransformEx (int nCount, double ∗x, double ∗y, double ∗z=NULL, int ∗panSuccess=NULL)

Additional Inherited Members

12.76.1 Member Function Documentation

12.76.1.1 OGRSpatialReference ∗ OGRProj4CT::GetSourceCS () [virtual]

Fetch internal source coordinate system.

Implements OGRCoordinateTransformation (p. ??).

12.76.1.2 OGRSpatialReference ∗ OGRProj4CT::GetTargetCS () [virtual]

Fetch internal target coordinate system.

Implements OGRCoordinateTransformation (p. ??).

12.76.1.3 int OGRProj4CT::Transform (int nCount, double ∗ x, double ∗ y, double ∗ z = NULL) [virtual]

Transform points from source to destination space.

This method is the same as the C function OCTTransform().

The method TransformEx() (p. ??) allows extended success information to be captured indicating which points
failed to transform.

Parameters

nCount number of points to transform.
x array of nCount X vertices, modified in place.
y array of nCount Y vertices, modified in place.
z array of nCount Z vertices, modified in place.

Returns

TRUE on success, or FALSE if some or all points fail to transform.

Implements OGRCoordinateTransformation (p. ??).

References CPLMalloc(), and TransformEx().

12.76.1.4 int OGRProj4CT::TransformEx (int nCount, double ∗ x, double ∗ y, double ∗ z = NULL, int ∗ pabSuccess = NULL
) [virtual]

Transform points from source to destination space.

This method is the same as the C function OCTTransformEx().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

308 Class Documentation

Parameters

nCount number of points to transform.
x array of nCount X vertices, modified in place.
y array of nCount Y vertices, modified in place.
z array of nCount Z vertices, modified in place.

pabSuccess array of per-point flags set to TRUE if that point transforms, or FALSE if it does not.

Returns

TRUE if some or all points transform successfully, or FALSE if if none transform.

Implements OGRCoordinateTransformation (p. ??).

References CPLError(), and CPLRealloc().

Referenced by Transform().

The documentation for this class was generated from the following file:

• ogrct.cpp

12.77 OGRProj4Datum Struct Reference

The documentation for this struct was generated from the following file:

• ogr_srs_proj4.cpp

12.78 OGRProj4PM Struct Reference

The documentation for this struct was generated from the following file:

• ogr_srs_proj4.cpp

12.79 OGRProxiedLayer Class Reference

Inheritance diagram for OGRProxiedLayer:

OGRProxiedLayer

OGRAbstractProxiedLayer

OGRLayer

Public Member Functions

• virtual OGRGeometry ∗ GetSpatialFilter ()

This method returns the current spatial filter for this layer.

• virtual void SetSpatialFilter (OGRGeometry ∗)
Set a new spatial filter.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.79 OGRProxiedLayer Class Reference 309

• virtual void SetSpatialFilter (int iGeomField, OGRGeometry ∗)
Set a new spatial filter.

• virtual OGRErr SetAttributeFilter (const char ∗)
Set a new attribute query.

• virtual void ResetReading ()

Reset feature reading to start on the first feature.

• virtual OGRFeature ∗ GetNextFeature ()

Fetch the next available feature from this layer.

• virtual OGRErr SetNextByIndex (long nIndex)

Move read cursor to the nIndex'th feature in the current resultset.

• virtual OGRFeature ∗ GetFeature (long nFID)

Fetch a feature by its identifier.

• virtual OGRErr SetFeature (OGRFeature ∗poFeature)

Rewrite an existing feature.

• virtual OGRErr CreateFeature (OGRFeature ∗poFeature)

Create and write a new feature within a layer.

• virtual OGRErr DeleteFeature (long nFID)

Delete feature from layer.

• virtual const char ∗ GetName ()

Return the layer name.

• virtual OGRwkbGeometryType GetGeomType ()

Return the layer geometry type.

• virtual OGRFeatureDefn ∗ GetLayerDefn ()

Fetch the schema information for this layer.

• virtual OGRSpatialReference ∗ GetSpatialRef ()

Fetch the spatial reference system for this layer.

• virtual int GetFeatureCount (int bForce=TRUE)

Fetch the feature count in this layer.

• virtual OGRErr GetExtent (int iGeomField, OGREnvelope ∗psExtent, int bForce=TRUE)

Fetch the extent of this layer, on the specified geometry field.

• virtual OGRErr GetExtent (OGREnvelope ∗psExtent, int bForce=TRUE)

Fetch the extent of this layer.

• virtual int TestCapability (const char ∗)
Test if this layer supported the named capability.

• virtual OGRErr CreateField (OGRFieldDefn ∗poField, int bApproxOK=TRUE)

Create a new field on a layer.

• virtual OGRErr DeleteField (int iField)

Delete an existing field on a layer.

• virtual OGRErr ReorderFields (int ∗panMap)

Reorder all the fields of a layer.

• virtual OGRErr AlterFieldDefn (int iField, OGRFieldDefn ∗poNewFieldDefn, int nFlags)

Alter the definition of an existing field on a layer.

• virtual OGRErr SyncToDisk ()

Flush pending changes to disk.

• virtual OGRStyleTable ∗ GetStyleTable ()

Returns layer style table.

• virtual void SetStyleTableDirectly (OGRStyleTable ∗poStyleTable)

Set layer style table.

• virtual void SetStyleTable (OGRStyleTable ∗poStyleTable)

Set layer style table.

• virtual const char ∗ GetFIDColumn ()

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

310 Class Documentation

This method returns the name of the underlying database column being used as the FID column, or "" if not supported.

• virtual const char ∗ GetGeometryColumn ()

This method returns the name of the underlying database column being used as the geometry column, or "" if not
supported.

• virtual OGRErr SetIgnoredFields (const char ∗∗papszFields)

Set which fields can be omitted when retrieving features from the layer.

12.79.1 Member Function Documentation

12.79.1.1 OGRErr OGRProxiedLayer::AlterFieldDefn (int iField, OGRFieldDefn ∗ poNewFieldDefn, int nFlags)
[virtual]

Alter the definition of an existing field on a layer.

You must use this to alter the definition of an existing field of a real layer. Internally the OGRFeatureDefn (p. ??) for
the layer will be updated to reflect the altered field. Applications should never modify the OGRFeatureDefn (p. ??)
used by a layer directly.

This method should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCAlterFieldDefn
capability. Some drivers may only support this method while there are still no features in the layer. When it is
supported, the existings features of the backing file/database should be updated accordingly. Some drivers might
also not support all update flags.

This function is the same as the C function OGR_L_AlterFieldDefn() (p. ??).

Parameters

iField index of the field whose definition must be altered.
poNewFieldDefn new field definition

nFlags combination of ALTER_NAME_FLAG, ALTER_TYPE_FLAG and ALTER_WIDTH_PRECI←↩

SION_FLAG to indicate which of the name and/or type and/or width and precision fields from
the new field definition must be taken into account.

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

Reimplemented from OGRLayer (p. ??).

References OGRLayer::AlterFieldDefn().

12.79.1.2 OGRErr OGRProxiedLayer::CreateFeature (OGRFeature ∗ poFeature) [virtual]

Create and write a new feature within a layer.

The passed feature is written to the layer as a new feature, rather than overwriting an existing one. If the feature
has a feature id other than OGRNullFID, then the native implementation may use that as the feature id of the new
feature, but not necessarily. Upon successful return the passed feature will have been updated with the new feature
id.

This method is the same as the C function OGR_L_CreateFeature() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.79 OGRProxiedLayer Class Reference 311

Parameters

poFeature the feature to write to disk.

Returns

OGRERR_NONE on success.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::CreateFeature().

12.79.1.3 OGRErr OGRProxiedLayer::CreateField (OGRFieldDefn ∗ poField, int bApproxOK = TRUE) [virtual]

Create a new field on a layer.

You must use this to create new fields on a real layer. Internally the OGRFeatureDefn (p. ??) for the layer will be
updated to reflect the new field. Applications should never modify the OGRFeatureDefn (p. ??) used by a layer
directly.

This method should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCCreateField capability.
Some drivers may only support this method while there are still no features in the layer. When it is supported, the
existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_CreateField() (p. ??).

Parameters

poField field definition to write to disk.
bApproxOK If TRUE, the field may be created in a slightly different form depending on the limitations of

the format driver.

Returns

OGRERR_NONE on success.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::CreateField().

12.79.1.4 OGRErr OGRProxiedLayer::DeleteFeature (long nFID) [virtual]

Delete feature from layer.

The feature with the indicated feature id is deleted from the layer if supported by the driver. Most drivers do not
support feature deletion, and will return OGRERR_UNSUPPORTED_OPERATION. The TestCapability() (p. ??)
layer method may be called with OLCDeleteFeature to check if the driver supports feature deletion.

This method is the same as the C function OGR_L_DeleteFeature() (p. ??).

Parameters

nFID the feature id to be deleted from the layer

Returns

OGRERR_NONE on success.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::DeleteFeature().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

312 Class Documentation

12.79.1.5 OGRErr OGRProxiedLayer::DeleteField (int iField) [virtual]

Delete an existing field on a layer.

You must use this to delete existing fields on a real layer. Internally the OGRFeatureDefn (p. ??) for the layer will be
updated to reflect the deleted field. Applications should never modify the OGRFeatureDefn (p. ??) used by a layer
directly.

This method should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

Not all drivers support this method. You can query a layer to check if it supports it with the OLCDeleteField capability.
Some drivers may only support this method while there are still no features in the layer. When it is supported, the
existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_DeleteField() (p. ??).

Parameters

iField index of the field to delete.

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

Reimplemented from OGRLayer (p. ??).

References OGRLayer::DeleteField().

12.79.1.6 OGRErr OGRProxiedLayer::GetExtent (int iGeomField, OGREnvelope ∗ psExtent, int bForce = TRUE)
[virtual]

Fetch the extent of this layer, on the specified geometry field.

Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and it would be expensive to establish the
extent then OGRERR_FAILURE will be returned indicating that the extent isn't know. If bForce is TRUE then some
implementations will actually scan the entire layer once to compute the MBR of all the features in the layer.

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is safer to call
GetExtent() (p. ??) without setting a spatial filter.

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents could be
collected.

Note that some implementations of this method may alter the read cursor of the layer.

Note to driver implementators: if you implement GetExtent(int,OGREnvelope∗,int) (p. ??), you must also imple-
ment GetExtent(OGREnvelope∗, int) (p. ??) to make it call GetExtent(0,OGREnvelope∗,int).

This method is the same as the C function OGR_L_GetExtentEx() (p. ??).

Parameters

iGeomField the index of the geometry field on which to compute the extent.
psExtent the structure in which the extent value will be returned.

bForce Flag indicating whether the extent should be computed even if it is expensive.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.79 OGRProxiedLayer Class Reference 313

Returns

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::GetExtent().

12.79.1.7 OGRErr OGRProxiedLayer::GetExtent (OGREnvelope ∗ psExtent, int bForce = TRUE) [virtual]

Fetch the extent of this layer.

Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and it would be expensive to establish the
extent then OGRERR_FAILURE will be returned indicating that the extent isn't know. If bForce is TRUE then some
implementations will actually scan the entire layer once to compute the MBR of all the features in the layer.

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is safer to call
GetExtent() (p. ??) without setting a spatial filter.

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents could be
collected.

Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetExtent() (p. ??).

Parameters

psExtent the structure in which the extent value will be returned.
bForce Flag indicating whether the extent should be computed even if it is expensive.

Returns

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::GetExtent().

12.79.1.8 OGRFeature ∗ OGRProxiedLayer::GetFeature (long nFID) [virtual]

Fetch a feature by its identifier.

This function will attempt to read the identified feature. The nFID value cannot be OGRNullFID. Success or failure
of this operation is unaffected by the spatial or attribute filters (and specialized implementations in drivers should
make sure that they do not take into account spatial or attribute filters).

If this method returns a non-NULL feature, it is guaranteed that its feature id (OGRFeature::GetFID() (p. ??)) will
be the same as nFID.

Use OGRLayer::TestCapability(OLCRandomRead) to establish if this layer supports efficient random access reading
via GetFeature() (p. ??); however, the call should always work if the feature exists as a fallback implementation just
scans all the features in the layer looking for the desired feature.

Sequential reads (with GetNextFeature() (p. ??)) are generally considered interrupted by a GetFeature() (p. ??)
call.

The returned feature should be free with OGRFeature::DestroyFeature() (p. ??).

This method is the same as the C function OGR_L_GetFeature() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

314 Class Documentation

Parameters

nFID the feature id of the feature to read.

Returns

a feature now owned by the caller, or NULL on failure.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::GetFeature().

12.79.1.9 int OGRProxiedLayer::GetFeatureCount (int bForce = TRUE) [virtual]

Fetch the feature count in this layer.

Returns the number of features in the layer. For dynamic databases the count may not be exact. If bForce is FALSE,
and it would be expensive to establish the feature count a value of -1 may be returned indicating that the count isn't
know. If bForce is TRUE some implementations will actually scan the entire layer once to count objects.

The returned count takes the spatial filter into account.

Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetFeatureCount() (p. ??).

Parameters

bForce Flag indicating whether the count should be computed even if it is expensive.

Returns

feature count, -1 if count not known.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::GetFeatureCount().

12.79.1.10 const char ∗ OGRProxiedLayer::GetFIDColumn () [virtual]

This method returns the name of the underlying database column being used as the FID column, or "" if not
supported.

This method is the same as the C function OGR_L_GetFIDColumn() (p. ??).

Returns

fid column name.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::GetFIDColumn().

12.79.1.11 const char ∗ OGRProxiedLayer::GetGeometryColumn () [virtual]

This method returns the name of the underlying database column being used as the geometry column, or "" if not
supported.

This method is the same as the C function OGR_L_GetGeometryColumn() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.79 OGRProxiedLayer Class Reference 315

Returns

geometry column name.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::GetGeometryColumn().

12.79.1.12 OGRwkbGeometryType OGRProxiedLayer::GetGeomType () [virtual]

Return the layer geometry type.

This returns the same result as GetLayerDefn() (p. ??)->GetGeomType() (p. ??), but for a few drivers, calling
GetGeomType() (p. ??) directly can avoid lengthy layer definition initialization.

This method is the same as the C function OGR_L_GetGeomType() (p. ??).

If this method is derived in a driver, it must be done such that it returns the same content as GetLayerDefn()
(p. ??)->GetGeomType() (p. ??).

Returns

the geometry type

Since

OGR 1.8.0

Reimplemented from OGRLayer (p. ??).

References OGRLayer::GetGeomType(), and wkbUnknown.

12.79.1.13 OGRFeatureDefn ∗ OGRProxiedLayer::GetLayerDefn () [virtual]

Fetch the schema information for this layer.

The returned OGRFeatureDefn (p. ??) is owned by the OGRLayer (p. ??), and should not be modified or freed by
the application. It encapsulates the attribute schema of the features of the layer.

This method is the same as the C function OGR_L_GetLayerDefn() (p. ??).

Returns

feature definition.

Implements OGRLayer (p. ??).

References OGRLayer::GetLayerDefn(), and OGRFeatureDefn::Reference().

12.79.1.14 const char ∗ OGRProxiedLayer::GetName () [virtual]

Return the layer name.

This returns the same content as GetLayerDefn() (p. ??)->GetName() (p. ??), but for a few drivers, calling Get←↩

Name() (p. ??) directly can avoid lengthy layer definition initialization.

This method is the same as the C function OGR_L_GetName() (p. ??).

If this method is derived in a driver, it must be done such that it returns the same content as GetLayerDefn()
(p. ??)->GetName() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

316 Class Documentation

Returns

the layer name (must not been freed)

Since

OGR 1.8.0

Reimplemented from OGRLayer (p. ??).

References OGRLayer::GetName().

12.79.1.15 OGRFeature ∗ OGRProxiedLayer::GetNextFeature () [virtual]

Fetch the next available feature from this layer.

The returned feature becomes the responsiblity of the caller to delete with OGRFeature::DestroyFeature() (p. ??).
It is critical that all features associated with an OGRLayer (p. ??) (more specifically an OGRFeatureDefn (p. ??))
be deleted before that layer/datasource is deleted.

Only features matching the current spatial filter (set with SetSpatialFilter() (p. ??)) will be returned.

This method implements sequential access to the features of a layer. The ResetReading() (p. ??) method can be
used to start at the beginning again.

This method is the same as the C function OGR_L_GetNextFeature() (p. ??).

Returns

a feature, or NULL if no more features are available.

Implements OGRLayer (p. ??).

References OGRLayer::GetNextFeature().

12.79.1.16 OGRGeometry ∗ OGRProxiedLayer::GetSpatialFilter () [virtual]

This method returns the current spatial filter for this layer.

The returned pointer is to an internally owned object, and should not be altered or deleted by the caller.

This method is the same as the C function OGR_L_GetSpatialFilter() (p. ??).

Returns

spatial filter geometry.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::GetSpatialFilter().

12.79.1.17 OGRSpatialReference ∗ OGRProxiedLayer::GetSpatialRef () [virtual]

Fetch the spatial reference system for this layer.

The returned object is owned by the OGRLayer (p. ??) and should not be modified or freed by the application.

Starting with OGR 1.11, several geometry fields can be associated to a feature definition. Each geometry field can
have its own spatial reference system, which is returned by OGRGeomFieldDefn::GetSpatialRef() (p. ??). OGR←↩

Layer::GetSpatialRef() (p. ??) is equivalent to GetLayerDefn() (p. ??)->GetGeomFieldDefn(0)->GetSpatialRef()
(p. ??)

This method is the same as the C function OGR_L_GetSpatialRef() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.79 OGRProxiedLayer Class Reference 317

Returns

spatial reference, or NULL if there isn't one.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::GetSpatialRef(), and OGRSpatialReference::Reference().

12.79.1.18 OGRStyleTable ∗ OGRProxiedLayer::GetStyleTable () [virtual]

Returns layer style table.

This method is the same as the C function OGR_L_GetStyleTable().

Returns

pointer to a style table which should not be modified or freed by the caller.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::GetStyleTable().

12.79.1.19 OGRErr OGRProxiedLayer::ReorderFields (int ∗ panMap) [virtual]

Reorder all the fields of a layer.

You must use this to reorder existing fields on a real layer. Internally the OGRFeatureDefn (p. ??) for the layer will
be updated to reflect the reordering of the fields. Applications should never modify the OGRFeatureDefn (p. ??)
used by a layer directly.

This method should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

panMap is such that,for each field definition at position i after reordering, its position before reordering was pan←↩

Map[i].

For example, let suppose the fields were "0","1","2","3","4" initially. ReorderFields([0,2,3,1,4]) will reorder them as
"0","2","3","1","4".

Not all drivers support this method. You can query a layer to check if it supports it with the OLCReorderFields
capability. Some drivers may only support this method while there are still no features in the layer. When it is
supported, the existings features of the backing file/database should be updated accordingly.

This function is the same as the C function OGR_L_ReorderFields() (p. ??).

Parameters

panMap an array of GetLayerDefn() (p. ??)->GetFieldCount() elements which is a permutation of [0,
GetLayerDefn() (p. ??)->GetFieldCount()-1].

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

Reimplemented from OGRLayer (p. ??).

References OGRLayer::ReorderFields().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

318 Class Documentation

12.79.1.20 void OGRProxiedLayer::ResetReading () [virtual]

Reset feature reading to start on the first feature.

This affects GetNextFeature() (p. ??).

This method is the same as the C function OGR_L_ResetReading() (p. ??).

Implements OGRLayer (p. ??).

References OGRLayer::ResetReading().

12.79.1.21 OGRErr OGRProxiedLayer::SetAttributeFilter (const char ∗ pszQuery) [virtual]

Set a new attribute query.

This method sets the attribute query string to be used when fetching features via the GetNextFeature() (p. ??)
method. Only features for which the query evaluates as true will be returned.

The query string should be in the format of an SQL WHERE clause. For instance "population > 1000000 and
population < 5000000" where population is an attribute in the layer. The query format is normally a restricted form
of SQL WHERE clause as described in the "WHERE" section of the OGR SQL tutorial. In some cases (RDBMS
backed drivers) the native capabilities of the database may be used to interprete the WHERE clause in which case
the capabilities will be broader than those of OGR SQL.

Note that installing a query string will generally result in resetting the current reading position (ala ResetReading()
(p. ??)).

This method is the same as the C function OGR_L_SetAttributeFilter() (p. ??).

Parameters

pszQuery query in restricted SQL WHERE format, or NULL to clear the current query.

Returns

OGRERR_NONE if successfully installed, or an error code if the query expression is in error, or some other
failure occurs.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::SetAttributeFilter().

12.79.1.22 OGRErr OGRProxiedLayer::SetFeature (OGRFeature ∗ poFeature) [virtual]

Rewrite an existing feature.

This method will write a feature to the layer, based on the feature id within the OGRFeature (p. ??).

Use OGRLayer::TestCapability(OLCRandomWrite) to establish if this layer supports random access writing via
SetFeature() (p. ??).

This method is the same as the C function OGR_L_SetFeature() (p. ??).

Parameters

poFeature the feature to write.

Returns

OGRERR_NONE if the operation works, otherwise an appropriate error code.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::SetFeature().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.79 OGRProxiedLayer Class Reference 319

12.79.1.23 OGRErr OGRProxiedLayer::SetIgnoredFields (const char ∗∗ papszFields) [virtual]

Set which fields can be omitted when retrieving features from the layer.

If the driver supports this functionality (testable using OLCIgnoreFields capability), it will not fetch the specified fields
in subsequent calls to GetFeature() (p. ??) / GetNextFeature() (p. ??) and thus save some processing time and/or
bandwidth.

Besides field names of the layers, the following special fields can be passed: "OGR_GEOMETRY" to ignore geom-
etry and "OGR_STYLE" to ignore layer style.

By default, no fields are ignored.

This method is the same as the C function OGR_L_SetIgnoredFields() (p. ??)

Parameters

papszFields an array of field names terminated by NULL item. If NULL is passed, the ignored list is
cleared.

Returns

OGRERR_NONE if all field names have been resolved (even if the driver does not support this method)

Reimplemented from OGRLayer (p. ??).

References OGRLayer::SetIgnoredFields().

12.79.1.24 OGRErr OGRProxiedLayer::SetNextByIndex (long nIndex) [virtual]

Move read cursor to the nIndex'th feature in the current resultset.

This method allows positioning of a layer such that the GetNextFeature() (p. ??) call will read the requested feature,
where nIndex is an absolute index into the current result set. So, setting it to 3 would mean the next feature read
with GetNextFeature() (p. ??) would have been the 4th feature to have been read if sequential reading took place
from the beginning of the layer, including accounting for spatial and attribute filters.

Only in rare circumstances is SetNextByIndex() (p. ??) efficiently implemented. In all other cases the default
implementation which calls ResetReading() (p. ??) and then calls GetNextFeature() (p. ??) nIndex times is used.
To determine if fast seeking is available on the current layer use the TestCapability() (p. ??) method with a value of
OLCFastSetNextByIndex.

This method is the same as the C function OGR_L_SetNextByIndex() (p. ??).

Parameters

nIndex the index indicating how many steps into the result set to seek.

Returns

OGRERR_NONE on success or an error code.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::SetNextByIndex().

12.79.1.25 void OGRProxiedLayer::SetSpatialFilter (OGRGeometry ∗ poFilter) [virtual]

Set a new spatial filter.

This method set the geometry to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the filter geometry will be returned.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

320 Class Documentation

Currently this test is may be inaccurately implemented, but it is guaranteed that all features who's envelope (as
returned by OGRGeometry::getEnvelope() (p. ??)) overlaps the envelope of the spatial filter will be returned. This
can result in more shapes being returned that should strictly be the case.

This method makes an internal copy of the passed geometry. The passed geometry remains the responsibility of
the caller, and may be safely destroyed.

For the time being the passed filter geometry should be in the same SRS as the layer (as returned by OGRLayer←↩

::GetSpatialRef() (p. ??)). In the future this may be generalized.

This method is the same as the C function OGR_L_SetSpatialFilter() (p. ??).

Parameters

poFilter the geometry to use as a filtering region. NULL may be passed indicating that the current
spatial filter should be cleared, but no new one instituted.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::SetSpatialFilter().

12.79.1.26 void OGRProxiedLayer::SetSpatialFilter (int iGeomField, OGRGeometry ∗ poFilter) [virtual]

Set a new spatial filter.

This method set the geometry to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the filter geometry will be returned.

Currently this test is may be inaccurately implemented, but it is guaranteed that all features who's envelope (as
returned by OGRGeometry::getEnvelope() (p. ??)) overlaps the envelope of the spatial filter will be returned. This
can result in more shapes being returned that should strictly be the case.

This method makes an internal copy of the passed geometry. The passed geometry remains the responsibility of
the caller, and may be safely destroyed.

For the time being the passed filter geometry should be in the same SRS as the geometry field definition it cor-
responds to (as returned by GetLayerDefn() (p. ??)->GetGeomFieldDefn(iGeomField)->GetSpatialRef() (p. ??)).
In the future this may be generalized.

Note that only the last spatial filter set is applied, even if several successive calls are done with different iGeomField
values.

Note to driver implementators: if you implement SetSpatialFilter(int,OGRGeometry∗) (p. ??), you must also im-
plement SetSpatialFilter(OGRGeometry∗) (p. ??) to make it call SetSpatialFilter(0,OGRGeometry∗).

This method is the same as the C function OGR_L_SetSpatialFilterEx() (p. ??).

Parameters

iGeomField index of the geometry field on which the spatial filter operates.
poFilter the geometry to use as a filtering region. NULL may be passed indicating that the current

spatial filter should be cleared, but no new one instituted.

Since

GDAL 1.11

Reimplemented from OGRLayer (p. ??).

References OGRLayer::SetSpatialFilter().

12.79.1.27 void OGRProxiedLayer::SetStyleTable (OGRStyleTable ∗ poStyleTable) [virtual]

Set layer style table.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.79 OGRProxiedLayer Class Reference 321

This method operate exactly as OGRLayer::SetStyleTableDirectly() (p. ??) except that it does not assume owner-
ship of the passed table.

This method is the same as the C function OGR_L_SetStyleTable().

Parameters

poStyleTable pointer to style table to set

Reimplemented from OGRLayer (p. ??).

References OGRLayer::SetStyleTable().

12.79.1.28 void OGRProxiedLayer::SetStyleTableDirectly (OGRStyleTable ∗ poStyleTable) [virtual]

Set layer style table.

This method operate exactly as OGRLayer::SetStyleTable() (p. ??) except that it assumes ownership of the passed
table.

This method is the same as the C function OGR_L_SetStyleTableDirectly().

Parameters

poStyleTable pointer to style table to set

Reimplemented from OGRLayer (p. ??).

References OGRLayer::SetStyleTableDirectly().

12.79.1.29 OGRErr OGRProxiedLayer::SyncToDisk () [virtual]

Flush pending changes to disk.

This call is intended to force the layer to flush any pending writes to disk, and leave the disk file in a consistent state.
It would not normally have any effect on read-only datasources.

Some layers do not implement this method, and will still return OGRERR_NONE. The default implementation just
returns OGRERR_NONE. An error is only returned if an error occurs while attempting to flush to disk.

In any event, you should always close any opened datasource with OGRDataSource::DestroyDataSource() (p. ??)
that will ensure all data is correctly flushed.

This method is the same as the C function OGR_L_SyncToDisk() (p. ??).

Returns

OGRERR_NONE if no error occurs (even if nothing is done) or an error code.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::SyncToDisk().

12.79.1.30 int OGRProxiedLayer::TestCapability (const char ∗ pszCap) [virtual]

Test if this layer supported the named capability.

The capability codes that can be tested are represented as strings, but #defined constants exists to ensure correct
spelling. Specific layer types may implement class specific capabilities, but this can't generally be discovered by the
caller.

• OLCRandomRead / "RandomRead": TRUE if the GetFeature() (p. ??) method is implemented in an opti-
mized way for this layer, as opposed to the default implementation using ResetReading() (p. ??) and Get←↩

NextFeature() (p. ??) to find the requested feature id.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

322 Class Documentation

• OLCSequentialWrite / "SequentialWrite": TRUE if the CreateFeature() (p. ??) method works for this layer.
Note this means that this particular layer is writable. The same OGRLayer (p. ??) class may returned FALSE
for other layer instances that are effectively read-only.

• OLCRandomWrite / "RandomWrite": TRUE if the SetFeature() (p. ??) method is operational on this layer.
Note this means that this particular layer is writable. The same OGRLayer (p. ??) class may returned FALSE
for other layer instances that are effectively read-only.

• OLCFastSpatialFilter / "FastSpatialFilter": TRUE if this layer implements spatial filtering efficiently. Layers
that effectively read all features, and test them with the OGRFeature (p. ??) intersection methods should
return FALSE. This can be used as a clue by the application whether it should build and maintain its own
spatial index for features in this layer.

• OLCFastFeatureCount / "FastFeatureCount": TRUE if this layer can return a feature count (via Get←↩

FeatureCount() (p. ??)) efficiently ... ie. without counting the features. In some cases this will return TRUE
until a spatial filter is installed after which it will return FALSE.

• OLCFastGetExtent / "FastGetExtent": TRUE if this layer can return its data extent (via GetExtent() (p. ??))
efficiently ... ie. without scanning all the features. In some cases this will return TRUE until a spatial filter is
installed after which it will return FALSE.

• OLCFastSetNextByIndex / "FastSetNextByIndex": TRUE if this layer can perform the SetNextByIndex()
(p. ??) call efficiently, otherwise FALSE.

• OLCCreateField / "CreateField": TRUE if this layer can create new fields on the current layer using Create←↩

Field() (p. ??), otherwise FALSE.

• OLCCreateGeomField / "CreateGeomField": (GDAL >= 1.11) TRUE if this layer can create new geometry
fields on the current layer using CreateGeomField() (p. ??), otherwise FALSE.

• OLCDeleteField / "DeleteField": TRUE if this layer can delete existing fields on the current layer using
DeleteField() (p. ??), otherwise FALSE.

• OLCReorderFields / "ReorderFields": TRUE if this layer can reorder existing fields on the current layer using
ReorderField() (p. ??) or ReorderFields() (p. ??), otherwise FALSE.

• OLCAlterFieldDefn / "AlterFieldDefn": TRUE if this layer can alter the definition of an existing field on the
current layer using AlterFieldDefn() (p. ??), otherwise FALSE.

• OLCDeleteFeature / "DeleteFeature": TRUE if the DeleteFeature() (p. ??) method is supported on this layer,
otherwise FALSE.

• OLCStringsAsUTF8 / "StringsAsUTF8": TRUE if values of OFTString fields are assured to be in UTF-8
format. If FALSE the encoding of fields is uncertain, though it might still be UTF-8.

• OLCTransactions / "Transactions": TRUE if the StartTransaction(), CommitTransaction() and Rollback←↩

Transaction() methods work in a meaningful way, otherwise FALSE.

• OLCIgnoreFields / "IgnoreFields": TRUE if fields, geometry and style will be omitted when fetching features
as set by SetIgnoredFields() (p. ??) method.

This method is the same as the C function OGR_L_TestCapability() (p. ??).

Parameters

pszCap the name of the capability to test.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.80 OGRRawPoint Class Reference 323

Returns

TRUE if the layer has the requested capability, or FALSE otherwise. OGRLayers will return FALSE for any
unrecognised capabilities.

Implements OGRLayer (p. ??).

References OGRLayer::TestCapability().

The documentation for this class was generated from the following files:

• ogrlayerpool.h
• ogrlayerpool.cpp

12.80 OGRRawPoint Class Reference

#include <ogr_geometry.h>

12.80.1 Detailed Description

Simple container for a position.

The documentation for this class was generated from the following file:

• ogr_geometry.h

12.81 OGRSFDriver Class Reference

#include <ogrsf_frmts.h>

Public Member Functions

• virtual const char ∗ GetName ()=0

Fetch name of driver (file format). This name should be relatively short (10-40 characters), and should reflect the
underlying file format. For instance "ESRI Shapefile".

• virtual OGRDataSource ∗ Open (const char ∗pszName, int bUpdate=FALSE)=0

Attempt to open file with this driver.

• virtual int TestCapability (const char ∗)=0

Test if capability is available.

• virtual OGRDataSource ∗ CreateDataSource (const char ∗pszName, char ∗∗=NULL)

This method attempts to create a new data source based on the passed driver.

• virtual OGRErr DeleteDataSource (const char ∗pszName)

Delete a datasource.

• virtual OGRDataSource ∗ CopyDataSource (OGRDataSource ∗poSrcDS, const char ∗pszNewName, char
∗∗papszOptions=NULL)

This method creates a new datasource by copying all the layers from the source datasource.

12.81.1 Detailed Description

Represents an operational format driver.

One OGRSFDriver (p. ??) derived class will normally exist for each file format registered for use, regardless of
whether a file has or will be opened. The list of available drivers is normally managed by the OGRSFDriver←↩

Registrar (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

324 Class Documentation

12.81.2 Member Function Documentation

12.81.2.1 OGRDataSource ∗ OGRSFDriver::CopyDataSource (OGRDataSource ∗ poSrcDS, const char ∗ pszNewName,
char ∗∗ papszOptions = NULL) [virtual]

This method creates a new datasource by copying all the layers from the source datasource.

It is important to call OGRDataSource::DestroyDataSource() (p. ??) when the datasource is no longer used to
ensure that all data has been properly flushed to disk.

This method is the same as the C function OGR_Dr_CopyDataSource() (p. ??).

Parameters

poSrcDS source datasource
pszNewName the name for the new data source. UTF-8 encoded.
papszOptions a StringList of name=value options. Options are driver specific, and driver information can be

found at the following url: http://www.gdal.org/ogr/ogr_formats.html

Returns

NULL is returned on failure, or a new OGRDataSource (p. ??) handle on success.

References OGRDataSource::CopyLayer(), CPLError(), CreateDataSource(), OGRDataSource::GetDriver(), O←↩

GRDataSource::GetLayer(), OGRDataSource::GetLayerCount(), OGRLayer::GetLayerDefn(), OGRFeatureDefn←↩

::GetName(), GetName(), OGRDataSource::SetDriver(), and TestCapability().

12.81.2.2 OGRDataSource ∗ OGRSFDriver::CreateDataSource (const char ∗ pszName, char ∗∗ papszOptions = NULL)
[virtual]

This method attempts to create a new data source based on the passed driver.

The papszOptions argument can be used to control driver specific creation options. These options are normally
documented in the format specific documentation.

It is important to call OGRDataSource::DestroyDataSource() (p. ??) when the datasource is no longer used to
ensure that all data has been properly flushed to disk.

This method is the same as the C function OGR_Dr_CreateDataSource() (p. ??).

Note

This method does NOT attach driver instance to the returned data source, so caller should expect that O←↩

GRDataSource::GetDriver() (p. ??) will return NULL pointer. In order to attach driver to the returned data
source, it is required to use C function OGR_Dr_CreateDataSource. This behavior is related to fix of issue
reported in Ticket #1233.

Parameters

pszName the name for the new data source. UTF-8 encoded.
papszOptions a StringList of name=value options. Options are driver specific, and driver information can be

found at the following url: http://www.gdal.org/ogr/ogr_formats.html

Returns

NULL is returned on failure, or a new OGRDataSource (p. ??) on success.

References CPLError().

Referenced by CopyDataSource(), and OGR_Dr_CreateDataSource().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.81 OGRSFDriver Class Reference 325

12.81.2.3 OGRErr OGRSFDriver::DeleteDataSource (const char ∗ pszDataSource) [virtual]

Delete a datasource.

Delete (from the disk, in the database, ...) the named datasource. Normally it would be safest if the datasource was
not open at the time.

Whether this is a supported operation on this driver case be tested using TestCapability() (p. ??) on ODrCDelete←↩

DataSource.

This method is the same as the C function OGR_Dr_DeleteDataSource() (p. ??).

Parameters

pszDataSource the name of the datasource to delete.

Returns

OGRERR_NONE on success, and OGRERR_UNSUPPORTED_OPERATION if this is not supported by this
driver.

References CPLError().

12.81.2.4 const char ∗ OGRSFDriver::GetName () [pure virtual]

Fetch name of driver (file format). This name should be relatively short (10-40 characters), and should reflect the
underlying file format. For instance "ESRI Shapefile".

This method is the same as the C function OGR_Dr_GetName() (p. ??).

Returns

driver name. This is an internal string and should not be modified or freed.

Referenced by CopyDataSource(), OGRSFDriverRegistrar::Open(), and OGRSFDriverRegistrar::RegisterDriver().

12.81.2.5 OGRDataSource ∗ OGRSFDriver::Open (const char ∗ pszName, int bUpdate = FALSE) [pure
virtual]

Attempt to open file with this driver.

This method is what OGRSFDriverRegistrar (p. ??) uses to implement its Open() (p. ??) method. See it for more
details.

Note, drivers do not normally set their own m_poDriver value, so a direct call to this method (instead of indirectly
via OGRSFDriverRegistrar (p. ??)) will usually result in a datasource that does not know what driver it relates to if
GetDriver() is called on the datasource. The application may directly call SetDriver() after opening with this method
to avoid this problem.

For drivers supporting the VSI virtual file API, it is possible to open a file in a .zip archive (see VSIInstallZipFile←↩

Handler() (p. ??)), in a .tar/.tar.gz/.tgz archive (see VSIInstallTarFileHandler() (p. ??)) or on a HTTP / FTP server
(see VSIInstallCurlFileHandler() (p. ??))

This method is the same as the C function OGR_Dr_Open() (p. ??).

Parameters

pszName the name of the file, or data source to try and open.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

326 Class Documentation

bUpdate TRUE if update access is required, otherwise FALSE (the default).

Returns

NULL on error or if the pass name is not supported by this driver, otherwise a pointer to an OGRDataSource
(p. ??). This OGRDataSource (p. ??) should be closed by deleting the object when it is no longer needed.

Referenced by OGRSFDriverRegistrar::Open().

12.81.2.6 int OGRSFDriver::TestCapability (const char ∗ pszCapability) [pure virtual]

Test if capability is available.

One of the following data source capability names can be passed into this method, and a TRUE or FALSE value
will be returned indicating whether or not the capability is available for this object.

• ODrCCreateDataSource: True if this driver can support creating data sources.

• ODrCDeleteDataSource: True if this driver supports deleting data sources.

The #define macro forms of the capability names should be used in preference to the strings themselves to avoid
mispelling.

This method is the same as the C function OGR_Dr_TestCapability() (p. ??).

Parameters

pszCapability the capability to test.

Returns

TRUE if capability available otherwise FALSE.

Referenced by CopyDataSource().

The documentation for this class was generated from the following files:

• ogrsf_frmts.h
• ogrsf_frmts.dox
• ogrsfdriver.cpp

12.82 OGRSFDriverRegistrar Class Reference

#include <ogrsf_frmts.h>

Public Member Functions

• void RegisterDriver (OGRSFDriver ∗poDriver)

Add a driver to the list of registered drivers.

• void DeregisterDriver (OGRSFDriver ∗poDriver)

Remove the passed driver from the list of registered drivers.

• int GetDriverCount (void)

Fetch the number of registered drivers.

• OGRSFDriver ∗ GetDriver (int iDriver)

Fetch the indicated driver.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.82 OGRSFDriverRegistrar Class Reference 327

• OGRSFDriver ∗ GetDriverByName (const char ∗)
Fetch the indicated driver.

• int GetOpenDSCount ()

Return the number of opened datasources.

• OGRDataSource ∗ GetOpenDS (int)

Return the iDS th datasource opened.

• void AutoLoadDrivers ()

Auto-load GDAL drivers from shared libraries.

Static Public Member Functions

• static OGRSFDriverRegistrar ∗ GetRegistrar ()

Return the driver manager, creating one if none exist.

• static OGRDataSource ∗ Open (const char ∗pszName, int bUpdate=FALSE, OGRSFDriver ∗∗ppo←↩

Driver=NULL)

Open a file / data source with one of the registered drivers.

12.82.1 Detailed Description

Singleton manager for OGRSFDriver (p. ??) instances that will be used to try and open datasources. Normally
the registrar is populated with standard drivers using the OGRRegisterAll() (p. ??) function and does not need to
be directly accessed. The driver registrar and all registered drivers may be cleaned up on shutdown using OGR←↩

CleanupAll() (p. ??).

12.82.2 Member Function Documentation

12.82.2.1 void OGRSFDriverRegistrar::AutoLoadDrivers ()

Auto-load GDAL drivers from shared libraries.

This function will automatically load drivers from shared libraries. It searches the "driver path" for .so (or .dll) files
that start with the prefix "ogr_X.so". It then tries to load them and then tries to call a function within them called
RegisterOGRX() where the 'X' is the same as the remainder of the shared library basename, or failing that to call
GDALRegisterMe().

There are a few rules for the driver path. If the GDAL_DRIVER_PATH environment variable it set, it is taken to be
a list of directories to search separated by colons on unix, or semi-colons on Windows.

Auto loading can be completely disabled by setting the GDAL_DRIVER_PATH config option to "disable".

If that is not set the following defaults are used:

• Linux/Unix: <prefix>/lib/gdalplugins is searched or /usr/local/lib/gdalplugins if the install prefix is not known.

• MacOSX: <prefix>/PlugIns is searched, or /usr/local/lib/gdalplugins if the install prefix is not known. Also,
the framework directory /Library/Application Support/GDAL/PlugIns is searched.

• Win32: <prefix>/lib/gdalplugins if the prefix is known (normally it is not), otherwise the gdalplugins subdirec-
tory of the directory containing the currently running executable is used.

References CPLCalloc(), CPLDebug(), CPLFormFilename(), CPLGetBasename(), CPLGetConfigOption(), CPL←↩

GetDirname(), CPLGetExecPath(), CPLGetExtension(), CPLGetSymbol(), CSLCount(), CSLDestroy(), and VSI←↩

StatL().

Referenced by OGRRegisterAll().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

328 Class Documentation

12.82.2.2 void OGRSFDriverRegistrar::DeregisterDriver (OGRSFDriver ∗ poDriver)

Remove the passed driver from the list of registered drivers.

This method is the same as the C function OGRDeregisterDriver() (p. ??).

Parameters

poDriver the driver to deregister.

Since

GDAL 1.8.0

Referenced by OGRDeregisterDriver().

12.82.2.3 OGRSFDriver ∗ OGRSFDriverRegistrar::GetDriver (int iDriver)

Fetch the indicated driver.

This method is the same as the C function OGRGetDriver() (p. ??).

Parameters

iDriver the driver index, from 0 to GetDriverCount() (p. ??)-1.

Returns

the driver, or NULL if iDriver is out of range.

Referenced by OGRGetDriver().

12.82.2.4 OGRSFDriver ∗ OGRSFDriverRegistrar::GetDriverByName (const char ∗ pszName)

Fetch the indicated driver.

This method is the same as the C function OGRGetDriverByName

Parameters

pszName the driver name

Returns

the driver, or NULL if no driver with that name is found

Referenced by OGRGetDriverByName().

12.82.2.5 int OGRSFDriverRegistrar::GetDriverCount (void)

Fetch the number of registered drivers.

This method is the same as the C function OGRGetDriverCount() (p. ??).

Returns

the drivers count.

Referenced by OGRGetDriverCount().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.82 OGRSFDriverRegistrar Class Reference 329

12.82.2.6 OGRDataSource ∗ OGRSFDriverRegistrar::GetOpenDS (int iDS)

Return the iDS th datasource opened.

This method is the same as the C function OGRGetOpenDS() (p. ??).

Parameters

iDS the index of the dataset to return (between 0 and GetOpenDSCount() (p. ??) - 1)

Referenced by OGRGetOpenDS().

12.82.2.7 int OGRSFDriverRegistrar::GetOpenDSCount () [inline]

Return the number of opened datasources.

This method is the same as the C function OGRGetOpenDSCount() (p. ??)

Returns

the number of opened datasources.

Referenced by OGRGetOpenDSCount().

12.82.2.8 OGRSFDriverRegistrar ∗ OGRSFDriverRegistrar::GetRegistrar () [static]

Return the driver manager, creating one if none exist.

Fetch registrar.

Returns

the driver manager.

This static method should be used to fetch the singleton registrar. It will create a registrar if there is not already one
in existance.

Returns

the current driver registrar.

Referenced by OGRDeregisterDriver(), OGRGetDriverByName(), OGRGetOpenDS(), OGRGetOpenDSCount(),
OGRRegisterAll(), OGRRegisterDriver(), OGRReleaseDataSource(), Open(), and OGRDataSource::Release().

12.82.2.9 OGRDataSource ∗ OGRSFDriverRegistrar::Open (const char ∗ pszName, int bUpdate = FALSE,
OGRSFDriver ∗∗ ppoDriver = NULL) [static]

Open a file / data source with one of the registered drivers.

This method loops through all the drivers registered with the driver manager trying each until one succeeds with the
given data source. This method is static. Applications don't normally need to use any other OGRSFDriverRegistrar
(p. ??) methods directly, nor do they normally need to have a pointer to an OGRSFDriverRegistrar (p. ??) instance.

If this method fails, CPLGetLastErrorMsg() (p. ??) can be used to check if there is an error message explaining
why.

For drivers supporting the VSI virtual file API, it is possible to open a file in a .zip archive (see VSIInstallZipFile←↩

Handler() (p. ??)), in a .tar/.tar.gz/.tgz archive (see VSIInstallTarFileHandler() (p. ??)) or on a HTTP / FTP server
(see VSIInstallCurlFileHandler() (p. ??))

This method is the same as the C function OGROpen() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

330 Class Documentation

Parameters

pszName the name of the file, or data source to open. UTF-8 encoded.
bUpdate FALSE for read-only access (the default) or TRUE for read-write access.

ppoDriver if non-NULL, this argument will be updated with a pointer to the driver which was used to
open the data source.

Returns

NULL on error or if the pass name is not supported by this driver, otherwise a pointer to an OGRDataSource
(p. ??). This OGRDataSource (p. ??) should be closed by deleting the object when it is no longer needed.

Example:

OGRDataSource (p. ??) *poDS;

poDS = OGRSFDriverRegistrar::Open (p. ??)("polygon.shp");
if(poDS == NULL)
{

return;
}

... use the data source ...

OGRDataSource::DestroyDataSource(poDS);

References CPLDebug(), CPLErrorReset(), CPLGetLastErrorType(), OGRDataSource::GetDriver(), OGRSF←↩

Driver::GetName(), GetRegistrar(), OGRSFDriver::Open(), and OGRDataSource::Reference().

Referenced by OGROpen().

12.82.2.10 void OGRSFDriverRegistrar::RegisterDriver (OGRSFDriver ∗ poDriver)

Add a driver to the list of registered drivers.

If the passed driver is already registered (based on pointer comparison) then the driver isn't registered. New drivers
are added at the end of the list of registered drivers.

This method is the same as the C function OGRRegisterDriver() (p. ??).

Parameters

poDriver the driver to add.

References CPLGetConfigOption(), CPLRealloc(), CSLDestroy(), and OGRSFDriver::GetName().

Referenced by OGRRegisterDriver().

The documentation for this class was generated from the following files:

• ogrsf_frmts.h

• ogrsf_frmts.dox

• ogrsfdriverregistrar.cpp

12.83 OGRSpatialReference Class Reference

#include <ogr_spatialref.h>

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 331

Public Member Functions

• OGRSpatialReference (const char ∗=NULL)

Constructor.

• virtual ∼OGRSpatialReference ()

OGRSpatialReference (p. ??) destructor.

• int Reference ()

Increments the reference count by one.

• int Dereference ()

Decrements the reference count by one.

• int GetReferenceCount () const

Fetch current reference count.

• void Release ()

Decrements the reference count by one, and destroy if zero.

• OGRSpatialReference ∗ Clone () const

Make a duplicate of this OGRSpatialReference (p. ??).

• OGRSpatialReference ∗ CloneGeogCS () const

Make a duplicate of the GEOGCS node of this OGRSpatialReference (p. ??) object.

• OGRErr exportToWkt (char ∗∗) const

Convert this SRS into WKT format.

• OGRErr exportToPrettyWkt (char ∗∗, int=FALSE) const
• OGRErr exportToProj4 (char ∗∗) const

Export coordinate system in PROJ.4 format.

• OGRErr exportToPCI (char ∗∗, char ∗∗, double ∗∗) const

Export coordinate system in PCI projection definition.

• OGRErr exportToUSGS (long ∗, long ∗, double ∗∗, long ∗) const

Export coordinate system in USGS GCTP projection definition.

• OGRErr exportToXML (char ∗∗, const char ∗=NULL) const

Export coordinate system in XML format.

• OGRErr exportToPanorama (long ∗, long ∗, long ∗, long ∗, double ∗) const
• OGRErr exportToERM (char ∗pszProj, char ∗pszDatum, char ∗pszUnits)
• OGRErr exportToMICoordSys (char ∗∗) const

Export coordinate system in Mapinfo style CoordSys format.

• OGRErr importFromWkt (char ∗∗)
Import from WKT string.

• OGRErr importFromProj4 (const char ∗)
Import PROJ.4 coordinate string.

• OGRErr importFromEPSG (int)

Initialize SRS based on EPSG GCS or PCS code.

• OGRErr importFromEPSGA (int)

Initialize SRS based on EPSG GCS or PCS code.

• OGRErr importFromESRI (char ∗∗)
Import coordinate system from ESRI .prj format(s).

• OGRErr importFromPCI (const char ∗, const char ∗=NULL, double ∗=NULL)

Import coordinate system from PCI projection definition.

• OGRErr importFromUSGS (long iProjSys, long iZone, double ∗padfPrjParams, long iDatum, int nUSGS←↩

AngleFormat=TRUE)

Import coordinate system from USGS projection definition.

• OGRErr importFromPanorama (long, long, long, double ∗)
• OGRErr importFromOzi (const char ∗, const char ∗, const char ∗)
• OGRErr importFromOzi (const char ∗const ∗papszLines)
• OGRErr importFromWMSAUTO (const char ∗pszAutoDef)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

332 Class Documentation

Initialize from WMSAUTO string.

• OGRErr importFromXML (const char ∗)
Import coordinate system from XML format (GML only currently).

• OGRErr importFromDict (const char ∗pszDict, const char ∗pszCode)
• OGRErr importFromURN (const char ∗)

Initialize from OGC URN.

• OGRErr importFromCRSURL (const char ∗)
Initialize from OGC URL.

• OGRErr importFromERM (const char ∗pszProj, const char ∗pszDatum, const char ∗pszUnits)
• OGRErr importFromUrl (const char ∗)

Set spatial reference from a URL.

• OGRErr importFromMICoordSys (const char ∗)
Import Mapinfo style CoordSys definition.

• OGRErr morphToESRI ()

Convert in place to ESRI WKT format.

• OGRErr morphFromESRI ()

Convert in place from ESRI WKT format.

• OGRErr Validate ()

Validate SRS tokens.

• OGRErr StripCTParms (OGR_SRSNode ∗=NULL)

Strip OGC CT Parameters.

• OGRErr StripVertical ()

Convert a compound cs into a horizontal CS.

• OGRErr FixupOrdering ()

Correct parameter ordering to match CT Specification.

• OGRErr Fixup ()

Fixup as needed.

• int EPSGTreatsAsLatLong ()

This method returns TRUE if EPSG feels this geographic coordinate system should be treated as having lat/long
coordinate ordering.

• int EPSGTreatsAsNorthingEasting ()

This method returns TRUE if EPSG feels this projected coordinate system should be treated as having nor-
thing/easting coordinate ordering.

• const char ∗ GetAxis (const char ∗pszTargetKey, int iAxis, OGRAxisOrientation ∗peOrientation) const

Fetch the orientation of one axis.

• OGRErr SetAxes (const char ∗pszTargetKey, const char ∗pszXAxisName, OGRAxisOrientation eXAxis←↩

Orientation, const char ∗pszYAxisName, OGRAxisOrientation eYAxisOrientation)

Set the axes for a coordinate system.

• void SetRoot (OGR_SRSNode ∗)
Set the root SRS node.

• OGR_SRSNode ∗ GetAttrNode (const char ∗)
Find named node in tree.

• const char ∗ GetAttrValue (const char ∗, int=0) const

Fetch indicated attribute of named node.

• OGRErr SetNode (const char ∗, const char ∗)
Set attribute value in spatial reference.

• OGRErr SetLinearUnitsAndUpdateParameters (const char ∗pszName, double dfInMeters)

Set the linear units for the projection.

• OGRErr SetLinearUnits (const char ∗pszName, double dfInMeters)

Set the linear units for the projection.

• OGRErr SetTargetLinearUnits (const char ∗pszTargetKey, const char ∗pszName, double dfInMeters)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 333

Set the linear units for the projection.

• double GetLinearUnits (char ∗∗=NULL) const

Fetch linear projection units.

• double GetTargetLinearUnits (const char ∗pszTargetKey, char ∗∗ppszRetName=NULL) const

Fetch linear units for target.

• OGRErr SetAngularUnits (const char ∗pszName, double dfInRadians)

Set the angular units for the geographic coordinate system.

• double GetAngularUnits (char ∗∗=NULL) const

Fetch angular geographic coordinate system units.

• double GetPrimeMeridian (char ∗∗=NULL) const

Fetch prime meridian info.

• int IsGeographic () const

Check if geographic coordinate system.

• int IsProjected () const

Check if projected coordinate system.

• int IsGeocentric () const

Check if geocentric coordinate system.

• int IsLocal () const

Check if local coordinate system.

• int IsVertical () const

Check if vertical coordinate system.

• int IsCompound () const

Check if coordinate system is compound.

• int IsSameGeogCS (const OGRSpatialReference ∗) const

Do the GeogCS'es match?

• int IsSameVertCS (const OGRSpatialReference ∗) const

Do the VertCS'es match?

• int IsSame (const OGRSpatialReference ∗) const

Do these two spatial references describe the same system ?

• void Clear ()

Wipe current definition.

• OGRErr SetLocalCS (const char ∗)
Set the user visible LOCAL_CS name.

• OGRErr SetProjCS (const char ∗)
Set the user visible PROJCS name.

• OGRErr SetProjection (const char ∗)
Set a projection name.

• OGRErr SetGeocCS (const char ∗pszGeocName)

Set the user visible GEOCCS name.

• OGRErr SetGeogCS (const char ∗pszGeogName, const char ∗pszDatumName, const char ∗pszEllipsoid←↩

Name, double dfSemiMajor, double dfInvFlattening, const char ∗pszPMName=NULL, double dfPM←↩

Offset=0.0, const char ∗pszUnits=NULL, double dfConvertToRadians=0.0)

Set geographic coordinate system.

• OGRErr SetWellKnownGeogCS (const char ∗)
Set a GeogCS based on well known name.

• OGRErr CopyGeogCSFrom (const OGRSpatialReference ∗poSrcSRS)

Copy GEOGCS from another OGRSpatialReference (p. ??).

• OGRErr SetVertCS (const char ∗pszVertCSName, const char ∗pszVertDatumName, int nVertDatum←↩

Class=2005)

Set the user visible VERT_CS name.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

334 Class Documentation

• OGRErr SetCompoundCS (const char ∗pszName, const OGRSpatialReference ∗poHorizSRS, const O←↩

GRSpatialReference ∗poVertSRS)

Setup a compound coordinate system.

• OGRErr SetFromUserInput (const char ∗)
Set spatial reference from various text formats.

• OGRErr SetTOWGS84 (double, double, double, double=0.0, double=0.0, double=0.0, double=0.0)

Set the Bursa-Wolf conversion to WGS84.

• OGRErr GetTOWGS84 (double ∗padfCoef, int nCoeff=7) const

Fetch TOWGS84 parameters, if available.

• double GetSemiMajor (OGRErr ∗=NULL) const

Get spheroid semi major axis.

• double GetSemiMinor (OGRErr ∗=NULL) const

Get spheroid semi minor axis.

• double GetInvFlattening (OGRErr ∗=NULL) const

Get spheroid inverse flattening.

• OGRErr SetAuthority (const char ∗pszTargetKey, const char ∗pszAuthority, int nCode)

Set the authority for a node.

• OGRErr AutoIdentifyEPSG ()

Set EPSG authority info if possible.

• const char ∗ GetAuthorityCode (const char ∗pszTargetKey) const

Get the authority code for a node.

• const char ∗ GetAuthorityName (const char ∗pszTargetKey) const

Get the authority name for a node.

• const char ∗ GetExtension (const char ∗pszTargetKey, const char ∗pszName, const char ∗pszDefault=N←↩

ULL) const

Fetch extension value.

• OGRErr SetExtension (const char ∗pszTargetKey, const char ∗pszName, const char ∗pszValue)

Set extension value.

• int FindProjParm (const char ∗pszParameter, const OGR_SRSNode ∗poPROJCS=NULL) const

Return the child index of the named projection parameter on its parent PROJCS node.

• OGRErr SetProjParm (const char ∗, double)

Set a projection parameter value.

• double GetProjParm (const char ∗, double=0.0, OGRErr ∗=NULL) const

Fetch a projection parameter value.

• OGRErr SetNormProjParm (const char ∗, double)

Set a projection parameter with a normalized value.

• double GetNormProjParm (const char ∗, double=0.0, OGRErr ∗=NULL) const

Fetch a normalized projection parameter value.

• OGRErr SetACEA (double dfStdP1, double dfStdP2, double dfCenterLat, double dfCenterLong, double df←↩

FalseEasting, double dfFalseNorthing)
• OGRErr SetAE (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)
• OGRErr SetBonne (double dfStdP1, double dfCentralMeridian, double dfFalseEasting, double dfFalse←↩

Northing)
• OGRErr SetCEA (double dfStdP1, double dfCentralMeridian, double dfFalseEasting, double dfFalseNorthing)
• OGRErr SetCS (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)
• OGRErr SetEC (double dfStdP1, double dfStdP2, double dfCenterLat, double dfCenterLong, double df←↩

FalseEasting, double dfFalseNorthing)
• OGRErr SetEckert (int nVariation, double dfCentralMeridian, double dfFalseEasting, double dfFalseNorthing)
• OGRErr SetEquirectangular (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double df←↩

FalseNorthing)
• OGRErr SetEquirectangular2 (double dfCenterLat, double dfCenterLong, double dfPseudoStdParallel1,

double dfFalseEasting, double dfFalseNorthing)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 335

• OGRErr SetGEOS (double dfCentralMeridian, double dfSatelliteHeight, double dfFalseEasting, double df←↩

FalseNorthing)
• OGRErr SetGH (double dfCentralMeridian, double dfFalseEasting, double dfFalseNorthing)
• OGRErr SetIGH ()
• OGRErr SetGS (double dfCentralMeridian, double dfFalseEasting, double dfFalseNorthing)
• OGRErr SetGaussSchreiberTMercator (double dfCenterLat, double dfCenterLong, double dfScale, double

dfFalseEasting, double dfFalseNorthing)
• OGRErr SetGnomonic (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double dfFalse←↩

Northing)
• OGRErr SetHOM (double dfCenterLat, double dfCenterLong, double dfAzimuth, double dfRectToSkew, dou-

ble dfScale, double dfFalseEasting, double dfFalseNorthing)

Set a Hotine Oblique Mercator projection using azimuth angle.

• OGRErr SetHOM2PNO (double dfCenterLat, double dfLat1, double dfLong1, double dfLat2, double dfLong2,
double dfScale, double dfFalseEasting, double dfFalseNorthing)

Set a Hotine Oblique Mercator projection using two points on projection centerline.

• OGRErr SetHOMAC (double dfCenterLat, double dfCenterLong, double dfAzimuth, double dfRectToSkew,
double dfScale, double dfFalseEasting, double dfFalseNorthing)

Set an Hotine Oblique Mercator Azimuth Center projection using azimuth angle.

• OGRErr SetIWMPolyconic (double dfLat1, double dfLat2, double dfCenterLong, double dfFalseEasting, dou-
ble dfFalseNorthing)

• OGRErr SetKrovak (double dfCenterLat, double dfCenterLong, double dfAzimuth, double dfPseudoStd←↩

ParallelLat, double dfScale, double dfFalseEasting, double dfFalseNorthing)
• OGRErr SetLAEA (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double dfFalse←↩

Northing)
• OGRErr SetLCC (double dfStdP1, double dfStdP2, double dfCenterLat, double dfCenterLong, double df←↩

FalseEasting, double dfFalseNorthing)
• OGRErr SetLCC1SP (double dfCenterLat, double dfCenterLong, double dfScale, double dfFalseEasting,

double dfFalseNorthing)
• OGRErr SetLCCB (double dfStdP1, double dfStdP2, double dfCenterLat, double dfCenterLong, double df←↩

FalseEasting, double dfFalseNorthing)
• OGRErr SetMC (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)
• OGRErr SetMercator (double dfCenterLat, double dfCenterLong, double dfScale, double dfFalseEasting,

double dfFalseNorthing)
• OGRErr SetMollweide (double dfCentralMeridian, double dfFalseEasting, double dfFalseNorthing)
• OGRErr SetNZMG (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double dfFalse←↩

Northing)
• OGRErr SetOS (double dfOriginLat, double dfCMeridian, double dfScale, double dfFalseEasting, double df←↩

FalseNorthing)
• OGRErr SetOrthographic (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double df←↩

FalseNorthing)
• OGRErr SetPolyconic (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double dfFalse←↩

Northing)
• OGRErr SetPS (double dfCenterLat, double dfCenterLong, double dfScale, double dfFalseEasting, double

dfFalseNorthing)
• OGRErr SetRobinson (double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)
• OGRErr SetSinusoidal (double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)
• OGRErr SetStereographic (double dfCenterLat, double dfCenterLong, double dfScale, double dfFalse←↩

Easting, double dfFalseNorthing)
• OGRErr SetSOC (double dfLatitudeOfOrigin, double dfCentralMeridian, double dfFalseEasting, double df←↩

FalseNorthing)
• OGRErr SetTM (double dfCenterLat, double dfCenterLong, double dfScale, double dfFalseEasting, double

dfFalseNorthing)
• OGRErr SetTMVariant (const char ∗pszVariantName, double dfCenterLat, double dfCenterLong, double df←↩

Scale, double dfFalseEasting, double dfFalseNorthing)
• OGRErr SetTMG (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

336 Class Documentation

• OGRErr SetTMSO (double dfCenterLat, double dfCenterLong, double dfScale, double dfFalseEasting, double
dfFalseNorthing)

• OGRErr SetTPED (double dfLat1, double dfLong1, double dfLat2, double dfLong2, double dfFalseEasting,
double dfFalseNorthing)

• OGRErr SetVDG (double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)
• OGRErr SetUTM (int nZone, int bNorth=TRUE)

Set UTM projection definition.

• int GetUTMZone (int ∗pbNorth=NULL) const

Get utm zone information.

• OGRErr SetWagner (int nVariation, double dfCenterLat, double dfFalseEasting, double dfFalseNorthing)
• OGRErr SetStatePlane (int nZone, int bNAD83=TRUE, const char ∗pszOverrideUnitName=NULL, double

dfOverrideUnit=0.0)

Set State Plane projection definition.

Static Public Member Functions

• static void DestroySpatialReference (OGRSpatialReference ∗poSRS)

OGRSpatialReference (p. ??) destructor.

12.83.1 Detailed Description

This class respresents a OpenGIS Spatial Reference System, and contains methods for converting between this
object organization and well known text (WKT) format. This object is reference counted as one instance of the
object is normally shared between many OGRGeometry (p. ??) objects.

Normally application code can fetch needed parameter values for this SRS using GetAttrValue() (p. ??), but in
special cases the underlying parse tree (or OGR_SRSNode (p. ??) objects) can be accessed more directly.

See the tutorial for more information on how to use this class.

12.83.2 Constructor & Destructor Documentation

12.83.2.1 OGRSpatialReference::OGRSpatialReference (const char ∗ pszWKT = NULL)

Constructor.

This constructor takes an optional string argument which if passed should be a WKT representation of an SRS.
Passing this is equivalent to not passing it, and then calling importFromWkt() (p. ??) with the WKT string.

Note that newly created objects are given a reference count of one.

The C function OSRNewSpatialReference() (p. ??) does the same thing as this constructor.

Parameters

pszWKT well known text definition to which the object should be initialized, or NULL (the default).

References importFromWkt().

12.83.2.2 OGRSpatialReference::∼OGRSpatialReference () [virtual]

OGRSpatialReference (p. ??) destructor.

The C function OSRDestroySpatialReference() (p. ??) does the same thing as this method. Preferred C++ method
: OGRSpatialReference::DestroySpatialReference() (p. ??)

Deprecated

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 337

12.83.3 Member Function Documentation

12.83.3.1 OGRErr OGRSpatialReference::AutoIdentifyEPSG ()

Set EPSG authority info if possible.

This method inspects a WKT definition, and adds EPSG authority nodes where an aspect of the coordinate system
can be easily and safely corresponded with an EPSG identifier. In practice, this method will evolve over time. In
theory it can add authority nodes for any object (ie. spheroid, datum, GEOGCS, units, and PROJCS) that could
have an authority node. Mostly this is useful to inserting appropriate PROJCS codes for common formulations (like
UTM n WGS84).

If it success the OGRSpatialReference (p. ??) is updated in place, and the method return OGRERR_NONE. If the
method fails to identify the general coordinate system OGRERR_UNSUPPORTED_SRS is returned but no error
message is posted via CPLError() (p. ??).

This method is the same as the C function OSRAutoIdentifyEPSG() (p. ??).

Returns

OGRERR_NONE or OGRERR_UNSUPPORTED_SRS.

References GetAuthorityCode(), GetAuthorityName(), GetUTMZone(), IsGeographic(), IsProjected(), and Set←↩

Authority().

12.83.3.2 void OGRSpatialReference::Clear ()

Wipe current definition.

Returns OGRSpatialReference (p. ??) to a state with no definition, as it exists when first created. It does not affect
reference counts.

Referenced by CopyGeogCSFrom(), importFromCRSURL(), importFromERM(), importFromOzi(), importFrom←↩

Panorama(), importFromPCI(), importFromProj4(), importFromURN(), importFromWkt(), importFromWMSAUTO(),
importFromXML(), SetCompoundCS(), SetFromUserInput(), SetGeogCS(), SetStatePlane(), and SetVertCS().

12.83.3.3 OGRSpatialReference ∗ OGRSpatialReference::Clone () const

Make a duplicate of this OGRSpatialReference (p. ??).

This method is the same as the C function OSRClone() (p. ??).

Returns

a new SRS, which becomes the responsibility of the caller.

References OGR_SRSNode::Clone().

Referenced by exportToPrettyWkt().

12.83.3.4 OGRSpatialReference ∗ OGRSpatialReference::CloneGeogCS () const

Make a duplicate of the GEOGCS node of this OGRSpatialReference (p. ??) object.

Returns

a new SRS, which becomes the responsibility of the caller.

References OGR_SRSNode::AddChild(), OGR_SRSNode::Clone(), CPLAtof(), GetAttrNode(), IsGeocentric(),
SetAngularUnits(), and SetRoot().

Referenced by morphFromESRI().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

338 Class Documentation

12.83.3.5 OGRErr OGRSpatialReference::CopyGeogCSFrom (const OGRSpatialReference ∗ poSrcSRS)

Copy GEOGCS from another OGRSpatialReference (p. ??).

The GEOGCS information is copied into this OGRSpatialReference (p. ??) from another. If this object has a PR←↩

OJCS root already, the GEOGCS is installed within it, otherwise it is installed as the root.

Parameters

poSrcSRS the spatial reference to copy the GEOGCS information from.

Returns

OGRERR_NONE on success or an error code.

References Clear(), OGR_SRSNode::Clone(), OGR_SRSNode::DestroyChild(), OGR_SRSNode::FindChild(),
GetAttrNode(), OGR_SRSNode::InsertChild(), IsGeocentric(), and SetRoot().

Referenced by importFromERM(), importFromESRI(), importFromOzi(), importFromPanorama(), importFromPCI(),
importFromProj4(), morphFromESRI(), SetGeogCS(), and SetWellKnownGeogCS().

12.83.3.6 int OGRSpatialReference::Dereference ()

Decrements the reference count by one.

The method does the same thing as the C function OSRDereference() (p. ??).

Returns

the updated reference count.

References CPLDebug().

Referenced by Release().

12.83.3.7 void OGRSpatialReference::DestroySpatialReference (OGRSpatialReference ∗ poSRS) [static]

OGRSpatialReference (p. ??) destructor.

This static method will destroy a OGRSpatialReference (p. ??). It is equivalent to calling delete on the object, but it
ensures that the deallocation is properly executed within the OGR libraries heap on platforms where this can matter
(win32).

This function is the same as OSRDestroySpatialReference() (p. ??)

Parameters

poSRS the object to delete

Since

GDAL 1.7.0

12.83.3.8 int OGRSpatialReference::EPSGTreatsAsLatLong ()

This method returns TRUE if EPSG feels this geographic coordinate system should be treated as having lat/long
coordinate ordering.

Currently this returns TRUE for all geographic coordinate systems with an EPSG code set, and AXIS values set
defining it as lat, long. Note that coordinate systems with an EPSG code and no axis settings will be assumed to
not be lat/long.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 339

FALSE will be returned for all coordinate systems that are not geographic, or that do not have an EPSG code set.

This method is the same as the C function OSREPSGTreatsAsLatLong() (p. ??).

Returns

TRUE or FALSE.

References GetAttrNode(), GetAuthorityName(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(),
OGR_SRSNode::GetValue(), and IsGeographic().

12.83.3.9 int OGRSpatialReference::EPSGTreatsAsNorthingEasting ()

This method returns TRUE if EPSG feels this projected coordinate system should be treated as having nor-
thing/easting coordinate ordering.

Currently this returns TRUE for all projected coordinate systems with an EPSG code set, and AXIS values set
defining it as northing, easting.

FALSE will be returned for all coordinate systems that are not projected, or that do not have an EPSG code set.

This method is the same as the C function EPSGTreatsAsNorthingEasting() (p. ??).

Returns

TRUE or FALSE.

Since

OGR 1.10.0

References GetAttrNode(), GetAuthorityName(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(),
OGR_SRSNode::GetValue(), and IsProjected().

Referenced by importFromEPSG().

12.83.3.10 OGRErr OGRSpatialReference::exportToERM (char ∗ pszProj, char ∗ pszDatum, char ∗ pszUnits)

Convert coordinate system to ERMapper format.

Parameters

pszProj 32 character buffer to receive projection name.
pszDatum 32 character buffer to recieve datum name.

pszUnits 32 character buffer to receive units name.

Returns

OGRERR_NONE on success, OGRERR_SRS_UNSUPPORTED if not translation is found, or OGRERR_F←↩

AILURE on other failures.

References GetAttrValue(), GetAuthorityCode(), GetAuthorityName(), GetLinearUnits(), GetUTMZone(), import←↩

FromDict(), IsGeographic(), and IsProjected().

12.83.3.11 OGRErr OGRSpatialReference::exportToMICoordSys (char ∗∗ ppszResult) const

Export coordinate system in Mapinfo style CoordSys format.

Note that the returned WKT string should be freed with OGRFree() or CPLFree() when no longer needed. It is the
responsibility of the caller.

This method is the same as the C function OSRExportToMICoordSys() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

340 Class Documentation

Parameters

ppszResult pointer to which dynamically allocated Mapinfo CoordSys definition will be assigned.

Returns

OGRERR_NONE on success, OGRERR_FAILURE on failure, OGRERR_UNSUPPORTED_OPERATION if
MITAB library was not linked in.

References CPLError().

12.83.3.12 OGRErr OGRSpatialReference::exportToPanorama (long ∗ piProjSys, long ∗ piDatum, long ∗ piEllips, long ∗
piZone, double ∗ padfPrjParams) const

Export coordinate system in "Panorama" GIS projection definition.

This method is the equivalent of the C function OSRExportToPanorama().

Parameters

piProjSys Pointer to variable, where the projection system code will be returned.
piDatum Pointer to variable, where the coordinate system code will be returned.

piEllips Pointer to variable, where the spheroid code will be returned.
piZone Pointer to variable, where the zone for UTM projection system will be returned.

padfPrjParams an existing 7 double buffer into which the projection parameters will be placed. See import←↩

FromPanorama() (p. ??) for the list of parameters.

Returns

OGRERR_NONE on success or an error code on failure.

References CPLDebug(), GetAttrValue(), GetInvFlattening(), GetNormProjParm(), GetSemiMajor(), GetUTM←↩

Zone(), and IsLocal().

12.83.3.13 OGRErr OGRSpatialReference::exportToPCI (char ∗∗ ppszProj, char ∗∗ ppszUnits, double ∗∗ ppadfPrjParams)
const

Export coordinate system in PCI projection definition.

Converts the loaded coordinate reference system into PCI projection definition to the extent possible. The strings
returned in ppszProj, ppszUnits and ppadfPrjParams array should be deallocated by the caller with CPLFree() when
no longer needed.

LOCAL_CS coordinate systems are not translatable. An empty string will be returned along with OGRERR_NONE.

This method is the equivelent of the C function OSRExportToPCI() (p. ??).

Parameters

ppszProj pointer to which dynamically allocated PCI projection definition will be assigned.
ppszUnits pointer to which dynamically allocated units definition will be assigned.

ppadfPrjParams pointer to which dynamically allocated array of 17 projection parameters will be assigned.
See importFromPCI() (p. ??) for the list of parameters.

Returns

OGRERR_NONE on success or an error code on failure.

References CPLAtof(), CPLDebug(), CPLMalloc(), CPLPrintInt32(), CPLPrintStringFill(), CPLStrdup(), CSLCount(),
CSLDestroy(), GetAttrNode(), GetAttrValue(), GetAuthorityCode(), GetAuthorityName(), OGR_SRSNode::Get←↩

Child(), OGR_SRSNode::GetChildCount(), GetInvFlattening(), GetLinearUnits(), GetNormProjParm(), GetSemi←↩

Major(), GetTOWGS84(), GetUTMZone(), OGR_SRSNode::GetValue(), and IsLocal().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 341

12.83.3.14 OGRErr OGRSpatialReference::exportToPrettyWkt (char ∗∗ ppszResult, int bSimplify = FALSE) const

Convert this SRS into a a nicely formatted WKT string for display to a person.

Note that the returned WKT string should be freed with OGRFree() or CPLFree() when no longer needed. It is the
responsibility of the caller.

This method is the same as the C function OSRExportToPrettyWkt() (p. ??).

Parameters

ppszResult the resulting string is returned in this pointer.
bSimplify TRUE if the AXIS, AUTHORITY and EXTENSION nodes should be stripped off

Returns

currently OGRERR_NONE is always returned, but the future it is possible error conditions will develop.

References Clone(), CPLStrdup(), and OGR_SRSNode::StripNodes().

12.83.3.15 OGRErr OGRSpatialReference::exportToProj4 (char ∗∗ ppszProj4) const

Export coordinate system in PROJ.4 format.

Converts the loaded coordinate reference system into PROJ.4 format to the extent possible. The string returned in
ppszProj4 should be deallocated by the caller with CPLFree() when no longer needed.

LOCAL_CS coordinate systems are not translatable. An empty string will be returned along with OGRERR_NONE.

Special processing for Transverse Mercator with GDAL >= 1.10 and PROJ >= 4.8 : if the OSR_USE_ETME←↩

RC configuration option is set to YES, the PROJ.4 definition built from the SRS will use the 'etmerc' projection
method, rather than the default 'tmerc'. This will give better accuracy (at the expense of computational speed) when
reprojection occurs near the edges of the validity area for the projection.

This method is the equivelent of the C function OSRExportToProj4() (p. ??).

Parameters

ppszProj4 pointer to which dynamically allocated PROJ.4 definition will be assigned.

Returns

OGRERR_NONE on success or an error code on failure.

References CPLAtof(), CPLError(), CPLGetConfigOption(), CPLStrdup(), CSLTestBoolean(), GetAttrNode(),
GetAttrValue(), GetAuthorityCode(), GetAuthorityName(), OGR_SRSNode::GetChild(), OGR_SRSNode::Get←↩

ChildCount(), GetExtension(), GetInvFlattening(), GetLinearUnits(), OGR_SRSNode::GetNode(), GetNormProj←↩

Parm(), GetSemiMajor(), GetSemiMinor(), GetUTMZone(), OGR_SRSNode::GetValue(), IsGeocentric(), and
IsGeographic().

12.83.3.16 OGRErr OGRSpatialReference::exportToUSGS (long ∗ piProjSys, long ∗ piZone, double ∗∗ ppadfPrjParams, long
∗ piDatum) const

Export coordinate system in USGS GCTP projection definition.

This method is the equivalent of the C function OSRExportToUSGS() (p. ??).

Parameters

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

342 Class Documentation

piProjSys Pointer to variable, where the projection system code will be returned.
piZone Pointer to variable, where the zone for UTM and State Plane projection systems will be re-

turned.
ppadfPrjParams Pointer to which dynamically allocated array of 15 projection parameters will be assigned.

See importFromUSGS() (p. ??) for the list of parameters. Caller responsible to free this
array.

piDatum Pointer to variable, where the datum code will be returned.

Returns

OGRERR_NONE on success or an error code on failure.

References CPLDebug(), CPLDecToPackedDMS(), CPLMalloc(), GetAttrValue(), GetInvFlattening(), GetNorm←↩

ProjParm(), GetSemiMajor(), GetUTMZone(), and IsLocal().

12.83.3.17 OGRErr OGRSpatialReference::exportToWkt (char ∗∗ ppszResult) const

Convert this SRS into WKT format.

Note that the returned WKT string should be freed with OGRFree() or CPLFree() when no longer needed. It is the
responsibility of the caller.

This method is the same as the C function OSRExportToWkt() (p. ??).

Parameters

ppszResult the resulting string is returned in this pointer.

Returns

currently OGRERR_NONE is always returned, but the future it is possible error conditions will develop.

References CPLStrdup(), and OGR_SRSNode::exportToWkt().

Referenced by morphFromESRI(), and Validate().

12.83.3.18 OGRErr OGRSpatialReference::exportToXML (char ∗∗ , const char ∗ = NULL) const

Export coordinate system in XML format.

Converts the loaded coordinate reference system into XML format to the extent possible. The string returned in
ppszRawXML should be deallocated by the caller with CPLFree() when no longer needed.

LOCAL_CS coordinate systems are not translatable. An empty string will be returned along with OGRERR_NONE.

This method is the equivelent of the C function OSRExportToXML() (p. ??).

Parameters

ppszRawXML pointer to which dynamically allocated XML definition will be assigned.
pszDialect currently ignored. The dialect used is GML based.

Returns

OGRERR_NONE on success or an error code on failure.

References CPLDestroyXMLNode(), CPLSerializeXMLTree(), IsGeographic(), and IsProjected().

12.83.3.19 int OGRSpatialReference::FindProjParm (const char ∗ pszParameter, const OGR_SRSNode ∗ poPROJCS =
NULL) const

Return the child index of the named projection parameter on its parent PROJCS node.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 343

Parameters

pszParameter projection parameter to look for
poPROJCS projection CS node to look in. If NULL is passed, the PROJCS node of the SpatialReference

object will be searched.

Returns

the child index of the named projection parameter. -1 on failure

References GetAttrNode(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), and OGR_SRS←↩

Node::GetValue().

Referenced by GetProjParm(), and morphToESRI().

12.83.3.20 OGRErr OGRSpatialReference::Fixup ()

Fixup as needed.

Some mechanisms to create WKT using OGRSpatialReference (p. ??), and some imported WKT, are not valid
according to the OGC CT specification. This method attempts to fill in any missing defaults that are required, and
fixup ordering problems (using OSRFixupOrdering() (p. ??)) so that the resulting WKT is valid.

This method should be expected to evolve over time to as problems are discovered. The following are amoung the
fixup actions this method will take:

• Fixup the ordering of nodes to match the BNF WKT ordering, using the FixupOrdering() (p. ??) method.

• Add missing linear or angular units nodes.

This method is the same as the C function OSRFixup() (p. ??).

Returns

OGRERR_NONE on success or an error code if something goes wrong.

References CPLAtof(), OGR_SRSNode::FindChild(), FixupOrdering(), GetAttrNode(), SetAngularUnits(), and Set←↩

LinearUnits().

Referenced by morphToESRI().

12.83.3.21 OGRErr OGRSpatialReference::FixupOrdering ()

Correct parameter ordering to match CT Specification.

Some mechanisms to create WKT using OGRSpatialReference (p. ??), and some imported WKT fail to maintain
the order of parameters required according to the BNF definitions in the OpenGIS SF-SQL and CT Specifications.
This method attempts to massage things back into the required order.

This method is the same as the C function OSRFixupOrdering() (p. ??).

Returns

OGRERR_NONE on success or an error code if something goes wrong.

References OGR_SRSNode::FixupOrdering().

Referenced by Fixup(), importFromEPSGA(), importFromOzi(), importFromPanorama(), importFromPCI(), import←↩

FromUSGS(), and morphFromESRI().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

344 Class Documentation

12.83.3.22 double OGRSpatialReference::GetAngularUnits (char ∗∗ ppszName = NULL) const

Fetch angular geographic coordinate system units.

If no units are available, a value of "degree" and SRS_UA_DEGREE_CONV will be assumed. This method only
checks directly under the GEOGCS node for units.

This method does the same thing as the C function OSRGetAngularUnits() (p. ??).

Parameters

ppszName a pointer to be updated with the pointer to the units name. The returned value remains
internal to the OGRSpatialReference (p. ??) and shouldn't be freed, or modified. It may be
invalidated on the next OGRSpatialReference (p. ??) call.

Returns

the value to multiply by angular distances to transform them to radians.

References CPLAtof(), GetAttrNode(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), and OG←↩

R_SRSNode::GetValue().

Referenced by morphToESRI().

12.83.3.23 OGR_SRSNode ∗ OGRSpatialReference::GetAttrNode (const char ∗ pszNodePath)

Find named node in tree.

This method does a pre-order traversal of the node tree searching for a node with this exact value (case insensitive),
and returns it. Leaf nodes are not considered, under the assumption that they are just attribute value nodes.

If a node appears more than once in the tree (such as UNIT for instance), the first encountered will be returned.
Use GetNode() on a subtree to be more specific.

Parameters

pszNodePath the name of the node to search for. May contain multiple components such as "GEOGCS|←↩

UNIT".

Returns

a pointer to the node found, or NULL if none.

References CSLCount(), CSLDestroy(), and OGR_SRSNode::GetNode().

Referenced by CloneGeogCS(), CopyGeogCSFrom(), EPSGTreatsAsLatLong(), EPSGTreatsAsNorthingEasting(),
exportToPCI(), exportToProj4(), FindProjParm(), Fixup(), GetAngularUnits(), GetAttrValue(), GetInvFlattening(),
GetPrimeMeridian(), GetProjParm(), GetSemiMajor(), GetTargetLinearUnits(), GetTOWGS84(), importFromEP←↩

SG(), importFromESRI(), importFromProj4(), IsGeographic(), IsProjected(), IsSame(), IsVertical(), morphFromES←↩

RI(), morphToESRI(), SetAngularUnits(), SetAuthority(), SetGeocCS(), SetGeogCS(), SetLinearUnitsAndUpdate←↩

Parameters(), SetLocalCS(), SetProjCS(), SetProjection(), SetProjParm(), SetStatePlane(), SetTargetLinearUnits(),
SetTOWGS84(), and SetVertCS().

12.83.3.24 const char ∗ OGRSpatialReference::GetAttrValue (const char ∗ pszNodeName, int iAttr = 0) const

Fetch indicated attribute of named node.

This method uses GetAttrNode() (p. ??) to find the named node, and then extracts the value of the indicated child.
Thus a call to GetAttrValue("UNIT",1) would return the second child of the UNIT node, which is normally the length
of the linear unit in meters.

This method does the same thing as the C function OSRGetAttrValue() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 345

Parameters

pszNodeName the tree node to look for (case insensitive).
iAttr the child of the node to fetch (zero based).

Returns

the requested value, or NULL if it fails for any reason.

References GetAttrNode(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), and OGR_SRS←↩

Node::GetValue().

Referenced by exportToERM(), exportToPanorama(), exportToPCI(), exportToProj4(), exportToUSGS(), GetUTM←↩

Zone(), IsSame(), IsSameGeogCS(), IsSameVertCS(), morphFromESRI(), morphToESRI(), and SetUTM().

12.83.3.25 const char ∗ OGRSpatialReference::GetAuthorityCode (const char ∗ pszTargetKey) const

Get the authority code for a node.

This method is used to query an AUTHORITY[] node from within the WKT tree, and fetch the code value.

While in theory values may be non-numeric, for the EPSG authority all code values should be integral.

This method is the same as the C function OSRGetAuthorityCode() (p. ??).

Parameters

pszTargetKey the partial or complete path to the node to get an authority from. ie. "PROJCS", "GEOGCS",
"GEOGCS|UNIT" or NULL to search for an authority node on the root element.

Returns

value code from authority node, or NULL on failure. The value returned is internal and should not be freed or
modified.

References OGR_SRSNode::FindChild(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), and
OGR_SRSNode::GetValue().

Referenced by AutoIdentifyEPSG(), exportToERM(), exportToPCI(), exportToProj4(), and morphToESRI().

12.83.3.26 const char ∗ OGRSpatialReference::GetAuthorityName (const char ∗ pszTargetKey) const

Get the authority name for a node.

This method is used to query an AUTHORITY[] node from within the WKT tree, and fetch the authority name value.

The most common authority is "EPSG".

This method is the same as the C function OSRGetAuthorityName() (p. ??).

Parameters

pszTargetKey the partial or complete path to the node to get an authority from. ie. "PROJCS", "GEOGCS",
"GEOGCS|UNIT" or NULL to search for an authority node on the root element.

Returns

value code from authority node, or NULL on failure. The value returned is internal and should not be freed or
modified.

References OGR_SRSNode::FindChild(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), and
OGR_SRSNode::GetValue().

Referenced by AutoIdentifyEPSG(), EPSGTreatsAsLatLong(), EPSGTreatsAsNorthingEasting(), exportToERM(),
exportToPCI(), exportToProj4(), importFromEPSGA(), and morphToESRI().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

346 Class Documentation

12.83.3.27 const char ∗ OGRSpatialReference::GetAxis (const char ∗ pszTargetKey, int iAxis, OGRAxisOrientation ∗
peOrientation) const

Fetch the orientation of one axis.

Fetches the the request axis (iAxis - zero based) from the indicated portion of the coordinate system (pszTargetKey)
which should be either "GEOGCS" or "PROJCS".

No CPLError is issued on routine failures (such as not finding the AXIS).

This method is equivalent to the C function OSRGetAxis() (p. ??).

Parameters

pszTargetKey the coordinate system part to query ("PROJCS" or "GEOGCS").
iAxis the axis to query (0 for first, 1 for second).

peOrientation location into which to place the fetch orientation, may be NULL.

Returns

the name of the axis or NULL on failure.

References CPLDebug(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), and OGR_SRSNode←↩

::GetValue().

12.83.3.28 const char ∗ OGRSpatialReference::GetExtension (const char ∗ pszTargetKey, const char ∗ pszName, const char ∗
pszDefault = NULL) const

Fetch extension value.

Fetch the value of the named EXTENSION item for the identified target node.

Parameters

pszTargetKey the name or path to the parent node of the EXTENSION.
pszName the name of the extension being fetched.

pszDefault the value to return if the extension is not found.

Returns

node value if successful or pszDefault on failure.

References OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), and OGR_SRSNode::GetValue().

Referenced by exportToProj4().

12.83.3.29 double OGRSpatialReference::GetInvFlattening (OGRErr ∗ pnErr = NULL) const

Get spheroid inverse flattening.

This method does the same thing as the C function OSRGetInvFlattening() (p. ??).

Parameters

pnErr if non-NULL set to OGRERR_FAILURE if no inverse flattening can be found.

Returns

inverse flattening, or SRS_WGS84_INVFLATTENING if it can't be found.

References CPLAtof(), GetAttrNode(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), and OG←↩

R_SRSNode::GetValue().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 347

Referenced by exportToPanorama(), exportToPCI(), exportToProj4(), exportToUSGS(), GetSemiMinor(), and
morphFromESRI().

12.83.3.30 double OGRSpatialReference::GetLinearUnits (char ∗∗ ppszName = NULL) const

Fetch linear projection units.

If no units are available, a value of "Meters" and 1.0 will be assumed. This method only checks directly under the
PROJCS, GEOCCS or LOCAL_CS node for units.

This method does the same thing as the C function OSRGetLinearUnits() (p. ??)/

Parameters

ppszName a pointer to be updated with the pointer to the units name. The returned value remains
internal to the OGRSpatialReference (p. ??) and shouldn't be freed, or modified. It may be
invalidated on the next OGRSpatialReference (p. ??) call.

Returns

the value to multiply by linear distances to transform them to meters.

References GetTargetLinearUnits().

Referenced by exportToERM(), exportToPCI(), exportToProj4(), importFromESRI(), importFromProj4(), IsSame(),
morphToESRI(), SetLinearUnitsAndUpdateParameters(), and SetStatePlane().

12.83.3.31 double OGRSpatialReference::GetNormProjParm (const char ∗ pszName, double dfDefaultValue = 0.0, OGRErr ∗
pnErr = NULL) const

Fetch a normalized projection parameter value.

This method is the same as GetProjParm() (p. ??) except that the value of the parameter is "normalized" into
degrees or meters depending on whether it is linear or angular.

This method is the same as the C function OSRGetNormProjParm() (p. ??).

Parameters

pszName the name of the parameter to fetch, from the set of SRS_PP codes in ogr_srs_api.h (p. ??).
dfDefaultValue the value to return if this parameter doesn't exist.

pnErr place to put error code on failure. Ignored if NULL.

Returns

value of parameter.

References GetProjParm().

Referenced by exportToPanorama(), exportToPCI(), exportToProj4(), exportToUSGS(), GetUTMZone(), morphTo←↩

ESRI(), and SetStatePlane().

12.83.3.32 double OGRSpatialReference::GetPrimeMeridian (char ∗∗ ppszName = NULL) const

Fetch prime meridian info.

Returns the offset of the prime meridian from greenwich in degrees, and the prime meridian name (if requested). If
no PRIMEM value exists in the coordinate system definition a value of "Greenwich" and an offset of 0.0 is assumed.

If the prime meridian name is returned, the pointer is to an internal copy of the name. It should not be freed, altered
or depended on after the next OGR call.

This method is the same as the C function OSRGetPrimeMeridian() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

348 Class Documentation

Parameters

ppszName return location for prime meridian name. If NULL, name is not returned.

Returns

the offset to the GEOGCS prime meridian from greenwich in decimal degrees.

References CPLAtof(), GetAttrNode(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), and OG←↩

R_SRSNode::GetValue().

Referenced by morphFromESRI().

12.83.3.33 double OGRSpatialReference::GetProjParm (const char ∗ pszName, double dfDefaultValue = 0.0, OGRErr ∗ pnErr
= NULL) const

Fetch a projection parameter value.

NOTE: This code should be modified to translate non degree angles into degrees based on the GEOGCS unit. This
has not yet been done.

This method is the same as the C function OSRGetProjParm() (p. ??).

Parameters

pszName the name of the parameter to fetch, from the set of SRS_PP codes in ogr_srs_api.h (p. ??).
dfDefaultValue the value to return if this parameter doesn't exist.

pnErr place to put error code on failure. Ignored if NULL.

Returns

value of parameter.

References CPLAtof(), FindProjParm(), GetAttrNode(), OGR_SRSNode::GetChild(), and OGR_SRSNode::Get←↩

Value().

Referenced by GetNormProjParm(), GetUTMZone(), importFromProj4(), IsSame(), morphFromESRI(), morphTo←↩

ESRI(), and SetLinearUnitsAndUpdateParameters().

12.83.3.34 int OGRSpatialReference::GetReferenceCount () const [inline]

Fetch current reference count.

Returns

the current reference count.

12.83.3.35 double OGRSpatialReference::GetSemiMajor (OGRErr ∗ pnErr = NULL) const

Get spheroid semi major axis.

This method does the same thing as the C function OSRGetSemiMajor() (p. ??).

Parameters

pnErr if non-NULL set to OGRERR_FAILURE if semi major axis can be found.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 349

Returns

semi-major axis, or SRS_WGS84_SEMIMAJOR if it can't be found.

References CPLAtof(), GetAttrNode(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), and OG←↩

R_SRSNode::GetValue().

Referenced by exportToPanorama(), exportToPCI(), exportToProj4(), exportToUSGS(), GetSemiMinor(), and
morphFromESRI().

12.83.3.36 double OGRSpatialReference::GetSemiMinor (OGRErr ∗ pnErr = NULL) const

Get spheroid semi minor axis.

This method does the same thing as the C function OSRGetSemiMinor() (p. ??).

Parameters

pnErr if non-NULL set to OGRERR_FAILURE if semi minor axis can be found.

Returns

semi-minor axis, or WGS84 semi minor if it can't be found.

References GetInvFlattening(), and GetSemiMajor().

Referenced by exportToProj4().

12.83.3.37 double OGRSpatialReference::GetTargetLinearUnits (const char ∗ pszTargetKey, char ∗∗ ppszName = NULL)
const

Fetch linear units for target.

If no units are available, a value of "Meters" and 1.0 will be assumed.

This method does the same thing as the C function OSRGetTargetLinearUnits() (p. ??)/

Parameters

pszTargetKey the key to look on. ie. "PROJCS" or "VERT_CS".
ppszName a pointer to be updated with the pointer to the units name. The returned value remains

internal to the OGRSpatialReference (p. ??) and shouldn't be freed, or modified. It may be
invalidated on the next OGRSpatialReference (p. ??) call.

Returns

the value to multiply by linear distances to transform them to meters.

Since

OGR 1.9.0

References CPLAtof(), GetAttrNode(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), OGR_S←↩

RSNode::GetValue(), and IsVertical().

Referenced by GetLinearUnits().

12.83.3.38 OGRErr OGRSpatialReference::GetTOWGS84 (double ∗ padfCoeff, int nCoeffCount = 7) const

Fetch TOWGS84 parameters, if available.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

350 Class Documentation

Parameters

padfCoeff array into which up to 7 coefficients are placed.
nCoeffCount size of padfCoeff - defaults to 7.

Returns

OGRERR_NONE on success, or OGRERR_FAILURE if there is no TOWGS84 node available.

References CPLAtof(), GetAttrNode(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), and OG←↩

R_SRSNode::GetValue().

Referenced by exportToPCI(), and IsSameGeogCS().

12.83.3.39 int OGRSpatialReference::GetUTMZone (int ∗ pbNorth = NULL) const

Get utm zone information.

This is the same as the C function OSRGetUTMZone() (p. ??).

In SWIG bindings (Python, Java, etc) the GetUTMZone() (p. ??) method returns a zone which is negative in the
southern hemisphere instead of having the pbNorth flag used in the C and C++ interface.

Parameters

pbNorth pointer to in to set to TRUE if northern hemisphere, or FALSE if southern.

Returns

UTM zone number or zero if this isn't a UTM definition.

References GetAttrValue(), GetNormProjParm(), and GetProjParm().

Referenced by AutoIdentifyEPSG(), exportToERM(), exportToPanorama(), exportToPCI(), exportToProj4(), export←↩

ToUSGS(), and morphToESRI().

12.83.3.40 OGRErr OGRSpatialReference::importFromCRSURL (const char ∗ pszURL)

Initialize from OGC URL.

Initializes this spatial reference from a coordinate system defined by an OGC URL prefixed with "http://opengis.←↩

net/def/crs" per best practice paper 11-135. Currently EPSG and OGC authority values are supported, including
OGC auto codes, but not including CRS1 or CRS88 (NAVD88).

This method is also supported through SetFromUserInput() (p. ??) which can normally be used for URLs.

Parameters

pszURL the URL string.

Returns

OGRERR_NONE on success or an error code.

References OGR_SRSNode::AddChild(), Clear(), OGR_SRSNode::Clone(), CPLError(), CPLMalloc(), CPL←↩

Strdup(), OGR_SRSNode::GetValue(), importFromCRSURL(), and SetNode().

Referenced by importFromCRSURL(), and SetFromUserInput().

12.83.3.41 OGRErr OGRSpatialReference::importFromDict (const char ∗ pszDictFile, const char ∗ pszCode)

Read SRS from WKT dictionary.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 351

This method will attempt to find the indicated coordinate system identity in the indicated dictionary file. If found, the
WKT representation is imported and used to initialize this OGRSpatialReference (p. ??).

More complete information on the format of the dictionary files can be found in the epsg.wkt file in the GDAL data
tree. The dictionary files are searched for in the "GDAL" domain using CPLFindFile(). Normally this results in
searching /usr/local/share/gdal or somewhere similar.

This method is the same as the C function OSRImportFromDict().

Parameters

pszDictFile the name of the dictionary file to load.
pszCode the code to lookup in the dictionary.

Returns

OGRERR_NONE on success, or OGRERR_SRS_UNSUPPORTED if the code isn't found, and OGRERR_←↩

SRS_FAILURE if something more dramatic goes wrong.

References CPLReadLine(), and importFromWkt().

Referenced by exportToERM(), importFromEPSGA(), importFromERM(), and SetFromUserInput().

12.83.3.42 OGRErr OGRSpatialReference::importFromEPSG (int nCode)

Initialize SRS based on EPSG GCS or PCS code.

This method will initialize the spatial reference based on the passed in EPSG GCS or PCS code. The coordinate
system definitions are normally read from the EPSG derived support files such as pcs.csv, gcs.csv, pcs.override.csv,
gcs.override.csv and falling back to search for a PROJ.4 epsg init file or a definition in epsg.wkt.

These support files are normally searched for in /usr/local/share/gdal or in the directory identified by the GDAL_←↩

DATA configuration option. See CPLFindFile() for details.

This method is relatively expensive, and generally involves quite a bit of text file scanning. Reasonable efforts
should be made to avoid calling it many times for the same coordinate system.

This method is similar to importFromEPSGA() (p. ??) except that EPSG preferred axis ordering will not be applied
for geographic coordinate systems. EPSG normally defines geographic coordinate systems to use lat/long contrary
to typical GIS use). Since OGR 1.10.0, EPSG preferred axis ordering will also not be applied for projected coordinate
systems that use northing/easting order.

This method is the same as the C function OSRImportFromEPSG() (p. ??).

Parameters

nCode a GCS or PCS code from the horizontal coordinate system table.

Returns

OGRERR_NONE on success, or an error code on failure.

References EPSGTreatsAsNorthingEasting(), GetAttrNode(), importFromEPSGA(), and OGR_SRSNode::Strip←↩

Nodes().

Referenced by importFromERM(), importFromESRI(), importFromOzi(), importFromPanorama(), importFromPCI(),
importFromProj4(), morphFromESRI(), SetFromUserInput(), SetStatePlane(), and SetWellKnownGeogCS().

12.83.3.43 OGRErr OGRSpatialReference::importFromEPSGA (int nCode)

Initialize SRS based on EPSG GCS or PCS code.

This method will initialize the spatial reference based on the passed in EPSG GCS or PCS code.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

352 Class Documentation

This method is similar to importFromEPSG() (p. ??) except that EPSG preferred axis ordering will be applied
for geographic and projected coordinate systems. EPSG normally defines geographic coordinate systems to use
lat/long, and also there are also a few projected coordinate systems that use northing/easting order contrary to
typical GIS use). See OGRSpatialReference::importFromEPSG() (p. ??) for more details on operation of this
method.

This method is the same as the C function OSRImportFromEPSGA() (p. ??).

Parameters

nCode a GCS or PCS code from the horizontal coordinate system table.

Returns

OGRERR_NONE on success, or an error code on failure.

References CPLError(), FixupOrdering(), GetAuthorityName(), importFromDict(), importFromProj4(), Is←↩

Geographic(), IsProjected(), and SetAuthority().

Referenced by importFromEPSG(), SetFromUserInput(), and SetWellKnownGeogCS().

12.83.3.44 OGRErr OGRSpatialReference::importFromERM (const char ∗ pszProj, const char ∗ pszDatum, const char ∗
pszUnits)

Create OGR WKT from ERMapper projection definitions.

Generates an OGRSpatialReference (p. ??) definition from an ERMapper datum and projection name. Based on
the ecw_cs.wkt dictionary file from gdal/data.

Parameters

pszProj the projection name, such as "NUTM11" or "GEOGRAPHIC".
pszDatum the datum name, such as "NAD83".

pszUnits the linear units "FEET" or "METERS".

Returns

OGRERR_NONE on success or OGRERR_UNSUPPORTED_SRS if not found.

References Clear(), CopyGeogCSFrom(), importFromDict(), importFromEPSG(), IsLocal(), and SetLinearUnits().

12.83.3.45 OGRErr OGRSpatialReference::importFromESRI (char ∗∗ papszPrj)

Import coordinate system from ESRI .prj format(s).

This function will read the text loaded from an ESRI .prj file, and translate it into an OGRSpatialReference (p. ??)
definition. This should support many (but by no means all) old style (Arc/Info 7.x) .prj files, as well as the newer
pseudo-OGC WKT .prj files. Note that new style .prj files are in OGC WKT format, but require some manipulation
to correct datum names, and units on some projection parameters. This is addressed within importFromESRI()
(p. ??) by an automatical call to morphFromESRI() (p. ??).

Currently only GEOGRAPHIC, UTM, STATEPLANE, GREATBRITIAN_GRID, ALBERS, EQUIDISTANT_CONIC,
TRANSVERSE (mercator), POLAR, MERCATOR and POLYCONIC projections are supported from old style files.

At this time there is no equivelent exportToESRI() method. Writing old style .prj files is not supported by OGR←↩

SpatialReference (p. ??). However the morphToESRI() (p. ??) and exportToWkt() (p. ??) methods can be used
to generate output suitable to write to new style (Arc 8) .prj files.

This function is the equilvelent of the C function OSRImportFromESRI() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 353

Parameters

papszPrj NULL terminated list of strings containing the definition.

Returns

OGRERR_NONE on success or an error code in case of failure.

References CopyGeogCSFrom(), CPLDebug(), CPLRealloc(), CPLStrdup(), OGR_SRSNode::DestroyChild(),
GetAttrNode(), GetLinearUnits(), importFromEPSG(), importFromWkt(), IsLocal(), IsProjected(), morphFromESRI(),
SetACEA(), SetEC(), SetLAEA(), SetLCC(), SetLinearUnitsAndUpdateParameters(), SetLocalCS(), SetMercator(),
SetPolyconic(), SetPS(), SetStatePlane(), SetTM(), SetUTM(), and SetWellKnownGeogCS().

12.83.3.46 OGRErr OGRSpatialReference::importFromMICoordSys (const char ∗ pszCoordSys)

Import Mapinfo style CoordSys definition.

The OGRSpatialReference (p. ??) is initialized from the passed Mapinfo style CoordSys definition string.

This method is the equivalent of the C function OSRImportFromMICoordSys() (p. ??).

Parameters

pszCoordSys Mapinfo style CoordSys definition string.

Returns

OGRERR_NONE on success, OGRERR_FAILURE on failure, OGRERR_UNSUPPORTED_OPERATION if
MITAB library was not linked in.

References CPLError().

12.83.3.47 OGRErr OGRSpatialReference::importFromOzi (const char ∗ pszDatum, const char ∗ pszProj, const char ∗
pszProjParms)

Note : This method is obsolete, but has been kept to avoid breaking the API. It can be removed in GDAL 2.0 Import
coordinate system from OziExplorer projection definition.

This method will import projection definition in style, used by OziExplorer software.

This function is the equivalent of the C function OSRImportFromOzi().

Parameters

pszDatum Datum string. This is a fifth string in the OziExplorer .MAP file.
pszProj Projection string. Search for line starting with "Map Projection" name in the OziExplorer .M←↩

AP file and supply it as a whole in this parameter.
pszProjParms String containing projection parameters. Search for "Projection Setup" name in the Ozi←↩

Explorer .MAP file and supply it as a whole in this parameter.

Returns

OGRERR_NONE on success or an error code in case of failure.

Deprecated Use importFromOzi(const char ∗ const∗ papszLines) (p. ??) instead

12.83.3.48 OGRErr OGRSpatialReference::importFromOzi (const char ∗const ∗ papszLines)

Import coordinate system from OziExplorer projection definition.

This method will import projection definition in style, used by OziExplorer software.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

354 Class Documentation

Parameters

papszLines Map file lines. This is an array of strings containing the whole OziExplorer .MAP file. The
array is terminated by a NULL pointer.

Returns

OGRERR_NONE on success or an error code in case of failure.

Since

OGR 1.10

References Clear(), CopyGeogCSFrom(), CPLAtof(), CPLAtofM(), CPLDebug(), CPLError(), CSLCount(), CSL←↩

Destroy(), CSLTokenizeString2(), FixupOrdering(), importFromEPSG(), IsLocal(), IsProjected(), SetACEA(), Set←↩

GeogCS(), SetLCC(), SetLCC1SP(), SetLinearUnits(), SetLocalCS(), SetMercator(), SetSinusoidal(), SetTM(),
SetTOWGS84(), and SetUTM().

12.83.3.49 OGRErr OGRSpatialReference::importFromPanorama (long iProjSys, long iDatum, long iEllips, double ∗
padfPrjParams)

Import coordinate system from "Panorama" GIS projection definition.

This method will import projection definition in style, used by "Panorama" GIS.

This function is the equivalent of the C function OSRImportFromPanorama().

Parameters

iProjSys Input projection system code, used in GIS "Panorama".

<h4>Supported Projections</h4>

1: Gauss-Kruger (Transverse Mercator)
2: Lambert Conformal Conic 2SP
5: Stereographic
6: Azimuthal Equidistant (Postel)
8: Mercator
10: Polyconic
13: Polar Stereographic
15: Gnomonic
17: Universal Transverse Mercator (UTM)
18: Wagner I (Kavraisky VI)
19: Mollweide
20: Equidistant Conic
24: Lambert Azimuthal Equal Area
27: Equirectangular
28: Cylindrical Equal Area (Lambert)
29: International Map of the World Polyconic

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 355

iDatum Input coordinate system.

<h4>Supported Datums</h4>

1: Pulkovo, 1942
2: WGS, 1984
3: OSGB 1936 (British National Grid)
9: Pulkovo, 1995

iEllips Input spheroid.

<h4>Supported Spheroids</h4>

1: Krassovsky, 1940
2: WGS, 1972
3: International, 1924 (Hayford, 1909)
4: Clarke, 1880
5: Clarke, 1866 (NAD1927)
6: Everest, 1830
7: Bessel, 1841
8: Airy, 1830
9: WGS, 1984 (GPS)

padfPrjParams Array of 8 coordinate system parameters:

[0] Latitude of the first standard parallel (radians)
[1] Latitude of the second standard parallel (radians)
[2] Latitude of center of projection (radians)
[3] Longitude of center of projection (radians)
[4] Scaling factor
[5] False Easting
[6] False Northing
[7] Zone number

Particular projection uses different parameters, unused ones may be set to zero. If NULL supplied instead of array
pointer default values will be used (i.e., zeroes).

Returns

OGRERR_NONE on success or an error code in case of failure.

References Clear(), CopyGeogCSFrom(), CPLDebug(), CPLError(), CPLMalloc(), FixupOrdering(), importFrom←↩

EPSG(), IsLocal(), IsProjected(), SetAE(), SetAuthority(), SetCEA(), SetEC(), SetEquirectangular(), SetGeogC←↩

S(), SetGnomonic(), SetIWMPolyconic(), SetLAEA(), SetLCC(), SetLinearUnits(), SetLocalCS(), SetMC(), Set←↩

Mercator(), SetMollweide(), SetPolyconic(), SetPS(), SetStereographic(), SetTM(), SetUTM(), SetWagner(), and
SetWellKnownGeogCS().

12.83.3.50 OGRErr OGRSpatialReference::importFromPCI (const char ∗ pszProj, const char ∗ pszUnits = NULL, double ∗
padfPrjParams = NULL)

Import coordinate system from PCI projection definition.

PCI software uses 16-character string to specify coordinate system and datum/ellipsoid. You should supply at least
this string to the importFromPCI() (p. ??) function.

This function is the equivalent of the C function OSRImportFromPCI() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

356 Class Documentation

Parameters

pszProj NULL terminated string containing the definition. Looks like "pppppppppppp Ennn" or
"pppppppppppp Dnnn", where "pppppppppppp" is a projection code, "Ennn" is an ellipsoid
code, "Dnnn" — a datum code.

pszUnits Grid units code ("DEGREE" or "METRE"). If NULL "METRE" will be used.
padfPrjParams Array of 17 coordinate system parameters:

[0] Spheroid semi major axis [1] Spheroid semi minor axis [2] Reference Longitude [3] Reference Latitude [4] First
Standard Parallel [5] Second Standard Parallel [6] False Easting [7] False Northing [8] Scale Factor [9] Height above
sphere surface [10] Longitude of 1st point on center line [11] Latitude of 1st point on center line [12] Longitude
of 2nd point on center line [13] Latitude of 2nd point on center line [14] Azimuth east of north for center line [15]
Landsat satellite number [16] Landsat path number

Particular projection uses different parameters, unused ones may be set to zero. If NULL suppliet instead of array
pointer default values will be used (i.e., zeroes).

Returns

OGRERR_NONE on success or an error code in case of failure.

References Clear(), CopyGeogCSFrom(), CPLAtof(), CPLDebug(), CPLMalloc(), CPLScanLong(), CPLStrnlen(),
CSLCount(), CSLDestroy(), FixupOrdering(), importFromEPSG(), IsGeographic(), IsLocal(), IsProjected(), SetA←↩

CEA(), SetAE(), SetAngularUnits(), SetAuthority(), SetCS(), SetEC(), SetEquirectangular2(), SetGeogCS(), Set←↩

Gnomonic(), SetHOM(), SetHOM2PNO(), SetLAEA(), SetLCC(), SetLCC1SP(), SetLinearUnits(), SetLinearUnits←↩

AndUpdateParameters(), SetLocalCS(), SetMC(), SetMercator(), SetOrthographic(), SetOS(), SetPolyconic(), Set←↩

PS(), SetRobinson(), SetSinusoidal(), SetStatePlane(), SetStereographic(), SetTM(), SetTOWGS84(), SetUTM(),
and SetVDG().

12.83.3.51 OGRErr OGRSpatialReference::importFromProj4 (const char ∗ pszProj4)

Import PROJ.4 coordinate string.

The OGRSpatialReference (p. ??) is initialized from the passed PROJ.4 style coordinate system string. In addition
to many +proj formulations which have OGC equivelents, it is also possible to import "+init=epsg:n" style definitions.
These are passed to importFromEPSG() (p. ??). Other init strings (such as the state plane zones) are not currently
supported.

Example: pszProj4 = "+proj=utm +zone=11 +datum=WGS84"

Some parameters, such as grids, recognised by PROJ.4 may not be well understood and translated into the OG←↩

RSpatialReference (p. ??) model. It is possible to add the +wktext parameter which is a special keyword that OGR
recognises as meaning "embed the entire PROJ.4 string in the WKT and use it literally when converting back to
PROJ.4 format".

For example: "+proj=nzmg +lat_0=-41 +lon_0=173 +x_0=2510000 +y_0=6023150 +ellps=intl +units=m
+nadgrids=nzgd2kgrid0005.gsb +wktext"

will be translated as :

PROJCS["unnamed",
GEOGCS["International 1909 (Hayford)",

DATUM["unknown",
SPHEROID["intl",6378388,297]],

PRIMEM["Greenwich",0],
UNIT["degree",0.0174532925199433]],

PROJECTION["New_Zealand_Map_Grid"],
PARAMETER["latitude_of_origin",-41],
PARAMETER["central_meridian",173],
PARAMETER["false_easting",2510000],
PARAMETER["false_northing",6023150],
UNIT["Meter",1],
EXTENSION["PROJ4","+proj=nzmg +lat_0=-41 +lon_0=173 +x_0=2510000

+y_0=6023150 +ellps=intl +units=m +nadgrids=nzgd2kgrid0005.gsb +wktext"]]

Special processing for 'etmerc' (GDAL >= 1.10): if +proj=etmerc is found in the passed string, the SRS built will
use the WKT representation for a standard Transverse Mercator, but will aso include a PROJ4 EXTENSION node
to preserve the etmerc projection method.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 357

For example: "+proj=etmerc +lat_0=0 +lon_0=9 +k=0.9996 +units=m +x_0=500000 +datum=WGS84"

will be translated as :

PROJCS["unnamed",
GEOGCS["WGS 84",

DATUM["WGS_1984",
SPHEROID["WGS 84",6378137,298.257223563,

AUTHORITY["EPSG","7030"]],
TOWGS84[0,0,0,0,0,0,0],
AUTHORITY["EPSG","6326"]],

PRIMEM["Greenwich",0,
AUTHORITY["EPSG","8901"]],

UNIT["degree",0.0174532925199433,
AUTHORITY["EPSG","9108"]],

AUTHORITY["EPSG","4326"]],
PROJECTION["Transverse_Mercator"],
PARAMETER["latitude_of_origin",0],
PARAMETER["central_meridian",9],
PARAMETER["scale_factor",0.9996],
PARAMETER["false_easting",500000],
PARAMETER["false_northing",0],
UNIT["Meter",1],
EXTENSION["PROJ4","+proj=etmerc +lat_0=0 +lon_0=9 +k=0.9996 +units=m +x_0=500000 +datum=WGS84 +nodefs"]

]

This method is the equivalent of the C function OSRImportFromProj4() (p. ??).

Parameters

pszProj4 the PROJ.4 style string.

Returns

OGRERR_NONE on success or OGRERR_CORRUPT_DATA on failure.

References OGR_SRSNode::AddChild(), Clear(), OGR_SRSNode::Clone(), CopyGeogCSFrom(), CPLAtof(), CP←↩

LAtofM(), CPLDebug(), CPLError(), CPLStrdup(), CSLCount(), CSLDestroy(), GetAttrNode(), OGR_SRSNode←↩

::GetChild(), OGR_SRSNode::GetChildCount(), GetLinearUnits(), GetProjParm(), OGR_SRSNode::GetValue(),
importFromEPSG(), IsGeocentric(), IsLocal(), IsProjected(), SetACEA(), SetAE(), SetBonne(), SetCEA(), Set←↩

CS(), SetEC(), SetEckert(), SetEquirectangular(), SetEquirectangular2(), SetExtension(), SetGaussSchreiberT←↩

Mercator(), SetGeocCS(), SetGeogCS(), SetGEOS(), SetGH(), SetGnomonic(), SetGS(), SetHOM(), SetHOMA←↩

C(), SetIGH(), SetIWMPolyconic(), SetKrovak(), SetLAEA(), SetLCC(), SetLCC1SP(), SetLinearUnits(), SetMC(),
SetMercator(), SetMollweide(), SetNode(), SetNormProjParm(), SetNZMG(), SetOrthographic(), SetOS(), Set←↩

Polyconic(), SetProjection(), SetPS(), SetRobinson(), SetSinusoidal(), SetStereographic(), SetTM(), SetTMSO(),
SetTOWGS84(), SetTPED(), SetUTM(), SetVDG(), SetWagner(), and SetWellKnownGeogCS().

Referenced by importFromEPSGA(), and SetFromUserInput().

12.83.3.52 OGRErr OGRSpatialReference::importFromUrl (const char ∗ pszUrl)

Set spatial reference from a URL.

This method will download the spatial reference at a given URL and feed it into SetFromUserInput for you.

This method does the same thing as the OSRImportFromUrl() (p. ??) function.

Parameters

pszUrl text definition to try to deduce SRS from.

Returns

OGRERR_NONE on success, or an error code with the curl error message if it is unable to dowload data.

References CPLError(), CPLErrorReset(), CPLGetLastErrorNo(), CPLHTTPDestroyResult(), CPLHTTPFetch(),
CPLHTTPResult::nDataLen, CPLHTTPResult::nStatus, CPLHTTPResult::pabyData, CPLHTTPResult::pszErrBuf,
and SetFromUserInput().

Referenced by SetFromUserInput().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

358 Class Documentation

12.83.3.53 OGRErr OGRSpatialReference::importFromURN (const char ∗ pszURN)

Initialize from OGC URN.

Initializes this spatial reference from a coordinate system defined by an OGC URN prefixed with "urn:ogc:def:crs:"
per recommendation paper 06-023r1. Currently EPSG and OGC authority values are supported, including OGC
auto codes, but not including CRS1 or CRS88 (NAVD88).

This method is also support through SetFromUserInput() (p. ??) which can normally be used for URNs.

Parameters

pszURN the urn string.

Returns

OGRERR_NONE on success or an error code.

References OGR_SRSNode::AddChild(), Clear(), OGR_SRSNode::Clone(), CPLError(), CPLStrdup(), OGR_SR←↩

SNode::GetChild(), OGR_SRSNode::GetValue(), and SetNode().

Referenced by SetFromUserInput().

12.83.3.54 OGRErr OGRSpatialReference::importFromUSGS (long iProjSys, long iZone, double ∗ padfPrjParams, long
iDatum, int nUSGSAngleFormat = TRUE)

Import coordinate system from USGS projection definition.

This method will import projection definition in style, used by USGS GCTP software. GCTP operates on angles
in packed DMS format (see CPLDecToPackedDMS() (p. ??) function for details), so all angle values (latitudes,
longitudes, azimuths, etc.) specified in the padfPrjParams array should be in the packed DMS format, unless b←↩

AnglesInPackedDMSFormat is set to FALSE.

This function is the equivalent of the C function OSRImportFromUSGS() (p. ??). Note that the bAnglesInPacked←↩

DMSFormat parameter is only present in the C++ method. The C function assumes bAnglesInPackedFormat =
TRUE.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 359

Parameters

iProjSys Input projection system code, used in GCTP.
iZone Input zone for UTM and State Plane projection systems. For Southern Hemisphere UTM use

a negative zone code. iZone ignored for all other projections.
padfPrjParams Array of 15 coordinate system parameters. These parameters differs for different projections.

<h4>Projection Transformation Package Projection Parameters</h4>

--
| Array Element

Code & Projection Id |---
| 0 | 1 | 2 | 3 | 4 | 5 |6 | 7

--
0 Geographic | | | | | | | |
1 U T M |Lon/Z |Lat/Z | | | | | |
2 State Plane | | | | | | | |
3 Albers Equal Area |SMajor|SMinor|STDPR1|STDPR2|CentMer|OriginLat|FE|FN
4 Lambert Conformal C |SMajor|SMinor|STDPR1|STDPR2|CentMer|OriginLat|FE|FN
5 Mercator |SMajor|SMinor| | |CentMer|TrueScale|FE|FN
6 Polar Stereographic |SMajor|SMinor| | |LongPol|TrueScale|FE|FN
7 Polyconic |SMajor|SMinor| | |CentMer|OriginLat|FE|FN
8 Equid. Conic A |SMajor|SMinor|STDPAR| |CentMer|OriginLat|FE|FN
Equid. Conic B |SMajor|SMinor|STDPR1|STDPR2|CentMer|OriginLat|FE|FN

9 Transverse Mercator |SMajor|SMinor|Factor| |CentMer|OriginLat|FE|FN
10 Stereographic |Sphere| | | |CentLon|CenterLat|FE|FN
11 Lambert Azimuthal |Sphere| | | |CentLon|CenterLat|FE|FN
12 Azimuthal |Sphere| | | |CentLon|CenterLat|FE|FN
13 Gnomonic |Sphere| | | |CentLon|CenterLat|FE|FN
14 Orthographic |Sphere| | | |CentLon|CenterLat|FE|FN
15 Gen. Vert. Near Per |Sphere| |Height| |CentLon|CenterLat|FE|FN
16 Sinusoidal |Sphere| | | |CentMer| |FE|FN
17 Equirectangular |Sphere| | | |CentMer|TrueScale|FE|FN
18 Miller Cylindrical |Sphere| | | |CentMer| |FE|FN
19 Van der Grinten |Sphere| | | |CentMer|OriginLat|FE|FN
20 Hotin Oblique Merc A |SMajor|SMinor|Factor| | |OriginLat|FE|FN

Hotin Oblique Merc B |SMajor|SMinor|Factor|AziAng|AzmthPt|OriginLat|FE|FN
21 Robinson |Sphere| | | |CentMer| |FE|FN
22 Space Oblique Merc A |SMajor|SMinor| |IncAng|AscLong| |FE|FN

Space Oblique Merc B |SMajor|SMinor|Satnum|Path | | |FE|FN
23 Alaska Conformal |SMajor|SMinor| | | | |FE|FN
24 Interrupted Goode |Sphere| | | | | | |
25 Mollweide |Sphere| | | |CentMer| |FE|FN
26 Interrupt Mollweide |Sphere| | | | | | |
27 Hammer |Sphere| | | |CentMer| |FE|FN
28 Wagner IV |Sphere| | | |CentMer| |FE|FN
29 Wagner VII |Sphere| | | |CentMer| |FE|FN
30 Oblated Equal Area |Sphere| |Shapem|Shapen|CentLon|CenterLat|FE|FN
--

-- | Array Element | Code & Projection Id |--------------------------- | 8 | 9 | 10 |
11 | 12 | -- 0 Geographic | | | | | | 1 U T M | | | | | | 2 State Plane | | | | | | 3
Albers Equal Area | | | | | | 4 Lambert Conformal C | | | | | | 5 Mercator | | | | | | 6 Polar Stereographic | | | | | | 7
Polyconic | | | | | | 8 Equid. Conic A |zero | | | | | Equid. Conic B |one | | | | | 9 Transverse Mercator | | | | | | 10
Stereographic | | | | | | 11 Lambert Azimuthal | | | | | | 12 Azimuthal | | | | | | 13 Gnomonic | | | | | | 14 Orthographic
					15 Gen. Vert. Near Per						16 Sinusoidal						17 Equirectangular						18 Miller Cylindrical	
			19 Van der Grinten						20 Hotin Oblique Merc A	Long1	Lat1	Long2	Lat2	zero	Hotin Oblique Merc B									
			one	21 Robinson						22 Space Oblique Merc A	PSRev	LRat	PFlag		zero	Space Oblique Merc B								
	one	23 Alaska Conformal						24 Interrupted Goode						25 Mollweide						26 Interrupt Mollweide				
					27 Hammer						28 Wagner IV						29 Wagner VII						30 Oblated Equal Area	Angle
--

where

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

360 Class Documentation

Lon/Z Longitude of any point in the UTM zone or zero. If zero,
a zone code must be specified.

Lat/Z Latitude of any point in the UTM zone or zero. If zero, a
zone code must be specified.

SMajor Semi-major axis of ellipsoid. If zero, Clarke 1866 in meters
is assumed.

SMinor Eccentricity squared of the ellipsoid if less than zero,
if zero, a spherical form is assumed, or if greater than
zero, the semi-minor axis of ellipsoid.

Sphere Radius of reference sphere. If zero, 6370997 meters is used.
STDPAR Latitude of the standard parallel
STDPR1 Latitude of the first standard parallel
STDPR2 Latitude of the second standard parallel
CentMer Longitude of the central meridian
OriginLat Latitude of the projection origin
FE False easting in the same units as the semi-major axis
FN False northing in the same units as the semi-major axis
TrueScale Latitude of true scale
LongPol Longitude down below pole of map
Factor Scale factor at central meridian (Transverse Mercator) or

center of projection (Hotine Oblique Mercator)
CentLon Longitude of center of projection
CenterLat Latitude of center of projection
Height Height of perspective point
Long1 Longitude of first point on center line (Hotine Oblique

Mercator, format A)
Long2 Longitude of second point on center line (Hotine Oblique

Mercator, format A)
Lat1 Latitude of first point on center line (Hotine Oblique

Mercator, format A)
Lat2 Latitude of second point on center line (Hotine Oblique

Mercator, format A)
AziAng Azimuth angle east of north of center line (Hotine Oblique

Mercator, format B)
AzmthPt Longitude of point on central meridian where azimuth occurs

(Hotine Oblique Mercator, format B)
IncAng Inclination of orbit at ascending node, counter-clockwise

from equator (SOM, format A)
AscLong Longitude of ascending orbit at equator (SOM, format A)
PSRev Period of satellite revolution in minutes (SOM, format A)
LRat Landsat ratio to compensate for confusion at northern end

of orbit (SOM, format A -- use 0.5201613)
PFlag End of path flag for Landsat: 0 = start of path,

1 = end of path (SOM, format A)
Satnum Landsat Satellite Number (SOM, format B)
Path Landsat Path Number (Use WRS-1 for Landsat 1, 2 and 3 and

WRS-2 for Landsat 4, 5 and 6.) (SOM, format B)
Shapem Oblated Equal Area oval shape parameter m
Shapen Oblated Equal Area oval shape parameter n
Angle Oblated Equal Area oval rotation angle

Array elements 13 and 14 are set to zero. All array elements with blank
fields are set to zero too.

Parameters

iDatum Input spheroid.

If the datum code is negative, the first two values in the parameter array (parm) are used to define the values as
follows:

• If padfPrjParams[0] is a non-zero value and padfPrjParams[1] is greater than one, the semimajor axis is set
to padfPrjParams[0] and the semiminor axis is set to padfPrjParams[1].

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 361

• If padfPrjParams[0] is nonzero and padfPrjParams[1] is greater than zero but less than or equal to one, the
semimajor axis is set to padfPrjParams[0] and the semiminor axis is computed from the eccentricity squared
value padfPrjParams[1]:

semiminor = sqrt(1.0 - ES) ∗ semimajor

where

ES = eccentricity squared

• If padfPrjParams[0] is nonzero and padfPrjParams[1] is equal to zero, the semimajor axis and semiminor axis
are set to padfPrjParams[0].

• If padfPrjParams[0] equals zero and padfPrjParams[1] is greater than zero, the default Clarke 1866 is used to
assign values to the semimajor axis and semiminor axis.

• If padfPrjParams[0] and padfPrjParams[1] equals zero, the semimajor axis is set to 6370997.0 and the
semiminor axis is set to zero.

If a datum code is zero or greater, the semimajor and semiminor axis are defined by the datum code as found in the
following table:

<h4>Supported Datums</h4>

0: Clarke 1866 (default)
1: Clarke 1880
2: Bessel
3: International 1967
4: International 1909
5: WGS 72
6: Everest
7: WGS 66
8: GRS 1980/WGS 84
9: Airy

10: Modified Everest
11: Modified Airy
12: Walbeck
13: Southeast Asia
14: Australian National
15: Krassovsky
16: Hough
17: Mercury 1960
18: Modified Mercury 1968
19: Sphere of Radius 6370997 meters

Parameters

nUSGSAngle←↩

Format
one of USGS_ANGLE_DECIMALDEGREES, USGS_ANGLE_PACKEDDMS, or USGS_A←↩

NGLE_RADIANS (default is USGS_ANGLE_PACKEDDMS).

Returns

OGRERR_NONE on success or an error code in case of failure.

References CPLDebug(), CPLError(), CPLPackedDMSToDec(), FixupOrdering(), IsLocal(), IsProjected(), SetAC←↩

EA(), SetAE(), SetAuthority(), SetEC(), SetEquirectangular2(), SetGeogCS(), SetGnomonic(), SetHOM(), Set←↩

HOM2PNO(), SetLAEA(), SetLCC(), SetLinearUnits(), SetLocalCS(), SetMC(), SetMercator(), SetMollweide(),
SetOrthographic(), SetPolyconic(), SetPS(), SetRobinson(), SetSinusoidal(), SetStatePlane(), SetStereographic(),
SetTM(), SetUTM(), SetVDG(), SetWagner(), and SetWellKnownGeogCS().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

362 Class Documentation

12.83.3.55 OGRErr OGRSpatialReference::importFromWkt (char ∗∗ ppszInput)

Import from WKT string.

This method will wipe the existing SRS definition, and reassign it based on the contents of the passed WKT string.
Only as much of the input string as needed to construct this SRS is consumed from the input string, and the input
string pointer is then updated to point to the remaining (unused) input.

This method is the same as the C function OSRImportFromWkt() (p. ??).

Parameters

ppszInput Pointer to pointer to input. The pointer is updated to point to remaining unused input text.

Returns

OGRERR_NONE if import succeeds, or OGRERR_CORRUPT_DATA if it fails for any reason.

References OGR_SRSNode::AddChild(), and Clear().

Referenced by importFromDict(), importFromESRI(), OGRSpatialReference(), OSRNewSpatialReference(), Set←↩

FromUserInput(), and SetWellKnownGeogCS().

12.83.3.56 OGRErr OGRSpatialReference::importFromWMSAUTO (const char ∗ pszDefinition)

Initialize from WMSAUTO string.

Note that the WMS 1.3 specification does not include the units code, while apparently earlier specs do. We try to
guess around this.

Parameters

pszDefinition the WMSAUTO string

Returns

OGRERR_NONE on success or an error code.

References Clear(), CPLAtof(), CPLError(), CSLCount(), CSLDestroy(), SetAuthority(), SetEquirectangular(), Set←↩

LinearUnits(), SetMollweide(), SetOrthographic(), SetTM(), SetUTM(), and SetWellKnownGeogCS().

Referenced by SetFromUserInput().

12.83.3.57 OGRErr OGRSpatialReference::importFromXML (const char ∗ pszXML)

Import coordinate system from XML format (GML only currently).

This method is the same as the C function OSRImportFromXML() (p. ??)

Parameters

pszXML XML string to import

Returns

OGRERR_NONE on success or OGRERR_CORRUPT_DATA on failure.

References Clear(), CPLDestroyXMLNode(), CPLParseXMLString(), CPLStripXMLNamespace(), CPLXMLNode←↩

::psNext, and CPLXMLNode::pszValue.

Referenced by SetFromUserInput().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 363

12.83.3.58 int OGRSpatialReference::IsCompound () const

Check if coordinate system is compound.

This method is the same as the C function OSRIsCompound() (p. ??).

Returns

TRUE if this is rooted with a COMPD_CS node.

References OGR_SRSNode::GetValue().

12.83.3.59 int OGRSpatialReference::IsGeocentric () const

Check if geocentric coordinate system.

This method is the same as the C function OSRIsGeocentric() (p. ??).

Returns

TRUE if this contains a GEOCCS node indicating a it is a geocentric coordinate system.

Since

OGR 1.9.0

References OGR_SRSNode::GetValue().

Referenced by CloneGeogCS(), CopyGeogCSFrom(), exportToProj4(), importFromProj4(), and SetGeogCS().

12.83.3.60 int OGRSpatialReference::IsGeographic () const

Check if geographic coordinate system.

This method is the same as the C function OSRIsGeographic() (p. ??).

Returns

TRUE if this spatial reference is geographic ... that is the root is a GEOGCS node.

References GetAttrNode(), and OGR_SRSNode::GetValue().

Referenced by AutoIdentifyEPSG(), EPSGTreatsAsLatLong(), exportToERM(), exportToProj4(), exportToXML(),
importFromEPSGA(), importFromPCI(), SetCompoundCS(), SetVertCS(), and SetWellKnownGeogCS().

12.83.3.61 int OGRSpatialReference::IsLocal () const

Check if local coordinate system.

This method is the same as the C function OSRIsLocal() (p. ??).

Returns

TRUE if this spatial reference is local ... that is the root is a LOCAL_CS node.

Referenced by exportToPanorama(), exportToPCI(), exportToUSGS(), importFromERM(), importFromESRI(),
importFromOzi(), importFromPanorama(), importFromPCI(), importFromProj4(), importFromUSGS(), and Is←↩

Same().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

364 Class Documentation

12.83.3.62 int OGRSpatialReference::IsProjected () const

Check if projected coordinate system.

This method is the same as the C function OSRIsProjected() (p. ??).

Returns

TRUE if this contains a PROJCS node indicating a it is a projected coordinate system.

References GetAttrNode(), and OGR_SRSNode::GetValue().

Referenced by AutoIdentifyEPSG(), EPSGTreatsAsNorthingEasting(), exportToERM(), exportToXML(), import←↩

FromEPSGA(), importFromESRI(), importFromOzi(), importFromPanorama(), importFromPCI(), importFromProj4(),
importFromUSGS(), IsSame(), SetCompoundCS(), and SetVertCS().

12.83.3.63 int OGRSpatialReference::IsSame (const OGRSpatialReference ∗ poOtherSRS) const

Do these two spatial references describe the same system ?

Parameters

poOtherSRS the SRS being compared to.

Returns

TRUE if equivalent or FALSE otherwise.

References GetAttrNode(), GetAttrValue(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), Get←↩

LinearUnits(), GetProjParm(), OGR_SRSNode::GetValue(), IsLocal(), IsProjected(), IsSameGeogCS(), IsSame←↩

VertCS(), and IsVertical().

Referenced by OGRGeometry::Difference(), OGRGeometry::Intersection(), OGRGeomFieldDefn::IsSame(), OG←↩

RGeometry::SymDifference(), and OGRGeometry::Union().

12.83.3.64 int OGRSpatialReference::IsSameGeogCS (const OGRSpatialReference ∗ poOther) const

Do the GeogCS'es match?

This method is the same as the C function OSRIsSameGeogCS() (p. ??).

Parameters

poOther the SRS being compared against.

Returns

TRUE if they are the same or FALSE otherwise.

References CPLAtof(), GetAttrValue(), and GetTOWGS84().

Referenced by IsSame(), and morphFromESRI().

12.83.3.65 int OGRSpatialReference::IsSameVertCS (const OGRSpatialReference ∗ poOther) const

Do the VertCS'es match?

This method is the same as the C function OSRIsSameVertCS() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 365

Parameters

poOther the SRS being compared against.

Returns

TRUE if they are the same or FALSE otherwise.

References CPLAtof(), and GetAttrValue().

Referenced by IsSame().

12.83.3.66 int OGRSpatialReference::IsVertical () const

Check if vertical coordinate system.

This method is the same as the C function OSRIsVertical() (p. ??).

Returns

TRUE if this contains a VERT_CS node indicating a it is a vertical coordinate system.

Since

OGR 1.8.0

References GetAttrNode(), and OGR_SRSNode::GetValue().

Referenced by GetTargetLinearUnits(), IsSame(), SetCompoundCS(), and SetTargetLinearUnits().

12.83.3.67 OGRErr OGRSpatialReference::morphFromESRI ()

Convert in place from ESRI WKT format.

The value notes of this coordinate system are modified in various manners to adhere more closely to the WKT stan-
dard. This mostly involves translating a variety of ESRI names for projections, arguments and datums to "standard"
names, as defined by Adam Gawne-Cain's reference translation of EPSG to WKT for the CT specification.

Starting with GDAL 1.9.0, missing parameters in TOWGS84, DATUM or GEOGCS nodes can be added to the WKT,
comparing existing WKT parameters to GDAL's databases. Note that this optional procedure is very conservative
and should not introduce false information into the WKT defintion (altough caution should be advised when activating
it). Needs the Configuration Option GDAL_FIX_ESRI_WKT be set to one of the following values (TOWGS84 is
recommended for proper datum shift calculations):

GDAL_FIX_ESRI_WKT values

TOWGS84 Adds missing TOWGS84
parameters (necessary
for datum
transformations), based
on named datum and
spheroid values.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

366 Class Documentation

DATUM Adds EPSG
AUTHORITY nodes and
sets SPHEROID name to
OGR spec.

GEOGCS Adds EPSG
AUTHORITY nodes and
sets GEOGCS, DATUM
and SPHEROID names
to OGR spec. Effectively
replaces GEOGCS node
with the result of
importFromEPSG(n),
using EPSG code n
corresponding to the
existing GEOGCS. Does
not impact PROJCS
values.

This does the same as the C function OSRMorphFromESRI() (p. ??).

Returns

OGRERR_NONE unless something goes badly wrong.

References OGR_SRSNode::AddChild(), OGR_SRSNode::applyRemapper(), OGR_SRSNode::Clone(), Clone←↩

GeogCS(), CopyGeogCSFrom(), CPLDebug(), CPLGetConfigOption(), CPLStrdup(), OGR_SRSNode::Destroy←↩

Child(), exportToWkt(), OGR_SRSNode::FindChild(), FixupOrdering(), GetAttrNode(), GetAttrValue(), OGR_SR←↩

SNode::GetChild(), GetInvFlattening(), GetPrimeMeridian(), GetProjParm(), GetSemiMajor(), OGR_SRSNode::←↩

GetValue(), importFromEPSG(), OGR_SRSNode::InsertChild(), IsSameGeogCS(), SetNode(), SetProjParm(), O←↩

GR_SRSNode::SetValue(), and StripCTParms().

Referenced by importFromESRI(), and SetFromUserInput().

12.83.3.68 OGRErr OGRSpatialReference::morphToESRI ()

Convert in place to ESRI WKT format.

The value nodes of this coordinate system are modified in various manners more closely map onto the ESR←↩

I concept of WKT format. This includes renaming a variety of projections and arguments, and stripping out nodes
note recognised by ESRI (like AUTHORITY and AXIS).

This does the same as the C function OSRMorphToESRI() (p. ??).

Returns

OGRERR_NONE unless something goes badly wrong.

References OGR_SRSNode::AddChild(), OGR_SRSNode::applyRemapper(), CPLDebug(), CPLMalloc(), CPL←↩

Strdup(), OGR_SRSNode::DestroyChild(), FindProjParm(), Fixup(), GetAngularUnits(), GetAttrNode(), GetAttr←↩

Value(), GetAuthorityCode(), GetAuthorityName(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(),
GetLinearUnits(), GetNormProjParm(), GetProjParm(), GetUTMZone(), OGR_SRSNode::GetValue(), SetNode(),
OGR_SRSNode::SetValue(), and StripCTParms().

12.83.3.69 int OGRSpatialReference::Reference ()

Increments the reference count by one.

The reference count is used keep track of the number of OGRGeometry (p. ??) objects referencing this SRS.

The method does the same thing as the C function OSRReference() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 367

Returns

the updated reference count.

Referenced by OGRGeometry::assignSpatialReference(), OGRUnionLayer::GetLayerDefn(), OGRProxiedLayer::←↩

GetSpatialRef(), OGRUnionLayer::GetSpatialRef(), and OGRGeomFieldDefn::SetSpatialRef().

12.83.3.70 void OGRSpatialReference::Release ()

Decrements the reference count by one, and destroy if zero.

The method does the same thing as the C function OSRRelease() (p. ??).

References Dereference().

Referenced by OGRGeometry::assignSpatialReference(), and OGRGeomFieldDefn::SetSpatialRef().

12.83.3.71 OGRErr OGRSpatialReference::SetACEA (double dfStdP1, double dfStdP2, double dfCenterLat, double
dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

Albers Conic Equal Area

References SetNormProjParm(), and SetProjection().

Referenced by importFromESRI(), importFromOzi(), importFromPCI(), importFromProj4(), and importFromUSGS().

12.83.3.72 OGRErr OGRSpatialReference::SetAE (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double
dfFalseNorthing)

Azimuthal Equidistant

References SetNormProjParm(), and SetProjection().

Referenced by importFromPanorama(), importFromPCI(), importFromProj4(), and importFromUSGS().

12.83.3.73 OGRErr OGRSpatialReference::SetAngularUnits (const char ∗ pszUnitsName, double dfInRadians)

Set the angular units for the geographic coordinate system.

This method creates a UNIT subnode with the specified values as a child of the GEOGCS node.

This method does the same as the C function OSRSetAngularUnits() (p. ??).

Parameters

pszUnitsName the units name to be used. Some preferred units names can be found in ogr_srs_api.h
(p. ??) such as SRS_UA_DEGREE.

dfInRadians the value to multiple by an angle in the indicated units to transform to radians. Some standard
conversion factors can be found in ogr_srs_api.h (p. ??).

Returns

OGRERR_NONE on success.

References OGR_SRSNode::AddChild(), OGR_SRSNode::FindChild(), GetAttrNode(), OGR_SRSNode::Get←↩

Child(), OGR_SRSNode::GetChildCount(), and OGR_SRSNode::SetValue().

Referenced by CloneGeogCS(), Fixup(), and importFromPCI().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

368 Class Documentation

12.83.3.74 OGRErr OGRSpatialReference::SetAuthority (const char ∗ pszTargetKey, const char ∗ pszAuthority, int nCode)

Set the authority for a node.

This method is the same as the C function OSRSetAuthority() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 369

Parameters

pszTargetKey the partial or complete path to the node to set an authority on. ie. "PROJCS", "GEOGCS" or
"GEOGCS|UNIT".

pszAuthority authority name, such as "EPSG".
nCode code for value with this authority.

Returns

OGRERR_NONE on success.

References OGR_SRSNode::AddChild(), OGR_SRSNode::DestroyChild(), OGR_SRSNode::FindChild(), and
GetAttrNode().

Referenced by AutoIdentifyEPSG(), importFromEPSGA(), importFromPanorama(), importFromPCI(), importFrom←↩

USGS(), and importFromWMSAUTO().

12.83.3.75 OGRErr OGRSpatialReference::SetAxes (const char ∗ pszTargetKey, const char ∗ pszXAxisName,
OGRAxisOrientation eXAxisOrientation, const char ∗ pszYAxisName, OGRAxisOrientation eYAxisOrientation)

Set the axes for a coordinate system.

Set the names, and orientations of the axes for either a projected (PROJCS) or geographic (GEOGCS) coordinate
system.

This method is equivalent to the C function OSRSetAxes().

Parameters

pszTargetKey either "PROJCS" or "GEOGCS", must already exist in SRS.
pszXAxisName name of first axis, normally "Long" or "Easting".

eXAxis←↩

Orientation
normally OAO_East.

pszYAxisName name of second axis, normally "Lat" or "Northing".
eYAxis←↩

Orientation
normally OAO_North.

Returns

OGRERR_NONE on success or an error code.

References OGR_SRSNode::AddChild(), OGR_SRSNode::DestroyChild(), OGR_SRSNode::FindChild(), and O←↩

SRAxisEnumToName().

12.83.3.76 OGRErr OGRSpatialReference::SetBonne (double dfStdP1, double dfCentralMeridian, double dfFalseEasting,
double dfFalseNorthing)

Bonne

References SetNormProjParm(), and SetProjection().

Referenced by importFromProj4().

12.83.3.77 OGRErr OGRSpatialReference::SetCEA (double dfStdP1, double dfCentralMeridian, double dfFalseEasting, double
dfFalseNorthing)

Cylindrical Equal Area

References SetNormProjParm(), and SetProjection().

Referenced by importFromPanorama(), and importFromProj4().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

370 Class Documentation

12.83.3.78 OGRErr OGRSpatialReference::SetCompoundCS (const char ∗ pszName, const OGRSpatialReference ∗
poHorizSRS, const OGRSpatialReference ∗ poVertSRS)

Setup a compound coordinate system.

This method is the same as the C function OSRSetCompoundCS() (p. ??).

This method is replace the current SRS with a COMPD_CS coordinate system consisting of the passed in horizontal
and vertical coordinate systems.

Parameters

pszName the name of the compound coordinate system.
poHorizSRS the horizontal SRS (PROJCS or GEOGCS).
poVertSRS the vertical SRS (VERT_CS).

Returns

OGRERR_NONE on success.

References OGR_SRSNode::AddChild(), Clear(), OGR_SRSNode::Clone(), CPLError(), IsGeographic(), Is←↩

Projected(), and IsVertical().

12.83.3.79 OGRErr OGRSpatialReference::SetCS (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double
dfFalseNorthing)

Cassini-Soldner

References SetNormProjParm(), and SetProjection().

Referenced by importFromPCI(), and importFromProj4().

12.83.3.80 OGRErr OGRSpatialReference::SetEC (double dfStdP1, double dfStdP2, double dfCenterLat, double dfCenterLong,
double dfFalseEasting, double dfFalseNorthing)

Equidistant Conic

References SetNormProjParm(), and SetProjection().

Referenced by importFromESRI(), importFromPanorama(), importFromPCI(), importFromProj4(), and importFrom←↩

USGS().

12.83.3.81 OGRErr OGRSpatialReference::SetEckert (int nVariation, double dfCentralMeridian, double dfFalseEasting, double
dfFalseNorthing)

Eckert I-VI

References CPLError(), SetNormProjParm(), and SetProjection().

Referenced by importFromProj4().

12.83.3.82 OGRErr OGRSpatialReference::SetEquirectangular (double dfCenterLat, double dfCenterLong, double
dfFalseEasting, double dfFalseNorthing)

Equirectangular

References SetNormProjParm(), and SetProjection().

Referenced by importFromPanorama(), importFromProj4(), and importFromWMSAUTO().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 371

12.83.3.83 OGRErr OGRSpatialReference::SetEquirectangular2 (double dfCenterLat, double dfCenterLong, double
dfPseudoStdParallel1, double dfFalseEasting, double dfFalseNorthing)

Equirectangular generalized form :

References SetNormProjParm(), and SetProjection().

Referenced by importFromPCI(), importFromProj4(), and importFromUSGS().

12.83.3.84 OGRErr OGRSpatialReference::SetExtension (const char ∗ pszTargetKey, const char ∗ pszName, const char ∗
pszValue)

Set extension value.

Set the value of the named EXTENSION item for the identified target node.

Parameters

pszTargetKey the name or path to the parent node of the EXTENSION.
pszName the name of the extension being fetched.
pszValue the value to set

Returns

OGRERR_NONE on success

References OGR_SRSNode::AddChild(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), OGR←↩

_SRSNode::GetValue(), and OGR_SRSNode::SetValue().

Referenced by importFromProj4().

12.83.3.85 OGRErr OGRSpatialReference::SetFromUserInput (const char ∗ pszDefinition)

Set spatial reference from various text formats.

This method will examine the provided input, and try to deduce the format, and then use it to initialize the spatial
reference system. It may take the following forms:

1. Well Known Text definition - passed on to importFromWkt() (p. ??).

2. "EPSG:n" - number passed on to importFromEPSG() (p. ??).

3. "EPSGA:n" - number passed on to importFromEPSGA() (p. ??).

4. "AUTO:proj_id,unit_id,lon0,lat0" - WMS auto projections.

5. "urn:ogc:def:crs:EPSG::n" - ogc urns

6. PROJ.4 definitions - passed on to importFromProj4() (p. ??).

7. filename - file read for WKT, XML or PROJ.4 definition.

8. well known name accepted by SetWellKnownGeogCS() (p. ??), such as NAD27, NAD83, WGS84 or WG←↩

S72.

9. WKT (directly or in a file) in ESRI format should be prefixed with ESRI:: to trigger an automatic morph←↩

FromESRI() (p. ??).

10. "IGNF:xxx" - "+init=IGNF:xxx" passed on to importFromProj4() (p. ??).

It is expected that this method will be extended in the future to support XML and perhaps a simplified "minilanguage"
for indicating common UTM and State Plane definitions.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

372 Class Documentation

This method is intended to be flexible, but by it's nature it is imprecise as it must guess information about the format
intended. When possible applications should call the specific method appropriate if the input is known to be in a
particular format.

This method does the same thing as the OSRSetFromUserInput() (p. ??) function.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 373

Parameters

pszDefinition text definition to try to deduce SRS from.

Returns

OGRERR_NONE on success, or an error code if the name isn't recognised, the definition is corrupt, or an
EPSG value can't be successfully looked up.

References OGR_SRSNode::AddChild(), Clear(), OGR_SRSNode::Clone(), CPLDebug(), CPLMalloc(), CP←↩

LStrdup(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetValue(), importFromCRSURL(), importFromDict(),
importFromEPSG(), importFromEPSGA(), importFromProj4(), importFromUrl(), importFromURN(), importFrom←↩

Wkt(), importFromWMSAUTO(), importFromXML(), morphFromESRI(), SetNode(), and SetWellKnownGeogCS().

Referenced by importFromUrl().

12.83.3.86 OGRErr OGRSpatialReference::SetGaussSchreiberTMercator (double dfCenterLat, double dfCenterLong, double
dfScale, double dfFalseEasting, double dfFalseNorthing)

Gauss Schreiber Transverse Mercator

References SetNormProjParm(), and SetProjection().

Referenced by importFromProj4().

12.83.3.87 OGRErr OGRSpatialReference::SetGeocCS (const char ∗ pszName)

Set the user visible GEOCCS name.

This method is the same as the C function OSRSetGeocCS() (p. ??).

This method will ensure a GEOCCS node is created as the root, and set the provided name on it. If used on a
GEOGCS coordinate system, the DATUM and PRIMEM nodes from the GEOGCS will be tarnsferred over to the
GEOGCS.

Parameters

pszName the user visible name to assign. Not used as a key.

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

References OGR_SRSNode::Clone(), CPLDebug(), GetAttrNode(), OGR_SRSNode::GetNode(), OGR_SRS←↩

Node::GetValue(), OGR_SRSNode::InsertChild(), and SetNode().

Referenced by importFromProj4().

12.83.3.88 OGRErr OGRSpatialReference::SetGeogCS (const char ∗ pszGeogName, const char ∗ pszDatumName, const char
∗ pszSpheroidName, double dfSemiMajor, double dfInvFlattening, const char ∗ pszPMName = NULL, double
dfPMOffset = 0.0, const char ∗ pszAngularUnits = NULL, double dfConvertToRadians = 0.0)

Set geographic coordinate system.

This method is used to set the datum, ellipsoid, prime meridian and angular units for a geographic coordinate
system. It can be used on it's own to establish a geographic spatial reference, or applied to a projected coordinate
system to establish the underlying geographic coordinate system.

This method does the same as the C function OSRSetGeogCS() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

374 Class Documentation

Parameters

pszGeogName user visible name for the geographic coordinate system (not to serve as a key).
pszDatumName key name for this datum. The OpenGIS specification lists some known values, and otherwise

EPSG datum names with a standard transformation are considered legal keys.
pszSpheroid←↩

Name
user visible spheroid name (not to serve as a key)

dfSemiMajor the semi major axis of the spheroid.
dfInvFlattening the inverse flattening for the spheroid. This can be computed from the semi minor axis as 1/f

= 1.0 / (1.0 - semiminor/semimajor).
pszPMName the name of the prime merdidian (not to serve as a key) If this is NULL a default value of

"Greenwich" will be used.
dfPMOffset the longitude of greenwich relative to this prime meridian.

pszAngularUnits the angular units name (see ogr_srs_api.h (p. ??) for some standard names). If NULL a
value of "degrees" will be assumed.

dfConvertTo←↩

Radians
value to multiply angular units by to transform them to radians. A value of SRS_UL_DEGR←↩

EE_CONV will be used if pszAngularUnits is NULL.

Returns

OGRERR_NONE on success.

References OGR_SRSNode::AddChild(), Clear(), CopyGeogCSFrom(), CPLAtof(), OGR_SRSNode::Destroy←↩

Child(), OGR_SRSNode::FindChild(), GetAttrNode(), OGR_SRSNode::InsertChild(), IsGeocentric(), SetGeogCS(),
and SetRoot().

Referenced by importFromOzi(), importFromPanorama(), importFromPCI(), importFromProj4(), importFromUSG←↩

S(), and SetGeogCS().

12.83.3.89 OGRErr OGRSpatialReference::SetGEOS (double dfCentralMeridian, double dfSatelliteHeight, double
dfFalseEasting, double dfFalseNorthing)

Geostationary Satellite

References SetNormProjParm(), and SetProjection().

Referenced by importFromProj4().

12.83.3.90 OGRErr OGRSpatialReference::SetGH (double dfCentralMeridian, double dfFalseEasting, double dfFalseNorthing)

Goode Homolosine

References SetNormProjParm(), and SetProjection().

Referenced by importFromProj4().

12.83.3.91 OGRErr OGRSpatialReference::SetGnomonic (double dfCenterLat, double dfCenterLong, double dfFalseEasting,
double dfFalseNorthing)

Gnomonic

References SetNormProjParm(), and SetProjection().

Referenced by importFromPanorama(), importFromPCI(), importFromProj4(), and importFromUSGS().

12.83.3.92 OGRErr OGRSpatialReference::SetGS (double dfCentralMeridian, double dfFalseEasting, double dfFalseNorthing)

Gall Stereograpic

References SetNormProjParm(), and SetProjection().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 375

Referenced by importFromProj4().

12.83.3.93 OGRErr OGRSpatialReference::SetHOM (double dfCenterLat, double dfCenterLong, double dfAzimuth, double
dfRectToSkew, double dfScale, double dfFalseEasting, double dfFalseNorthing)

Set a Hotine Oblique Mercator projection using azimuth angle.

Hotine Oblique Mercator

This projection corresponds to EPSG projection method 9812, also sometimes known as hotine oblique mercator
(variant A)..

This method does the same thing as the C function OSRSetHOM() (p. ??).

Parameters

dfCenterLat Latitude of the projection origin.
dfCenterLong Longitude of the projection origin.

dfAzimuth Azimuth, measured clockwise from North, of the projection centerline.
dfRectToSkew ?.

dfScale Scale factor applies to the projection origin.
dfFalseEasting False easting.

dfFalseNorthing False northing.

Returns

OGRERR_NONE on success.

References SetNormProjParm(), and SetProjection().

Referenced by importFromPCI(), importFromProj4(), and importFromUSGS().

12.83.3.94 OGRErr OGRSpatialReference::SetHOM2PNO (double dfCenterLat, double dfLat1, double dfLong1, double dfLat2,
double dfLong2, double dfScale, double dfFalseEasting, double dfFalseNorthing)

Set a Hotine Oblique Mercator projection using two points on projection centerline.

This method does the same thing as the C function OSRSetHOM2PNO() (p. ??).

Parameters

dfCenterLat Latitude of the projection origin.
dfLat1 Latitude of the first point on center line.

dfLong1 Longitude of the first point on center line.
dfLat2 Latitude of the second point on center line.

dfLong2 Longitude of the second point on center line.
dfScale Scale factor applies to the projection origin.

dfFalseEasting False easting.
dfFalseNorthing False northing.

Returns

OGRERR_NONE on success.

References SetNormProjParm(), and SetProjection().

Referenced by importFromPCI(), and importFromUSGS().

12.83.3.95 OGRErr OGRSpatialReference::SetHOMAC (double dfCenterLat, double dfCenterLong, double dfAzimuth, double
dfRectToSkew, double dfScale, double dfFalseEasting, double dfFalseNorthing)

Set an Hotine Oblique Mercator Azimuth Center projection using azimuth angle.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

376 Class Documentation

Hotine Oblique Mercator Azimuth Center / Variant B

This projection corresponds to EPSG projection method 9815, also sometimes known as hotine oblique mercator
(variant B).

This method does the same thing as the C function OSRSetHOMAC().

Parameters

dfCenterLat Latitude of the projection origin.
dfCenterLong Longitude of the projection origin.

dfAzimuth Azimuth, measured clockwise from North, of the projection centerline.
dfRectToSkew ?.

dfScale Scale factor applies to the projection origin.
dfFalseEasting False easting.

dfFalseNorthing False northing.

Returns

OGRERR_NONE on success.

References SetNormProjParm(), and SetProjection().

Referenced by importFromProj4().

12.83.3.96 OGRErr OGRSpatialReference::SetIGH ()

Interrupted Goode Homolosine

References SetProjection().

Referenced by importFromProj4().

12.83.3.97 OGRErr OGRSpatialReference::SetIWMPolyconic (double dfLat1, double dfLat2, double dfCenterLong, double
dfFalseEasting, double dfFalseNorthing)

International Map of the World Polyconic

References SetNormProjParm(), and SetProjection().

Referenced by importFromPanorama(), and importFromProj4().

12.83.3.98 OGRErr OGRSpatialReference::SetKrovak (double dfCenterLat, double dfCenterLong, double dfAzimuth, double
dfPseudoStdParallelLat, double dfScale, double dfFalseEasting, double dfFalseNorthing)

Krovak Oblique Conic Conformal

References SetNormProjParm(), and SetProjection().

Referenced by importFromProj4().

12.83.3.99 OGRErr OGRSpatialReference::SetLAEA (double dfCenterLat, double dfCenterLong, double dfFalseEasting,
double dfFalseNorthing)

Lambert Azimuthal Equal-Area

References SetNormProjParm(), and SetProjection().

Referenced by importFromESRI(), importFromPanorama(), importFromPCI(), importFromProj4(), and importFrom←↩

USGS().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 377

12.83.3.100 OGRErr OGRSpatialReference::SetLCC (double dfStdP1, double dfStdP2, double dfCenterLat, double
dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

Lambert Conformal Conic

References SetNormProjParm(), and SetProjection().

Referenced by importFromESRI(), importFromOzi(), importFromPanorama(), importFromPCI(), importFromProj4(),
and importFromUSGS().

12.83.3.101 OGRErr OGRSpatialReference::SetLCC1SP (double dfCenterLat, double dfCenterLong, double dfScale, double
dfFalseEasting, double dfFalseNorthing)

Lambert Conformal Conic 1SP

References SetNormProjParm(), and SetProjection().

Referenced by importFromOzi(), importFromPCI(), and importFromProj4().

12.83.3.102 OGRErr OGRSpatialReference::SetLCCB (double dfStdP1, double dfStdP2, double dfCenterLat, double
dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

Lambert Conformal Conic (Belgium)

References SetNormProjParm(), and SetProjection().

12.83.3.103 OGRErr OGRSpatialReference::SetLinearUnits (const char ∗ pszUnitsName, double dfInMeters)

Set the linear units for the projection.

This method creates a UNIT subnode with the specified values as a child of the PROJCS, GEOCCS or LOCAL_CS
node.

This method does the same as the C function OSRSetLinearUnits() (p. ??).

Parameters

pszUnitsName the units name to be used. Some preferred units names can be found in ogr_srs_api.h
(p. ??) such as SRS_UL_METER, SRS_UL_FOOT and SRS_UL_US_FOOT.

dfInMeters the value to multiple by a length in the indicated units to transform to meters. Some standard
conversion factors can be found in ogr_srs_api.h (p. ??).

Returns

OGRERR_NONE on success.

References SetTargetLinearUnits().

Referenced by Fixup(), importFromERM(), importFromOzi(), importFromPanorama(), importFromPCI(), import←↩

FromProj4(), importFromUSGS(), importFromWMSAUTO(), SetLinearUnitsAndUpdateParameters(), SetState←↩

Plane(), and SetUTM().

12.83.3.104 OGRErr OGRSpatialReference::SetLinearUnitsAndUpdateParameters (const char ∗ pszName, double dfInMeters)

Set the linear units for the projection.

This method creates a UNIT subnode with the specified values as a child of the PROJCS or LOCAL_CS node. It
works the same as the SetLinearUnits() (p. ??) method, but it also updates all existing linear projection parameter
values from the old units to the new units.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

378 Class Documentation

Parameters

pszName the units name to be used. Some preferred units names can be found in ogr_srs_api.h
(p. ??) such as SRS_UL_METER, SRS_UL_FOOT and SRS_UL_US_FOOT.

dfInMeters the value to multiple by a length in the indicated units to transform to meters. Some standard
conversion factors can be found in ogr_srs_api.h (p. ??).

Returns

OGRERR_NONE on success.

References CPLStrdup(), GetAttrNode(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), Get←↩

LinearUnits(), GetProjParm(), OGR_SRSNode::GetValue(), SetLinearUnits(), and SetProjParm().

Referenced by importFromESRI(), and importFromPCI().

12.83.3.105 OGRErr OGRSpatialReference::SetLocalCS (const char ∗ pszName)

Set the user visible LOCAL_CS name.

This method is the same as the C function OSRSetLocalCS() (p. ??).

This method will ensure a LOCAL_CS node is created as the root, and set the provided name on it. It must be used
before SetLinearUnits() (p. ??).

Parameters

pszName the user visible name to assign. Not used as a key.

Returns

OGRERR_NONE on success.

References CPLDebug(), GetAttrNode(), and SetNode().

Referenced by importFromESRI(), importFromOzi(), importFromPanorama(), importFromPCI(), importFromUSG←↩

S(), and SetStatePlane().

12.83.3.106 OGRErr OGRSpatialReference::SetMC (double dfCenterLat, double dfCenterLong, double dfFalseEasting, double
dfFalseNorthing)

Miller Cylindrical

References SetNormProjParm(), and SetProjection().

Referenced by importFromPanorama(), importFromPCI(), importFromProj4(), and importFromUSGS().

12.83.3.107 OGRErr OGRSpatialReference::SetMercator (double dfCenterLat, double dfCenterLong, double dfScale, double
dfFalseEasting, double dfFalseNorthing)

Mercator

References SetNormProjParm(), and SetProjection().

Referenced by importFromESRI(), importFromOzi(), importFromPanorama(), importFromPCI(), importFromProj4(),
and importFromUSGS().

12.83.3.108 OGRErr OGRSpatialReference::SetMollweide (double dfCentralMeridian, double dfFalseEasting, double
dfFalseNorthing)

Mollweide

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 379

References SetNormProjParm(), and SetProjection().

Referenced by importFromPanorama(), importFromProj4(), importFromUSGS(), and importFromWMSAUTO().

12.83.3.109 OGRErr OGRSpatialReference::SetNode (const char ∗ pszNodePath, const char ∗ pszNewNodeValue)

Set attribute value in spatial reference.

Missing intermediate nodes in the path will be created if not already in existance. If the attribute has no children one
will be created and assigned the value otherwise the zeroth child will be assigned the value.

This method does the same as the C function OSRSetAttrValue() (p. ??).

Parameters

pszNodePath full path to attribute to be set. For instance "PROJCS|GEOGCS|UNIT".
pszNewNode←↩

Value
value to be assigned to node, such as "meter". This may be NULL if you just want to force
creation of the intermediate path.

Returns

OGRERR_NONE on success.

References OGR_SRSNode::AddChild(), CSLCount(), CSLDestroy(), OGR_SRSNode::GetChild(), OGR_SRS←↩

Node::GetChildCount(), OGR_SRSNode::GetValue(), SetRoot(), and OGR_SRSNode::SetValue().

Referenced by importFromCRSURL(), importFromProj4(), importFromURN(), morphFromESRI(), morphToESRI(),
SetFromUserInput(), SetGeocCS(), SetLocalCS(), SetProjCS(), SetProjection(), and SetUTM().

12.83.3.110 OGRErr OGRSpatialReference::SetNormProjParm (const char ∗ pszName, double dfValue)

Set a projection parameter with a normalized value.

This method is the same as SetProjParm() (p. ??) except that the value of the parameter passed in is assumed to
be in "normalized" form (decimal degrees for angular values, meters for linear values. The values are converted in
a form suitable for the GEOGCS and linear units in effect.

This method is the same as the C function OSRSetNormProjParm() (p. ??).

Parameters

pszName the parameter name, which should be selected from the macros in ogr_srs_api.h (p. ??),
such as SRS_PP_CENTRAL_MERIDIAN.

dfValue value to assign.

Returns

OGRERR_NONE on success.

References SetProjParm().

Referenced by importFromProj4(), SetACEA(), SetAE(), SetBonne(), SetCEA(), SetCS(), SetEC(), Set←↩

Eckert(), SetEquirectangular(), SetEquirectangular2(), SetGaussSchreiberTMercator(), SetGEOS(), SetGH(),
SetGnomonic(), SetGS(), SetHOM(), SetHOM2PNO(), SetHOMAC(), SetIWMPolyconic(), SetKrovak(), SetLAEA(),
SetLCC(), SetLCC1SP(), SetLCCB(), SetMC(), SetMercator(), SetMollweide(), SetNZMG(), SetOrthographic(),
SetOS(), SetPolyconic(), SetPS(), SetRobinson(), SetSinusoidal(), SetSOC(), SetStatePlane(), SetStereographic(),
SetTM(), SetTMG(), SetTMSO(), SetTMVariant(), SetTPED(), SetUTM(), SetVDG(), and SetWagner().

12.83.3.111 OGRErr OGRSpatialReference::SetNZMG (double dfCenterLat, double dfCenterLong, double dfFalseEasting,
double dfFalseNorthing)

New Zealand Map Grid

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

380 Class Documentation

References SetNormProjParm(), and SetProjection().

Referenced by importFromProj4().

12.83.3.112 OGRErr OGRSpatialReference::SetOrthographic (double dfCenterLat, double dfCenterLong, double
dfFalseEasting, double dfFalseNorthing)

Orthographic

References SetNormProjParm(), and SetProjection().

Referenced by importFromPCI(), importFromProj4(), importFromUSGS(), and importFromWMSAUTO().

12.83.3.113 OGRErr OGRSpatialReference::SetOS (double dfOriginLat, double dfCMeridian, double dfScale, double
dfFalseEasting, double dfFalseNorthing)

Oblique Stereographic

References SetNormProjParm(), and SetProjection().

Referenced by importFromPCI(), and importFromProj4().

12.83.3.114 OGRErr OGRSpatialReference::SetPolyconic (double dfCenterLat, double dfCenterLong, double dfFalseEasting,
double dfFalseNorthing)

Polyconic

References SetNormProjParm(), and SetProjection().

Referenced by importFromESRI(), importFromPanorama(), importFromPCI(), importFromProj4(), and importFrom←↩

USGS().

12.83.3.115 OGRErr OGRSpatialReference::SetProjCS (const char ∗ pszName)

Set the user visible PROJCS name.

This method is the same as the C function OSRSetProjCS() (p. ??).

This method will ensure a PROJCS node is created as the root, and set the provided name on it. If used on a
GEOGCS coordinate system, the GEOGCS node will be demoted to be a child of the new PROJCS root.

Parameters

pszName the user visible name to assign. Not used as a key.

Returns

OGRERR_NONE on success.

References CPLDebug(), GetAttrNode(), OGR_SRSNode::GetValue(), OGR_SRSNode::InsertChild(), and Set←↩

Node().

12.83.3.116 OGRErr OGRSpatialReference::SetProjection (const char ∗ pszProjection)

Set a projection name.

This method is the same as the C function OSRSetProjection() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 381

Parameters

pszProjection the projection name, which should be selected from the macros in ogr_srs_api.h (p. ??),
such as SRS_PT_TRANSVERSE_MERCATOR.

Returns

OGRERR_NONE on success.

References GetAttrNode(), OGR_SRSNode::GetValue(), OGR_SRSNode::InsertChild(), and SetNode().

Referenced by importFromProj4(), SetACEA(), SetAE(), SetBonne(), SetCEA(), SetCS(), SetEC(), Set←↩

Eckert(), SetEquirectangular(), SetEquirectangular2(), SetGaussSchreiberTMercator(), SetGEOS(), SetGH(),
SetGnomonic(), SetGS(), SetHOM(), SetHOM2PNO(), SetHOMAC(), SetIGH(), SetIWMPolyconic(), SetKrovak(),
SetLAEA(), SetLCC(), SetLCC1SP(), SetLCCB(), SetMC(), SetMercator(), SetMollweide(), SetNZMG(), Set←↩

Orthographic(), SetOS(), SetPolyconic(), SetPS(), SetRobinson(), SetSinusoidal(), SetSOC(), SetStereographic(),
SetTM(), SetTMG(), SetTMSO(), SetTMVariant(), SetTPED(), SetUTM(), SetVDG(), and SetWagner().

12.83.3.117 OGRErr OGRSpatialReference::SetProjParm (const char ∗ pszParmName, double dfValue)

Set a projection parameter value.

Adds a new PARAMETER under the PROJCS with the indicated name and value.

This method is the same as the C function OSRSetProjParm() (p. ??).

Please check http://www.remotesensing.org/geotiff/proj_list pages for legal parameter
names for specific projections.

Parameters

pszParmName the parameter name, which should be selected from the macros in ogr_srs_api.h (p. ??),
such as SRS_PP_CENTRAL_MERIDIAN.

dfValue value to assign.

Returns

OGRERR_NONE on success.

References OGR_SRSNode::AddChild(), GetAttrNode(), OGR_SRSNode::GetChild(), OGR_SRSNode::Get←↩

ChildCount(), OGR_SRSNode::GetValue(), and OGR_SRSNode::SetValue().

Referenced by morphFromESRI(), SetLinearUnitsAndUpdateParameters(), and SetNormProjParm().

12.83.3.118 OGRErr OGRSpatialReference::SetPS (double dfCenterLat, double dfCenterLong, double dfScale, double
dfFalseEasting, double dfFalseNorthing)

Polar Stereographic

References SetNormProjParm(), and SetProjection().

Referenced by importFromESRI(), importFromPanorama(), importFromPCI(), importFromProj4(), and importFrom←↩

USGS().

12.83.3.119 OGRErr OGRSpatialReference::SetRobinson (double dfCenterLong, double dfFalseEasting, double
dfFalseNorthing)

Robinson

References SetNormProjParm(), and SetProjection().

Referenced by importFromPCI(), importFromProj4(), and importFromUSGS().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

382 Class Documentation

12.83.3.120 void OGRSpatialReference::SetRoot (OGR_SRSNode ∗ poNewRoot)

Set the root SRS node.

If the object has an existing tree of OGR_SRSNodes, they are destroyed as part of assigning the new root. Owner-
ship of the passed OGR_SRSNode (p. ??) is is assumed by the OGRSpatialReference (p. ??).

Parameters

poNewRoot object to assign as root.

Referenced by CloneGeogCS(), CopyGeogCSFrom(), SetGeogCS(), SetNode(), SetVertCS(), and StripVertical().

12.83.3.121 OGRErr OGRSpatialReference::SetSinusoidal (double dfCenterLong, double dfFalseEasting, double
dfFalseNorthing)

Sinusoidal

References SetNormProjParm(), and SetProjection().

Referenced by importFromOzi(), importFromPCI(), importFromProj4(), and importFromUSGS().

12.83.3.122 OGRErr OGRSpatialReference::SetSOC (double dfLatitudeOfOrigin, double dfCentralMeridian, double
dfFalseEasting, double dfFalseNorthing)

Swiss Oblique Cylindrical

References SetNormProjParm(), and SetProjection().

12.83.3.123 OGRErr OGRSpatialReference::SetStatePlane (int nZone, int bNAD83 = TRUE, const char ∗ pszOverrideUnitName
= NULL, double dfOverrideUnit = 0.0)

Set State Plane projection definition.

State Plane

This will attempt to generate a complete definition of a state plane zone based on generating the entire SRS from
the EPSG tables. If the EPSG tables are unavailable, it will produce a stubbed LOCAL_CS definition and return
OGRERR_FAILURE.

This method is the same as the C function OSRSetStatePlaneWithUnits() (p. ??).

Parameters

nZone State plane zone number, in the USGS numbering scheme (as dinstinct from the Arc/Info and
Erdas numbering scheme.

bNAD83 TRUE if the NAD83 zone definition should be used or FALSE if the NAD27 zone definition
should be used.

pszOverride←↩

UnitName
Linear unit name to apply overriding the legal definition for this zone.

dfOverrideUnit Linear unit conversion factor to apply overriding the legal definition for this zone.

Returns

OGRERR_NONE on success, or OGRERR_FAILURE on failure, mostly likely due to the EPSG tables not
being accessable.

References Clear(), CPLAtof(), CPLError(), OGR_SRSNode::DestroyChild(), OGR_SRSNode::FindChild(), Get←↩

AttrNode(), GetLinearUnits(), GetNormProjParm(), importFromEPSG(), SetLinearUnits(), SetLocalCS(), and Set←↩

NormProjParm().

Referenced by importFromESRI(), importFromPCI(), and importFromUSGS().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 383

12.83.3.124 OGRErr OGRSpatialReference::SetStereographic (double dfCenterLat, double dfCenterLong, double dfScale,
double dfFalseEasting, double dfFalseNorthing)

Stereographic

References SetNormProjParm(), and SetProjection().

Referenced by importFromPanorama(), importFromPCI(), importFromProj4(), and importFromUSGS().

12.83.3.125 OGRErr OGRSpatialReference::SetTargetLinearUnits (const char ∗ pszTargetKey, const char ∗ pszUnitsName,
double dfInMeters)

Set the linear units for the projection.

This method creates a UNIT subnode with the specified values as a child of the target node.

This method does the same as the C function OSRSetTargetLinearUnits() (p. ??).

Parameters

pszTargetKey the keyword to set the linear units for. ie. "PROJCS" or "VERT_CS"
pszUnitsName the units name to be used. Some preferred units names can be found in ogr_srs_api.h

(p. ??) such as SRS_UL_METER, SRS_UL_FOOT and SRS_UL_US_FOOT.
dfInMeters the value to multiple by a length in the indicated units to transform to meters. Some standard

conversion factors can be found in ogr_srs_api.h (p. ??).

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

References OGR_SRSNode::AddChild(), OGR_SRSNode::DestroyChild(), OGR_SRSNode::FindChild(), GetAttr←↩

Node(), OGR_SRSNode::GetChild(), OGR_SRSNode::GetChildCount(), IsVertical(), and OGR_SRSNode::Set←↩

Value().

Referenced by SetLinearUnits().

12.83.3.126 OGRErr OGRSpatialReference::SetTM (double dfCenterLat, double dfCenterLong, double dfScale, double
dfFalseEasting, double dfFalseNorthing)

Transverse Mercator

References SetNormProjParm(), and SetProjection().

Referenced by importFromESRI(), importFromOzi(), importFromPanorama(), importFromPCI(), importFromProj4(),
importFromUSGS(), and importFromWMSAUTO().

12.83.3.127 OGRErr OGRSpatialReference::SetTMG (double dfCenterLat, double dfCenterLong, double dfFalseEasting,
double dfFalseNorthing)

Tunesia Mining Grid

References SetNormProjParm(), and SetProjection().

12.83.3.128 OGRErr OGRSpatialReference::SetTMSO (double dfCenterLat, double dfCenterLong, double dfScale, double
dfFalseEasting, double dfFalseNorthing)

Transverse Mercator (South Oriented)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

384 Class Documentation

References SetNormProjParm(), and SetProjection().

Referenced by importFromProj4().

12.83.3.129 OGRErr OGRSpatialReference::SetTMVariant (const char ∗ pszVariantName, double dfCenterLat, double
dfCenterLong, double dfScale, double dfFalseEasting, double dfFalseNorthing)

Transverse Mercator variants.

References SetNormProjParm(), and SetProjection().

12.83.3.130 OGRErr OGRSpatialReference::SetTOWGS84 (double dfDX, double dfDY, double dfDZ, double dfEX = 0.0,
double dfEY = 0.0, double dfEZ = 0.0, double dfPPM = 0.0)

Set the Bursa-Wolf conversion to WGS84.

This will create the TOWGS84 node as a child of the DATUM. It will fail if there is no existing DATUM node. Unlike
most OGRSpatialReference (p. ??) methods it will insert itself in the appropriate order, and will replace an existing
TOWGS84 node if there is one.

The parameters have the same meaning as EPSG transformation 9606 (Position Vector 7-param. transformation).

This method is the same as the C function OSRSetTOWGS84() (p. ??).

Parameters

dfDX X child in meters.
dfDY Y child in meters.
dfDZ Z child in meters.
dfEX X rotation in arc seconds (optional, defaults to zero).
dfEY Y rotation in arc seconds (optional, defaults to zero).
dfEZ Z rotation in arc seconds (optional, defaults to zero).

dfPPM scaling factor (parts per million).

Returns

OGRERR_NONE on success.

References OGR_SRSNode::AddChild(), OGR_SRSNode::DestroyChild(), OGR_SRSNode::FindChild(), GetAttr←↩

Node(), OGR_SRSNode::GetChildCount(), and OGR_SRSNode::InsertChild().

Referenced by importFromOzi(), importFromPCI(), and importFromProj4().

12.83.3.131 OGRErr OGRSpatialReference::SetTPED (double dfLat1, double dfLong1, double dfLat2, double dfLong2, double
dfFalseEasting, double dfFalseNorthing)

Two Point Equidistant

References SetNormProjParm(), and SetProjection().

Referenced by importFromProj4().

12.83.3.132 OGRErr OGRSpatialReference::SetUTM (int nZone, int bNorth = TRUE)

Set UTM projection definition.

Universal Transverse Mercator

This will generate a projection definition with the full set of transverse mercator projection parameters for the given
UTM zone. If no PROJCS[] description is set yet, one will be set to look like "UTM Zone %d, {Northern, Southern}
Hemisphere".

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 385

This method is the same as the C function OSRSetUTM() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

386 Class Documentation

Parameters

nZone UTM zone.
bNorth TRUE for northern hemisphere, or FALSE for southern hemisphere.

Returns

OGRERR_NONE on success.

References GetAttrValue(), SetLinearUnits(), SetNode(), SetNormProjParm(), and SetProjection().

Referenced by importFromESRI(), importFromOzi(), importFromPanorama(), importFromPCI(), importFromProj4(),
importFromUSGS(), and importFromWMSAUTO().

12.83.3.133 OGRErr OGRSpatialReference::SetVDG (double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

VanDerGrinten

References SetNormProjParm(), and SetProjection().

Referenced by importFromPCI(), importFromProj4(), and importFromUSGS().

12.83.3.134 OGRErr OGRSpatialReference::SetVertCS (const char ∗ pszVertCSName, const char ∗ pszVertDatumName, int
nVertDatumType = 2005)

Set the user visible VERT_CS name.

This method is the same as the C function OSRSetVertCS() (p. ??).

This method will ensure a VERT_CS node is created if needed. If the existing coordinate system is GEOGCS or
PROJCS rooted, then it will be turned into a COMPD_CS.

Parameters

pszVertCSName the user visible name of the vertical coordinate system. Not used as a key.
pszVertDatum←↩

Name
the user visible name of the vertical datum. It is helpful if this matches the EPSG name.

nVertDatumType the OGC vertical datum type, usually 2005.

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

References OGR_SRSNode::AddChild(), Clear(), GetAttrNode(), OGR_SRSNode::GetValue(), IsGeographic(),
IsProjected(), and SetRoot().

12.83.3.135 OGRErr OGRSpatialReference::SetWagner (int nVariation, double dfCenterLat, double dfFalseEasting, double
dfFalseNorthing)

Wagner I – VII

References CPLError(), SetNormProjParm(), and SetProjection().

Referenced by importFromPanorama(), importFromProj4(), and importFromUSGS().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.83 OGRSpatialReference Class Reference 387

12.83.3.136 OGRErr OGRSpatialReference::SetWellKnownGeogCS (const char ∗ pszName)

Set a GeogCS based on well known name.

This may be called on an empty OGRSpatialReference (p. ??) to make a geographic coordinate system, or on
something with an existing PROJCS node to set the underlying geographic coordinate system of a projected coor-
dinate system.

The following well known text values are currently supported:

• "WGS84": same as "EPSG:4326" but has no dependence on EPSG data files.

• "WGS72": same as "EPSG:4322" but has no dependence on EPSG data files.

• "NAD27": same as "EPSG:4267" but has no dependence on EPSG data files.

• "NAD83": same as "EPSG:4269" but has no dependence on EPSG data files.

• "EPSG:n": same as doing an ImportFromEPSG(n).

Parameters

pszName name of well known geographic coordinate system.

Returns

OGRERR_NONE on success, or OGRERR_FAILURE if the name isn't recognised, the target object is already
initialized, or an EPSG value can't be successfully looked up.

References CopyGeogCSFrom(), importFromEPSG(), importFromEPSGA(), importFromWkt(), and IsGeographic().

Referenced by importFromESRI(), importFromPanorama(), importFromProj4(), importFromUSGS(), importFrom←↩

WMSAUTO(), and SetFromUserInput().

12.83.3.137 OGRErr OGRSpatialReference::StripCTParms (OGR_SRSNode ∗ poCurrent = NULL)

Strip OGC CT Parameters.

This method will remove all components of the coordinate system that are specific to the OGC CT Specification.
That is it will attempt to strip it down to being compatible with the Simple Features 1.0 specification.

This method is the same as the C function OSRStripCTParms() (p. ??).

Parameters

poCurrent node to operate on. NULL to operate on whole tree.

Returns

OGRERR_NONE on success or an error code.

References OGR_SRSNode::GetValue(), OGR_SRSNode::StripNodes(), and StripVertical().

Referenced by morphFromESRI(), and morphToESRI().

12.83.3.138 OGRErr OGRSpatialReference::StripVertical ()

Convert a compound cs into a horizontal CS.

If this SRS is of type COMPD_CS[] then the vertical CS and the root COMPD_CS nodes are stripped resulting and
only the horizontal coordinate system portion remains (normally PROJCS, GEOGCS or LOCAL_CS).

If this is not a compound coordinate system then nothing is changed.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

388 Class Documentation

Since

OGR 1.8.0

References OGR_SRSNode::Clone(), OGR_SRSNode::GetChild(), and SetRoot().

Referenced by StripCTParms().

12.83.3.139 OGRErr OGRSpatialReference::Validate ()

Validate SRS tokens.

This method attempts to verify that the spatial reference system is well formed, and consists of known tokens. The
validation is not comprehensive.

This method is the same as the C function OSRValidate() (p. ??).

Returns

OGRERR_NONE if all is fine, OGRERR_CORRUPT_DATA if the SRS is not well formed, and OGRERR_←↩

UNSUPPORTED_SRS if the SRS is well formed, but contains non-standard PROJECTION[] values.

References CPLDebug(), CPLGetConfigOption(), CSLTestBoolean(), and exportToWkt().

The documentation for this class was generated from the following files:

• ogr_spatialref.h
• ogr_fromepsg.cpp
• ogr_srs_dict.cpp
• ogr_srs_erm.cpp
• ogr_srs_esri.cpp
• ogr_srs_ozi.cpp
• ogr_srs_panorama.cpp
• ogr_srs_pci.cpp
• ogr_srs_proj4.cpp
• ogr_srs_usgs.cpp
• ogr_srs_validate.cpp
• ogr_srs_xml.cpp
• ogrspatialreference.cpp

12.84 OGRStyleBrush Class Reference

#include <ogr_featurestyle.h>

Inheritance diagram for OGRStyleBrush:

OGRStyleBrush

OGRStyleTool

12.84.1 Detailed Description

This class represents a style brush

The documentation for this class was generated from the following files:

• ogr_featurestyle.h
• ogrfeaturestyle.cpp

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.85 OGRStyleLabel Class Reference 389

12.85 OGRStyleLabel Class Reference

#include <ogr_featurestyle.h>

Inheritance diagram for OGRStyleLabel:

OGRStyleLabel

OGRStyleTool

12.85.1 Detailed Description

This class represents a style label

The documentation for this class was generated from the following files:

• ogr_featurestyle.h
• ogrfeaturestyle.cpp

12.86 OGRStyleMgr Class Reference

#include <ogr_featurestyle.h>

Public Member Functions

• OGRStyleMgr (OGRStyleTable ∗poDataSetStyleTable=NULL)

Constructor.

• ∼OGRStyleMgr ()

Destructor.

• GBool SetFeatureStyleString (OGRFeature ∗, const char ∗pszStyleString=NULL, GBool bNoMatching=F←↩

ALSE)

Set a style in a feature.

• const char ∗ InitFromFeature (OGRFeature ∗)
Initialize style manager from the style string of a feature.

• GBool InitStyleString (const char ∗pszStyleString=NULL)

Initialize style manager from the style string.

• const char ∗ GetStyleName (const char ∗pszStyleString=NULL)

Get the name of a style from the style table.

• const char ∗ GetStyleByName (const char ∗pszStyleName)

find a style in the current style table.

• GBool AddStyle (const char ∗pszStyleName, const char ∗pszStyleString=NULL)

Add a style to the current style table.

• const char ∗ GetStyleString (OGRFeature ∗=NULL)

Get the style string from the style manager.

• GBool AddPart (OGRStyleTool ∗)
Add a part (style tool) to the current style.

• GBool AddPart (const char ∗)
Add a part (style string) to the current style.

• int GetPartCount (const char ∗pszStyleString=NULL)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

390 Class Documentation

Get the number of parts in a style.

• OGRStyleTool ∗ GetPart (int hPartId, const char ∗pszStyleString=NULL)

Fetch a part (style tool) from the current style.

12.86.1 Detailed Description

This class represents a style manager

12.86.2 Constructor & Destructor Documentation

12.86.2.1 OGRStyleMgr::OGRStyleMgr (OGRStyleTable ∗ poDataSetStyleTable = NULL)

Constructor.

This method is the same as the C function OGR_SM_Create() (p. ??)

Parameters

poDataSet←↩

StyleTable
(currently unused, reserved for future use), pointer to OGRStyleTable (p. ??). Pass NULL for
now.

12.86.2.2 OGRStyleMgr::∼OGRStyleMgr ()

Destructor.

This method is the same as the C function OGR_SM_Destroy() (p. ??)

12.86.3 Member Function Documentation

12.86.3.1 GBool OGRStyleMgr::AddPart (OGRStyleTool ∗ poStyleTool)

Add a part (style tool) to the current style.

This method is the same as the C function OGR_SM_AddPart() (p. ??).

Parameters

poStyleTool the style tool defining the part to add.

Returns

TRUE on success, FALSE on errors.

References CPLStrdup().

12.86.3.2 GBool OGRStyleMgr::AddPart (const char ∗ pszPart)

Add a part (style string) to the current style.

Parameters

pszPart the style string defining the part to add.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.86 OGRStyleMgr Class Reference 391

Returns

TRUE on success, FALSE on errors.

References CPLStrdup().

12.86.3.3 GBool OGRStyleMgr::AddStyle (const char ∗ pszStyleName, const char ∗ pszStyleString = NULL)

Add a style to the current style table.

This method is the same as the C function OGR_SM_AddStyle() (p. ??).

Parameters

pszStyleName the name of the style to add.
pszStyleString the style string to use, or NULL to use the style stored in the manager.

Returns

TRUE on success, FALSE on errors.

References OGRStyleTable::AddStyle().

12.86.3.4 OGRStyleTool ∗ OGRStyleMgr::GetPart (int nPartId, const char ∗ pszStyleString = NULL)

Fetch a part (style tool) from the current style.

This method is the same as the C function OGR_SM_GetPart() (p. ??).

This method instanciates a new object that should be freed with OGR_ST_Destroy() (p. ??).

Parameters

nPartId the part number (0-based index).
pszStyleString (optional) the style string on which to operate. If NULL then the current style string stored in

the style manager is used.

Returns

OGRStyleTool (p. ??) of the requested part (style tools) or NULL on error.

References CSLDestroy(), and CSLTokenizeString2().

12.86.3.5 int OGRStyleMgr::GetPartCount (const char ∗ pszStyleString = NULL)

Get the number of parts in a style.

This method is the same as the C function OGR_SM_GetPartCount() (p. ??).

Parameters

pszStyleString (optional) the style string on which to operate. If NULL then the current style string stored in
the style manager is used.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

392 Class Documentation

Returns

the number of parts (style tools) in the style.

12.86.3.6 const char ∗ OGRStyleMgr::GetStyleByName (const char ∗ pszStyleName)

find a style in the current style table.

Parameters

pszStyleName the name of the style to add.

Returns

the style string matching the name or NULL if not found or error.

References OGRStyleTable::Find().

Referenced by InitStyleString().

12.86.3.7 const char ∗ OGRStyleMgr::GetStyleName (const char ∗ pszStyleString = NULL)

Get the name of a style from the style table.

Parameters

pszStyleString the style to search for, or NULL to use the style currently stored in the manager.

Returns

The name if found, or NULL on error.

References OGRStyleTable::GetStyleName().

Referenced by SetFeatureStyleString().

12.86.3.8 const char ∗ OGRStyleMgr::GetStyleString (OGRFeature ∗ poFeature = NULL)

Get the style string from the style manager.

Parameters

poFeature feature object from which to read the style or NULL to get the style string stored in the man-
ager.

Returns

the style string stored in the feature or the style string stored in the style manager if poFeature is NULL

NOTE: this method will call OGRStyleMgr::InitFromFeature() (p. ??) if poFeature is not NULL and replace the
style string stored in the style manager

References InitFromFeature().

12.86.3.9 const char ∗ OGRStyleMgr::InitFromFeature (OGRFeature ∗ poFeature)

Initialize style manager from the style string of a feature.

This method is the same as the C function OGR_SM_InitFromFeature() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.87 OGRStylePen Class Reference 393

Parameters

poFeature feature object from which to read the style.

Returns

a reference to the style string read from the feature, or NULL in case of error..

References OGRFeature::GetStyleString(), and InitStyleString().

Referenced by GetStyleString().

12.86.3.10 GBool OGRStyleMgr::InitStyleString (const char ∗ pszStyleString = NULL)

Initialize style manager from the style string.

This method is the same as the C function OGR_SM_InitStyleString() (p. ??).

Parameters

pszStyleString the style string to use (can be NULL).

Returns

TRUE on success, FALSE on errors.

References CPLStrdup(), and GetStyleByName().

Referenced by InitFromFeature().

12.86.3.11 GBool OGRStyleMgr::SetFeatureStyleString (OGRFeature ∗ poFeature, const char ∗ pszStyleString = NULL,
GBool bNoMatching = FALSE)

Set a style in a feature.

Parameters

poFeature the feature object to store the style in
pszStyleString the style to store
bNoMatching TRUE to lookup the style in the style table and add the name to the feature

Returns

TRUE on success, FALSE on error.

References GetStyleName(), and OGRFeature::SetStyleString().

The documentation for this class was generated from the following files:

• ogr_featurestyle.h

• ogrfeaturestyle.cpp

12.87 OGRStylePen Class Reference

#include <ogr_featurestyle.h>

Inheritance diagram for OGRStylePen:

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

394 Class Documentation

OGRStylePen

OGRStyleTool

12.87.1 Detailed Description

This class represents a style pen

The documentation for this class was generated from the following files:

• ogr_featurestyle.h
• ogrfeaturestyle.cpp

12.88 OGRStyleSymbol Class Reference

#include <ogr_featurestyle.h>

Inheritance diagram for OGRStyleSymbol:

OGRStyleSymbol

OGRStyleTool

12.88.1 Detailed Description

This class represents a style symbol

The documentation for this class was generated from the following files:

• ogr_featurestyle.h
• ogrfeaturestyle.cpp

12.89 OGRStyleTable Class Reference

#include <ogr_featurestyle.h>

Public Member Functions

• GBool AddStyle (const char ∗pszName, const char ∗pszStyleString)

Add a new style in the table. No comparison will be done on the Style string, only on the name.

• GBool RemoveStyle (const char ∗pszName)

Remove a style in the table by its name.

• GBool ModifyStyle (const char ∗pszName, const char ∗pszStyleString)

Modify a style in the table by its name If the style does not exist, it will be added.

• GBool SaveStyleTable (const char ∗pszFilename)

Save a style table to a file.

• GBool LoadStyleTable (const char ∗pszFilename)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.89 OGRStyleTable Class Reference 395

Load a style table from a file.

• const char ∗ Find (const char ∗pszStyleString)

Get a style string by name.

• GBool IsExist (const char ∗pszName)

Get the index of a style in the table by its name.

• const char ∗ GetStyleName (const char ∗pszName)

Get style name by style string.

• void Print (FILE ∗fpOut)

Print a style table to a FILE pointer.

• void Clear ()

Clear a style table.

• OGRStyleTable ∗ Clone ()

Duplicate style table.

12.89.1 Detailed Description

This class represents a style table

12.89.2 Member Function Documentation

12.89.2.1 GBool OGRStyleTable::AddStyle (const char ∗ pszName, const char ∗ pszStyleString)

Add a new style in the table. No comparison will be done on the Style string, only on the name.

Parameters

pszName the name the style to add.
pszStyleString the style string to add.

Returns

TRUE on success, FALSE on error

References IsExist().

Referenced by OGRStyleMgr::AddStyle(), and ModifyStyle().

12.89.2.2 OGRStyleTable ∗ OGRStyleTable::Clone ()

Duplicate style table.

The newly created style table is owned by the caller, and will have it's own reference to the OGRStyleTable (p. ??).

Returns

new style table, exactly matching this style table.

References CSLDuplicate().

Referenced by OGRLayer::SetStyleTable(), and OGRDataSource::SetStyleTable().

12.89.2.3 const char ∗ OGRStyleTable::Find (const char ∗ pszName)

Get a style string by name.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

396 Class Documentation

Parameters

pszName the name of the style string to find.

Returns

the style string matching the name, NULL if not found or error.

References IsExist().

Referenced by OGRStyleMgr::GetStyleByName().

12.89.2.4 const char ∗ OGRStyleTable::GetStyleName (const char ∗ pszStyleString)

Get style name by style string.

Parameters

pszStyleString the style string to look up.

Returns

the Name of the matching style string or NULL on error.

References CSLCount().

Referenced by OGRStyleMgr::GetStyleName().

12.89.2.5 int OGRStyleTable::IsExist (const char ∗ pszName)

Get the index of a style in the table by its name.

Parameters

pszName the name to look for.

Returns

The index of the style if found, -1 if not found or error.

References CSLCount().

Referenced by AddStyle(), Find(), and RemoveStyle().

12.89.2.6 GBool OGRStyleTable::LoadStyleTable (const char ∗ pszFilename)

Load a style table from a file.

Parameters

pszFilename the name of the file to load from.

Returns

TRUE on success, FALSE on error

References CSLDestroy(), and CSLLoad().

12.89.2.7 GBool OGRStyleTable::ModifyStyle (const char ∗ pszName, const char ∗ pszStyleString)

Modify a style in the table by its name If the style does not exist, it will be added.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.90 OGRStyleTool Class Reference 397

Parameters

pszName the name of the style to modify.
pszStyleString the style string.

Returns

TRUE on success, FALSE on error

References AddStyle(), and RemoveStyle().

12.89.2.8 void OGRStyleTable::Print (FILE ∗ fpOut)

Print a style table to a FILE pointer.

Parameters

fpOut the FILE pointer to print to.

12.89.2.9 GBool OGRStyleTable::RemoveStyle (const char ∗ pszName)

Remove a style in the table by its name.

Parameters

pszName the name of the style to remove.

Returns

TRUE on success, FALSE on error

References IsExist().

Referenced by ModifyStyle().

12.89.2.10 GBool OGRStyleTable::SaveStyleTable (const char ∗ pszFilename)

Save a style table to a file.

Parameters

pszFilename the name of the file to save to.

Returns

TRUE on success, FALSE on error

The documentation for this class was generated from the following files:

• ogr_featurestyle.h
• ogrfeaturestyle.cpp

12.90 OGRStyleTool Class Reference

#include <ogr_featurestyle.h>

Inheritance diagram for OGRStyleTool:

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

398 Class Documentation

OGRStyleTool

OGRStyleBrush OGRStyleLabel OGRStylePen OGRStyleSymbol

12.90.1 Detailed Description

This class represents a style tool

The documentation for this class was generated from the following files:

• ogr_featurestyle.h
• ogrfeaturestyle.cpp

12.91 OGRSurface Class Reference

#include <ogr_geometry.h>

Inheritance diagram for OGRSurface:

OGRSurface

OGRGeometry

OGRPolygon

Public Member Functions

• virtual double get_Area () const =0

Get the area of the surface object.

• virtual OGRErr PointOnSurface (OGRPoint ∗poPoint) const =0

This method relates to the SFCOM ISurface::get_PointOnSurface() method.

12.91.1 Detailed Description

Abstract base class for 2 dimensional objects like polygons.

12.91.2 Member Function Documentation

12.91.2.1 double OGRSurface::get_Area () const [pure virtual]

Get the area of the surface object.

For polygons the area is computed as the area of the outer ring less the area of all internal rings.

This method relates to the SFCOM ISurface::get_Area() method.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.92 OGRUnionLayer Class Reference 399

Returns

the area of the feature in square units of the spatial reference system in use.

Implemented in OGRPolygon (p. ??).

12.91.2.2 OGRErr OGRSurface::PointOnSurface (OGRPoint ∗ poPoint) const [pure virtual]

This method relates to the SFCOM ISurface::get_PointOnSurface() method.

NOTE: Only implemented when GEOS included in build.

Parameters

poPoint point to be set with an internal point.

Returns

OGRERR_NONE if it succeeds or OGRERR_FAILURE otherwise.

Implemented in OGRPolygon (p. ??).

The documentation for this class was generated from the following files:

• ogr_geometry.h
• ogrsurface.cpp

12.92 OGRUnionLayer Class Reference

Inheritance diagram for OGRUnionLayer:

OGRUnionLayer

OGRLayer

Public Member Functions

• virtual const char ∗ GetName ()

Return the layer name.

• virtual OGRwkbGeometryType GetGeomType ()

Return the layer geometry type.

• virtual void ResetReading ()

Reset feature reading to start on the first feature.

• virtual OGRFeature ∗ GetNextFeature ()

Fetch the next available feature from this layer.

• virtual OGRFeature ∗ GetFeature (long nFeatureId)

Fetch a feature by its identifier.

• virtual OGRErr CreateFeature (OGRFeature ∗poFeature)

Create and write a new feature within a layer.

• virtual OGRErr SetFeature (OGRFeature ∗poFeature)

Rewrite an existing feature.

• virtual OGRFeatureDefn ∗ GetLayerDefn ()

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

400 Class Documentation

Fetch the schema information for this layer.

• virtual OGRSpatialReference ∗ GetSpatialRef ()

Fetch the spatial reference system for this layer.

• virtual int GetFeatureCount (int)

Fetch the feature count in this layer.

• virtual OGRErr SetAttributeFilter (const char ∗)
Set a new attribute query.

• virtual int TestCapability (const char ∗)
Test if this layer supported the named capability.

• virtual OGRErr GetExtent (int iGeomField, OGREnvelope ∗psExtent, int bForce=TRUE)

Fetch the extent of this layer, on the specified geometry field.

• virtual OGRErr GetExtent (OGREnvelope ∗psExtent, int bForce)

Fetch the extent of this layer.

• virtual void SetSpatialFilter (OGRGeometry ∗poGeomIn)

Set a new spatial filter.

• virtual void SetSpatialFilter (int iGeomField, OGRGeometry ∗)
Set a new spatial filter.

• virtual OGRErr SetIgnoredFields (const char ∗∗papszFields)

Set which fields can be omitted when retrieving features from the layer.

• virtual OGRErr SyncToDisk ()

Flush pending changes to disk.

12.92.1 Member Function Documentation

12.92.1.1 OGRErr OGRUnionLayer::CreateFeature (OGRFeature ∗ poFeature) [virtual]

Create and write a new feature within a layer.

The passed feature is written to the layer as a new feature, rather than overwriting an existing one. If the feature
has a feature id other than OGRNullFID, then the native implementation may use that as the feature id of the new
feature, but not necessarily. Upon successful return the passed feature will have been updated with the new feature
id.

This method is the same as the C function OGR_L_CreateFeature() (p. ??).

Parameters

poFeature the feature to write to disk.

Returns

OGRERR_NONE on success.

Reimplemented from OGRLayer (p. ??).

References CPLError(), OGRLayer::CreateFeature(), OGRFeature::GetFID(), OGRFeature::GetFieldAsString(),
GetLayerDefn(), GetName(), OGRFeature::IsFieldSet(), OGRFeature::SetFID(), and OGRFeature::SetFrom().

12.92.1.2 OGRErr OGRUnionLayer::GetExtent (int iGeomField, OGREnvelope ∗ psExtent, int bForce = TRUE)
[virtual]

Fetch the extent of this layer, on the specified geometry field.

Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and it would be expensive to establish the
extent then OGRERR_FAILURE will be returned indicating that the extent isn't know. If bForce is TRUE then some
implementations will actually scan the entire layer once to compute the MBR of all the features in the layer.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.92 OGRUnionLayer Class Reference 401

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is safer to call
GetExtent() (p. ??) without setting a spatial filter.

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents could be
collected.

Note that some implementations of this method may alter the read cursor of the layer.

Note to driver implementators: if you implement GetExtent(int,OGREnvelope∗,int) (p. ??), you must also imple-
ment GetExtent(OGREnvelope∗, int) (p. ??) to make it call GetExtent(0,OGREnvelope∗,int).

This method is the same as the C function OGR_L_GetExtentEx() (p. ??).

Parameters

iGeomField the index of the geometry field on which to compute the extent.
psExtent the structure in which the extent value will be returned.

bForce Flag indicating whether the extent should be computed even if it is expensive.

Returns

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

Reimplemented from OGRLayer (p. ??).

References CPLError(), OGRFeatureDefn::GetGeomFieldIndex(), OGRLayer::GetLayerDefn(), and GetLayer←↩

Defn().

Referenced by GetExtent().

12.92.1.3 OGRErr OGRUnionLayer::GetExtent (OGREnvelope ∗ psExtent, int bForce) [virtual]

Fetch the extent of this layer.

Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and it would be expensive to establish the
extent then OGRERR_FAILURE will be returned indicating that the extent isn't know. If bForce is TRUE then some
implementations will actually scan the entire layer once to compute the MBR of all the features in the layer.

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is safer to call
GetExtent() (p. ??) without setting a spatial filter.

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents could be
collected.

Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetExtent() (p. ??).

Parameters

psExtent the structure in which the extent value will be returned.
bForce Flag indicating whether the extent should be computed even if it is expensive.

Returns

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

Reimplemented from OGRLayer (p. ??).

References GetExtent().

12.92.1.4 OGRFeature ∗ OGRUnionLayer::GetFeature (long nFID) [virtual]

Fetch a feature by its identifier.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

402 Class Documentation

This function will attempt to read the identified feature. The nFID value cannot be OGRNullFID. Success or failure
of this operation is unaffected by the spatial or attribute filters (and specialized implementations in drivers should
make sure that they do not take into account spatial or attribute filters).

If this method returns a non-NULL feature, it is guaranteed that its feature id (OGRFeature::GetFID() (p. ??)) will
be the same as nFID.

Use OGRLayer::TestCapability(OLCRandomRead) to establish if this layer supports efficient random access reading
via GetFeature() (p. ??); however, the call should always work if the feature exists as a fallback implementation just
scans all the features in the layer looking for the desired feature.

Sequential reads (with GetNextFeature() (p. ??)) are generally considered interrupted by a GetFeature() (p. ??)
call.

The returned feature should be free with OGRFeature::DestroyFeature() (p. ??).

This method is the same as the C function OGR_L_GetFeature() (p. ??).

Parameters

nFID the feature id of the feature to read.

Returns

a feature now owned by the caller, or NULL on failure.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::GetFeature(), ResetReading(), and SetSpatialFilter().

12.92.1.5 int OGRUnionLayer::GetFeatureCount (int bForce) [virtual]

Fetch the feature count in this layer.

Returns the number of features in the layer. For dynamic databases the count may not be exact. If bForce is FALSE,
and it would be expensive to establish the feature count a value of -1 may be returned indicating that the count isn't
know. If bForce is TRUE some implementations will actually scan the entire layer once to count objects.

The returned count takes the spatial filter into account.

Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetFeatureCount() (p. ??).

Parameters

bForce Flag indicating whether the count should be computed even if it is expensive.

Returns

feature count, -1 if count not known.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::GetFeatureCount(), and ResetReading().

12.92.1.6 OGRwkbGeometryType OGRUnionLayer::GetGeomType () [virtual]

Return the layer geometry type.

This returns the same result as GetLayerDefn() (p. ??)->GetGeomType() (p. ??), but for a few drivers, calling
GetGeomType() (p. ??) directly can avoid lengthy layer definition initialization.

This method is the same as the C function OGR_L_GetGeomType() (p. ??).

If this method is derived in a driver, it must be done such that it returns the same content as GetLayerDefn()
(p. ??)->GetGeomType() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.92 OGRUnionLayer Class Reference 403

Returns

the geometry type

Since

OGR 1.8.0

Reimplemented from OGRLayer (p. ??).

References OGRLayer::GetGeomType(), OGRGeomFieldDefn::GetType(), and wkbNone.

12.92.1.7 OGRFeatureDefn ∗ OGRUnionLayer::GetLayerDefn () [virtual]

Fetch the schema information for this layer.

The returned OGRFeatureDefn (p. ??) is owned by the OGRLayer (p. ??), and should not be modified or freed by
the application. It encapsulates the attribute schema of the features of the layer.

This method is the same as the C function OGR_L_GetLayerDefn() (p. ??).

Returns

feature definition.

Implements OGRLayer (p. ??).

References OGRFeatureDefn::AddFieldDefn(), OGRFeatureDefn::AddGeomFieldDefn(), OGRFeatureDefn::←↩

DeleteFieldDefn(), OGRFeatureDefn::DeleteGeomFieldDefn(), OGRFeatureDefn::GetFieldCount(), OGRFeature←↩

Defn::GetFieldDefn(), OGRFeatureDefn::GetFieldIndex(), OGRFeatureDefn::GetGeomFieldCount(), OGR←↩

FeatureDefn::GetGeomFieldDefn(), OGRFeatureDefn::GetGeomFieldIndex(), OGRLayer::GetLayerDefn(), O←↩

GRFieldDefn::GetNameRef(), OGRGeomFieldDefn::GetNameRef(), GetSpatialRef(), OGRGeomFieldDefn::Get←↩

SpatialRef(), OGRGeomFieldDefn::GetType(), OFTString, OGRSpatialReference::Reference(), OGRFeature←↩

Defn::Reference(), OGRFeatureDefn::SetGeomType(), OGRGeomFieldDefn::SetSpatialRef(), OGRGeomField←↩

Defn::SetType(), and wkbNone.

Referenced by CreateFeature(), GetExtent(), GetNextFeature(), SetAttributeFilter(), SetFeature(), and SetSpatial←↩

Filter().

12.92.1.8 virtual const char∗ OGRUnionLayer::GetName () [inline], [virtual]

Return the layer name.

This returns the same content as GetLayerDefn() (p. ??)->GetName() (p. ??), but for a few drivers, calling Get←↩

Name() (p. ??) directly can avoid lengthy layer definition initialization.

This method is the same as the C function OGR_L_GetName() (p. ??).

If this method is derived in a driver, it must be done such that it returns the same content as GetLayerDefn()
(p. ??)->GetName() (p. ??).

Returns

the layer name (must not been freed)

Since

OGR 1.8.0

Reimplemented from OGRLayer (p. ??).

Referenced by CreateFeature(), and SetFeature().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

404 Class Documentation

12.92.1.9 OGRFeature ∗ OGRUnionLayer::GetNextFeature () [virtual]

Fetch the next available feature from this layer.

The returned feature becomes the responsiblity of the caller to delete with OGRFeature::DestroyFeature() (p. ??).
It is critical that all features associated with an OGRLayer (p. ??) (more specifically an OGRFeatureDefn (p. ??))
be deleted before that layer/datasource is deleted.

Only features matching the current spatial filter (set with SetSpatialFilter() (p. ??)) will be returned.

This method implements sequential access to the features of a layer. The ResetReading() (p. ??) method can be
used to start at the beginning again.

This method is the same as the C function OGR_L_GetNextFeature() (p. ??).

Returns

a feature, or NULL if no more features are available.

Implements OGRLayer (p. ??).

References OGRFeature::GetGeomFieldRef(), GetLayerDefn(), OGRLayer::GetNextFeature(), and Reset←↩

Reading().

12.92.1.10 OGRSpatialReference ∗ OGRUnionLayer::GetSpatialRef () [virtual]

Fetch the spatial reference system for this layer.

The returned object is owned by the OGRLayer (p. ??) and should not be modified or freed by the application.

Starting with OGR 1.11, several geometry fields can be associated to a feature definition. Each geometry field can
have its own spatial reference system, which is returned by OGRGeomFieldDefn::GetSpatialRef() (p. ??). OGR←↩

Layer::GetSpatialRef() (p. ??) is equivalent to GetLayerDefn() (p. ??)->GetGeomFieldDefn(0)->GetSpatialRef()
(p. ??)

This method is the same as the C function OGR_L_GetSpatialRef() (p. ??).

Returns

spatial reference, or NULL if there isn't one.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::GetSpatialRef(), OGRGeomFieldDefn::GetSpatialRef(), and OGRSpatialReference::←↩

Reference().

Referenced by GetLayerDefn().

12.92.1.11 void OGRUnionLayer::ResetReading () [virtual]

Reset feature reading to start on the first feature.

This affects GetNextFeature() (p. ??).

This method is the same as the C function OGR_L_ResetReading() (p. ??).

Implements OGRLayer (p. ??).

Referenced by GetFeature(), GetFeatureCount(), GetNextFeature(), and SetSpatialFilter().

12.92.1.12 OGRErr OGRUnionLayer::SetAttributeFilter (const char ∗ pszQuery) [virtual]

Set a new attribute query.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.92 OGRUnionLayer Class Reference 405

This method sets the attribute query string to be used when fetching features via the GetNextFeature() (p. ??)
method. Only features for which the query evaluates as true will be returned.

The query string should be in the format of an SQL WHERE clause. For instance "population > 1000000 and
population < 5000000" where population is an attribute in the layer. The query format is normally a restricted form
of SQL WHERE clause as described in the "WHERE" section of the OGR SQL tutorial. In some cases (RDBMS
backed drivers) the native capabilities of the database may be used to interprete the WHERE clause in which case
the capabilities will be broader than those of OGR SQL.

Note that installing a query string will generally result in resetting the current reading position (ala ResetReading()
(p. ??)).

This method is the same as the C function OGR_L_SetAttributeFilter() (p. ??).

Parameters

pszQuery query in restricted SQL WHERE format, or NULL to clear the current query.

Returns

OGRERR_NONE if successfully installed, or an error code if the query expression is in error, or some other
failure occurs.

Reimplemented from OGRLayer (p. ??).

References CPLStrdup(), GetLayerDefn(), and OGRLayer::SetAttributeFilter().

12.92.1.13 OGRErr OGRUnionLayer::SetFeature (OGRFeature ∗ poFeature) [virtual]

Rewrite an existing feature.

This method will write a feature to the layer, based on the feature id within the OGRFeature (p. ??).

Use OGRLayer::TestCapability(OLCRandomWrite) to establish if this layer supports random access writing via
SetFeature() (p. ??).

This method is the same as the C function OGR_L_SetFeature() (p. ??).

Parameters

poFeature the feature to write.

Returns

OGRERR_NONE if the operation works, otherwise an appropriate error code.

Reimplemented from OGRLayer (p. ??).

References CPLError(), OGRFeature::GetFID(), OGRFeature::GetFieldAsString(), GetLayerDefn(), GetName(),
OGRFeature::IsFieldSet(), OGRLayer::SetFeature(), OGRFeature::SetFID(), and OGRFeature::SetFrom().

12.92.1.14 OGRErr OGRUnionLayer::SetIgnoredFields (const char ∗∗ papszFields) [virtual]

Set which fields can be omitted when retrieving features from the layer.

If the driver supports this functionality (testable using OLCIgnoreFields capability), it will not fetch the specified fields
in subsequent calls to GetFeature() (p. ??) / GetNextFeature() (p. ??) and thus save some processing time and/or
bandwidth.

Besides field names of the layers, the following special fields can be passed: "OGR_GEOMETRY" to ignore geom-
etry and "OGR_STYLE" to ignore layer style.

By default, no fields are ignored.

This method is the same as the C function OGR_L_SetIgnoredFields() (p. ??)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

406 Class Documentation

Parameters

papszFields an array of field names terminated by NULL item. If NULL is passed, the ignored list is
cleared.

Returns

OGRERR_NONE if all field names have been resolved (even if the driver does not support this method)

Reimplemented from OGRLayer (p. ??).

References CSLDestroy(), CSLDuplicate(), and OGRLayer::SetIgnoredFields().

12.92.1.15 void OGRUnionLayer::SetSpatialFilter (OGRGeometry ∗ poFilter) [virtual]

Set a new spatial filter.

This method set the geometry to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the filter geometry will be returned.

Currently this test is may be inaccurately implemented, but it is guaranteed that all features who's envelope (as
returned by OGRGeometry::getEnvelope() (p. ??)) overlaps the envelope of the spatial filter will be returned. This
can result in more shapes being returned that should strictly be the case.

This method makes an internal copy of the passed geometry. The passed geometry remains the responsibility of
the caller, and may be safely destroyed.

For the time being the passed filter geometry should be in the same SRS as the layer (as returned by OGRLayer←↩

::GetSpatialRef() (p. ??)). In the future this may be generalized.

This method is the same as the C function OGR_L_SetSpatialFilter() (p. ??).

Parameters

poFilter the geometry to use as a filtering region. NULL may be passed indicating that the current
spatial filter should be cleared, but no new one instituted.

Reimplemented from OGRLayer (p. ??).

Referenced by GetFeature().

12.92.1.16 void OGRUnionLayer::SetSpatialFilter (int iGeomField, OGRGeometry ∗ poFilter) [virtual]

Set a new spatial filter.

This method set the geometry to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the filter geometry will be returned.

Currently this test is may be inaccurately implemented, but it is guaranteed that all features who's envelope (as
returned by OGRGeometry::getEnvelope() (p. ??)) overlaps the envelope of the spatial filter will be returned. This
can result in more shapes being returned that should strictly be the case.

This method makes an internal copy of the passed geometry. The passed geometry remains the responsibility of
the caller, and may be safely destroyed.

For the time being the passed filter geometry should be in the same SRS as the geometry field definition it cor-
responds to (as returned by GetLayerDefn() (p. ??)->GetGeomFieldDefn(iGeomField)->GetSpatialRef() (p. ??)).
In the future this may be generalized.

Note that only the last spatial filter set is applied, even if several successive calls are done with different iGeomField
values.

Note to driver implementators: if you implement SetSpatialFilter(int,OGRGeometry∗) (p. ??), you must also im-
plement SetSpatialFilter(OGRGeometry∗) (p. ??) to make it call SetSpatialFilter(0,OGRGeometry∗).

This method is the same as the C function OGR_L_SetSpatialFilterEx() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.92 OGRUnionLayer Class Reference 407

Parameters

iGeomField index of the geometry field on which the spatial filter operates.
poFilter the geometry to use as a filtering region. NULL may be passed indicating that the current

spatial filter should be cleared, but no new one instituted.

Since

GDAL 1.11

Reimplemented from OGRLayer (p. ??).

References CPLError(), GetLayerDefn(), and ResetReading().

12.92.1.17 OGRErr OGRUnionLayer::SyncToDisk () [virtual]

Flush pending changes to disk.

This call is intended to force the layer to flush any pending writes to disk, and leave the disk file in a consistent state.
It would not normally have any effect on read-only datasources.

Some layers do not implement this method, and will still return OGRERR_NONE. The default implementation just
returns OGRERR_NONE. An error is only returned if an error occurs while attempting to flush to disk.

In any event, you should always close any opened datasource with OGRDataSource::DestroyDataSource() (p. ??)
that will ensure all data is correctly flushed.

This method is the same as the C function OGR_L_SyncToDisk() (p. ??).

Returns

OGRERR_NONE if no error occurs (even if nothing is done) or an error code.

Reimplemented from OGRLayer (p. ??).

References OGRLayer::SyncToDisk().

12.92.1.18 int OGRUnionLayer::TestCapability (const char ∗ pszCap) [virtual]

Test if this layer supported the named capability.

The capability codes that can be tested are represented as strings, but #defined constants exists to ensure correct
spelling. Specific layer types may implement class specific capabilities, but this can't generally be discovered by the
caller.

• OLCRandomRead / "RandomRead": TRUE if the GetFeature() (p. ??) method is implemented in an opti-
mized way for this layer, as opposed to the default implementation using ResetReading() (p. ??) and Get←↩

NextFeature() (p. ??) to find the requested feature id.

• OLCSequentialWrite / "SequentialWrite": TRUE if the CreateFeature() (p. ??) method works for this layer.
Note this means that this particular layer is writable. The same OGRLayer (p. ??) class may returned FALSE
for other layer instances that are effectively read-only.

• OLCRandomWrite / "RandomWrite": TRUE if the SetFeature() (p. ??) method is operational on this layer.
Note this means that this particular layer is writable. The same OGRLayer (p. ??) class may returned FALSE
for other layer instances that are effectively read-only.

• OLCFastSpatialFilter / "FastSpatialFilter": TRUE if this layer implements spatial filtering efficiently. Layers
that effectively read all features, and test them with the OGRFeature (p. ??) intersection methods should
return FALSE. This can be used as a clue by the application whether it should build and maintain its own
spatial index for features in this layer.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

408 Class Documentation

• OLCFastFeatureCount / "FastFeatureCount": TRUE if this layer can return a feature count (via Get←↩

FeatureCount() (p. ??)) efficiently ... ie. without counting the features. In some cases this will return TRUE
until a spatial filter is installed after which it will return FALSE.

• OLCFastGetExtent / "FastGetExtent": TRUE if this layer can return its data extent (via GetExtent() (p. ??))
efficiently ... ie. without scanning all the features. In some cases this will return TRUE until a spatial filter is
installed after which it will return FALSE.

• OLCFastSetNextByIndex / "FastSetNextByIndex": TRUE if this layer can perform the SetNextByIndex()
(p. ??) call efficiently, otherwise FALSE.

• OLCCreateField / "CreateField": TRUE if this layer can create new fields on the current layer using Create←↩

Field() (p. ??), otherwise FALSE.

• OLCCreateGeomField / "CreateGeomField": (GDAL >= 1.11) TRUE if this layer can create new geometry
fields on the current layer using CreateGeomField() (p. ??), otherwise FALSE.

• OLCDeleteField / "DeleteField": TRUE if this layer can delete existing fields on the current layer using
DeleteField() (p. ??), otherwise FALSE.

• OLCReorderFields / "ReorderFields": TRUE if this layer can reorder existing fields on the current layer using
ReorderField() (p. ??) or ReorderFields() (p. ??), otherwise FALSE.

• OLCAlterFieldDefn / "AlterFieldDefn": TRUE if this layer can alter the definition of an existing field on the
current layer using AlterFieldDefn() (p. ??), otherwise FALSE.

• OLCDeleteFeature / "DeleteFeature": TRUE if the DeleteFeature() (p. ??) method is supported on this layer,
otherwise FALSE.

• OLCStringsAsUTF8 / "StringsAsUTF8": TRUE if values of OFTString fields are assured to be in UTF-8
format. If FALSE the encoding of fields is uncertain, though it might still be UTF-8.

• OLCTransactions / "Transactions": TRUE if the StartTransaction(), CommitTransaction() and Rollback←↩

Transaction() methods work in a meaningful way, otherwise FALSE.

• OLCIgnoreFields / "IgnoreFields": TRUE if fields, geometry and style will be omitted when fetching features
as set by SetIgnoredFields() (p. ??) method.

This method is the same as the C function OGR_L_TestCapability() (p. ??).

Parameters

pszCap the name of the capability to test.

Returns

TRUE if the layer has the requested capability, or FALSE otherwise. OGRLayers will return FALSE for any
unrecognised capabilities.

Implements OGRLayer (p. ??).

The documentation for this class was generated from the following files:

• ogrunionlayer.h
• ogrunionlayer.cpp

12.93 OGRUnionLayerGeomFieldDefn Class Reference

Inheritance diagram for OGRUnionLayerGeomFieldDefn:

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.94 OGRWarpedLayer Class Reference 409

OGRUnionLayerGeomFieldDefn

OGRGeomFieldDefn

Additional Inherited Members

The documentation for this class was generated from the following files:

• ogrunionlayer.h
• ogrunionlayer.cpp

12.94 OGRWarpedLayer Class Reference

Inheritance diagram for OGRWarpedLayer:

OGRWarpedLayer

OGRLayerDecorator

OGRLayer

Public Member Functions

• virtual void SetSpatialFilter (OGRGeometry ∗)
Set a new spatial filter.

• virtual void SetSpatialFilterRect (double dfMinX, double dfMinY, double dfMaxX, double dfMaxY)

Set a new rectangular spatial filter.

• virtual void SetSpatialFilter (int iGeomField, OGRGeometry ∗)
Set a new spatial filter.

• virtual void SetSpatialFilterRect (int iGeomField, double dfMinX, double dfMinY, double dfMaxX, double df←↩

MaxY)

Set a new rectangular spatial filter.

• virtual OGRFeature ∗ GetNextFeature ()

Fetch the next available feature from this layer.

• virtual OGRFeature ∗ GetFeature (long nFID)

Fetch a feature by its identifier.

• virtual OGRErr SetFeature (OGRFeature ∗poFeature)

Rewrite an existing feature.

• virtual OGRErr CreateFeature (OGRFeature ∗poFeature)

Create and write a new feature within a layer.

• virtual OGRFeatureDefn ∗ GetLayerDefn ()

Fetch the schema information for this layer.

• virtual OGRSpatialReference ∗ GetSpatialRef ()

Fetch the spatial reference system for this layer.

• virtual int GetFeatureCount (int bForce=TRUE)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

410 Class Documentation

Fetch the feature count in this layer.

• virtual OGRErr GetExtent (int iGeomField, OGREnvelope ∗psExtent, int bForce=TRUE)

Fetch the extent of this layer, on the specified geometry field.

• virtual OGRErr GetExtent (OGREnvelope ∗psExtent, int bForce=TRUE)

Fetch the extent of this layer.

• virtual int TestCapability (const char ∗)
Test if this layer supported the named capability.

12.94.1 Member Function Documentation

12.94.1.1 OGRErr OGRWarpedLayer::CreateFeature (OGRFeature ∗ poFeature) [virtual]

Create and write a new feature within a layer.

The passed feature is written to the layer as a new feature, rather than overwriting an existing one. If the feature
has a feature id other than OGRNullFID, then the native implementation may use that as the feature id of the new
feature, but not necessarily. Upon successful return the passed feature will have been updated with the new feature
id.

This method is the same as the C function OGR_L_CreateFeature() (p. ??).

Parameters

poFeature the feature to write to disk.

Returns

OGRERR_NONE on success.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayer::CreateFeature().

12.94.1.2 OGRErr OGRWarpedLayer::GetExtent (int iGeomField, OGREnvelope ∗ psExtent, int bForce = TRUE)
[virtual]

Fetch the extent of this layer, on the specified geometry field.

Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and it would be expensive to establish the
extent then OGRERR_FAILURE will be returned indicating that the extent isn't know. If bForce is TRUE then some
implementations will actually scan the entire layer once to compute the MBR of all the features in the layer.

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is safer to call
GetExtent() (p. ??) without setting a spatial filter.

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents could be
collected.

Note that some implementations of this method may alter the read cursor of the layer.

Note to driver implementators: if you implement GetExtent(int,OGREnvelope∗,int) (p. ??), you must also imple-
ment GetExtent(OGREnvelope∗, int) (p. ??) to make it call GetExtent(0,OGREnvelope∗,int).

This method is the same as the C function OGR_L_GetExtentEx() (p. ??).

Parameters

iGeomField the index of the geometry field on which to compute the extent.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.94 OGRWarpedLayer Class Reference 411

psExtent the structure in which the extent value will be returned.
bForce Flag indicating whether the extent should be computed even if it is expensive.

Returns

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayer::GetExtent().

Referenced by GetExtent().

12.94.1.3 OGRErr OGRWarpedLayer::GetExtent (OGREnvelope ∗ psExtent, int bForce = TRUE) [virtual]

Fetch the extent of this layer.

Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and it would be expensive to establish the
extent then OGRERR_FAILURE will be returned indicating that the extent isn't know. If bForce is TRUE then some
implementations will actually scan the entire layer once to compute the MBR of all the features in the layer.

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is safer to call
GetExtent() (p. ??) without setting a spatial filter.

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents could be
collected.

Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetExtent() (p. ??).

Parameters

psExtent the structure in which the extent value will be returned.
bForce Flag indicating whether the extent should be computed even if it is expensive.

Returns

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

Reimplemented from OGRLayerDecorator (p. ??).

References GetExtent().

12.94.1.4 OGRFeature ∗ OGRWarpedLayer::GetFeature (long nFID) [virtual]

Fetch a feature by its identifier.

This function will attempt to read the identified feature. The nFID value cannot be OGRNullFID. Success or failure
of this operation is unaffected by the spatial or attribute filters (and specialized implementations in drivers should
make sure that they do not take into account spatial or attribute filters).

If this method returns a non-NULL feature, it is guaranteed that its feature id (OGRFeature::GetFID() (p. ??)) will
be the same as nFID.

Use OGRLayer::TestCapability(OLCRandomRead) to establish if this layer supports efficient random access reading
via GetFeature() (p. ??); however, the call should always work if the feature exists as a fallback implementation just
scans all the features in the layer looking for the desired feature.

Sequential reads (with GetNextFeature() (p. ??)) are generally considered interrupted by a GetFeature() (p. ??)
call.

The returned feature should be free with OGRFeature::DestroyFeature() (p. ??).

This method is the same as the C function OGR_L_GetFeature() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

412 Class Documentation

Parameters

nFID the feature id of the feature to read.

Returns

a feature now owned by the caller, or NULL on failure.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayer::GetFeature().

12.94.1.5 int OGRWarpedLayer::GetFeatureCount (int bForce = TRUE) [virtual]

Fetch the feature count in this layer.

Returns the number of features in the layer. For dynamic databases the count may not be exact. If bForce is FALSE,
and it would be expensive to establish the feature count a value of -1 may be returned indicating that the count isn't
know. If bForce is TRUE some implementations will actually scan the entire layer once to count objects.

The returned count takes the spatial filter into account.

Note that some implementations of this method may alter the read cursor of the layer.

This method is the same as the C function OGR_L_GetFeatureCount() (p. ??).

Parameters

bForce Flag indicating whether the count should be computed even if it is expensive.

Returns

feature count, -1 if count not known.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayer::GetFeatureCount().

12.94.1.6 OGRFeatureDefn ∗ OGRWarpedLayer::GetLayerDefn () [virtual]

Fetch the schema information for this layer.

The returned OGRFeatureDefn (p. ??) is owned by the OGRLayer (p. ??), and should not be modified or freed by
the application. It encapsulates the attribute schema of the features of the layer.

This method is the same as the C function OGR_L_GetLayerDefn() (p. ??).

Returns

feature definition.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRFeatureDefn::Clone(), OGRFeatureDefn::GetGeomFieldCount(), OGRFeatureDefn::GetGeom←↩

FieldDefn(), OGRLayer::GetLayerDefn(), OGRFeatureDefn::Reference(), and OGRGeomFieldDefn::SetSpatial←↩

Ref().

Referenced by SetSpatialFilter().

12.94.1.7 OGRFeature ∗ OGRWarpedLayer::GetNextFeature () [virtual]

Fetch the next available feature from this layer.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.94 OGRWarpedLayer Class Reference 413

The returned feature becomes the responsiblity of the caller to delete with OGRFeature::DestroyFeature() (p. ??).
It is critical that all features associated with an OGRLayer (p. ??) (more specifically an OGRFeatureDefn (p. ??))
be deleted before that layer/datasource is deleted.

Only features matching the current spatial filter (set with SetSpatialFilter() (p. ??)) will be returned.

This method implements sequential access to the features of a layer. The ResetReading() (p. ??) method can be
used to start at the beginning again.

This method is the same as the C function OGR_L_GetNextFeature() (p. ??).

Returns

a feature, or NULL if no more features are available.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRFeature::GetGeomFieldRef(), and OGRLayer::GetNextFeature().

12.94.1.8 OGRSpatialReference ∗ OGRWarpedLayer::GetSpatialRef () [virtual]

Fetch the spatial reference system for this layer.

The returned object is owned by the OGRLayer (p. ??) and should not be modified or freed by the application.

Starting with OGR 1.11, several geometry fields can be associated to a feature definition. Each geometry field can
have its own spatial reference system, which is returned by OGRGeomFieldDefn::GetSpatialRef() (p. ??). OGR←↩

Layer::GetSpatialRef() (p. ??) is equivalent to GetLayerDefn() (p. ??)->GetGeomFieldDefn(0)->GetSpatialRef()
(p. ??)

This method is the same as the C function OGR_L_GetSpatialRef() (p. ??).

Returns

spatial reference, or NULL if there isn't one.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayer::GetSpatialRef().

12.94.1.9 OGRErr OGRWarpedLayer::SetFeature (OGRFeature ∗ poFeature) [virtual]

Rewrite an existing feature.

This method will write a feature to the layer, based on the feature id within the OGRFeature (p. ??).

Use OGRLayer::TestCapability(OLCRandomWrite) to establish if this layer supports random access writing via
SetFeature() (p. ??).

This method is the same as the C function OGR_L_SetFeature() (p. ??).

Parameters

poFeature the feature to write.

Returns

OGRERR_NONE if the operation works, otherwise an appropriate error code.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayer::SetFeature().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

414 Class Documentation

12.94.1.10 void OGRWarpedLayer::SetSpatialFilter (OGRGeometry ∗ poFilter) [virtual]

Set a new spatial filter.

This method set the geometry to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the filter geometry will be returned.

Currently this test is may be inaccurately implemented, but it is guaranteed that all features who's envelope (as
returned by OGRGeometry::getEnvelope() (p. ??)) overlaps the envelope of the spatial filter will be returned. This
can result in more shapes being returned that should strictly be the case.

This method makes an internal copy of the passed geometry. The passed geometry remains the responsibility of
the caller, and may be safely destroyed.

For the time being the passed filter geometry should be in the same SRS as the layer (as returned by OGRLayer←↩

::GetSpatialRef() (p. ??)). In the future this may be generalized.

This method is the same as the C function OGR_L_SetSpatialFilter() (p. ??).

Parameters

poFilter the geometry to use as a filtering region. NULL may be passed indicating that the current
spatial filter should be cleared, but no new one instituted.

Reimplemented from OGRLayerDecorator (p. ??).

12.94.1.11 void OGRWarpedLayer::SetSpatialFilter (int iGeomField, OGRGeometry ∗ poFilter) [virtual]

Set a new spatial filter.

This method set the geometry to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the filter geometry will be returned.

Currently this test is may be inaccurately implemented, but it is guaranteed that all features who's envelope (as
returned by OGRGeometry::getEnvelope() (p. ??)) overlaps the envelope of the spatial filter will be returned. This
can result in more shapes being returned that should strictly be the case.

This method makes an internal copy of the passed geometry. The passed geometry remains the responsibility of
the caller, and may be safely destroyed.

For the time being the passed filter geometry should be in the same SRS as the geometry field definition it cor-
responds to (as returned by GetLayerDefn() (p. ??)->GetGeomFieldDefn(iGeomField)->GetSpatialRef() (p. ??)).
In the future this may be generalized.

Note that only the last spatial filter set is applied, even if several successive calls are done with different iGeomField
values.

Note to driver implementators: if you implement SetSpatialFilter(int,OGRGeometry∗) (p. ??), you must also im-
plement SetSpatialFilter(OGRGeometry∗) (p. ??) to make it call SetSpatialFilter(0,OGRGeometry∗).

This method is the same as the C function OGR_L_SetSpatialFilterEx() (p. ??).

Parameters

iGeomField index of the geometry field on which the spatial filter operates.
poFilter the geometry to use as a filtering region. NULL may be passed indicating that the current

spatial filter should be cleared, but no new one instituted.

Since

GDAL 1.11

Reimplemented from OGRLayerDecorator (p. ??).

References CPLError(), OGRGeometry::getEnvelope(), GetLayerDefn(), OGRLayerDecorator::ResetReading(),
OGRLayer::SetSpatialFilter(), and OGRLayer::SetSpatialFilterRect().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.94 OGRWarpedLayer Class Reference 415

12.94.1.12 void OGRWarpedLayer::SetSpatialFilterRect (double dfMinX, double dfMinY, double dfMaxX, double dfMaxY)
[virtual]

Set a new rectangular spatial filter.

This method set rectangle to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the given rectangle will be returned.

The x/y values should be in the same coordinate system as the layer as a whole (as returned by OGRLayer::←↩

GetSpatialRef() (p. ??)). Internally this method is normally implemented as creating a 5 vertex closed rectangular
polygon and passing it to OGRLayer::SetSpatialFilter() (p. ??). It exists as a convenience.

The only way to clear a spatial filter set with this method is to call OGRLayer::SetSpatialFilter(NULL).

This method is the same as the C function OGR_L_SetSpatialFilterRect() (p. ??).

Parameters

dfMinX the minimum X coordinate for the rectangular region.
dfMinY the minimum Y coordinate for the rectangular region.

dfMaxX the maximum X coordinate for the rectangular region.
dfMaxY the maximum Y coordinate for the rectangular region.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayer::SetSpatialFilterRect().

12.94.1.13 void OGRWarpedLayer::SetSpatialFilterRect (int iGeomField, double dfMinX, double dfMinY, double dfMaxX,
double dfMaxY) [virtual]

Set a new rectangular spatial filter.

This method set rectangle to be used as a spatial filter when fetching features via the GetNextFeature() (p. ??)
method. Only features that geometrically intersect the given rectangle will be returned.

The x/y values should be in the same coordinate system as as the geometry field definition it corresponds to (as
returned by GetLayerDefn() (p. ??)->GetGeomFieldDefn(iGeomField)->GetSpatialRef() (p. ??)). Internally this
method is normally implemented as creating a 5 vertex closed rectangular polygon and passing it to OGRLayer←↩

::SetSpatialFilter() (p. ??). It exists as a convenience.

The only way to clear a spatial filter set with this method is to call OGRLayer::SetSpatialFilter(NULL).

This method is the same as the C function OGR_L_SetSpatialFilterRectEx() (p. ??).

Parameters

iGeomField index of the geometry field on which the spatial filter operates.
dfMinX the minimum X coordinate for the rectangular region.
dfMinY the minimum Y coordinate for the rectangular region.

dfMaxX the maximum X coordinate for the rectangular region.
dfMaxY the maximum Y coordinate for the rectangular region.

Since

GDAL 1.11

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayer::SetSpatialFilterRect().

12.94.1.14 int OGRWarpedLayer::TestCapability (const char ∗ pszCap) [virtual]

Test if this layer supported the named capability.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

416 Class Documentation

The capability codes that can be tested are represented as strings, but #defined constants exists to ensure correct
spelling. Specific layer types may implement class specific capabilities, but this can't generally be discovered by the
caller.

• OLCRandomRead / "RandomRead": TRUE if the GetFeature() (p. ??) method is implemented in an opti-
mized way for this layer, as opposed to the default implementation using ResetReading() (p. ??) and Get←↩

NextFeature() (p. ??) to find the requested feature id.

• OLCSequentialWrite / "SequentialWrite": TRUE if the CreateFeature() (p. ??) method works for this layer.
Note this means that this particular layer is writable. The same OGRLayer (p. ??) class may returned FALSE
for other layer instances that are effectively read-only.

• OLCRandomWrite / "RandomWrite": TRUE if the SetFeature() (p. ??) method is operational on this layer.
Note this means that this particular layer is writable. The same OGRLayer (p. ??) class may returned FALSE
for other layer instances that are effectively read-only.

• OLCFastSpatialFilter / "FastSpatialFilter": TRUE if this layer implements spatial filtering efficiently. Layers
that effectively read all features, and test them with the OGRFeature (p. ??) intersection methods should
return FALSE. This can be used as a clue by the application whether it should build and maintain its own
spatial index for features in this layer.

• OLCFastFeatureCount / "FastFeatureCount": TRUE if this layer can return a feature count (via Get←↩

FeatureCount() (p. ??)) efficiently ... ie. without counting the features. In some cases this will return TRUE
until a spatial filter is installed after which it will return FALSE.

• OLCFastGetExtent / "FastGetExtent": TRUE if this layer can return its data extent (via GetExtent() (p. ??))
efficiently ... ie. without scanning all the features. In some cases this will return TRUE until a spatial filter is
installed after which it will return FALSE.

• OLCFastSetNextByIndex / "FastSetNextByIndex": TRUE if this layer can perform the SetNextByIndex()
(p. ??) call efficiently, otherwise FALSE.

• OLCCreateField / "CreateField": TRUE if this layer can create new fields on the current layer using Create←↩

Field() (p. ??), otherwise FALSE.

• OLCCreateGeomField / "CreateGeomField": (GDAL >= 1.11) TRUE if this layer can create new geometry
fields on the current layer using CreateGeomField() (p. ??), otherwise FALSE.

• OLCDeleteField / "DeleteField": TRUE if this layer can delete existing fields on the current layer using
DeleteField() (p. ??), otherwise FALSE.

• OLCReorderFields / "ReorderFields": TRUE if this layer can reorder existing fields on the current layer using
ReorderField() (p. ??) or ReorderFields() (p. ??), otherwise FALSE.

• OLCAlterFieldDefn / "AlterFieldDefn": TRUE if this layer can alter the definition of an existing field on the
current layer using AlterFieldDefn() (p. ??), otherwise FALSE.

• OLCDeleteFeature / "DeleteFeature": TRUE if the DeleteFeature() (p. ??) method is supported on this layer,
otherwise FALSE.

• OLCStringsAsUTF8 / "StringsAsUTF8": TRUE if values of OFTString fields are assured to be in UTF-8
format. If FALSE the encoding of fields is uncertain, though it might still be UTF-8.

• OLCTransactions / "Transactions": TRUE if the StartTransaction(), CommitTransaction() and Rollback←↩

Transaction() methods work in a meaningful way, otherwise FALSE.

• OLCIgnoreFields / "IgnoreFields": TRUE if fields, geometry and style will be omitted when fetching features
as set by SetIgnoredFields() (p. ??) method.

This method is the same as the C function OGR_L_TestCapability() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.95 osr_cs_wkt_parse_context Struct Reference 417

Parameters

pszCap the name of the capability to test.

Returns

TRUE if the layer has the requested capability, or FALSE otherwise. OGRLayers will return FALSE for any
unrecognised capabilities.

Reimplemented from OGRLayerDecorator (p. ??).

References OGRLayer::TestCapability().

The documentation for this class was generated from the following files:

• ogrwarpedlayer.h

• ogrwarpedlayer.cpp

12.95 osr_cs_wkt_parse_context Struct Reference

The documentation for this struct was generated from the following file:

• osr_cs_wkt.h

12.96 osr_cs_wkt_tokens Struct Reference

The documentation for this struct was generated from the following file:

• osr_cs_wkt.c

12.97 ParseContext Struct Reference

The documentation for this struct was generated from the following file:

• cpl_minixml.cpp

12.98 PCIDatums Struct Reference

The documentation for this struct was generated from the following file:

• ogr_srs_pci.cpp

12.99 projUV Struct Reference

The documentation for this struct was generated from the following file:

• ogrct.cpp

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

418 Class Documentation

12.100 RingBuffer Class Reference

The documentation for this class was generated from the following file:

• cpl_vsil_curl_streaming.cpp

12.101 SFRegion Class Reference

The documentation for this class was generated from the following file:

• cpl_vsil_sparsefile.cpp

12.102 StackContext Struct Reference

The documentation for this struct was generated from the following file:

• cpl_minixml.cpp

12.103 swq_col_def Struct Reference

The documentation for this struct was generated from the following file:

• swq.h

12.104 swq_expr_node Class Reference

The documentation for this class was generated from the following files:

• swq.h

• swq_expr_node.cpp

12.105 swq_field_list Class Reference

The documentation for this class was generated from the following file:

• swq.h

12.106 swq_join_def Struct Reference

The documentation for this struct was generated from the following file:

• swq.h

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.107 swq_op_registrar Class Reference 419

12.107 swq_op_registrar Class Reference

The documentation for this class was generated from the following files:

• swq.h

• swq_op_registrar.cpp

12.108 swq_operation Struct Reference

The documentation for this struct was generated from the following file:

• swq.h

12.109 swq_order_def Struct Reference

The documentation for this struct was generated from the following file:

• swq.h

12.110 swq_parse_context Class Reference

The documentation for this class was generated from the following file:

• swq.h

12.111 swq_select Class Reference

The documentation for this class was generated from the following files:

• swq.h

• swq_select.cpp

12.112 swq_summary Struct Reference

The documentation for this struct was generated from the following file:

• swq.h

12.113 swq_table_def Struct Reference

The documentation for this struct was generated from the following file:

• swq.h

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

420 Class Documentation

12.114 tm_unz_s Struct Reference

The documentation for this struct was generated from the following file:

• cpl_minizip_unzip.h

12.115 tm_zip_s Struct Reference

The documentation for this struct was generated from the following file:

• cpl_minizip_zip.h

12.116 unz_file_info_internal_s Struct Reference

The documentation for this struct was generated from the following file:

• cpl_minizip_unzip.cpp

12.117 unz_file_info_s Struct Reference

The documentation for this struct was generated from the following file:

• cpl_minizip_unzip.h

12.118 unz_file_pos_s Struct Reference

The documentation for this struct was generated from the following file:

• cpl_minizip_unzip.h

12.119 unz_global_info_s Struct Reference

The documentation for this struct was generated from the following file:

• cpl_minizip_unzip.h

12.120 unz_s Struct Reference

The documentation for this struct was generated from the following file:

• cpl_minizip_unzip.cpp

12.121 VSIArchiveContent Struct Reference

The documentation for this struct was generated from the following file:

• cpl_vsi_virtual.h

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.122 VSIArchiveEntry Struct Reference 421

12.122 VSIArchiveEntry Struct Reference

The documentation for this struct was generated from the following file:

• cpl_vsi_virtual.h

12.123 VSIArchiveEntryFileOffset Class Reference

Inheritance diagram for VSIArchiveEntryFileOffset:

VSIArchiveEntryFileOffset

VSITarEntryFileOffset VSIZipEntryFileOffset

The documentation for this class was generated from the following files:

• cpl_vsi_virtual.h
• cpl_vsil_abstract_archive.cpp

12.124 VSIArchiveFilesystemHandler Class Reference

Inheritance diagram for VSIArchiveFilesystemHandler:

VSIArchiveFilesystemHandler

VSIFilesystemHandler

VSITarFilesystemHandler VSIZipFilesystemHandler

The documentation for this class was generated from the following files:

• cpl_vsi_virtual.h
• cpl_vsil_abstract_archive.cpp

12.125 VSIArchiveReader Class Reference

Inheritance diagram for VSIArchiveReader:

VSIArchiveReader

VSITarReader VSIZipReader

The documentation for this class was generated from the following files:

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

422 Class Documentation

• cpl_vsi_virtual.h
• cpl_vsil_abstract_archive.cpp

12.126 VSIBufferedReaderHandle Class Reference

Inheritance diagram for VSIBufferedReaderHandle:

VSIBufferedReaderHandle

VSIVirtualHandle

The documentation for this class was generated from the following file:

• cpl_vsil_buffered_reader.cpp

12.127 VSICacheChunk Class Reference

The documentation for this class was generated from the following file:

• cpl_vsil_cache.cpp

12.128 VSICachedFile Class Reference

Inheritance diagram for VSICachedFile:

VSICachedFile

VSIVirtualHandle

The documentation for this class was generated from the following file:

• cpl_vsil_cache.cpp

12.129 VSICurlFilesystemHandler Class Reference

Inheritance diagram for VSICurlFilesystemHandler:

VSICurlFilesystemHandler

VSIFilesystemHandler

The documentation for this class was generated from the following file:

• cpl_vsil_curl.cpp

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.130 VSICurlHandle Class Reference 423

12.130 VSICurlHandle Class Reference

Inheritance diagram for VSICurlHandle:

VSICurlHandle

VSIVirtualHandle

The documentation for this class was generated from the following file:

• cpl_vsil_curl.cpp

12.131 VSICurlStreamingFSHandler Class Reference

Inheritance diagram for VSICurlStreamingFSHandler:

VSICurlStreamingFSHandler

VSIFilesystemHandler

The documentation for this class was generated from the following file:

• cpl_vsil_curl_streaming.cpp

12.132 VSICurlStreamingHandle Class Reference

Inheritance diagram for VSICurlStreamingHandle:

VSICurlStreamingHandle

VSIVirtualHandle

The documentation for this class was generated from the following file:

• cpl_vsil_curl_streaming.cpp

12.133 VSIDIR Struct Reference

The documentation for this struct was generated from the following file:

• vsipreload.cpp

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

424 Class Documentation

12.134 VSIFileManager Class Reference

The documentation for this class was generated from the following files:

• cpl_vsi_virtual.h
• cpl_vsil.cpp

12.135 VSIFilesystemHandler Class Reference

Inheritance diagram for VSIFilesystemHandler:

VSIFilesystemHandler

VSIArchiveFilesystemHandler

VSICurlFilesystemHandler

VSICurlStreamingFSHandler

VSIGZipFilesystemHandler

VSIMemFilesystemHandler

VSISparseFileFilesystemHandler

VSIStdinFilesystemHandler

VSIStdoutFilesystemHandler

VSIStdoutRedirectFilesystemHandler

VSISubFileFilesystemHandler

VSIUnixStdioFilesystemHandler

The documentation for this class was generated from the following file:

• cpl_vsi_virtual.h

12.136 VSIGZipFilesystemHandler Class Reference

Inheritance diagram for VSIGZipFilesystemHandler:

VSIGZipFilesystemHandler

VSIFilesystemHandler

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.137 VSIGZipHandle Class Reference 425

The documentation for this class was generated from the following file:

• cpl_vsil_gzip.cpp

12.137 VSIGZipHandle Class Reference

Inheritance diagram for VSIGZipHandle:

VSIGZipHandle

VSIVirtualHandle

The documentation for this class was generated from the following file:

• cpl_vsil_gzip.cpp

12.138 VSIGZipWriteHandle Class Reference

Inheritance diagram for VSIGZipWriteHandle:

VSIGZipWriteHandle

VSIVirtualHandle

The documentation for this class was generated from the following file:

• cpl_vsil_gzip.cpp

12.139 VSIMemFile Class Reference

The documentation for this class was generated from the following file:

• cpl_vsi_mem.cpp

12.140 VSIMemFilesystemHandler Class Reference

Inheritance diagram for VSIMemFilesystemHandler:

VSIMemFilesystemHandler

VSIFilesystemHandler

The documentation for this class was generated from the following file:

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

426 Class Documentation

• cpl_vsi_mem.cpp

12.141 VSIMemHandle Class Reference

Inheritance diagram for VSIMemHandle:

VSIMemHandle

VSIVirtualHandle

The documentation for this class was generated from the following file:

• cpl_vsi_mem.cpp

12.142 VSIReadDirRecursiveTask Struct Reference

The documentation for this struct was generated from the following file:

• cpl_vsil.cpp

12.143 VSISparseFileFilesystemHandler Class Reference

Inheritance diagram for VSISparseFileFilesystemHandler:

VSISparseFileFilesystemHandler

VSIFilesystemHandler

The documentation for this class was generated from the following file:

• cpl_vsil_sparsefile.cpp

12.144 VSISparseFileHandle Class Reference

Inheritance diagram for VSISparseFileHandle:

VSISparseFileHandle

VSIVirtualHandle

The documentation for this class was generated from the following file:

• cpl_vsil_sparsefile.cpp

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.145 VSIStdinFilesystemHandler Class Reference 427

12.145 VSIStdinFilesystemHandler Class Reference

Inheritance diagram for VSIStdinFilesystemHandler:

VSIStdinFilesystemHandler

VSIFilesystemHandler

The documentation for this class was generated from the following file:

• cpl_vsil_stdin.cpp

12.146 VSIStdinHandle Class Reference

Inheritance diagram for VSIStdinHandle:

VSIStdinHandle

VSIVirtualHandle

The documentation for this class was generated from the following file:

• cpl_vsil_stdin.cpp

12.147 VSIStdoutFilesystemHandler Class Reference

Inheritance diagram for VSIStdoutFilesystemHandler:

VSIStdoutFilesystemHandler

VSIFilesystemHandler

The documentation for this class was generated from the following file:

• cpl_vsil_stdout.cpp

12.148 VSIStdoutHandle Class Reference

Inheritance diagram for VSIStdoutHandle:

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

428 Class Documentation

VSIStdoutHandle

VSIVirtualHandle

The documentation for this class was generated from the following file:

• cpl_vsil_stdout.cpp

12.149 VSIStdoutRedirectFilesystemHandler Class Reference

Inheritance diagram for VSIStdoutRedirectFilesystemHandler:

VSIStdoutRedirectFilesystemHandler

VSIFilesystemHandler

The documentation for this class was generated from the following file:

• cpl_vsil_stdout.cpp

12.150 VSIStdoutRedirectHandle Class Reference

Inheritance diagram for VSIStdoutRedirectHandle:

VSIStdoutRedirectHandle

VSIVirtualHandle

The documentation for this class was generated from the following file:

• cpl_vsil_stdout.cpp

12.151 VSISubFileFilesystemHandler Class Reference

Inheritance diagram for VSISubFileFilesystemHandler:

VSISubFileFilesystemHandler

VSIFilesystemHandler

The documentation for this class was generated from the following file:

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.152 VSISubFileHandle Class Reference 429

• cpl_vsil_subfile.cpp

12.152 VSISubFileHandle Class Reference

Inheritance diagram for VSISubFileHandle:

VSISubFileHandle

VSIVirtualHandle

The documentation for this class was generated from the following file:

• cpl_vsil_subfile.cpp

12.153 VSITarEntryFileOffset Class Reference

Inheritance diagram for VSITarEntryFileOffset:

VSITarEntryFileOffset

VSIArchiveEntryFileOffset

The documentation for this class was generated from the following file:

• cpl_vsil_tar.cpp

12.154 VSITarFilesystemHandler Class Reference

Inheritance diagram for VSITarFilesystemHandler:

VSITarFilesystemHandler

VSIArchiveFilesystemHandler

VSIFilesystemHandler

The documentation for this class was generated from the following file:

• cpl_vsil_tar.cpp

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

430 Class Documentation

12.155 VSITarReader Class Reference

Inheritance diagram for VSITarReader:

VSITarReader

VSIArchiveReader

The documentation for this class was generated from the following file:

• cpl_vsil_tar.cpp

12.156 VSIUnixStdioFilesystemHandler Class Reference

Inheritance diagram for VSIUnixStdioFilesystemHandler:

VSIUnixStdioFilesystemHandler

VSIFilesystemHandler

The documentation for this class was generated from the following file:

• cpl_vsil_unix_stdio_64.cpp

12.157 VSIUnixStdioHandle Class Reference

Inheritance diagram for VSIUnixStdioHandle:

VSIUnixStdioHandle

VSIVirtualHandle

The documentation for this class was generated from the following file:

• cpl_vsil_unix_stdio_64.cpp

12.158 VSIVirtualHandle Class Reference

Inheritance diagram for VSIVirtualHandle:

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.159 VSIZipEntryFileOffset Class Reference 431

VSIVirtualHandle

VSIBufferedReaderHandle

VSICachedFile

VSICurlHandle

VSICurlStreamingHandle

VSIGZipHandle

VSIGZipWriteHandle

VSIMemHandle

VSISparseFileHandle

VSIStdinHandle

VSIStdoutHandle

VSIStdoutRedirectHandle

VSISubFileHandle

VSIUnixStdioHandle

VSIZipWriteHandle

The documentation for this class was generated from the following files:

• cpl_vsi_virtual.h
• cpl_vsil.cpp

12.159 VSIZipEntryFileOffset Class Reference

Inheritance diagram for VSIZipEntryFileOffset:

VSIZipEntryFileOffset

VSIArchiveEntryFileOffset

The documentation for this class was generated from the following file:

• cpl_vsil_gzip.cpp

12.160 VSIZipFilesystemHandler Class Reference

Inheritance diagram for VSIZipFilesystemHandler:

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

432 Class Documentation

VSIZipFilesystemHandler

VSIArchiveFilesystemHandler

VSIFilesystemHandler

The documentation for this class was generated from the following file:

• cpl_vsil_gzip.cpp

12.161 VSIZipReader Class Reference

Inheritance diagram for VSIZipReader:

VSIZipReader

VSIArchiveReader

The documentation for this class was generated from the following file:

• cpl_vsil_gzip.cpp

12.162 VSIZipWriteHandle Class Reference

Inheritance diagram for VSIZipWriteHandle:

VSIZipWriteHandle

VSIVirtualHandle

The documentation for this class was generated from the following file:

• cpl_vsil_gzip.cpp

12.163 WriteFuncStruct Struct Reference

The documentation for this struct was generated from the following files:

• cpl_vsil_curl.cpp

• cpl_vsil_curl_streaming.cpp

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

12.164 yyalloc Union Reference 433

12.164 yyalloc Union Reference

The documentation for this union was generated from the following files:

• osr_cs_wkt_parser.c
• swq_parser.cpp

12.165 zip_fileinfo Struct Reference

The documentation for this struct was generated from the following file:

• cpl_minizip_zip.h

12.166 zip_internal Struct Reference

The documentation for this struct was generated from the following file:

• cpl_minizip_zip.cpp

12.167 zlib_filefunc_def_s Struct Reference

The documentation for this struct was generated from the following file:

• cpl_minizip_ioapi.h

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

434 Class Documentation

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

Chapter 13

File Documentation

13.1 cpl_conv.h File Reference

#include "cpl_port.h"
#include "cpl_vsi.h"
#include "cpl_error.h"

Classes

• struct CPLSharedFileInfo
• class CPLLocaleC

Functions

• const char ∗ CPLGetConfigOption (const char ∗, const char ∗)
• void CPLSetConfigOption (const char ∗, const char ∗)
• void CPLSetThreadLocalConfigOption (const char ∗pszKey, const char ∗pszValue)
• void ∗ CPLMalloc (size_t)
• void ∗ CPLCalloc (size_t, size_t)
• void ∗ CPLRealloc (void ∗, size_t)
• char ∗ CPLStrdup (const char ∗)
• char ∗ CPLStrlwr (char ∗)
• char ∗ CPLFGets (char ∗, int, FILE ∗)
• const char ∗ CPLReadLine (FILE ∗)
• const char ∗ CPLReadLineL (VSILFILE ∗)
• const char ∗ CPLReadLine2L (VSILFILE ∗, int nMaxCols, char ∗∗papszOptions)
• double CPLAtof (const char ∗)
• double CPLAtofDelim (const char ∗, char)
• double CPLStrtod (const char ∗, char ∗∗)
• double CPLStrtodDelim (const char ∗, char ∗∗, char)
• float CPLStrtof (const char ∗, char ∗∗)
• float CPLStrtofDelim (const char ∗, char ∗∗, char)
• double CPLAtofM (const char ∗)
• char ∗ CPLScanString (const char ∗, int, int, int)
• double CPLScanDouble (const char ∗, int)
• long CPLScanLong (const char ∗, int)
• unsigned long CPLScanULong (const char ∗, int)
• GUIntBig CPLScanUIntBig (const char ∗, int)

436 File Documentation

• void ∗ CPLScanPointer (const char ∗, int)

• int CPLPrintString (char ∗, const char ∗, int)

• int CPLPrintStringFill (char ∗, const char ∗, int)

• int CPLPrintInt32 (char ∗, GInt32, int)

• int CPLPrintUIntBig (char ∗, GUIntBig, int)

• int CPLPrintDouble (char ∗, const char ∗, double, const char ∗)
• int CPLPrintTime (char ∗, int, const char ∗, const struct tm ∗, const char ∗)
• int CPLPrintPointer (char ∗, void ∗, int)

• void ∗ CPLGetSymbol (const char ∗, const char ∗)
• int CPLGetExecPath (char ∗pszPathBuf, int nMaxLength)

• const char ∗ CPLGetPath (const char ∗)
• const char ∗ CPLGetDirname (const char ∗)
• const char ∗ CPLGetFilename (const char ∗)
• const char ∗ CPLGetBasename (const char ∗)
• const char ∗ CPLGetExtension (const char ∗)
• char ∗ CPLGetCurrentDir (void)

• const char ∗ CPLFormFilename (const char ∗pszPath, const char ∗pszBasename, const char ∗psz←↩

Extension)

• const char ∗ CPLFormCIFilename (const char ∗pszPath, const char ∗pszBasename, const char ∗psz←↩

Extension)

• const char ∗ CPLResetExtension (const char ∗, const char ∗)
• const char ∗ CPLProjectRelativeFilename (const char ∗pszProjectDir, const char ∗pszSecondaryFilename)

• int CPLIsFilenameRelative (const char ∗pszFilename)

• const char ∗ CPLExtractRelativePath (const char ∗, const char ∗, int ∗)
• const char ∗ CPLCleanTrailingSlash (const char ∗)
• char ∗∗ CPLCorrespondingPaths (const char ∗pszOldFilename, const char ∗pszNewFilename, char
∗∗papszFileList)

• int CPLCheckForFile (char ∗pszFilename, char ∗∗papszSiblingList)

• const char ∗ CPLGenerateTempFilename (const char ∗pszStem)

• FILE ∗ CPLOpenShared (const char ∗, const char ∗, int)

• void CPLCloseShared (FILE ∗)
• CPLSharedFileInfo ∗ CPLGetSharedList (int ∗)
• void CPLDumpSharedList (FILE ∗)
• double CPLPackedDMSToDec (double)

• double CPLDecToPackedDMS (double dfDec)

• int CPLUnlinkTree (const char ∗)
• void ∗ CPLZLibDeflate (const void ∗ptr, size_t nBytes, int nLevel, void ∗outptr, size_t nOutAvailableBytes,

size_t ∗pnOutBytes)

Compress a buffer with ZLib DEFLATE compression.

• void ∗ CPLZLibInflate (const void ∗ptr, size_t nBytes, void ∗outptr, size_t nOutAvailableBytes, size_t ∗pn←↩

OutBytes)

Uncompress a buffer compressed with ZLib DEFLATE compression.

• char ∗ CPLsetlocale (int category, const char ∗locale)

13.1.1 Detailed Description

Various convenience functions for CPL.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.1 cpl_conv.h File Reference 437

13.1.2 Function Documentation

13.1.2.1 double CPLAtof (const char ∗ nptr)

Converts ASCII string to floating point number.

This function converts the initial portion of the string pointed to by nptr to double floating point representation. The
behaviour is the same as

CPLStrtod(nptr, (char ∗∗)NULL);

This function does the same as standard atof(3), but does not take locale in account. That means, the decimal
delimiter is always '.' (decimal point). Use CPLAtofDelim() (p. ??) function if you want to specify custom delimiter.

IMPORTANT NOTE. Existance of this function does not mean you should always use it. Sometimes you should
use standard locale aware atof(3) and its family. When you need to process the user's input (for example, command
line parameters) use atof(3), because user works in localized environment and her input will be done accordingly
the locale set. In particular that means we should not make assumptions about character used as decimal delimiter,
it can be either "." or ",". But when you are parsing some ASCII file in predefined format, you most likely need
CPLAtof() (p. ??), because such files distributed across the systems with different locales and floating point repre-
sentation shoudl be considered as a part of file format. If the format uses "." as a delimiter the same character must
be used when parsing number regardless of actual locale setting.

Parameters

nptr Pointer to string to convert.

Returns

Converted value, if any.

References CPLStrtod().

Referenced by OGRSpatialReference::CloneGeogCS(), CPLScanDouble(), OGRSpatialReference::exportTo←↩

PCI(), OGRSpatialReference::exportToProj4(), OGRSpatialReference::Fixup(), OGRSpatialReference::Get←↩

AngularUnits(), OGRSpatialReference::GetInvFlattening(), OGRSpatialReference::GetPrimeMeridian(), OGR←↩

SpatialReference::GetProjParm(), OGRSpatialReference::GetSemiMajor(), OGRSpatialReference::GetTarget←↩

LinearUnits(), OGRSpatialReference::GetTOWGS84(), OGRSpatialReference::importFromOzi(), OGRSpatial←↩

Reference::importFromPCI(), OGRSpatialReference::importFromProj4(), OGRSpatialReference::importFromW←↩

MSAUTO(), OGRSpatialReference::IsSameGeogCS(), OGRSpatialReference::IsSameVertCS(), OGRSpatial←↩

Reference::SetGeogCS(), and OGRSpatialReference::SetStatePlane().

13.1.2.2 double CPLAtofDelim (const char ∗ nptr, char point)

Converts ASCII string to floating point number.

This function converts the initial portion of the string pointed to by nptr to double floating point representation. The
behaviour is the same as

CPLStrtodDelim(nptr, (char ∗∗)NULL, point);

This function does the same as standard atof(3), but does not take locale in account. Instead of locale defined
decimal delimiter you can specify your own one. Also see notes for CPLAtof() (p. ??) function.

Parameters

nptr Pointer to string to convert.
point Decimal delimiter.

Returns

Converted value, if any.

References CPLStrtodDelim().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

438 File Documentation

13.1.2.3 double CPLAtofM (const char ∗ nptr)

Converts ASCII string to floating point number using any numeric locale.

This function converts the initial portion of the string pointed to by nptr to double floating point representation. This
function does the same as standard atof(), but it allows a variety of locale representations. That is it supports
numeric values with either a comma or a period for the decimal delimiter.

PS. The M stands for Multi-lingual.

Parameters

nptr The string to convert.

Returns

Converted value, if any. Zero on failure.

References CPLStrtodDelim().

Referenced by OGRSpatialReference::importFromOzi(), OGRSpatialReference::importFromProj4(), and OGR←↩

GeocodeCreateSession().

13.1.2.4 void∗ CPLCalloc (size_t nCount, size_t nSize)

Safe version of calloc().

This function is like the C library calloc(), but raises a CE_Fatal error with CPLError() (p. ??) if it fails to allocate the
desired memory. It should be used for small memory allocations that are unlikely to fail and for which the application
is unwilling to test for out of memory conditions. It uses VSICalloc() to get the memory, so any hooking of VSI←↩

Calloc() will apply to CPLCalloc() (p. ??) as well. CPLFree() or VSIFree() can be used free memory allocated by
CPLCalloc() (p. ??).

Parameters

nCount number of objects to allocate.
nSize size (in bytes) of object to allocate.

Returns

pointer to newly allocated memory, only NULL if nSize ∗ nCount is NULL.

References CPLMalloc().

Referenced by OGRSFDriverRegistrar::AutoLoadDrivers(), OGRDataSource::CopyLayer(), CPLCreateXML←↩

Node(), CPLHashSetNew(), CPLHTTPFetch(), CSLTokenizeString2(), OGR_SRSNode::exportToWkt(), OGR←↩

Polygon::exportToWkt(), OGRGeometryCollection::exportToWkt(), OGRMultiPolygon::exportToWkt(), OGRMulti←↩

LineString::exportToWkt(), OGR_SRSNode::FixupOrdering(), CPLODBCStatement::GetColumns(), OGRBuild←↩

PolygonFromEdges(), OGRFeature::OGRFeature(), OGRGeocodeCreateSession(), and OPTGetParameterList().

13.1.2.5 int CPLCheckForFile (char ∗ pszFilename, char ∗∗ papszSiblingFiles)

Check for file existance.

The function checks if a named file exists in the filesystem, hopefully in an efficient fashion if a sibling file list is
available. It exists primarily to do faster file checking for functions like GDAL open methods that get a list of files
from the target directory.

If the sibling file list exists (is not NULL) it is assumed to be a list of files in the same directory as the target file, and
it will be checked (case insensitively) for a match. If a match is found, pszFilename is updated with the correct case
and TRUE is returned.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.1 cpl_conv.h File Reference 439

If papszSiblingFiles is NULL, a VSIStatL() (p. ??) is used to test for the files existance, and no case insensitive
testing is done.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

440 File Documentation

Parameters

pszFilename name of file to check for - filename case updated in some cases.
papszSibling←↩

Files
a list of files in the same directory as pszFilename if available, or NULL. This list should have
no path components.

Returns

TRUE if a match is found, or FALSE if not.

References CPLGetFilename(), and VSIStatL().

13.1.2.6 const char∗ CPLCleanTrailingSlash (const char ∗ pszPath)

Remove trailing forward/backward slash from the path for unix/windows resp.

Returns a string containing the portion of the passed path string with trailing slash removed. If there is no path in
the passed filename an empty string will be returned (not NULL).

CPLCleanTrailingSlash("abc/def/") == "abc/def"
CPLCleanTrailingSlash("abc/def") == "abc/def"
CPLCleanTrailingSlash("c:\abc\def\") == "c:\abc\def"
CPLCleanTrailingSlash("c:\abc\def") == "c:\abc\def"
CPLCleanTrailingSlash("abc") == "abc"

Parameters

pszPath the path to be cleaned up

Returns

Path in an internal string which must not be freed. The string may be destroyed by the next CPL filename
handling call.

References CPLStrlcpy().

13.1.2.7 void CPLCloseShared (FILE ∗ fp)

Close shared file.

Dereferences the indicated file handle, and closes it if the reference count has dropped to zero. A CPLError()
(p. ??) is issued if the file is not in the shared file list.

Parameters

fp file handle from CPLOpenShared() (p. ??) to deaccess.

References CPLError(), and VSIFCloseL().

13.1.2.8 char∗∗ CPLCorrespondingPaths (const char ∗ pszOldFilename, const char ∗ pszNewFilename, char ∗∗ papszFileList
)

Identify corresponding paths.

Given a prototype old and new filename this function will attempt to determine corresponding names for a set of
other old filenames that will rename them in a similar manner. This correspondance assumes there are two possibly
kinds of renaming going on. A change of path, and a change of filename stem.

If a consistent renaming cannot be established for all the files this function will return indicating an error.

The returned file list becomes owned by the caller and should be destroyed with CSLDestroy() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.1 cpl_conv.h File Reference 441

Parameters

pszOldFilename path to old prototype file.
pszNew←↩

Filename
path to new prototype file.

papszFileList list of other files associated with pszOldFilename to rename similarly.

Returns

a list of files corresponding to papszFileList but renamed to correspond to pszNewFilename.

References CPLError(), CPLFormFilename(), CPLGetBasename(), CPLGetFilename(), CPLGetPath(), and CSL←↩

Count().

13.1.2.9 double CPLDecToPackedDMS (double dfDec)

Convert decimal degrees into packed DMS value (DDDMMMSSS.SS).

This function converts a value, specified in decimal degrees into packed DMS angle. The standard packed DMS
format is:

degrees ∗ 1000000 + minutes ∗ 1000 + seconds

See also CPLPackedDMSToDec() (p. ??).

Parameters

dfDec Angle in decimal degrees.

Returns

Angle in packed DMS format.

Referenced by OGRSpatialReference::exportToUSGS().

13.1.2.10 void CPLDumpSharedList (FILE ∗ fp)

Report open shared files.

Dumps all open shared files to the indicated file handle. If the file handle is NULL information is sent via the
CPLDebug() (p. ??) call.

Parameters

fp File handle to write to.

References CPLDebug().

13.1.2.11 const char∗ CPLExtractRelativePath (const char ∗ pszBaseDir, const char ∗ pszTarget, int ∗ pbGotRelative)

Get relative path from directory to target file.

Computes a relative path for pszTarget relative to pszBaseDir. Currently this only works if they share a common
base path. The returned path is normally into the pszTarget string. It should only be considered valid as long as
pszTarget is valid or till the next call to this function, whichever comes first.

Parameters

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

442 File Documentation

pszBaseDir the name of the directory relative to which the path should be computed. pszBaseDir may be
NULL in which case the original target is returned without relitivizing.

pszTarget the filename to be changed to be relative to pszBaseDir.
pbGotRelative Pointer to location in which a flag is placed indicating that the returned path is relative to the

basename (TRUE) or not (FALSE). This pointer may be NULL if flag is not desired.

Returns

an adjusted path or the original if it could not be made relative to the pszBaseFile's path.

References CPLIsFilenameRelative().

13.1.2.12 char∗ CPLFGets (char ∗ pszBuffer, int nBufferSize, FILE ∗ fp)

Reads in at most one less than nBufferSize characters from the fp stream and stores them into the buffer pointed
to by pszBuffer. Reading stops after an EOF or a newline. If a newline is read, it is not stored into the buffer. A '\0'
is stored after the last character in the buffer. All three types of newline terminators recognized by the CPLFGets()
(p. ??): single '\r' and '\n' and '\r\n' combination.

Parameters

pszBuffer pointer to the targeting character buffer.
nBufferSize maximum size of the string to read (not including termonating '\0').

fp file pointer to read from.

Returns

pointer to the pszBuffer containing a string read from the file or NULL if the error or end of file was encountered.

References CPLDebug().

Referenced by CPLReadLine().

13.1.2.13 const char∗ CPLFormCIFilename (const char ∗ pszPath, const char ∗ pszBasename, const char ∗ pszExtension)

Case insensitive file searching, returing full path.

This function tries to return the path to a file regardless of whether the file exactly matches the basename, and
extension case, or is all upper case, or all lower case. The path is treated as case sensitive. This function is
equivelent to CPLFormFilename() (p. ??) on case insensitive file systems (like Windows).

Parameters

pszPath directory path to the directory containing the file. This may be relative or absolute, and may
have a trailing path separator or not. May be NULL.

pszBasename file basename. May optionally have path and/or extension. May not be NULL.
pszExtension file extension, optionally including the period. May be NULL.

Returns

a fully formed filename in an internal static string. Do not modify or free the returned string. The string may be
destroyed by the next CPL call.

References CPLFormFilename(), CPLMalloc(), VSIIsCaseSensitiveFS(), and VSIStatExL().

13.1.2.14 const char∗ CPLFormFilename (const char ∗ pszPath, const char ∗ pszBasename, const char ∗ pszExtension)

Build a full file path from a passed path, file basename and extension.

The path, and extension are optional. The basename may in fact contain an extension if desired.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.1 cpl_conv.h File Reference 443

CPLFormFilename("abc/xyz","def", ".dat") == "abc/xyz/def.dat"
CPLFormFilename(NULL,"def", NULL) == "def"
CPLFormFilename(NULL,"abc/def.dat", NULL) == "abc/def.dat"
CPLFormFilename("/abc/xyz/","def.dat", NULL) == "/abc/xyz/def.dat"

Parameters

pszPath directory path to the directory containing the file. This may be relative or absolute, and may
have a trailing path separator or not. May be NULL.

pszBasename file basename. May optionally have path and/or extension. Must NOT be NULL.
pszExtension file extension, optionally including the period. May be NULL.

Returns

a fully formed filename in an internal static string. Do not modify or free the returned string. The string may be
destroyed by the next CPL call.

References CPLStrlcat(), and CPLStrlcpy().

Referenced by OGRSFDriverRegistrar::AutoLoadDrivers(), CPLCorrespondingPaths(), CPLFormCIFilename(), C←↩

PLGenerateTempFilename(), and CPLUnlinkTree().

13.1.2.15 const char∗ CPLGenerateTempFilename (const char ∗ pszStem)

Generate temporary file name.

Returns a filename that may be used for a temporary file. The location of the file tries to follow operating system
semantics but may be forced via the CPL_TMPDIR configuration option.

Parameters

pszStem if non-NULL this will be part of the filename.

Returns

a filename which is valid till the next CPL call in this thread.

References CPLFormFilename(), and CPLGetConfigOption().

13.1.2.16 const char∗ CPLGetBasename (const char ∗ pszFullFilename)

Extract basename (non-directory, non-extension) portion of filename.

Returns a string containing the file basename portion of the passed name. If there is no basename (passed value
ends in trailing directory separator, or filename starts with a dot) an empty string is returned.

CPLGetBasename("abc/def.xyz") == "def"
CPLGetBasename("abc/def") == "def"
CPLGetBasename("abc/def/") == ""

Parameters

pszFullFilename the full filename potentially including a path.

Returns

just the non-directory, non-extension portion of the path in an internal string which must not be freed. The
string may be destroyed by the next CPL filename handling call.

References CPLStrlcpy().

Referenced by OGRSFDriverRegistrar::AutoLoadDrivers(), and CPLCorrespondingPaths().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

444 File Documentation

13.1.2.17 const char∗ CPLGetConfigOption (const char ∗ pszKey, const char ∗ pszDefault)

Get the value of a configuration option.

The value is the value of a (key, value) option set with CPLSetConfigOption() (p. ??). If the given option was no
defined with CPLSetConfigOption() (p. ??), it tries to find it in environment variables.

Note: the string returned by CPLGetConfigOption() (p. ??) might be short-lived, and in particular it will become
invalid after a call to CPLSetConfigOption() (p. ??) with the same key.

To override temporary a potentially existing option with a new value, you can use the following snippet :

// backup old value
const char* pszOldValTmp = CPLGetConfigOption(pszKey, NULL);
char* pszOldVal = pszOldValTmp ? CPLStrdup(pszOldValTmp) : NULL;
// override with new value
CPLSetConfigOption(pszKey, pszNewVal);
// do something usefull
// restore old value
CPLSetConfigOption(pszKey, pszOldVal);
CPLFree(pszOldVal);

Parameters

pszKey the key of the option to retrieve
pszDefault a default value if the key does not match existing defined options (may be NULL)

Returns

the value associated to the key, or the default value if not found

See also

CPLSetConfigOption() (p. ??), http://trac.osgeo.org/gdal/wiki/ConfigOptions

Referenced by OGRGeometryFactory::approximateArcAngles(), OGRSFDriverRegistrar::AutoLoadDrivers(), CP←↩

LDebug(), CPLGenerateTempFilename(), CPLHTTPFetch(), OGRSpatialReference::exportToProj4(), GOA2Get←↩

AccessToken(), GOA2GetAuthorizationURL(), GOA2GetRefreshToken(), OGRSpatialReference::morphFromES←↩

RI(), OGR_G_CreateFromGML(), OGRGeometryFactory::organizePolygons(), OGRSFDriverRegistrar::Register←↩

Driver(), OGRFeature::SetField(), OGRLineString::transform(), and OGRSpatialReference::Validate().

13.1.2.18 char∗ CPLGetCurrentDir (void)

Get the current working directory name.

Returns

a pointer to buffer, containing current working directory path or NULL in case of error. User is responsible to
free that buffer after usage with CPLFree() function. If HAVE_GETCWD macro is not defined, the function
returns NULL.

References CPLMalloc().

13.1.2.19 const char∗ CPLGetDirname (const char ∗ pszFilename)

Extract directory path portion of filename.

Returns a string containing the directory path portion of the passed filename. If there is no path in the passed
filename the dot will be returned. It is the only difference from CPLGetPath() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.1 cpl_conv.h File Reference 445

CPLGetDirname("abc/def.xyz") == "abc"
CPLGetDirname("/abc/def/") == "/abc/def"
CPLGetDirname("/") == "/"
CPLGetDirname("/abc/def") == "/abc"
CPLGetDirname("abc") == "."

Parameters

pszFilename the filename potentially including a path.

Returns

Path in an internal string which must not be freed. The string may be destroyed by the next CPL filename
handling call. The returned will generally not contain a trailing path separator.

References CPLStrlcpy().

Referenced by OGRSFDriverRegistrar::AutoLoadDrivers().

13.1.2.20 int CPLGetExecPath (char ∗ pszPathBuf, int nMaxLength)

Fetch path of executable.

The path to the executable currently running is returned. This path includes the name of the executable. Currently
this only works on win32 and linux platforms. The returned path is UTF-8 encoded.

Parameters

pszPathBuf the buffer into which the path is placed.
nMaxLength the buffer size, MAX_PATH+1 is suggested.

Returns

FALSE on failure or TRUE on success.

Referenced by OGRSFDriverRegistrar::AutoLoadDrivers().

13.1.2.21 const char∗ CPLGetExtension (const char ∗ pszFullFilename)

Extract filename extension from full filename.

Returns a string containing the extention portion of the passed name. If there is no extension (the filename has no
dot) an empty string is returned. The returned extension will not include the period.

CPLGetExtension("abc/def.xyz") == "xyz"
CPLGetExtension("abc/def") == ""

Parameters

pszFullFilename the full filename potentially including a path.

Returns

just the extension portion of the path in an internal string which must not be freed. The string may be destroyed
by the next CPL filename handling call.

References CPLStrlcpy().

Referenced by OGRSFDriverRegistrar::AutoLoadDrivers(), and OGRGeocodeCreateSession().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

446 File Documentation

13.1.2.22 const char∗ CPLGetFilename (const char ∗ pszFullFilename)

Extract non-directory portion of filename.

Returns a string containing the bare filename portion of the passed filename. If there is no filename (passed value
ends in trailing directory separator) an empty string is returned.

CPLGetFilename("abc/def.xyz") == "def.xyz"
CPLGetFilename("/abc/def/") == ""
CPLGetFilename("abc/def") == "def"

Parameters

pszFullFilename the full filename potentially including a path.

Returns

just the non-directory portion of the path (points back into original string).

Referenced by CPLCheckForFile(), and CPLCorrespondingPaths().

13.1.2.23 const char∗ CPLGetPath (const char ∗ pszFilename)

Extract directory path portion of filename.

Returns a string containing the directory path portion of the passed filename. If there is no path in the passed
filename an empty string will be returned (not NULL).

CPLGetPath("abc/def.xyz") == "abc"
CPLGetPath("/abc/def/") == "/abc/def"
CPLGetPath("/") == "/"
CPLGetPath("/abc/def") == "/abc"
CPLGetPath("abc") == ""

Parameters

pszFilename the filename potentially including a path.

Returns

Path in an internal string which must not be freed. The string may be destroyed by the next CPL filename
handling call. The returned will generally not contain a trailing path separator.

References CPLStrlcpy().

Referenced by CPLCorrespondingPaths().

13.1.2.24 CPLSharedFileInfo∗ CPLGetSharedList (int ∗ pnCount)

Fetch list of open shared files.

Parameters

pnCount place to put the count of entries.

Returns

the pointer to the first in the array of shared file info structures.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.1 cpl_conv.h File Reference 447

13.1.2.25 void∗ CPLGetSymbol (const char ∗ pszLibrary, const char ∗ pszSymbolName)

Fetch a function pointer from a shared library / DLL.

This function is meant to abstract access to shared libraries and DLLs and performs functions similar to
dlopen()/dlsym() on Unix and LoadLibrary() / GetProcAddress() on Windows.

If no support for loading entry points from a shared library is available this function will always return NULL. Rules
on when this function issues a CPLError() (p. ??) or not are not currently well defined, and will have to be resolved
in the future.

Currently CPLGetSymbol() (p. ??) doesn't try to:

• prevent the reference count on the library from going up for every request, or given any opportunity to unload
the library.

• Attempt to look for the library in non-standard locations.

• Attempt to try variations on the symbol name, like pre-prending or post-pending an underscore.

Some of these issues may be worked on in the future.

Parameters

pszLibrary the name of the shared library or DLL containing the function. May contain path to file. If not
system supplies search paths will be used.

pszSymbolName the name of the function to fetch a pointer to.

Returns

A pointer to the function if found, or NULL if the function isn't found, or the shared library can't be loaded.

References CPLError().

Referenced by OGRSFDriverRegistrar::AutoLoadDrivers().

13.1.2.26 int CPLIsFilenameRelative (const char ∗ pszFilename)

Is filename relative or absolute?

The test is filesystem convention agnostic. That is it will test for Unix style and windows style path conventions
regardless of the actual system in use.

Parameters

pszFilename the filename with path to test.

Returns

TRUE if the filename is relative or FALSE if it is absolute.

Referenced by CPLExtractRelativePath(), and CPLProjectRelativeFilename().

13.1.2.27 void∗ CPLMalloc (size_t nSize)

Safe version of malloc().

This function is like the C library malloc(), but raises a CE_Fatal error with CPLError() (p. ??) if it fails to allocate the
desired memory. It should be used for small memory allocations that are unlikely to fail and for which the application
is unwilling to test for out of memory conditions. It uses VSIMalloc() to get the memory, so any hooking of VSI←↩

Malloc() will apply to CPLMalloc() (p. ??) as well. CPLFree() or VSIFree() can be used free memory allocated by
CPLMalloc() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

448 File Documentation

Parameters

nSize size (in bytes) of memory block to allocate.

Returns

pointer to newly allocated memory, only NULL if nSize is zero.

References CPLEmergencyError(), and CPLError().

Referenced by CPLStringList::AddNameValue(), OGRDataSource::CopyLayer(), CPLBinaryToHex(), CPLCalloc(),
CPLEscapeString(), CPLForceToASCII(), CPLFormCIFilename(), CPLGetCurrentDir(), CPLHashSetNew(), C←↩

PLListAppend(), CPLListInsert(), CPLParseNameValue(), CPLPrintTime(), CPLPushErrorHandlerEx(), CPL←↩

QuadTreeCreate(), CPLScanDouble(), CPLScanLong(), CPLScanString(), CPLScanUIntBig(), CPLScanULong(),
CPLSerializeXMLTree(), CPLStrdup(), CPLUnescapeString(), CSLDuplicate(), CSLSetNameValue(), CSLSet←↩

NameValueSeparator(), OGRSpatialReference::exportToPCI(), OGRSpatialReference::exportToUSGS(), OGR←↩

_SRSNode::exportToWkt(), CPLODBCStatement::Fetch(), OGRSpatialReference::importFromCRSURL(), OG←↩

RSpatialReference::importFromPanorama(), OGRSpatialReference::importFromPCI(), CPLODBCDriverInstaller←↩

::InstallDriver(), OGRSpatialReference::morphToESRI(), OGR_G_ExportToGMLEx(), OGR_G_ExportToKML(),
OGRFeature::OGRFeature(), OGRFeatureDefn::OGRFeatureDefn(), OGRLayer::ReorderField(), OGRFeature←↩

Defn::ReorderFieldDefns(), OGRFeature::SetField(), OGRSpatialReference::SetFromUserInput(), CPLStringList←↩

::SetNameValue(), and OGRProj4CT::Transform().

13.1.2.28 FILE∗ CPLOpenShared (const char ∗ pszFilename, const char ∗ pszAccess, int bLarge)

Open a shared file handle.

Some operating systems have limits on the number of file handles that can be open at one time. This function
attempts to maintain a registry of already open file handles, and reuse existing ones if the same file is requested by
another part of the application.

Note that access is only shared for access types "r", "rb", "r+" and "rb+". All others will just result in direct VSIOpen()
calls. Keep in mind that a file is only reused if the file name is exactly the same. Different names referring to the
same file will result in different handles.

The VSIFOpen() or VSIFOpenL() (p. ??) function is used to actually open the file, when an existing file handle can't
be shared.

Parameters

pszFilename the name of the file to open.
pszAccess the normal fopen()/VSIFOpen() style access string.

bLarge If TRUE VSIFOpenL() (p. ??) (for large files) will be used instead of VSIFOpen().

Returns

a file handle or NULL if opening fails.

References CPLRealloc(), CPLStrdup(), and VSIFOpenL().

13.1.2.29 double CPLPackedDMSToDec (double dfPacked)

Convert a packed DMS value (DDDMMMSSS.SS) into decimal degrees.

This function converts a packed DMS angle to seconds. The standard packed DMS format is:

degrees ∗ 1000000 + minutes ∗ 1000 + seconds

Example: ang = 120025045.25 yields deg = 120 min = 25 sec = 45.25

The algorithm used for the conversion is as follows:

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.1 cpl_conv.h File Reference 449

1. The absolute value of the angle is used.

2. The degrees are separated out: deg = ang/1000000 (fractional portion truncated)

3. The minutes are separated out: min = (ang - deg ∗ 1000000) / 1000 (fractional portion truncated)

4. The seconds are then computed: sec = ang - deg ∗ 1000000 - min ∗ 1000

5. The total angle in seconds is computed: sec = deg ∗ 3600.0 + min ∗ 60.0 + sec

6. The sign of sec is set to that of the input angle.

Packed DMS values used by the USGS GCTP package and probably by other software.

NOTE: This code does not validate input value. If you give the wrong value, you will get the wrong result.

Parameters

dfPacked Angle in packed DMS format.

Returns

Angle in decimal degrees.

Referenced by OGRSpatialReference::importFromUSGS().

13.1.2.30 int CPLPrintDouble (char ∗ pszBuffer, const char ∗ pszFormat, double dfValue, const char ∗ pszLocale)

Print double value into specified string buffer. Exponential character flag 'E' (or 'e') will be replaced with 'D', as in
Fortran. Resulting string will not to be NULL-terminated.

Parameters

pszBuffer Pointer to the destination string buffer. Should be large enough to hold the resulting string.
Note, that the string will not be NULL-terminated, so user should do this himself, if needed.

pszFormat Format specifier (for example, "%16.9E").
dfValue Numerical value to print.

pszLocale Pointer to a character string containing locale name ("C", "POSIX", "us_US", "ru_RU.KOI8-R"
etc.). If NULL we will not manipulate with locale settings and current process locale will be
used for printing. With the pszLocale option we can control what exact locale will be used for
printing a numeric value to the string (in most cases it should be C/POSIX).

Returns

Number of characters printed.

References CPLPrintString(), and CPLsetlocale().

13.1.2.31 int CPLPrintInt32 (char ∗ pszBuffer, GInt32 iValue, int nMaxLen)

Print GInt32 value into specified string buffer. This string will not be NULL-terminated.

Parameters

pszBuffer Pointer to the destination string buffer. Should be large enough to hold the resulting string.
Note, that the string will not be NULL-terminated, so user should do this himself, if needed.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

450 File Documentation

iValue Numerical value to print.
nMaxLen Maximum length of the resulting string. If string length is greater than nMaxLen, it will be

truncated.

Returns

Number of characters printed.

References CPLPrintString().

Referenced by OGRSpatialReference::exportToPCI().

13.1.2.32 int CPLPrintPointer (char ∗ pszBuffer, void ∗ pValue, int nMaxLen)

Print pointer value into specified string buffer. This string will not be NULL-terminated.

Parameters

pszBuffer Pointer to the destination string buffer. Should be large enough to hold the resulting string.
Note, that the string will not be NULL-terminated, so user should do this himself, if needed.

pValue Pointer to ASCII encode.
nMaxLen Maximum length of the resulting string. If string length is greater than nMaxLen, it will be

truncated.

Returns

Number of characters printed.

References CPLPrintString().

13.1.2.33 int CPLPrintString (char ∗ pszDest, const char ∗ pszSrc, int nMaxLen)

Copy the string pointed to by pszSrc, NOT including the terminating ‘\0' character, to the array pointed to by pszDest.

Parameters

pszDest Pointer to the destination string buffer. Should be large enough to hold the resulting string.
pszSrc Pointer to the source buffer.

nMaxLen Maximum length of the resulting string. If string length is greater than nMaxLen, it will be
truncated.

Returns

Number of characters printed.

Referenced by CPLPrintDouble(), CPLPrintInt32(), CPLPrintPointer(), CPLPrintTime(), and CPLPrintUIntBig().

13.1.2.34 int CPLPrintStringFill (char ∗ pszDest, const char ∗ pszSrc, int nMaxLen)

Copy the string pointed to by pszSrc, NOT including the terminating ‘\0' character, to the array pointed to by pszDest.
Remainder of the destination string will be filled with space characters. This is only difference from the PrintString().

Parameters

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.1 cpl_conv.h File Reference 451

pszDest Pointer to the destination string buffer. Should be large enough to hold the resulting string.
pszSrc Pointer to the source buffer.

nMaxLen Maximum length of the resulting string. If string length is greater than nMaxLen, it will be
truncated.

Returns

Number of characters printed.

Referenced by OGRSpatialReference::exportToPCI().

13.1.2.35 int CPLPrintTime (char ∗ pszBuffer, int nMaxLen, const char ∗ pszFormat, const struct tm ∗ poBrokenTime, const
char ∗ pszLocale)

Print specified time value accordingly to the format options and specified locale name. This function does following:

• if locale parameter is not NULL, the current locale setting will be stored and replaced with the specified one;

• format time value with the strftime(3) function;

• restore back current locale, if was saved.

Parameters

pszBuffer Pointer to the destination string buffer. Should be large enough to hold the resulting string.
Note, that the string will not be NULL-terminated, so user should do this himself, if needed.

nMaxLen Maximum length of the resulting string. If string length is greater than nMaxLen, it will be
truncated.

pszFormat Controls the output format. Options are the same as for strftime(3) function.
poBrokenTime Pointer to the broken-down time structure. May be requested with the VSIGMTime() and

VSILocalTime() functions.
pszLocale Pointer to a character string containing locale name ("C", "POSIX", "us_US", "ru_RU.KOI8-R"

etc.). If NULL we will not manipulate with locale settings and current process locale will be
used for printing. Be aware that it may be unsuitable to use current locale for printing time,
because all names will be printed in your native language, as well as time format settings also
may be ajusted differently from the C/POSIX defaults. To solve these problems this option
was introdiced.

Returns

Number of characters printed.

References CPLMalloc(), CPLPrintString(), and CPLsetlocale().

13.1.2.36 int CPLPrintUIntBig (char ∗ pszBuffer, GUIntBig iValue, int nMaxLen)

Print GUIntBig value into specified string buffer. This string will not be NULL-terminated.

Parameters

pszBuffer Pointer to the destination string buffer. Should be large enough to hold the resulting string.
Note, that the string will not be NULL-terminated, so user should do this himself, if needed.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

452 File Documentation

iValue Numerical value to print.
nMaxLen Maximum length of the resulting string. If string length is greater than nMaxLen, it will be

truncated.

Returns

Number of characters printed.

References CPLPrintString().

13.1.2.37 const char∗ CPLProjectRelativeFilename (const char ∗ pszProjectDir, const char ∗ pszSecondaryFilename)

Find a file relative to a project file.

Given the path to a "project" directory, and a path to a secondary file referenced from that project, build a path to the
secondary file that the current application can use. If the secondary path is already absolute, rather than relative,
then it will be returned unaltered.

Examples:

CPLProjectRelativeFilename("abc/def","tmp/abc.gif") == "abc/def/tmp/abc.gif"
CPLProjectRelativeFilename("abc/def","/tmp/abc.gif") == "/tmp/abc.gif"
CPLProjectRelativeFilename("/xy", "abc.gif") == "/xy/abc.gif"
CPLProjectRelativeFilename("/abc/def","../abc.gif") == "/abc/def/../abc.gif"
CPLProjectRelativeFilename("C:\WIN","abc.gif") == "C:\WIN\abc.gif"

Parameters

pszProjectDir the directory relative to which the secondary files path should be interpreted.
pszSecondary←↩

Filename
the filename (potentially with path) that is to be interpreted relative to the project directory.

Returns

a composed path to the secondary file. The returned string is internal and should not be altered, freed, or
depending on past the next CPL call.

References CPLIsFilenameRelative(), CPLStrlcat(), and CPLStrlcpy().

13.1.2.38 const char∗ CPLReadLine (FILE ∗ fp)

Simplified line reading from text file.

Read a line of text from the given file handle, taking care to capture CR and/or LF and strip off ... equivelent of
DKReadLine(). Pointer to an internal buffer is returned. The application shouldn't free it, or depend on it's value
past the next call to CPLReadLine() (p. ??).

Note that CPLReadLine() (p. ??) uses VSIFGets(), so any hooking of VSI file services should apply to CPLRead←↩

Line() (p. ??) as well.

CPLReadLine() (p. ??) maintains an internal buffer, which will appear as a single block memory leak in some
circumstances. CPLReadLine() (p. ??) may be called with a NULL FILE ∗ at any time to free this working buffer.

Parameters

fp file pointer opened with VSIFOpen().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.1 cpl_conv.h File Reference 453

Returns

pointer to an internal buffer containing a line of text read from the file or NULL if the end of file was encountered.

References CPLFGets().

Referenced by OGRSpatialReference::importFromDict().

13.1.2.39 const char∗ CPLReadLine2L (VSILFILE ∗ fp, int nMaxCars, char ∗∗ papszOptions)

Simplified line reading from text file.

Similar to CPLReadLine() (p. ??), but reading from a large file API handle.

Parameters

fp file pointer opened with VSIFOpenL() (p. ??).
nMaxCars maximum number of characters allowed, or -1 for no limit.

papszOptions NULL-terminated array of options. Unused for now.

Returns

pointer to an internal buffer containing a line of text read from the file or NULL if the end of file was encountered
or the maximum number of characters allowed readched.

Since

GDAL 1.7.0

References CPLError(), VSIFReadL(), VSIFSeekL(), and VSIFTellL().

Referenced by CPLReadLineL(), and CSLLoad2().

13.1.2.40 const char∗ CPLReadLineL (VSILFILE ∗ fp)

Simplified line reading from text file.

Similar to CPLReadLine() (p. ??), but reading from a large file API handle.

Parameters

fp file pointer opened with VSIFOpenL() (p. ??).

Returns

pointer to an internal buffer containing a line of text read from the file or NULL if the end of file was encountered.

References CPLReadLine2L().

Referenced by CSLLoad2().

13.1.2.41 void∗ CPLRealloc (void ∗ pData, size_t nNewSize)

Safe version of realloc().

This function is like the C library realloc(), but raises a CE_Fatal error with CPLError() (p. ??) if it fails to allocate the
desired memory. It should be used for small memory allocations that are unlikely to fail and for which the application

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

454 File Documentation

is unwilling to test for out of memory conditions. It uses VSIRealloc() to get the memory, so any hooking of VSI←↩

Realloc() will apply to CPLRealloc() (p. ??) as well. CPLFree() or VSIFree() can be used free memory allocated by
CPLRealloc() (p. ??).

It is also safe to pass NULL in as the existing memory block for CPLRealloc() (p. ??), in which case it uses VSI←↩

Malloc() to allocate a new block.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.1 cpl_conv.h File Reference 455

Parameters

pData existing memory block which should be copied to the new block.
nNewSize new size (in bytes) of memory block to allocate.

Returns

pointer to allocated memory, only NULL if nNewSize is zero.

References CPLEmergencyError(), and CPLError().

Referenced by OGRFeatureDefn::AddFieldDefn(), OGRFeatureDefn::AddGeomFieldDefn(), CPLHTTPParse←↩

MultipartMime(), CPLOpenShared(), CSLTokenizeString2(), OGRDataSource::ExecuteSQL(), OGRMulti←↩

Point::exportToWkt(), CPLODBCStatement::Fetch(), OGRSpatialReference::importFromESRI(), OGRPolygon←↩

::importFromWkt(), OGR_SRSNode::InsertChild(), OGRSFDriverRegistrar::RegisterDriver(), and OGRProj4CT::←↩

TransformEx().

13.1.2.42 const char∗ CPLResetExtension (const char ∗ pszPath, const char ∗ pszExt)

Replace the extension with the provided one.

Parameters

pszPath the input path, this string is not altered.
pszExt the new extension to apply to the given path.

Returns

an altered filename with the new extension. Do not modify or free the returned string. The string may be
destroyed by the next CPL call.

References CPLStrlcat(), and CPLStrlcpy().

13.1.2.43 double CPLScanDouble (const char ∗ pszString, int nMaxLength)

Extract double from string.

Scan up to a maximum number of characters from a string and convert the result to a double. This function uses
CPLAtof() (p. ??) to convert string to double value, so it uses a comma as a decimal delimiter.

Parameters

pszString String containing characters to be scanned. It may be terminated with a null character.
nMaxLength The maximum number of character to consider as part of the number. Less characters will

be considered if a null character is encountered.

Returns

Double value, converted from its ASCII form.

References CPLAtof(), and CPLMalloc().

13.1.2.44 long CPLScanLong (const char ∗ pszString, int nMaxLength)

Scan up to a maximum number of characters from a string and convert the result to a long.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

456 File Documentation

Parameters

pszString String containing characters to be scanned. It may be terminated with a null character.
nMaxLength The maximum number of character to consider as part of the number. Less characters will

be considered if a null character is encountered.

Returns

Long value, converted from its ASCII form.

References CPLMalloc().

Referenced by OGRSpatialReference::importFromPCI().

13.1.2.45 void∗ CPLScanPointer (const char ∗ pszString, int nMaxLength)

Extract pointer from string.

Scan up to a maximum number of characters from a string and convert the result to a pointer.

Parameters

pszString String containing characters to be scanned. It may be terminated with a null character.
nMaxLength The maximum number of character to consider as part of the number. Less characters will

be considered if a null character is encountered.

Returns

pointer value, converted from its ASCII form.

References CPLScanUIntBig(), and CPLScanULong().

13.1.2.46 char∗ CPLScanString (const char ∗ pszString, int nMaxLength, int bTrimSpaces, int bNormalize)

Scan up to a maximum number of characters from a given string, allocate a buffer for a new string and fill it with
scanned characters.

Parameters

pszString String containing characters to be scanned. It may be terminated with a null character.
nMaxLength The maximum number of character to read. Less characters will be read if a null character is

encountered.
bTrimSpaces If TRUE, trim ending spaces from the input string. Character considered as empty using

isspace(3) function.
bNormalize If TRUE, replace ':' symbol with the '_'. It is needed if resulting string will be used in CPL

dictionaries.

Returns

Pointer to the resulting string buffer. Caller responsible to free this buffer with CPLFree().

References CPLMalloc(), and CPLStrdup().

13.1.2.47 GUIntBig CPLScanUIntBig (const char ∗ pszString, int nMaxLength)

Extract big integer from string.

Scan up to a maximum number of characters from a string and convert the result to a GUIntBig.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.1 cpl_conv.h File Reference 457

Parameters

pszString String containing characters to be scanned. It may be terminated with a null character.
nMaxLength The maximum number of character to consider as part of the number. Less characters will

be considered if a null character is encountered.

Returns

GUIntBig value, converted from its ASCII form.

References CPLMalloc().

Referenced by CPLScanPointer().

13.1.2.48 unsigned long CPLScanULong (const char ∗ pszString, int nMaxLength)

Scan up to a maximum number of characters from a string and convert the result to a unsigned long.

Parameters

pszString String containing characters to be scanned. It may be terminated with a null character.
nMaxLength The maximum number of character to consider as part of the number. Less characters will

be considered if a null character is encountered.

Returns

Unsigned long value, converted from its ASCII form.

References CPLMalloc().

Referenced by CPLScanPointer().

13.1.2.49 void CPLSetConfigOption (const char ∗ pszKey, const char ∗ pszValue)

Set a configuration option for GDAL/OGR use.

Those options are defined as a (key, value) couple. The value corresponding to a key can be got later with the
CPLGetConfigOption() (p. ??) method.

This mechanism is similar to environment variables, but options set with CPLSetConfigOption() (p. ??) overrides,
for CPLGetConfigOption() (p. ??) point of view, values defined in the environment.

If CPLSetConfigOption() (p. ??) is called several times with the same key, the value provided during the last call
will be used.

Options can also be passed on the command line of most GDAL utilities with the with '–config KEY VALUE'. For
example, ogrinfo –config CPL_DEBUG ON ∼/data/test/point.shp

This function can also be used to clear a setting by passing NULL as the value (note: passing NULL will not unset
an existing environment variable; it will just unset a value previously set by CPLSetConfigOption() (p. ??)).

Parameters

pszKey the key of the option
pszValue the value of the option, or NULL to clear a setting.

See also

http://trac.osgeo.org/gdal/wiki/ConfigOptions

References CSLSetNameValue().

Referenced by CPLHTTPFetch().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

458 File Documentation

13.1.2.50 char∗ CPLsetlocale (int category, const char ∗ locale)

Prevents parallel executions of setlocale().

Calling setlocale() concurrently from two or more threads is a potential data race. A mutex is used to provide a
critical region so that only one thread at a time can be executing setlocale().

Parameters

category See your compiler's documentation on setlocale.
locale See your compiler's documentation on setlocale.

Returns

See your compiler's documentation on setlocale.

Referenced by CPLPrintDouble(), and CPLPrintTime().

13.1.2.51 void CPLSetThreadLocalConfigOption (const char ∗ pszKey, const char ∗ pszValue)

Set a configuration option for GDAL/OGR use.

Those options are defined as a (key, value) couple. The value corresponding to a key can be got later with the
CPLGetConfigOption() (p. ??) method.

This function sets the configuration option that only applies in the current thread, as opposed to CPLSetConfig←↩

Option() (p. ??) which sets an option that applies on all threads.

This function can also be used to clear a setting by passing NULL as the value (note: passing NULL will not unset
an existing environment variable; it will just unset a value previously set by CPLSetThreadLocalConfigOption()
(p. ??)).

Parameters

pszKey the key of the option
pszValue the value of the option, or NULL to clear a setting.

References CSLSetNameValue().

13.1.2.52 char∗ CPLStrdup (const char ∗ pszString)

Safe version of strdup() function.

This function is similar to the C library strdup() function, but if the memory allocation fails it will issue a CE_Fatal
error with CPLError() (p. ??) instead of returning NULL. It uses VSIStrdup(), so any hooking of that function will
apply to CPLStrdup() (p. ??) as well. Memory allocated with CPLStrdup() (p. ??) can be freed with CPLFree() or
VSIFree().

It is also safe to pass a NULL string into CPLStrdup() (p. ??). CPLStrdup() (p. ??) will allocate and return a zero
length string (as opposed to a NULL string).

Parameters

pszString input string to be duplicated. May be NULL.

Returns

pointer to a newly allocated copy of the string. Free with CPLFree() or VSIFree().

References CPLError(), and CPLMalloc().

Referenced by OGRStyleMgr::AddPart(), CPLStringList::AddString(), CPLCreateXMLNode(), CPLEscapeString(),
CPLHTTPFetch(), CPLOpenShared(), CPLRecode(), CPLScanString(), CPLSetXMLValue(), CPLUnlinkTree(),

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.1 cpl_conv.h File Reference 459

CSLDuplicate(), CSLLoad2(), OGRSpatialReference::exportToPCI(), OGRSpatialReference::exportToPretty←↩

Wkt(), OGRSpatialReference::exportToProj4(), OGRSpatialReference::exportToWkt(), OGRPoint::exportToWkt(),
OGRLineString::exportToWkt(), OGRPolygon::exportToWkt(), OGRGeometryCollection::exportToWkt(), OGR←↩

MultiPolygon::exportToWkt(), OGRMultiPoint::exportToWkt(), OGRMultiLineString::exportToWkt(), CPLODBC←↩

Statement::GetColumns(), OGRLayer::GetFeature(), OGRFeature::GetFieldAsString(), GOA2GetAccessToken(),
GOA2GetAuthorizationURL(), GOA2GetRefreshToken(), OGRSpatialReference::importFromCRSURL(), OGR←↩

SpatialReference::importFromESRI(), OGRSpatialReference::importFromProj4(), OGRSpatialReference::import←↩

FromURN(), OGRStyleMgr::InitStyleString(), CPLStringList::InsertString(), OGRSpatialReference::morphFromE←↩

SRI(), OGRSpatialReference::morphToESRI(), OGR_G_ExportToGMLEx(), OGR_G_ExportToJsonEx(), OGR_←↩

G_ExportToKML(), OGR_SRSNode::OGR_SRSNode(), OGRFeatureDefn::OGRFeatureDefn(), OGRGeocode←↩

CreateSession(), OGRLayer::SetAttributeFilter(), OGRUnionLayer::SetAttributeFilter(), OGRFeature::SetField(),
OGRSpatialReference::SetFromUserInput(), OGRSpatialReference::SetLinearUnitsAndUpdateParameters(), O←↩

GRFieldDefn::SetName(), OGRGeomFieldDefn::SetName(), OGRFeature::SetStyleString(), OGR_SRSNode::←↩

SetValue(), and VSIReadDirRecursive().

13.1.2.53 char∗ CPLStrlwr (char ∗ pszString)

Convert each characters of the string to lower case.

For example, "ABcdE" will be converted to "abcde". This function is locale dependent.

Parameters

pszString input string to be converted.

Returns

pointer to the same string, pszString.

13.1.2.54 double CPLStrtod (const char ∗ nptr, char ∗∗ endptr)

Converts ASCII string to floating point number.

This function converts the initial portion of the string pointed to by nptr to double floating point representation. This
function does the same as standard strtod(3), but does not take locale in account. That means, the decimal delimiter
is always '.' (decimal point). Use CPLStrtodDelim() (p. ??) function if you want to specify custom delimiter. Also
see notes for CPLAtof() (p. ??) function.

Parameters

nptr Pointer to string to convert.
endptr If is not NULL, a pointer to the character after the last character used in the conversion is

stored in the location referenced by endptr.

Returns

Converted value, if any.

References CPLStrtodDelim().

Referenced by CPLAtof(), and OGRFeature::SetField().

13.1.2.55 double CPLStrtodDelim (const char ∗ nptr, char ∗∗ endptr, char point)

Converts ASCII string to floating point number using specified delimiter.

This function converts the initial portion of the string pointed to by nptr to double floating point representation. This
function does the same as standard strtod(3), but does not take locale in account. Instead of locale defined decimal
delimiter you can specify your own one. Also see notes for CPLAtof() (p. ??) function.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

460 File Documentation

Parameters

nptr Pointer to string to convert.
endptr If is not NULL, a pointer to the character after the last character used in the conversion is

stored in the location referenced by endptr.
point Decimal delimiter.

Returns

Converted value, if any.

Referenced by CPLAtofDelim(), CPLAtofM(), CPLStrtod(), and CPLStrtofDelim().

13.1.2.56 float CPLStrtof (const char ∗ nptr, char ∗∗ endptr)

Converts ASCII string to floating point number.

This function converts the initial portion of the string pointed to by nptr to single floating point representation. This
function does the same as standard strtof(3), but does not take locale in account. That means, the decimal delimiter
is always '.' (decimal point). Use CPLStrtofDelim() (p. ??) function if you want to specify custom delimiter. Also
see notes for CPLAtof() (p. ??) function.

Parameters

nptr Pointer to string to convert.
endptr If is not NULL, a pointer to the character after the last character used in the conversion is

stored in the location referenced by endptr.

Returns

Converted value, if any.

References CPLStrtofDelim().

13.1.2.57 float CPLStrtofDelim (const char ∗ nptr, char ∗∗ endptr, char point)

Converts ASCII string to floating point number using specified delimiter.

This function converts the initial portion of the string pointed to by nptr to single floating point representation. This
function does the same as standard strtof(3), but does not take locale in account. Instead of locale defined decimal
delimiter you can specify your own one. Also see notes for CPLAtof() (p. ??) function.

Parameters

nptr Pointer to string to convert.
endptr If is not NULL, a pointer to the character after the last character used in the conversion is

stored in the location referenced by endptr.
point Decimal delimiter.

Returns

Converted value, if any.

References CPLStrtodDelim().

Referenced by CPLStrtof().

13.1.2.58 int CPLUnlinkTree (const char ∗ pszPath)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.2 cpl_error.h File Reference 461

Returns

0 on successful completion, -1 if function fails.

References CPLError(), CPLFormFilename(), CPLStrdup(), CSLDestroy(), VSIRmdir(), VSIStatL(), and VSIUnlink().

13.1.2.59 void∗ CPLZLibDeflate (const void ∗ ptr, size_t nBytes, int nLevel, void ∗ outptr, size_t nOutAvailableBytes, size_t ∗
pnOutBytes)

Compress a buffer with ZLib DEFLATE compression.

Parameters

ptr input buffer.
nBytes size of input buffer in bytes.
nLevel ZLib compression level (-1 for default).
outptr output buffer, or NULL to let the function allocate it.

nOutAvailable←↩

Bytes
size of output buffer if provided, or ignored.

pnOutBytes pointer to a size_t, where to store the size of the output buffer.

Returns

the output buffer (to be freed with VSIFree() if not provided) or NULL in case of error.

Since

GDAL 1.10.0

13.1.2.60 void∗ CPLZLibInflate (const void ∗ ptr, size_t nBytes, void ∗ outptr, size_t nOutAvailableBytes, size_t ∗ pnOutBytes
)

Uncompress a buffer compressed with ZLib DEFLATE compression.

Parameters

ptr input buffer.
nBytes size of input buffer in bytes.
outptr output buffer, or NULL to let the function allocate it.

nOutAvailable←↩

Bytes
size of output buffer if provided, or ignored.

pnOutBytes pointer to a size_t, where to store the size of the output buffer.

Returns

the output buffer (to be freed with VSIFree() if not provided) or NULL in case of error.

Since

GDAL 1.10.0

13.2 cpl_error.h File Reference

#include "cpl_port.h"

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

462 File Documentation

Functions

• void CPLError (CPLErr eErrClass, int err_no, const char ∗fmt,...)
• void CPLEmergencyError (const char ∗)
• void CPLErrorReset (void)
• int CPLGetLastErrorNo (void)
• CPLErr CPLGetLastErrorType (void)
• const char ∗ CPLGetLastErrorMsg (void)
• void ∗ CPLGetErrorHandlerUserData (void)
• CPLErrorHandler CPLSetErrorHandler (CPLErrorHandler)
• CPLErrorHandler CPLSetErrorHandlerEx (CPLErrorHandler, void ∗)
• void CPLPushErrorHandler (CPLErrorHandler)
• void CPLPushErrorHandlerEx (CPLErrorHandler, void ∗)
• void CPLPopErrorHandler (void)
• void CPLDebug (const char ∗, const char ∗,...)
• void _CPLAssert (const char ∗, const char ∗, int)

13.2.1 Detailed Description

CPL error handling services.

13.2.2 Function Documentation

13.2.2.1 void _CPLAssert (const char ∗ pszExpression, const char ∗ pszFile, int iLine)

Report failure of a logical assertion.

Applications would normally use the CPLAssert() macro which expands into code calling _CPLAssert() (p. ??) only
if the condition fails. _CPLAssert() (p. ??) will generate a CE_Fatal error call to CPLError() (p. ??), indicating the
file name, and line number of the failed assertion, as well as containing the assertion itself.

There is no reason for application code to call _CPLAssert() (p. ??) directly.

References CPLError().

13.2.2.2 void CPLDebug (const char ∗ pszCategory, const char ∗ pszFormat, ...)

Display a debugging message.

The category argument is used in conjunction with the CPL_DEBUG environment variable to establish if the mes-
sage should be displayed. If the CPL_DEBUG environment variable is not set, no debug messages are emitted (use
CPLError(CE_Warning,...) to ensure messages are displayed). If CPL_DEBUG is set, but is an empty string or the
word "ON" then all debug messages are shown. Otherwise only messages whose category appears somewhere
within the CPL_DEBUG value are displayed (as determinted by strstr()).

Categories are usually an identifier for the subsystem producing the error. For instance "GDAL" might be used for
the GDAL core, and "TIFF" for messages from the TIFF translator.

Parameters

pszCategory name of the debugging message category.
pszFormat printf() style format string for message to display. Remaining arguments are assumed to be

for format.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.2 cpl_error.h File Reference 463

References CPLGetConfigOption().

Referenced by OGRSFDriverRegistrar::AutoLoadDrivers(), CPLDumpSharedList(), CPLFGets(), CPLHTTPFetch(),
CPLQuadTreeGetAdvisedMaxDepth(), CPLSetErrorHandlerEx(), CPLUnescapeString(), OGRGeometryFactory←↩

::createFromWkb(), OGRSpatialReference::Dereference(), OGRGeometry::Distance(), CPLODBCSession::←↩

EstablishSession(), OGRSpatialReference::exportToPanorama(), OGRSpatialReference::exportToPCI(), O←↩

GRSpatialReference::exportToUSGS(), OGRLineString::exportToWkt(), OGRPolygon::exportToWkt(), OGR←↩

MultiPolygon::exportToWkt(), OGRMultiPoint::exportToWkt(), OGRMultiLineString::exportToWkt(), OGR_SRS←↩

Node::FixupOrdering(), OGRSpatialReference::GetAxis(), CPLODBCStatement::GetTables(), GOA2GetAccess←↩

Token(), GOA2GetRefreshToken(), OGRSpatialReference::importFromESRI(), OGRSpatialReference::import←↩

FromOzi(), OGRSpatialReference::importFromPanorama(), OGRSpatialReference::importFromPCI(), OGR←↩

SpatialReference::importFromProj4(), OGRSpatialReference::importFromUSGS(), CPLODBCDriverInstaller::←↩

InstallDriver(), OGRSpatialReference::morphFromESRI(), OGRSpatialReference::morphToESRI(), OGR_Dr_←↩

CreateDataSource(), OGRBuildPolygonFromEdges(), OGRSFDriverRegistrar::Open(), OGRGeometryFactory←↩

::organizePolygons(), OGRSpatialReference::SetFromUserInput(), OGRSpatialReference::SetGeocCS(), OGR←↩

SpatialReference::SetLocalCS(), OGRSpatialReference::SetProjCS(), OGRPolygon::transform(), OGRGeometry←↩

Collection::transform(), OGRSpatialReference::Validate(), and VSIGetMemFileBuffer().

13.2.2.3 void CPLEmergencyError (const char ∗ pszMessage)

Fatal error when things are bad.

This function should be called in an emergency situation where it is unlikely that a regular error report would work.
This would include in the case of heap exhaustion for even small allocations, or any failure in the process of reporting
an error (such as TLS allocations).

This function should never return. After the error message has been reported as best possible, the application will
abort() similarly to how CPLError() (p. ??) aborts on CE_Fatal class errors.

Parameters

pszMessage the error message to report.

Referenced by CPLMalloc(), and CPLRealloc().

13.2.2.4 void CPLError (CPLErr eErrClass, int err_no, const char ∗ fmt, ...)

Report an error.

This function reports an error in a manner that can be hooked and reported appropriate by different applications.

The effect of this function can be altered by applications by installing a custom error handling using CPLSetError←↩

Handler() (p. ??).

The eErrClass argument can have the value CE_Warning indicating that the message is an informational warning,
CE_Failure indicating that the action failed, but that normal recover mechanisms will be used or CE_Fatal meaning
that a fatal error has occured, and that CPLError() (p. ??) should not return.

The default behaviour of CPLError() (p. ??) is to report errors to stderr, and to abort() after reporting a CE_Fatal
error. It is expected that some applications will want to supress error reporting, and will want to install a C++
exception, or longjmp() approach to no local fatal error recovery.

Regardless of how application error handlers or the default error handler choose to handle an error, the error
number, and message will be stored for recovery with CPLGetLastErrorNo() (p. ??) and CPLGetLastErrorMsg()
(p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

464 File Documentation

Parameters

eErrClass one of CE_Warning, CE_Failure or CE_Fatal.
err_no the error number (CPLE_∗) from cpl_error.h (p. ??).

fmt a printf() style format string. Any additional arguments will be treated as arguments to fill in
this format in a manner similar to printf().

Referenced by _CPLAssert(), OGRLayer::AlterFieldDefn(), OGRGeometry::Boundary(), OGRGeometry::Buffer(),
OGRGeometry::Centroid(), OGRLayer::Clip(), OGRGeometry::Contains(), OGRGeometry::ConvexHull(), OG←↩

RSFDriver::CopyDataSource(), OGRDataSource::CopyLayer(), CPLCloseShared(), CPLCorrespondingPaths(),
CPLEscapeString(), CPLGetSymbol(), CPLHTTPFetch(), CPLHTTPParseMultipartMime(), CPLMalloc(), CPL←↩

ParseXMLString(), CPLQuadTreeInsert(), CPLReadLine2L(), CPLRealloc(), CPLSerializeXMLTreeToFile(), CP←↩

LStrdup(), CPLUnlinkTree(), CPLVirtualMemDerivedNew(), CPLVirtualMemFileMapNew(), CPLVirtualMemNew(),
OGRSFDriver::CreateDataSource(), OGRUnionLayer::CreateFeature(), OGRLayer::CreateField(), OGRLayer::←↩

CreateGeomField(), OGRDataSource::CreateLayer(), OGRGeometry::Crosses(), CSLLoad2(), OGRSFDriver←↩

::DeleteDataSource(), OGRLayer::DeleteField(), OGRDataSource::DeleteLayer(), OGRGeometry::Difference(),
OGRGeometry::Disjoint(), OGRGeometry::Distance(), OGRLayer::Erase(), OGRDataSource::ExecuteSQL(), O←↩

GRGeometry::exportToJson(), OGRGeometry::exportToKML(), OGRSpatialReference::exportToMICoordSys(),
OGRSpatialReference::exportToProj4(), CPLODBCStatement::Fetch(), OGRGenSQLResultsLayer::GetExtent(),
OGRUnionLayer::GetExtent(), OGRFeatureDefn::GetFieldDefn(), OGRFeatureDefn::GetGeomFieldDefn(), OGR←↩

LineString::getSubLine(), GOA2GetAccessToken(), GOA2GetRefreshToken(), OGRLayer::Identity(), OGRSpatial←↩

Reference::importFromCRSURL(), OGRSpatialReference::importFromEPSGA(), OGRSpatialReference::import←↩

FromMICoordSys(), OGRSpatialReference::importFromOzi(), OGRSpatialReference::importFromPanorama(),
OGRSpatialReference::importFromProj4(), OGRSpatialReference::importFromUrl(), OGRSpatialReference←↩

::importFromURN(), OGRSpatialReference::importFromUSGS(), OGRLineString::importFromWkb(), OGR←↩

Polygon::importFromWkb(), OGRSpatialReference::importFromWMSAUTO(), CPLStringList::InsertStringDirectly(),
OGRLayer::Intersection(), OGRGeometry::Intersection(), OGR_DS_CreateLayer(), OGR_F_IsFieldSet(), OG←↩

R_G_AddPoint(), OGR_G_AddPoint_2D(), OGR_G_Area(), OGR_G_Centroid(), OGR_G_CreateFromGML(),
OGR_G_Equals(), OGR_G_GetGeometryRef(), OGR_G_GetPoint(), OGR_G_GetPoints(), OGR_G_GetX(), OG←↩

R_G_GetY(), OGR_G_GetZ(), OGR_G_Length(), OGR_G_PointOnSurface(), OGR_G_RemoveGeometry(), OG←↩

R_G_Segmentize(), OGR_G_SetPoint(), OGR_G_SetPoint_2D(), OGR_G_SetPointCount(), OGR_G_SetPoints(),
OGRBuildPolygonFromEdges(), OGRCreateCoordinateTransformation(), OGRGeocode(), OGRGeocodeCreate←↩

Session(), OGRGeocodeReverse(), OGRGeometryFactory::organizePolygons(), OGRGeometry::Overlaps(), O←↩

GRGeometry::Polygonize(), OGRLineString::Project(), OGRLayer::ReorderField(), OGRLayer::ReorderFields(),
OGRLineString::segmentize(), OGRSpatialReference::SetCompoundCS(), OGRSpatialReference::SetEckert(),
OGRUnionLayer::SetFeature(), OGRFeature::SetField(), OGRLineString::setNumPoints(), OGRWarpedLayer::←↩

SetSpatialFilter(), OGRLayer::SetSpatialFilter(), OGRUnionLayer::SetSpatialFilter(), OGRSpatialReference::Set←↩

StatePlane(), OGRSpatialReference::SetWagner(), OGRGeometry::Simplify(), OGRGeometry::SimplifyPreserve←↩

Topology(), OGRLayer::SymDifference(), OGRGeometry::SymDifference(), OGRGeometry::Touches(), OGRLine←↩

String::transform(), OGRProj4CT::TransformEx(), OGRLayer::Union(), OGRGeometry::Union(), OGRGeometry::←↩

UnionCascaded(), OGRLayer::Update(), VSIIngestFile(), VSIMalloc2(), VSIMalloc3(), and OGRGeometry::Within().

13.2.2.5 void CPLErrorReset (void)

Erase any traces of previous errors.

This is normally used to ensure that an error which has been recovered from does not appear to be still in play with
high level functions.

Referenced by OGRLayer::Clip(), OGRDataSource::CopyLayer(), CPLParseXMLString(), CSLLoad2(), OGR←↩

Layer::Erase(), OGRLayer::Identity(), OGRSpatialReference::importFromUrl(), OGRLayer::Intersection(), OGRS←↩

FDriverRegistrar::Open(), OGRLayer::SymDifference(), OGRLayer::Union(), and OGRLayer::Update().

13.2.2.6 void∗ CPLGetErrorHandlerUserData (void)

Fetch the user data for the error context

Fetches the user data for the current error context. You can set the user data for the error context when you add your
handler by issuing CPLSetErrorHandlerEx() (p. ??) and CPLPushErrorHandlerEx() (p. ??). Note that user data

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.2 cpl_error.h File Reference 465

is primarily intended for providing context within error handlers themselves, but they could potentially be abused in
other useful ways with the usual caveat emptor understanding.

Returns

the user data pointer for the error context

13.2.2.7 const char∗ CPLGetLastErrorMsg (void)

Get the last error message.

Fetches the last error message posted with CPLError() (p. ??), that hasn't been cleared by CPLErrorReset()
(p. ??). The returned pointer is to an internal string that should not be altered or freed.

Returns

the last error message, or NULL if there is no posted error message.

13.2.2.8 int CPLGetLastErrorNo (void)

Fetch the last error number.

Fetches the last error number posted with CPLError() (p. ??), that hasn't been cleared by CPLErrorReset() (p. ??).
This is the error number, not the error class.

Returns

the error number of the last error to occur, or CPLE_None (0) if there are no posted errors.

Referenced by OGRSpatialReference::importFromUrl().

13.2.2.9 CPLErr CPLGetLastErrorType (void)

Fetch the last error type.

Fetches the last error type posted with CPLError() (p. ??), that hasn't been cleared by CPLErrorReset() (p. ??).
This is the error class, not the error number.

Returns

the error type of the last error to occur, or CE_None (0) if there are no posted errors.

Referenced by CPLParseXMLString(), and OGRSFDriverRegistrar::Open().

13.2.2.10 void CPLPopErrorHandler (void)

Pop error handler off stack.

Discards the current error handler on the error handler stack, and restores the one in use before the last CPL←↩

PushErrorHandler() (p. ??) call. This method has no effect if there are no error handlers on the current threads
error handler stack.

13.2.2.11 void CPLPushErrorHandler (CPLErrorHandler pfnErrorHandlerNew)

Push a new CPLError handler.

This pushes a new error handler on the thread-local error handler stack. This handler will be used until removed
with CPLPopErrorHandler() (p. ??).

The CPLSetErrorHandler() (p. ??) docs have further information on how CPLError handlers work.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

466 File Documentation

Parameters

pfnError←↩

HandlerNew
new error handler function.

References CPLPushErrorHandlerEx().

13.2.2.12 void CPLPushErrorHandlerEx (CPLErrorHandler pfnErrorHandlerNew, void ∗ pUserData)

Push a new CPLError handler with user data on the error context.

This pushes a new error handler on the thread-local error handler stack. This handler will be used until removed
with CPLPopErrorHandler() (p. ??). Obtain the user data back by using CPLGetErrorContext().

The CPLSetErrorHandler() (p. ??) docs have further information on how CPLError handlers work.

Parameters

pfnError←↩

HandlerNew
new error handler function.

pUserData User data to put on the error context.

References CPLMalloc().

Referenced by CPLPushErrorHandler().

13.2.2.13 CPLErrorHandler CPLSetErrorHandler (CPLErrorHandler pfnErrorHandlerNew)

Install custom error handler.

Allow the library's user to specify his own error handler function. A valid error handler is a C function with the
following prototype:

void MyErrorHandler(CPLErr eErrClass, int err_no, const char *msg)

Pass NULL to come back to the default behavior. The default behaviour (CPLDefaultErrorHandler()) is to write the
message to stderr.

The msg will be a partially formatted error message not containing the "ERROR %d:" portion emitted by the default
handler. Message formatting is handled by CPLError() (p. ??) before calling the handler. If the error handler
function is passed a CE_Fatal class error and returns, then CPLError() (p. ??) will call abort(). Applications wanting
to interrupt this fatal behaviour will have to use longjmp(), or a C++ exception to indirectly exit the function.

Another standard error handler is CPLQuietErrorHandler() which doesn't make any attempt to report the passed
error or warning messages but will process debug messages via CPLDefaultErrorHandler.

Note that error handlers set with CPLSetErrorHandler() (p. ??) apply to all threads in an application, while error
handlers set with CPLPushErrorHandler are thread-local. However, any error handlers pushed with CPLPush←↩

ErrorHandler (and not removed with CPLPopErrorHandler) take precidence over the global error handlers set with
CPLSetErrorHandler() (p. ??). Generally speaking CPLSetErrorHandler() (p. ??) would be used to set a desired
global error handler, while CPLPushErrorHandler() (p. ??) would be used to install a temporary local error handler,
such as CPLQuietErrorHandler() to suppress error reporting in a limited segment of code.

Parameters

pfnError←↩

HandlerNew
new error handler function.

Returns

returns the previously installed error handler.

References CPLSetErrorHandlerEx().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.3 cpl_hash_set.h File Reference 467

13.2.2.14 CPLErrorHandler CPLSetErrorHandlerEx (CPLErrorHandler pfnErrorHandlerNew, void ∗ pUserData)

Install custom error handle with user's data. This method is essentially CPLSetErrorHandler with an added pointer
to pUserData. The pUserData is not returned in the CPLErrorHandler, however, and must be fetched via CPLGet←↩

LastErrorUserData

Parameters

pfnError←↩

HandlerNew
new error handler function.

pUserData User data to carry along with the error context.

Returns

returns the previously installed error handler.

References CPLDebug().

Referenced by CPLSetErrorHandler().

13.3 cpl_hash_set.h File Reference

#include "cpl_port.h"

Functions

• CPLHashSet ∗ CPLHashSetNew (CPLHashSetHashFunc fnHashFunc, CPLHashSetEqualFunc fnEqual←↩

Func, CPLHashSetFreeEltFunc fnFreeEltFunc)
• void CPLHashSetDestroy (CPLHashSet ∗set)
• int CPLHashSetSize (const CPLHashSet ∗set)
• void CPLHashSetForeach (CPLHashSet ∗set, CPLHashSetIterEltFunc fnIterFunc, void ∗user_data)
• int CPLHashSetInsert (CPLHashSet ∗set, void ∗elt)
• void ∗ CPLHashSetLookup (CPLHashSet ∗set, const void ∗elt)
• int CPLHashSetRemove (CPLHashSet ∗set, const void ∗elt)
• unsigned long CPLHashSetHashPointer (const void ∗elt)
• int CPLHashSetEqualPointer (const void ∗elt1, const void ∗elt2)
• unsigned long CPLHashSetHashStr (const void ∗pszStr)
• int CPLHashSetEqualStr (const void ∗pszStr1, const void ∗pszStr2)

13.3.1 Detailed Description

Hash set implementation.

An hash set is a data structure that holds elements that are unique according to a comparison function. Operations
on the hash set, such as insertion, removal or lookup, are supposed to be fast if an efficient "hash" function is
provided.

13.3.2 Function Documentation

13.3.2.1 void CPLHashSetDestroy (CPLHashSet ∗ set)

Destroys an allocated hash set.

This function also frees the elements if a free function was provided at the creation of the hash set.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

468 File Documentation

Parameters

set the hash set

References CPLListDestroy(), _CPLList::pData, and _CPLList::psNext.

13.3.2.2 int CPLHashSetEqualPointer (const void ∗ elt1, const void ∗ elt2)

Equality function for arbitrary pointers

Parameters

elt1 the first arbitrary pointer to compare
elt2 the second arbitrary pointer to compare

Returns

TRUE if the pointers are equal

Referenced by CPLHashSetNew().

13.3.2.3 int CPLHashSetEqualStr (const void ∗ elt1, const void ∗ elt2)

Equality function for strings

Parameters

elt1 the first string to compare. May be NULL.
elt2 the second string to compare. May be NULL.

Returns

TRUE if the strings are equal

13.3.2.4 void CPLHashSetForeach (CPLHashSet ∗ set, CPLHashSetIterEltFunc fnIterFunc, void ∗ user_data)

Walk through the hash set and runs the provided function on all the elements

This function is provided the user_data argument of CPLHashSetForeach. It must return TRUE to go on the walk
through the hash set, or FALSE to make it stop.

Note : the structure of the hash set must NOT be modified during the walk.

Parameters

set the hash set.
fnIterFunc the function called on each element.
user_data the user data provided to the function.

References _CPLList::pData, and _CPLList::psNext.

13.3.2.5 unsigned long CPLHashSetHashPointer (const void ∗ elt)

Hash function for an arbitrary pointer

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.3 cpl_hash_set.h File Reference 469

Parameters

elt the arbitrary pointer to hash

Returns

the hash value of the pointer

Referenced by CPLHashSetNew().

13.3.2.6 unsigned long CPLHashSetHashStr (const void ∗ elt)

Hash function for a zero-terminated string

Parameters

elt the string to hash. May be NULL.

Returns

the hash value of the string

13.3.2.7 int CPLHashSetInsert (CPLHashSet ∗ set, void ∗ elt)

Inserts an element into a hash set.

If the element was already inserted in the hash set, the previous element is replaced by the new element. If a free
function was provided, it is used to free the previously inserted element

Parameters

set the hash set
elt the new element to insert in the hash set

Returns

TRUE if the element was not already in the hash set

References CPLListInsert().

13.3.2.8 void∗ CPLHashSetLookup (CPLHashSet ∗ set, const void ∗ elt)

Returns the element found in the hash set corresponding to the element to look up The element must not be
modified.

Parameters

set the hash set
elt the element to look up in the hash set

Returns

the element found in the hash set or NULL

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

470 File Documentation

13.3.2.9 CPLHashSet∗ CPLHashSetNew (CPLHashSetHashFunc fnHashFunc, CPLHashSetEqualFunc fnEqualFunc,
CPLHashSetFreeEltFunc fnFreeEltFunc)

Creates a new hash set

The hash function must return a hash value for the elements to insert. If fnHashFunc is NULL, CPLHashSetHash←↩

Pointer will be used.

The equal function must return if two elements are equal. If fnEqualFunc is NULL, CPLHashSetEqualPointer will be
used.

The free function is used to free elements inserted in the hash set, when the hash set is destroyed, when elements
are removed or replaced. If fnFreeEltFunc is NULL, elements inserted into the hash set will not be freed.

Parameters

fnHashFunc hash function. May be NULL.
fnEqualFunc equal function. May be NULL.

fnFreeEltFunc element free function. May be NULL.

Returns

a new hash set

References CPLCalloc(), CPLHashSetEqualPointer(), CPLHashSetHashPointer(), and CPLMalloc().

13.3.2.10 int CPLHashSetRemove (CPLHashSet ∗ set, const void ∗ elt)

Removes an element from a hash set

Parameters

set the hash set
elt the new element to remove from the hash set

Returns

TRUE if the element was in the hash set

References _CPLList::pData, and _CPLList::psNext.

13.3.2.11 int CPLHashSetSize (const CPLHashSet ∗ set)

Returns the number of elements inserted in the hash set

Note: this is not the internal size of the hash set

Parameters

set the hash set

Returns

the number of elements in the hash set

13.4 cpl_http.h File Reference

#include "cpl_conv.h"
#include "cpl_string.h"
#include "cpl_vsi.h"

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.4 cpl_http.h File Reference 471

Classes

• struct CPLMimePart
• struct CPLHTTPResult

Functions

• int CPLHTTPEnabled (void)

Return if CPLHTTP services can be usefull.

• CPLHTTPResult ∗ CPLHTTPFetch (const char ∗pszURL, char ∗∗papszOptions)

Fetch a document from an url and return in a string.

• void CPLHTTPCleanup (void)

Cleanup function to call at application termination.

• void CPLHTTPDestroyResult (CPLHTTPResult ∗psResult)

Clean the memory associated with the return value of CPLHTTPFetch() (p. ??)

• int CPLHTTPParseMultipartMime (CPLHTTPResult ∗psResult)

Parses a a MIME multipart message.

• char ∗ GOA2GetAuthorizationURL (const char ∗pszScope)
• char ∗ GOA2GetRefreshToken (const char ∗pszAuthToken, const char ∗pszScope)
• char ∗ GOA2GetAccessToken (const char ∗pszRefreshToken, const char ∗pszScope)

13.4.1 Detailed Description

Interface for downloading HTTP, FTP documents

13.4.2 Function Documentation

13.4.2.1 void CPLHTTPDestroyResult (CPLHTTPResult ∗ psResult)

Clean the memory associated with the return value of CPLHTTPFetch() (p. ??)

Parameters

psResult pointer to the return value of CPLHTTPFetch() (p. ??)

References CSLDestroy(), CPLHTTPResult::nMimePartCount, CPLHTTPResult::pabyData, CPLMimePart←↩

::papszHeaders, CPLHTTPResult::papszHeaders, CPLHTTPResult::pasMimePart, CPLHTTPResult::psz←↩

ContentType, and CPLHTTPResult::pszErrBuf.

Referenced by GOA2GetAccessToken(), GOA2GetRefreshToken(), and OGRSpatialReference::importFromUrl().

13.4.2.2 int CPLHTTPEnabled (void)

Return if CPLHTTP services can be usefull.

Those services depend on GDAL being build with libcurl support.

Returns

TRUE if libcurl support is enabled

13.4.2.3 CPLHTTPResult∗ CPLHTTPFetch (const char ∗ pszURL, char ∗∗ papszOptions)

Fetch a document from an url and return in a string.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

472 File Documentation

Parameters

pszURL valid URL recognized by underlying download library (libcurl)
papszOptions option list as a NULL-terminated array of strings. May be NULL. The following options are

handled :

• TIMEOUT=val, where val is in seconds

• HEADERS=val, where val is an extra header to use when getting a web page. For
example "Accept: application/x-ogcwkt"

• HTTPAUTH=[BASIC/NTLM/GSSNEGOTIATE/ANY] to specify an authentication
scheme to use.

• USERPWD=userid:password to specify a user and password for authentication

• POSTFIELDS=val, where val is a nul-terminated string to be passed to the server with
a POST request.

• PROXY=val, to make requests go through a proxy server, where val is of the form
proxy.server.com:port_number

• PROXYUSERPWD=val, where val is of the form username:password

• PROXYAUTH=[BASIC/NTLM/DIGEST/ANY] to specify an proxy authentication
scheme to use.

• NETRC=[YES/NO] to enable or disable use of $HOME/.netrc, default YES.

• CUSTOMREQUEST=val, where val is GET, PUT, POST, DELETE, etc.. (GDAL >=
1.9.0)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.4 cpl_http.h File Reference 473

Alternatively, if not defined in the papszOptions arguments, the PROXY, PROXYUSERPWD, PROXYAUTH and

NETRC values are searched in the configuration options named GDAL_HTTP_PROXY, GDAL_HTTP_PROXYU←↩

SERPWD, GDAL_PROXY_AUTH and GDAL_HTTP_NETRC, as proxy configuration belongs to networking setup
and makes more sense at the configuration option level than at the connection level.

Returns

a CPLHTTPResult∗ structure that must be freed by CPLHTTPDestroyResult() (p. ??), or NULL if libcurl
support is disabled

References CPLCalloc(), CPLDebug(), CPLError(), CPLGetConfigOption(), CPLSetConfigOption(), CPLStrdup(),
CSLTestBoolean(), CPLHTTPResult::nDataLen, CPLHTTPResult::nStatus, CPLHTTPResult::papszHeaders, C←↩

PLHTTPResult::pszContentType, and CPLHTTPResult::pszErrBuf.

Referenced by GOA2GetAccessToken(), GOA2GetRefreshToken(), and OGRSpatialReference::importFromUrl().

13.4.2.4 int CPLHTTPParseMultipartMime (CPLHTTPResult ∗ psResult)

Parses a a MIME multipart message.

This function will iterate over each part and put it in a separate element of the pasMimePart array of the provided
psResult structure.

Parameters

psResult pointer to the return value of CPLHTTPFetch() (p. ??)

Returns

TRUE if the message contains MIME multipart message.

References CPLError(), CPLRealloc(), CSLCount(), CSLDestroy(), CPLMimePart::nDataLen, CPLHTTPResult::n←↩

DataLen, CPLHTTPResult::nMimePartCount, CPLMimePart::pabyData, CPLHTTPResult::pabyData, CPLMime←↩

Part::papszHeaders, CPLHTTPResult::pasMimePart, and CPLHTTPResult::pszContentType.

13.4.2.5 char∗ GOA2GetAccessToken (const char ∗ pszRefreshToken, const char ∗ pszScope)

Fetch access token using refresh token.

The permanent refresh token is used to fetch a temporary (usually one hour) access token using Google OAuth2
web services.

A CPLError will be reported if the request fails for some reason. Common reasons include the refresh token having
been revoked by the user or http connection problems.

Parameters

pszRefresh←↩

Token
the refresh token from GOA2GetRefreshToken() (p. ??).

pszScope the scope for which it is valid.

Returns

access token, to be freed with CPLFree(), null on failure.

References CPLStringList::AddString(), CPLDebug(), CPLError(), CPLGetConfigOption(), CPLHTTPDestroy←↩

Result(), CPLHTTPFetch(), CPLStrdup(), CPLStringList::FetchNameValueDef(), CPLHTTPResult::pabyData, and
CPLHTTPResult::pszErrBuf.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

474 File Documentation

13.4.2.6 char∗ GOA2GetAuthorizationURL (const char ∗ pszScope)

Return authorization url for a given scope.

Returns the URL that a user should visit, and use for authentication in order to get an "auth token" indicating their
willingness to use a service.

Note that when the user visits this url they will be asked to login (using a google/gmail/etc) account, and to authorize
use of the requested scope for the application "GDAL/OGR". Once they have done so, they will be presented with a
lengthy string they should "enter into their application". This is the "auth token" to be passed to GOA2GetRefresh←↩

Token() (p. ??). The "auth token" can only be used once.

This function should never fail.

Parameters

pszScope the service being requested, not yet URL encoded, such as "https://www.googleapis.←↩

com/auth/fusiontables".

Returns

the URL to visit - should be freed with CPLFree().

References CPLEscapeString(), CPLGetConfigOption(), and CPLStrdup().

Referenced by GOA2GetRefreshToken().

13.4.2.7 char∗ GOA2GetRefreshToken (const char ∗ pszAuthToken, const char ∗ pszScope)

Turn Auth Token into a Refresh Token.

A one time "auth token" provided by the user is turned into a reusable "refresh token" using a google oauth2 web
service.

A CPLError will be reported if the translation fails for some reason. Common reasons include the auth token already
having been used before, it not being appropriate for the passed scope and configured client api or http connection
problems. NULL is returned on error.

Parameters

pszAuthToken the authorization token from the user.
pszScope the scope for which it is valid.

Returns

refresh token, to be freed with CPLFree(), null on failure.

References CPLStringList::AddString(), CPLDebug(), CPLError(), CPLGetConfigOption(), CPLHTTPDestroy←↩

Result(), CPLHTTPFetch(), CPLStrdup(), CPLStringList::FetchNameValueDef(), GOA2GetAuthorizationURL(), C←↩

PLHTTPResult::pabyData, and CPLHTTPResult::pszErrBuf.

13.5 cpl_list.h File Reference

#include "cpl_port.h"

Classes

• struct _CPLList

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.5 cpl_list.h File Reference 475

Typedefs

• typedef struct _CPLList CPLList

Functions

• CPLList ∗ CPLListAppend (CPLList ∗psList, void ∗pData)
• CPLList ∗ CPLListInsert (CPLList ∗psList, void ∗pData, int nPosition)
• CPLList ∗ CPLListGetLast (CPLList ∗psList)
• CPLList ∗ CPLListGet (CPLList ∗psList, int nPosition)
• int CPLListCount (CPLList ∗psList)
• CPLList ∗ CPLListRemove (CPLList ∗psList, int nPosition)
• void CPLListDestroy (CPLList ∗psList)
• CPLList ∗ CPLListGetNext (CPLList ∗psElement)
• void ∗ CPLListGetData (CPLList ∗psElement)

13.5.1 Detailed Description

Simplest list implementation. List contains only pointers to stored objects, not objects itself. All operations regarding
allocation and freeing memory for objects should be performed by the caller.

13.5.2 Typedef Documentation

13.5.2.1 typedef struct _CPLList CPLList

List element structure.

13.5.3 Function Documentation

13.5.3.1 CPLList∗ CPLListAppend (CPLList ∗ psList, void ∗ pData)

Append an object list and return a pointer to the modified list. If the input list is NULL, then a new list is created.

Parameters

psList pointer to list head.
pData pointer to inserted data object. May be NULL.

Returns

pointer to the head of modified list.

References CPLListGetLast(), CPLMalloc(), _CPLList::pData, and _CPLList::psNext.

Referenced by CPLListInsert().

13.5.3.2 int CPLListCount (CPLList ∗ psList)

Return the number of elements in a list.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

476 File Documentation

Parameters

psList pointer to list head.

Returns

number of elements in a list.

References _CPLList::psNext.

Referenced by CPLListInsert().

13.5.3.3 void CPLListDestroy (CPLList ∗ psList)

Destroy a list. Caller responsible for freeing data objects contained in list elements.

Parameters

psList pointer to list head.

References _CPLList::psNext.

Referenced by CPLHashSetDestroy().

13.5.3.4 CPLList∗ CPLListGet (CPLList ∗ psList, int nPosition)

Return the pointer to the specified element in a list.

Parameters

psList pointer to list head.
nPosition the index of the element in the list, 0 being the first element

Returns

pointer to the specified element in a list.

References _CPLList::psNext.

13.5.3.5 void∗ CPLListGetData (CPLList ∗ psElement)

Return pointer to the data object contained in given list element.

Parameters

psElement pointer to list element.

Returns

pointer to the data object contained in given list element.

References _CPLList::pData.

13.5.3.6 CPLList∗ CPLListGetLast (CPLList ∗ psList)

Return the pointer to last element in a list.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.5 cpl_list.h File Reference 477

Parameters

psList pointer to list head.

Returns

pointer to last element in a list.

References _CPLList::psNext.

Referenced by CPLListAppend(), and CPLListInsert().

13.5.3.7 CPLList∗ CPLListGetNext (CPLList ∗ psElement)

Return the pointer to next element in a list.

Parameters

psElement pointer to list element.

Returns

pointer to the list element preceded by the given element.

References _CPLList::psNext.

13.5.3.8 CPLList∗ CPLListInsert (CPLList ∗ psList, void ∗ pData, int nPosition)

Insert an object into list at specified position (zero based). If the input list is NULL, then a new list is created.

Parameters

psList pointer to list head.
pData pointer to inserted data object. May be NULL.

nPosition position number to insert an object.

Returns

pointer to the head of modified list.

References CPLListAppend(), CPLListCount(), CPLListGetLast(), CPLMalloc(), _CPLList::pData, and _CPLList←↩

::psNext.

Referenced by CPLHashSetInsert().

13.5.3.9 CPLList∗ CPLListRemove (CPLList ∗ psList, int nPosition)

Remove the element from the specified position (zero based) in a list. Data object contained in removed element
must be freed by the caller first.

Parameters

psList pointer to list head.
nPosition position number to delet an element.

Returns

pointer to the head of modified list.

References _CPLList::psNext.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

478 File Documentation

13.6 cpl_minixml.h File Reference

#include "cpl_port.h"

Classes

• struct CPLXMLNode

Typedefs

• typedef struct CPLXMLNode CPLXMLNode

Enumerations

• enum CPLXMLNodeType {
CXT_Element = 0, CXT_Text = 1, CXT_Attribute = 2, CXT_Comment = 3,
CXT_Literal = 4 }

Functions

• CPLXMLNode ∗ CPLParseXMLString (const char ∗)
Parse an XML string into tree form.

• void CPLDestroyXMLNode (CPLXMLNode ∗)
Destroy a tree.

• CPLXMLNode ∗ CPLGetXMLNode (CPLXMLNode ∗poRoot, const char ∗pszPath)

Find node by path.

• CPLXMLNode ∗ CPLSearchXMLNode (CPLXMLNode ∗poRoot, const char ∗pszTarget)

Search for a node in document.

• const char ∗ CPLGetXMLValue (CPLXMLNode ∗poRoot, const char ∗pszPath, const char ∗pszDefault)

Fetch element/attribute value.

• CPLXMLNode ∗ CPLCreateXMLNode (CPLXMLNode ∗poParent, CPLXMLNodeType eType, const char
∗pszText)

Create an document tree item.

• char ∗ CPLSerializeXMLTree (const CPLXMLNode ∗psNode)

Convert tree into string document.

• void CPLAddXMLChild (CPLXMLNode ∗psParent, CPLXMLNode ∗psChild)

Add child node to parent.

• int CPLRemoveXMLChild (CPLXMLNode ∗psParent, CPLXMLNode ∗psChild)

Remove child node from parent.

• void CPLAddXMLSibling (CPLXMLNode ∗psOlderSibling, CPLXMLNode ∗psNewSibling)

Add new sibling.

• CPLXMLNode ∗ CPLCreateXMLElementAndValue (CPLXMLNode ∗psParent, const char ∗pszName,
const char ∗pszValue)

Create an element and text value.

• CPLXMLNode ∗ CPLCloneXMLTree (CPLXMLNode ∗psTree)

Copy tree.

• int CPLSetXMLValue (CPLXMLNode ∗psRoot, const char ∗pszPath, const char ∗pszValue)

Set element value by path.

• void CPLStripXMLNamespace (CPLXMLNode ∗psRoot, const char ∗pszNameSpace, int bRecurse)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.6 cpl_minixml.h File Reference 479

Strip indicated namespaces.

• void CPLCleanXMLElementName (char ∗)
Make string into safe XML token.

• CPLXMLNode ∗ CPLParseXMLFile (const char ∗pszFilename)

Parse XML file into tree.

• int CPLSerializeXMLTreeToFile (const CPLXMLNode ∗psTree, const char ∗pszFilename)

Write document tree to a file.

13.6.1 Detailed Description

Definitions for CPL mini XML Parser/Serializer.

13.6.2 Typedef Documentation

13.6.2.1 typedef struct CPLXMLNode CPLXMLNode

Document node structure.

This C structure is used to hold a single text fragment representing a component of the document when parsed.
It should be allocated with the appropriate CPL function, and freed with CPLDestroyXMLNode() (p. ??). The
structure contents should not normally be altered by application code, but may be freely examined by application
code.

Using the psChild and psNext pointers, a heirarchical tree structure for a document can be represented as a tree of
CPLXMLNode (p. ??) structures.

13.6.3 Enumeration Type Documentation

13.6.3.1 enum CPLXMLNodeType

Enumerator

CXT_Element Node is an element

CXT_Text Node is a raw text value

CXT_Attribute Node is attribute

CXT_Comment Node is an XML comment.

CXT_Literal Node is a special literal

13.6.4 Function Documentation

13.6.4.1 void CPLAddXMLChild (CPLXMLNode ∗ psParent, CPLXMLNode ∗ psChild)

Add child node to parent.

The passed child is added to the list of children of the indicated parent. Normally the child is added at the end of
the parents child list, but attributes (CXT_Attribute) will be inserted after any other attributes but before any other
element type. Ownership of the child node is effectively assumed by the parent node. If the child has siblings (it's
psNext is not NULL) they will be trimmed, but if the child has children they are carried with it.

Parameters

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

480 File Documentation

psParent the node to attach the child to. May not be NULL.
psChild the child to add to the parent. May not be NULL. Should not be a child of any other parent.

References CXT_Attribute, CPLXMLNode::eType, CPLXMLNode::psChild, and CPLXMLNode::psNext.

13.6.4.2 void CPLAddXMLSibling (CPLXMLNode ∗ psOlderSibling, CPLXMLNode ∗ psNewSibling)

Add new sibling.

The passed psNewSibling is added to the end of siblings of the psOlderSibling node. That is, it is added to the end
of the psNext chain. There is no special handling if psNewSibling is an attribute. If this is required, use CPLAdd←↩

XMLChild() (p. ??).

Parameters

psOlderSibling the node to attach the sibling after.
psNewSibling the node to add at the end of psOlderSiblings psNext chain.

References CPLXMLNode::psNext.

13.6.4.3 void CPLCleanXMLElementName (char ∗ pszTarget)

Make string into safe XML token.

Modififies a string in place to try and make it into a legal XML token that can be used as an element name. This is
accomplished by changing any characters not legal in a token into an underscore.

NOTE: This function should implement the rules in section 2.3 of http://www.w3.org/TR/xml11/ but it
doesn't yet do that properly. We only do a rough approximation of that.

Parameters

pszTarget the string to be adjusted. It is altered in place.

13.6.4.4 CPLXMLNode∗ CPLCloneXMLTree (CPLXMLNode ∗ psTree)

Copy tree.

Creates a deep copy of a CPLXMLNode (p. ??) tree.

Parameters

psTree the tree to duplicate.

Returns

a copy of the whole tree.

References CPLCreateXMLNode(), CPLXMLNode::eType, CPLXMLNode::psChild, CPLXMLNode::psNext, and
CPLXMLNode::pszValue.

13.6.4.5 CPLXMLNode∗ CPLCreateXMLElementAndValue (CPLXMLNode ∗ psParent, const char ∗ pszName, const char
∗ pszValue)

Create an element and text value.

This is function is a convenient short form for:

1 CPLXMLNode *psTextNode;
2 CPLXMLNode *psElementNode;
3

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.6 cpl_minixml.h File Reference 481

4 psElementNode = CPLCreateXMLNode(psParent, CXT_Element, pszName);
5 psTextNode = CPLCreateXMLNode(psElementNode, CXT_Text, pszValue);
6
7 return psElementNode;

It creates a CXT_Element node, with a CXT_Text child, and attaches the element to the passed parent.

Parameters

psParent the parent node to which the resulting node should be attached. May be NULL to keep as
freestanding.

pszName the element name to create.
pszValue the text to attach to the element. Must not be NULL.

Returns

the pointer to the new element node.

References CPLCreateXMLNode(), CXT_Element, and CXT_Text.

13.6.4.6 CPLXMLNode∗ CPLCreateXMLNode (CPLXMLNode ∗ poParent, CPLXMLNodeType eType, const char ∗
pszText)

Create an document tree item.

Create a single CPLXMLNode (p. ??) object with the desired value and type, and attach it as a child of the indicated
parent.

Parameters

poParent the parent to which this node should be attached as a child. May be NULL to keep as free
standing.

eType the type of the newly created node
pszText the value of the newly created node

Returns

the newly created node, now owned by the caller (or parent node).

References CPLCalloc(), CPLStrdup(), CPLXMLNode::eType, CPLXMLNode::psChild, CPLXMLNode::psNext, and
CPLXMLNode::pszValue.

Referenced by CPLCloneXMLTree(), CPLCreateXMLElementAndValue(), and CPLSetXMLValue().

13.6.4.7 void CPLDestroyXMLNode (CPLXMLNode ∗ psNode)

Destroy a tree.

This function frees resources associated with a CPLXMLNode (p. ??) and all its children nodes.

Parameters

psNode the tree to free.

References CPLXMLNode::psChild, CPLXMLNode::psNext, and CPLXMLNode::pszValue.

Referenced by CPLParseXMLString(), OGRSpatialReference::exportToXML(), OGRSpatialReference::import←↩

FromXML(), and OGR_G_CreateFromGML().

13.6.4.8 CPLXMLNode∗ CPLGetXMLNode (CPLXMLNode ∗ psRoot, const char ∗ pszPath)

Find node by path.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

482 File Documentation

Searches the document or subdocument indicated by psRoot for an element (or attribute) with the given path.
The path should consist of a set of element names separated by dots, not including the name of the root element
(psRoot). If the requested element is not found NULL is returned.

Attribute names may only appear as the last item in the path.

The search is done from the root nodes children, but all intermediate nodes in the path must be specified. Seaching
for "name" would only find a name element or attribute if it is a direct child of the root, not at any level in the
subdocument.

If the pszPath is prefixed by "=" then the search will begin with the root node, and it's siblings, instead of the root
nodes children. This is particularly useful when searching within a whole document which is often prefixed by one
or more "junk" nodes like the <?xml> declaration.

Parameters

psRoot the subtree in which to search. This should be a node of type CXT_Element. NULL is safe.
pszPath the list of element names in the path (dot separated).

Returns

the requested element node, or NULL if not found.

References CSLDestroy(), CXT_Text, CPLXMLNode::eType, CPLXMLNode::psChild, CPLXMLNode::psNext, and
CPLXMLNode::pszValue.

Referenced by CPLGetXMLValue().

13.6.4.9 const char∗ CPLGetXMLValue (CPLXMLNode ∗ psRoot, const char ∗ pszPath, const char ∗ pszDefault)

Fetch element/attribute value.

Searches the document for the element/attribute value associated with the path. The corresponding node is in-
ternally found with CPLGetXMLNode() (p. ??) (see there for details on path handling). Once found, the value is
considered to be the first CXT_Text child of the node.

If the attribute/element search fails, or if the found node has not value then the passed default value is returned.

The returned value points to memory within the document tree, and should not be altered or freed.

Parameters

psRoot the subtree in which to search. This should be a node of type CXT_Element. NULL is safe.
pszPath the list of element names in the path (dot separated). An empty path means get the value of

the psRoot node.
pszDefault the value to return if a corresponding value is not found, may be NULL.

Returns

the requested value or pszDefault if not found.

References CPLGetXMLNode(), CXT_Attribute, CXT_Element, CXT_Text, CPLXMLNode::eType, CPLXMLNode←↩

::psChild, CPLXMLNode::psNext, and CPLXMLNode::pszValue.

13.6.4.10 CPLXMLNode∗ CPLParseXMLFile (const char ∗ pszFilename)

Parse XML file into tree.

The named file is opened, loaded into memory as a big string, and parsed with CPLParseXMLString() (p. ??).
Errors in reading the file or parsing the XML will be reported by CPLError() (p. ??).

The "large file" API is used, so XML files can come from virtualized files.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.6 cpl_minixml.h File Reference 483

Parameters

pszFilename the file to open.

Returns

NULL on failure, or the document tree on success.

References CPLParseXMLString(), and VSIIngestFile().

13.6.4.11 CPLXMLNode∗ CPLParseXMLString (const char ∗ pszString)

Parse an XML string into tree form.

The passed document is parsed into a CPLXMLNode (p. ??) tree representation. If the document is not well formed
XML then NULL is returned, and errors are reported via CPLError() (p. ??). No validation beyond wellformedness
is done. The CPLParseXMLFile() (p. ??) convenience function can be used to parse from a file.

The returned document tree is is owned by the caller and should be freed with CPLDestroyXMLNode() (p. ??)
when no longer needed.

If the document has more than one "root level" element then those after the first will be attached to the first as
siblings (via the psNext pointers) even though there is no common parent. A document with no XML structure (no
angle brackets for instance) would be considered well formed, and returned as a single CXT_Text node.

Parameters

pszString the document to parse.

Returns

parsed tree or NULL on error.

References CPLDestroyXMLNode(), CPLError(), CPLErrorReset(), CPLGetLastErrorType(), CXT_Attribute, CXT←↩

_Comment, CXT_Element, CXT_Literal, CXT_Text, and CPLXMLNode::pszValue.

Referenced by CPLParseXMLFile(), OGRSpatialReference::importFromXML(), and OGR_G_CreateFromGML().

13.6.4.12 int CPLRemoveXMLChild (CPLXMLNode ∗ psParent, CPLXMLNode ∗ psChild)

Remove child node from parent.

The passed child is removed from the child list of the passed parent, but the child is not destroyed. The child retains
ownership of it's own children, but is cleanly removed from the child list of the parent.

Parameters

psParent the node to the child is attached to.
psChild the child to remove.

Returns

TRUE on success or FALSE if the child was not found.

References CPLXMLNode::psChild, and CPLXMLNode::psNext.

13.6.4.13 CPLXMLNode∗ CPLSearchXMLNode (CPLXMLNode ∗ psRoot, const char ∗ pszElement)

Search for a node in document.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

484 File Documentation

Searches the children (and potentially siblings) of the documented passed in for the named element or attribute. To
search following siblings as well as children, prefix the pszElement name with an equal sign. This function does an
in-order traversal of the document tree. So it will first match against the current node, then it's first child, that childs
first child, and so on.

Use CPLGetXMLNode() (p. ??) to find a specific child, or along a specific node path.

Parameters

psRoot the subtree to search. This should be a node of type CXT_Element. NULL is safe.
pszElement the name of the element or attribute to search for.

Returns

The matching node or NULL on failure.

References CXT_Attribute, CXT_Element, CPLXMLNode::eType, CPLXMLNode::psChild, CPLXMLNode::psNext,
and CPLXMLNode::pszValue.

13.6.4.14 char∗ CPLSerializeXMLTree (const CPLXMLNode ∗ psNode)

Convert tree into string document.

This function converts a CPLXMLNode (p. ??) tree representation of a document into a flat string representation.
White space indentation is used visually preserve the tree structure of the document. The returned document
becomes owned by the caller and should be freed with CPLFree() when no longer needed.

Parameters

psNode the node to serialize.

Returns

the document on success or NULL on failure.

References CPLMalloc(), and CPLXMLNode::psNext.

Referenced by CPLSerializeXMLTreeToFile(), and OGRSpatialReference::exportToXML().

13.6.4.15 int CPLSerializeXMLTreeToFile (const CPLXMLNode ∗ psTree, const char ∗ pszFilename)

Write document tree to a file.

The passed document tree is converted into one big string (with CPLSerializeXMLTree() (p. ??)) and then written
to the named file. Errors writing the file will be reported by CPLError() (p. ??). The source document tree is not
altered. If the output file already exists it will be overwritten.

Parameters

psTree the document tree to write.
pszFilename the name of the file to write to.

Returns

TRUE on success, FALSE otherwise.

References CPLError(), CPLSerializeXMLTree(), VSIFCloseL(), VSIFOpenL(), and VSIFWriteL().

13.6.4.16 int CPLSetXMLValue (CPLXMLNode ∗ psRoot, const char ∗ pszPath, const char ∗ pszValue)

Set element value by path.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.7 cpl_odbc.h File Reference 485

Find (or create) the target element or attribute specified in the path, and assign it the indicated value.

Any path elements that do not already exist will be created. The target nodes value (the first CXT_Text child) will be
replaced with the provided value.

If the target node is an attribute instead of an element, the name should be prefixed with a #.

Example: CPLSetXMLValue("Citation.Id.Description", "DOQ dataset"); CPLSetXMLValue("Citation.Id.←↩

Description.#name", "doq");

Parameters

psRoot the subdocument to be updated.
pszPath the dot seperated path to the target element/attribute.

pszValue the text value to assign.

Returns

TRUE on success.

References CPLCreateXMLNode(), CPLStrdup(), CSLDestroy(), CXT_Attribute, CXT_Element, CXT_Text, CPL←↩

XMLNode::eType, CPLXMLNode::psChild, CPLXMLNode::psNext, and CPLXMLNode::pszValue.

13.6.4.17 void CPLStripXMLNamespace (CPLXMLNode ∗ psRoot, const char ∗ pszNamespace, int bRecurse)

Strip indicated namespaces.

The subdocument (psRoot) is recursively examined, and any elements with the indicated namespace prefix will have
the namespace prefix stripped from the element names. If the passed namespace is NULL, then all namespace
prefixes will be stripped.

Nodes other than elements should remain unaffected. The changes are made "in place", and should not alter any
node locations, only the pszValue field of affected nodes.

Parameters

psRoot the document to operate on.
pszNamespace the name space prefix (not including colon), or NULL.

bRecurse TRUE to recurse over whole document, or FALSE to only operate on the passed node.

References CXT_Attribute, CXT_Element, CPLXMLNode::eType, CPLXMLNode::psChild, CPLXMLNode::psNext,
and CPLXMLNode::pszValue.

Referenced by OGRSpatialReference::importFromXML().

13.7 cpl_odbc.h File Reference

#include "cpl_port.h"
#include <sql.h>
#include <sqlext.h>
#include <odbcinst.h>
#include "cpl_string.h"

Classes

• class CPLODBCDriverInstaller
• class CPLODBCSession
• class CPLODBCStatement

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

486 File Documentation

13.7.1 Detailed Description

ODBC Abstraction Layer (C++).

13.8 cpl_port.h File Reference

#include "cpl_config.h"
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <stdarg.h>
#include <string.h>
#include <ctype.h>
#include <limits.h>
#include <time.h>
#include <errno.h>
#include <locale.h>
#include <strings.h>

Macros

• #define CPL_LSBINT16PTR(x) ((∗(GByte∗)(x)) | ((∗(GByte∗)((x)+1)) << 8))
• #define CPL_LSBINT32PTR(x)
• #define CPL_LSBSINT16PTR(x) ((GInt16) CPL_LSBINT16PTR(x))
• #define CPL_LSBUINT16PTR(x) ((GUInt16)CPL_LSBINT16PTR(x))
• #define CPL_LSBSINT32PTR(x) ((GInt32) CPL_LSBINT32PTR(x))
• #define CPL_LSBUINT32PTR(x) ((GUInt32)CPL_LSBINT32PTR(x))

13.8.1 Detailed Description

Core portability definitions for CPL.

13.8.2 Macro Definition Documentation

13.8.2.1 #define CPL_LSBINT16PTR(x) ((∗(GByte∗)(x)) | ((∗(GByte∗)((x)+1)) << 8))

Return a Int16 from the 2 bytes ordered in LSB order at address x

13.8.2.2 #define CPL_LSBINT32PTR(x)

Value:

((*(GByte*)(x)) | ((*(GByte*)((x)+1)) << 8) | \
((*(GByte*)((x)+2)) << 16) | ((*(GByte*)((x)+3)) << 24))

Return a Int32 from the 4 bytes ordered in LSB order at address x

13.8.2.3 #define CPL_LSBSINT16PTR(x) ((GInt16) CPL_LSBINT16PTR(x))

Return a signed Int16 from the 2 bytes ordered in LSB order at address x

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.9 cpl_quad_tree.h File Reference 487

13.8.2.4 #define CPL_LSBSINT32PTR(x) ((GInt32) CPL_LSBINT32PTR(x))

Return a signed Int32 from the 4 bytes ordered in LSB order at address x

13.8.2.5 #define CPL_LSBUINT16PTR(x) ((GUInt16)CPL_LSBINT16PTR(x))

Return a unsigned Int16 from the 2 bytes ordered in LSB order at address x

13.8.2.6 #define CPL_LSBUINT32PTR(x) ((GUInt32)CPL_LSBINT32PTR(x))

Return a unsigned Int32 from the 4 bytes ordered in LSB order at address x

13.9 cpl_quad_tree.h File Reference

#include "cpl_port.h"

Classes

• struct CPLRectObj

Functions

• CPLQuadTree ∗ CPLQuadTreeCreate (const CPLRectObj ∗pGlobalBounds, CPLQuadTreeGetBounds←↩

Func pfnGetBounds)
• void CPLQuadTreeDestroy (CPLQuadTree ∗hQuadtree)
• void CPLQuadTreeSetBucketCapacity (CPLQuadTree ∗hQuadtree, int nBucketCapacity)
• int CPLQuadTreeGetAdvisedMaxDepth (int nExpectedFeatures)
• void CPLQuadTreeSetMaxDepth (CPLQuadTree ∗hQuadtree, int nMaxDepth)
• void CPLQuadTreeInsert (CPLQuadTree ∗hQuadtree, void ∗hFeature)
• void CPLQuadTreeInsertWithBounds (CPLQuadTree ∗hQuadtree, void ∗hFeature, const CPLRectObj
∗psBounds)

• void ∗∗ CPLQuadTreeSearch (const CPLQuadTree ∗hQuadtree, const CPLRectObj ∗pAoi, int ∗pn←↩

FeatureCount)
• void CPLQuadTreeForeach (const CPLQuadTree ∗hQuadtree, CPLQuadTreeForeachFunc pfnForeach,

void ∗pUserData)

13.9.1 Detailed Description

Quad tree implementation.

A quadtree is a tree data structure in which each internal node has up to four children. Quadtrees are most often
used to partition a two dimensional space by recursively subdividing it into four quadrants or regions

13.9.2 Function Documentation

13.9.2.1 CPLQuadTree∗ CPLQuadTreeCreate (const CPLRectObj ∗ pGlobalBounds, CPLQuadTreeGetBoundsFunc
pfnGetBounds)

Create a new quadtree

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

488 File Documentation

Parameters

pGlobalBounds a pointer to the global extent of all the elements that will be inserted
pfnGetBounds a user provided function to get the bounding box of the inserted elements. If it is set to NU←↩

LL, then CPLQuadTreeInsertWithBounds() (p. ??) must be used, and extra memory will be
used to keep features bounds in the quad tree.

Returns

a newly allocated quadtree

References CPLMalloc().

13.9.2.2 void CPLQuadTreeDestroy (CPLQuadTree ∗ hQuadTree)

Destroy a quadtree

Parameters

hQuadTree the quad tree to destroy

13.9.2.3 void CPLQuadTreeForeach (const CPLQuadTree ∗ hQuadTree, CPLQuadTreeForeachFunc pfnForeach, void ∗
pUserData)

Walk through the quadtree and runs the provided function on all the elements

This function is provided with the user_data argument of pfnForeach. It must return TRUE to go on the walk through
the hash set, or FALSE to make it stop.

Note : the structure of the quadtree must NOT be modified during the walk.

Parameters

hQuadTree the quad tree
pfnForeach the function called on each element.
pUserData the user data provided to the function.

13.9.2.4 int CPLQuadTreeGetAdvisedMaxDepth (int nExpectedFeatures)

Returns the optimal depth of a quadtree to hold nExpectedFeatures

Parameters

nExpected←↩

Features
the expected maximum number of elements to be inserted

Returns

the optimal depth of a quadtree to hold nExpectedFeatures

References CPLDebug().

13.9.2.5 void CPLQuadTreeInsert (CPLQuadTree ∗ hQuadTree, void ∗ hFeature)

Insert a feature into a quadtree

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.9 cpl_quad_tree.h File Reference 489

Parameters

hQuadTree the quad tree
hFeature the feature to insert

References CPLError().

13.9.2.6 void CPLQuadTreeInsertWithBounds (CPLQuadTree ∗ hQuadTree, void ∗ hFeature, const CPLRectObj ∗
psBounds)

Insert a feature into a quadtree

Parameters

hQuadTree the quad tree
hFeature the feature to insert

psBounds bounds of the feature

13.9.2.7 void∗∗ CPLQuadTreeSearch (const CPLQuadTree ∗ hQuadTree, const CPLRectObj ∗ pAoi, int ∗
pnFeatureCount)

Returns all the elements inserted whose bounding box intersects the provided area of interest

Parameters

hQuadTree the quad tree
pAoi the pointer to the area of interest

pnFeatureCount the user data provided to the function.

Returns

an array of features that must be freed with CPLFree

13.9.2.8 void CPLQuadTreeSetBucketCapacity (CPLQuadTree ∗ hQuadTree, int nBucketCapacity)

Set the maximum capacity of a node of a quadtree. The default value is 8. Note that the maximum capacity will only
be honoured if the features inserted have a point geometry. Otherwise it may be exceeded.

Parameters

hQuadTree the quad tree
nBucketCapacity the maximum capactiy of a node of a quadtree

13.9.2.9 void CPLQuadTreeSetMaxDepth (CPLQuadTree ∗ hQuadTree, int nMaxDepth)

Set the maximum depth of a quadtree. By default, quad trees have no maximum depth, but a maximum bucket
capacity.

Parameters

hQuadTree the quad tree
nMaxDepth the maximum depth allowed

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

490 File Documentation

13.10 cpl_string.h File Reference

#include "cpl_vsi.h"
#include "cpl_error.h"
#include "cpl_conv.h"
#include <string>

Classes

• class CPLString

Convenient string class based on std::string.

• class CPLStringList

String list class designed around our use of C "char∗∗" string lists.

Functions

• int CSLCount (char ∗∗papszStrList)

• void CSLDestroy (char ∗∗papszStrList)

• char ∗∗ CSLDuplicate (char ∗∗papszStrList)

• char ∗∗ CSLMerge (char ∗∗papszOrig, char ∗∗papszOverride)

Merge two lists.

• char ∗∗ CSLTokenizeString2 (const char ∗pszString, const char ∗pszDelimeter, int nCSLTFlags)

• char ∗∗ CSLLoad (const char ∗pszFname)

• char ∗∗ CSLLoad2 (const char ∗pszFname, int nMaxLines, int nMaxCols, char ∗∗papszOptions)

• int CSLFindString (char ∗∗, const char ∗)
• int CSLPartialFindString (char ∗∗papszHaystack, const char ∗pszNeedle)

• int CSLFindName (char ∗∗papszStrList, const char ∗pszName)

• int CSLTestBoolean (const char ∗pszValue)

• const char ∗ CPLParseNameValue (const char ∗pszNameValue, char ∗∗ppszKey)

• char ∗∗ CSLSetNameValue (char ∗∗papszStrList, const char ∗pszName, const char ∗pszValue)

• void CSLSetNameValueSeparator (char ∗∗papszStrList, const char ∗pszSeparator)

• char ∗ CPLEscapeString (const char ∗pszString, int nLength, int nScheme)

• char ∗ CPLUnescapeString (const char ∗pszString, int ∗pnLength, int nScheme)

• char ∗ CPLBinaryToHex (int nBytes, const GByte ∗pabyData)

• CPLValueType CPLGetValueType (const char ∗pszValue)

• size_t CPLStrlcpy (char ∗pszDest, const char ∗pszSrc, size_t nDestSize)

• size_t CPLStrlcat (char ∗pszDest, const char ∗pszSrc, size_t nDestSize)

• size_t CPLStrnlen (const char ∗pszStr, size_t nMaxLen)

• int CPLEncodingCharSize (const char ∗pszEncoding)

• char ∗ CPLRecode (const char ∗pszSource, const char ∗pszSrcEncoding, const char ∗pszDstEncoding)

• char ∗ CPLRecodeFromWChar (const wchar_t ∗pwszSource, const char ∗pszSrcEncoding, const char
∗pszDstEncoding)

• wchar_t ∗ CPLRecodeToWChar (const char ∗pszSource, const char ∗pszSrcEncoding, const char ∗psz←↩

DstEncoding)

• int CPLIsUTF8 (const char ∗pabyData, int nLen)

• char ∗ CPLForceToASCII (const char ∗pabyData, int nLen, char chReplacementChar)

• int CPLStrlenUTF8 (const char ∗pszUTF8Str)

• CPLString CPLURLGetValue (const char ∗pszURL, const char ∗pszKey)

• CPLString CPLURLAddKVP (const char ∗pszURL, const char ∗pszKey, const char ∗pszValue)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.10 cpl_string.h File Reference 491

13.10.1 Detailed Description

Various convenience functions for working with strings and string lists.

A StringList is just an array of strings with the last pointer being NULL. An empty StringList may be either a NULL
pointer, or a pointer to a pointer memory location with a NULL value.

A common convention for StringLists is to use them to store name/value lists. In this case the contents are treated
like a dictionary of name/value pairs. The actual data is formatted with each string having the format "<name>←↩

:<value>" (though "=" is also an acceptable separator). A number of the functions in the file operate on name/value
style string lists (such as CSLSetNameValue() (p. ??), and CSLFetchNameValue()).

To some extent the CPLStringList (p. ??) C++ class can be used to abstract managing string lists a bit but still be
able to return them from C functions.

13.10.2 Function Documentation

13.10.2.1 char∗ CPLBinaryToHex (int nBytes, const GByte ∗ pabyData)

Binary to hexadecimal translation.

Parameters

nBytes number of bytes of binary data in pabyData.
pabyData array of data bytes to translate.

Returns

hexadecimal translation, zero terminated. Free with CPLFree().

References CPLMalloc().

Referenced by OGRFeature::GetFieldAsString().

13.10.2.2 int CPLEncodingCharSize (const char ∗ pszEncoding)

Return bytes per character for encoding.

This function returns the size in bytes of the smallest character in this encoding. For fixed width encodings (ASCII,
UCS-2, UCS-4) this is straight forward. For encodings like UTF8 and UTF16 which represent some characters as a
sequence of atomic character sizes the function still returns the atomic character size (1 for UTF8, 2 for UTF16).

This function will return the correct value for well known encodings with corresponding CPL_ENC_ values. It may
not return the correct value for other encodings even if they are supported by the underlying iconv or windows
transliteration services. Hopefully it will improve over time.

Parameters

pszEncoding the name of the encoding.

Returns

the size of a minimal character in bytes or -1 if the size is unknown.

13.10.2.3 char∗ CPLEscapeString (const char ∗ pszInput, int nLength, int nScheme)

Apply escaping to string to preserve special characters.

This function will "escape" a variety of special characters to make the string suitable to embed within a string
constant or to write within a text stream but in a form that can be reconstitued to it's original form. The escaping will
even preserve zero bytes allowing preservation of raw binary data.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

492 File Documentation

CPLES_BackslashQuotable(0): This scheme turns a binary string into a form suitable to be placed within double
quotes as a string constant. The backslash, quote, '\0' and newline characters are all escaped in the usual C style.

CPLES_XML(1): This scheme converts the '<', '>', '"' and '&' characters into their XML/HTML equivelent (<, >, "
and &) making a string safe to embed as CDATA within an XML element. The '\0' is not escaped and should not be
included in the input.

CPLES_URL(2): Everything except alphanumerics and the underscore are converted to a percent followed by a
two digit hex encoding of the character (leading zero supplied if needed). This is the mechanism used for encoding
values to be passed in URLs.

CPLES_SQL(3): All single quotes are replaced with two single quotes. Suitable for use when constructing literal
values for SQL commands where the literal will be enclosed in single quotes.

CPLES_CSV(4): If the values contains commas, semicolons, tabs, double quotes, or newlines it placed in double
quotes, and double quotes in the value are doubled. Suitable for use when constructing field values for .csv files.
Note that CPLUnescapeString() (p. ??) currently does not support this format, only CPLEscapeString() (p. ??).
See cpl_csv.cpp for csv parsing support.

Parameters

pszInput the string to escape.
nLength The number of bytes of data to preserve. If this is -1 the strlen(pszString) function will be

used to compute the length.
nScheme the encoding scheme to use.

Returns

an escaped, zero terminated string that should be freed with CPLFree() when no longer needed.

References CPLError(), CPLMalloc(), and CPLStrdup().

Referenced by GOA2GetAuthorizationURL(), and OGRGeocode().

13.10.2.4 char∗ CPLForceToASCII (const char ∗ pabyData, int nLen, char chReplacementChar)

Return a new string that is made only of ASCII characters. If non-ASCII characters are found in the input string,
they will be replaced by the provided replacement character.

Parameters

pabyData input string to test
nLen length of the input string, or -1 if the function must compute the string length. In which case it

must be null terminated.
ch←↩

Replacement←↩

Char

character which will be used when the input stream contains a non ASCII character. Must be
valid ASCII !

Returns

a new string that must be freed with CPLFree().

Since

GDAL 1.7.0

References CPLMalloc().

13.10.2.5 CPLValueType CPLGetValueType (const char ∗ pszValue)

Detect the type of the value contained in a string, whether it is a real, an integer or a string Leading and trailing
spaces are skipped in the analysis.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.10 cpl_string.h File Reference 493

Note: in the context of this function, integer must be understood in a broad sense. It does not mean that the value
can fit into a 32 bit integer for example. It might be larger.

Parameters

pszValue the string to analyze

Returns

returns the type of the value contained in the string.

13.10.2.6 int CPLIsUTF8 (const char ∗ pabyData, int nLen)

Test if a string is encoded as UTF-8.

Parameters

pabyData input string to test
nLen length of the input string, or -1 if the function must compute the string length. In which case it

must be null terminated.

Returns

TRUE if the string is encoded as UTF-8. FALSE otherwise

Since

GDAL 1.7.0

13.10.2.7 const char∗ CPLParseNameValue (const char ∗ pszNameValue, char ∗∗ ppszKey)

Parse NAME=VALUE string into name and value components.

Note that if ppszKey is non-NULL, the key (or name) portion will be allocated using VSIMalloc(), and returned in
that pointer. It is the applications responsibility to free this string, but the application should not modify or free the
returned value portion.

This function also support "NAME:VALUE" strings and will strip white space from around the delimeter when forming
name and value strings.

Eventually CSLFetchNameValue() and friends may be modified to use CPLParseNameValue() (p. ??).

Parameters

pszNameValue string in "NAME=VALUE" format.
ppszKey optional pointer though which to return the name portion.

Returns

the value portion (pointing into original string).

References CPLMalloc().

Referenced by CSLMerge(), and CSLSetNameValueSeparator().

13.10.2.8 char∗ CPLRecode (const char ∗ pszSource, const char ∗ pszSrcEncoding, const char ∗ pszDstEncoding)

Convert a string from a source encoding to a destination encoding.

The only guaranteed supported encodings are CPL_ENC_UTF8, CPL_ENC_ASCII and CPL_ENC_ISO8859_1.
Currently, the following conversions are supported :

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

494 File Documentation

• CPL_ENC_ASCII -> CPL_ENC_UTF8 or CPL_ENC_ISO8859_1 (no conversion in fact)

• CPL_ENC_ISO8859_1 -> CPL_ENC_UTF8

• CPL_ENC_UTF8 -> CPL_ENC_ISO8859_1

If an error occurs an error may, or may not be posted with CPLError() (p. ??).

Parameters

pszSource a NULL terminated string.
pszSrcEncoding the source encoding.
pszDstEncoding the destination encoding.

Returns

a NULL terminated string which should be freed with CPLFree().

Since

GDAL 1.6.0

References CPLStrdup().

13.10.2.9 char∗ CPLRecodeFromWChar (const wchar_t ∗ pwszSource, const char ∗ pszSrcEncoding, const char ∗
pszDstEncoding)

Convert wchar_t string to UTF-8.

Convert a wchar_t string into a multibyte utf-8 string. The only guaranteed supported source encoding is CPL_E←↩

NC_UCS2, and the only guaranteed supported destination encodings are CPL_ENC_UTF8, CPL_ENC_ASCII and
CPL_ENC_ISO8859_1. In some cases (ie. using iconv()) other encodings may also be supported.

Note that the wchar_t type varies in size on different systems. On win32 it is normally 2 bytes, and on unix 4 bytes.

If an error occurs an error may, or may not be posted with CPLError() (p. ??).

Parameters

pwszSource the source wchar_t string, terminated with a 0 wchar_t.
pszSrcEncoding the source encoding, typically CPL_ENC_UCS2.
pszDstEncoding the destination encoding, typically CPL_ENC_UTF8.

Returns

a zero terminated multi-byte string which should be freed with CPLFree(), or NULL if an error occurs.

Since

GDAL 1.6.0

Referenced by CPLUnescapeString(), and CPLODBCStatement::Fetch().

13.10.2.10 wchar_t∗ CPLRecodeToWChar (const char ∗ pszSource, const char ∗ pszSrcEncoding, const char ∗
pszDstEncoding)

Convert UTF-8 string to a wchar_t string.

Convert a 8bit, multi-byte per character input string into a wide character (wchar_t) string. The only guaranteed
supported source encodings are CPL_ENC_UTF8, CPL_ENC_ASCII and CPL_ENC_ISO8869_1 (LATIN1). The

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.10 cpl_string.h File Reference 495

only guaranteed supported destination encoding is CPL_ENC_UCS2. Other source and destination encodings may
be supported depending on the underlying implementation.

Note that the wchar_t type varies in size on different systems. On win32 it is normally 2 bytes, and on unix 4 bytes.

If an error occurs an error may, or may not be posted with CPLError() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

496 File Documentation

Parameters

pszSource input multi-byte character string.
pszSrcEncoding source encoding, typically CPL_ENC_UTF8.
pszDstEncoding destination encoding, typically CPL_ENC_UCS2.

Returns

the zero terminated wchar_t string (to be freed with CPLFree()) or NULL on error.

Since

GDAL 1.6.0

13.10.2.11 size_t CPLStrlcat (char ∗ pszDest, const char ∗ pszSrc, size_t nDestSize)

Appends a source string to a destination buffer.

This function ensures that the destination buffer is always NUL terminated (provided that its length is at least 1 and
that there is at least one byte free in pszDest, that is to say strlen(pszDest_before) < nDestSize)

This function is designed to be a safer, more consistent, and less error prone replacement for strncat. Its contract
is identical to libbsd's strlcat.

Truncation can be detected by testing if the return value of CPLStrlcat is greater or equal to nDestSize.

char szDest[5];
CPLStrlcpy(szDest, "ab", sizeof(szDest));
if (CPLStrlcat(szDest, "cde", sizeof(szDest)) >= sizeof(szDest))

fprintf(stderr, "truncation occured !\n");

Parameters

pszDest destination buffer. Must be NUL terminated before running CPLStrlcat
pszSrc source string. Must be NUL terminated

nDestSize size of destination buffer (including space for the NUL terminator character)

Returns

the thoretical length of the destination string after concatenation (=strlen(pszDest_before) + strlen(pszSrc)). If
strlen(pszDest_before) >= nDestSize, then it returns nDestSize + strlen(pszSrc)

Since

GDAL 1.7.0

References CPLStrlcpy().

Referenced by CPLFormFilename(), CPLProjectRelativeFilename(), and CPLResetExtension().

13.10.2.12 size_t CPLStrlcpy (char ∗ pszDest, const char ∗ pszSrc, size_t nDestSize)

Copy source string to a destination buffer.

This function ensures that the destination buffer is always NUL terminated (provided that its length is at least 1).

This function is designed to be a safer, more consistent, and less error prone replacement for strncpy. Its contract
is identical to libbsd's strlcpy.

Truncation can be detected by testing if the return value of CPLStrlcpy is greater or equal to nDestSize.

char szDest[5];
if (CPLStrlcpy(szDest, "abcde", sizeof(szDest)) >= sizeof(szDest))

fprintf(stderr, "truncation occured !\n");

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.10 cpl_string.h File Reference 497

Parameters

pszDest destination buffer
pszSrc source string. Must be NUL terminated

nDestSize size of destination buffer (including space for the NUL terminator character)

Returns

the length of the source string (=strlen(pszSrc))

Since

GDAL 1.7.0

Referenced by CPLCleanTrailingSlash(), CPLFormFilename(), CPLGetBasename(), CPLGetDirname(), CPLGet←↩

Extension(), CPLGetPath(), CPLProjectRelativeFilename(), CPLResetExtension(), and CPLStrlcat().

13.10.2.13 int CPLStrlenUTF8 (const char ∗ pszUTF8Str)

Return the number of UTF-8 characters of a nul-terminated string.

This is different from strlen() which returns the number of bytes.

Parameters

pszUTF8Str a nul-terminated UTF-8 string

Returns

the number of UTF-8 characters.

13.10.2.14 size_t CPLStrnlen (const char ∗ pszStr, size_t nMaxLen)

Returns the length of a NUL terminated string by reading at most the specified number of bytes.

The CPLStrnlen() (p. ??) function returns MIN(strlen(pszStr), nMaxLen). Only the first nMaxLen bytes of the string
will be read. Usefull to test if a string contains at least nMaxLen characters without reading the full string up to the
NUL terminating character.

Parameters

pszStr a NUL terminated string
nMaxLen maximum number of bytes to read in pszStr

Returns

strlen(pszStr) if the length is lesser than nMaxLen, otherwise nMaxLen if the NUL character has not been
found in the first nMaxLen bytes.

Since

GDAL 1.7.0

Referenced by OGRSpatialReference::importFromPCI().

13.10.2.15 char∗ CPLUnescapeString (const char ∗ pszInput, int ∗ pnLength, int nScheme)

Unescape a string.

This function does the opposite of CPLEscapeString() (p. ??). Given a string with special values escaped according
to some scheme, it will return a new copy of the string returned to it's original form.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

498 File Documentation

Parameters

pszInput the input string. This is a zero terminated string.
pnLength location to return the length of the unescaped string, which may in some cases include em-

bedded '\0' characters.
nScheme the escaped scheme to undo (see CPLEscapeString() (p. ??) for a list).

Returns

a copy of the unescaped string that should be freed by the application using CPLFree() when no longer
needed.

References CPLDebug(), CPLMalloc(), and CPLRecodeFromWChar().

13.10.2.16 CPLString CPLURLAddKVP (const char ∗ pszURL, const char ∗ pszKey, const char ∗ pszValue)

Return a new URL with a new key=value pair.

Parameters

pszURL the URL.
pszKey the key to find.

pszValue the value of the key (may be NULL to unset an existing KVP).

Returns

the modified URL.

Since

GDAL 1.9.0

References CPLString::ifind().

13.10.2.17 CPLString CPLURLGetValue (const char ∗ pszURL, const char ∗ pszKey)

Return the value matching a key from a key=value pair in a URL.

Parameters

pszURL the URL.
pszKey the key to find.

Returns

the value of empty string if not found.

Since

GDAL 1.9.0

References CPLString::ifind().

13.10.2.18 int CSLCount (char ∗∗ papszStrList)

Return number of items in a string list.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.10 cpl_string.h File Reference 499

Returns the number of items in a string list, not counting the terminating NULL. Passing in NULL is safe, and will
result in a count of zero.

Lists are counted by iterating through them so long lists will take more time than short lists. Care should be taken
to avoid using CSLCount() (p. ??) as an end condition for loops as it will result in O(n∧2) behavior.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

500 File Documentation

Parameters

papszStrList the string list to count.

Returns

the number of entries.

Referenced by OGRSFDriverRegistrar::AutoLoadDrivers(), CPLStringList::Count(), CPLCorrespondingPaths(),
CPLHTTPParseMultipartMime(), CSLDuplicate(), CSLSetNameValueSeparator(), OGRFeature::Equal(), OGR←↩

DataSource::ExecuteSQL(), OGRSpatialReference::exportToPCI(), OGRSpatialReference::GetAttrNode(), OG←↩

RStyleTable::GetStyleName(), OGRSpatialReference::importFromOzi(), OGRSpatialReference::importFromPCI(),
OGRSpatialReference::importFromProj4(), OGRSpatialReference::importFromWMSAUTO(), OGRStyleTable::Is←↩

Exist(), OGRFeature::SetField(), OGRSpatialReference::SetNode(), and VSIReadDirRecursive().

13.10.2.19 void CSLDestroy (char ∗∗ papszStrList)

Free string list.

Frees the passed string list (null terminated array of strings). It is safe to pass NULL.

Parameters

papszStrList the list to free.

Referenced by OGRSFDriverRegistrar::AutoLoadDrivers(), OGRStyleTable::Clear(), CPLODBCStatement::Clear(),
CPLStringList::Clear(), CPLGetXMLNode(), CPLHTTPDestroyResult(), CPLHTTPParseMultipartMime(), CPL←↩

SetXMLValue(), CPLUnlinkTree(), OGRDataSource::ExecuteSQL(), OGRSpatialReference::exportToPCI(), O←↩

GR_SRSNode::exportToWkt(), OGRSpatialReference::GetAttrNode(), OGRStyleMgr::GetPart(), OGRSpatial←↩

Reference::importFromOzi(), OGRSpatialReference::importFromPCI(), OGRSpatialReference::importFromProj4(),
OGRSpatialReference::importFromWMSAUTO(), OGRStyleTable::LoadStyleTable(), OGRSFDriverRegistrar::←↩

RegisterDriver(), OGRFeature::SetField(), OGRUnionLayer::SetIgnoredFields(), OGRSpatialReference::SetNode(),
OGRFeature::UnsetField(), and VSIReadDirRecursive().

13.10.2.20 char∗∗ CSLDuplicate (char ∗∗ papszStrList)

Clone a string list.

Efficiently allocates a copy of a string list. The returned list is owned by the caller and should be freed with CSL←↩

Destroy() (p. ??).

Parameters

papszStrList the input string list.

Returns

newly allocated copy.

References CPLMalloc(), CPLStrdup(), and CSLCount().

Referenced by OGRStyleTable::Clone(), CSLMerge(), OGRFeature::SetField(), and OGRUnionLayer::SetIgnored←↩

Fields().

13.10.2.21 int CSLFindName (char ∗∗ papszStrList, const char ∗ pszName)

Find StringList entry with given key name.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.10 cpl_string.h File Reference 501

Parameters

papszStrList the string list to search.
pszName the key value to look for (case insensitive).

Returns

-1 on failure or the list index of the first occurance matching the given key.

Referenced by CPLStringList::FindName().

13.10.2.22 int CSLFindString (char ∗∗ papszList, const char ∗ pszTarget)

Find a string within a string list.

Returns the index of the entry in the string list that contains the target string. The string in the string list must be a
full match for the target, but the search is case insensitive.

Parameters

papszList the string list to be searched.
pszTarget the string to be searched for.

Returns

the index of the string within the list or -1 on failure.

Referenced by OGR_SRSNode::FixupOrdering().

13.10.2.23 char∗∗ CSLLoad (const char ∗ pszFname)

Load a text file into a string list.

The VSI∗L API is used, so VSIFOpenL() (p. ??) supported objects that aren't physical files can also be accessed.
Files are returned as a string list, with one item in the string list per line. End of line markers are stripped (by
CPLReadLineL() (p. ??)).

If reading the file fails a CPLError() (p. ??) will be issued and NULL returned.

Parameters

pszFname the name of the file to read.

Returns

a string list with the files lines, now owned by caller. To be freed with CSLDestroy() (p. ??)

References CSLLoad2().

Referenced by OGRStyleTable::LoadStyleTable().

13.10.2.24 char∗∗ CSLLoad2 (const char ∗ pszFname, int nMaxLines, int nMaxCols, char ∗∗ papszOptions)

Load a text file into a string list.

The VSI∗L API is used, so VSIFOpenL() (p. ??) supported objects that aren't physical files can also be accessed.
Files are returned as a string list, with one item in the string list per line. End of line markers are stripped (by
CPLReadLineL() (p. ??)).

If reading the file fails a CPLError() (p. ??) will be issued and NULL returned.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

502 File Documentation

Parameters

pszFname the name of the file to read.
nMaxLines maximum number of lines to read before stopping, or -1 for no limit.
nMaxCols maximum number of characters in a line before stopping, or -1 for no limit.

papszOptions NULL-terminated array of options. Unused for now.

Returns

a string list with the files lines, now owned by caller. To be freed with CSLDestroy() (p. ??)

Since

GDAL 1.7.0

References CPLError(), CPLErrorReset(), CPLReadLine2L(), CPLReadLineL(), CPLStrdup(), VSIFCloseL(), VSI←↩

FEofL(), and VSIFOpenL().

Referenced by CSLLoad().

13.10.2.25 char∗∗ CSLMerge (char ∗∗ papszOrig, char ∗∗ papszOverride)

Merge two lists.

The two lists are merged, ensuring that if any keys appear in both that the value from the second (papszOverride)
list take precidence.

Parameters

papszOrig the original list, being modified.
papszOverride the list of items being merged in. This list is unaltered and remains owned by the caller.

Returns

updated list.

References CPLParseNameValue(), CSLDuplicate(), and CSLSetNameValue().

13.10.2.26 int CSLPartialFindString (char ∗∗ papszHaystack, const char ∗ pszNeedle)

Find a substring within a string list.

Returns the index of the entry in the string list that contains the target string as a substring. The search is case
sensitive (unlike CSLFindString() (p. ??)).

Parameters

papszHaystack the string list to be searched.
pszNeedle the substring to be searched for.

Returns

the index of the string within the list or -1 on failure.

13.10.2.27 char∗∗ CSLSetNameValue (char ∗∗ papszList, const char ∗ pszName, const char ∗ pszValue)

Assign value to name in StringList.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.10 cpl_string.h File Reference 503

Set the value for a given name in a StringList of "Name=Value" pairs ("Name:Value" pairs are also supported for
backward compatibility with older stuff.)

If there is already a value for that name in the list then the value is changed, otherwise a new "Name=Value" pair is
added.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

504 File Documentation

Parameters

papszList the original list, the modified version is returned.
pszName the name to be assigned a value. This should be a well formed token (no spaces or very

special characters).
pszValue the value to assign to the name. This should not contain any newlines (CR or LF) but is

otherwise pretty much unconstrained. If NULL any corresponding value will be removed.

Returns

modified stringlist.

References CPLMalloc().

Referenced by CPLSetConfigOption(), CPLSetThreadLocalConfigOption(), and CSLMerge().

13.10.2.28 void CSLSetNameValueSeparator (char ∗∗ papszList, const char ∗ pszSeparator)

Replace the default separator (":" or "=") with the passed separator in the given name/value list.

Note that if a separator other than ":" or "=" is used, the resulting list will not be manipulatable by the CSL name/value
functions any more.

The CPLParseNameValue() (p. ??) function is used to break the existing lines, and it also strips white space from
around the existing delimiter, thus the old separator, and any white space will be replaced by the new separator. For
formatting purposes it may be desireable to include some white space in the new separator. eg. ": " or " = ".

Parameters

papszList the list to update. Component strings may be freed but the list array will remain at the same
location.

pszSeparator the new separator string to insert.

References CPLMalloc(), CPLParseNameValue(), and CSLCount().

13.10.2.29 int CSLTestBoolean (const char ∗ pszValue)

Test what boolean value contained in the string.

If pszValue is "NO", "FALSE", "OFF" or "0" will be returned FALSE. Otherwise, TRUE will be returned.

Parameters

pszValue the string should be tested.

Returns

TRUE or FALSE.

Referenced by OGRLayer::Clip(), CPLHTTPFetch(), OGRGeometry::dumpReadable(), OGRFeature::Dump←↩

Readable(), OGRLayer::Erase(), OGRSpatialReference::exportToProj4(), CPLStringList::FetchBoolean(), O←↩

GRLayer::Identity(), OGRLayer::Intersection(), OGR_G_CreateFromGML(), OGR_G_ExportToGMLEx(), OG←↩

RGeocodeCreateSession(), OGRGeometryFactory::organizePolygons(), OGRFeature::SetField(), OGRLayer←↩

::SymDifference(), OGRLineString::transform(), OGRLayer::Union(), OGRLayer::Update(), and OGRSpatial←↩

Reference::Validate().

13.10.2.30 char∗∗ CSLTokenizeString2 (const char ∗ pszString, const char ∗ pszDelimiters, int nCSLTFlags)

Tokenize a string.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.11 cpl_virtualmem.h File Reference 505

This function will split a string into tokens based on specified' delimeter(s) with a variety of options. The returned
result is a string list that should be freed with CSLDestroy() (p. ??) when no longer needed.

The available parsing options are:

• CSLT_ALLOWEMPTYTOKENS: allow the return of empty tokens when two delimiters in a row occur with no
other text between them. If not set, empty tokens will be discarded;

• CSLT_STRIPLEADSPACES: strip leading space characters from the token (as reported by isspace());

• CSLT_STRIPENDSPACES: strip ending space characters from the token (as reported by isspace());

• CSLT_HONOURSTRINGS: double quotes can be used to hold values that should not be broken into multiple
tokens;

• CSLT_PRESERVEQUOTES: string quotes are carried into the tokens when this is set, otherwise they are
removed;

• CSLT_PRESERVEESCAPES: if set backslash escapes (for backslash itself, and for literal double quotes) will
be preserved in the tokens, otherwise the backslashes will be removed in processing.

Example:

Parse a string into tokens based on various white space (space, newline, tab) and then print out results and cleanup.
Quotes may be used to hold white space in tokens.

1 char **papszTokens;
2 int i;
3
4 papszTokens =
5 CSLTokenizeString2(pszCommand, " \t\n",
6 CSLT_HONOURSTRINGS | CSLT_ALLOWEMPTYTOKENS);
7
8 for(i = 0; papszTokens != NULL && papszTokens[i] != NULL; i++)
9 printf("arg %d: ’%s’", papszTokens[i]);
10 CSLDestroy(papszTokens);

Parameters

pszString the string to be split into tokens.
pszDelimiters one or more characters to be used as token delimeters.
nCSLTFlags an ORing of one or more of the CSLT_ flag values.

Returns

a string list of tokens owned by the caller.

References CPLStringList::AddString(), CPLStringList::Assign(), CPLStringList::Count(), CPLCalloc(), CPL←↩

Realloc(), and CPLStringList::StealList().

Referenced by OGRStyleMgr::GetPart(), OGRSpatialReference::importFromOzi(), and OGRFeature::SetField().

13.11 cpl_virtualmem.h File Reference

#include "cpl_port.h"
#include "cpl_vsi.h"

Typedefs

• typedef struct CPLVirtualMem CPLVirtualMem

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

506 File Documentation

• typedef void(∗ CPLVirtualMemCachePageCbk) (CPLVirtualMem ∗ctxt, size_t nOffset, void ∗pPageToFill,
size_t nToFill, void ∗pUserData)

• typedef void(∗ CPLVirtualMemUnCachePageCbk) (CPLVirtualMem ∗ctxt, size_t nOffset, const void ∗p←↩

PageToBeEvicted, size_t nToBeEvicted, void ∗pUserData)
• typedef void(∗ CPLVirtualMemFreeUserData) (void ∗pUserData)

Enumerations

• enum CPLVirtualMemAccessMode { VIRTUALMEM_READONLY, VIRTUALMEM_READONLY_ENFO←↩

RCED, VIRTUALMEM_READWRITE }

Functions

• size_t CPLGetPageSize (void)
• CPLVirtualMem ∗ CPLVirtualMemNew (size_t nSize, size_t nCacheSize, size_t nPageSizeHint, int b←↩

SingleThreadUsage, CPLVirtualMemAccessMode eAccessMode, CPLVirtualMemCachePageCbk pfn←↩

CachePage, CPLVirtualMemUnCachePageCbk pfnUnCachePage, CPLVirtualMemFreeUserData pfn←↩

FreeUserData, void ∗pCbkUserData)
• int CPLIsVirtualMemFileMapAvailable (void)
• CPLVirtualMem ∗ CPLVirtualMemFileMapNew (VSILFILE ∗fp, vsi_l_offset nOffset, vsi_l_offset nLength,

CPLVirtualMemAccessMode eAccessMode, CPLVirtualMemFreeUserData pfnFreeUserData, void ∗p←↩

CbkUserData)
• CPLVirtualMem ∗ CPLVirtualMemDerivedNew (CPLVirtualMem ∗pVMemBase, vsi_l_offset nOffset, vsi←↩

_l_offset nSize, CPLVirtualMemFreeUserData pfnFreeUserData, void ∗pCbkUserData)
• void CPLVirtualMemFree (CPLVirtualMem ∗ctxt)
• void ∗ CPLVirtualMemGetAddr (CPLVirtualMem ∗ctxt)
• size_t CPLVirtualMemGetSize (CPLVirtualMem ∗ctxt)
• int CPLVirtualMemIsFileMapping (CPLVirtualMem ∗ctxt)
• CPLVirtualMemAccessMode CPLVirtualMemGetAccessMode (CPLVirtualMem ∗ctxt)
• size_t CPLVirtualMemGetPageSize (CPLVirtualMem ∗ctxt)
• int CPLVirtualMemIsAccessThreadSafe (CPLVirtualMem ∗ctxt)
• void CPLVirtualMemDeclareThread (CPLVirtualMem ∗ctxt)
• void CPLVirtualMemUnDeclareThread (CPLVirtualMem ∗ctxt)
• void CPLVirtualMemPin (CPLVirtualMem ∗ctxt, void ∗pAddr, size_t nSize, int bWriteOp)
• void CPLVirtualMemManagerTerminate (void)

13.11.1 Detailed Description

Virtual memory management.

This file provides mechanism to define virtual memory mappings, whose content is allocated transparently and filled
on-the-fly. Those virtual memory mappings can be much larger than the available RAM, but only parts of the virtual
memory mapping, in the limit of the allowed the cache size, will actually be physically allocated.

This exploits low-level mechanisms of the operating system (virtual memory allocation, page protection and handler
of virtual memory exceptions).

It is also possible to create a virtual memory mapping from a file or part of a file.

The current implementation is Linux only.

13.11.2 Typedef Documentation

13.11.2.1 typedef struct CPLVirtualMem CPLVirtualMem

Opaque type that represents a virtual memory mapping.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.11 cpl_virtualmem.h File Reference 507

13.11.2.2 typedef void(∗ CPLVirtualMemCachePageCbk) (CPLVirtualMem ∗ctxt, size_t nOffset, void ∗pPageToFill, size_t
nToFill, void ∗pUserData)

Callback triggered when a still unmapped page of virtual memory is accessed. The callback has the responsibility
of filling the page with relevant values

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

508 File Documentation

Parameters

ctxt virtual memory handle.
nOffset offset of the page in the memory mapping.

pPageToFill address of the page to fill. Note that the address might be a temporary location, and not at
CPLVirtualMemGetAddr() (p. ??) + nOffset.

nToFill number of bytes of the page.
pUserData user data that was passed to CPLVirtualMemNew() (p. ??).

13.11.2.3 typedef void(∗ CPLVirtualMemFreeUserData) (void ∗pUserData)

Callback triggered when a virtual memory mapping is destroyed.

Parameters

pUserData user data that was passed to CPLVirtualMemNew() (p. ??).

13.11.2.4 typedef void(∗ CPLVirtualMemUnCachePageCbk) (CPLVirtualMem ∗ctxt, size_t nOffset, const void
∗pPageToBeEvicted, size_t nToBeEvicted, void ∗pUserData)

Callback triggered when a dirty mapped page is going to be freed. (saturation of cache, or termination of the virtual
memory mapping).

Parameters

ctxt virtual memory handle.
nOffset offset of the page in the memory mapping.

pPageToBe←↩

Evicted
address of the page that will be flushed. Note that the address might be a temporary location,
and not at CPLVirtualMemGetAddr() (p. ??) + nOffset.

nToBeEvicted number of bytes of the page.
pUserData user data that was passed to CPLVirtualMemNew() (p. ??).

13.11.3 Enumeration Type Documentation

13.11.3.1 enum CPLVirtualMemAccessMode

Access mode of a virtual memory mapping.

Enumerator

VIRTUALMEM_READONLY The mapping is meant at being read-only, but writes will not be prevented. Note
that any content written will be lost.

VIRTUALMEM_READONLY_ENFORCED The mapping is meant at being read-only, and this will be enforced
through the operating system page protection mechanism.

VIRTUALMEM_READWRITE The mapping is meant at being read-write, and modified pages can be saved
thanks to the pfnUnCachePage callback

13.11.4 Function Documentation

13.11.4.1 size_t CPLGetPageSize (void)

Return the size of a page of virtual memory.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.11 cpl_virtualmem.h File Reference 509

Returns

the page size.

Since

GDAL 2.0

13.11.4.2 int CPLIsVirtualMemFileMapAvailable (void)

Return if virtual memory mapping of a file is available.

Returns

TRUE if virtual memory mapping of a file is available.

Since

GDAL 2.0

13.11.4.3 void CPLVirtualMemDeclareThread (CPLVirtualMem ∗ ctxt)

Declare that a thread will access a virtual memory mapping.

This function must be called by a thread that wants to access the content of a virtual memory mapping, except if
the virtual memory mapping has been created with bSingleThreadUsage = TRUE.

This function must be paired with CPLVirtualMemUnDeclareThread() (p. ??).

Parameters

ctxt context returned by CPLVirtualMemNew() (p. ??).

Since

GDAL 2.0

13.11.4.4 CPLVirtualMem∗ CPLVirtualMemDerivedNew (CPLVirtualMem ∗ pVMemBase, vsi_l_offset nOffset,
vsi_l_offset nSize, CPLVirtualMemFreeUserData pfnFreeUserData, void ∗ pCbkUserData)

Create a new virtual memory mapping derived from an other virtual memory mapping.

This may be usefull in case of creating mapping for pixel interleaved data.

The new mapping takes a reference on the base mapping.

Parameters

pVMemBase Base virtual memory mapping
nOffset Offset in the base virtual memory mapping from which to start the new mapping.

nSize Size of the base virtual memory mapping to expose in the the new mapping.
pfnFreeUser←↩

Data
callback that is called when the object is destroyed.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

510 File Documentation

pCbkUserData user data passed to pfnFreeUserData.

Returns

a virtual memory object that must be freed by CPLVirtualMemFree() (p. ??), or NULL in case of failure.

Since

GDAL 2.0

References CPLError().

13.11.4.5 CPLVirtualMem∗ CPLVirtualMemFileMapNew (VSILFILE ∗ fp, vsi_l_offset nOffset, vsi_l_offset nLength,
CPLVirtualMemAccessMode eAccessMode, CPLVirtualMemFreeUserData pfnFreeUserData, void ∗
pCbkUserData)

Create a new virtual memory mapping from a file.

The file must be a "real" file recognized by the operating system, and not a VSI extended virtual file.

In VIRTUALMEM_READWRITE mode, updates to the memory mapping will be written in the file.

On Linux AMD64 platforms, the maximum value for nLength is 128 TB. On Linux x86 platforms, the maximum value
for nLength is 2 GB.

Only supported on Linux for now.

Parameters

fp Virtual file handle.
nOffset Offset in the file to start the mapping from.

nLength Length of the portion of the file to map into memory.
eAccessMode Permission to use for the virtual memory mapping. This must be consistant with how the file

has been opened.
pfnFreeUser←↩

Data
callback that is called when the object is destroyed.

pCbkUserData user data passed to pfnFreeUserData.

Returns

a virtual memory object that must be freed by CPLVirtualMemFree() (p. ??), or NULL in case of failure.

Since

GDAL 2.0

References CPLError().

13.11.4.6 void CPLVirtualMemFree (CPLVirtualMem ∗ ctxt)

Free a virtual memory mapping.

The pointer returned by CPLVirtualMemGetAddr() (p. ??) will no longer be valid. If the virtual memory mapping
was created with read/write permissions and that they are dirty (i.e. modified) pages, they will be flushed through
the pfnUnCachePage callback before being freed.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.11 cpl_virtualmem.h File Reference 511

Parameters

ctxt context returned by CPLVirtualMemNew() (p. ??).

Since

GDAL 2.0

13.11.4.7 CPLVirtualMemAccessMode CPLVirtualMemGetAccessMode (CPLVirtualMem ∗ ctxt)

Return the access mode of the virtual memory mapping.

Parameters

ctxt context returned by CPLVirtualMemNew() (p. ??).

Returns

the access mode of the virtual memory mapping.

Since

GDAL 2.0

References VIRTUALMEM_READONLY.

13.11.4.8 void∗ CPLVirtualMemGetAddr (CPLVirtualMem ∗ ctxt)

Return the pointer to the start of a virtual memory mapping.

The bytes in the range [p:p+CPLVirtualMemGetSize()-1] where p is the pointer returned by this function will be valid,
until CPLVirtualMemFree() (p. ??) is called.

Note that if a range of bytes used as an argument of a system call (such as read() or write()) contains pages that
have not been "realized", the system call will fail with EFAULT. CPLVirtualMemPin() (p. ??) can be used to work
around this issue.

Parameters

ctxt context returned by CPLVirtualMemNew() (p. ??).

Returns

the pointer to the start of a virtual memory mapping.

Since

GDAL 2.0

13.11.4.9 size_t CPLVirtualMemGetPageSize (CPLVirtualMem ∗ ctxt)

Return the page size associated to a virtual memory mapping.

The value returned will be at least CPLGetPageSize() (p. ??), but potentially larger.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

512 File Documentation

Parameters

ctxt context returned by CPLVirtualMemNew() (p. ??).

Returns

the page size

Since

GDAL 2.0

13.11.4.10 size_t CPLVirtualMemGetSize (CPLVirtualMem ∗ ctxt)

Return the size of the virtual memory mapping.

Parameters

ctxt context returned by CPLVirtualMemNew() (p. ??).

Returns

the size of the virtual memory mapping.

Since

GDAL 2.0

13.11.4.11 int CPLVirtualMemIsAccessThreadSafe (CPLVirtualMem ∗ ctxt)

Return TRUE if this memory mapping can be accessed safely from concurrent threads.

The situation that can cause problems is when several threads try to access a page of the mapping that is not yet
mapped.

The return value of this function depends on whether bSingleThreadUsage has been set of not in CPLVirtual←↩

MemNew() (p. ??) and/or the implementation.

On Linux, this will always return TRUE if bSingleThreadUsage = FALSE.

Parameters

ctxt context returned by CPLVirtualMemNew() (p. ??).

Returns

TRUE if this memory mapping can be accessed safely from concurrent threads.

Since

GDAL 2.0

13.11.4.12 int CPLVirtualMemIsFileMapping (CPLVirtualMem ∗ ctxt)

Return if the virtal memory mapping is a direct file mapping.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.11 cpl_virtualmem.h File Reference 513

Parameters

ctxt context returned by CPLVirtualMemNew() (p. ??).

Returns

TRUE if the virtal memory mapping is a direct file mapping.

Since

GDAL 2.0

13.11.4.13 void CPLVirtualMemManagerTerminate (void)

Cleanup any resource and handlers related to virtual memory.

This function must be called after the last CPLVirtualMem object has been freed.

Since

GDAL 2.0

13.11.4.14 CPLVirtualMem∗ CPLVirtualMemNew (size_t nSize, size_t nCacheSize, size_t nPageSizeHint, int
bSingleThreadUsage, CPLVirtualMemAccessMode eAccessMode, CPLVirtualMemCachePageCbk
pfnCachePage, CPLVirtualMemUnCachePageCbk pfnUnCachePage, CPLVirtualMemFreeUserData
pfnFreeUserData, void ∗ pCbkUserData)

Create a new virtual memory mapping.

This will reserve an area of virtual memory of size nSize, whose size might be potentially much larger than the
physical memory available. Initially, no physical memory will be allocated. As soon as memory pages will be
accessed, they will be allocated transparently and filled with the pfnCachePage callback. When the allowed cache
size is reached, the least recently used pages will be unallocated.

On Linux AMD64 platforms, the maximum value for nSize is 128 TB. On Linux x86 platforms, the maximum value
for nSize is 2 GB.

Only supported on Linux for now.

Note that on Linux, this function will install a SIGSEGV handler. The original handler will be restored by CPL←↩

VirtualMemManagerTerminate() (p. ??).

Parameters

nSize size in bytes of the virtual memory mapping.
nCacheSize size in bytes of the maximum memory that will be really allocated (must ideally fit into RAM).

nPageSizeHint hint for the page size. Must be a multiple of the system page size, returned by CPLGet←↩

PageSize() (p. ??). Minimum value is generally 4096. Might be set to 0 to let the function
determine a default page size.

bSingleThread←↩

Usage
set to TRUE if there will be no concurrent threads that will access the virtual memory map-
ping. This can optimize performance a bit.

eAccessMode permission to use for the virtual memory mapping.
pfnCachePage callback triggered when a still unmapped page of virtual memory is accessed. The callback

has the responsibility of filling the page with relevant values.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

514 File Documentation

pfnUnCache←↩

Page
callback triggered when a dirty mapped page is going to be freed (saturation of cache, or
termination of the virtual memory mapping). Might be NULL.

pfnFreeUser←↩

Data
callback that can be used to free pCbkUserData. Might be NULL

pCbkUserData user data passed to pfnCachePage and pfnUnCachePage.

Returns

a virtual memory object that must be freed by CPLVirtualMemFree() (p. ??), or NULL in case of failure.

Since

GDAL 2.0

References CPLError().

13.11.4.15 void CPLVirtualMemPin (CPLVirtualMem ∗ ctxt, void ∗ pAddr, size_t nSize, int bWriteOp)

Make sure that a region of virtual memory will be realized.

Calling this function is not required, but might be usefull when debugging a process with tools like gdb or valgrind
that do not naturally like segmentation fault signals.

It is also needed when wanting to provide part of virtual memory mapping to a system call such as read() or write().
If read() or write() is called on a memory region not yet realized, the call will fail with EFAULT.

Parameters

ctxt context returned by CPLVirtualMemNew() (p. ??).
pAddr the memory region to pin.
nSize the size of the memory region.

bWriteOp set to TRUE if the memory are will be accessed in write mode.

Since

GDAL 2.0

13.11.4.16 void CPLVirtualMemUnDeclareThread (CPLVirtualMem ∗ ctxt)

Declare that a thread will stop accessing a virtual memory mapping.

This function must be called by a thread that will no longer access the content of a virtual memory mapping, except
if the virtual memory mapping has been created with bSingleThreadUsage = TRUE.

This function must be paired with CPLVirtualMemDeclareThread() (p. ??).

Parameters

ctxt context returned by CPLVirtualMemNew() (p. ??).

Since

GDAL 2.0

13.12 cpl_vsi.h File Reference

#include "cpl_port.h"
#include <unistd.h>
#include <sys/stat.h>

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.12 cpl_vsi.h File Reference 515

Functions

• VSILFILE ∗ VSIFOpenL (const char ∗, const char ∗)
Open file.

• int VSIFCloseL (VSILFILE ∗)
Close file.

• int VSIFSeekL (VSILFILE ∗, vsi_l_offset, int)

Seek to requested offset.

• vsi_l_offset VSIFTellL (VSILFILE ∗)
Tell current file offset.

• size_t VSIFReadL (void ∗, size_t, size_t, VSILFILE ∗)
Read bytes from file.

• int VSIFReadMultiRangeL (int nRanges, void ∗∗ppData, const vsi_l_offset ∗panOffsets, const size_t ∗pan←↩

Sizes, VSILFILE ∗)
Read several ranges of bytes from file.

• size_t VSIFWriteL (const void ∗, size_t, size_t, VSILFILE ∗)
Write bytes to file.

• int VSIFEofL (VSILFILE ∗)
Test for end of file.

• int VSIFTruncateL (VSILFILE ∗, vsi_l_offset)

Truncate/expand the file to the specified size.

• int VSIFFlushL (VSILFILE ∗)
Flush pending writes to disk.

• int VSIFPrintfL (VSILFILE ∗, const char ∗,...)
Formatted write to file.

• int VSIIngestFile (VSILFILE ∗fp, const char ∗pszFilename, GByte ∗∗ppabyRet, vsi_l_offset ∗pnSize, GIntBig
nMaxSize)

Ingest a file into memory.

• int VSIStatL (const char ∗, VSIStatBufL ∗)
Get filesystem object info.

• int VSIStatExL (const char ∗pszFilename, VSIStatBufL ∗psStatBuf, int nFlags)

Get filesystem object info.

• int VSIIsCaseSensitiveFS (const char ∗pszFilename)

Returns if the filenames of the filesystem are case sensitive.

• void ∗ VSIFGetNativeFileDescriptorL (VSILFILE ∗)
Returns the "native" file descriptor for the virtual handle.

• void ∗ VSIMalloc2 (size_t nSize1, size_t nSize2)
• void ∗ VSIMalloc3 (size_t nSize1, size_t nSize2, size_t nSize3)
• char ∗∗ VSIReadDir (const char ∗)

Read names in a directory.

• char ∗∗ VSIReadDirRecursive (const char ∗pszPath)

Read names in a directory recursively.

• int VSIMkdir (const char ∗pathname, long mode)

Create a directory.

• int VSIRmdir (const char ∗pathname)

Delete a directory.

• int VSIUnlink (const char ∗pathname)

Delete a file.

• int VSIRename (const char ∗oldpath, const char ∗newpath)

Rename a file.

• void VSIInstallMemFileHandler (void)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

516 File Documentation

Install "memory" file system handler.

• void VSIInstallSubFileHandler (void)
• void VSIInstallCurlFileHandler (void)

Install /vsicurl/ HTTP/FTP file system handler (requires libcurl)

• void VSIInstallCurlStreamingFileHandler (void)

Install /vsicurl_streaming/ HTTP/FTP file system handler (requires libcurl)

• void VSIInstallGZipFileHandler (void)

Install GZip file system handler.

• void VSIInstallZipFileHandler (void)

Install ZIP file system handler.

• void VSIInstallStdinHandler (void)

Install /vsistdin/ file system handler.

• void VSIInstallStdoutHandler (void)

Install /vsistdout/ file system handler.

• void VSIInstallSparseFileHandler (void)
• void VSIInstallTarFileHandler (void)

Install /vsitar/ file system handler.

• VSILFILE ∗ VSIFileFromMemBuffer (const char ∗pszFilename, GByte ∗pabyData, vsi_l_offset nData←↩

Length, int bTakeOwnership)

Create memory "file" from a buffer.

• GByte ∗ VSIGetMemFileBuffer (const char ∗pszFilename, vsi_l_offset ∗pnDataLength, int bUnlinkAndSeize)

Fetch buffer underlying memory file.

13.12.1 Detailed Description

Standard C Covers

The VSI functions are intended to be hookable aliases for Standard C I/O, memory allocation and other system
functions. They are intended to allow virtualization of disk I/O so that non file data sources can be made to appear
as files, and so that additional error trapping and reporting can be interested. The memory access API is aliased so
that special application memory management services can be used.

Is is intended that each of these functions retains exactly the same calling pattern as the original Standard C
functions they relate to. This means we don't have to provide custom documentation, and also means that the
default implementation is very simple.

13.12.2 Function Documentation

13.12.2.1 int VSIFCloseL (VSILFILE ∗ fp)

Close file.

This function closes the indicated file.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as in mem-
ory.

Analog of the POSIX fclose() function.

Parameters

fp file handle opened with VSIFOpenL() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.12 cpl_vsi.h File Reference 517

Returns

0 on success or -1 on failure.

Referenced by CPLCloseShared(), CPLSerializeXMLTreeToFile(), CSLLoad2(), and VSIIngestFile().

13.12.2.2 int VSIFEofL (VSILFILE ∗ fp)

Test for end of file.

Returns TRUE (non-zero) if an end-of-file condition occured during the previous read operation. The end-of-file flag
is cleared by a successfull VSIFSeekL() (p. ??) call.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as in mem-
ory.

Analog of the POSIX feof() call.

Parameters

fp file handle opened with VSIFOpenL() (p. ??).

Returns

TRUE if at EOF else FALSE.

Referenced by CSLLoad2().

13.12.2.3 int VSIFFlushL (VSILFILE ∗ fp)

Flush pending writes to disk.

For files in write or update mode and on filesystem types where it is applicable, all pending output on the file is
flushed to the physical disk.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as in mem-
ory.

Analog of the POSIX fflush() call.

Parameters

fp file handle opened with VSIFOpenL() (p. ??).

Returns

0 on success or -1 on error.

13.12.2.4 void∗ VSIFGetNativeFileDescriptorL (VSILFILE ∗ fp)

Returns the "native" file descriptor for the virtual handle.

This will only return a non-NULL value for "real" files handled by the operating system (to be opposed to GDAL
virtual file systems).

On POSIX systems, this will be a integer value ("fd") cast as a void∗. On Windows systems, this will be the HANDLE.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

518 File Documentation

Parameters

fp file handle opened with VSIFOpenL() (p. ??).

Returns

the native file descriptor, or NULL.

13.12.2.5 VSILFILE∗ VSIFileFromMemBuffer (const char ∗ pszFilename, GByte ∗ pabyData, vsi_l_offset nDataLength, int
bTakeOwnership)

Create memory "file" from a buffer.

A virtual memory file is created from the passed buffer with the indicated filename. Under normal conditions the
filename would need to be absolute and within the /vsimem/ portion of the filesystem.

If bTakeOwnership is TRUE, then the memory file system handler will take ownership of the buffer, freeing it when
the file is deleted. Otherwise it remains the responsibility of the caller, but should not be freed as long as it might be
accessed as a file. In no circumstances does this function take a copy of the pabyData contents.

Parameters

pszFilename the filename to be created.
pabyData the data buffer for the file.

nDataLength the length of buffer in bytes.
bTakeOwnership TRUE to transfer "ownership" of buffer or FALSE.

Returns

open file handle on created file (see VSIFOpenL() (p. ??)).

References VSIInstallMemFileHandler().

13.12.2.6 VSILFILE∗ VSIFOpenL (const char ∗ pszFilename, const char ∗ pszAccess)

Open file.

This function opens a file with the desired access. Large files (larger than 2GB) should be supported. Binary access
is always implied and the "b" does not need to be included in the pszAccess string.

Note that the "VSILFILE ∗" returned since GDAL 1.8.0 by this function is NOT a standard C library FILE ∗, and
cannot be used with any functions other than the "VSI∗L" family of functions. They aren't "real" FILE objects.

On windows it is possible to define the configuration option GDAL_FILE_IS_UTF8 to have pszFilename treated as
being in the local encoding instead of UTF-8, retoring the pre-1.8.0 behavior of VSIFOpenL() (p. ??).

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as in mem-
ory.

Analog of the POSIX fopen() function.

Parameters

pszFilename the file to open. UTF-8 encoded.
pszAccess access requested (ie. "r", "r+", "w".

Returns

NULL on failure, or the file handle.

Referenced by CPLOpenShared(), CPLSerializeXMLTreeToFile(), CSLLoad2(), and VSIIngestFile().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.12 cpl_vsi.h File Reference 519

13.12.2.7 int VSIFPrintfL (VSILFILE ∗ fp, const char ∗ pszFormat, ...)

Formatted write to file.

Provides fprintf() style formatted output to a VSI∗L file. This formats an internal buffer which is written using VSI←↩

FWriteL() (p. ??).

Analog of the POSIX fprintf() call.

Parameters

fp file handle opened with VSIFOpenL() (p. ??).
pszFormat the printf style format string.

Returns

the number of bytes written or -1 on an error.

References VSIFWriteL().

13.12.2.8 size_t VSIFReadL (void ∗ pBuffer, size_t nSize, size_t nCount, VSILFILE ∗ fp)

Read bytes from file.

Reads nCount objects of nSize bytes from the indicated file at the current offset into the indicated buffer.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as in mem-
ory.

Analog of the POSIX fread() call.

Parameters

pBuffer the buffer into which the data should be read (at least nCount ∗ nSize bytes in size.
nSize size of objects to read in bytes.

nCount number of objects to read.
fp file handle opened with VSIFOpenL() (p. ??).

Returns

number of objects successfully read.

Referenced by CPLReadLine2L(), and VSIIngestFile().

13.12.2.9 int VSIFReadMultiRangeL (int nRanges, void ∗∗ ppData, const vsi_l_offset ∗ panOffsets, const size_t ∗ panSizes,
VSILFILE ∗ fp)

Read several ranges of bytes from file.

Reads nRanges objects of panSizes[i] bytes from the indicated file at the offset panOffsets[i] into the buffer ppData[i].

Ranges must be sorted in ascending start offset, and must not overlap each other.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as in mem-
ory or /vsicurl/.

Parameters

nRanges number of ranges to read.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

520 File Documentation

ppData array of nRanges buffer into which the data should be read (ppData[i] must be at list pan←↩

Sizes[i] bytes).
panOffsets array of nRanges offsets at which the data should be read.

panSizes array of nRanges sizes of objects to read (in bytes).
fp file handle opened with VSIFOpenL() (p. ??).

Returns

0 in case of success, -1 otherwise.

Since

GDAL 1.9.0

13.12.2.10 int VSIFSeekL (VSILFILE ∗ fp, vsi_l_offset nOffset, int nWhence)

Seek to requested offset.

Seek to the desired offset (nOffset) in the indicated file.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as in mem-
ory.

Analog of the POSIX fseek() call.

Parameters

fp file handle opened with VSIFOpenL() (p. ??).
nOffset offset in bytes.

nWhence one of SEEK_SET, SEEK_CUR or SEEK_END.

Returns

0 on success or -1 one failure.

Referenced by CPLReadLine2L(), and VSIIngestFile().

13.12.2.11 vsi_l_offset VSIFTellL (VSILFILE ∗ fp)

Tell current file offset.

Returns the current file read/write offset in bytes from the beginning of the file.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as in mem-
ory.

Analog of the POSIX ftell() call.

Parameters

fp file handle opened with VSIFOpenL() (p. ??).

Returns

file offset in bytes.

Referenced by CPLReadLine2L(), and VSIIngestFile().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.12 cpl_vsi.h File Reference 521

13.12.2.12 int VSIFTruncateL (VSILFILE ∗ fp, vsi_l_offset nNewSize)

Truncate/expand the file to the specified size.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as in mem-
ory.

Analog of the POSIX ftruncate() call.

Parameters

fp file handle opened with VSIFOpenL() (p. ??).
nNewSize new size in bytes.

Returns

0 on success

Since

GDAL 1.9.0

13.12.2.13 size_t VSIFWriteL (const void ∗ pBuffer, size_t nSize, size_t nCount, VSILFILE ∗ fp)

Write bytes to file.

Writess nCount objects of nSize bytes to the indicated file at the current offset into the indicated buffer.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as in mem-
ory.

Analog of the POSIX fwrite() call.

Parameters

pBuffer the buffer from which the data should be written (at least nCount ∗ nSize bytes in size.
nSize size of objects to read in bytes.

nCount number of objects to read.
fp file handle opened with VSIFOpenL() (p. ??).

Returns

number of objects successfully written.

Referenced by CPLSerializeXMLTreeToFile(), and VSIFPrintfL().

13.12.2.14 GByte∗ VSIGetMemFileBuffer (const char ∗ pszFilename, vsi_l_offset ∗ pnDataLength, int bUnlinkAndSeize)

Fetch buffer underlying memory file.

This function returns a pointer to the memory buffer underlying a virtual "in memory" file. If bUnlinkAndSeize is T←↩

RUE the filesystem object will be deleted, and ownership of the buffer will pass to the caller otherwise the underlying
file will remain in existance.

Parameters

pszFilename the name of the file to grab the buffer of.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

522 File Documentation

pnDataLength (file) length returned in this variable.
bUnlinkAnd←↩

Seize
TRUE to remove the file, or FALSE to leave unaltered.

Returns

pointer to memory buffer or NULL on failure.

References CPLDebug().

13.12.2.15 int VSIIngestFile (VSILFILE ∗ fp, const char ∗ pszFilename, GByte ∗∗ ppabyRet, vsi_l_offset ∗ pnSize, GIntBig
nMaxSize)

Ingest a file into memory.

Read the whole content of a file into a memory buffer.

Either fp or pszFilename can be NULL, but not both at the same time.

If fp is passed non-NULL, it is the responsibility of the caller to close it.

If non-NULL, the returned buffer is guaranteed to be NUL-terminated.

Parameters

fp file handle opened with VSIFOpenL() (p. ??).
pszFilename filename.

ppabyRet pointer to the target buffer. ∗ppabyRet must be freed with VSIFree()
pnSize pointer to variable to store the file size. May be NULL.

nMaxSize maximum size of file allowed. If no limit, set to a negative value.

Returns

TRUE in case of success.

Since

GDAL 1.11

References CPLError(), VSIFCloseL(), VSIFOpenL(), VSIFReadL(), VSIFSeekL(), and VSIFTellL().

Referenced by CPLParseXMLFile().

13.12.2.16 void VSIInstallCurlFileHandler (void)

Install /vsicurl/ HTTP/FTP file system handler (requires libcurl)

A special file handler is installed that allows reading on-the-fly of files available through HTTP/FTP web protocols,
without downloading the entire file.

Recognized filenames are of the form /vsicurl/http://path/to/remote/ressource or /vsicurl/ftp://path/to/remote/ressource
where path/to/remote/ressource is the URL of a remote ressource.

Partial downloads (requires the HTTP server to support random reading) are done with a 16 KB granularity by
default. If the driver detects sequential reading it will progressively increase the chunk size up to 2 MB to improve
download performance.

The GDAL_HTTP_PROXY, GDAL_HTTP_PROXYUSERPWD and GDAL_PROXY_AUTH configuration options
can be used to define a proxy server. The syntax to use is the one of Curl CURLOPT_PROXY, CURLOPT_←↩

PROXYUSERPWD and CURLOPT_PROXYAUTH options.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.12 cpl_vsi.h File Reference 523

Starting with GDAL 1.10, the file can be cached in RAM by setting the configuration option VSI_CACHE to TRUE.
The cache size defaults to 25 MB, but can be modified by setting the configuration option VSI_CACHE_SIZE (in
bytes).

VSIStatL() (p. ??) will return the size in st_size member and file nature- file or directory - in st_mode member (the
later only reliable with FTP resources for now).

VSIReadDir() (p. ??) should be able to parse the HTML directory listing returned by the most popular web servers,
such as Apache or Microsoft IIS.

This special file handler can be combined with other virtual filesystems handlers, such as /vsizip. For example,
/vsizip//vsicurl/path/to/remote/file.zip/path/inside/zip

Since

GDAL 1.8.0

13.12.2.17 void VSIInstallCurlStreamingFileHandler (void)

Install /vsicurl_streaming/ HTTP/FTP file system handler (requires libcurl)

A special file handler is installed that allows on-the-fly reading of files streamed through HTTP/FTP web protocols
(typically dynamically generated files), without downloading the entire file.

Although this file handler is able seek to random offsets in the file, this will not be efficient. If you need efficient
random access and that the server supports range dowloading, you should use the /vsicurl/ file system handler
instead.

Recognized filenames are of the form /vsicurl_streaming/http://path/to/remote/ressource or /vsicurl_streaming/ftp←↩

://path/to/remote/ressource where path/to/remote/ressource is the URL of a remote ressource.

The GDAL_HTTP_PROXY, GDAL_HTTP_PROXYUSERPWD and GDAL_PROXY_AUTH configuration options
can be used to define a proxy server. The syntax to use is the one of Curl CURLOPT_PROXY, CURLOPT_←↩

PROXYUSERPWD and CURLOPT_PROXYAUTH options.

The file can be cached in RAM by setting the configuration option VSI_CACHE to TRUE. The cache size defaults
to 25 MB, but can be modified by setting the configuration option VSI_CACHE_SIZE (in bytes).

VSIStatL() (p. ??) will return the size in st_size member and file nature- file or directory - in st_mode member (the
later only reliable with FTP resources for now).

Since

GDAL 1.10

13.12.2.18 void VSIInstallGZipFileHandler (void)

Install GZip file system handler.

A special file handler is installed that allows reading on-the-fly and writing in GZip (.gz) files.

All portions of the file system underneath the base path "/vsigzip/" will be handled by this driver.

Additional documentation is to be found at http://trac.osgeo.org/gdal/wiki/UserDocs/Read←↩

InZip

Since

GDAL 1.6.0

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

524 File Documentation

13.12.2.19 void VSIInstallMemFileHandler (void)

Install "memory" file system handler.

A special file handler is installed that allows block of memory to be treated as files. All portions of the file system
underneath the base path "/vsimem/" will be handled by this driver.

Normal VSI∗L functions can be used freely to create and destroy memory arrays treating them as if they were real
file system objects. Some additional methods exist to efficient create memory file system objects without duplicating
original copies of the data or to "steal" the block of memory associated with a memory file.

At this time the memory handler does not properly handle directory semantics for the memory portion of the filesys-
tem. The VSIReadDir() (p. ??) function is not supported though this will be corrected in the future.

Calling this function repeatedly should do no harm, though it is not necessary. It is already called the first time a
virtualizable file access function (ie. VSIFOpenL() (p. ??), VSIMkDir(), etc) is called.

This code example demonstrates using GDAL to translate from one memory buffer to another.

1 GByte *ConvertBufferFormat(GByte *pabyInData, vsi_l_offset nInDataLength,
2 vsi_l_offset *pnOutDataLength)
3 {
4 // create memory file system object from buffer.
5 VSIFCloseL(VSIFileFromMemBuffer("/vsimem/work.dat", pabyInData,
6 nInDataLength, FALSE));
7
8 // Open memory buffer for read.
9 GDALDatasetH hDS = GDALOpen("/vsimem/work.dat", GA_ReadOnly);
10
11 // Get output format driver.
12 GDALDriverH hDriver = GDALGetDriverByName("GTiff");
13 GDALDatasetH hOutDS;
14
15 hOutDS = GDALCreateCopy(hDriver, "/vsimem/out.tif", hDS, TRUE, NULL,
16 NULL, NULL);
17
18 // close source file, and "unlink" it.
19 GDALClose(hDS);
20 VSIUnlink("/vsimem/work.dat");
21
22 // seize the buffer associated with the output file.
23
24 return VSIGetMemFileBuffer("/vsimem/out.tif", pnOutDataLength, TRUE);
25 }

Referenced by VSIFileFromMemBuffer().

13.12.2.20 void VSIInstallSparseFileHandler (void)

Install /vsisparse/ virtual file handler.

The sparse virtual file handler allows a virtual file to be composed from chunks of data in other files, potentially with
large spaces in the virtual file set to a constant value. This can make it possible to test some sorts of operations on
what seems to be a large file with image data set to a constant value. It is also helpful when wanting to add test files
to the test suite that are too large, but for which most of the data can be ignored. It could, in theory, also be used to
treat several files on different file systems as one large virtual file.

The file referenced by /vsisparse/ should be an XML control file formatted something like:

<VSISparseFile>
<Length>87629264</Length>
<SubfileRegion> Stuff at start of file.

<Filename relative="1">251_head.dat</Filename>
<DestinationOffset>0</DestinationOffset>
<SourceOffset>0</SourceOffset>
<RegionLength>2768</RegionLength>

</SubfileRegion>

<SubfileRegion> RasterDMS node.
<Filename relative="1">251_rasterdms.dat</Filename>
<DestinationOffset>87313104</DestinationOffset>
<SourceOffset>0</SourceOffset>

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.12 cpl_vsi.h File Reference 525

<RegionLength>160</RegionLength>
</SubfileRegion>

<SubfileRegion> Stuff at end of file.
<Filename relative="1">251_tail.dat</Filename>
<DestinationOffset>87611924</DestinationOffset>
<SourceOffset>0</SourceOffset>
<RegionLength>17340</RegionLength>

</SubfileRegion>

<ConstantRegion> Default for the rest of the file.
<DestinationOffset>0</DestinationOffset>
<RegionLength>87629264</RegionLength>
<Value>0</Value>

</ConstantRegion>
</VSISparseFile>

Hopefully the values and semantics are fairly obvious.

This driver is installed by default.

13.12.2.21 void VSIInstallStdinHandler (void)

Install /vsistdin/ file system handler.

A special file handler is installed that allows reading from the standard input steam.

The file operations available are of course limited to Read() and forward Seek() (full seek in the first MB of a file).

Since

GDAL 1.8.0

13.12.2.22 void VSIInstallStdoutHandler (void)

Install /vsistdout/ file system handler.

A special file handler is installed that allows writing to the standard output stream.

The file operations available are of course limited to Write().

Since

GDAL 1.8.0

13.12.2.23 void VSIInstallSubFileHandler (void)

Install /vsisubfile/ virtual file handler.

This virtual file system handler allows access to subregions of files, treating them as a file on their own to the virtual
file system functions (VSIFOpenL() (p. ??), etc).

A special form of the filename is used to indicate a subportion of another file:

/vsisubfile/<offset>[_<size>],<filename>

The size parameter is optional. Without it the remainder of the file from the start offset as treated as part of the
subfile. Otherwise only <size> bytes from <offset> are treated as part of the subfile. The <filename> portion
may be a relative or absolute path using normal rules. The <offset> and <size> values are in bytes.

eg. /vsisubfile/1000_3000,/data/abc.ntf /vsisubfile/5000,../xyz/raw.dat

Unlike the /vsimem/ or conventional file system handlers, there is no meaningful support for filesystem operations for
creating new files, traversing directories, and deleting files within the /vsisubfile/ area. Only the VSIStatL() (p. ??),
VSIFOpenL() (p. ??) and operations based on the file handle returned by VSIFOpenL() (p. ??) operate properly.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

526 File Documentation

13.12.2.24 void VSIInstallTarFileHandler (void)

Install /vsitar/ file system handler.

A special file handler is installed that allows reading on-the-fly in TAR (regular .tar, or compressed .tar.gz/.tgz)
archives.

All portions of the file system underneath the base path "/vsitar/" will be handled by this driver.

The syntax to open a file inside a zip file is /vsitar/path/to/the/file.tar/path/inside/the/tar/file were path/to/the/file.tar is
relative or absolute and path/inside/the/tar/file is the relative path to the file inside the archive.

If the path is absolute, it should begin with a / on a Unix-like OS (or C:\ on Windows), so the line looks like /vsi-
tar//home/gdal/... For example gdalinfo /vsitar/myarchive.tar/subdir1/file1.tif

Syntaxic sugar : if the tar archive contains only one file located at its root, just mentionning "/vsitar/path/to/the/file.tar"
will work

VSIStatL() (p. ??) will return the uncompressed size in st_size member and file nature- file or directory - in st_mode
member.

Directory listing is available through VSIReadDir() (p. ??).

Since

GDAL 1.8.0

13.12.2.25 void VSIInstallZipFileHandler (void)

Install ZIP file system handler.

A special file handler is installed that allows reading on-the-fly in ZIP (.zip) archives.

All portions of the file system underneath the base path "/vsizip/" will be handled by this driver.

The syntax to open a file inside a zip file is /vsizip/path/to/the/file.zip/path/inside/the/zip/file were path/to/the/file.zip
is relative or absolute and path/inside/the/zip/file is the relative path to the file inside the archive.

If the path is absolute, it should begin with a / on a Unix-like OS (or C:\ on Windows), so the line looks like
/vsizip//home/gdal/... For example gdalinfo /vsizip/myarchive.zip/subdir1/file1.tif

Syntaxic sugar : if the .zip file contains only one file located at its root, just mentionning "/vsizip/path/to/the/file.zip"
will work

VSIStatL() (p. ??) will return the uncompressed size in st_size member and file nature- file or directory - in st_mode
member.

Directory listing is available through VSIReadDir() (p. ??).

Since GDAL 1.8.0, write capabilities are available. They allow creating a new zip file and adding new files to an
already existing (or just created) zip file. Read and write operations cannot be interleaved : the new zip must be
closed before being re-opened for read.

Additional documentation is to be found at http://trac.osgeo.org/gdal/wiki/UserDocs/Read←↩

InZip

Since

GDAL 1.6.0

13.12.2.26 int VSIIsCaseSensitiveFS (const char ∗ pszFilename)

Returns if the filenames of the filesystem are case sensitive.

This method retrieves to which filesystem belongs the passed filename and return TRUE if the filenames of that
filesystem are case sensitive.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.12 cpl_vsi.h File Reference 527

Currently, this will return FALSE only for Windows real filenames. Other VSI virtual filesystems are case sensitive.

This methods avoid ugly #ifndef WIN32 / #endif code, that is wrong when dealing with virtual filenames.

Parameters

pszFilename the path of the filesystem object to be tested. UTF-8 encoded.

Returns

TRUE if the filenames of the filesystem are case sensitive.

Since

GDAL 1.8.0

Referenced by CPLFormCIFilename().

13.12.2.27 void∗ VSIMalloc2 (size_t nSize1, size_t nSize2)

VSIMalloc2 allocates (nSize1 ∗ nSize2) bytes. In case of overflow of the multiplication, or if memory allocation fails,
a NULL pointer is returned and a CE_Failure error is raised with CPLError() (p. ??). If nSize1 == 0 || nSize2 == 0, a
NULL pointer will also be returned. CPLFree() or VSIFree() can be used to free memory allocated by this function.

References CPLError().

Referenced by OGRPolygon::importFromWkb().

13.12.2.28 void∗ VSIMalloc3 (size_t nSize1, size_t nSize2, size_t nSize3)

VSIMalloc3 allocates (nSize1 ∗ nSize2 ∗ nSize3) bytes. In case of overflow of the multiplication, or if memory
allocation fails, a NULL pointer is returned and a CE_Failure error is raised with CPLError() (p. ??). If nSize1 ==
0 || nSize2 == 0 || nSize3 == 0, a NULL pointer will also be returned. CPLFree() or VSIFree() can be used to free
memory allocated by this function.

References CPLError().

13.12.2.29 int VSIMkdir (const char ∗ pszPathname, long mode)

Create a directory.

Create a new directory with the indicated mode. The mode is ignored on some platforms. A reasonable default
mode value would be 0666. This method goes through the VSIFileHandler virtualization and may work on unusual
filesystems such as in memory.

Analog of the POSIX mkdir() function.

Parameters

pszPathname the path to the directory to create. UTF-8 encoded.
mode the permissions mode.

Returns

0 on success or -1 on an error.

13.12.2.30 char∗∗ VSIReadDir (const char ∗ pszPath)

Read names in a directory.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

528 File Documentation

This function abstracts access to directory contains. It returns a list of strings containing the names of files, and
directories in this directory. The resulting string list becomes the responsibility of the application and should be freed
with CSLDestroy() (p. ??) when no longer needed.

Note that no error is issued via CPLError() (p. ??) if the directory path is invalid, though NULL is returned.

This function used to be known as CPLReadDir(), but the old name is now deprecated.

Parameters

pszPath the relative, or absolute path of a directory to read. UTF-8 encoded.

Returns

The list of entries in the directory, or NULL if the directory doesn't exist. Filenames are returned in UTF-8
encoding.

Referenced by VSIReadDirRecursive().

13.12.2.31 char∗∗ VSIReadDirRecursive (const char ∗ pszPathIn)

Read names in a directory recursively.

This function abstracts access to directory contents and subdirectories. It returns a list of strings containing the
names of files and directories in this directory and all subdirectories. The resulting string list becomes the respon-
sibility of the application and should be freed with CSLDestroy() (p. ??) when no longer needed.

Note that no error is issued via CPLError() (p. ??) if the directory path is invalid, though NULL is returned.

Parameters

pszPathIn the relative, or absolute path of a directory to read. UTF-8 encoded.

Returns

The list of entries in the directory and subdirectories or NULL if the directory doesn't exist. Filenames are
returned in UTF-8 encoding.

Since

GDAL 1.10.0

References CPLStringList::AddString(), CPLStrdup(), CSLCount(), CSLDestroy(), CPLStringList::StealList(), VSI←↩

ReadDir(), and VSIStatL().

13.12.2.32 int VSIRename (const char ∗ oldpath, const char ∗ newpath)

Rename a file.

Renames a file object in the file system. It should be possible to rename a file onto a new filesystem, but it is safest
if this function is only used to rename files that remain in the same directory.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as in mem-
ory.

Analog of the POSIX rename() function.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.12 cpl_vsi.h File Reference 529

Parameters

oldpath the name of the file to be renamed. UTF-8 encoded.
newpath the name the file should be given. UTF-8 encoded.

Returns

0 on success or -1 on an error.

13.12.2.33 int VSIRmdir (const char ∗ pszDirname)

Delete a directory.

Deletes a directory object from the file system. On some systems the directory must be empty before it can be
deleted.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as in mem-
ory.

Analog of the POSIX rmdir() function.

Parameters

pszDirname the path of the directory to be deleted. UTF-8 encoded.

Returns

0 on success or -1 on an error.

Referenced by CPLUnlinkTree().

13.12.2.34 int VSIStatExL (const char ∗ pszFilename, VSIStatBufL ∗ psStatBuf, int nFlags)

Get filesystem object info.

Fetches status information about a filesystem object (file, directory, etc). The returned information is placed in the
VSIStatBufL structure. For portability only the st_size (size in bytes), and st_mode (file type). This method is similar
to VSIStat(), but will work on large files on systems where this requires special calls.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as in mem-
ory.

Analog of the POSIX stat() function, with an extra parameter to specify which information is needed, which offers a
potential for speed optimizations on specialized and potentially slow virtual filesystem objects (/vsigzip/, /vsicurl/)

Parameters

pszFilename the path of the filesystem object to be queried. UTF-8 encoded.
psStatBuf the structure to load with information.

nFlags 0 to get all information, or VSI_STAT_EXISTS_FLAG, VSI_STAT_NATURE_FLAG or VSI←↩

_STAT_SIZE_FLAG, or a combination of those to get partial info.

Returns

0 on success or -1 on an error.

Since

GDAL 1.8.0

Referenced by CPLFormCIFilename(), and VSIStatL().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

530 File Documentation

13.12.2.35 int VSIStatL (const char ∗ pszFilename, VSIStatBufL ∗ psStatBuf)

Get filesystem object info.

Fetches status information about a filesystem object (file, directory, etc). The returned information is placed in the
VSIStatBufL structure. For portability only the st_size (size in bytes), and st_mode (file type). This method is similar
to VSIStat(), but will work on large files on systems where this requires special calls.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as in mem-
ory.

Analog of the POSIX stat() function.

Parameters

pszFilename the path of the filesystem object to be queried. UTF-8 encoded.
psStatBuf the structure to load with information.

Returns

0 on success or -1 on an error.

References VSIStatExL().

Referenced by OGRSFDriverRegistrar::AutoLoadDrivers(), CPLCheckForFile(), CPLUnlinkTree(), and VSIRead←↩

DirRecursive().

13.12.2.36 int VSIUnlink (const char ∗ pszFilename)

Delete a file.

Deletes a file object from the file system.

This method goes through the VSIFileHandler virtualization and may work on unusual filesystems such as in mem-
ory.

Analog of the POSIX unlink() function.

Parameters

pszFilename the path of the file to be deleted. UTF-8 encoded.

Returns

0 on success or -1 on an error.

Referenced by CPLUnlinkTree().

13.13 ogr_api.h File Reference

#include "cpl_progress.h"
#include "ogr_core.h"

Functions

• OGRErr OGR_G_CreateFromWkb (unsigned char ∗, OGRSpatialReferenceH, OGRGeometryH ∗, int)

Create a geometry object of the appropriate type from it's well known binary representation.

• OGRErr OGR_G_CreateFromWkt (char ∗∗, OGRSpatialReferenceH, OGRGeometryH ∗)
Create a geometry object of the appropriate type from it's well known text representation.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 531

• void OGR_G_DestroyGeometry (OGRGeometryH)

Destroy geometry object.

• OGRGeometryH OGR_G_CreateGeometry (OGRwkbGeometryType)

Create an empty geometry of desired type.

• OGRGeometryH OGR_G_ApproximateArcAngles (double dfCenterX, double dfCenterY, double dfZ, dou-
ble dfPrimaryRadius, double dfSecondaryAxis, double dfRotation, double dfStartAngle, double dfEndAngle,
double dfMaxAngleStepSizeDegrees)

• OGRGeometryH OGR_G_ForceToPolygon (OGRGeometryH)

Convert to polygon.

• OGRGeometryH OGR_G_ForceToLineString (OGRGeometryH)

Convert to line string.

• OGRGeometryH OGR_G_ForceToMultiPolygon (OGRGeometryH)

Convert to multipolygon.

• OGRGeometryH OGR_G_ForceToMultiPoint (OGRGeometryH)

Convert to multipoint.

• OGRGeometryH OGR_G_ForceToMultiLineString (OGRGeometryH)

Convert to multilinestring.

• int OGR_G_GetDimension (OGRGeometryH)

Get the dimension of this geometry.

• int OGR_G_GetCoordinateDimension (OGRGeometryH)

Get the dimension of the coordinates in this geometry.

• void OGR_G_SetCoordinateDimension (OGRGeometryH, int)

Set the coordinate dimension.

• OGRGeometryH OGR_G_Clone (OGRGeometryH)

Make a copy of this object.

• void OGR_G_GetEnvelope (OGRGeometryH, OGREnvelope ∗)
Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure.

• void OGR_G_GetEnvelope3D (OGRGeometryH, OGREnvelope3D ∗)
Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.

• OGRErr OGR_G_ImportFromWkb (OGRGeometryH, unsigned char ∗, int)

Assign geometry from well known binary data.

• OGRErr OGR_G_ExportToWkb (OGRGeometryH, OGRwkbByteOrder, unsigned char ∗)
Convert a geometry into well known binary format.

• int OGR_G_WkbSize (OGRGeometryH hGeom)

Returns size of related binary representation.

• OGRErr OGR_G_ImportFromWkt (OGRGeometryH, char ∗∗)
Assign geometry from well known text data.

• OGRErr OGR_G_ExportToWkt (OGRGeometryH, char ∗∗)
Convert a geometry into well known text format.

• OGRwkbGeometryType OGR_G_GetGeometryType (OGRGeometryH)

Fetch geometry type.

• const char ∗ OGR_G_GetGeometryName (OGRGeometryH)

Fetch WKT name for geometry type.

• void OGR_G_DumpReadable (OGRGeometryH, FILE ∗, const char ∗)
Dump geometry in well known text format to indicated output file.

• void OGR_G_FlattenTo2D (OGRGeometryH)

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0.

• void OGR_G_CloseRings (OGRGeometryH)

Force rings to be closed.

• OGRGeometryH OGR_G_CreateFromGML (const char ∗)
Create geometry from GML.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

532 File Documentation

• char ∗ OGR_G_ExportToGML (OGRGeometryH)

Convert a geometry into GML format.

• char ∗ OGR_G_ExportToGMLEx (OGRGeometryH, char ∗∗papszOptions)

Convert a geometry into GML format.

• char ∗ OGR_G_ExportToKML (OGRGeometryH, const char ∗pszAltitudeMode)

Convert a geometry into KML format.

• char ∗ OGR_G_ExportToJson (OGRGeometryH)

Convert a geometry into GeoJSON format.

• char ∗ OGR_G_ExportToJsonEx (OGRGeometryH, char ∗∗papszOptions)

Convert a geometry into GeoJSON format.

• void OGR_G_AssignSpatialReference (OGRGeometryH, OGRSpatialReferenceH)

Assign spatial reference to this object.

• OGRSpatialReferenceH OGR_G_GetSpatialReference (OGRGeometryH)

Returns spatial reference system for geometry.

• OGRErr OGR_G_Transform (OGRGeometryH, OGRCoordinateTransformationH)

Apply arbitrary coordinate transformation to geometry.

• OGRErr OGR_G_TransformTo (OGRGeometryH, OGRSpatialReferenceH)

Transform geometry to new spatial reference system.

• OGRGeometryH OGR_G_Simplify (OGRGeometryH hThis, double tolerance)

Compute a simplified geometry.

• OGRGeometryH OGR_G_SimplifyPreserveTopology (OGRGeometryH hThis, double tolerance)

Simplify the geometry while preserving topology.

• void OGR_G_Segmentize (OGRGeometryH hGeom, double dfMaxLength)

Modify the geometry such it has no segment longer then the given distance.

• int OGR_G_Intersects (OGRGeometryH, OGRGeometryH)

Do these features intersect?

• int OGR_G_Equals (OGRGeometryH, OGRGeometryH)

Returns TRUE if two geometries are equivalent.

• int OGR_G_Disjoint (OGRGeometryH, OGRGeometryH)

Test for disjointness.

• int OGR_G_Touches (OGRGeometryH, OGRGeometryH)

Test for touching.

• int OGR_G_Crosses (OGRGeometryH, OGRGeometryH)

Test for crossing.

• int OGR_G_Within (OGRGeometryH, OGRGeometryH)

Test for containment.

• int OGR_G_Contains (OGRGeometryH, OGRGeometryH)

Test for containment.

• int OGR_G_Overlaps (OGRGeometryH, OGRGeometryH)

Test for overlap.

• OGRGeometryH OGR_G_Boundary (OGRGeometryH)

Compute boundary.

• OGRGeometryH OGR_G_ConvexHull (OGRGeometryH)

Compute convex hull.

• OGRGeometryH OGR_G_Buffer (OGRGeometryH, double, int)

Compute buffer of geometry.

• OGRGeometryH OGR_G_Intersection (OGRGeometryH, OGRGeometryH)

Compute intersection.

• OGRGeometryH OGR_G_Union (OGRGeometryH, OGRGeometryH)

Compute union.

• OGRGeometryH OGR_G_UnionCascaded (OGRGeometryH)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 533

Compute union using cascading.

• OGRGeometryH OGR_G_PointOnSurface (OGRGeometryH)

Returns a point guaranteed to lie on the surface.

• OGRGeometryH OGR_G_Difference (OGRGeometryH, OGRGeometryH)

Compute difference.

• OGRGeometryH OGR_G_SymDifference (OGRGeometryH, OGRGeometryH)

Compute symmetric difference.

• double OGR_G_Distance (OGRGeometryH, OGRGeometryH)

Compute distance between two geometries.

• double OGR_G_Length (OGRGeometryH)

Compute length of a geometry.

• double OGR_G_Area (OGRGeometryH)

Compute geometry area.

• int OGR_G_Centroid (OGRGeometryH, OGRGeometryH)

Compute the geometry centroid.

• void OGR_G_Empty (OGRGeometryH)

Clear geometry information. This restores the geometry to it's initial state after construction, and before assignment
of actual geometry.

• int OGR_G_IsEmpty (OGRGeometryH)

Test if the geometry is empty.

• int OGR_G_IsValid (OGRGeometryH)

Test if the geometry is valid.

• int OGR_G_IsSimple (OGRGeometryH)

Returns TRUE if the geometry is simple.

• int OGR_G_IsRing (OGRGeometryH)

Test if the geometry is a ring.

• OGRGeometryH OGR_G_Polygonize (OGRGeometryH)

Polygonizes a set of sparse edges.

• OGRGeometryH OGR_G_SymmetricDifference (OGRGeometryH, OGRGeometryH) CPL_WARN_DEP←↩

RECATED("Non standard method. Use OGR_G_SymDifference() instead")

Compute symmetric difference (deprecated)

• double OGR_G_GetArea (OGRGeometryH) CPL_WARN_DEPRECATED("Non standard method. Use O←↩

GR_G_Area() instead")

Compute geometry area (deprecated)

• OGRGeometryH OGR_G_GetBoundary (OGRGeometryH) CPL_WARN_DEPRECATED("Non standard
method. Use OGR_G_Boundary() instead")

Compute boundary (deprecated)

• int OGR_G_GetPointCount (OGRGeometryH)

Fetch number of points from a geometry.

• int OGR_G_GetPoints (OGRGeometryH hGeom, void ∗pabyX, int nXStride, void ∗pabyY, int nYStride, void
∗pabyZ, int nZStride)

Returns all points of line string.

• double OGR_G_GetX (OGRGeometryH, int)

Fetch the x coordinate of a point from a geometry.

• double OGR_G_GetY (OGRGeometryH, int)

Fetch the x coordinate of a point from a geometry.

• double OGR_G_GetZ (OGRGeometryH, int)

Fetch the z coordinate of a point from a geometry.

• void OGR_G_GetPoint (OGRGeometryH, int iPoint, double ∗, double ∗, double ∗)
Fetch a point in line string or a point geometry.

• void OGR_G_SetPointCount (OGRGeometryH hGeom, int nNewPointCount)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

534 File Documentation

Set number of points in a geometry.

• void OGR_G_SetPoint (OGRGeometryH, int iPoint, double, double, double)

Set the location of a vertex in a point or linestring geometry.

• void OGR_G_SetPoint_2D (OGRGeometryH, int iPoint, double, double)

Set the location of a vertex in a point or linestring geometry.

• void OGR_G_AddPoint (OGRGeometryH, double, double, double)

Add a point to a geometry (line string or point).

• void OGR_G_AddPoint_2D (OGRGeometryH, double, double)

Add a point to a geometry (line string or point).

• void OGR_G_SetPoints (OGRGeometryH hGeom, int nPointsIn, void ∗pabyX, int nXStride, void ∗pabyY, int
nYStride, void ∗pabyZ, int nZStride)

Assign all points in a point or a line string geometry.

• int OGR_G_GetGeometryCount (OGRGeometryH)

Fetch the number of elements in a geometry or number of geometries in container.

• OGRGeometryH OGR_G_GetGeometryRef (OGRGeometryH, int)

Fetch geometry from a geometry container.

• OGRErr OGR_G_AddGeometry (OGRGeometryH, OGRGeometryH)

Add a geometry to a geometry container.

• OGRErr OGR_G_AddGeometryDirectly (OGRGeometryH, OGRGeometryH)

Add a geometry directly to an existing geometry container.

• OGRErr OGR_G_RemoveGeometry (OGRGeometryH, int, int)

Remove a geometry from an exiting geometry container.

• OGRGeometryH OGRBuildPolygonFromEdges (OGRGeometryH hLinesAsCollection, int bBestEffort, int
bAutoClose, double dfTolerance, OGRErr ∗peErr)

• OGRErr OGRSetGenerate_DB2_V72_BYTE_ORDER (int bGenerate_DB2_V72_BYTE_ORDER)

Special entry point to enable the hack for generating DB2 V7.2 style WKB.

• OGRFieldDefnH OGR_Fld_Create (const char ∗, OGRFieldType) CPL_WARN_UNUSED_RESULT

Create a new field definition.

• void OGR_Fld_Destroy (OGRFieldDefnH)

Destroy a field definition.

• void OGR_Fld_SetName (OGRFieldDefnH, const char ∗)
Reset the name of this field.

• const char ∗ OGR_Fld_GetNameRef (OGRFieldDefnH)

Fetch name of this field.

• OGRFieldType OGR_Fld_GetType (OGRFieldDefnH)

Fetch type of this field.

• void OGR_Fld_SetType (OGRFieldDefnH, OGRFieldType)

Set the type of this field. This should never be done to an OGRFieldDefn (p. ??) that is already part of an OGR←↩

FeatureDefn (p. ??).

• OGRJustification OGR_Fld_GetJustify (OGRFieldDefnH)

Get the justification for this field.

• void OGR_Fld_SetJustify (OGRFieldDefnH, OGRJustification)

Set the justification for this field.

• int OGR_Fld_GetWidth (OGRFieldDefnH)

Get the formatting width for this field.

• void OGR_Fld_SetWidth (OGRFieldDefnH, int)

Set the formatting width for this field in characters.

• int OGR_Fld_GetPrecision (OGRFieldDefnH)

Get the formatting precision for this field. This should normally be zero for fields of types other than OFTReal.

• void OGR_Fld_SetPrecision (OGRFieldDefnH, int)

Set the formatting precision for this field in characters.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 535

• void OGR_Fld_Set (OGRFieldDefnH, const char ∗, OGRFieldType, int, int, OGRJustification)

Set defining parameters for a field in one call.

• int OGR_Fld_IsIgnored (OGRFieldDefnH hDefn)

Return whether this field should be omitted when fetching features.

• void OGR_Fld_SetIgnored (OGRFieldDefnH hDefn, int)

Set whether this field should be omitted when fetching features.

• const char ∗ OGR_GetFieldTypeName (OGRFieldType)

Fetch human readable name for a field type.

• OGRGeomFieldDefnH OGR_GFld_Create (const char ∗, OGRwkbGeometryType) CPL_WARN_UNUS←↩

ED_RESULT

Create a new field geometry definition.

• void OGR_GFld_Destroy (OGRGeomFieldDefnH)

Destroy a geometry field definition.

• void OGR_GFld_SetName (OGRGeomFieldDefnH, const char ∗)
Reset the name of this field.

• const char ∗ OGR_GFld_GetNameRef (OGRGeomFieldDefnH)

Fetch name of this field.

• OGRwkbGeometryType OGR_GFld_GetType (OGRGeomFieldDefnH)

Fetch geometry type of this field.

• void OGR_GFld_SetType (OGRGeomFieldDefnH, OGRwkbGeometryType)

Set the geometry type of this field. This should never be done to an OGRGeomFieldDefn (p. ??) that is already part
of an OGRFeatureDefn (p. ??).

• OGRSpatialReferenceH OGR_GFld_GetSpatialRef (OGRGeomFieldDefnH)

Fetch spatial reference system of this field.

• void OGR_GFld_SetSpatialRef (OGRGeomFieldDefnH, OGRSpatialReferenceH hSRS)

Set the spatial reference of this field.

• int OGR_GFld_IsIgnored (OGRGeomFieldDefnH hDefn)

Return whether this field should be omitted when fetching features.

• void OGR_GFld_SetIgnored (OGRGeomFieldDefnH hDefn, int)

Set whether this field should be omitted when fetching features.

• OGRFeatureDefnH OGR_FD_Create (const char ∗) CPL_WARN_UNUSED_RESULT

Create a new feature definition object to hold the field definitions.

• void OGR_FD_Destroy (OGRFeatureDefnH)

Destroy a feature definition object and release all memory associated with it.

• void OGR_FD_Release (OGRFeatureDefnH)

Drop a reference, and destroy if unreferenced.

• const char ∗ OGR_FD_GetName (OGRFeatureDefnH)

Get name of the OGRFeatureDefn (p. ??) passed as an argument.

• int OGR_FD_GetFieldCount (OGRFeatureDefnH)

Fetch number of fields on the passed feature definition.

• OGRFieldDefnH OGR_FD_GetFieldDefn (OGRFeatureDefnH, int)

Fetch field definition of the passed feature definition.

• int OGR_FD_GetFieldIndex (OGRFeatureDefnH, const char ∗)
Find field by name.

• void OGR_FD_AddFieldDefn (OGRFeatureDefnH, OGRFieldDefnH)

Add a new field definition to the passed feature definition.

• OGRErr OGR_FD_DeleteFieldDefn (OGRFeatureDefnH hDefn, int iField)

Delete an existing field definition.

• OGRwkbGeometryType OGR_FD_GetGeomType (OGRFeatureDefnH)

Fetch the geometry base type of the passed feature definition.

• void OGR_FD_SetGeomType (OGRFeatureDefnH, OGRwkbGeometryType)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

536 File Documentation

Assign the base geometry type for the passed layer (the same as the feature definition).

• int OGR_FD_IsGeometryIgnored (OGRFeatureDefnH)

Determine whether the geometry can be omitted when fetching features.

• void OGR_FD_SetGeometryIgnored (OGRFeatureDefnH, int)

Set whether the geometry can be omitted when fetching features.

• int OGR_FD_IsStyleIgnored (OGRFeatureDefnH)

Determine whether the style can be omitted when fetching features.

• void OGR_FD_SetStyleIgnored (OGRFeatureDefnH, int)

Set whether the style can be omitted when fetching features.

• int OGR_FD_Reference (OGRFeatureDefnH)

Increments the reference count by one.

• int OGR_FD_Dereference (OGRFeatureDefnH)

Decrements the reference count by one.

• int OGR_FD_GetReferenceCount (OGRFeatureDefnH)

Fetch current reference count.

• int OGR_FD_GetGeomFieldCount (OGRFeatureDefnH hFDefn)

Fetch number of geometry fields on the passed feature definition.

• OGRGeomFieldDefnH OGR_FD_GetGeomFieldDefn (OGRFeatureDefnH hFDefn, int i)

Fetch geometry field definition of the passed feature definition.

• int OGR_FD_GetGeomFieldIndex (OGRFeatureDefnH hFDefn, const char ∗pszName)

Find geometry field by name.

• void OGR_FD_AddGeomFieldDefn (OGRFeatureDefnH hFDefn, OGRGeomFieldDefnH hGFldDefn)

Add a new field definition to the passed feature definition.

• OGRErr OGR_FD_DeleteGeomFieldDefn (OGRFeatureDefnH hFDefn, int iGeomField)

Delete an existing geometry field definition.

• int OGR_FD_IsSame (OGRFeatureDefnH hFDefn, OGRFeatureDefnH hOtherFDefn)

Test if the feature definition is identical to the other one.

• OGRFeatureH OGR_F_Create (OGRFeatureDefnH) CPL_WARN_UNUSED_RESULT

Feature factory.

• void OGR_F_Destroy (OGRFeatureH)

Destroy feature.

• OGRFeatureDefnH OGR_F_GetDefnRef (OGRFeatureH)

Fetch feature definition.

• OGRErr OGR_F_SetGeometryDirectly (OGRFeatureH, OGRGeometryH)

Set feature geometry.

• OGRErr OGR_F_SetGeometry (OGRFeatureH, OGRGeometryH)

Set feature geometry.

• OGRGeometryH OGR_F_GetGeometryRef (OGRFeatureH)

Fetch an handle to feature geometry.

• OGRGeometryH OGR_F_StealGeometry (OGRFeatureH)

Take away ownership of geometry.

• OGRFeatureH OGR_F_Clone (OGRFeatureH)

Duplicate feature.

• int OGR_F_Equal (OGRFeatureH, OGRFeatureH)

Test if two features are the same.

• int OGR_F_GetFieldCount (OGRFeatureH)

Fetch number of fields on this feature This will always be the same as the field count for the OGRFeatureDefn (p. ??).

• OGRFieldDefnH OGR_F_GetFieldDefnRef (OGRFeatureH, int)

Fetch definition for this field.

• int OGR_F_GetFieldIndex (OGRFeatureH, const char ∗)
Fetch the field index given field name.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 537

• int OGR_F_IsFieldSet (OGRFeatureH, int)

Test if a field has ever been assigned a value or not.

• void OGR_F_UnsetField (OGRFeatureH, int)

Clear a field, marking it as unset.

• OGRField ∗ OGR_F_GetRawFieldRef (OGRFeatureH, int)

Fetch an handle to the internal field value given the index.

• int OGR_F_GetFieldAsInteger (OGRFeatureH, int)

Fetch field value as integer.

• double OGR_F_GetFieldAsDouble (OGRFeatureH, int)

Fetch field value as a double.

• const char ∗ OGR_F_GetFieldAsString (OGRFeatureH, int)

Fetch field value as a string.

• const int ∗ OGR_F_GetFieldAsIntegerList (OGRFeatureH, int, int ∗)
Fetch field value as a list of integers.

• const double ∗ OGR_F_GetFieldAsDoubleList (OGRFeatureH, int, int ∗)
Fetch field value as a list of doubles.

• char ∗∗ OGR_F_GetFieldAsStringList (OGRFeatureH, int)

Fetch field value as a list of strings.

• GByte ∗ OGR_F_GetFieldAsBinary (OGRFeatureH, int, int ∗)
Fetch field value as binary.

• int OGR_F_GetFieldAsDateTime (OGRFeatureH, int, int ∗, int ∗, int ∗, int ∗, int ∗, int ∗, int ∗)
Fetch field value as date and time.

• void OGR_F_SetFieldInteger (OGRFeatureH, int, int)

Set field to integer value.

• void OGR_F_SetFieldDouble (OGRFeatureH, int, double)

Set field to double value.

• void OGR_F_SetFieldString (OGRFeatureH, int, const char ∗)
Set field to string value.

• void OGR_F_SetFieldIntegerList (OGRFeatureH, int, int, int ∗)
Set field to list of integers value.

• void OGR_F_SetFieldDoubleList (OGRFeatureH, int, int, double ∗)
Set field to list of doubles value.

• void OGR_F_SetFieldStringList (OGRFeatureH, int, char ∗∗)
Set field to list of strings value.

• void OGR_F_SetFieldRaw (OGRFeatureH, int, OGRField ∗)
Set field.

• void OGR_F_SetFieldBinary (OGRFeatureH, int, int, GByte ∗)
Set field to binary data.

• void OGR_F_SetFieldDateTime (OGRFeatureH, int, int, int, int, int, int, int, int)

Set field to datetime.

• int OGR_F_GetGeomFieldCount (OGRFeatureH hFeat)

Fetch number of geometry fields on this feature This will always be the same as the geometry field count for the
OGRFeatureDefn (p. ??).

• OGRGeomFieldDefnH OGR_F_GetGeomFieldDefnRef (OGRFeatureH hFeat, int iField)

Fetch definition for this geometry field.

• int OGR_F_GetGeomFieldIndex (OGRFeatureH hFeat, const char ∗pszName)

Fetch the geometry field index given geometry field name.

• OGRGeometryH OGR_F_GetGeomFieldRef (OGRFeatureH hFeat, int iField)

Fetch an handle to feature geometry.

• OGRErr OGR_F_SetGeomFieldDirectly (OGRFeatureH hFeat, int iField, OGRGeometryH hGeom)

Set feature geometry of a specified geometry field.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

538 File Documentation

• OGRErr OGR_F_SetGeomField (OGRFeatureH hFeat, int iField, OGRGeometryH hGeom)

Set feature geometry of a specified geometry field.

• long OGR_F_GetFID (OGRFeatureH)

Get feature identifier.

• OGRErr OGR_F_SetFID (OGRFeatureH, long)

Set the feature identifier.

• void OGR_F_DumpReadable (OGRFeatureH, FILE ∗)
Dump this feature in a human readable form.

• OGRErr OGR_F_SetFrom (OGRFeatureH, OGRFeatureH, int)

Set one feature from another.

• OGRErr OGR_F_SetFromWithMap (OGRFeatureH, OGRFeatureH, int, int ∗)
Set one feature from another.

• const char ∗ OGR_F_GetStyleString (OGRFeatureH)

Fetch style string for this feature.

• void OGR_F_SetStyleString (OGRFeatureH, const char ∗)
Set feature style string. This method operate exactly as OGR_F_SetStyleStringDirectly() (p. ??) except that it does
not assume ownership of the passed string, but instead makes a copy of it.

• void OGR_F_SetStyleStringDirectly (OGRFeatureH, char ∗)
Set feature style string. This method operate exactly as OGR_F_SetStyleString() (p. ??) except that it assumes
ownership of the passed string.

• const char ∗ OGR_L_GetName (OGRLayerH)

Return the layer name.

• OGRwkbGeometryType OGR_L_GetGeomType (OGRLayerH)

Return the layer geometry type.

• OGRGeometryH OGR_L_GetSpatialFilter (OGRLayerH)

This function returns the current spatial filter for this layer.

• void OGR_L_SetSpatialFilter (OGRLayerH, OGRGeometryH)

Set a new spatial filter.

• void OGR_L_SetSpatialFilterRect (OGRLayerH, double, double, double, double)

Set a new rectangular spatial filter.

• void OGR_L_SetSpatialFilterEx (OGRLayerH, int iGeomField, OGRGeometryH hGeom)

Set a new spatial filter.

• void OGR_L_SetSpatialFilterRectEx (OGRLayerH, int iGeomField, double dfMinX, double dfMinY, double
dfMaxX, double dfMaxY)

Set a new rectangular spatial filter.

• OGRErr OGR_L_SetAttributeFilter (OGRLayerH, const char ∗)
Set a new attribute query.

• void OGR_L_ResetReading (OGRLayerH)

Reset feature reading to start on the first feature.

• OGRFeatureH OGR_L_GetNextFeature (OGRLayerH)

Fetch the next available feature from this layer.

• OGRErr OGR_L_SetNextByIndex (OGRLayerH, long)

Move read cursor to the nIndex'th feature in the current resultset.

• OGRFeatureH OGR_L_GetFeature (OGRLayerH, long)

Fetch a feature by its identifier.

• OGRErr OGR_L_SetFeature (OGRLayerH, OGRFeatureH)

Rewrite an existing feature.

• OGRErr OGR_L_CreateFeature (OGRLayerH, OGRFeatureH)

Create and write a new feature within a layer.

• OGRErr OGR_L_DeleteFeature (OGRLayerH, long)

Delete feature from layer.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 539

• OGRFeatureDefnH OGR_L_GetLayerDefn (OGRLayerH)

Fetch the schema information for this layer.

• OGRSpatialReferenceH OGR_L_GetSpatialRef (OGRLayerH)

Fetch the spatial reference system for this layer.

• int OGR_L_FindFieldIndex (OGRLayerH, const char ∗, int bExactMatch)

Find the index of field in a layer.

• int OGR_L_GetFeatureCount (OGRLayerH, int)

Fetch the feature count in this layer.

• OGRErr OGR_L_GetExtent (OGRLayerH, OGREnvelope ∗, int)

Fetch the extent of this layer.

• OGRErr OGR_L_GetExtentEx (OGRLayerH, int iGeomField, OGREnvelope ∗psExtent, int bForce)

Fetch the extent of this layer, on the specified geometry field.

• int OGR_L_TestCapability (OGRLayerH, const char ∗)
Test if this layer supported the named capability.

• OGRErr OGR_L_CreateField (OGRLayerH, OGRFieldDefnH, int)

Create a new field on a layer.

• OGRErr OGR_L_CreateGeomField (OGRLayerH hLayer, OGRGeomFieldDefnH hFieldDefn, int bForce)

Create a new geometry field on a layer.

• OGRErr OGR_L_DeleteField (OGRLayerH, int iField)

Create a new field on a layer.

• OGRErr OGR_L_ReorderFields (OGRLayerH, int ∗panMap)

Reorder all the fields of a layer.

• OGRErr OGR_L_ReorderField (OGRLayerH, int iOldFieldPos, int iNewFieldPos)

Reorder an existing field on a layer.

• OGRErr OGR_L_AlterFieldDefn (OGRLayerH, int iField, OGRFieldDefnH hNewFieldDefn, int nFlags)

Alter the definition of an existing field on a layer.

• OGRErr OGR_L_StartTransaction (OGRLayerH)

For datasources which support transactions, StartTransaction creates a transaction.

• OGRErr OGR_L_CommitTransaction (OGRLayerH)

For datasources which support transactions, CommitTransaction commits a transaction.

• OGRErr OGR_L_RollbackTransaction (OGRLayerH)

For datasources which support transactions, RollbackTransaction will roll back a datasource to its state before the start
of the current transaction. If no transaction is active, or the rollback fails, will return OGRERR_FAILURE. Datasources
which do not support transactions will always return OGRERR_NONE.

• OGRErr OGR_L_SyncToDisk (OGRLayerH)

Flush pending changes to disk.

• const char ∗ OGR_L_GetFIDColumn (OGRLayerH)

This method returns the name of the underlying database column being used as the FID column, or "" if not supported.

• const char ∗ OGR_L_GetGeometryColumn (OGRLayerH)

This method returns the name of the underlying database column being used as the geometry column, or "" if not
supported.

• OGRErr OGR_L_SetIgnoredFields (OGRLayerH, const char ∗∗)
Set which fields can be omitted when retrieving features from the layer.

• OGRErr OGR_L_Intersection (OGRLayerH, OGRLayerH, OGRLayerH, char ∗∗, GDALProgressFunc, void
∗)

Intersection of two layers.

• OGRErr OGR_L_Union (OGRLayerH, OGRLayerH, OGRLayerH, char ∗∗, GDALProgressFunc, void ∗)
Union of two layers.

• OGRErr OGR_L_SymDifference (OGRLayerH, OGRLayerH, OGRLayerH, char ∗∗, GDALProgressFunc,
void ∗)

Symmetrical difference of two layers.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

540 File Documentation

• OGRErr OGR_L_Identity (OGRLayerH, OGRLayerH, OGRLayerH, char ∗∗, GDALProgressFunc, void ∗)
Identify the features of this layer with the ones from the identity layer.

• OGRErr OGR_L_Update (OGRLayerH, OGRLayerH, OGRLayerH, char ∗∗, GDALProgressFunc, void ∗)
Update this layer with features from the update layer.

• OGRErr OGR_L_Clip (OGRLayerH, OGRLayerH, OGRLayerH, char ∗∗, GDALProgressFunc, void ∗)
Clip off areas that are not covered by the method layer.

• OGRErr OGR_L_Erase (OGRLayerH, OGRLayerH, OGRLayerH, char ∗∗, GDALProgressFunc, void ∗)
Remove areas that are covered by the method layer.

• void OGR_DS_Destroy (OGRDataSourceH)

Closes opened datasource and releases allocated resources.

• const char ∗ OGR_DS_GetName (OGRDataSourceH)

Returns the name of the data source.

• int OGR_DS_GetLayerCount (OGRDataSourceH)

Get the number of layers in this data source.

• OGRLayerH OGR_DS_GetLayer (OGRDataSourceH, int)

Fetch a layer by index.

• OGRLayerH OGR_DS_GetLayerByName (OGRDataSourceH, const char ∗)
Fetch a layer by name.

• OGRErr OGR_DS_DeleteLayer (OGRDataSourceH, int)

Delete the indicated layer from the datasource.

• OGRSFDriverH OGR_DS_GetDriver (OGRDataSourceH)

Returns the driver that the dataset was opened with.

• OGRLayerH OGR_DS_CreateLayer (OGRDataSourceH, const char ∗, OGRSpatialReferenceH, OGRwkb←↩

GeometryType, char ∗∗)
This function attempts to create a new layer on the data source with the indicated name, coordinate system, geometry
type.

• OGRLayerH OGR_DS_CopyLayer (OGRDataSourceH, OGRLayerH, const char ∗, char ∗∗)
Duplicate an existing layer.

• int OGR_DS_TestCapability (OGRDataSourceH, const char ∗)
Test if capability is available.

• OGRLayerH OGR_DS_ExecuteSQL (OGRDataSourceH, const char ∗, OGRGeometryH, const char ∗)
Execute an SQL statement against the data store.

• void OGR_DS_ReleaseResultSet (OGRDataSourceH, OGRLayerH)

Release results of OGR_DS_ExecuteSQL() (p. ??).

• OGRErr OGR_DS_SyncToDisk (OGRDataSourceH)

Flush pending changes to disk.

• const char ∗ OGR_Dr_GetName (OGRSFDriverH)

Fetch name of driver (file format). This name should be relatively short (10-40 characters), and should reflect the
underlying file format. For instance "ESRI Shapefile".

• OGRDataSourceH OGR_Dr_Open (OGRSFDriverH, const char ∗, int) CPL_WARN_UNUSED_RESULT

Attempt to open file with this driver.

• int OGR_Dr_TestCapability (OGRSFDriverH, const char ∗)
Test if capability is available.

• OGRDataSourceH OGR_Dr_CreateDataSource (OGRSFDriverH, const char ∗, char ∗∗) CPL_WARN_U←↩

NUSED_RESULT

This function attempts to create a new data source based on the passed driver.

• OGRDataSourceH OGR_Dr_CopyDataSource (OGRSFDriverH, OGRDataSourceH, const char ∗, char ∗∗)
CPL_WARN_UNUSED_RESULT

This function creates a new datasource by copying all the layers from the source datasource.

• OGRErr OGR_Dr_DeleteDataSource (OGRSFDriverH, const char ∗)
Delete a datasource.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 541

• OGRDataSourceH OGROpen (const char ∗, int, OGRSFDriverH ∗) CPL_WARN_UNUSED_RESULT

Open a file / data source with one of the registered drivers.

• OGRErr OGRReleaseDataSource (OGRDataSourceH)

Drop a reference to this datasource, and if the reference count drops to zero close (destroy) the datasource.

• void OGRRegisterDriver (OGRSFDriverH)

Add a driver to the list of registered drivers.

• void OGRDeregisterDriver (OGRSFDriverH)

Remove the passed driver from the list of registered drivers.

• int OGRGetDriverCount (void)

Fetch the number of registered drivers.

• OGRSFDriverH OGRGetDriver (int)

Fetch the indicated driver.

• OGRSFDriverH OGRGetDriverByName (const char ∗)
Fetch the indicated driver.

• int OGRGetOpenDSCount (void)

Return the number of opened datasources.

• OGRDataSourceH OGRGetOpenDS (int iDS)

Return the iDS th datasource opened.

• void OGRRegisterAll (void)

Register all drivers.

• void OGRCleanupAll (void)

Cleanup all OGR related resources.

• OGRStyleMgrH OGR_SM_Create (OGRStyleTableH hStyleTable) CPL_WARN_UNUSED_RESULT

OGRStyleMgr (p. ??) factory.

• void OGR_SM_Destroy (OGRStyleMgrH hSM)

Destroy Style Manager.

• const char ∗ OGR_SM_InitFromFeature (OGRStyleMgrH hSM, OGRFeatureH hFeat)

Initialize style manager from the style string of a feature.

• int OGR_SM_InitStyleString (OGRStyleMgrH hSM, const char ∗pszStyleString)

Initialize style manager from the style string.

• int OGR_SM_GetPartCount (OGRStyleMgrH hSM, const char ∗pszStyleString)

Get the number of parts in a style.

• OGRStyleToolH OGR_SM_GetPart (OGRStyleMgrH hSM, int nPartId, const char ∗pszStyleString)

Fetch a part (style tool) from the current style.

• int OGR_SM_AddPart (OGRStyleMgrH hSM, OGRStyleToolH hST)

Add a part (style tool) to the current style.

• int OGR_SM_AddStyle (OGRStyleMgrH hSM, const char ∗pszStyleName, const char ∗pszStyleString)

Add a style to the current style table.

• OGRStyleToolH OGR_ST_Create (OGRSTClassId eClassId) CPL_WARN_UNUSED_RESULT

OGRStyleTool (p. ??) factory.

• void OGR_ST_Destroy (OGRStyleToolH hST)

Destroy Style Tool.

• OGRSTClassId OGR_ST_GetType (OGRStyleToolH hST)

Determine type of Style Tool.

• OGRSTUnitId OGR_ST_GetUnit (OGRStyleToolH hST)

Get Style Tool units.

• void OGR_ST_SetUnit (OGRStyleToolH hST, OGRSTUnitId eUnit, double dfGroundPaperScale)

Set Style Tool units.

• const char ∗ OGR_ST_GetParamStr (OGRStyleToolH hST, int eParam, int ∗bValueIsNull)

Get Style Tool parameter value as string.

• int OGR_ST_GetParamNum (OGRStyleToolH hST, int eParam, int ∗bValueIsNull)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

542 File Documentation

Get Style Tool parameter value as an integer.

• double OGR_ST_GetParamDbl (OGRStyleToolH hST, int eParam, int ∗bValueIsNull)

Get Style Tool parameter value as a double.

• void OGR_ST_SetParamStr (OGRStyleToolH hST, int eParam, const char ∗pszValue)

Set Style Tool parameter value from a string.

• void OGR_ST_SetParamNum (OGRStyleToolH hST, int eParam, int nValue)

Set Style Tool parameter value from an integer.

• void OGR_ST_SetParamDbl (OGRStyleToolH hST, int eParam, double dfValue)

Set Style Tool parameter value from a double.

• const char ∗ OGR_ST_GetStyleString (OGRStyleToolH hST)

Get the style string for this Style Tool.

• int OGR_ST_GetRGBFromString (OGRStyleToolH hST, const char ∗pszColor, int ∗pnRed, int ∗pnGreen, int
∗pnBlue, int ∗pnAlpha)

Return the r,g,b,a components of a color encoded in #RRGGBB[AA] format.

• OGRStyleTableH OGR_STBL_Create (void) CPL_WARN_UNUSED_RESULT

OGRStyleTable (p. ??) factory.

• void OGR_STBL_Destroy (OGRStyleTableH hSTBL)

Destroy Style Table.

• int OGR_STBL_AddStyle (OGRStyleTableH hStyleTable, const char ∗pszName, const char ∗pszStyleString)

Add a new style in the table. No comparison will be done on the Style string, only on the name. This function is the
same as the C++ method OGRStyleTable::AddStyle() (p. ??).

• int OGR_STBL_SaveStyleTable (OGRStyleTableH hStyleTable, const char ∗pszFilename)

Save a style table to a file.

• int OGR_STBL_LoadStyleTable (OGRStyleTableH hStyleTable, const char ∗pszFilename)

Load a style table from a file.

• const char ∗ OGR_STBL_Find (OGRStyleTableH hStyleTable, const char ∗pszName)

Get a style string by name.

• void OGR_STBL_ResetStyleStringReading (OGRStyleTableH hStyleTable)

Reset the next style pointer to 0.

• const char ∗ OGR_STBL_GetNextStyle (OGRStyleTableH hStyleTable)

Get the next style string from the table.

• const char ∗ OGR_STBL_GetLastStyleName (OGRStyleTableH hStyleTable)

13.13.1 Detailed Description

C API and defines for OGRFeature (p. ??), OGRGeometry (p. ??), and OGRDataSource (p. ??) related classes.

See also: ogr_geometry.h (p. ??), ogr_feature.h (p. ??), ogrsf_frmts.h (p. ??), ogr_featurestyle.h (p. ??)

13.13.2 Function Documentation

13.13.2.1 OGRDataSourceH OGR_Dr_CopyDataSource (OGRSFDriverH hDriver, OGRDataSourceH hSrcDS, const char ∗
pszNewName, char ∗∗ papszOptions)

This function creates a new datasource by copying all the layers from the source datasource.

It is important to call OGR_DS_Destroy() (p. ??) when the datasource is no longer used to ensure that all data has
been properly flushed to disk.

This function is the same as the C++ method OGRSFDriver::CopyDataSource() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 543

Parameters

hDriver handle to the driver on which data source creation is based.
hSrcDS source datasource

pszNewName the name for the new data source.
papszOptions a StringList of name=value options. Options are driver specific, and driver information can be

found at the following url: http://www.gdal.org/ogr/ogr_formats.html

Returns

NULL is returned on failure, or a new OGRDataSource (p. ??) handle on success.

References OGRDataSource::GetDriver(), and OGRDataSource::SetDriver().

13.13.2.2 OGRDataSourceH OGR_Dr_CreateDataSource (OGRSFDriverH hDriver, const char ∗ pszName, char ∗∗
papszOptions)

This function attempts to create a new data source based on the passed driver.

The papszOptions argument can be used to control driver specific creation options. These options are normally
documented in the format specific documentation.

It is important to call OGR_DS_Destroy() (p. ??) when the datasource is no longer used to ensure that all data has
been properly flushed to disk.

This function is the same as the C++ method OGRSFDriver::CreateDataSource() (p. ??).

Parameters

hDriver handle to the driver on which data source creation is based.
pszName the name for the new data source. UTF-8 encoded.

papszOptions a StringList of name=value options. Options are driver specific, and driver information can be
found at the following url: http://www.gdal.org/ogr/ogr_formats.html

Returns

NULL is returned on failure, or a new OGRDataSource (p. ??) handle on success.

References CPLDebug(), OGRSFDriver::CreateDataSource(), OGRDataSource::GetDriver(), and OGRData←↩

Source::SetDriver().

13.13.2.3 OGRErr OGR_Dr_DeleteDataSource (OGRSFDriverH hDriver, const char ∗ pszDataSource)

Delete a datasource.

Delete (from the disk, in the database, ...) the named datasource. Normally it would be safest if the datasource was
not open at the time.

Whether this is a supported operation on this driver case be tested using TestCapability() on ODrCDeleteData←↩

Source.

This method is the same as the C++ method OGRSFDriver::DeleteDataSource() (p. ??).

Parameters

hDriver handle to the driver on which data source deletion is based.
pszDataSource the name of the datasource to delete.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

544 File Documentation

Returns

OGRERR_NONE on success, and OGRERR_UNSUPPORTED_OPERATION if this is not supported by this
driver.

13.13.2.4 const char ∗ OGR_Dr_GetName (OGRSFDriverH hDriver)

Fetch name of driver (file format). This name should be relatively short (10-40 characters), and should reflect the
underlying file format. For instance "ESRI Shapefile".

This function is the same as the C++ method OGRSFDriver::GetName() (p. ??).

Parameters

hDriver handle to the the driver to get the name from.

Returns

driver name. This is an internal string and should not be modified or freed.

13.13.2.5 OGRDataSourceH OGR_Dr_Open (OGRSFDriverH hDriver, const char ∗ pszName, int bUpdate)

Attempt to open file with this driver.

This function is the same as the C++ method OGRSFDriver::Open() (p. ??).

Parameters

hDriver handle to the driver that is used to open file.
pszName the name of the file, or data source to try and open.
bUpdate TRUE if update access is required, otherwise FALSE (the default).

Returns

NULL on error or if the pass name is not supported by this driver, otherwise an handle to an OGRDataSource
(p. ??). This OGRDataSource (p. ??) should be closed by deleting the object when it is no longer needed.

References OGRDataSource::GetDriver(), and OGRDataSource::SetDriver().

13.13.2.6 int OGR_Dr_TestCapability (OGRSFDriverH hDriver, const char ∗ pszCap)

Test if capability is available.

One of the following data source capability names can be passed into this function, and a TRUE or FALSE value
will be returned indicating whether or not the capability is available for this object.

• ODrCCreateDataSource: True if this driver can support creating data sources.

• ODrCDeleteDataSource: True if this driver supports deleting data sources.

The #define macro forms of the capability names should be used in preference to the strings themselves to avoid
mispelling.

This function is the same as the C++ method OGRSFDriver::TestCapability() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 545

Parameters

hDriver handle to the driver to test the capability against.
pszCap the capability to test.

Returns

TRUE if capability available otherwise FALSE.

13.13.2.7 OGRLayerH OGR_DS_CopyLayer (OGRDataSourceH hDS, OGRLayerH hSrcLayer, const char ∗ pszNewName, char
∗∗ papszOptions)

Duplicate an existing layer.

This function creates a new layer, duplicate the field definitions of the source layer and then duplicate each features
of the source layer. The papszOptions argument can be used to control driver specific creation options. These
options are normally documented in the format specific documentation. The source layer may come from another
dataset.

This function is the same as the C++ method OGRDataSource::CopyLayer (p. ??)

Parameters

hDS handle to the data source where to create the new layer
hSrcLayer handle to the source layer.

pszNewName the name of the layer to create.
papszOptions a StringList of name=value options. Options are driver specific.

Returns

an handle to the layer, or NULL if an error occurs.

13.13.2.8 OGRLayerH OGR_DS_CreateLayer (OGRDataSourceH hDS, const char ∗ pszName, OGRSpatialReferenceH
hSpatialRef, OGRwkbGeometryType eType, char ∗∗ papszOptions)

This function attempts to create a new layer on the data source with the indicated name, coordinate system, geom-
etry type.

The papszOptions argument can be used to control driver specific creation options. These options are normally
documented in the format specific documentation.

This function is the same as the C++ method OGRDataSource::CreateLayer() (p. ??).

Parameters

hDS The dataset handle.
pszName the name for the new layer. This should ideally not match any existing layer on the datasource.

hSpatialRef handle to the coordinate system to use for the new layer, or NULL if no coordinate system is
available.

eType the geometry type for the layer. Use wkbUnknown if there are no constraints on the types
geometry to be written.

papszOptions a StringList of name=value options. Options are driver specific, and driver information can be
found at the following url: http://www.gdal.org/ogr/ogr_formats.html

Returns

NULL is returned on failure, or a new OGRLayer (p. ??) handle on success.

Example:

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

546 File Documentation

1 #include "ogrsf_frmts.h"
2 #include "cpl_string.h"
3
4 ...
5
6 OGRLayerH *hLayer;
7 char **papszOptions;
8
9 if(OGR_DS_TestCapability(hDS, ODsCCreateLayer))
10 {
11 ...
12 }
13
14 papszOptions = CSLSetNameValue(papszOptions, "DIM", "2");
15 hLayer = OGR_DS_CreateLayer(hDS, "NewLayer", NULL, wkbUnknown,
16 papszOptions);
17 CSLDestroy(papszOptions);
18
19 if(hLayer == NULL)
20 {
21 ...
22 }

References CPLError().

13.13.2.9 OGRErr OGR_DS_DeleteLayer (OGRDataSourceH hDS, int iLayer)

Delete the indicated layer from the datasource.

If this method is supported the ODsCDeleteLayer capability will test TRUE on the OGRDataSource (p. ??).

This method is the same as the C++ method OGRDataSource::DeleteLayer() (p. ??).

Parameters

hDS handle to the datasource
iLayer the index of the layer to delete.

Returns

OGRERR_NONE on success, or OGRERR_UNSUPPORTED_OPERATION if deleting layers is not sup-
ported for this datasource.

13.13.2.10 void OGR_DS_Destroy (OGRDataSourceH hDataSource)

Closes opened datasource and releases allocated resources.

This method is the same as the C++ method OGRDataSource::DestroyDataSource() (p. ??).

Parameters

hDataSource handle to allocated datasource object.

13.13.2.11 OGRLayerH OGR_DS_ExecuteSQL (OGRDataSourceH hDS, const char ∗ pszSQLCommand, OGRGeometryH
hSpatialFilter, const char ∗ pszDialect)

Execute an SQL statement against the data store.

The result of an SQL query is either NULL for statements that are in error, or that have no results set, or an OGR←↩

Layer (p. ??) handle representing a results set from the query. Note that this OGRLayer (p. ??) is in addition to the
layers in the data store and must be destroyed with OGR_DS_ReleaseResultSet() (p. ??) before the data source
is closed (destroyed).

For more information on the SQL dialect supported internally by OGR review the OGR SQL document. Some
drivers (ie. Oracle and PostGIS) pass the SQL directly through to the underlying RDBMS.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 547

Starting with OGR 1.10, the SQLITE dialect can also be used.

This function is the same as the C++ method OGRDataSource::ExecuteSQL() (p. ??);

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

548 File Documentation

Parameters

hDS handle to the data source on which the SQL query is executed.
pszSQL←↩

Command
the SQL statement to execute.

hSpatialFilter handle to a geometry which represents a spatial filter. Can be NULL.
pszDialect allows control of the statement dialect. If set to NULL, the OGR SQL engine will be used,

except for RDBMS drivers that will use their dedicated SQL engine, unless OGRSQL is ex-
plicitely passed as the dialect. Starting with OGR 1.10, the SQLITE dialect can also be used.

Returns

an handle to a OGRLayer (p. ??) containing the results of the query. Deallocate with OGR_DS_Release←↩

ResultSet() (p. ??).

13.13.2.12 OGRSFDriverH OGR_DS_GetDriver (OGRDataSourceH hDS)

Returns the driver that the dataset was opened with.

This method is the same as the C++ method OGRDataSource::GetDriver() (p. ??)

Parameters

hDS handle to the datasource

Returns

NULL if driver info is not available, or pointer to a driver owned by the OGRSFDriverManager.

13.13.2.13 OGRLayerH OGR_DS_GetLayer (OGRDataSourceH hDS, int iLayer)

Fetch a layer by index.

The returned layer remains owned by the OGRDataSource (p. ??) and should not be deleted by the application.

This function is the same as the C++ method OGRDataSource::GetLayer() (p. ??).

Parameters

hDS handle to the data source from which to get the layer.
iLayer a layer number between 0 and OGR_DS_GetLayerCount() (p. ??)-1.

Returns

an handle to the layer, or NULL if iLayer is out of range or an error occurs.

13.13.2.14 OGRLayerH OGR_DS_GetLayerByName (OGRDataSourceH hDS, const char ∗ pszLayerName)

Fetch a layer by name.

The returned layer remains owned by the OGRDataSource (p. ??) and should not be deleted by the application.

This function is the same as the C++ method OGRDataSource::GetLayerByName() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 549

Parameters

hDS handle to the data source from which to get the layer.
pszLayerName Layer the layer name of the layer to fetch.

Returns

an handle to the layer, or NULL if the layer is not found or an error occurs.

13.13.2.15 int OGR_DS_GetLayerCount (OGRDataSourceH hDS)

Get the number of layers in this data source.

This function is the same as the C++ method OGRDataSource::GetLayerCount() (p. ??).

Parameters

hDS handle to the data source from which to get the number of layers.

Returns

layer count.

13.13.2.16 const char ∗ OGR_DS_GetName (OGRDataSourceH hDS)

Returns the name of the data source.

This string should be sufficient to open the data source if passed to the same OGRSFDriver (p. ??) that this data
source was opened with, but it need not be exactly the same string that was used to open the data source. Normally
this is a filename.

This function is the same as the C++ method OGRDataSource::GetName() (p. ??).

Parameters

hDS handle to the data source to get the name from.

Returns

pointer to an internal name string which should not be modified or freed by the caller.

13.13.2.17 void OGR_DS_ReleaseResultSet (OGRDataSourceH hDS, OGRLayerH hLayer)

Release results of OGR_DS_ExecuteSQL() (p. ??).

This function should only be used to deallocate OGRLayers resulting from an OGR_DS_ExecuteSQL() (p. ??) call
on the same OGRDataSource (p. ??). Failure to deallocate a results set before destroying the OGRDataSource
(p. ??) may cause errors.

This function is the same as the C++ method OGRDataSource::ReleaseResultSet() (p. ??).

Parameters

hDS an handle to the data source on which was executed an SQL query.
hLayer handle to the result of a previous OGR_DS_ExecuteSQL() (p. ??) call.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

550 File Documentation

13.13.2.18 OGRErr OGR_DS_SyncToDisk (OGRDataSourceH hDS)

Flush pending changes to disk.

This call is intended to force the datasource to flush any pending writes to disk, and leave the disk file in a consistent
state. It would not normally have any effect on read-only datasources.

Some data sources do not implement this method, and will still return OGRERR_NONE. An error is only returned if
an error occurs while attempting to flush to disk.

The default implementation of this method just calls the SyncToDisk() method on each of the layers. Conceptionally,
calling SyncToDisk() on a datasource should include any work that might be accomplished by calling SyncToDisk()
on layers in that data source.

In any event, you should always close any opened datasource with OGR_DS_Destroy() (p. ??) that will ensure all
data is correctly flushed.

This method is the same as the C++ method OGRDataSource::SyncToDisk() (p. ??)

Parameters

hDS handle to the data source

Returns

OGRERR_NONE if no error occurs (even if nothing is done) or an error code.

13.13.2.19 int OGR_DS_TestCapability (OGRDataSourceH hDS, const char ∗ pszCapability)

Test if capability is available.

One of the following data source capability names can be passed into this function, and a TRUE or FALSE value
will be returned indicating whether or not the capability is available for this object.

• ODsCCreateLayer: True if this datasource can create new layers.

• ODsCDeleteLayer: True if this datasource can delete existing layers.

• ODsCCreateGeomFieldAfterCreateLayer: True if the layers of this datasource support CreateGeomField()
just after layer creation.

The #define macro forms of the capability names should be used in preference to the strings themselves to avoid
mispelling.

This function is the same as the C++ method OGRDataSource::TestCapability() (p. ??).

Parameters

hDS handle to the data source against which to test the capability.
pszCapability the capability to test.

Returns

TRUE if capability available otherwise FALSE.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 551

13.13.2.20 OGRFeatureH OGR_F_Clone (OGRFeatureH hFeat)

Duplicate feature.

The newly created feature is owned by the caller, and will have it's own reference to the OGRFeatureDefn (p. ??).

This function is the same as the C++ method OGRFeature::Clone() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

552 File Documentation

Parameters

hFeat handle to the feature to clone.

Returns

an handle to the new feature, exactly matching this feature.

13.13.2.21 OGRFeatureH OGR_F_Create (OGRFeatureDefnH hDefn)

Feature factory.

Note that the OGRFeature (p. ??) will increment the reference count of it's defining OGRFeatureDefn (p. ??).
Destruction of the OGRFeatureDefn (p. ??) before destruction of all OGRFeatures that depend on it is likely to
result in a crash.

This function is the same as the C++ method OGRFeature::OGRFeature() (p. ??).

Parameters

hDefn handle to the feature class (layer) definition to which the feature will adhere.

Returns

an handle to the new feature object with null fields and no geometry.

13.13.2.22 void OGR_F_Destroy (OGRFeatureH hFeat)

Destroy feature.

The feature is deleted, but within the context of the GDAL/OGR heap. This is necessary when higher level applica-
tions use GDAL/OGR from a DLL and they want to delete a feature created within the DLL. If the delete is done in
the calling application the memory will be freed onto the application heap which is inappropriate.

This function is the same as the C++ method OGRFeature::DestroyFeature() (p. ??).

Parameters

hFeat handle to the feature to destroy.

13.13.2.23 void OGR_F_DumpReadable (OGRFeatureH hFeat, FILE ∗ fpOut)

Dump this feature in a human readable form.

This dumps the attributes, and geometry; however, it doesn't definition information (other than field types and
names), nor does it report the geometry spatial reference system.

This function is the same as the C++ method OGRFeature::DumpReadable() (p. ??).

Parameters

hFeat handle to the feature to dump.
fpOut the stream to write to, such as strout.

13.13.2.24 int OGR_F_Equal (OGRFeatureH hFeat, OGRFeatureH hOtherFeat)

Test if two features are the same.

Two features are considered equal if the share them (handle equality) same OGRFeatureDefn (p. ??), have the
same field values, and the same geometry (as tested by OGR_G_Equal()) as well as the same feature id.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 553

This function is the same as the C++ method OGRFeature::Equal() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

554 File Documentation

Parameters

hFeat handle to one of the feature.
hOtherFeat handle to the other feature to test this one against.

Returns

TRUE if they are equal, otherwise FALSE.

13.13.2.25 OGRFeatureDefnH OGR_F_GetDefnRef (OGRFeatureH hFeat)

Fetch feature definition.

This function is the same as the C++ method OGRFeature::GetDefnRef() (p. ??).

Parameters

hFeat handle to the feature to get the feature definition from.

Returns

an handle to the feature definition object on which feature depends.

13.13.2.26 long OGR_F_GetFID (OGRFeatureH hFeat)

Get feature identifier.

This function is the same as the C++ method OGRFeature::GetFID() (p. ??).

Parameters

hFeat handle to the feature from which to get the feature identifier.

Returns

feature id or OGRNullFID if none has been assigned.

13.13.2.27 GByte∗ OGR_F_GetFieldAsBinary (OGRFeatureH hFeat, int iField, int ∗ pnBytes)

Fetch field value as binary.

Currently this method only works for OFTBinary fields.

This function is the same as the C++ method OGRFeature::GetFieldAsBinary() (p. ??).

Parameters

hFeat handle to the feature that owned the field.
iField the field to fetch, from 0 to GetFieldCount()-1.

pnBytes location to place count of bytes returned.

Returns

the field value. This list is internal, and should not be modified, or freed. Its lifetime may be very brief.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 555

13.13.2.28 int OGR_F_GetFieldAsDateTime (OGRFeatureH hFeat, int iField, int ∗ pnYear, int ∗ pnMonth, int ∗ pnDay, int ∗
pnHour, int ∗ pnMinute, int ∗ pnSecond, int ∗ pnTZFlag)

Fetch field value as date and time.

Currently this method only works for OFTDate, OFTTime and OFTDateTime fields.

This function is the same as the C++ method OGRFeature::GetFieldAsDateTime() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

556 File Documentation

Parameters

hFeat handle to the feature that owned the field.
iField the field to fetch, from 0 to GetFieldCount()-1.

pnYear (including century)
pnMonth (1-12)

pnDay (1-31)
pnHour (0-23)

pnMinute (0-59)
pnSecond (0-59)
pnTZFlag (0=unknown, 1=localtime, 100=GMT, see data model for details)

Returns

TRUE on success or FALSE on failure.

13.13.2.29 double OGR_F_GetFieldAsDouble (OGRFeatureH hFeat, int iField)

Fetch field value as a double.

OFTString features will be translated using atof(). OFTInteger fields will be cast to double. Other field types, or
errors will result in a return value of zero.

This function is the same as the C++ method OGRFeature::GetFieldAsDouble() (p. ??).

Parameters

hFeat handle to the feature that owned the field.
iField the field to fetch, from 0 to GetFieldCount()-1.

Returns

the field value.

13.13.2.30 const double∗ OGR_F_GetFieldAsDoubleList (OGRFeatureH hFeat, int iField, int ∗ pnCount)

Fetch field value as a list of doubles.

Currently this function only works for OFTRealList fields.

This function is the same as the C++ method OGRFeature::GetFieldAsDoubleList() (p. ??).

Parameters

hFeat handle to the feature that owned the field.
iField the field to fetch, from 0 to GetFieldCount()-1.

pnCount an integer to put the list count (number of doubles) into.

Returns

the field value. This list is internal, and should not be modified, or freed. Its lifetime may be very brief. If
∗pnCount is zero on return the returned pointer may be NULL or non-NULL.

13.13.2.31 int OGR_F_GetFieldAsInteger (OGRFeatureH hFeat, int iField)

Fetch field value as integer.

OFTString features will be translated using atoi(). OFTReal fields will be cast to integer. Other field types, or errors
will result in a return value of zero.

This function is the same as the C++ method OGRFeature::GetFieldAsInteger() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 557

Parameters

hFeat handle to the feature that owned the field.
iField the field to fetch, from 0 to GetFieldCount()-1.

Returns

the field value.

13.13.2.32 const int∗ OGR_F_GetFieldAsIntegerList (OGRFeatureH hFeat, int iField, int ∗ pnCount)

Fetch field value as a list of integers.

Currently this function only works for OFTIntegerList fields.

This function is the same as the C++ method OGRFeature::GetFieldAsIntegerList() (p. ??).

Parameters

hFeat handle to the feature that owned the field.
iField the field to fetch, from 0 to GetFieldCount()-1.

pnCount an integer to put the list count (number of integers) into.

Returns

the field value. This list is internal, and should not be modified, or freed. Its lifetime may be very brief. If
∗pnCount is zero on return the returned pointer may be NULL or non-NULL.

13.13.2.33 const char∗ OGR_F_GetFieldAsString (OGRFeatureH hFeat, int iField)

Fetch field value as a string.

OFTReal and OFTInteger fields will be translated to string using sprintf(), but not necessarily using the established
formatting rules. Other field types, or errors will result in a return value of zero.

This function is the same as the C++ method OGRFeature::GetFieldAsString() (p. ??).

Parameters

hFeat handle to the feature that owned the field.
iField the field to fetch, from 0 to GetFieldCount()-1.

Returns

the field value. This string is internal, and should not be modified, or freed. Its lifetime may be very brief.

13.13.2.34 char∗∗ OGR_F_GetFieldAsStringList (OGRFeatureH hFeat, int iField)

Fetch field value as a list of strings.

Currently this method only works for OFTStringList fields.

The returned list is terminated by a NULL pointer. The number of elements can also be calculated using CSL←↩

Count() (p. ??).

This function is the same as the C++ method OGRFeature::GetFieldAsStringList() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

558 File Documentation

Parameters

hFeat handle to the feature that owned the field.
iField the field to fetch, from 0 to GetFieldCount()-1.

Returns

the field value. This list is internal, and should not be modified, or freed. Its lifetime may be very brief.

13.13.2.35 int OGR_F_GetFieldCount (OGRFeatureH hFeat)

Fetch number of fields on this feature This will always be the same as the field count for the OGRFeatureDefn
(p. ??).

This function is the same as the C++ method OGRFeature::GetFieldCount() (p. ??).

Parameters

hFeat handle to the feature to get the fields count from.

Returns

count of fields.

13.13.2.36 OGRFieldDefnH OGR_F_GetFieldDefnRef (OGRFeatureH hFeat, int i)

Fetch definition for this field.

This function is the same as the C++ method OGRFeature::GetFieldDefnRef() (p. ??).

Parameters

hFeat handle to the feature on which the field is found.
i the field to fetch, from 0 to GetFieldCount()-1.

Returns

an handle to the field definition (from the OGRFeatureDefn (p. ??)). This is an internal reference, and should
not be deleted or modified.

13.13.2.37 int OGR_F_GetFieldIndex (OGRFeatureH hFeat, const char ∗ pszName)

Fetch the field index given field name.

This is a cover for the OGRFeatureDefn::GetFieldIndex() (p. ??) method.

This function is the same as the C++ method OGRFeature::GetFieldIndex() (p. ??).

Parameters

hFeat handle to the feature on which the field is found.
pszName the name of the field to search for.

Returns

the field index, or -1 if no matching field is found.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 559

13.13.2.38 OGRGeometryH OGR_F_GetGeometryRef (OGRFeatureH hFeat)

Fetch an handle to feature geometry.

This function is the same as the C++ method OGRFeature::GetGeometryRef() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

560 File Documentation

Parameters

hFeat handle to the feature to get geometry from.

Returns

an handle to internal feature geometry. This object should not be modified.

13.13.2.39 int OGR_F_GetGeomFieldCount (OGRFeatureH hFeat)

Fetch number of geometry fields on this feature This will always be the same as the geometry field count for the
OGRFeatureDefn (p. ??).

This function is the same as the C++ method OGRFeature::GetGeomFieldCount() (p. ??).

Parameters

hFeat handle to the feature to get the geometry fields count from.

Returns

count of geometry fields.

Since

GDAL 1.11

13.13.2.40 OGRGeomFieldDefnH OGR_F_GetGeomFieldDefnRef (OGRFeatureH hFeat, int i)

Fetch definition for this geometry field.

This function is the same as the C++ method OGRFeature::GetGeomFieldDefnRef() (p. ??).

Parameters

hFeat handle to the feature on which the field is found.
i the field to fetch, from 0 to GetGeomFieldCount()-1.

Returns

an handle to the field definition (from the OGRFeatureDefn (p. ??)). This is an internal reference, and should
not be deleted or modified.

Since

GDAL 1.11

13.13.2.41 int OGR_F_GetGeomFieldIndex (OGRFeatureH hFeat, const char ∗ pszName)

Fetch the geometry field index given geometry field name.

This is a cover for the OGRFeatureDefn::GetGeomFieldIndex() (p. ??) method.

This function is the same as the C++ method OGRFeature::GetGeomFieldIndex() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 561

Parameters

hFeat handle to the feature on which the geometry field is found.
pszName the name of the geometry field to search for.

Returns

the geometry field index, or -1 if no matching geometry field is found.

Since

GDAL 1.11

13.13.2.42 OGRGeometryH OGR_F_GetGeomFieldRef (OGRFeatureH hFeat, int iField)

Fetch an handle to feature geometry.

This function is the same as the C++ method OGRFeature::GetGeomFieldRef() (p. ??).

Parameters

hFeat handle to the feature to get geometry from.
iField geometry field to get.

Returns

an handle to internal feature geometry. This object should not be modified.

Since

GDAL 1.11

13.13.2.43 OGRField∗ OGR_F_GetRawFieldRef (OGRFeatureH hFeat, int iField)

Fetch an handle to the internal field value given the index.

This function is the same as the C++ method OGRFeature::GetRawFieldRef() (p. ??).

Parameters

hFeat handle to the feature on which field is found.
iField the field to fetch, from 0 to GetFieldCount()-1.

Returns

the returned handle is to an internal data structure, and should not be freed, or modified.

13.13.2.44 const char∗ OGR_F_GetStyleString (OGRFeatureH hFeat)

Fetch style string for this feature.

Set the OGR Feature Style Specification for details on the format of this string, and ogr_featurestyle.h (p. ??) for
services available to parse it.

This function is the same as the C++ method OGRFeature::GetStyleString() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

562 File Documentation

Parameters

hFeat handle to the feature to get the style from.

Returns

a reference to a representation in string format, or NULL if there isn't one.

13.13.2.45 int OGR_F_IsFieldSet (OGRFeatureH hFeat, int iField)

Test if a field has ever been assigned a value or not.

This function is the same as the C++ method OGRFeature::IsFieldSet() (p. ??).

Parameters

hFeat handle to the feature on which the field is.
iField the field to test.

Returns

TRUE if the field has been set, otherwise false.

References CPLError(), OGRFeature::GetFieldCount(), and OGRFeature::IsFieldSet().

13.13.2.46 OGRErr OGR_F_SetFID (OGRFeatureH hFeat, long nFID)

Set the feature identifier.

For specific types of features this operation may fail on illegal features ids. Generally it always succeeds. Feature
ids should be greater than or equal to zero, with the exception of OGRNullFID (-1) indicating that the feature id is
unknown.

This function is the same as the C++ method OGRFeature::SetFID() (p. ??).

Parameters

hFeat handle to the feature to set the feature id to.
nFID the new feature identifier value to assign.

Returns

On success OGRERR_NONE, or on failure some other value.

13.13.2.47 void OGR_F_SetFieldBinary (OGRFeatureH hFeat, int iField, int nBytes, GByte ∗ pabyData)

Set field to binary data.

This function currently on has an effect of OFTBinary fields.

This function is the same as the C++ method OGRFeature::SetField() (p. ??).

Parameters

hFeat handle to the feature that owned the field.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 563

iField the field to set, from 0 to GetFieldCount()-1.
nBytes the number of bytes in pabyData array.

pabyData the data to apply.

13.13.2.48 void OGR_F_SetFieldDateTime (OGRFeatureH hFeat, int iField, int nYear, int nMonth, int nDay, int nHour, int
nMinute, int nSecond, int nTZFlag)

Set field to datetime.

This method currently only has an effect for OFTDate, OFTTime and OFTDateTime fields.

Parameters

hFeat handle to the feature that owned the field.
iField the field to set, from 0 to GetFieldCount()-1.
nYear (including century)

nMonth (1-12)
nDay (1-31)

nHour (0-23)
nMinute (0-59)

nSecond (0-59)
nTZFlag (0=unknown, 1=localtime, 100=GMT, see data model for details)

13.13.2.49 void OGR_F_SetFieldDouble (OGRFeatureH hFeat, int iField, double dfValue)

Set field to double value.

OFTInteger and OFTReal fields will be set directly. OFTString fields will be assigned a string representation of
the value, but not necessarily taking into account formatting constraints on this field. Other field types may be
unaffected.

This function is the same as the C++ method OGRFeature::SetField() (p. ??).

Parameters

hFeat handle to the feature that owned the field.
iField the field to fetch, from 0 to GetFieldCount()-1.

dfValue the value to assign.

13.13.2.50 void OGR_F_SetFieldDoubleList (OGRFeatureH hFeat, int iField, int nCount, double ∗ padfValues)

Set field to list of doubles value.

This function currently on has an effect of OFTRealList fields.

This function is the same as the C++ method OGRFeature::SetField() (p. ??).

Parameters

hFeat handle to the feature that owned the field.
iField the field to set, from 0 to GetFieldCount()-1.

nCount the number of values in the list being assigned.
padfValues the values to assign.

13.13.2.51 void OGR_F_SetFieldInteger (OGRFeatureH hFeat, int iField, int nValue)

Set field to integer value.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

564 File Documentation

OFTInteger and OFTReal fields will be set directly. OFTString fields will be assigned a string representation of
the value, but not necessarily taking into account formatting constraints on this field. Other field types may be
unaffected.

This function is the same as the C++ method OGRFeature::SetField() (p. ??).

Parameters

hFeat handle to the feature that owned the field.
iField the field to fetch, from 0 to GetFieldCount()-1.

nValue the value to assign.

13.13.2.52 void OGR_F_SetFieldIntegerList (OGRFeatureH hFeat, int iField, int nCount, int ∗ panValues)

Set field to list of integers value.

This function currently on has an effect of OFTIntegerList fields.

This function is the same as the C++ method OGRFeature::SetField() (p. ??).

Parameters

hFeat handle to the feature that owned the field.
iField the field to set, from 0 to GetFieldCount()-1.

nCount the number of values in the list being assigned.
panValues the values to assign.

13.13.2.53 void OGR_F_SetFieldRaw (OGRFeatureH hFeat, int iField, OGRField ∗ psValue)

Set field.

The passed value OGRField (p. ??) must be of exactly the same type as the target field, or an application crash
may occur. The passed value is copied, and will not be affected. It remains the responsibility of the caller.

This function is the same as the C++ method OGRFeature::SetField() (p. ??).

Parameters

hFeat handle to the feature that owned the field.
iField the field to fetch, from 0 to GetFieldCount()-1.

psValue handle on the value to assign.

13.13.2.54 void OGR_F_SetFieldString (OGRFeatureH hFeat, int iField, const char ∗ pszValue)

Set field to string value.

OFTInteger fields will be set based on an atoi() conversion of the string. OFTReal fields will be set based on an
atof() conversion of the string. Other field types may be unaffected.

This function is the same as the C++ method OGRFeature::SetField() (p. ??).

Parameters

hFeat handle to the feature that owned the field.
iField the field to fetch, from 0 to GetFieldCount()-1.

pszValue the value to assign.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 565

13.13.2.55 void OGR_F_SetFieldStringList (OGRFeatureH hFeat, int iField, char ∗∗ papszValues)

Set field to list of strings value.

This function currently on has an effect of OFTStringList fields.

This function is the same as the C++ method OGRFeature::SetField() (p. ??).

Parameters

hFeat handle to the feature that owned the field.
iField the field to set, from 0 to GetFieldCount()-1.

papszValues the values to assign.

13.13.2.56 OGRErr OGR_F_SetFrom (OGRFeatureH hFeat, OGRFeatureH hOtherFeat, int bForgiving)

Set one feature from another.

Overwrite the contents of this feature from the geometry and attributes of another. The hOtherFeature does not
need to have the same OGRFeatureDefn (p. ??). Field values are copied by corresponding field names. Field
types do not have to exactly match. OGR_F_SetField∗() function conversion rules will be applied as needed.

This function is the same as the C++ method OGRFeature::SetFrom() (p. ??).

Parameters

hFeat handle to the feature to set to.
hOtherFeat handle to the feature from which geometry, and field values will be copied.
bForgiving TRUE if the operation should continue despite lacking output fields matching some of the

source fields.

Returns

OGRERR_NONE if the operation succeeds, even if some values are not transferred, otherwise an error code.

13.13.2.57 OGRErr OGR_F_SetFromWithMap (OGRFeatureH hFeat, OGRFeatureH hOtherFeat, int bForgiving, int ∗ panMap)

Set one feature from another.

Overwrite the contents of this feature from the geometry and attributes of another. The hOtherFeature does not need
to have the same OGRFeatureDefn (p. ??). Field values are copied according to the provided indices map. Field
types do not have to exactly match. OGR_F_SetField∗() function conversion rules will be applied as needed. This
is more efficient than OGR_F_SetFrom() (p. ??) in that this doesn't lookup the fields by their names. Particularly
useful when the field names don't match.

This function is the same as the C++ method OGRFeature::SetFrom() (p. ??).

Parameters

hFeat handle to the feature to set to.
hOtherFeat handle to the feature from which geometry, and field values will be copied.

panMap Array of the indices of the destination feature's fields stored at the corresponding index of the
source feature's fields. A value of -1 should be used to ignore the source's field. The array
should not be NULL and be as long as the number of fields in the source feature.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

566 File Documentation

bForgiving TRUE if the operation should continue despite lacking output fields matching some of the
source fields.

Returns

OGRERR_NONE if the operation succeeds, even if some values are not transferred, otherwise an error code.

13.13.2.58 OGRErr OGR_F_SetGeometry (OGRFeatureH hFeat, OGRGeometryH hGeom)

Set feature geometry.

This function updates the features geometry, and operate exactly as SetGeometryDirectly(), except that this function
does not assume ownership of the passed geometry, but instead makes a copy of it.

This function is the same as the C++ OGRFeature::SetGeometry() (p. ??).

Parameters

hFeat handle to the feature on which new geometry is applied to.
hGeom handle to the new geometry to apply to feature.

Returns

OGRERR_NONE if successful, or OGR_UNSUPPORTED_GEOMETRY_TYPE if the geometry type is illegal
for the OGRFeatureDefn (p. ??) (checking not yet implemented).

13.13.2.59 OGRErr OGR_F_SetGeometryDirectly (OGRFeatureH hFeat, OGRGeometryH hGeom)

Set feature geometry.

This function updates the features geometry, and operate exactly as SetGeometry(), except that this function as-
sumes ownership of the passed geometry (even in case of failure of that function).

This function is the same as the C++ method OGRFeature::SetGeometryDirectly (p. ??).

Parameters

hFeat handle to the feature on which to apply the geometry.
hGeom handle to the new geometry to apply to feature.

Returns

OGRERR_NONE if successful, or OGR_UNSUPPORTED_GEOMETRY_TYPE if the geometry type is illegal
for the OGRFeatureDefn (p. ??) (checking not yet implemented).

13.13.2.60 OGRErr OGR_F_SetGeomField (OGRFeatureH hFeat, int iField, OGRGeometryH hGeom)

Set feature geometry of a specified geometry field.

This function updates the features geometry, and operate exactly as SetGeometryDirectly(), except that this function
does not assume ownership of the passed geometry, but instead makes a copy of it.

This function is the same as the C++ OGRFeature::SetGeomField() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 567

Parameters

hFeat handle to the feature on which new geometry is applied to.
iField geometry field to set.

hGeom handle to the new geometry to apply to feature.

Returns

OGRERR_NONE if successful, or OGR_UNSUPPORTED_GEOMETRY_TYPE if the geometry type is illegal
for the OGRFeatureDefn (p. ??) (checking not yet implemented).

13.13.2.61 OGRErr OGR_F_SetGeomFieldDirectly (OGRFeatureH hFeat, int iField, OGRGeometryH hGeom)

Set feature geometry of a specified geometry field.

This function updates the features geometry, and operate exactly as SetGeomField(), except that this function
assumes ownership of the passed geometry (even in case of failure of that function).

This function is the same as the C++ method OGRFeature::SetGeomFieldDirectly (p. ??).

Parameters

hFeat handle to the feature on which to apply the geometry.
iField geometry field to set.

hGeom handle to the new geometry to apply to feature.

Returns

OGRERR_NONE if successful, or OGRERR_FAILURE if the index is invalid, or OGR_UNSUPPORTED_←↩

GEOMETRY_TYPE if the geometry type is illegal for the OGRFeatureDefn (p. ??) (checking not yet imple-
mented).

Since

GDAL 1.11

13.13.2.62 void OGR_F_SetStyleString (OGRFeatureH hFeat, const char ∗ pszStyle)

Set feature style string. This method operate exactly as OGR_F_SetStyleStringDirectly() (p. ??) except that it
does not assume ownership of the passed string, but instead makes a copy of it.

This function is the same as the C++ method OGRFeature::SetStyleString() (p. ??).

Parameters

hFeat handle to the feature to set style to.
pszStyle the style string to apply to this feature, cannot be NULL.

13.13.2.63 void OGR_F_SetStyleStringDirectly (OGRFeatureH hFeat, char ∗ pszStyle)

Set feature style string. This method operate exactly as OGR_F_SetStyleString() (p. ??) except that it assumes
ownership of the passed string.

This function is the same as the C++ method OGRFeature::SetStyleStringDirectly() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

568 File Documentation

Parameters

hFeat handle to the feature to set style to.
pszStyle the style string to apply to this feature, cannot be NULL.

13.13.2.64 OGRGeometryH OGR_F_StealGeometry (OGRFeatureH hFeat)

Take away ownership of geometry.

Fetch the geometry from this feature, and clear the reference to the geometry on the feature. This is a mechanism
for the application to take over ownship of the geometry from the feature without copying. Sort of an inverse to
OGR_FSetGeometryDirectly().

After this call the OGRFeature (p. ??) will have a NULL geometry.

Returns

the pointer to the geometry.

13.13.2.65 void OGR_F_UnsetField (OGRFeatureH hFeat, int iField)

Clear a field, marking it as unset.

This function is the same as the C++ method OGRFeature::UnsetField() (p. ??).

Parameters

hFeat handle to the feature on which the field is.
iField the field to unset.

13.13.2.66 void OGR_FD_AddFieldDefn (OGRFeatureDefnH hDefn, OGRFieldDefnH hNewField)

Add a new field definition to the passed feature definition.

To add a new field definition to a layer definition, do not use this function directly, but use OGR_L_CreateField()
(p. ??) instead.

This function should only be called while there are no OGRFeature (p. ??) objects in existance based on this O←↩

GRFeatureDefn (p. ??). The OGRFieldDefn (p. ??) passed in is copied, and remains the responsibility of the
caller.

This function is the same as the C++ method OGRFeatureDefn::AddFieldDefn() (p. ??).

Parameters

hDefn handle to the feature definition to add the field definition to.
hNewField handle to the new field definition.

13.13.2.67 void OGR_FD_AddGeomFieldDefn (OGRFeatureDefnH hDefn, OGRGeomFieldDefnH hNewGeomField)

Add a new field definition to the passed feature definition.

To add a new field definition to a layer definition, do not use this function directly, but use OGR_L_CreateGeom←↩

Field() (p. ??) instead.

This function should only be called while there are no OGRFeature (p. ??) objects in existance based on this OG←↩

RFeatureDefn (p. ??). The OGRGeomFieldDefn (p. ??) passed in is copied, and remains the responsibility of the
caller.

This function is the same as the C++ method OGRFeatureDefn::AddGeomFieldDefn() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 569

Parameters

hDefn handle to the feature definition to add the geometry field definition to.
hNewGeomField handle to the new field definition.

Since

GDAL 1.11

13.13.2.68 OGRFeatureDefnH OGR_FD_Create (const char ∗ pszName)

Create a new feature definition object to hold the field definitions.

The OGRFeatureDefn (p. ??) maintains a reference count, but this starts at zero, and should normally be incre-
mented by the owner.

This function is the same as the C++ method OGRFeatureDefn::OGRFeatureDefn() (p. ??).

Parameters

pszName the name to be assigned to this layer/class. It does not need to be unique.

Returns

handle to the newly created feature definition.

13.13.2.69 OGRErr OGR_FD_DeleteFieldDefn (OGRFeatureDefnH hDefn, int iField)

Delete an existing field definition.

To delete an existing field definition from a layer definition, do not use this function directly, but use OGR_L_←↩

DeleteField() (p. ??) instead.

This method should only be called while there are no OGRFeature (p. ??) objects in existance based on this OG←↩

RFeatureDefn (p. ??).

This method is the same as the C++ method OGRFeatureDefn::DeleteFieldDefn() (p. ??).

Parameters

hDefn handle to the feature definition.
iField the index of the field defintion.

Returns

OGRERR_NONE in case of success.

Since

OGR 1.9.0

13.13.2.70 OGRErr OGR_FD_DeleteGeomFieldDefn (OGRFeatureDefnH hDefn, int iGeomField)

Delete an existing geometry field definition.

To delete an existing geometry field definition from a layer definition, do not use this function directly, but use OG←↩

R_L_DeleteGeomField() instead (not implemented yet)

This method should only be called while there are no OGRFeature (p. ??) objects in existance based on this OG←↩

RFeatureDefn (p. ??).

This method is the same as the C++ method OGRFeatureDefn::DeleteGeomFieldDefn() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

570 File Documentation

Parameters

hDefn handle to the feature definition.
iGeomField the index of the geometry field defintion.

Returns

OGRERR_NONE in case of success.

Since

GDAL 1.11

13.13.2.71 int OGR_FD_Dereference (OGRFeatureDefnH hDefn)

Decrements the reference count by one.

This function is the same as the C++ method OGRFeatureDefn::Dereference() (p. ??).

Parameters

hDefn handle to the feature definition on witch OGRFeature (p. ??) are based on.

Returns

the updated reference count.

13.13.2.72 void OGR_FD_Destroy (OGRFeatureDefnH hDefn)

Destroy a feature definition object and release all memory associated with it.

This function is the same as the C++ method OGRFeatureDefn::∼OGRFeatureDefn().

Parameters

hDefn handle to the feature definition to be destroyed.

13.13.2.73 int OGR_FD_GetFieldCount (OGRFeatureDefnH hDefn)

Fetch number of fields on the passed feature definition.

This function is the same as the C++ OGRFeatureDefn::GetFieldCount() (p. ??).

Parameters

hDefn handle to the feature definition to get the fields count from.

Returns

count of fields.

13.13.2.74 OGRFieldDefnH OGR_FD_GetFieldDefn (OGRFeatureDefnH hDefn, int iField)

Fetch field definition of the passed feature definition.

This function is the same as the C++ method OGRFeatureDefn::GetFieldDefn() (p. ??).

Starting with GDAL 1.7.0, this method will also issue an error if the index is not valid.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 571

Parameters

hDefn handle to the feature definition to get the field definition from.
iField the field to fetch, between 0 and GetFieldCount()-1.

Returns

an handle to an internal field definition object or NULL if invalid index. This object should not be modified or
freed by the application.

13.13.2.75 int OGR_FD_GetFieldIndex (OGRFeatureDefnH hDefn, const char ∗ pszFieldName)

Find field by name.

The field index of the first field matching the passed field name (case insensitively) is returned.

This function is the same as the C++ method OGRFeatureDefn::GetFieldIndex (p. ??).

Parameters

hDefn handle to the feature definition to get field index from.
pszFieldName the field name to search for.

Returns

the field index, or -1 if no match found.

13.13.2.76 int OGR_FD_GetGeomFieldCount (OGRFeatureDefnH hDefn)

Fetch number of geometry fields on the passed feature definition.

This function is the same as the C++ OGRFeatureDefn::GetGeomFieldCount() (p. ??).

Parameters

hDefn handle to the feature definition to get the fields count from.

Returns

count of geometry fields.

Since

GDAL 1.11

13.13.2.77 OGRGeomFieldDefnH OGR_FD_GetGeomFieldDefn (OGRFeatureDefnH hDefn, int iGeomField)

Fetch geometry field definition of the passed feature definition.

This function is the same as the C++ method OGRFeatureDefn::GetGeomFieldDefn() (p. ??).

Parameters

hDefn handle to the feature definition to get the field definition from.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

572 File Documentation

iGeomField the geometry field to fetch, between 0 and GetGeomFieldCount()-1.

Returns

an handle to an internal field definition object or NULL if invalid index. This object should not be modified or
freed by the application.

Since

GDAL 1.11

13.13.2.78 int OGR_FD_GetGeomFieldIndex (OGRFeatureDefnH hDefn, const char ∗ pszGeomFieldName)

Find geometry field by name.

The geometry field index of the first geometry field matching the passed field name (case insensitively) is returned.

This function is the same as the C++ method OGRFeatureDefn::GetGeomFieldIndex (p. ??).

Parameters

hDefn handle to the feature definition to get field index from.
pszGeomField←↩

Name
the geometry field name to search for.

Returns

the geometry field index, or -1 if no match found.

13.13.2.79 OGRwkbGeometryType OGR_FD_GetGeomType (OGRFeatureDefnH hDefn)

Fetch the geometry base type of the passed feature definition.

This function is the same as the C++ method OGRFeatureDefn::GetGeomType() (p. ??).

Starting with GDAL 1.11, this method returns GetGeomFieldDefn(0)->GetType().

Parameters

hDefn handle to the feature definition to get the geometry type from.

Returns

the base type for all geometry related to this definition.

13.13.2.80 const char∗ OGR_FD_GetName (OGRFeatureDefnH hDefn)

Get name of the OGRFeatureDefn (p. ??) passed as an argument.

This function is the same as the C++ method OGRFeatureDefn::GetName() (p. ??).

Parameters

hDefn handle to the feature definition to get the name from.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 573

Returns

the name. This name is internal and should not be modified, or freed.

13.13.2.81 int OGR_FD_GetReferenceCount (OGRFeatureDefnH hDefn)

Fetch current reference count.

This function is the same as the C++ method OGRFeatureDefn::GetReferenceCount() (p. ??).

Parameters

hDefn handle to the feature definition on witch OGRFeature (p. ??) are based on.

Returns

the current reference count.

13.13.2.82 int OGR_FD_IsGeometryIgnored (OGRFeatureDefnH hDefn)

Determine whether the geometry can be omitted when fetching features.

This function is the same as the C++ method OGRFeatureDefn::IsGeometryIgnored() (p. ??).

Starting with GDAL 1.11, this method returns GetGeomFieldDefn(0)->IsIgnored().

Parameters

hDefn handle to the feature definition on witch OGRFeature (p. ??) are based on.

Returns

ignore state

13.13.2.83 int OGR_FD_IsSame (OGRFeatureDefnH hFDefn, OGRFeatureDefnH hOtherFDefn)

Test if the feature definition is identical to the other one.

Parameters

hFDefn handle to the feature definition on witch OGRFeature (p. ??) are based on.
hOtherFDefn handle to the other feature definition to compare to.

Returns

TRUE if the feature definition is identical to the other one.

Since

OGR 1.11

13.13.2.84 int OGR_FD_IsStyleIgnored (OGRFeatureDefnH hDefn)

Determine whether the style can be omitted when fetching features.

This function is the same as the C++ method OGRFeatureDefn::IsStyleIgnored() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

574 File Documentation

Parameters

hDefn handle to the feature definition on which OGRFeature (p. ??) are based on.

Returns

ignore state

13.13.2.85 int OGR_FD_Reference (OGRFeatureDefnH hDefn)

Increments the reference count by one.

The reference count is used keep track of the number of OGRFeature (p. ??) objects referencing this definition.

This function is the same as the C++ method OGRFeatureDefn::Reference() (p. ??).

Parameters

hDefn handle to the feature definition on witch OGRFeature (p. ??) are based on.

Returns

the updated reference count.

13.13.2.86 void OGR_FD_Release (OGRFeatureDefnH hDefn)

Drop a reference, and destroy if unreferenced.

This function is the same as the C++ method OGRFeatureDefn::Release() (p. ??).

Parameters

hDefn handle to the feature definition to be released.

13.13.2.87 void OGR_FD_SetGeometryIgnored (OGRFeatureDefnH hDefn, int bIgnore)

Set whether the geometry can be omitted when fetching features.

This function is the same as the C++ method OGRFeatureDefn::SetGeometryIgnored() (p. ??).

Starting with GDAL 1.11, this method calls GetGeomFieldDefn(0)->SetIgnored().

Parameters

hDefn handle to the feature definition on witch OGRFeature (p. ??) are based on.
bIgnore ignore state

13.13.2.88 void OGR_FD_SetGeomType (OGRFeatureDefnH hDefn, OGRwkbGeometryType eType)

Assign the base geometry type for the passed layer (the same as the feature definition).

All geometry objects using this type must be of the defined type or a derived type. The default upon creation is
wkbUnknown which allows for any geometry type. The geometry type should generally not be changed after any
OGRFeatures have been created against this definition.

This function is the same as the C++ method OGRFeatureDefn::SetGeomType() (p. ??).

Starting with GDAL 1.11, this method calls GetGeomFieldDefn(0)->SetType().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 575

Parameters

hDefn handle to the layer or feature definition to set the geometry type to.
eType the new type to assign.

13.13.2.89 void OGR_FD_SetStyleIgnored (OGRFeatureDefnH hDefn, int bIgnore)

Set whether the style can be omitted when fetching features.

This function is the same as the C++ method OGRFeatureDefn::SetStyleIgnored() (p. ??).

Parameters

hDefn handle to the feature definition on witch OGRFeature (p. ??) are based on.
bIgnore ignore state

13.13.2.90 OGRFieldDefnH OGR_Fld_Create (const char ∗ pszName, OGRFieldType eType)

Create a new field definition.

This function is the same as the CPP method OGRFieldDefn::OGRFieldDefn() (p. ??).

Parameters

pszName the name of the new field definition.
eType the type of the new field definition.

Returns

handle to the new field definition.

13.13.2.91 void OGR_Fld_Destroy (OGRFieldDefnH hDefn)

Destroy a field definition.

Parameters

hDefn handle to the field definition to destroy.

13.13.2.92 OGRJustification OGR_Fld_GetJustify (OGRFieldDefnH hDefn)

Get the justification for this field.

This function is the same as the CPP method OGRFieldDefn::GetJustify() (p. ??).

Parameters

hDefn handle to the field definition to get justification from.

Returns

the justification.

13.13.2.93 const char∗ OGR_Fld_GetNameRef (OGRFieldDefnH hDefn)

Fetch name of this field.

This function is the same as the CPP method OGRFieldDefn::GetNameRef() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

576 File Documentation

Parameters

hDefn handle to the field definition.

Returns

the name of the field definition.

13.13.2.94 int OGR_Fld_GetPrecision (OGRFieldDefnH hDefn)

Get the formatting precision for this field. This should normally be zero for fields of types other than OFTReal.

This function is the same as the CPP method OGRFieldDefn::GetPrecision() (p. ??).

Parameters

hDefn handle to the field definition to get precision from.

Returns

the precision.

13.13.2.95 OGRFieldType OGR_Fld_GetType (OGRFieldDefnH hDefn)

Fetch type of this field.

This function is the same as the CPP method OGRFieldDefn::GetType() (p. ??).

Parameters

hDefn handle to the field definition to get type from.

Returns

field type.

13.13.2.96 int OGR_Fld_GetWidth (OGRFieldDefnH hDefn)

Get the formatting width for this field.

This function is the same as the CPP method OGRFieldDefn::GetWidth() (p. ??).

Parameters

hDefn handle to the field definition to get width from.

Returns

the width, zero means no specified width.

13.13.2.97 int OGR_Fld_IsIgnored (OGRFieldDefnH hDefn)

Return whether this field should be omitted when fetching features.

This method is the same as the C++ method OGRFieldDefn::IsIgnored() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 577

Parameters

hDefn handle to the field definition

Returns

ignore state

13.13.2.98 void OGR_Fld_Set (OGRFieldDefnH hDefn, const char ∗ pszNameIn, OGRFieldType eTypeIn, int nWidthIn, int
nPrecisionIn, OGRJustification eJustifyIn)

Set defining parameters for a field in one call.

This function is the same as the CPP method OGRFieldDefn::Set() (p. ??).

Parameters

hDefn handle to the field definition to set to.
pszNameIn the new name to assign.

eTypeIn the new type (one of the OFT values like OFTInteger).
nWidthIn the preferred formatting width. Defaults to zero indicating undefined.

nPrecisionIn number of decimals places for formatting, defaults to zero indicating undefined.
eJustifyIn the formatting justification (OJLeft or OJRight), defaults to OJUndefined.

13.13.2.99 void OGR_Fld_SetIgnored (OGRFieldDefnH hDefn, int ignore)

Set whether this field should be omitted when fetching features.

This method is the same as the C++ method OGRFieldDefn::SetIgnored() (p. ??).

Parameters

hDefn handle to the field definition
ignore ignore state

13.13.2.100 void OGR_Fld_SetJustify (OGRFieldDefnH hDefn, OGRJustification eJustify)

Set the justification for this field.

This function is the same as the CPP method OGRFieldDefn::SetJustify() (p. ??).

Parameters

hDefn handle to the field definition to set justification to.
eJustify the new justification.

13.13.2.101 void OGR_Fld_SetName (OGRFieldDefnH hDefn, const char ∗ pszName)

Reset the name of this field.

This function is the same as the CPP method OGRFieldDefn::SetName() (p. ??).

Parameters

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

578 File Documentation

hDefn handle to the field definition to apply the new name to.
pszName the new name to apply.

13.13.2.102 void OGR_Fld_SetPrecision (OGRFieldDefnH hDefn, int nPrecision)

Set the formatting precision for this field in characters.

This should normally be zero for fields of types other than OFTReal.

This function is the same as the CPP method OGRFieldDefn::SetPrecision() (p. ??).

Parameters

hDefn handle to the field definition to set precision to.
nPrecision the new precision.

13.13.2.103 void OGR_Fld_SetType (OGRFieldDefnH hDefn, OGRFieldType eType)

Set the type of this field. This should never be done to an OGRFieldDefn (p. ??) that is already part of an OGR←↩

FeatureDefn (p. ??).

This function is the same as the CPP method OGRFieldDefn::SetType() (p. ??).

Parameters

hDefn handle to the field definition to set type to.
eType the new field type.

13.13.2.104 void OGR_Fld_SetWidth (OGRFieldDefnH hDefn, int nNewWidth)

Set the formatting width for this field in characters.

This function is the same as the CPP method OGRFieldDefn::SetWidth() (p. ??).

Parameters

hDefn handle to the field definition to set width to.
nNewWidth the new width.

13.13.2.105 OGRErr OGR_G_AddGeometry (OGRGeometryH hGeom, OGRGeometryH hNewSubGeom)

Add a geometry to a geometry container.

Some subclasses of OGRGeometryCollection (p. ??) restrict the types of geometry that can be added, and may
return an error. The passed geometry is cloned to make an internal copy.

There is no SFCOM analog to this method.

This function is the same as the CPP method OGRGeometryCollection::addGeometry (p. ??).

For a polygon, hNewSubGeom must be a linearring. If the polygon is empty, the first added subgeometry will be the
exterior ring. The next ones will be the interior rings.

Parameters

hGeom existing geometry container.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 579

hNewSubGeom geometry to add to the container.

Returns

OGRERR_NONE if successful, or OGRERR_UNSUPPORTED_GEOMETRY_TYPE if the geometry type is
illegal for the type of existing geometry.

References wkbGeometryCollection, wkbMultiLineString, wkbMultiPoint, wkbMultiPolygon, and wkbPolygon.

13.13.2.106 OGRErr OGR_G_AddGeometryDirectly (OGRGeometryH hGeom, OGRGeometryH hNewSubGeom)

Add a geometry directly to an existing geometry container.

Some subclasses of OGRGeometryCollection (p. ??) restrict the types of geometry that can be added, and may
return an error. Ownership of the passed geometry is taken by the container rather than cloning as addGeometry()
does.

This function is the same as the CPP method OGRGeometryCollection::addGeometryDirectly (p. ??).

There is no SFCOM analog to this method.

For a polygon, hNewSubGeom must be a linearring. If the polygon is empty, the first added subgeometry will be the
exterior ring. The next ones will be the interior rings.

Parameters

hGeom existing geometry.
hNewSubGeom geometry to add to the existing geometry.

Returns

OGRERR_NONE if successful, or OGRERR_UNSUPPORTED_GEOMETRY_TYPE if the geometry type is
illegal for the type of geometry container.

References wkbGeometryCollection, wkbMultiLineString, wkbMultiPoint, wkbMultiPolygon, and wkbPolygon.

13.13.2.107 void OGR_G_AddPoint (OGRGeometryH hGeom, double dfX, double dfY, double dfZ)

Add a point to a geometry (line string or point).

The vertex count of the line string is increased by one, and assigned from the passed location value.

Parameters

hGeom handle to the geometry to add a point to.
dfX x coordinate of point to add.
dfY y coordinate of point to add.
dfZ z coordinate of point to add.

References CPLError(), wkbLineString, and wkbPoint.

13.13.2.108 void OGR_G_AddPoint_2D (OGRGeometryH hGeom, double dfX, double dfY)

Add a point to a geometry (line string or point).

The vertex count of the line string is increased by one, and assigned from the passed location value.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

580 File Documentation

Parameters

hGeom handle to the geometry to add a point to.
dfX x coordinate of point to add.
dfY y coordinate of point to add.

References CPLError(), wkbLineString, and wkbPoint.

13.13.2.109 OGRGeometryH OGR_G_ApproximateArcAngles (double dfCenterX, double dfCenterY, double dfZ, double
dfPrimaryRadius, double dfSecondaryRadius, double dfRotation, double dfStartAngle, double dfEndAngle,
double dfMaxAngleStepSizeDegrees)

Stroke arc to linestring.

Stroke an arc of a circle to a linestring based on a center point, radius, start angle and end angle, all angles in
degrees.

If the dfMaxAngleStepSizeDegrees is zero, then a default value will be used. This is currently 4 degrees unless the
user has overridden the value with the OGR_ARC_STEPSIZE configuration variable.

See also

CPLSetConfigOption() (p. ??)

Parameters

dfCenterX center X
dfCenterY center Y

dfZ center Z
dfPrimaryRadius X radius of ellipse.

dfSecondary←↩

Radius
Y radius of ellipse.

dfRotation rotation of the ellipse clockwise.
dfStartAngle angle to first point on arc (clockwise of X-positive)
dfEndAngle angle to last point on arc (clockwise of X-positive)

dfMaxAngle←↩

StepSize←↩

Degrees

the largest step in degrees along the arc, zero to use the default setting.

Returns

OGRLineString (p. ??) geometry representing an approximation of the arc.

Since

OGR 1.8.0

References OGRGeometryFactory::approximateArcAngles().

13.13.2.110 double OGR_G_Area (OGRGeometryH hGeom)

Compute geometry area.

Computes the area for an OGRLinearRing (p. ??), OGRPolygon (p. ??) or OGRMultiPolygon (p. ??). Undefined
for all other geometry types (returns zero).

This function utilizes the C++ get_Area() methods such as OGRPolygon::get_Area() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 581

Parameters

hGeom the geometry to operate on.

Returns

the area or 0.0 for unsupported geometry types.

Since

OGR 1.8.0

References CPLError(), wkbGeometryCollection, wkbLinearRing, wkbLineString, wkbMultiPolygon, and wkb←↩

Polygon.

Referenced by OGRFeature::GetFieldAsDouble(), OGRFeature::GetFieldAsInteger(), OGRFeature::GetFieldAs←↩

String(), OGRFeature::IsFieldSet(), and OGR_G_GetArea().

13.13.2.111 void OGR_G_AssignSpatialReference (OGRGeometryH hGeom, OGRSpatialReferenceH hSRS)

Assign spatial reference to this object.

Any existing spatial reference is replaced, but under no circumstances does this result in the object being re-
projected. It is just changing the interpretation of the existing geometry. Note that assigning a spatial reference
increments the reference count on the OGRSpatialReference (p. ??), but does not copy it.

This is similar to the SFCOM IGeometry::put_SpatialReference() method.

This function is the same as the CPP method OGRGeometry::assignSpatialReference (p. ??).

Parameters

hGeom handle on the geometry to apply the new spatial reference system.
hSRS handle on the new spatial reference system to apply.

13.13.2.112 OGRGeometryH OGR_G_Boundary (OGRGeometryH hTarget)

Compute boundary.

A new geometry object is created and returned containing the boundary of the geometry on which the method is
invoked.

This function is the same as the C++ method OGR_G_Boundary() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters

hTarget The Geometry to calculate the boundary of.

Returns

a handle to a newly allocated geometry now owned by the caller, or NULL on failure.

Since

OGR 1.8.0

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

582 File Documentation

13.13.2.113 OGRGeometryH OGR_G_Buffer (OGRGeometryH hTarget, double dfDist, int nQuadSegs)

Compute buffer of geometry.

Builds a new geometry containing the buffer region around the geometry on which it is invoked. The buffer is a
polygon containing the region within the buffer distance of the original geometry.

Some buffer sections are properly described as curves, but are converted to approximate polygons. The nQuad←↩

Segs parameter can be used to control how many segements should be used to define a 90 degree curve - a
quadrant of a circle. A value of 30 is a reasonable default. Large values result in large numbers of vertices in the
resulting buffer geometry while small numbers reduce the accuracy of the result.

This function is the same as the C++ method OGRGeometry::Buffer() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters

hTarget the geometry.
dfDist the buffer distance to be applied. Should be expressed into the same unit as the coordinates

of the geometry.
nQuadSegs the number of segments used to approximate a 90 degree (quadrant) of curvature.

Returns

the newly created geometry, or NULL if an error occurs.

13.13.2.114 int OGR_G_Centroid (OGRGeometryH hGeom, OGRGeometryH hCentroidPoint)

Compute the geometry centroid.

The centroid location is applied to the passed in OGRPoint (p. ??) object. The centroid is not necessarily within the
geometry.

This method relates to the SFCOM ISurface::get_Centroid() method however the current implementation based on
GEOS can operate on other geometry types such as multipoint, linestring, geometrycollection such as multipoly-
gons. OGC SF SQL 1.1 defines the operation for surfaces (polygons). SQL/MM-Part 3 defines the operation for
surfaces and multisurfaces (multipolygons).

This function is the same as the C++ method OGRGeometry::Centroid() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Returns

OGRERR_NONE on success or OGRERR_FAILURE on error.

References OGRGeometry::Centroid(), CPLError(), OGRPoint::getGeometryType(), and wkbPoint.

13.13.2.115 OGRGeometryH OGR_G_Clone (OGRGeometryH hGeom)

Make a copy of this object.

This function relates to the SFCOM IGeometry::clone() method.

This function is the same as the CPP method OGRGeometry::clone() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 583

Parameters

hGeom handle on the geometry to clone from.

Returns

an handle on the copy of the geometry with the spatial reference system as the original.

13.13.2.116 void OGR_G_CloseRings (OGRGeometryH hGeom)

Force rings to be closed.

If this geometry, or any contained geometries has polygon rings that are not closed, they will be closed by adding
the starting point at the end.

Parameters

hGeom handle to the geometry.

13.13.2.117 int OGR_G_Contains (OGRGeometryH hThis, OGRGeometryH hOther)

Test for containment.

Tests if this geometry contains the other geometry.

This function is the same as the C++ method OGRGeometry::Contains() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters

hThis the geometry to compare.
hOther the other geometry to compare.

Returns

TRUE if hThis contains hOther geometry, otherwise FALSE.

13.13.2.118 OGRGeometryH OGR_G_ConvexHull (OGRGeometryH hTarget)

Compute convex hull.

A new geometry object is created and returned containing the convex hull of the geometry on which the method is
invoked.

This function is the same as the C++ method OGRGeometry::ConvexHull() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters

hTarget The Geometry to calculate the convex hull of.

Returns

a handle to a newly allocated geometry now owned by the caller, or NULL on failure.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

584 File Documentation

13.13.2.119 OGRGeometryH OGR_G_CreateFromGML (const char ∗ pszGML)

Create geometry from GML.

This method translates a fragment of GML containing only the geometry portion into a corresponding OGR←↩

Geometry (p. ??). There are many limitations on the forms of GML geometries supported by this parser, but
they are too numerous to list here.

The following GML2 elements are parsed : Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon,
MultiGeometry.

(OGR >= 1.8.0) The following GML3 elements are parsed : Surface, MultiSurface, PolygonPatch, Triangle, Rect-
angle, Curve, MultiCurve, CompositeCurve, LineStringSegment, Arc, Circle, CompositeSurface, OrientableSurface,
Solid, Tin, TriangulatedSurface.

Arc and Circle elements are stroked to linestring, by using a 4 degrees step, unless the user has overridden the
value with the OGR_ARC_STEPSIZE configuration variable.

The C++ method OGRGeometryFactory::createFromGML() (p. ??) is the same as this function.

Parameters

pszGML The GML fragment for the geometry.

Returns

a geometry on succes, or NULL on error.

References CPLDestroyXMLNode(), CPLError(), CPLGetConfigOption(), CPLParseXMLString(), and CSLTest←↩

Boolean().

Referenced by OGRGeometryFactory::createFromGML().

13.13.2.120 OGRErr OGR_G_CreateFromWkb (unsigned char ∗ pabyData, OGRSpatialReferenceH hSRS, OGRGeometryH ∗
phGeometry, int nBytes)

Create a geometry object of the appropriate type from it's well known binary representation.

Note that if nBytes is passed as zero, no checking can be done on whether the pabyData is sufficient. This can
result in a crash if the input data is corrupt. This function returns no indication of the number of bytes from the data
source actually used to represent the returned geometry object. Use OGR_G_WkbSize() (p. ??) on the returned
geometry to establish the number of bytes it required in WKB format.

The OGRGeometryFactory::createFromWkb() (p. ??) CPP method is the same as this function.

Parameters

pabyData pointer to the input BLOB data.
hSRS handle to the spatial reference to be assigned to the created geometry object. This may be

NULL.
phGeometry the newly created geometry object will be assigned to the indicated handle on return. This

will be NULL in case of failure. If not NULL, ∗phGeometry should be freed with OGR_G_←↩

DestroyGeometry() (p. ??) after use.
nBytes the number of bytes of data available in pabyData, or -1 if it is not known, but assumed to be

sufficient.

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

References OGRGeometryFactory::createFromWkb().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 585

13.13.2.121 OGRErr OGR_G_CreateFromWkt (char ∗∗ ppszData, OGRSpatialReferenceH hSRS, OGRGeometryH ∗
phGeometry)

Create a geometry object of the appropriate type from it's well known text representation.

The OGRGeometryFactory::createFromWkt (p. ??) CPP method is the same as this function.

Parameters

ppszData input zero terminated string containing well known text representation of the geometry to be
created. The pointer is updated to point just beyond that last character consumed.

hSRS handle to the spatial reference to be assigned to the created geometry object. This may be
NULL.

phGeometry the newly created geometry object will be assigned to the indicated handle on return. This
will be NULL if the method fails. If not NULL, ∗phGeometry should be freed with OGR_G_←↩

DestroyGeometry() (p. ??) after use.

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

References OGRGeometryFactory::createFromWkt().

13.13.2.122 OGRGeometryH OGR_G_CreateGeometry (OGRwkbGeometryType eGeometryType)

Create an empty geometry of desired type.

This is equivalent to allocating the desired geometry with new, but the allocation is guaranteed to take place in the
context of the GDAL/OGR heap.

This function is the same as the CPP method OGRGeometryFactory::createGeometry (p. ??).

Parameters

eGeometryType the type code of the geometry to be created.

Returns

handle to the newly create geometry or NULL on failure. Should be freed with OGR_G_DestroyGeometry()
(p. ??) after use.

References OGRGeometryFactory::createGeometry().

13.13.2.123 int OGR_G_Crosses (OGRGeometryH hThis, OGRGeometryH hOther)

Test for crossing.

Tests if this geometry and the other geometry are crossing.

This function is the same as the C++ method OGRGeometry::Crosses() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters

hThis the geometry to compare.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

586 File Documentation

hOther the other geometry to compare.

Returns

TRUE if they are crossing, otherwise FALSE.

13.13.2.124 void OGR_G_DestroyGeometry (OGRGeometryH hGeom)

Destroy geometry object.

Equivalent to invoking delete on a geometry, but it guaranteed to take place within the context of the GDAL/OGR
heap.

This function is the same as the CPP method OGRGeometryFactory::destroyGeometry (p. ??).

Parameters

hGeom handle to the geometry to delete.

References OGRGeometryFactory::destroyGeometry().

13.13.2.125 OGRGeometryH OGR_G_Difference (OGRGeometryH hThis, OGRGeometryH hOther)

Compute difference.

Generates a new geometry which is the region of this geometry with the region of the other geometry removed.

This function is the same as the C++ method OGRGeometry::Difference() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters

hThis the geometry.
hOther the other geometry.

Returns

a new geometry representing the difference or NULL if the difference is empty or an error occurs.

13.13.2.126 int OGR_G_Disjoint (OGRGeometryH hThis, OGRGeometryH hOther)

Test for disjointness.

Tests if this geometry and the other geometry are disjoint.

This function is the same as the C++ method OGRGeometry::Disjoint() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters

hThis the geometry to compare.
hOther the other geometry to compare.

Returns

TRUE if they are disjoint, otherwise FALSE.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 587

13.13.2.127 double OGR_G_Distance (OGRGeometryH hFirst, OGRGeometryH hOther)

Compute distance between two geometries.

Returns the shortest distance between the two geometries. The distance is expressed into the same unit as the
coordinates of the geometries.

This function is the same as the C++ method OGRGeometry::Distance() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters

hFirst the first geometry to compare against.
hOther the other geometry to compare against.

Returns

the distance between the geometries or -1 if an error occurs.

13.13.2.128 void OGR_G_DumpReadable (OGRGeometryH hGeom, FILE ∗ fp, const char ∗ pszPrefix)

Dump geometry in well known text format to indicated output file.

This method is the same as the CPP method OGRGeometry::dumpReadable (p. ??).

Parameters

hGeom handle on the geometry to dump.
fp the text file to write the geometry to.

pszPrefix the prefix to put on each line of output.

13.13.2.129 void OGR_G_Empty (OGRGeometryH hGeom)

Clear geometry information. This restores the geometry to it's initial state after construction, and before assignment
of actual geometry.

This function relates to the SFCOM IGeometry::Empty() method.

This function is the same as the CPP method OGRGeometry::empty() (p. ??).

Parameters

hGeom handle on the geometry to empty.

13.13.2.130 int OGR_G_Equals (OGRGeometryH hGeom, OGRGeometryH hOther)

Returns TRUE if two geometries are equivalent.

This function is the same as the CPP method OGRGeometry::Equals() (p. ??) method.

Parameters

hGeom handle on the first geometry.
hOther handle on the other geometry to test against.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

588 File Documentation

Returns

TRUE if equivalent or FALSE otherwise.

References CPLError().

13.13.2.131 char∗ OGR_G_ExportToGML (OGRGeometryH hGeometry)

Convert a geometry into GML format.

The GML geometry is expressed directly in terms of GML basic data types assuming the this is available in the gml
namespace. The returned string should be freed with CPLFree() when no longer required.

This method is the same as the C++ method OGRGeometry::exportToGML() (p. ??).

Parameters

hGeometry handle to the geometry.

Returns

A GML fragment or NULL in case of error.

References OGR_G_ExportToGMLEx().

13.13.2.132 char∗ OGR_G_ExportToGMLEx (OGRGeometryH hGeometry, char ∗∗ papszOptions)

Convert a geometry into GML format.

The GML geometry is expressed directly in terms of GML basic data types assuming the this is available in the gml
namespace. The returned string should be freed with CPLFree() when no longer required.

The supported options in OGR 1.8.0 are :

• FORMAT=GML3. Otherwise it will default to GML 2.1.2 output.

• GML3_LINESTRING_ELEMENT=curve. (Only valid for FORMAT=GML3) To use gml:Curve element for
linestrings. Otherwise gml:LineString will be used .

• GML3_LONGSRS=YES/NO. (Only valid for FORMAT=GML3) Default to YES. If YES, SRS with EPSG au-
thority will be written with the "urn:ogc:def:crs:EPSG::" prefix. In the case, if the SRS is a geographic SRS
without explicit AXIS order, but that the same SRS authority code imported with ImportFromEPSGA() should
be treated as lat/long, then the function will take care of coordinate order swapping. If set to NO, SRS with
EPSG authority will be written with the "EPSG:" prefix, even if they are in lat/long order.

• GMLID=astring. If specified, a gml:id attribute will be written in the top-level geometry element with the
provided value. Required for GML 3.2 compatibility.

This method is the same as the C++ method OGRGeometry::exportToGML() (p. ??).

Parameters

hGeometry handle to the geometry.
papszOptions NULL-terminated list of options.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 589

Returns

A GML fragment or NULL in case of error.

Since

OGR 1.8.0

References CPLMalloc(), CPLStrdup(), and CSLTestBoolean().

Referenced by OGRGeometry::exportToGML(), and OGR_G_ExportToGML().

13.13.2.133 char∗ OGR_G_ExportToJson (OGRGeometryH hGeometry)

Convert a geometry into GeoJSON format.

The returned string should be freed with CPLFree() when no longer required.

This method is the same as the C++ method OGRGeometry::exportToJson() (p. ??).

Parameters

hGeometry handle to the geometry.

Returns

A GeoJSON fragment or NULL in case of error.

References OGR_G_ExportToJsonEx().

Referenced by OGRGeometry::exportToJson().

13.13.2.134 char∗ OGR_G_ExportToJsonEx (OGRGeometryH hGeometry, char ∗∗ papszOptions)

Convert a geometry into GeoJSON format.

The returned string should be freed with CPLFree() when no longer required.

This method is the same as the C++ method OGRGeometry::exportToJson() (p. ??).

Parameters

hGeometry handle to the geometry.
papszOptions a null terminated list of options. For now, only COORDINATE_PRECISION=int_number

where int_number is the maximum number of figures after decimal separator to write in coor-
dinates.

Returns

A GeoJSON fragment or NULL in case of error.

Since

OGR 1.9.0

References CPLStrdup().

Referenced by OGR_G_ExportToJson().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

590 File Documentation

13.13.2.135 char∗ OGR_G_ExportToKML (OGRGeometryH hGeometry, const char ∗ pszAltitudeMode)

Convert a geometry into KML format.

The returned string should be freed with CPLFree() when no longer required.

This method is the same as the C++ method OGRGeometry::exportToKML() (p. ??).

Parameters

hGeometry handle to the geometry.
pszAltitudeMode value to write in altitudeMode element, or NULL.

Returns

A KML fragment or NULL in case of error.

References CPLMalloc(), and CPLStrdup().

Referenced by OGRGeometry::exportToKML().

13.13.2.136 OGRErr OGR_G_ExportToWkb (OGRGeometryH hGeom, OGRwkbByteOrder eOrder, unsigned char ∗
pabyDstBuffer)

Convert a geometry into well known binary format.

This function relates to the SFCOM IWks::ExportToWKB() method.

This function is the same as the CPP method OGRGeometry::exportToWkb() (p. ??).

Parameters

hGeom handle on the geometry to convert to a well know binary data from.
eOrder One of wkbXDR or wkbNDR indicating MSB or LSB byte order respectively.

pabyDstBuffer a buffer into which the binary representation is written. This buffer must be at least OGR_←↩

G_WkbSize() (p. ??) byte in size.

Returns

Currently OGRERR_NONE is always returned.

13.13.2.137 OGRErr OGR_G_ExportToWkt (OGRGeometryH hGeom, char ∗∗ ppszSrcText)

Convert a geometry into well known text format.

This function relates to the SFCOM IWks::ExportToWKT() method.

This function is the same as the CPP method OGRGeometry::exportToWkt() (p. ??).

Parameters

hGeom handle on the geometry to convert to a text format from.
ppszSrcText a text buffer is allocated by the program, and assigned to the passed pointer. After use,

∗ppszDstText should be freed with OGRFree().

Returns

Currently OGRERR_NONE is always returned.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 591

13.13.2.138 void OGR_G_FlattenTo2D (OGRGeometryH hGeom)

Convert geometry to strictly 2D. In a sense this converts all Z coordinates to 0.0.

This function is the same as the CPP method OGRGeometry::flattenTo2D() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

592 File Documentation

Parameters

hGeom handle on the geometry to convert.

13.13.2.139 OGRGeometryH OGR_G_ForceToLineString (OGRGeometryH hGeom)

Convert to line string.

This function is the same as the C++ method OGRGeometryFactory::forceToLineString() (p. ??).

Parameters

hGeom handle to the geometry to convert (ownership surrendered).

Returns

the converted geometry (ownership to caller).

Since

GDAL/OGR 1.10.0

References OGRGeometryFactory::forceToLineString().

13.13.2.140 OGRGeometryH OGR_G_ForceToMultiLineString (OGRGeometryH hGeom)

Convert to multilinestring.

This function is the same as the C++ method OGRGeometryFactory::forceToMultiLineString() (p. ??).

Parameters

hGeom handle to the geometry to convert (ownership surrendered).

Returns

the converted geometry (ownership to caller).

Since

GDAL/OGR 1.8.0

References OGRGeometryFactory::forceToMultiLineString().

13.13.2.141 OGRGeometryH OGR_G_ForceToMultiPoint (OGRGeometryH hGeom)

Convert to multipoint.

This function is the same as the C++ method OGRGeometryFactory::forceToMultiPoint() (p. ??).

Parameters

hGeom handle to the geometry to convert (ownership surrendered).

Returns

the converted geometry (ownership to caller).

Since

GDAL/OGR 1.8.0

References OGRGeometryFactory::forceToMultiPoint().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 593

13.13.2.142 OGRGeometryH OGR_G_ForceToMultiPolygon (OGRGeometryH hGeom)

Convert to multipolygon.

This function is the same as the C++ method OGRGeometryFactory::forceToMultiPolygon() (p. ??).

Parameters

hGeom handle to the geometry to convert (ownership surrendered).

Returns

the converted geometry (ownership to caller).

Since

GDAL/OGR 1.8.0

References OGRGeometryFactory::forceToMultiPolygon().

13.13.2.143 OGRGeometryH OGR_G_ForceToPolygon (OGRGeometryH hGeom)

Convert to polygon.

This function is the same as the C++ method OGRGeometryFactory::forceToPolygon() (p. ??).

Parameters

hGeom handle to the geometry to convert (ownership surrendered).

Returns

the converted geometry (ownership to caller).

Since

GDAL/OGR 1.8.0

References OGRGeometryFactory::forceToPolygon().

13.13.2.144 double OGR_G_GetArea (OGRGeometryH hGeom)

Compute geometry area (deprecated)

Deprecated

See also

OGR_G_Area() (p. ??)

References OGR_G_Area().

13.13.2.145 OGRGeometryH OGR_G_GetBoundary (OGRGeometryH hTarget)

Compute boundary (deprecated)

Deprecated

See also

OGR_G_Boundary() (p. ??)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

594 File Documentation

13.13.2.146 int OGR_G_GetCoordinateDimension (OGRGeometryH hGeom)

Get the dimension of the coordinates in this geometry.

This function corresponds to the SFCOM IGeometry::GetDimension() method.

This function is the same as the CPP method OGRGeometry::getCoordinateDimension() (p. ??).

Parameters

hGeom handle on the geometry to get the dimension of the coordinates from.

Returns

in practice this will return 2 or 3. It can also return 0 in the case of an empty point.

13.13.2.147 int OGR_G_GetDimension (OGRGeometryH hGeom)

Get the dimension of this geometry.

This function corresponds to the SFCOM IGeometry::GetDimension() method. It indicates the dimension of the
geometry, but does not indicate the dimension of the underlying space (as indicated by OGR_G_GetCoordinate←↩

Dimension() (p. ??) function).

This function is the same as the CPP method OGRGeometry::getDimension() (p. ??).

Parameters

hGeom handle on the geometry to get the dimension from.

Returns

0 for points, 1 for lines and 2 for surfaces.

13.13.2.148 void OGR_G_GetEnvelope (OGRGeometryH hGeom, OGREnvelope ∗ psEnvelope)

Computes and returns the bounding envelope for this geometry in the passed psEnvelope structure.

This function is the same as the CPP method OGRGeometry::getEnvelope() (p. ??).

Parameters

hGeom handle of the geometry to get envelope from.
psEnvelope the structure in which to place the results.

13.13.2.149 void OGR_G_GetEnvelope3D (OGRGeometryH hGeom, OGREnvelope3D ∗ psEnvelope)

Computes and returns the bounding envelope (3D) for this geometry in the passed psEnvelope structure.

This function is the same as the CPP method OGRGeometry::getEnvelope() (p. ??).

Parameters

hGeom handle of the geometry to get envelope from.
psEnvelope the structure in which to place the results.

Since

OGR 1.9.0

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 595

13.13.2.150 int OGR_G_GetGeometryCount (OGRGeometryH hGeom)

Fetch the number of elements in a geometry or number of geometries in container.

Only geometries of type wkbPolygon[25D], wkbMultiPoint[25D], wkbMultiLineString[25D], wkbMultiPolygon[25D] or
wkbGeometryCollection[25D] may return a valid value. Other geometry types will silently return 0.

For a polygon, the returned number is the number of rings (exterior ring + interior rings).

Parameters

hGeom single geometry or geometry container from which to get the number of elements.

Returns

the number of elements.

References wkbGeometryCollection, wkbMultiLineString, wkbMultiPoint, wkbMultiPolygon, and wkbPolygon.

13.13.2.151 const char∗ OGR_G_GetGeometryName (OGRGeometryH hGeom)

Fetch WKT name for geometry type.

There is no SFCOM analog to this function.

This function is the same as the CPP method OGRGeometry::getGeometryName() (p. ??).

Parameters

hGeom handle on the geometry to get name from.

Returns

name used for this geometry type in well known text format.

13.13.2.152 OGRGeometryH OGR_G_GetGeometryRef (OGRGeometryH hGeom, int iSubGeom)

Fetch geometry from a geometry container.

This function returns an handle to a geometry within the container. The returned geometry remains owned by the
container, and should not be modified. The handle is only valid untill the next change to the geometry container.
Use OGR_G_Clone() (p. ??) to make a copy.

This function relates to the SFCOM IGeometryCollection::get_Geometry() method.

This function is the same as the CPP method OGRGeometryCollection::getGeometryRef() (p. ??).

For a polygon, OGR_G_GetGeometryRef(iSubGeom) returns the exterior ring if iSubGeom == 0, and the interior
rings for iSubGeom > 0.

Parameters

hGeom handle to the geometry container from which to get a geometry from.
iSubGeom the index of the geometry to fetch, between 0 and getNumGeometries() - 1.

Returns

handle to the requested geometry.

References CPLError(), wkbGeometryCollection, wkbMultiLineString, wkbMultiPoint, wkbMultiPolygon, and wkb←↩

Polygon.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

596 File Documentation

13.13.2.153 OGRwkbGeometryType OGR_G_GetGeometryType (OGRGeometryH hGeom)

Fetch geometry type.

Note that the geometry type may include the 2.5D flag. To get a 2D flattened version of the geometry type apply the
wkbFlatten() macro to the return result.

This function is the same as the CPP method OGRGeometry::getGeometryType() (p. ??).

Parameters

hGeom handle on the geometry to get type from.

Returns

the geometry type code.

References wkbUnknown.

13.13.2.154 void OGR_G_GetPoint (OGRGeometryH hGeom, int i, double ∗ pdfX, double ∗ pdfY, double ∗ pdfZ)

Fetch a point in line string or a point geometry.

Parameters

hGeom handle to the geometry from which to get the coordinates.
i the vertex to fetch, from 0 to getNumPoints()-1, zero for a point.

pdfX value of x coordinate.
pdfY value of y coordinate.
pdfZ value of z coordinate.

References CPLError(), OGRLineString::getNumPoints(), OGRLineString::getX(), OGRLineString::getY(), OGR←↩

LineString::getZ(), wkbLineString, and wkbPoint.

13.13.2.155 int OGR_G_GetPointCount (OGRGeometryH hGeom)

Fetch number of points from a geometry.

Only wkbPoint[25D] or wkbLineString[25D] may return a valid value. Other geometry types will silently return 0.

Parameters

hGeom handle to the geometry from which to get the number of points.

Returns

the number of points.

References OGRLineString::getNumPoints(), wkbLineString, and wkbPoint.

13.13.2.156 int OGR_G_GetPoints (OGRGeometryH hGeom, void ∗ pabyX, int nXStride, void ∗ pabyY, int nYStride, void ∗
pabyZ, int nZStride)

Returns all points of line string.

This method copies all points into user arrays. The user provides the stride between 2 consecutives elements of
the array.

On some CPU architectures, care must be taken so that the arrays are properly aligned.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 597

Parameters

hGeom handle to the geometry from which to get the coordinates.
pabyX a buffer of at least (sizeof(double) ∗ nXStride ∗ nPointCount) bytes, may be NULL.

nXStride the number of bytes between 2 elements of pabyX.
pabyY a buffer of at least (sizeof(double) ∗ nYStride ∗ nPointCount) bytes, may be NULL.

nYStride the number of bytes between 2 elements of pabyY.
pabyZ a buffer of at last size (sizeof(double) ∗ nZStride ∗ nPointCount) bytes, may be NULL.

nZStride the number of bytes between 2 elements of pabyZ.

Returns

the number of points

Since

OGR 1.9.0

References CPLError(), OGRLineString::getNumPoints(), OGRLineString::getPoints(), wkbLineString, and wkb←↩

Point.

13.13.2.157 OGRSpatialReferenceH OGR_G_GetSpatialReference (OGRGeometryH hGeom)

Returns spatial reference system for geometry.

This function relates to the SFCOM IGeometry::get_SpatialReference() method.

This function is the same as the CPP method OGRGeometry::getSpatialReference() (p. ??).

Parameters

hGeom handle on the geometry to get spatial reference from.

Returns

a reference to the spatial reference geometry.

13.13.2.158 double OGR_G_GetX (OGRGeometryH hGeom, int i)

Fetch the x coordinate of a point from a geometry.

Parameters

hGeom handle to the geometry from which to get the x coordinate.
i point to get the x coordinate.

Returns

the X coordinate of this point.

References CPLError(), OGRLineString::getNumPoints(), OGRLineString::getX(), wkbLineString, and wkbPoint.

13.13.2.159 double OGR_G_GetY (OGRGeometryH hGeom, int i)

Fetch the x coordinate of a point from a geometry.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

598 File Documentation

Parameters

hGeom handle to the geometry from which to get the y coordinate.
i point to get the Y coordinate.

Returns

the Y coordinate of this point.

References CPLError(), OGRLineString::getNumPoints(), OGRLineString::getY(), wkbLineString, and wkbPoint.

13.13.2.160 double OGR_G_GetZ (OGRGeometryH hGeom, int i)

Fetch the z coordinate of a point from a geometry.

Parameters

hGeom handle to the geometry from which to get the Z coordinate.
i point to get the Z coordinate.

Returns

the Z coordinate of this point.

References CPLError(), OGRLineString::getNumPoints(), OGRLineString::getZ(), wkbLineString, and wkbPoint.

13.13.2.161 OGRErr OGR_G_ImportFromWkb (OGRGeometryH hGeom, unsigned char ∗ pabyData, int nSize)

Assign geometry from well known binary data.

The object must have already been instantiated as the correct derived type of geometry object to match the binaries
type.

This function relates to the SFCOM IWks::ImportFromWKB() method.

This function is the same as the CPP method OGRGeometry::importFromWkb() (p. ??).

Parameters

hGeom handle on the geometry to assign the well know binary data to.
pabyData the binary input data.

nSize the size of pabyData in bytes, or zero if not known.

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

13.13.2.162 OGRErr OGR_G_ImportFromWkt (OGRGeometryH hGeom, char ∗∗ ppszSrcText)

Assign geometry from well known text data.

The object must have already been instantiated as the correct derived type of geometry object to match the text
type.

This function relates to the SFCOM IWks::ImportFromWKT() method.

This function is the same as the CPP method OGRGeometry::importFromWkt() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 599

Parameters

hGeom handle on the geometry to assign well know text data to.
ppszSrcText pointer to a pointer to the source text. The pointer is updated to pointer after the consumed

text.

Returns

OGRERR_NONE if all goes well, otherwise any of OGRERR_NOT_ENOUGH_DATA, OGRERR_UNSUP←↩

PORTED_GEOMETRY_TYPE, or OGRERR_CORRUPT_DATA may be returned.

13.13.2.163 OGRGeometryH OGR_G_Intersection (OGRGeometryH hThis, OGRGeometryH hOther)

Compute intersection.

Generates a new geometry which is the region of intersection of the two geometries operated on. The OGR_G_←↩

Intersects() (p. ??) function can be used to test if two geometries intersect.

This function is the same as the C++ method OGRGeometry::Intersection() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters

hThis the geometry.
hOther the other geometry.

Returns

a new geometry representing the intersection or NULL if there is no intersection or an error occurs.

13.13.2.164 int OGR_G_Intersects (OGRGeometryH hGeom, OGRGeometryH hOtherGeom)

Do these features intersect?

Currently this is not implemented in a rigerous fashion, and generally just tests whether the envelopes of the two
features intersect. Eventually this will be made rigerous.

This function is the same as the CPP method OGRGeometry::Intersects (p. ??).

Parameters

hGeom handle on the first geometry.
hOtherGeom handle on the other geometry to test against.

Returns

TRUE if the geometries intersect, otherwise FALSE.

13.13.2.165 int OGR_G_IsEmpty (OGRGeometryH hGeom)

Test if the geometry is empty.

This method is the same as the CPP method OGRGeometry::IsEmpty() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

600 File Documentation

Parameters

hGeom The Geometry to test.

Returns

TRUE if the geometry has no points, otherwise FALSE.

13.13.2.166 int OGR_G_IsRing (OGRGeometryH hGeom)

Test if the geometry is a ring.

This function is the same as the C++ method OGRGeometry::IsRing() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always return FALSE.

Parameters

hGeom The Geometry to test.

Returns

TRUE if the geometry has no points, otherwise FALSE.

13.13.2.167 int OGR_G_IsSimple (OGRGeometryH hGeom)

Returns TRUE if the geometry is simple.

Returns TRUE if the geometry has no anomalous geometric points, such as self intersection or self tangency. The
description of each instantiable geometric class will include the specific conditions that cause an instance of that
class to be classified as not simple.

This function is the same as the c++ method OGRGeometry::IsSimple() (p. ??) method.

If OGR is built without the GEOS library, this function will always return FALSE.

Parameters

hGeom The Geometry to test.

Returns

TRUE if object is simple, otherwise FALSE.

13.13.2.168 int OGR_G_IsValid (OGRGeometryH hGeom)

Test if the geometry is valid.

This function is the same as the C++ method OGRGeometry::IsValid() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always return FALSE.

Parameters

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 601

hGeom The Geometry to test.

Returns

TRUE if the geometry has no points, otherwise FALSE.

13.13.2.169 double OGR_G_Length (OGRGeometryH hGeom)

Compute length of a geometry.

Computes the area for OGRCurve (p. ??) or MultiCurve objects. Undefined for all other geometry types (returns
zero).

This function utilizes the C++ get_Length() method.

Parameters

hGeom the geometry to operate on.

Returns

the lenght or 0.0 for unsupported geometry types.

Since

OGR 1.8.0

References CPLError(), wkbGeometryCollection, wkbLinearRing, wkbLineString, and wkbMultiLineString.

13.13.2.170 int OGR_G_Overlaps (OGRGeometryH hThis, OGRGeometryH hOther)

Test for overlap.

Tests if this geometry and the other geometry overlap, that is their intersection has a non-zero area.

This function is the same as the C++ method OGRGeometry::Overlaps() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters

hThis the geometry to compare.
hOther the other geometry to compare.

Returns

TRUE if they are overlapping, otherwise FALSE.

13.13.2.171 OGRGeometryH OGR_G_PointOnSurface (OGRGeometryH hGeom)

Returns a point guaranteed to lie on the surface.

This method relates to the SFCOM ISurface::get_PointOnSurface() method however the current implementation
based on GEOS can operate on other geometry types than the types that are supported by SQL/MM-Part 3 :
surfaces (polygons) and multisurfaces (multipolygons).

This method is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this method will always fail, issuing a CPLE_NotSupported error.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

602 File Documentation

Parameters

hGeom the geometry to operate on.

Returns

a point guaranteed to lie on the surface or NULL if an error occured.

Since

OGR 1.10

References OGRGeometry::assignSpatialReference(), CPLError(), OGRGeometry::getGeometryType(), OGR←↩

Geometry::getSpatialReference(), and wkbPoint.

Referenced by OGRPolygon::PointOnSurface().

13.13.2.172 OGRGeometryH OGR_G_Polygonize (OGRGeometryH hTarget)

Polygonizes a set of sparse edges.

A new geometry object is created and returned containing a collection of reassembled Polygons: NULL will be
returned if the input collection doesn't corresponds to a MultiLinestring, or when reassembling Edges into Polygons
is impossible due to topogical inconsistencies.

This function is the same as the C++ method OGRGeometry::Polygonize() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters

hTarget The Geometry to be polygonized.

Returns

a handle to a newly allocated geometry now owned by the caller, or NULL on failure.

Since

OGR 1.9.0

13.13.2.173 OGRErr OGR_G_RemoveGeometry (OGRGeometryH hGeom, int iGeom, int bDelete)

Remove a geometry from an exiting geometry container.

Removing a geometry will cause the geometry count to drop by one, and all "higher" geometries will shuffle down
one in index.

There is no SFCOM analog to this method.

This function is the same as the CPP method OGRGeometryCollection::removeGeometry() (p. ??).

Parameters

hGeom the existing geometry to delete from.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 603

iGeom the index of the geometry to delete. A value of -1 is a special flag meaning that all geometries
should be removed.

bDelete if TRUE the geometry will be destroyed, otherwise it will not. The default is TRUE as the
existing geometry is considered to own the geometries in it.

Returns

OGRERR_NONE if successful, or OGRERR_FAILURE if the index is out of range.

References CPLError(), wkbGeometryCollection, wkbMultiLineString, wkbMultiPoint, wkbMultiPolygon, and wkb←↩

Polygon.

13.13.2.174 void OGR_G_Segmentize (OGRGeometryH hGeom, double dfMaxLength)

Modify the geometry such it has no segment longer then the given distance.

Interpolated points will have Z and M values (if needed) set to 0. Distance computation is performed in 2d only

This function is the same as the CPP method OGRGeometry::segmentize() (p. ??).

Parameters

hGeom handle on the geometry to segmentize
dfMaxLength the maximum distance between 2 points after segmentization

References CPLError().

13.13.2.175 void OGR_G_SetCoordinateDimension (OGRGeometryH hGeom, int nNewDimension)

Set the coordinate dimension.

This method sets the explicit coordinate dimension. Setting the coordinate dimension of a geometry to 2 should
zero out any existing Z values. Setting the dimension of a geometry collection will not necessarily affect the children
geometries.

Parameters

hGeom handle on the geometry to set the dimension of the coordinates.
nNewDimension New coordinate dimension value, either 2 or 3.

13.13.2.176 void OGR_G_SetPoint (OGRGeometryH hGeom, int i, double dfX, double dfY, double dfZ)

Set the location of a vertex in a point or linestring geometry.

If iPoint is larger than the number of existing points in the linestring, the point count will be increased to accomodate
the request.

Parameters

hGeom handle to the geometry to add a vertex to.
i the index of the vertex to assign (zero based) or zero for a point.

dfX input X coordinate to assign.
dfY input Y coordinate to assign.
dfZ input Z coordinate to assign (defaults to zero).

References CPLError(), wkbLineString, and wkbPoint.

13.13.2.177 void OGR_G_SetPoint_2D (OGRGeometryH hGeom, int i, double dfX, double dfY)

Set the location of a vertex in a point or linestring geometry.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

604 File Documentation

If iPoint is larger than the number of existing points in the linestring, the point count will be increased to accomodate
the request.

Parameters

hGeom handle to the geometry to add a vertex to.
i the index of the vertex to assign (zero based) or zero for a point.

dfX input X coordinate to assign.
dfY input Y coordinate to assign.

References CPLError(), wkbLineString, and wkbPoint.

13.13.2.178 void OGR_G_SetPointCount (OGRGeometryH hGeom, int nNewPointCount)

Set number of points in a geometry.

This method primary exists to preset the number of points in a linestring geometry before setPoint() is used to assign
them to avoid reallocating the array larger with each call to addPoint().

Parameters

nNewPointCount the new number of points for geometry.

References CPLError(), OGRLineString::setNumPoints(), and wkbLineString.

13.13.2.179 void OGR_G_SetPoints (OGRGeometryH hGeom, int nPointsIn, void ∗ pabyX, int nXStride, void ∗ pabyY, int
nYStride, void ∗ pabyZ, int nZStride)

Assign all points in a point or a line string geometry.

This method clear any existing points assigned to this geometry, and assigns a whole new set.

Parameters

hGeom handle to the geometry to set the coordinates.
nPointsIn number of points being passed in padfX and padfY.

padfX list of X coordinates of points being assigned.
nXStride the number of bytes between 2 elements of pabyX.

padfY list of Y coordinates of points being assigned.
nYStride the number of bytes between 2 elements of pabyY.

padfZ list of Z coordinates of points being assigned (defaults to NULL for 2D objects).
nZStride the number of bytes between 2 elements of pabyZ.

References CPLError(), OGRLineString::setNumPoints(), OGRLineString::setPoint(), OGRLineString::setPoints(),
wkbLineString, and wkbPoint.

13.13.2.180 OGRGeometryH OGR_G_Simplify (OGRGeometryH hThis, double dTolerance)

Compute a simplified geometry.

This function is the same as the C++ method OGRGeometry::Simplify() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters

hThis the geometry.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 605

dTolerance the distance tolerance for the simplification.

Returns

the simplified geometry or NULL if an error occurs.

Since

OGR 1.8.0

13.13.2.181 OGRGeometryH OGR_G_SimplifyPreserveTopology (OGRGeometryH hThis, double dTolerance)

Simplify the geometry while preserving topology.

This function is the same as the C++ method OGRGeometry::SimplifyPreserveTopology() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters

hThis the geometry.
dTolerance the distance tolerance for the simplification.

Returns

the simplified geometry or NULL if an error occurs.

Since

OGR 1.9.0

13.13.2.182 OGRGeometryH OGR_G_SymDifference (OGRGeometryH hThis, OGRGeometryH hOther)

Compute symmetric difference.

Generates a new geometry which is the symmetric difference of this geometry and the other geometry.

This function is the same as the C++ method OGRGeometry::SymmetricDifference() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters

hThis the geometry.
hOther the other geometry.

Returns

a new geometry representing the symmetric difference or NULL if the difference is empty or an error occurs.

Since

OGR 1.8.0

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

606 File Documentation

13.13.2.183 OGRGeometryH OGR_G_SymmetricDifference (OGRGeometryH hThis, OGRGeometryH hOther)

Compute symmetric difference (deprecated)

Deprecated

See also

OGR_G_SymmetricDifference() (p. ??)

13.13.2.184 int OGR_G_Touches (OGRGeometryH hThis, OGRGeometryH hOther)

Test for touching.

Tests if this geometry and the other geometry are touching.

This function is the same as the C++ method OGRGeometry::Touches() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters

hThis the geometry to compare.
hOther the other geometry to compare.

Returns

TRUE if they are touching, otherwise FALSE.

13.13.2.185 OGRErr OGR_G_Transform (OGRGeometryH hGeom, OGRCoordinateTransformationH hTransform)

Apply arbitrary coordinate transformation to geometry.

This function will transform the coordinates of a geometry from their current spatial reference system to a new
target spatial reference system. Normally this means reprojecting the vectors, but it could include datum shifts, and
changes of units.

Note that this function does not require that the geometry already have a spatial reference system. It will be assumed
that they can be treated as having the source spatial reference system of the OGRCoordinateTransformation
(p. ??) object, and the actual SRS of the geometry will be ignored. On successful completion the output OGR←↩

SpatialReference (p. ??) of the OGRCoordinateTransformation (p. ??) will be assigned to the geometry.

This function is the same as the CPP method OGRGeometry::transform (p. ??).

Parameters

hGeom handle on the geometry to apply the transform to.
hTransform handle on the transformation to apply.

Returns

OGRERR_NONE on success or an error code.

13.13.2.186 OGRErr OGR_G_TransformTo (OGRGeometryH hGeom, OGRSpatialReferenceH hSRS)

Transform geometry to new spatial reference system.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 607

This function will transform the coordinates of a geometry from their current spatial reference system to a new
target spatial reference system. Normally this means reprojecting the vectors, but it could include datum shifts, and
changes of units.

This function will only work if the geometry already has an assigned spatial reference system, and if it is trans-
formable to the target coordinate system.

Because this function requires internal creation and initialization of an OGRCoordinateTransformation (p. ??)
object it is significantly more expensive to use this function to transform many geometries than it is to create the
OGRCoordinateTransformation (p. ??) in advance, and call transform() with that transformation. This function
exists primarily for convenience when only transforming a single geometry.

This function is the same as the CPP method OGRGeometry::transformTo (p. ??).

Parameters

hGeom handle on the geometry to apply the transform to.
hSRS handle on the spatial reference system to apply.

Returns

OGRERR_NONE on success, or an error code.

13.13.2.187 OGRGeometryH OGR_G_Union (OGRGeometryH hThis, OGRGeometryH hOther)

Compute union.

Generates a new geometry which is the region of union of the two geometries operated on.

This function is the same as the C++ method OGRGeometry::Union() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters

hThis the geometry.
hOther the other geometry.

Returns

a new geometry representing the union or NULL if an error occurs.

13.13.2.188 OGRGeometryH OGR_G_UnionCascaded (OGRGeometryH hThis)

Compute union using cascading.

This function is the same as the C++ method OGRGeometry::UnionCascaded() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters

hThis the geometry.

Returns

a new geometry representing the union or NULL if an error occurs.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

608 File Documentation

13.13.2.189 int OGR_G_Within (OGRGeometryH hThis, OGRGeometryH hOther)

Test for containment.

Tests if this geometry is within the other geometry.

This function is the same as the C++ method OGRGeometry::Within() (p. ??).

This function is built on the GEOS library, check it for the definition of the geometry operation. If OGR is built without
the GEOS library, this function will always fail, issuing a CPLE_NotSupported error.

Parameters

hThis the geometry to compare.
hOther the other geometry to compare.

Returns

TRUE if hThis is within hOther, otherwise FALSE.

13.13.2.190 int OGR_G_WkbSize (OGRGeometryH hGeom)

Returns size of related binary representation.

This function returns the exact number of bytes required to hold the well known binary representation of this geom-
etry object. Its computation may be slightly expensive for complex geometries.

This function relates to the SFCOM IWks::WkbSize() method.

This function is the same as the CPP method OGRGeometry::WkbSize() (p. ??).

Parameters

hGeom handle on the geometry to get the binary size from.

Returns

size of binary representation in bytes.

13.13.2.191 const char∗ OGR_GetFieldTypeName (OGRFieldType eType)

Fetch human readable name for a field type.

This function is the same as the CPP method OGRFieldDefn::GetFieldTypeName() (p. ??).

Parameters

eType the field type to get name for.

Returns

the name.

References OGRFieldDefn::GetFieldTypeName().

13.13.2.192 OGRGeomFieldDefnH OGR_GFld_Create (const char ∗ pszName, OGRwkbGeometryType eType)

Create a new field geometry definition.

This function is the same as the CPP method OGRGeomFieldDefn::OGRGeomFieldDefn() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 609

Parameters

pszName the name of the new field definition.
eType the type of the new field definition.

Returns

handle to the new field definition.

Since

GDAL 1.11

13.13.2.193 void OGR_GFld_Destroy (OGRGeomFieldDefnH hDefn)

Destroy a geometry field definition.

Parameters

hDefn handle to the geometry field definition to destroy.

Since

GDAL 1.11

13.13.2.194 const char∗ OGR_GFld_GetNameRef (OGRGeomFieldDefnH hDefn)

Fetch name of this field.

This function is the same as the CPP method OGRGeomFieldDefn::GetNameRef() (p. ??).

Parameters

hDefn handle to the geometry field definition.

Returns

the name of the geometry field definition.

Since

GDAL 1.11

13.13.2.195 OGRSpatialReferenceH OGR_GFld_GetSpatialRef (OGRGeomFieldDefnH hDefn)

Fetch spatial reference system of this field.

This function is the same as the C++ method OGRGeomFieldDefn::GetSpatialRef() (p. ??).

Parameters

hDefn handle to the geometry field definition

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

610 File Documentation

Returns

field spatial reference system.

Since

GDAL 1.11

13.13.2.196 OGRwkbGeometryType OGR_GFld_GetType (OGRGeomFieldDefnH hDefn)

Fetch geometry type of this field.

This function is the same as the CPP method OGRGeomFieldDefn::GetType() (p. ??).

Parameters

hDefn handle to the geometry field definition to get type from.

Returns

field geometry type.

Since

GDAL 1.11

References wkbUnknown.

13.13.2.197 int OGR_GFld_IsIgnored (OGRGeomFieldDefnH hDefn)

Return whether this field should be omitted when fetching features.

This method is the same as the C++ method OGRGeomFieldDefn::IsIgnored() (p. ??).

Parameters

hDefn handle to the geometry field definition

Returns

ignore state

Since

GDAL 1.11

13.13.2.198 void OGR_GFld_SetIgnored (OGRGeomFieldDefnH hDefn, int ignore)

Set whether this field should be omitted when fetching features.

This method is the same as the C++ method OGRGeomFieldDefn::SetIgnored() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 611

Parameters

hDefn handle to the geometry field definition
ignore ignore state

Since

GDAL 1.11

13.13.2.199 void OGR_GFld_SetName (OGRGeomFieldDefnH hDefn, const char ∗ pszName)

Reset the name of this field.

This function is the same as the CPP method OGRGeomFieldDefn::SetName() (p. ??).

Parameters

hDefn handle to the geometry field definition to apply the new name to.
pszName the new name to apply.

Since

GDAL 1.11

13.13.2.200 void OGR_GFld_SetSpatialRef (OGRGeomFieldDefnH hDefn, OGRSpatialReferenceH hSRS)

Set the spatial reference of this field.

This function is the same as the C++ method OGRGeomFieldDefn::SetSpatialRef() (p. ??).

This function drops the reference of the previously set SRS object and acquires a new reference on the passed
object (if non-NULL).

Parameters

hDefn handle to the geometry field definition
hSRS the new SRS to apply.

Since

GDAL 1.11

13.13.2.201 void OGR_GFld_SetType (OGRGeomFieldDefnH hDefn, OGRwkbGeometryType eType)

Set the geometry type of this field. This should never be done to an OGRGeomFieldDefn (p. ??) that is already
part of an OGRFeatureDefn (p. ??).

This function is the same as the CPP method OGRGeomFieldDefn::SetType() (p. ??).

Parameters

hDefn handle to the geometry field definition to set type to.
eType the new field geometry type.

Since

GDAL 1.11

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

612 File Documentation

13.13.2.202 OGRErr OGR_L_AlterFieldDefn (OGRLayerH hLayer, int iField, OGRFieldDefnH hNewFieldDefn, int nFlags)

Alter the definition of an existing field on a layer.

You must use this to alter the definition of an existing field of a real layer. Internally the OGRFeatureDefn (p. ??) for
the layer will be updated to reflect the altered field. Applications should never modify the OGRFeatureDefn (p. ??)
used by a layer directly.

This function should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

Not all drivers support this function. You can query a layer to check if it supports it with the OLCAlterFieldDefn
capability. Some drivers may only support this method while there are still no features in the layer. When it is
supported, the existings features of the backing file/database should be updated accordingly. Some drivers might
also not support all update flags.

This function is the same as the C++ method OGRLayer::AlterFieldDefn() (p. ??).

Parameters

hLayer handle to the layer.
iField index of the field whose definition must be altered.

hNewFieldDefn new field definition
nFlags combination of ALTER_NAME_FLAG, ALTER_TYPE_FLAG and ALTER_WIDTH_PRECI←↩

SION_FLAG to indicate which of the name and/or type and/or width and precision fields from
the new field definition must be taken into account.

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

13.13.2.203 OGRErr OGR_L_Clip (OGRLayerH pLayerInput, OGRLayerH pLayerMethod, OGRLayerH pLayerResult, char ∗∗
papszOptions, GDALProgressFunc pfnProgress, void ∗ pProgressArg)

Clip off areas that are not covered by the method layer.

The result layer contains features whose geometries represent areas that are in the input layer and in the method
layer. The features in the result layer have the (possibly clipped) areas of features in the input layer and the attributes
from the same features. The schema of the result layer can be set by the user or, if it is empty, is initialized to contain
all fields in the input layer.

Note

For best performance use the minimum amount of features in the method layer and copy it into a memory
layer.
This method relies on GEOS support. Do not use unless the GEOS support is compiled in.

The recognized list of options is :

• SKIP_FAILURES=YES/NO. Set it to YES to go on, even when a feature could not be inserted.

• PROMOTE_TO_MULTI=YES/NO. Set it to YES to convert Polygons into MultiPolygons, or LineStrings to
MultiLineStrings.

• INPUT_PREFIX=string. Set a prefix for the field names that will be created from the fields of the input layer.

• METHOD_PREFIX=string. Set a prefix for the field names that will be created from the fields of the method
layer.

This function is the same as the C++ method OGRLayer::Clip() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 613

Parameters

pLayerInput the input layer. Should not be NULL.
pLayerMethod the method layer. Should not be NULL.
pLayerResult the layer where the features resulting from the operation are inserted. Should not be NULL.

See above the note about the schema.
papszOptions NULL terminated list of options (may be NULL).

pfnProgress a GDALProgressFunc() compatible callback function for reporting progress or NULL.
pProgressArg argument to be passed to pfnProgress. May be NULL.

Returns

an error code if there was an error or the execution was interrupted, OGRERR_NONE otherwise.

Since

OGR 1.10

13.13.2.204 OGRErr OGR_L_CommitTransaction (OGRLayerH hLayer)

For datasources which support transactions, CommitTransaction commits a transaction.

If no transaction is active, or the commit fails, will return OGRERR_FAILURE. Datasources which do not support
transactions will always return OGRERR_NONE.

This function is the same as the C++ method OGRLayer::CommitTransaction().

Parameters

hLayer handle to the layer

Returns

OGRERR_NONE on success.

13.13.2.205 OGRErr OGR_L_CreateFeature (OGRLayerH hLayer, OGRFeatureH hFeat)

Create and write a new feature within a layer.

The passed feature is written to the layer as a new feature, rather than overwriting an existing one. If the feature
has a feature id other than OGRNullFID, then the native implementation may use that as the feature id of the new
feature, but not necessarily. Upon successful return the passed feature will have been updated with the new feature
id.

This function is the same as the C++ method OGRLayer::CreateFeature() (p. ??).

Parameters

hLayer handle to the layer to write the feature to.
hFeat the handle of the feature to write to disk.

Returns

OGRERR_NONE on success.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

614 File Documentation

13.13.2.206 OGRErr OGR_L_CreateField (OGRLayerH hLayer, OGRFieldDefnH hField, int bApproxOK)

Create a new field on a layer.

You must use this to create new fields on a real layer. Internally the OGRFeatureDefn (p. ??) for the layer will be
updated to reflect the new field. Applications should never modify the OGRFeatureDefn (p. ??) used by a layer
directly.

This function should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

Not all drivers support this function. You can query a layer to check if it supports it with the OLCCreateField
capability. Some drivers may only support this method while there are still no features in the layer. When it is
supported, the existings features of the backing file/database should be updated accordingly.

This function is the same as the C++ method OGRLayer::CreateField() (p. ??).

Parameters

hLayer handle to the layer to write the field definition.
hField handle of the field definition to write to disk.

bApproxOK If TRUE, the field may be created in a slightly different form depending on the limitations of
the format driver.

Returns

OGRERR_NONE on success.

13.13.2.207 OGRErr OGR_L_CreateGeomField (OGRLayerH hLayer, OGRGeomFieldDefnH hField, int bApproxOK)

Create a new geometry field on a layer.

You must use this to create new geometry fields on a real layer. Internally the OGRFeatureDefn (p. ??) for the layer
will be updated to reflect the new field. Applications should never modify the OGRFeatureDefn (p. ??) used by a
layer directly.

This function should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

Not all drivers support this function. You can query a layer to check if it supports it with the OLCCreateField
capability. Some drivers may only support this method while there are still no features in the layer. When it is
supported, the existings features of the backing file/database should be updated accordingly.

This function is the same as the C++ method OGRLayer::CreateField() (p. ??).

Parameters

hLayer handle to the layer to write the field definition.
hField handle of the geometry field definition to write to disk.

bApproxOK If TRUE, the field may be created in a slightly different form depending on the limitations of
the format driver.

Returns

OGRERR_NONE on success.

Since

OGR 1.11

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 615

13.13.2.208 OGRErr OGR_L_DeleteFeature (OGRLayerH hLayer, long nFID)

Delete feature from layer.

The feature with the indicated feature id is deleted from the layer if supported by the driver. Most drivers do not
support feature deletion, and will return OGRERR_UNSUPPORTED_OPERATION. The OGR_L_TestCapability()
(p. ??) function may be called with OLCDeleteFeature to check if the driver supports feature deletion.

This method is the same as the C++ method OGRLayer::DeleteFeature() (p. ??).

Parameters

hLayer handle to the layer
nFID the feature id to be deleted from the layer

Returns

OGRERR_NONE on success.

13.13.2.209 OGRErr OGR_L_DeleteField (OGRLayerH hLayer, int iField)

Create a new field on a layer.

You must use this to delete existing fields on a real layer. Internally the OGRFeatureDefn (p. ??) for the layer will be
updated to reflect the deleted field. Applications should never modify the OGRFeatureDefn (p. ??) used by a layer
directly.

This function should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

Not all drivers support this function. You can query a layer to check if it supports it with the OLCDeleteField capability.
Some drivers may only support this method while there are still no features in the layer. When it is supported, the
existings features of the backing file/database should be updated accordingly.

This function is the same as the C++ method OGRLayer::DeleteField() (p. ??).

Parameters

hLayer handle to the layer.
iField index of the field to delete.

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

13.13.2.210 OGRErr OGR_L_Erase (OGRLayerH pLayerInput, OGRLayerH pLayerMethod, OGRLayerH pLayerResult, char ∗∗
papszOptions, GDALProgressFunc pfnProgress, void ∗ pProgressArg)

Remove areas that are covered by the method layer.

The result layer contains features whose geometries represent areas that are in the input layer but not in the method
layer. The features in the result layer have attributes from the input layer. The schema of the result layer can be set
by the user or, if it is empty, is initialized to contain all fields in the input layer.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

616 File Documentation

Note

For best performance use the minimum amount of features in the method layer and copy it into a memory
layer.
This method relies on GEOS support. Do not use unless the GEOS support is compiled in.

The recognized list of options is :

• SKIP_FAILURES=YES/NO. Set it to YES to go on, even when a feature could not be inserted.

• PROMOTE_TO_MULTI=YES/NO. Set it to YES to convert Polygons into MultiPolygons, or LineStrings to
MultiLineStrings.

• INPUT_PREFIX=string. Set a prefix for the field names that will be created from the fields of the input layer.

• METHOD_PREFIX=string. Set a prefix for the field names that will be created from the fields of the method
layer.

This function is the same as the C++ method OGRLayer::Erase() (p. ??).

Parameters

pLayerInput the input layer. Should not be NULL.
pLayerMethod the method layer. Should not be NULL.
pLayerResult the layer where the features resulting from the operation are inserted. Should not be NULL.

See above the note about the schema.
papszOptions NULL terminated list of options (may be NULL).

pfnProgress a GDALProgressFunc() compatible callback function for reporting progress or NULL.
pProgressArg argument to be passed to pfnProgress. May be NULL.

Returns

an error code if there was an error or the execution was interrupted, OGRERR_NONE otherwise.

Since

OGR 1.10

13.13.2.211 int OGR_L_FindFieldIndex (OGRLayerH hLayer, const char ∗ , int bExactMatch)

Find the index of field in a layer.

The returned number is the index of the field in the layers, or -1 if the field doesn't exist.

If bExactMatch is set to FALSE and the field doesn't exists in the given form the driver might apply some changes
to make it match, like those it might do if the layer was created (eg. like LAUNDER in the OCI driver).

This method is the same as the C++ method OGRLayer::FindFieldIndex() (p. ??).

Returns

field index, or -1 if the field doesn't exist

13.13.2.212 OGRErr OGR_L_GetExtent (OGRLayerH hLayer, OGREnvelope ∗ psExtent, int bForce)

Fetch the extent of this layer.

Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and it would be expensive to establish the
extent then OGRERR_FAILURE will be returned indicating that the extent isn't know. If bForce is TRUE then some
implementations will actually scan the entire layer once to compute the MBR of all the features in the layer.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 617

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is safer to call
OGR_L_GetExtent() (p. ??) without setting a spatial filter.

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents could be
collected.

Note that some implementations of this method may alter the read cursor of the layer.

This function is the same as the C++ method OGRLayer::GetExtent() (p. ??).

Parameters

hLayer handle to the layer from which to get extent.
psExtent the structure in which the extent value will be returned.

bForce Flag indicating whether the extent should be computed even if it is expensive.

Returns

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

13.13.2.213 OGRErr OGR_L_GetExtentEx (OGRLayerH hLayer, int iGeomField, OGREnvelope ∗ psExtent, int bForce)

Fetch the extent of this layer, on the specified geometry field.

Returns the extent (MBR) of the data in the layer. If bForce is FALSE, and it would be expensive to establish the
extent then OGRERR_FAILURE will be returned indicating that the extent isn't know. If bForce is TRUE then some
implementations will actually scan the entire layer once to compute the MBR of all the features in the layer.

Depending on the drivers, the returned extent may or may not take the spatial filter into account. So it is safer to call
OGR_L_GetExtent() (p. ??) without setting a spatial filter.

Layers without any geometry may return OGRERR_FAILURE just indicating that no meaningful extents could be
collected.

Note that some implementations of this method may alter the read cursor of the layer.

This function is the same as the C++ method OGRLayer::GetExtent() (p. ??).

Parameters

hLayer handle to the layer from which to get extent.
iGeomField the index of the geometry field on which to compute the extent.

psExtent the structure in which the extent value will be returned.
bForce Flag indicating whether the extent should be computed even if it is expensive.

Returns

OGRERR_NONE on success, OGRERR_FAILURE if extent not known.

13.13.2.214 OGRFeatureH OGR_L_GetFeature (OGRLayerH hLayer, long nFeatureId)

Fetch a feature by its identifier.

This function will attempt to read the identified feature. The nFID value cannot be OGRNullFID. Success or failure
of this operation is unaffected by the spatial or attribute filters (and specialized implementations in drivers should
make sure that they do not take into account spatial or attribute filters).

If this function returns a non-NULL feature, it is guaranteed that its feature id (OGR_F_GetFID() (p. ??)) will be the
same as nFID.

Use OGR_L_TestCapability(OLCRandomRead) to establish if this layer supports efficient random access reading
via OGR_L_GetFeature() (p. ??); however, the call should always work if the feature exists as a fallback implemen-
tation just scans all the features in the layer looking for the desired feature.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

618 File Documentation

Sequential reads (with OGR_L_GetNextFeature() (p. ??)) are generally considered interrupted by a OGR_L_←↩

GetFeature() (p. ??) call.

The returned feature should be free with OGR_F_Destroy() (p. ??).

This function is the same as the C++ method OGRLayer::GetFeature() (p. ??).

Parameters

hLayer handle to the layer that owned the feature.
nFeatureId the feature id of the feature to read.

Returns

an handle to a feature now owned by the caller, or NULL on failure.

13.13.2.215 int OGR_L_GetFeatureCount (OGRLayerH hLayer, int bForce)

Fetch the feature count in this layer.

Returns the number of features in the layer. For dynamic databases the count may not be exact. If bForce is FALSE,
and it would be expensive to establish the feature count a value of -1 may be returned indicating that the count isn't
know. If bForce is TRUE some implementations will actually scan the entire layer once to count objects.

The returned count takes the spatial filter into account.

Note that some implementations of this method may alter the read cursor of the layer.

This function is the same as the CPP OGRLayer::GetFeatureCount() (p. ??).

Parameters

hLayer handle to the layer that owned the features.
bForce Flag indicating whether the count should be computed even if it is expensive.

Returns

feature count, -1 if count not known.

13.13.2.216 const char ∗ OGR_L_GetFIDColumn (OGRLayerH hLayer)

This method returns the name of the underlying database column being used as the FID column, or "" if not
supported.

This method is the same as the C++ method OGRLayer::GetFIDColumn() (p. ??)

Parameters

hLayer handle to the layer

Returns

fid column name.

13.13.2.217 const char ∗ OGR_L_GetGeometryColumn (OGRLayerH hLayer)

This method returns the name of the underlying database column being used as the geometry column, or "" if not
supported.

This method is the same as the C++ method OGRLayer::GetGeometryColumn() (p. ??)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 619

Parameters

hLayer handle to the layer

Returns

geometry column name.

13.13.2.218 OGRwkbGeometryType OGR_L_GetGeomType (OGRLayerH hLayer)

Return the layer geometry type.

This returns the same result as OGR_FD_GetGeomType(OGR_L_GetLayerDefn(hLayer)), but for a few drivers,
calling OGR_L_GetGeomType() (p. ??) directly can avoid lengthy layer definition initialization.

This function is the same as the C++ method OGRLayer::GetGeomType() (p. ??).

Parameters

hLayer handle to the layer.

Returns

the geometry type

Since

OGR 1.8.0

References wkbUnknown.

13.13.2.219 OGRFeatureDefnH OGR_L_GetLayerDefn (OGRLayerH hLayer)

Fetch the schema information for this layer.

The returned handle to the OGRFeatureDefn (p. ??) is owned by the OGRLayer (p. ??), and should not be modified
or freed by the application. It encapsulates the attribute schema of the features of the layer.

This function is the same as the C++ method OGRLayer::GetLayerDefn() (p. ??).

Parameters

hLayer handle to the layer to get the schema information.

Returns

an handle to the feature definition.

13.13.2.220 const char ∗ OGR_L_GetName (OGRLayerH hLayer)

Return the layer name.

This returns the same content as OGR_FD_GetName(OGR_L_GetLayerDefn(hLayer)), but for a few drivers, calling
OGR_L_GetName() (p. ??) directly can avoid lengthy layer definition initialization.

This function is the same as the C++ method OGRLayer::GetName() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

620 File Documentation

Parameters

hLayer handle to the layer.

Returns

the layer name (must not been freed)

Since

OGR 1.8.0

13.13.2.221 OGRFeatureH OGR_L_GetNextFeature (OGRLayerH hLayer)

Fetch the next available feature from this layer.

The returned feature becomes the responsiblity of the caller to delete with OGR_F_Destroy() (p. ??). It is critical
that all features associated with an OGRLayer (p. ??) (more specifically an OGRFeatureDefn (p. ??)) be deleted
before that layer/datasource is deleted.

Only features matching the current spatial filter (set with SetSpatialFilter()) will be returned.

This function implements sequential access to the features of a layer. The OGR_L_ResetReading() (p. ??) function
can be used to start at the beginning again.

This function is the same as the C++ method OGRLayer::GetNextFeature() (p. ??).

Parameters

hLayer handle to the layer from which feature are read.

Returns

an handle to a feature, or NULL if no more features are available.

13.13.2.222 OGRGeometryH OGR_L_GetSpatialFilter (OGRLayerH hLayer)

This function returns the current spatial filter for this layer.

The returned pointer is to an internally owned object, and should not be altered or deleted by the caller.

This function is the same as the C++ method OGRLayer::GetSpatialFilter() (p. ??).

Parameters

hLayer handle to the layer to get the spatial filter from.

Returns

an handle to the spatial filter geometry.

13.13.2.223 OGRSpatialReferenceH OGR_L_GetSpatialRef (OGRLayerH hLayer)

Fetch the spatial reference system for this layer.

The returned object is owned by the OGRLayer (p. ??) and should not be modified or freed by the application.

This function is the same as the C++ method OGRLayer::GetSpatialRef() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 621

Parameters

hLayer handle to the layer to get the spatial reference from.

Returns

spatial reference, or NULL if there isn't one.

13.13.2.224 OGRErr OGR_L_Identity (OGRLayerH pLayerInput, OGRLayerH pLayerMethod, OGRLayerH pLayerResult, char
∗∗ papszOptions, GDALProgressFunc pfnProgress, void ∗ pProgressArg)

Identify the features of this layer with the ones from the identity layer.

The result layer contains features whose geometries represent areas that are in the input layer. The features in the
result layer have attributes from both input and method layers. The schema of the result layer can be set by the user
or, if it is empty, is initialized to contain all fields in input and method layers.

Note

If the schema of the result is set by user and contains fields that have the same name as a field in input and
in method layer, then the attribute in the result feature will get the value from the feature of the method layer
(even if it is undefined).
For best performance use the minimum amount of features in the method layer and copy it into a memory
layer.
This method relies on GEOS support. Do not use unless the GEOS support is compiled in.

The recognized list of options is :

• SKIP_FAILURES=YES/NO. Set it to YES to go on, even when a feature could not be inserted.

• PROMOTE_TO_MULTI=YES/NO. Set it to YES to convert Polygons into MultiPolygons, or LineStrings to
MultiLineStrings.

• INPUT_PREFIX=string. Set a prefix for the field names that will be created from the fields of the input layer.

• METHOD_PREFIX=string. Set a prefix for the field names that will be created from the fields of the method
layer.

This function is the same as the C++ method OGRLayer::Identity() (p. ??).

Parameters

pLayerInput the input layer. Should not be NULL.
pLayerMethod the method layer. Should not be NULL.
pLayerResult the layer where the features resulting from the operation are inserted. Should not be NULL.

See above the note about the schema.
papszOptions NULL terminated list of options (may be NULL).

pfnProgress a GDALProgressFunc() compatible callback function for reporting progress or NULL.
pProgressArg argument to be passed to pfnProgress. May be NULL.

Returns

an error code if there was an error or the execution was interrupted, OGRERR_NONE otherwise.

Since

OGR 1.10

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

622 File Documentation

13.13.2.225 OGRErr OGR_L_Intersection (OGRLayerH pLayerInput, OGRLayerH pLayerMethod, OGRLayerH pLayerResult,
char ∗∗ papszOptions, GDALProgressFunc pfnProgress, void ∗ pProgressArg)

Intersection of two layers.

The result layer contains features whose geometries represent areas that are common between features in the input
layer and in the method layer. The features in the result layer have attributes from both input and method layers.
The schema of the result layer can be set by the user or, if it is empty, is initialized to contain all fields in the input
and method layers.

Note

If the schema of the result is set by user and contains fields that have the same name as a field in input and
in method layer, then the attribute in the result feature will get the value from the feature of the method layer.
For best performance use the minimum amount of features in the method layer and copy it into a memory
layer.
This method relies on GEOS support. Do not use unless the GEOS support is compiled in.

The recognized list of options is :

• SKIP_FAILURES=YES/NO. Set it to YES to go on, even when a feature could not be inserted.

• PROMOTE_TO_MULTI=YES/NO. Set it to YES to convert Polygons into MultiPolygons, or LineStrings to
MultiLineStrings.

• INPUT_PREFIX=string. Set a prefix for the field names that will be created from the fields of the input layer.

• METHOD_PREFIX=string. Set a prefix for the field names that will be created from the fields of the method
layer.

This function is the same as the C++ method OGRLayer::Intersection() (p. ??).

Parameters

pLayerInput the input layer. Should not be NULL.
pLayerMethod the method layer. Should not be NULL.
pLayerResult the layer where the features resulting from the operation are inserted. Should not be NULL.

See above the note about the schema.
papszOptions NULL terminated list of options (may be NULL).

pfnProgress a GDALProgressFunc() compatible callback function for reporting progress or NULL.
pProgressArg argument to be passed to pfnProgress. May be NULL.

Returns

an error code if there was an error or the execution was interrupted, OGRERR_NONE otherwise.

Since

OGR 1.10

13.13.2.226 OGRErr OGR_L_ReorderField (OGRLayerH hLayer, int iOldFieldPos, int iNewFieldPos)

Reorder an existing field on a layer.

This function is a conveniency wrapper of OGR_L_ReorderFields() (p. ??) dedicated to move a single field.

You must use this to reorder existing fields on a real layer. Internally the OGRFeatureDefn (p. ??) for the layer will
be updated to reflect the reordering of the fields. Applications should never modify the OGRFeatureDefn (p. ??)
used by a layer directly.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 623

This function should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

The field definition that was at initial position iOldFieldPos will be moved at position iNewFieldPos, and elements
between will be shuffled accordingly.

For example, let suppose the fields were "0","1","2","3","4" initially. ReorderField(1, 3) will reorder them as
"0","2","3","1","4".

Not all drivers support this function. You can query a layer to check if it supports it with the OLCReorderFields
capability. Some drivers may only support this method while there are still no features in the layer. When it is
supported, the existings features of the backing file/database should be updated accordingly.

This function is the same as the C++ method OGRLayer::ReorderField() (p. ??).

Parameters

hLayer handle to the layer.
iOldFieldPos previous position of the field to move. Must be in the range [0,GetFieldCount()-1].

iNewFieldPos new position of the field to move. Must be in the range [0,GetFieldCount()-1].

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

13.13.2.227 OGRErr OGR_L_ReorderFields (OGRLayerH hLayer, int ∗ panMap)

Reorder all the fields of a layer.

You must use this to reorder existing fields on a real layer. Internally the OGRFeatureDefn (p. ??) for the layer will
be updated to reflect the reordering of the fields. Applications should never modify the OGRFeatureDefn (p. ??)
used by a layer directly.

This function should not be called while there are feature objects in existance that were obtained or created with the
previous layer definition.

panMap is such that,for each field definition at position i after reordering, its position before reordering was pan←↩

Map[i].

For example, let suppose the fields were "0","1","2","3","4" initially. ReorderFields([0,2,3,1,4]) will reorder them as
"0","2","3","1","4".

Not all drivers support this function. You can query a layer to check if it supports it with the OLCReorderFields
capability. Some drivers may only support this method while there are still no features in the layer. When it is
supported, the existings features of the backing file/database should be updated accordingly.

This function is the same as the C++ method OGRLayer::ReorderFields() (p. ??).

Parameters

hLayer handle to the layer.
panMap an array of GetLayerDefn()->GetFieldCount() elements which is a permutation of [0, Get←↩

LayerDefn()->GetFieldCount()-1].

Returns

OGRERR_NONE on success.

Since

OGR 1.9.0

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

624 File Documentation

13.13.2.228 void OGR_L_ResetReading (OGRLayerH hLayer)

Reset feature reading to start on the first feature.

This affects GetNextFeature().

This function is the same as the C++ method OGRLayer::ResetReading() (p. ??).

Parameters

hLayer handle to the layer on which features are read.

13.13.2.229 OGRErr OGR_L_RollbackTransaction (OGRLayerH hLayer)

For datasources which support transactions, RollbackTransaction will roll back a datasource to its state before the
start of the current transaction. If no transaction is active, or the rollback fails, will return OGRERR_FAILURE.
Datasources which do not support transactions will always return OGRERR_NONE.

This function is the same as the C++ method OGRLayer::RollbackTransaction().

Parameters

hLayer handle to the layer

Returns

OGRERR_NONE on success.

13.13.2.230 OGRErr OGR_L_SetAttributeFilter (OGRLayerH hLayer, const char ∗ pszQuery)

Set a new attribute query.

This function sets the attribute query string to be used when fetching features via the OGR_L_GetNextFeature()
(p. ??) function. Only features for which the query evaluates as true will be returned.

The query string should be in the format of an SQL WHERE clause. For instance "population > 1000000 and
population < 5000000" where population is an attribute in the layer. The query format is a restricted form of SQL
WHERE clause as defined "eq_format=restricted_where" about half way through this document:

http://ogdi.sourceforge.net/prop/6.2.CapabilitiesMetadata.html

Note that installing a query string will generally result in resetting the current reading position (ala OGR_L_Reset←↩

Reading() (p. ??)).

This function is the same as the C++ method OGRLayer::SetAttributeFilter() (p. ??).

Parameters

hLayer handle to the layer on which attribute query will be executed.
pszQuery query in restricted SQL WHERE format, or NULL to clear the current query.

Returns

OGRERR_NONE if successfully installed, or an error code if the query expression is in error, or some other
failure occurs.

13.13.2.231 OGRErr OGR_L_SetFeature (OGRLayerH hLayer, OGRFeatureH hFeat)

Rewrite an existing feature.

This function will write a feature to the layer, based on the feature id within the OGRFeature (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 625

Use OGR_L_TestCapability(OLCRandomWrite) to establish if this layer supports random access writing via OG←↩

R_L_SetFeature() (p. ??).

This function is the same as the C++ method OGRLayer::SetFeature() (p. ??).

Parameters

hLayer handle to the layer to write the feature.
hFeat the feature to write.

Returns

OGRERR_NONE if the operation works, otherwise an appropriate error code.

13.13.2.232 OGRErr OGR_L_SetIgnoredFields (OGRLayerH , const char ∗∗ papszFields)

Set which fields can be omitted when retrieving features from the layer.

If the driver supports this functionality (testable using OLCIgnoreFields capability), it will not fetch the specified fields
in subsequent calls to GetFeature() / GetNextFeature() and thus save some processing time and/or bandwidth.

Besides field names of the layers, the following special fields can be passed: "OGR_GEOMETRY" to ignore geom-
etry and "OGR_STYLE" to ignore layer style.

By default, no fields are ignored.

This method is the same as the C++ method OGRLayer::SetIgnoredFields() (p. ??)

Parameters

papszFields an array of field names terminated by NULL item. If NULL is passed, the ignored list is
cleared.

Returns

OGRERR_NONE if all field names have been resolved (even if the driver does not support this method)

13.13.2.233 OGRErr OGR_L_SetNextByIndex (OGRLayerH hLayer, long nIndex)

Move read cursor to the nIndex'th feature in the current resultset.

This method allows positioning of a layer such that the GetNextFeature() call will read the requested feature, where
nIndex is an absolute index into the current result set. So, setting it to 3 would mean the next feature read with
GetNextFeature() would have been the 4th feature to have been read if sequential reading took place from the
beginning of the layer, including accounting for spatial and attribute filters.

Only in rare circumstances is SetNextByIndex() efficiently implemented. In all other cases the default implementa-
tion which calls ResetReading() and then calls GetNextFeature() nIndex times is used. To determine if fast seeking
is available on the current layer use the TestCapability() method with a value of OLCFastSetNextByIndex.

This method is the same as the C++ method OGRLayer::SetNextByIndex() (p. ??)

Parameters

hLayer handle to the layer
nIndex the index indicating how many steps into the result set to seek.

Returns

OGRERR_NONE on success or an error code.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

626 File Documentation

13.13.2.234 void OGR_L_SetSpatialFilter (OGRLayerH hLayer, OGRGeometryH hGeom)

Set a new spatial filter.

This function set the geometry to be used as a spatial filter when fetching features via the OGR_L_GetNext←↩

Feature() (p. ??) function. Only features that geometrically intersect the filter geometry will be returned.

Currently this test is may be inaccurately implemented, but it is guaranteed that all features who's envelope (as
returned by OGR_G_GetEnvelope() (p. ??)) overlaps the envelope of the spatial filter will be returned. This can
result in more shapes being returned that should strictly be the case.

This function makes an internal copy of the passed geometry. The passed geometry remains the responsibility of
the caller, and may be safely destroyed.

For the time being the passed filter geometry should be in the same SRS as the layer (as returned by OGR_L_←↩

GetSpatialRef() (p. ??)). In the future this may be generalized.

This function is the same as the C++ method OGRLayer::SetSpatialFilter (p. ??).

Parameters

hLayer handle to the layer on which to set the spatial filter.
hGeom handle to the geometry to use as a filtering region. NULL may be passed indicating that the

current spatial filter should be cleared, but no new one instituted.

13.13.2.235 void OGR_L_SetSpatialFilterEx (OGRLayerH hLayer, int iGeomField, OGRGeometryH hGeom)

Set a new spatial filter.

This function set the geometry to be used as a spatial filter when fetching features via the OGR_L_GetNext←↩

Feature() (p. ??) function. Only features that geometrically intersect the filter geometry will be returned.

Currently this test is may be inaccurately implemented, but it is guaranteed that all features who's envelope (as
returned by OGR_G_GetEnvelope() (p. ??)) overlaps the envelope of the spatial filter will be returned. This can
result in more shapes being returned that should strictly be the case.

This function makes an internal copy of the passed geometry. The passed geometry remains the responsibility of
the caller, and may be safely destroyed.

For the time being the passed filter geometry should be in the same SRS as the geometry field definition it corre-
sponds to (as returned by GetLayerDefn()->GetGeomFieldDefn(iGeomField)->GetSpatialRef()). In the future this
may be generalized.

Note that only the last spatial filter set is applied, even if several successive calls are done with different iGeomField
values.

This function is the same as the C++ method OGRLayer::SetSpatialFilter (p. ??).

Parameters

hLayer handle to the layer on which to set the spatial filter.
iGeomField index of the geometry field on which the spatial filter operates.

hGeom handle to the geometry to use as a filtering region. NULL may be passed indicating that the
current spatial filter should be cleared, but no new one instituted.

Since

GDAL 1.11

13.13.2.236 void OGR_L_SetSpatialFilterRect (OGRLayerH hLayer, double dfMinX, double dfMinY, double dfMaxX, double
dfMaxY)

Set a new rectangular spatial filter.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 627

This method set rectangle to be used as a spatial filter when fetching features via the OGR_L_GetNextFeature()
(p. ??) method. Only features that geometrically intersect the given rectangle will be returned.

The x/y values should be in the same coordinate system as the layer as a whole (as returned by OGRLayer::←↩

GetSpatialRef() (p. ??)). Internally this method is normally implemented as creating a 5 vertex closed rectangular
polygon and passing it to OGRLayer::SetSpatialFilter() (p. ??). It exists as a convenience.

The only way to clear a spatial filter set with this method is to call OGRLayer::SetSpatialFilter(NULL).

This method is the same as the C++ method OGRLayer::SetSpatialFilterRect() (p. ??).

Parameters

hLayer handle to the layer on which to set the spatial filter.
dfMinX the minimum X coordinate for the rectangular region.
dfMinY the minimum Y coordinate for the rectangular region.

dfMaxX the maximum X coordinate for the rectangular region.
dfMaxY the maximum Y coordinate for the rectangular region.

13.13.2.237 void OGR_L_SetSpatialFilterRectEx (OGRLayerH hLayer, int iGeomField, double dfMinX, double dfMinY, double
dfMaxX, double dfMaxY)

Set a new rectangular spatial filter.

This method set rectangle to be used as a spatial filter when fetching features via the OGR_L_GetNextFeature()
(p. ??) method. Only features that geometrically intersect the given rectangle will be returned.

The x/y values should be in the same coordinate system as as the geometry field definition it corresponds to (as re-
turned by GetLayerDefn()->GetGeomFieldDefn(iGeomField)->GetSpatialRef()). Internally this method is normally
implemented as creating a 5 vertex closed rectangular polygon and passing it to OGRLayer::SetSpatialFilter()
(p. ??). It exists as a convenience.

The only way to clear a spatial filter set with this method is to call OGRLayer::SetSpatialFilter(NULL).

This method is the same as the C++ method OGRLayer::SetSpatialFilterRect() (p. ??).

Parameters

hLayer handle to the layer on which to set the spatial filter.
iGeomField index of the geometry field on which the spatial filter operates.

dfMinX the minimum X coordinate for the rectangular region.
dfMinY the minimum Y coordinate for the rectangular region.

dfMaxX the maximum X coordinate for the rectangular region.
dfMaxY the maximum Y coordinate for the rectangular region.

Since

GDAL 1.11

13.13.2.238 OGRErr OGR_L_StartTransaction (OGRLayerH hLayer)

For datasources which support transactions, StartTransaction creates a transaction.

If starting the transaction fails, will return OGRERR_FAILURE. Datasources which do not support transactions will
always return OGRERR_NONE.

This function is the same as the C++ method OGRLayer::StartTransaction().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

628 File Documentation

Parameters

hLayer handle to the layer

Returns

OGRERR_NONE on success.

13.13.2.239 OGRErr OGR_L_SymDifference (OGRLayerH pLayerInput, OGRLayerH pLayerMethod, OGRLayerH pLayerResult,
char ∗∗ papszOptions, GDALProgressFunc pfnProgress, void ∗ pProgressArg)

Symmetrical difference of two layers.

The result layer contains features whose geometries represent areas that are in either in the input layer or in the
method layer but not in both. The features in the result layer have attributes from both input and method layers.
For features which represent areas that are only in the input or in the method layer the respective attributes have
undefined values. The schema of the result layer can be set by the user or, if it is empty, is initialized to contain all
fields in the input and method layers.

Note

If the schema of the result is set by user and contains fields that have the same name as a field in input and
in method layer, then the attribute in the result feature will get the value from the feature of the method layer
(even if it is undefined).
For best performance use the minimum amount of features in the method layer and copy it into a memory
layer.
This method relies on GEOS support. Do not use unless the GEOS support is compiled in.

The recognized list of options is :

• SKIP_FAILURES=YES/NO. Set it to YES to go on, even when a feature could not be inserted.

• PROMOTE_TO_MULTI=YES/NO. Set it to YES to convert Polygons into MultiPolygons, or LineStrings to
MultiLineStrings.

• INPUT_PREFIX=string. Set a prefix for the field names that will be created from the fields of the input layer.

• METHOD_PREFIX=string. Set a prefix for the field names that will be created from the fields of the method
layer.

This function is the same as the C++ method OGRLayer::SymDifference() (p. ??).

Parameters

pLayerInput the input layer. Should not be NULL.
pLayerMethod the method layer. Should not be NULL.
pLayerResult the layer where the features resulting from the operation are inserted. Should not be NULL.

See above the note about the schema.
papszOptions NULL terminated list of options (may be NULL).

pfnProgress a GDALProgressFunc() compatible callback function for reporting progress or NULL.
pProgressArg argument to be passed to pfnProgress. May be NULL.

Returns

an error code if there was an error or the execution was interrupted, OGRERR_NONE otherwise.

Since

OGR 1.10

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 629

13.13.2.240 OGRErr OGR_L_SyncToDisk (OGRLayerH hLayer)

Flush pending changes to disk.

This call is intended to force the layer to flush any pending writes to disk, and leave the disk file in a consistent state.
It would not normally have any effect on read-only datasources.

Some layers do not implement this method, and will still return OGRERR_NONE. The default implementation just
returns OGRERR_NONE. An error is only returned if an error occurs while attempting to flush to disk.

In any event, you should always close any opened datasource with OGR_DS_Destroy() (p. ??) that will ensure all
data is correctly flushed.

This method is the same as the C++ method OGRLayer::SyncToDisk() (p. ??)

Parameters

hLayer handle to the layer

Returns

OGRERR_NONE if no error occurs (even if nothing is done) or an error code.

13.13.2.241 int OGR_L_TestCapability (OGRLayerH hLayer, const char ∗ pszCap)

Test if this layer supported the named capability.

The capability codes that can be tested are represented as strings, but #defined constants exists to ensure correct
spelling. Specific layer types may implement class specific capabilities, but this can't generally be discovered by the
caller.

• OLCRandomRead / "RandomRead": TRUE if the GetFeature() method is implemented in an optimized way
for this layer, as opposed to the default implementation using ResetReading() and GetNextFeature() to find
the requested feature id.

• OLCSequentialWrite / "SequentialWrite": TRUE if the CreateFeature() method works for this layer. Note this
means that this particular layer is writable. The same OGRLayer (p. ??) class may returned FALSE for other
layer instances that are effectively read-only.

• OLCRandomWrite / "RandomWrite": TRUE if the SetFeature() method is operational on this layer. Note this
means that this particular layer is writable. The same OGRLayer (p. ??) class may returned FALSE for other
layer instances that are effectively read-only.

• OLCFastSpatialFilter / "FastSpatialFilter": TRUE if this layer implements spatial filtering efficiently. Layers
that effectively read all features, and test them with the OGRFeature (p. ??) intersection methods should
return FALSE. This can be used as a clue by the application whether it should build and maintain its own
spatial index for features in this layer.

• OLCFastFeatureCount / "FastFeatureCount": TRUE if this layer can return a feature count (via OGR_L←↩

_GetFeatureCount() (p. ??)) efficiently ... ie. without counting the features. In some cases this will return
TRUE until a spatial filter is installed after which it will return FALSE.

• OLCFastGetExtent / "FastGetExtent": TRUE if this layer can return its data extent (via OGR_L_GetExtent()
(p. ??)) efficiently ... ie. without scanning all the features. In some cases this will return TRUE until a spatial
filter is installed after which it will return FALSE.

• OLCFastSetNextByIndex / "FastSetNextByIndex": TRUE if this layer can perform the SetNextByIndex() call
efficiently, otherwise FALSE.

• OLCCreateField / "CreateField": TRUE if this layer can create new fields on the current layer using Create←↩

Field(), otherwise FALSE.

• OLCCreateGeomField / "CreateGeomField": (GDAL >= 1.11) TRUE if this layer can create new geometry
fields on the current layer using CreateGeomField(), otherwise FALSE.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

630 File Documentation

• OLCDeleteField / "DeleteField": TRUE if this layer can delete existing fields on the current layer using
DeleteField(), otherwise FALSE.

• OLCReorderFields / "ReorderFields": TRUE if this layer can reorder existing fields on the current layer using
ReorderField() or ReorderFields(), otherwise FALSE.

• OLCAlterFieldDefn / "AlterFieldDefn": TRUE if this layer can alter the definition of an existing field on the
current layer using AlterFieldDefn(), otherwise FALSE.

• OLCDeleteFeature / "DeleteFeature": TRUE if the DeleteFeature() method is supported on this layer, other-
wise FALSE.

• OLCStringsAsUTF8 / "StringsAsUTF8": TRUE if values of OFTString fields are assured to be in UTF-8
format. If FALSE the encoding of fields is uncertain, though it might still be UTF-8.

• OLCTransactions / "Transactions": TRUE if the StartTransaction(), CommitTransaction() and Rollback←↩

Transaction() methods work in a meaningful way, otherwise FALSE.

This function is the same as the C++ method OGRLayer::TestCapability() (p. ??).

Parameters

hLayer handle to the layer to get the capability from.
pszCap the name of the capability to test.

Returns

TRUE if the layer has the requested capability, or FALSE otherwise. OGRLayers will return FALSE for any
unrecognised capabilities.

13.13.2.242 OGRErr OGR_L_Union (OGRLayerH pLayerInput, OGRLayerH pLayerMethod, OGRLayerH pLayerResult, char ∗∗
papszOptions, GDALProgressFunc pfnProgress, void ∗ pProgressArg)

Union of two layers.

The result layer contains features whose geometries represent areas that are in either in the input layer or in the
method layer. The features in the result layer have attributes from both input and method layers. For features which
represent areas that are only in the input or in the method layer the respective attributes have undefined values.
The schema of the result layer can be set by the user or, if it is empty, is initialized to contain all fields in the input
and method layers.

Note

If the schema of the result is set by user and contains fields that have the same name as a field in input and
in method layer, then the attribute in the result feature will get the value from the feature of the method layer
(even if it is undefined).
For best performance use the minimum amount of features in the method layer and copy it into a memory
layer.
This method relies on GEOS support. Do not use unless the GEOS support is compiled in.

The recognized list of options is :

• SKIP_FAILURES=YES/NO. Set it to YES to go on, even when a feature could not be inserted.

• PROMOTE_TO_MULTI=YES/NO. Set it to YES to convert Polygons into MultiPolygons, or LineStrings to
MultiLineStrings.

• INPUT_PREFIX=string. Set a prefix for the field names that will be created from the fields of the input layer.

• METHOD_PREFIX=string. Set a prefix for the field names that will be created from the fields of the method
layer.

This function is the same as the C++ method OGRLayer::Union() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 631

Parameters

pLayerInput the input layer. Should not be NULL.
pLayerMethod the method layer. Should not be NULL.
pLayerResult the layer where the features resulting from the operation are inserted. Should not be NULL.

See above the note about the schema.
papszOptions NULL terminated list of options (may be NULL).

pfnProgress a GDALProgressFunc() compatible callback function for reporting progress or NULL.
pProgressArg argument to be passed to pfnProgress. May be NULL.

Returns

an error code if there was an error or the execution was interrupted, OGRERR_NONE otherwise.

Since

OGR 1.10

13.13.2.243 OGRErr OGR_L_Update (OGRLayerH pLayerInput, OGRLayerH pLayerMethod, OGRLayerH pLayerResult, char
∗∗ papszOptions, GDALProgressFunc pfnProgress, void ∗ pProgressArg)

Update this layer with features from the update layer.

The result layer contains features whose geometries represent areas that are either in the input layer or in the
method layer. The features in the result layer have areas of the features of the method layer or those ares of the
features of the input layer that are not covered by the method layer. The features of the result layer get their attributes
from the input layer. The schema of the result layer can be set by the user or, if it is empty, is initialized to contain all
fields in the input layer.

Note

If the schema of the result is set by user and contains fields that have the same name as a field in the method
layer, then the attribute in the result feature the originates from the method layer will get the value from the
feature of the method layer.
For best performance use the minimum amount of features in the method layer and copy it into a memory
layer.
This method relies on GEOS support. Do not use unless the GEOS support is compiled in.

The recognized list of options is :

• SKIP_FAILURES=YES/NO. Set it to YES to go on, even when a feature could not be inserted.

• PROMOTE_TO_MULTI=YES/NO. Set it to YES to convert Polygons into MultiPolygons, or LineStrings to
MultiLineStrings.

• INPUT_PREFIX=string. Set a prefix for the field names that will be created from the fields of the input layer.

• METHOD_PREFIX=string. Set a prefix for the field names that will be created from the fields of the method
layer.

This function is the same as the C++ method OGRLayer::Update() (p. ??).

Parameters

pLayerInput the input layer. Should not be NULL.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

632 File Documentation

pLayerMethod the method layer. Should not be NULL.
pLayerResult the layer where the features resulting from the operation are inserted. Should not be NULL.

See above the note about the schema.
papszOptions NULL terminated list of options (may be NULL).

pfnProgress a GDALProgressFunc() compatible callback function for reporting progress or NULL.
pProgressArg argument to be passed to pfnProgress. May be NULL.

Returns

an error code if there was an error or the execution was interrupted, OGRERR_NONE otherwise.

Since

OGR 1.10

13.13.2.244 int OGR_SM_AddPart (OGRStyleMgrH hSM, OGRStyleToolH hST)

Add a part (style tool) to the current style.

This function is the same as the C++ method OGRStyleMgr::AddPart() (p. ??).

Parameters

hSM handle to the style manager.
hST the style tool defining the part to add.

Returns

TRUE on success, FALSE on errors.

13.13.2.245 int OGR_SM_AddStyle (OGRStyleMgrH hSM, const char ∗ pszStyleName, const char ∗ pszStyleString)

Add a style to the current style table.

This function is the same as the C++ method OGRStyleMgr::AddStyle() (p. ??).

Parameters

hSM handle to the style manager.
pszStyleName the name of the style to add.
pszStyleString the style string to use, or NULL to use the style stored in the manager.

Returns

TRUE on success, FALSE on errors.

13.13.2.246 OGRStyleMgrH OGR_SM_Create (OGRStyleTableH hStyleTable)

OGRStyleMgr (p. ??) factory.

This function is the same as the C++ method OGRStyleMgr::OGRStyleMgr() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 633

Parameters

hStyleTable pointer to OGRStyleTable (p. ??) or NULL if not working with a style table.

Returns

an handle to the new style manager object.

13.13.2.247 void OGR_SM_Destroy (OGRStyleMgrH hSM)

Destroy Style Manager.

This function is the same as the C++ method OGRStyleMgr::∼OGRStyleMgr() (p. ??).

Parameters

hSM handle to the style manager to destroy.

13.13.2.248 OGRStyleToolH OGR_SM_GetPart (OGRStyleMgrH hSM, int nPartId, const char ∗ pszStyleString)

Fetch a part (style tool) from the current style.

This function is the same as the C++ method OGRStyleMgr::GetPart() (p. ??).

This function instanciates a new object that should be freed with OGR_ST_Destroy() (p. ??).

Parameters

hSM handle to the style manager.
nPartId the part number (0-based index).

pszStyleString (optional) the style string on which to operate. If NULL then the current style string stored in
the style manager is used.

Returns

OGRStyleToolH of the requested part (style tools) or NULL on error.

13.13.2.249 int OGR_SM_GetPartCount (OGRStyleMgrH hSM, const char ∗ pszStyleString)

Get the number of parts in a style.

This function is the same as the C++ method OGRStyleMgr::GetPartCount() (p. ??).

Parameters

hSM handle to the style manager.
pszStyleString (optional) the style string on which to operate. If NULL then the current style string stored in

the style manager is used.

Returns

the number of parts (style tools) in the style.

13.13.2.250 const char∗ OGR_SM_InitFromFeature (OGRStyleMgrH hSM, OGRFeatureH hFeat)

Initialize style manager from the style string of a feature.

This function is the same as the C++ method OGRStyleMgr::InitFromFeature() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

634 File Documentation

Parameters

hSM handle to the style manager.
hFeat handle to the new feature from which to read the style.

Returns

a reference to the style string read from the feature, or NULL in case of error.

13.13.2.251 int OGR_SM_InitStyleString (OGRStyleMgrH hSM, const char ∗ pszStyleString)

Initialize style manager from the style string.

This function is the same as the C++ method OGRStyleMgr::InitStyleString() (p. ??).

Parameters

hSM handle to the style manager.
pszStyleString the style string to use (can be NULL).

Returns

TRUE on success, FALSE on errors.

13.13.2.252 OGRStyleToolH OGR_ST_Create (OGRSTClassId eClassId)

OGRStyleTool (p. ??) factory.

This function is a constructor for OGRStyleTool (p. ??) derived classes.

Parameters

eClassId subclass of style tool to create. One of OGRSTCPen (1), OGRSTCBrush (2), OGRSTC←↩

Symbol (3) or OGRSTCLabel (4).

Returns

an handle to the new style tool object or NULL if the creation failed.

13.13.2.253 void OGR_ST_Destroy (OGRStyleToolH hST)

Destroy Style Tool.

Parameters

hST handle to the style tool to destroy.

13.13.2.254 double OGR_ST_GetParamDbl (OGRStyleToolH hST, int eParam, int ∗ bValueIsNull)

Get Style Tool parameter value as a double.

Maps to the OGRStyleTool (p. ??) subclasses' GetParamDbl() methods.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 635

Parameters

hST handle to the style tool.
eParam the parameter id from the enumeration corresponding to the type of this style tool (one of

the OGRSTPenParam, OGRSTBrushParam, OGRSTSymbolParam or OGRSTLabelParam
enumerations)

bValueIsNull pointer to an integer that will be set to TRUE or FALSE to indicate whether the parameter
value is NULL.

Returns

the parameter value as double and sets bValueIsNull.

13.13.2.255 int OGR_ST_GetParamNum (OGRStyleToolH hST, int eParam, int ∗ bValueIsNull)

Get Style Tool parameter value as an integer.

Maps to the OGRStyleTool (p. ??) subclasses' GetParamNum() methods.

Parameters

hST handle to the style tool.
eParam the parameter id from the enumeration corresponding to the type of this style tool (one of

the OGRSTPenParam, OGRSTBrushParam, OGRSTSymbolParam or OGRSTLabelParam
enumerations)

bValueIsNull pointer to an integer that will be set to TRUE or FALSE to indicate whether the parameter
value is NULL.

Returns

the parameter value as integer and sets bValueIsNull.

13.13.2.256 const char∗ OGR_ST_GetParamStr (OGRStyleToolH hST, int eParam, int ∗ bValueIsNull)

Get Style Tool parameter value as string.

Maps to the OGRStyleTool (p. ??) subclasses' GetParamStr() methods.

Parameters

hST handle to the style tool.
eParam the parameter id from the enumeration corresponding to the type of this style tool (one of

the OGRSTPenParam, OGRSTBrushParam, OGRSTSymbolParam or OGRSTLabelParam
enumerations)

bValueIsNull pointer to an integer that will be set to TRUE or FALSE to indicate whether the parameter
value is NULL.

Returns

the parameter value as string and sets bValueIsNull.

13.13.2.257 int OGR_ST_GetRGBFromString (OGRStyleToolH hST, const char ∗ pszColor, int ∗ pnRed, int ∗ pnGreen, int ∗
pnBlue, int ∗ pnAlpha)

Return the r,g,b,a components of a color encoded in #RRGGBB[AA] format.

Maps to OGRStyleTool::GetRGBFromString().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

636 File Documentation

Parameters

hST handle to the style tool.
pszColor the color to parse

pnRed pointer to an int in which the red value will be returned
pnGreen pointer to an int in which the green value will be returned

pnBlue pointer to an int in which the blue value will be returned
pnAlpha pointer to an int in which the (optional) alpha value will be returned

Returns

TRUE if the color could be succesfully parsed, or FALSE in case of errors.

13.13.2.258 const char∗ OGR_ST_GetStyleString (OGRStyleToolH hST)

Get the style string for this Style Tool.

Maps to the OGRStyleTool (p. ??) subclasses' GetStyleString() methods.

Parameters

hST handle to the style tool.

Returns

the style string for this style tool or "" if the hST is invalid.

13.13.2.259 OGRSTClassId OGR_ST_GetType (OGRStyleToolH hST)

Determine type of Style Tool.

Parameters

hST handle to the style tool.

Returns

the style tool type, one of OGRSTCPen (1), OGRSTCBrush (2), OGRSTCSymbol (3) or OGRSTCLabel (4).
Returns OGRSTCNone (0) if the OGRStyleToolH is invalid.

13.13.2.260 OGRSTUnitId OGR_ST_GetUnit (OGRStyleToolH hST)

Get Style Tool units.

Parameters

hST handle to the style tool.

Returns

the style tool units.

13.13.2.261 void OGR_ST_SetParamDbl (OGRStyleToolH hST, int eParam, double dfValue)

Set Style Tool parameter value from a double.

Maps to the OGRStyleTool (p. ??) subclasses' SetParamDbl() methods.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 637

Parameters

hST handle to the style tool.
eParam the parameter id from the enumeration corresponding to the type of this style tool (one of

the OGRSTPenParam, OGRSTBrushParam, OGRSTSymbolParam or OGRSTLabelParam
enumerations)

dfValue the new parameter value

13.13.2.262 void OGR_ST_SetParamNum (OGRStyleToolH hST, int eParam, int nValue)

Set Style Tool parameter value from an integer.

Maps to the OGRStyleTool (p. ??) subclasses' SetParamNum() methods.

Parameters

hST handle to the style tool.
eParam the parameter id from the enumeration corresponding to the type of this style tool (one of

the OGRSTPenParam, OGRSTBrushParam, OGRSTSymbolParam or OGRSTLabelParam
enumerations)

nValue the new parameter value

13.13.2.263 void OGR_ST_SetParamStr (OGRStyleToolH hST, int eParam, const char ∗ pszValue)

Set Style Tool parameter value from a string.

Maps to the OGRStyleTool (p. ??) subclasses' SetParamStr() methods.

Parameters

hST handle to the style tool.
eParam the parameter id from the enumeration corresponding to the type of this style tool (one of

the OGRSTPenParam, OGRSTBrushParam, OGRSTSymbolParam or OGRSTLabelParam
enumerations)

pszValue the new parameter value

13.13.2.264 void OGR_ST_SetUnit (OGRStyleToolH hST, OGRSTUnitId eUnit, double dfGroundPaperScale)

Set Style Tool units.

This function is the same as OGRStyleTool::SetUnit()

Parameters

hST handle to the style tool.
eUnit the new unit.

dfGround←↩

PaperScale
ground to paper scale factor.

13.13.2.265 int OGR_STBL_AddStyle (OGRStyleTableH hStyleTable, const char ∗ pszName, const char ∗ pszStyleString)

Add a new style in the table. No comparison will be done on the Style string, only on the name. This function is the
same as the C++ method OGRStyleTable::AddStyle() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

638 File Documentation

Parameters

hStyleTable handle to the style table.
pszName the name the style to add.

pszStyleString the style string to add.

Returns

TRUE on success, FALSE on error

13.13.2.266 OGRStyleTableH OGR_STBL_Create (void)

OGRStyleTable (p. ??) factory.

This function is the same as the C++ method OGRStyleTable::OGRStyleTable().

Returns

an handle to the new style table object.

13.13.2.267 void OGR_STBL_Destroy (OGRStyleTableH hSTBL)

Destroy Style Table.

Parameters

hSTBL handle to the style table to destroy.

13.13.2.268 const char∗ OGR_STBL_Find (OGRStyleTableH hStyleTable, const char ∗ pszName)

Get a style string by name.

This function is the same as the C++ method OGRStyleTable::Find() (p. ??).

Parameters

hStyleTable handle to the style table.
pszName the name of the style string to find.

Returns

the style string matching the name or NULL if not found or error.

13.13.2.269 const char∗ OGR_STBL_GetLastStyleName (OGRStyleTableH hStyleTable)

Get the style name of the last style string fetched with OGR_STBL_GetNextStyle.

This function is the same as the C++ method OGRStyleTable::GetStyleName() (p. ??).

Parameters

hStyleTable handle to the style table.

Returns

the Name of the last style string or NULL on error.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 639

13.13.2.270 const char∗ OGR_STBL_GetNextStyle (OGRStyleTableH hStyleTable)

Get the next style string from the table.

This function is the same as the C++ method OGRStyleTable::GetNextStyle().

Parameters

hStyleTable handle to the style table.

Returns

the next style string or NULL on error.

13.13.2.271 int OGR_STBL_LoadStyleTable (OGRStyleTableH hStyleTable, const char ∗ pszFilename)

Load a style table from a file.

This function is the same as the C++ method OGRStyleTable::LoadStyleTable() (p. ??).

Parameters

hStyleTable handle to the style table.
pszFilename the name of the file to load from.

Returns

TRUE on success, FALSE on error

13.13.2.272 void OGR_STBL_ResetStyleStringReading (OGRStyleTableH hStyleTable)

Reset the next style pointer to 0.

This function is the same as the C++ method OGRStyleTable::ResetStyleStringReading().

Parameters

hStyleTable handle to the style table.

13.13.2.273 int OGR_STBL_SaveStyleTable (OGRStyleTableH hStyleTable, const char ∗ pszFilename)

Save a style table to a file.

This function is the same as the C++ method OGRStyleTable::SaveStyleTable() (p. ??).

Parameters

hStyleTable handle to the style table.
pszFilename the name of the file to save to.

Returns

TRUE on success, FALSE on error

13.13.2.274 OGRGeometryH OGRBuildPolygonFromEdges (OGRGeometryH hLines, int bBestEffort, int bAutoClose, double
dfTolerance, OGRErr ∗ peErr)

Build a ring from a bunch of arcs.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

640 File Documentation

Parameters

hLines handle to an OGRGeometryCollection (p. ??) (or OGRMultiLineString (p. ??)) containing
the line string geometries to be built into rings.

bBestEffort not yet implemented???.
bAutoClose indicates if the ring should be close when first and last points of the ring are the same.
dfTolerance tolerance into which two arcs are considered close enough to be joined.

peErr OGRERR_NONE on success, or OGRERR_FAILURE on failure.

Returns

an handle to the new geometry, a polygon.

References OGRLineString::addPoint(), OGRPolygon::addRingDirectly(), CPLCalloc(), CPLDebug(), CPLError(),
OGRGeometryCollection::getGeometryRef(), OGRGeometry::getGeometryType(), OGRGeometryCollection::get←↩

NumGeometries(), OGRLineString::getNumPoints(), OGRLineString::getX(), OGRLineString::getY(), OGRLine←↩

String::getZ(), wkbGeometryCollection, wkbLineString, and wkbMultiLineString.

13.13.2.275 void OGRCleanupAll (void)

Cleanup all OGR related resources.

This function will destroy the OGRSFDriverRegistrar (p. ??) along with all registered drivers, and then cleanup long
lived OSR (OGRSpatialReference (p. ??)) and CPL resources. This may be called in an application when OGR
services are no longer needed. It is not normally required, but by freeing all dynamically allocated memory it can
make memory leak testing easier.

In addition to destroying the OGRDriverRegistrar, this function also calls:

• OSRCleanup() (p. ??)

• CPLFinderClean()

• VSICleanupFileManager()

• CPLFreeConfig()

• CPLCleanupTLS()

References OSRCleanup().

13.13.2.276 void OGRDeregisterDriver (OGRSFDriverH hDriver)

Remove the passed driver from the list of registered drivers.

This function is the same as the C++ method OGRSFDriverRegistrar::DeregisterDriver() (p. ??).

Parameters

hDriver handle to the driver to deregister.

Since

GDAL 1.8.0

References OGRSFDriverRegistrar::DeregisterDriver(), and OGRSFDriverRegistrar::GetRegistrar().

13.13.2.277 OGRSFDriverH OGRGetDriver (int iDriver)

Fetch the indicated driver.

This function is the same as the C++ method OGRSFDriverRegistrar::GetDriver() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.13 ogr_api.h File Reference 641

Parameters

iDriver the driver index, from 0 to GetDriverCount()-1.

Returns

handle to the driver, or NULL if iDriver is out of range.

References OGRSFDriverRegistrar::GetDriver().

13.13.2.278 OGRSFDriverH OGRGetDriverByName (const char ∗ pszName)

Fetch the indicated driver.

This function is the same as the C++ method OGRSFDriverRegistrar::GetDriverByName() (p. ??)

Parameters

pszName the driver name

Returns

the driver, or NULL if no driver with that name is found

References OGRSFDriverRegistrar::GetDriverByName(), and OGRSFDriverRegistrar::GetRegistrar().

13.13.2.279 int OGRGetDriverCount (void)

Fetch the number of registered drivers.

This function is the same as the C++ method OGRSFDriverRegistrar::GetDriverCount() (p. ??).

Returns

the drivers count.

References OGRSFDriverRegistrar::GetDriverCount().

13.13.2.280 OGRDataSourceH OGRGetOpenDS (int iDS)

Return the iDS th datasource opened.

This function is the same as the C++ method OGRSFDriverRegistrar::GetOpenDS (p. ??).

Parameters

iDS the index of the dataset to return (between 0 and GetOpenDSCount() - 1)

References OGRSFDriverRegistrar::GetOpenDS(), and OGRSFDriverRegistrar::GetRegistrar().

13.13.2.281 int OGRGetOpenDSCount (void)

Return the number of opened datasources.

This function is the same as the C++ method OGRSFDriverRegistrar::GetOpenDSCount() (p. ??)

Returns

the number of opened datasources.

References OGRSFDriverRegistrar::GetOpenDSCount(), and OGRSFDriverRegistrar::GetRegistrar().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

642 File Documentation

13.13.2.282 OGRDataSourceH OGROpen (const char ∗ pszName, int bUpdate, OGRSFDriverH ∗ pahDriverList)

Open a file / data source with one of the registered drivers.

This function loops through all the drivers registered with the driver manager trying each until one succeeds with the
given data source. This function is static. Applications don't normally need to use any other OGRSFDriverRegistrar
(p. ??) function, not do they normally need to have a pointer to an OGRSFDriverRegistrar (p. ??) instance.

If this function fails, CPLGetLastErrorMsg() (p. ??) can be used to check if there is an error message explaining
why.

For drivers supporting the VSI virtual file API, it is possible to open a file in a .zip archive (see VSIInstallZipFile←↩

Handler() (p. ??)), in a .tar/.tar.gz/.tgz archive (see VSIInstallTarFileHandler() (p. ??)) or on a HTTP / FTP server
(see VSIInstallCurlFileHandler() (p. ??))

This function is the same as the C++ method OGRSFDriverRegistrar::Open() (p. ??).

Parameters

pszName the name of the file, or data source to open.
bUpdate FALSE for read-only access (the default) or TRUE for read-write access.

pahDriverList if non-NULL, this argument will be updated with a pointer to the driver which was used to
open the data source.

Returns

NULL on error or if the pass name is not supported by this driver, otherwise an handle to an OGRDataSource
(p. ??). This OGRDataSource (p. ??) should be closed by deleting the object when it is no longer needed.

Example:

OGRDataSourceH hDS;
OGRSFDriverH *pahDriver;

hDS = OGROpen("polygon.shp", 0, pahDriver);
if(hDS == NULL)
{

return;
}

... use the data source ...

OGRReleaseDataSource(hDS);

References OGRSFDriverRegistrar::Open().

13.13.2.283 void OGRRegisterDriver (OGRSFDriverH hDriver)

Add a driver to the list of registered drivers.

If the passed driver is already registered (based on handle comparison) then the driver isn't registered. New drivers
are added at the end of the list of registered drivers.

This function is the same as the C++ method OGRSFDriverRegistrar::RegisterDriver() (p. ??).

Parameters

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.14 ogr_core.h File Reference 643

hDriver handle to the driver to add.

References OGRSFDriverRegistrar::GetRegistrar(), and OGRSFDriverRegistrar::RegisterDriver().

13.13.2.284 OGRErr OGRReleaseDataSource (OGRDataSourceH hDS)

Drop a reference to this datasource, and if the reference count drops to zero close (destroy) the datasource.

Internally this actually calls the OGRSFDriverRegistrar::ReleaseDataSource() method. This method is essentially a
convenient alias.

This method is the same as the C++ method OGRDataSource::Release() (p. ??)

Parameters

hDS handle to the data source to release

Returns

OGRERR_NONE on success or an error code.

References OGRSFDriverRegistrar::GetRegistrar().

Referenced by OGRGeocodeDestroySession().

13.13.2.285 OGRErr OGRSetGenerate_DB2_V72_BYTE_ORDER (int bGenerate_DB2_V72_BYTE_ORDER)

Special entry point to enable the hack for generating DB2 V7.2 style WKB.

DB2 seems to have placed (and require) an extra 0x30 or'ed with the byte order in WKB. This entry point is used to
turn on or off the generation of such WKB.

13.14 ogr_core.h File Reference

#include "cpl_port.h"
#include "gdal_version.h"

Classes

• class OGREnvelope
• class OGREnvelope3D
• union OGRField

Macros

• #define GDAL_CHECK_VERSION(pszCallingComponentName) GDALCheckVersion(GDAL_VERSION←↩

_MAJOR, GDAL_VERSION_MINOR, pszCallingComponentName)

Typedefs

• typedef enum ogr_style_tool_class_id OGRSTClassId
• typedef enum ogr_style_tool_units_id OGRSTUnitId
• typedef enum ogr_style_tool_param_pen_id OGRSTPenParam
• typedef enum ogr_style_tool_param_brush_id OGRSTBrushParam
• typedef enum ogr_style_tool_param_symbol_id OGRSTSymbolParam
• typedef enum ogr_style_tool_param_label_id OGRSTLabelParam

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

644 File Documentation

Enumerations

• enum OGRwkbGeometryType {
wkbUnknown = 0, wkbPoint = 1, wkbLineString = 2, wkbPolygon = 3,
wkbMultiPoint = 4, wkbMultiLineString = 5, wkbMultiPolygon = 6, wkbGeometryCollection = 7,
wkbNone = 100, wkbLinearRing = 101, wkbPoint25D = 0x80000001, wkbLineString25D = 0x80000002,
wkbPolygon25D = 0x80000003, wkbMultiPoint25D = 0x80000004, wkbMultiLineString25D =
0x80000005, wkbMultiPolygon25D = 0x80000006,
wkbGeometryCollection25D = 0x80000007 }

• enum OGRwkbVariant { wkbVariantOgc, wkbVariantIso }
• enum OGRFieldType {

OFTInteger = 0, OFTIntegerList = 1, OFTReal = 2, OFTRealList = 3,
OFTString = 4, OFTStringList = 5, OFTWideString = 6, OFTWideStringList = 7,
OFTBinary = 8, OFTDate = 9, OFTTime = 10, OFTDateTime = 11 }

• enum OGRJustification
• enum ogr_style_tool_class_id
• enum ogr_style_tool_units_id
• enum ogr_style_tool_param_pen_id
• enum ogr_style_tool_param_brush_id
• enum ogr_style_tool_param_symbol_id
• enum ogr_style_tool_param_label_id

Functions

• const char ∗ OGRGeometryTypeToName (OGRwkbGeometryType eType)

Fetch a human readable name corresponding to an OGRwkBGeometryType value. The returned value should not be
modified, or freed by the application.

• OGRwkbGeometryType OGRMergeGeometryTypes (OGRwkbGeometryType eMain, OGRwkb←↩

GeometryType eExtra)

Find common geometry type.

• int CPL_STDCALL GDALCheckVersion (int nVersionMajor, int nVersionMinor, const char ∗pszCalling←↩

ComponentName)

13.14.1 Detailed Description

Core portability services for cross-platform OGR code.

13.14.2 Macro Definition Documentation

13.14.2.1 #define GDAL_CHECK_VERSION(pszCallingComponentName) GDALCheckVersion(GDAL_VERSION_MAJOR,
GDAL_VERSION_MINOR, pszCallingComponentName)

Helper macro for GDALCheckVersion

13.14.3 Typedef Documentation

13.14.3.1 typedef enum ogr_style_tool_param_brush_id OGRSTBrushParam

List of parameters for use with OGRStyleBrush (p. ??).

13.14.3.2 typedef enum ogr_style_tool_class_id OGRSTClassId

OGRStyleTool (p. ??) derived class types (returned by GetType()).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.14 ogr_core.h File Reference 645

13.14.3.3 typedef enum ogr_style_tool_param_label_id OGRSTLabelParam

List of parameters for use with OGRStyleLabel (p. ??).

13.14.3.4 typedef enum ogr_style_tool_param_pen_id OGRSTPenParam

List of parameters for use with OGRStylePen (p. ??).

13.14.3.5 typedef enum ogr_style_tool_param_symbol_id OGRSTSymbolParam

List of parameters for use with OGRStyleSymbol (p. ??).

13.14.3.6 typedef enum ogr_style_tool_units_id OGRSTUnitId

List of units supported by OGRStyleTools.

13.14.4 Enumeration Type Documentation

13.14.4.1 enum ogr_style_tool_class_id

OGRStyleTool (p. ??) derived class types (returned by GetType()).

13.14.4.2 enum ogr_style_tool_param_brush_id

List of parameters for use with OGRStyleBrush (p. ??).

13.14.4.3 enum ogr_style_tool_param_label_id

List of parameters for use with OGRStyleLabel (p. ??).

13.14.4.4 enum ogr_style_tool_param_pen_id

List of parameters for use with OGRStylePen (p. ??).

13.14.4.5 enum ogr_style_tool_param_symbol_id

List of parameters for use with OGRStyleSymbol (p. ??).

13.14.4.6 enum ogr_style_tool_units_id

List of units supported by OGRStyleTools.

13.14.4.7 enum OGRFieldType

List of feature field types. This list is likely to be extended in the future ... avoid coding applications based on the
assumption that all field types can be known.

Enumerator

OFTInteger Simple 32bit integer

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

646 File Documentation

OFTIntegerList List of 32bit integers

OFTReal Double Precision floating point

OFTRealList List of doubles

OFTString String of ASCII chars

OFTStringList Array of strings

OFTWideString deprecated

OFTWideStringList deprecated

OFTBinary Raw Binary data

OFTDate Date

OFTTime Time

OFTDateTime Date and Time

13.14.4.8 enum OGRJustification

Display justification for field values.

13.14.4.9 enum OGRwkbGeometryType

List of well known binary geometry types. These are used within the BLOBs but are also returned from OGR←↩

Geometry::getGeometryType() (p. ??) to identify the type of a geometry object.

Enumerator

wkbUnknown unknown type, non-standard

wkbPoint 0-dimensional geometric object, standard WKB

wkbLineString 1-dimensional geometric object with linear interpolation between Points, standard WKB

wkbPolygon planar 2-dimensional geometric object defined by 1 exterior boundary and 0 or more interior
boundaries, standard WKB

wkbMultiPoint GeometryCollection of Points, standard WKB

wkbMultiLineString GeometryCollection of LineStrings, standard WKB

wkbMultiPolygon GeometryCollection of Polygons, standard WKB

wkbGeometryCollection geometric object that is a collection of 1 or more geometric objects, standard WKB

wkbNone non-standard, for pure attribute records

wkbLinearRing non-standard, just for createGeometry()

wkbPoint25D 2.5D extension as per 99-402

wkbLineString25D 2.5D extension as per 99-402

wkbPolygon25D 2.5D extension as per 99-402

wkbMultiPoint25D 2.5D extension as per 99-402

wkbMultiLineString25D 2.5D extension as per 99-402

wkbMultiPolygon25D 2.5D extension as per 99-402

wkbGeometryCollection25D 2.5D extension as per 99-402

13.14.4.10 enum OGRwkbVariant

Output variants of WKB we support. 99-402 was a short-lived extension to SFSQL 1.1 that used a high-bit flag to
indicate the presence of Z coordiantes in a WKB geometry. SQL/MM Part 3 and SFSQL 1.2 use offsets of 1000 (Z),
2000 (M) and 3000 (ZM) to indicate the present of higher dimensional coordinates in a WKB geometry.

Enumerator

wkbVariantOgc Old-style 99-402 extended dimension (Z) WKB types

wkbVariantIso SFSQL 1.2 and ISO SQL/MM Part 3 extended dimension (Z&M) WKB types

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.14 ogr_core.h File Reference 647

13.14.5 Function Documentation

13.14.5.1 int CPL_STDCALL GDALCheckVersion (int nVersionMajor, int nVersionMinor, const char ∗
pszCallingComponentName)

Return TRUE if GDAL library version at runtime matches nVersionMajor.nVersionMinor.

The purpose of this method is to ensure that calling code will run with the GDAL version it is compiled for. It is
primarly intented for external plugins.

Parameters

nVersionMajor Major version to be tested against
nVersionMinor Minor version to be tested against

pszCalling←↩

Component←↩

Name

If not NULL, in case of version mismatch, the method will issue a failure mentionning the
name of the calling component.

13.14.5.2 const char∗ OGRGeometryTypeToName (OGRwkbGeometryType eType)

Fetch a human readable name corresponding to an OGRwkBGeometryType value. The returned value should not
be modified, or freed by the application.

This function is C callable.

Parameters

eType the geometry type.

Returns

internal human readable string, or NULL on failure.

References wkbGeometryCollection, wkbLineString, wkbMultiLineString, wkbMultiPoint, wkbMultiPolygon, wkb←↩

None, wkbPoint, wkbPolygon, and wkbUnknown.

13.14.5.3 OGRwkbGeometryType OGRMergeGeometryTypes (OGRwkbGeometryType eMain,
OGRwkbGeometryType eExtra)

Find common geometry type.

Given two geometry types, find the most specific common type. Normally used repeatedly with the geometries in a
layer to try and establish the most specific geometry type that can be reported for the layer.

NOTE: wkbUnknown is the "worst case" indicating a mixture of geometry types with nothing in common but the base
geometry type. wkbNone should be used to indicate that no geometries have been encountered yet, and means
the first geometry encounted will establish the preliminary type.

Parameters

eMain the first input geometry type.
eExtra the second input geometry type.

Returns

the merged geometry type.

References wkbGeometryCollection, wkbMultiLineString, wkbMultiPoint, wkbMultiPolygon, wkbNone, and wkb←↩

Unknown.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

648 File Documentation

13.15 ogr_feature.h File Reference

#include "ogr_geometry.h"
#include "ogr_featurestyle.h"
#include "cpl_atomic_ops.h"

Classes

• class OGRFieldDefn

• class OGRGeomFieldDefn

• class OGRFeatureDefn

• class OGRFeature

• class OGRFeatureQuery

13.15.1 Detailed Description

Simple feature classes.

13.16 ogr_featurestyle.h File Reference

#include "cpl_conv.h"
#include "cpl_string.h"
#include "ogr_core.h"

Classes

• struct ogr_style_param

• struct ogr_style_value

• class OGRStyleTable

• class OGRStyleMgr

• class OGRStyleTool

• class OGRStylePen

• class OGRStyleBrush

• class OGRStyleSymbol

• class OGRStyleLabel

13.16.1 Detailed Description

Simple feature style classes.

13.17 ogr_geocoding.h File Reference

#include "cpl_port.h"
#include "ogr_api.h"

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.17 ogr_geocoding.h File Reference 649

Functions

• OGRGeocodingSessionH OGRGeocodeCreateSession (char ∗∗papszOptions)

Creates a session handle for geocoding requests.

• void OGRGeocodeDestroySession (OGRGeocodingSessionH hSession)

Destroys a session handle for geocoding requests.

• OGRLayerH OGRGeocode (OGRGeocodingSessionH hSession, const char ∗pszQuery, char ∗∗papsz←↩

StructuredQuery, char ∗∗papszOptions)

Runs a geocoding request.

• OGRLayerH OGRGeocodeReverse (OGRGeocodingSessionH hSession, double dfLon, double dfLat, char
∗∗papszOptions)

Runs a reverse geocoding request.

• void OGRGeocodeFreeResult (OGRLayerH hLayer)

Destroys the result of a geocoding request.

13.17.1 Detailed Description

C API for geocoding client.

13.17.2 Function Documentation

13.17.2.1 OGRLayerH OGRGeocode (OGRGeocodingSessionH hSession, const char ∗ pszQuery, char ∗∗
papszStructuredQuery, char ∗∗ papszOptions)

Runs a geocoding request.

If the result is not found in cache, a GET request will be sent to resolve the query.

Note: most online services have Term of Uses. You are kindly requested to read and follow them. For the Open←↩

StreetMap Nominatim service, this implementation will make sure that no more than one request is sent by second,
but there might be other restrictions that you must follow by other means.

In case of success, the return of this function is a OGR layer that contain zero, one or several features matching
the query. Note that the geometry of the features is not necessarily a point. The returned layer must be freed with
OGRGeocodeFreeResult() (p. ??).

Note: this function is also available as the SQL ogr_geocode() function of the SQL SQLite dialect.

The list of recognized options is :

• ADDRESSDETAILS=0 or 1: Include a breakdown of the address into elements Defaults to 1. (Known to work
with OSM and MapQuest Nominatim)

• COUNTRYCODES=code1,code2,...codeN: Limit search results to a specific country (or a list of countries).
The codes must fellow ISO 3166-1, i.e. gb for United Kingdom, de for Germany, etc.. (Known to work with
OSM and MapQuest Nominatim)

• LIMIT=number: the number of records to return. Unlimited if not specified. (Known to work with OSM and
MapQuest Nominatim)

• RAW_FEATURE=YES: to specify that a 'raw' field must be added to the returned feature with the raw XML
content.

• EXTRA_QUERY_PARAMETERS=params: additionnal parameters for the GET request.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

650 File Documentation

Parameters

hSession the geocoding session handle.
pszQuery the string to geocode.

papsz←↩

StructuredQuery
unused for now. Must be NULL.

papszOptions a list of options or NULL.

Returns

a OGR layer with the result(s), or NULL in case of error. The returned layer must be freed with OGR←↩

GeocodeFreeResult() (p. ??).

Since

GDAL 1.10

References CPLError(), and CPLEscapeString().

13.17.2.2 OGRGeocodingSessionH OGRGeocodeCreateSession (char ∗∗ papszOptions)

Creates a session handle for geocoding requests.

Available papszOptions values:

• "CACHE_FILE" : Defaults to "ogr_geocode_cache.sqlite" (or otherwise "ogr_geocode_cache.csv" if the S←↩

QLite driver isn't available). Might be any CSV, SQLite or PostgreSQL datasource.

• "READ_CACHE" : "TRUE" (default) or "FALSE"

• "WRITE_CACHE" : "TRUE" (default) or "FALSE"

• "SERVICE": "OSM_NOMINATIM" (default), "MAPQUEST_NOMINATIM", "YAHOO", "GEONAMES",
"BING" or other value. Note: "YAHOO" is no longer available as a free service.

• "EMAIL": used by OSM_NOMINATIM. Optional, but recommanded.

• "USERNAME": used by GEONAMES. Compulsory in that case.

• "KEY": used by BING. Compulsory in that case.

• "APPLICATION": used to set the User-Agent MIME header. Defaults to GDAL/OGR version string.

• "LANGUAGE": used to set the Accept-Language MIME header. Preferred language order for showing search
results.

• "DELAY": minimum delay, in second, between 2 consecutive queries. Defaults to 1.0.

• "QUERY_TEMPLATE": URL template for GET requests. Must contain one and only one occurence of %s in
it. If not specified, for SERVICE=OSM_NOMINATIM, MAPQUEST_NOMINATIM, YAHOO, GEONAMES or
BING, the URL template is hard-coded.

• "REVERSE_QUERY_TEMPLATE": URL template for GET requests for reverse geocoding. Must contain one
and only one occurence of {lon} and {lat} in it. If not specified, for SERVICE=OSM_NOMINATIM, MAPQU←↩

EST_NOMINATIM, YAHOO, GEONAMES or BING, the URL template is hard-coded.

All the above options can also be set by defining the configuration option of the same name, prefixed by OGR_G←↩

EOCODE_. For example "OGR_GEOCODE_SERVICE" for the "SERVICE" option.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.17 ogr_geocoding.h File Reference 651

Parameters

papszOptions NULL, or a NULL-terminated list of string options.

Returns

an handle that should be freed with OGRGeocodeDestroySession() (p. ??), or NULL in case of failure.

Since

GDAL 1.10

References CPLAtofM(), CPLCalloc(), CPLError(), CPLGetExtension(), CPLStrdup(), CSLTestBoolean(), and O←↩

GRGeocodeDestroySession().

13.17.2.3 void OGRGeocodeDestroySession (OGRGeocodingSessionH hSession)

Destroys a session handle for geocoding requests.

Parameters

hSession the handle to destroy.

Since

GDAL 1.10

References OGRReleaseDataSource().

Referenced by OGRGeocodeCreateSession().

13.17.2.4 void OGRGeocodeFreeResult (OGRLayerH hLayer)

Destroys the result of a geocoding request.

Parameters

hLayer the layer returned by OGRGeocode() (p. ??) or OGRGeocodeReverse() (p. ??) to destroy.

Since

GDAL 1.10

13.17.2.5 OGRLayerH OGRGeocodeReverse (OGRGeocodingSessionH hSession, double dfLon, double dfLat, char ∗∗
papszOptions)

Runs a reverse geocoding request.

If the result is not found in cache, a GET request will be sent to resolve the query.

Note: most online services have Term of Uses. You are kindly requested to read and follow them. For the Open←↩

StreetMap Nominatim service, this implementation will make sure that no more than one request is sent by second,
but there might be other restrictions that you must follow by other means.

In case of success, the return of this function is a OGR layer that contain zero, one or several features matching the
query. The returned layer must be freed with OGRGeocodeFreeResult() (p. ??).

Note: this function is also available as the SQL ogr_geocode_reverse() function of the SQL SQLite dialect.

The list of recognized options is :

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

652 File Documentation

• ZOOM=a_level: to query a specific zoom level. Only understood by the OSM Nominatim service.

• RAW_FEATURE=YES: to specify that a 'raw' field must be added to the returned feature with the raw XML
content.

• EXTRA_QUERY_PARAMETERS=params: additionnal parameters for the GET request for reverse geocod-
ing.

Parameters

hSession the geocoding session handle.
dfLon the longitude.
dfLat the latitude.

papszOptions a list of options or NULL.

Returns

a OGR layer with the result(s), or NULL in case of error. The returned layer must be freed with OGR←↩

GeocodeFreeResult() (p. ??).

Since

GDAL 1.10

References CPLError().

13.18 ogr_geometry.h File Reference

#include "ogr_core.h"
#include "ogr_spatialref.h"

Classes

• class OGRRawPoint

• class OGRGeometry

• class OGRPoint

• class OGRCurve

• class OGRLineString

• class OGRLinearRing

• class OGRSurface

• class OGRPolygon

• class OGRGeometryCollection

• class OGRMultiPolygon

• class OGRMultiPoint

• class OGRMultiLineString

• class OGRGeometryFactory

13.18.1 Detailed Description

Simple feature geometry classes.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.19 ogr_spatialref.h File Reference 653

13.19 ogr_spatialref.h File Reference

#include "ogr_srs_api.h"

Classes

• class OGR_SRSNode
• class OGRSpatialReference
• class OGRCoordinateTransformation

Functions

• OGRCoordinateTransformation ∗ OGRCreateCoordinateTransformation (OGRSpatialReference ∗po←↩

Source, OGRSpatialReference ∗poTarget)

13.19.1 Detailed Description

Coordinate systems services.

13.19.2 Function Documentation

13.19.2.1 OGRCoordinateTransformation∗ OGRCreateCoordinateTransformation (OGRSpatialReference ∗
poSource, OGRSpatialReference ∗ poTarget)

Create transformation object.

This is the same as the C function OCTNewCoordinateTransformation() (p. ??).

Input spatial reference system objects are assigned by copy (calling clone() method) and no ownership transfer
occurs.

The delete operator, or OCTDestroyCoordinateTransformation() (p. ??) should be used to destroy transformation
objects.

The PROJ.4 library must be available at run-time.

Parameters

poSource source spatial reference system.
poTarget target spatial reference system.

Returns

NULL on failure or a ready to use transformation object.

References CPLError().

Referenced by OCTNewCoordinateTransformation(), and OGRGeometry::transformTo().

13.20 ogr_srs_api.h File Reference

#include "ogr_core.h"

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

654 File Documentation

Functions

• const char ∗ OSRAxisEnumToName (OGRAxisOrientation eOrientation)

Return the string representation for the OGRAxisOrientation enumeration.

• OGRSpatialReferenceH CPL_STDCALL OSRNewSpatialReference (const char ∗)
Constructor.

• OGRSpatialReferenceH CPL_STDCALL OSRCloneGeogCS (OGRSpatialReferenceH)

Make a duplicate of the GEOGCS node of this OGRSpatialReference (p. ??) object.

• OGRSpatialReferenceH CPL_STDCALL OSRClone (OGRSpatialReferenceH)

Make a duplicate of this OGRSpatialReference (p. ??).

• void CPL_STDCALL OSRDestroySpatialReference (OGRSpatialReferenceH)

OGRSpatialReference (p. ??) destructor.

• int OSRReference (OGRSpatialReferenceH)

Increments the reference count by one.

• int OSRDereference (OGRSpatialReferenceH)

Decrements the reference count by one.

• void OSRRelease (OGRSpatialReferenceH)

Decrements the reference count by one, and destroy if zero.

• OGRErr OSRValidate (OGRSpatialReferenceH)

Validate SRS tokens.

• OGRErr OSRFixupOrdering (OGRSpatialReferenceH)

Correct parameter ordering to match CT Specification.

• OGRErr OSRFixup (OGRSpatialReferenceH)

Fixup as needed.

• OGRErr OSRStripCTParms (OGRSpatialReferenceH)

Strip OGC CT Parameters.

• OGRErr CPL_STDCALL OSRImportFromEPSG (OGRSpatialReferenceH, int)

Initialize SRS based on EPSG GCS or PCS code.

• OGRErr CPL_STDCALL OSRImportFromEPSGA (OGRSpatialReferenceH, int)

Initialize SRS based on EPSG GCS or PCS code.

• OGRErr OSRImportFromWkt (OGRSpatialReferenceH, char ∗∗)
Import from WKT string.

• OGRErr OSRImportFromProj4 (OGRSpatialReferenceH, const char ∗)
Import PROJ.4 coordinate string.

• OGRErr OSRImportFromESRI (OGRSpatialReferenceH, char ∗∗)
Import coordinate system from ESRI .prj format(s).

• OGRErr OSRImportFromPCI (OGRSpatialReferenceH hSRS, const char ∗, const char ∗, double ∗)
Import coordinate system from PCI projection definition.

• OGRErr OSRImportFromUSGS (OGRSpatialReferenceH, long, long, double ∗, long)

Import coordinate system from USGS projection definition.

• OGRErr OSRImportFromXML (OGRSpatialReferenceH, const char ∗)
Import coordinate system from XML format (GML only currently).

• OGRErr OSRImportFromMICoordSys (OGRSpatialReferenceH, const char ∗)
Import Mapinfo style CoordSys definition.

• OGRErr OSRImportFromERM (OGRSpatialReferenceH, const char ∗, const char ∗, const char ∗)
Create OGR WKT from ERMapper projection definitions.

• OGRErr OSRImportFromUrl (OGRSpatialReferenceH, const char ∗)
Set spatial reference from a URL.

• OGRErr CPL_STDCALL OSRExportToWkt (OGRSpatialReferenceH, char ∗∗)
Convert this SRS into WKT format.

• OGRErr CPL_STDCALL OSRExportToPrettyWkt (OGRSpatialReferenceH, char ∗∗, int)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.20 ogr_srs_api.h File Reference 655

Convert this SRS into a a nicely formatted WKT string for display to a person.

• OGRErr CPL_STDCALL OSRExportToProj4 (OGRSpatialReferenceH, char ∗∗)
Export coordinate system in PROJ.4 format.

• OGRErr OSRExportToPCI (OGRSpatialReferenceH, char ∗∗, char ∗∗, double ∗∗)
Export coordinate system in PCI projection definition.

• OGRErr OSRExportToUSGS (OGRSpatialReferenceH, long ∗, long ∗, double ∗∗, long ∗)
Export coordinate system in USGS GCTP projection definition.

• OGRErr OSRExportToXML (OGRSpatialReferenceH, char ∗∗, const char ∗)
Export coordinate system in XML format.

• OGRErr OSRExportToMICoordSys (OGRSpatialReferenceH, char ∗∗)
Export coordinate system in Mapinfo style CoordSys format.

• OGRErr OSRExportToERM (OGRSpatialReferenceH, char ∗, char ∗, char ∗)
Convert coordinate system to ERMapper format.

• OGRErr OSRMorphToESRI (OGRSpatialReferenceH)

Convert in place to ESRI WKT format.

• OGRErr OSRMorphFromESRI (OGRSpatialReferenceH)

Convert in place from ESRI WKT format.

• OGRErr CPL_STDCALL OSRSetAttrValue (OGRSpatialReferenceH hSRS, const char ∗pszNodePath, const
char ∗pszNewNodeValue)

Set attribute value in spatial reference.

• const char ∗CPL_STDCALL OSRGetAttrValue (OGRSpatialReferenceH hSRS, const char ∗pszName, int
iChild)

Fetch indicated attribute of named node.

• OGRErr OSRSetAngularUnits (OGRSpatialReferenceH, const char ∗, double)

Set the angular units for the geographic coordinate system.

• double OSRGetAngularUnits (OGRSpatialReferenceH, char ∗∗)
Fetch angular geographic coordinate system units.

• OGRErr OSRSetLinearUnits (OGRSpatialReferenceH, const char ∗, double)

Set the linear units for the projection.

• OGRErr OSRSetTargetLinearUnits (OGRSpatialReferenceH, const char ∗, const char ∗, double)

Set the linear units for the target node.

• OGRErr OSRSetLinearUnitsAndUpdateParameters (OGRSpatialReferenceH, const char ∗, double)

Set the linear units for the projection.

• double OSRGetLinearUnits (OGRSpatialReferenceH, char ∗∗)
Fetch linear projection units.

• double OSRGetTargetLinearUnits (OGRSpatialReferenceH, const char ∗, char ∗∗)
Fetch linear projection units.

• double OSRGetPrimeMeridian (OGRSpatialReferenceH, char ∗∗)
Fetch prime meridian info.

• int OSRIsGeographic (OGRSpatialReferenceH)

Check if geographic coordinate system.

• int OSRIsLocal (OGRSpatialReferenceH)

Check if local coordinate system.

• int OSRIsProjected (OGRSpatialReferenceH)

Check if projected coordinate system.

• int OSRIsCompound (OGRSpatialReferenceH)

Check if the coordinate system is compound.

• int OSRIsGeocentric (OGRSpatialReferenceH)

Check if geocentric coordinate system.

• int OSRIsVertical (OGRSpatialReferenceH)

Check if vertical coordinate system.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

656 File Documentation

• int OSRIsSameGeogCS (OGRSpatialReferenceH, OGRSpatialReferenceH)

Do the GeogCS'es match?

• int OSRIsSameVertCS (OGRSpatialReferenceH, OGRSpatialReferenceH)

Do the VertCS'es match?

• int OSRIsSame (OGRSpatialReferenceH, OGRSpatialReferenceH)

Do these two spatial references describe the same system ?

• OGRErr OSRSetLocalCS (OGRSpatialReferenceH hSRS, const char ∗pszName)

Set the user visible LOCAL_CS name.

• OGRErr OSRSetProjCS (OGRSpatialReferenceH hSRS, const char ∗pszName)

Set the user visible PROJCS name.

• OGRErr OSRSetGeocCS (OGRSpatialReferenceH hSRS, const char ∗pszName)

Set the user visible PROJCS name.

• OGRErr OSRSetWellKnownGeogCS (OGRSpatialReferenceH hSRS, const char ∗pszName)

Set a GeogCS based on well known name.

• OGRErr CPL_STDCALL OSRSetFromUserInput (OGRSpatialReferenceH hSRS, const char ∗)
Set spatial reference from various text formats.

• OGRErr OSRCopyGeogCSFrom (OGRSpatialReferenceH hSRS, OGRSpatialReferenceH hSrcSRS)

Copy GEOGCS from another OGRSpatialReference (p. ??).

• OGRErr OSRSetTOWGS84 (OGRSpatialReferenceH hSRS, double, double, double, double, double, double,
double)

Set the Bursa-Wolf conversion to WGS84.

• OGRErr OSRGetTOWGS84 (OGRSpatialReferenceH hSRS, double ∗, int)

Fetch TOWGS84 parameters, if available.

• OGRErr OSRSetCompoundCS (OGRSpatialReferenceH hSRS, const char ∗pszName, OGRSpatial←↩

ReferenceH hHorizSRS, OGRSpatialReferenceH hVertSRS)

Setup a compound coordinate system.

• OGRErr OSRSetGeogCS (OGRSpatialReferenceH hSRS, const char ∗pszGeogName, const char ∗psz←↩

DatumName, const char ∗pszEllipsoidName, double dfSemiMajor, double dfInvFlattening, const char ∗psz←↩

PMName, double dfPMOffset, const char ∗pszUnits, double dfConvertToRadians)

Set geographic coordinate system.

• OGRErr OSRSetVertCS (OGRSpatialReferenceH hSRS, const char ∗pszVertCSName, const char ∗psz←↩

VertDatumName, int nVertDatumType)

Setup the vertical coordinate system.

• double OSRGetSemiMajor (OGRSpatialReferenceH, OGRErr ∗)
Get spheroid semi major axis.

• double OSRGetSemiMinor (OGRSpatialReferenceH, OGRErr ∗)
Get spheroid semi minor axis.

• double OSRGetInvFlattening (OGRSpatialReferenceH, OGRErr ∗)
Get spheroid inverse flattening.

• OGRErr OSRSetAuthority (OGRSpatialReferenceH hSRS, const char ∗pszTargetKey, const char ∗psz←↩

Authority, int nCode)

Set the authority for a node.

• const char ∗ OSRGetAuthorityCode (OGRSpatialReferenceH hSRS, const char ∗pszTargetKey)

Get the authority code for a node.

• const char ∗ OSRGetAuthorityName (OGRSpatialReferenceH hSRS, const char ∗pszTargetKey)

Get the authority name for a node.

• OGRErr OSRSetProjection (OGRSpatialReferenceH, const char ∗)
Set a projection name.

• OGRErr OSRSetProjParm (OGRSpatialReferenceH, const char ∗, double)

Set a projection parameter value.

• double OSRGetProjParm (OGRSpatialReferenceH hSRS, const char ∗pszParmName, double dfDefault, O←↩

GRErr ∗)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.20 ogr_srs_api.h File Reference 657

Fetch a projection parameter value.

• OGRErr OSRSetNormProjParm (OGRSpatialReferenceH, const char ∗, double)

Set a projection parameter with a normalized value.

• double OSRGetNormProjParm (OGRSpatialReferenceH hSRS, const char ∗pszParmName, double df←↩

Default, OGRErr ∗)
This function is the same as OGRSpatialReference (p. ??)::

• OGRErr OSRSetUTM (OGRSpatialReferenceH hSRS, int nZone, int bNorth)

Set UTM projection definition.

• int OSRGetUTMZone (OGRSpatialReferenceH hSRS, int ∗pbNorth)

Get utm zone information.

• OGRErr OSRSetStatePlane (OGRSpatialReferenceH hSRS, int nZone, int bNAD83)

Set State Plane projection definition.

• OGRErr OSRSetStatePlaneWithUnits (OGRSpatialReferenceH hSRS, int nZone, int bNAD83, const char
∗pszOverrideUnitName, double dfOverrideUnit)

Set State Plane projection definition.

• OGRErr OSRAutoIdentifyEPSG (OGRSpatialReferenceH hSRS)

Set EPSG authority info if possible.

• int OSREPSGTreatsAsLatLong (OGRSpatialReferenceH hSRS)

This function returns TRUE if EPSG feels this geographic coordinate system should be treated as having lat/long
coordinate ordering.

• int OSREPSGTreatsAsNorthingEasting (OGRSpatialReferenceH hSRS)

This function returns TRUE if EPSG feels this geographic coordinate system should be treated as having nor-
thing/easting coordinate ordering.

• const char ∗ OSRGetAxis (OGRSpatialReferenceH hSRS, const char ∗pszTargetKey, int iAxis, OGRAxis←↩

Orientation ∗peOrientation)

Fetch the orientation of one axis.

• OGRErr OSRSetACEA (OGRSpatialReferenceH hSRS, double dfStdP1, double dfStdP2, double dfCenter←↩

Lat, double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetAE (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double df←↩

FalseEasting, double dfFalseNorthing)
• OGRErr OSRSetBonne (OGRSpatialReferenceH hSRS, double dfStandardParallel, double dfCentral←↩

Meridian, double dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetCEA (OGRSpatialReferenceH hSRS, double dfStdP1, double dfCentralMeridian, double

dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetCS (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double df←↩

FalseEasting, double dfFalseNorthing)
• OGRErr OSRSetEC (OGRSpatialReferenceH hSRS, double dfStdP1, double dfStdP2, double dfCenterLat,

double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetEckert (OGRSpatialReferenceH hSRS, int nVariation, double dfCentralMeridian, double

dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetEckertIV (OGRSpatialReferenceH hSRS, double dfCentralMeridian, double dfFalseEasting,

double dfFalseNorthing)
• OGRErr OSRSetEckertVI (OGRSpatialReferenceH hSRS, double dfCentralMeridian, double dfFalseEasting,

double dfFalseNorthing)
• OGRErr OSRSetEquirectangular (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenter←↩

Long, double dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetEquirectangular2 (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenter←↩

Long, double dfPseudoStdParallel1, double dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetGS (OGRSpatialReferenceH hSRS, double dfCentralMeridian, double dfFalseEasting, dou-

ble dfFalseNorthing)
• OGRErr OSRSetGH (OGRSpatialReferenceH hSRS, double dfCentralMeridian, double dfFalseEasting, dou-

ble dfFalseNorthing)
• OGRErr OSRSetIGH (OGRSpatialReferenceH hSRS)
• OGRErr OSRSetGEOS (OGRSpatialReferenceH hSRS, double dfCentralMeridian, double dfSatelliteHeight,

double dfFalseEasting, double dfFalseNorthing)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

658 File Documentation

• OGRErr OSRSetGaussSchreiberTMercator (OGRSpatialReferenceH hSRS, double dfCenterLat, double
dfCenterLong, double dfScale, double dfFalseEasting, double dfFalseNorthing)

• OGRErr OSRSetGnomonic (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, dou-
ble dfFalseEasting, double dfFalseNorthing)

• OGRErr OSRSetOM (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double df←↩

Azimuth, double dfRectToSkew, double dfScale, double dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetHOM (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double

dfAzimuth, double dfRectToSkew, double dfScale, double dfFalseEasting, double dfFalseNorthing)

Set a Hotine Oblique Mercator projection using azimuth angle.

• OGRErr OSRSetHOM2PNO (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfLat1, double df←↩

Long1, double dfLat2, double dfLong2, double dfScale, double dfFalseEasting, double dfFalseNorthing)

Set a Hotine Oblique Mercator projection using two points on projection centerline.

• OGRErr OSRSetIWMPolyconic (OGRSpatialReferenceH hSRS, double dfLat1, double dfLat2, double df←↩

CenterLong, double dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetKrovak (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double

dfAzimuth, double dfPseudoStdParallelLat, double dfScale, double dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetLAEA (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double

dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetLCC (OGRSpatialReferenceH hSRS, double dfStdP1, double dfStdP2, double dfCenterLat,

double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetLCC1SP (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double

dfScale, double dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetLCCB (OGRSpatialReferenceH hSRS, double dfStdP1, double dfStdP2, double dfCenter←↩

Lat, double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetMC (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double df←↩

FalseEasting, double dfFalseNorthing)
• OGRErr OSRSetMercator (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, dou-

ble dfScale, double dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetMollweide (OGRSpatialReferenceH hSRS, double dfCentralMeridian, double dfFalse←↩

Easting, double dfFalseNorthing)
• OGRErr OSRSetNZMG (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double

dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetOS (OGRSpatialReferenceH hSRS, double dfOriginLat, double dfCMeridian, double df←↩

Scale, double dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetOrthographic (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong,

double dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetPolyconic (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, dou-

ble dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetPS (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double df←↩

Scale, double dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetRobinson (OGRSpatialReferenceH hSRS, double dfCenterLong, double dfFalseEasting,

double dfFalseNorthing)
• OGRErr OSRSetSinusoidal (OGRSpatialReferenceH hSRS, double dfCenterLong, double dfFalseEasting,

double dfFalseNorthing)
• OGRErr OSRSetStereographic (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong,

double dfScale, double dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetSOC (OGRSpatialReferenceH hSRS, double dfLatitudeOfOrigin, double dfCentralMeridian,

double dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetTM (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double df←↩

Scale, double dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetTMVariant (OGRSpatialReferenceH hSRS, const char ∗pszVariantName, double df←↩

CenterLat, double dfCenterLong, double dfScale, double dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetTMG (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double

dfFalseEasting, double dfFalseNorthing)
• OGRErr OSRSetTMSO (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double

dfScale, double dfFalseEasting, double dfFalseNorthing)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.20 ogr_srs_api.h File Reference 659

• OGRErr OSRSetVDG (OGRSpatialReferenceH hSRS, double dfCenterLong, double dfFalseEasting, double
dfFalseNorthing)

• OGRErr OSRSetWagner (OGRSpatialReferenceH hSRS, int nVariation, double dfFalseEasting, double df←↩

FalseNorthing)

• void OSRCleanup (void)

Cleanup cached SRS related memory.

• OGRCoordinateTransformationH CPL_STDCALL OCTNewCoordinateTransformation (OGRSpatial←↩

ReferenceH hSourceSRS, OGRSpatialReferenceH hTargetSRS)

• void CPL_STDCALL OCTDestroyCoordinateTransformation (OGRCoordinateTransformationH)

OGRCoordinateTransformation (p. ??) destructor.

• char ∗∗ OPTGetProjectionMethods (void)

• char ∗∗ OPTGetParameterList (const char ∗pszProjectionMethod, char ∗∗ppszUserName)

• int OPTGetParameterInfo (const char ∗pszProjectionMethod, const char ∗pszParameterName, char
∗∗ppszUserName, char ∗∗ppszType, double ∗pdfDefaultValue)

13.20.1 Detailed Description

C spatial reference system services and defines.

See also: ogr_spatialref.h (p. ??)

13.20.2 Function Documentation

13.20.2.1 void CPL_STDCALL OCTDestroyCoordinateTransformation (OGRCoordinateTransformationH hCT)

OGRCoordinateTransformation (p. ??) destructor.

This function is the same as OGRCoordinateTransformation::DestroyCT() (p. ??)

Parameters

hCT the object to delete

13.20.2.2 OGRCoordinateTransformationH CPL_STDCALL OCTNewCoordinateTransformation (OGRSpatialReferenceH
hSourceSRS, OGRSpatialReferenceH hTargetSRS)

Create transformation object.

This is the same as the C++ function OGRCreateCoordinateTransformation() (p. ??).

Input spatial reference system objects are assigned by copy (calling clone() method) and no ownership transfer
occurs.

OCTDestroyCoordinateTransformation() (p. ??) should be used to destroy transformation objects.

The PROJ.4 library must be available at run-time.

Parameters

hSourceSRS source spatial reference system.
hTargetSRS target spatial reference system.

Returns

NULL on failure or a ready to use transformation object.

References OGRCreateCoordinateTransformation().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

660 File Documentation

13.20.2.3 int OPTGetParameterInfo (const char ∗ pszProjectionMethod, const char ∗ pszParameterName, char ∗∗
ppszUserName, char ∗∗ ppszType, double ∗ pdfDefaultValue)

Fetch information about a single parameter of a projection method.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.20 ogr_srs_api.h File Reference 661

Parameters

pszProjection←↩

Method
name of projection method for which the parameter applies. Not currently used, but in the
future this could affect defaults. This is the internal projection method name, such as "←↩

Tranverse_Mercator".
pszParameter←↩

Name
name of the parameter to fetch information about. This is the internal name such as "central←↩

_meridian" (SRS_PP_CENTRAL_MERIDIAN).
ppszUserName location at which to return the user visible name for the parameter. This pointer may be NULL

to skip the user name. The returned name should not be modified or freed.
ppszType location at which to return the parameter type for the parameter. This pointer may be NULL

to skip. The returned type should not be modified or freed. The type values are described
above.

pdfDefaultValue location at which to put the default value for this parameter. The pointer may be NULL.

Returns

TRUE if parameter found, or FALSE otherwise.

13.20.2.4 char∗∗ OPTGetParameterList (const char ∗ pszProjectionMethod, char ∗∗ ppszUserName)

Fetch the parameters for a given projection method.

Parameters

pszProjection←↩

Method
internal name of projection methods to fetch the parameters for, such as "Transverse_←↩

Mercator" (SRS_PT_TRANSVERSE_MERCATOR).
ppszUserName pointer in which to return a user visible name for the projection name. The returned string

should not be modified or freed by the caller. Legal to pass in NULL if user name not required.

Returns

returns a NULL terminated list of internal parameter names that should be freed by the caller when no longer
needed. Returns NULL if projection method is unknown.

References CPLCalloc().

13.20.2.5 char∗∗ OPTGetProjectionMethods (void)

Fetch list of possible projection methods.

Returns

Returns NULL terminated list of projection methods. This should be freed with CSLDestroy() (p. ??) when no
longer needed.

13.20.2.6 OGRErr OSRAutoIdentifyEPSG (OGRSpatialReferenceH hSRS)

Set EPSG authority info if possible.

This function is the same as OGRSpatialReference::AutoIdentifyEPSG() (p. ??).

13.20.2.7 const char∗ OSRAxisEnumToName (OGRAxisOrientation eOrientation)

Return the string representation for the OGRAxisOrientation enumeration.

For example "NORTH" for OAO_North.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

662 File Documentation

Returns

an internal string

Referenced by OGRSpatialReference::SetAxes().

13.20.2.8 void OSRCleanup (void)

Cleanup cached SRS related memory.

This function will attempt to cleanup any cache spatial reference related information, such as cached tables of
coordinate systems.

Referenced by OGRCleanupAll().

13.20.2.9 OGRSpatialReferenceH CPL_STDCALL OSRClone (OGRSpatialReferenceH hSRS)

Make a duplicate of this OGRSpatialReference (p. ??).

This function is the same as OGRSpatialReference::Clone() (p. ??)

13.20.2.10 OGRSpatialReferenceH CPL_STDCALL OSRCloneGeogCS (OGRSpatialReferenceH hSource)

Make a duplicate of the GEOGCS node of this OGRSpatialReference (p. ??) object.

This function is the same as OGRSpatialReference::CloneGeogCS() (p. ??).

13.20.2.11 OGRErr OSRCopyGeogCSFrom (OGRSpatialReferenceH hSRS, OGRSpatialReferenceH hSrcSRS)

Copy GEOGCS from another OGRSpatialReference (p. ??).

This function is the same as OGRSpatialReference::CopyGeogCSFrom() (p. ??)

13.20.2.12 int OSRDereference (OGRSpatialReferenceH hSRS)

Decrements the reference count by one.

This function is the same as OGRSpatialReference::Dereference() (p. ??)

13.20.2.13 void CPL_STDCALL OSRDestroySpatialReference (OGRSpatialReferenceH hSRS)

OGRSpatialReference (p. ??) destructor.

This function is the same as OGRSpatialReference::∼OGRSpatialReference() (p. ??) and OGRSpatial←↩

Reference::DestroySpatialReference() (p. ??)

Parameters

hSRS the object to delete

13.20.2.14 int OSREPSGTreatsAsLatLong (OGRSpatialReferenceH hSRS)

This function returns TRUE if EPSG feels this geographic coordinate system should be treated as having lat/long
coordinate ordering.

This function is the same as OGRSpatialReference::OSREPSGTreatsAsLatLong().

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.20 ogr_srs_api.h File Reference 663

13.20.2.15 int OSREPSGTreatsAsNorthingEasting (OGRSpatialReferenceH hSRS)

This function returns TRUE if EPSG feels this geographic coordinate system should be treated as having nor-
thing/easting coordinate ordering.

This function is the same as OGRSpatialReference::EPSGTreatsAsNorthingEasting() (p. ??).

Since

OGR 1.10.0

13.20.2.16 OGRErr OSRExportToERM (OGRSpatialReferenceH hSRS, char ∗ pszProj, char ∗ pszDatum, char ∗ pszUnits)

Convert coordinate system to ERMapper format.

This function is the same as OGRSpatialReference::exportToERM() (p. ??).

13.20.2.17 OGRErr OSRExportToMICoordSys (OGRSpatialReferenceH hSRS, char ∗∗ ppszReturn)

Export coordinate system in Mapinfo style CoordSys format.

This method is the equivalent of the C++ method OGRSpatialReference::exportToMICoordSys (p. ??)

13.20.2.18 OGRErr OSRExportToPCI (OGRSpatialReferenceH hSRS, char ∗∗ ppszProj, char ∗∗ ppszUnits, double ∗∗
ppadfPrjParams)

Export coordinate system in PCI projection definition.

This function is the same as OGRSpatialReference::exportToPCI() (p. ??).

13.20.2.19 OGRErr CPL_STDCALL OSRExportToPrettyWkt (OGRSpatialReferenceH hSRS, char ∗∗ ppszReturn, int bSimplify)

Convert this SRS into a a nicely formatted WKT string for display to a person.

This function is the same as OGRSpatialReference::exportToPrettyWkt() (p. ??).

13.20.2.20 OGRErr CPL_STDCALL OSRExportToProj4 (OGRSpatialReferenceH hSRS, char ∗∗ ppszReturn)

Export coordinate system in PROJ.4 format.

This function is the same as OGRSpatialReference::exportToProj4() (p. ??).

13.20.2.21 OGRErr OSRExportToUSGS (OGRSpatialReferenceH hSRS, long ∗ piProjSys, long ∗ piZone, double ∗∗
ppadfPrjParams, long ∗ piDatum)

Export coordinate system in USGS GCTP projection definition.

This function is the same as OGRSpatialReference::exportToUSGS() (p. ??).

13.20.2.22 OGRErr CPL_STDCALL OSRExportToWkt (OGRSpatialReferenceH hSRS, char ∗∗ ppszReturn)

Convert this SRS into WKT format.

This function is the same as OGRSpatialReference::exportToWkt() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

664 File Documentation

13.20.2.23 OGRErr OSRExportToXML (OGRSpatialReferenceH hSRS, char ∗∗ ppszRawXML, const char ∗ pszDialect)

Export coordinate system in XML format.

This function is the same as OGRSpatialReference::exportToXML() (p. ??).

13.20.2.24 OGRErr OSRFixup (OGRSpatialReferenceH hSRS)

Fixup as needed.

This function is the same as OGRSpatialReference::Fixup() (p. ??).

13.20.2.25 OGRErr OSRFixupOrdering (OGRSpatialReferenceH hSRS)

Correct parameter ordering to match CT Specification.

This function is the same as OGRSpatialReference::FixupOrdering() (p. ??).

13.20.2.26 double OSRGetAngularUnits (OGRSpatialReferenceH hSRS, char ∗∗ ppszName)

Fetch angular geographic coordinate system units.

This function is the same as OGRSpatialReference::GetAngularUnits() (p. ??)

13.20.2.27 const char∗ CPL_STDCALL OSRGetAttrValue (OGRSpatialReferenceH hSRS, const char ∗ pszKey, int iChild)

Fetch indicated attribute of named node.

This function is the same as OGRSpatialReference::GetAttrValue() (p. ??)

13.20.2.28 const char∗ OSRGetAuthorityCode (OGRSpatialReferenceH hSRS, const char ∗ pszTargetKey)

Get the authority code for a node.

This function is the same as OGRSpatialReference::GetAuthorityCode() (p. ??).

13.20.2.29 const char∗ OSRGetAuthorityName (OGRSpatialReferenceH hSRS, const char ∗ pszTargetKey)

Get the authority name for a node.

This function is the same as OGRSpatialReference::GetAuthorityName() (p. ??).

13.20.2.30 const char∗ OSRGetAxis (OGRSpatialReferenceH hSRS, const char ∗ pszTargetKey, int iAxis, OGRAxisOrientation
∗ peOrientation)

Fetch the orientation of one axis.

This method is the equivalent of the C++ method OGRSpatialReference::GetAxis (p. ??)

13.20.2.31 double OSRGetInvFlattening (OGRSpatialReferenceH hSRS, OGRErr ∗ pnErr)

Get spheroid inverse flattening.

This function is the same as OGRSpatialReference::GetInvFlattening() (p. ??)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.20 ogr_srs_api.h File Reference 665

13.20.2.32 double OSRGetLinearUnits (OGRSpatialReferenceH hSRS, char ∗∗ ppszName)

Fetch linear projection units.

This function is the same as OGRSpatialReference::GetLinearUnits() (p. ??)

13.20.2.33 double OSRGetNormProjParm (OGRSpatialReferenceH hSRS, const char ∗ pszName, double dfDefaultValue,
OGRErr ∗ pnErr)

This function is the same as OGRSpatialReference (p. ??)::

This function is the same as OGRSpatialReference::GetNormProjParm() (p. ??)

13.20.2.34 double OSRGetPrimeMeridian (OGRSpatialReferenceH hSRS, char ∗∗ ppszName)

Fetch prime meridian info.

This function is the same as OGRSpatialReference::GetPrimeMeridian() (p. ??)

13.20.2.35 double OSRGetProjParm (OGRSpatialReferenceH hSRS, const char ∗ pszName, double dfDefaultValue, OGRErr ∗
pnErr)

Fetch a projection parameter value.

This function is the same as OGRSpatialReference::GetProjParm() (p. ??)

13.20.2.36 double OSRGetSemiMajor (OGRSpatialReferenceH hSRS, OGRErr ∗ pnErr)

Get spheroid semi major axis.

This function is the same as OGRSpatialReference::GetSemiMajor() (p. ??)

13.20.2.37 double OSRGetSemiMinor (OGRSpatialReferenceH hSRS, OGRErr ∗ pnErr)

Get spheroid semi minor axis.

This function is the same as OGRSpatialReference::GetSemiMinor() (p. ??)

13.20.2.38 double OSRGetTargetLinearUnits (OGRSpatialReferenceH hSRS, const char ∗ pszTargetKey, char ∗∗ ppszName)

Fetch linear projection units.

This function is the same as OGRSpatialReference::GetTargetLinearUnits() (p. ??)

Since

OGR 1.9.0

13.20.2.39 OGRErr OSRGetTOWGS84 (OGRSpatialReferenceH hSRS, double ∗ padfCoeff, int nCoeffCount)

Fetch TOWGS84 parameters, if available.

This function is the same as OGRSpatialReference::GetTOWGS84() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

666 File Documentation

13.20.2.40 int OSRGetUTMZone (OGRSpatialReferenceH hSRS, int ∗ pbNorth)

Get utm zone information.

This is the same as the C++ method OGRSpatialReference::GetUTMZone() (p. ??)

13.20.2.41 OGRErr CPL_STDCALL OSRImportFromEPSG (OGRSpatialReferenceH hSRS, int nCode)

Initialize SRS based on EPSG GCS or PCS code.

This function is the same as OGRSpatialReference::importFromEPSG() (p. ??).

13.20.2.42 OGRErr CPL_STDCALL OSRImportFromEPSGA (OGRSpatialReferenceH hSRS, int nCode)

Initialize SRS based on EPSG GCS or PCS code.

This function is the same as OGRSpatialReference::importFromEPSGA() (p. ??).

13.20.2.43 OGRErr OSRImportFromERM (OGRSpatialReferenceH hSRS, const char ∗ pszProj, const char ∗ pszDatum, const
char ∗ pszUnits)

Create OGR WKT from ERMapper projection definitions.

This function is the same as OGRSpatialReference::importFromERM() (p. ??).

13.20.2.44 OGRErr OSRImportFromESRI (OGRSpatialReferenceH hSRS, char ∗∗ papszPrj)

Import coordinate system from ESRI .prj format(s).

This function is the same as the C++ method OGRSpatialReference::importFromESRI() (p. ??)

13.20.2.45 OGRErr OSRImportFromMICoordSys (OGRSpatialReferenceH hSRS, const char ∗ pszCoordSys)

Import Mapinfo style CoordSys definition.

This method is the equivalent of the C++ method OGRSpatialReference::importFromMICoordSys (p. ??)

13.20.2.46 OGRErr OSRImportFromPCI (OGRSpatialReferenceH hSRS, const char ∗ pszProj, const char ∗ pszUnits, double ∗
padfPrjParams)

Import coordinate system from PCI projection definition.

This function is the same as OGRSpatialReference::importFromPCI() (p. ??).

13.20.2.47 OGRErr OSRImportFromProj4 (OGRSpatialReferenceH hSRS, const char ∗ pszProj4)

Import PROJ.4 coordinate string.

This function is the same as OGRSpatialReference::importFromProj4() (p. ??).

13.20.2.48 OGRErr OSRImportFromUrl (OGRSpatialReferenceH hSRS, const char ∗ pszUrl)

Set spatial reference from a URL.

This function is the same as OGRSpatialReference::importFromUrl() (p. ??)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.20 ogr_srs_api.h File Reference 667

13.20.2.49 OGRErr OSRImportFromUSGS (OGRSpatialReferenceH hSRS, long iProjsys, long iZone, double ∗ padfPrjParams,
long iDatum)

Import coordinate system from USGS projection definition.

This function is the same as OGRSpatialReference::importFromUSGS() (p. ??).

13.20.2.50 OGRErr OSRImportFromWkt (OGRSpatialReferenceH hSRS, char ∗∗ ppszInput)

Import from WKT string.

This function is the same as OGRSpatialReference::importFromWkt() (p. ??).

13.20.2.51 OGRErr OSRImportFromXML (OGRSpatialReferenceH hSRS, const char ∗ pszXML)

Import coordinate system from XML format (GML only currently).

This function is the same as OGRSpatialReference::importFromXML() (p. ??).

13.20.2.52 int OSRIsCompound (OGRSpatialReferenceH hSRS)

Check if the coordinate system is compound.

This function is the same as OGRSpatialReference::IsCompound() (p. ??).

13.20.2.53 int OSRIsGeocentric (OGRSpatialReferenceH hSRS)

Check if geocentric coordinate system.

This function is the same as OGRSpatialReference::IsGeocentric() (p. ??).

Since

OGR 1.9.0

13.20.2.54 int OSRIsGeographic (OGRSpatialReferenceH hSRS)

Check if geographic coordinate system.

This function is the same as OGRSpatialReference::IsGeographic() (p. ??).

13.20.2.55 int OSRIsLocal (OGRSpatialReferenceH hSRS)

Check if local coordinate system.

This function is the same as OGRSpatialReference::IsLocal() (p. ??).

13.20.2.56 int OSRIsProjected (OGRSpatialReferenceH hSRS)

Check if projected coordinate system.

This function is the same as OGRSpatialReference::IsProjected() (p. ??).

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

668 File Documentation

13.20.2.57 int OSRIsSame (OGRSpatialReferenceH hSRS1, OGRSpatialReferenceH hSRS2)

Do these two spatial references describe the same system ?

This function is the same as OGRSpatialReference::IsSame() (p. ??).

13.20.2.58 int OSRIsSameGeogCS (OGRSpatialReferenceH hSRS1, OGRSpatialReferenceH hSRS2)

Do the GeogCS'es match?

This function is the same as OGRSpatialReference::IsSameGeogCS() (p. ??).

13.20.2.59 int OSRIsSameVertCS (OGRSpatialReferenceH hSRS1, OGRSpatialReferenceH hSRS2)

Do the VertCS'es match?

This function is the same as OGRSpatialReference::IsSameVertCS() (p. ??).

13.20.2.60 int OSRIsVertical (OGRSpatialReferenceH hSRS)

Check if vertical coordinate system.

This function is the same as OGRSpatialReference::IsVertical() (p. ??).

Since

OGR 1.8.0

13.20.2.61 OGRErr OSRMorphFromESRI (OGRSpatialReferenceH hSRS)

Convert in place from ESRI WKT format.

This function is the same as the C++ method OGRSpatialReference::morphFromESRI() (p. ??)

13.20.2.62 OGRErr OSRMorphToESRI (OGRSpatialReferenceH hSRS)

Convert in place to ESRI WKT format.

This function is the same as the C++ method OGRSpatialReference::morphToESRI() (p. ??)

13.20.2.63 OGRSpatialReferenceH CPL_STDCALL OSRNewSpatialReference (const char ∗ pszWKT)

Constructor.

This function is the same as OGRSpatialReference::OGRSpatialReference()

References OGRSpatialReference::importFromWkt().

13.20.2.64 int OSRReference (OGRSpatialReferenceH hSRS)

Increments the reference count by one.

This function is the same as OGRSpatialReference::Reference() (p. ??)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.20 ogr_srs_api.h File Reference 669

13.20.2.65 void OSRRelease (OGRSpatialReferenceH hSRS)

Decrements the reference count by one, and destroy if zero.

This function is the same as OGRSpatialReference::Release() (p. ??)

13.20.2.66 OGRErr OSRSetACEA (OGRSpatialReferenceH hSRS, double dfStdP1, double dfStdP2, double dfCenterLat,
double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

Albers Conic Equal Area

13.20.2.67 OGRErr OSRSetAE (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double
dfFalseEasting, double dfFalseNorthing)

Azimuthal Equidistant

13.20.2.68 OGRErr OSRSetAngularUnits (OGRSpatialReferenceH hSRS, const char ∗ pszUnits, double dfInRadians)

Set the angular units for the geographic coordinate system.

This function is the same as OGRSpatialReference::SetAngularUnits() (p. ??)

13.20.2.69 OGRErr CPL_STDCALL OSRSetAttrValue (OGRSpatialReferenceH hSRS, const char ∗ pszPath, const char ∗
pszValue)

Set attribute value in spatial reference.

This function is the same as OGRSpatialReference::SetNode() (p. ??)

13.20.2.70 OGRErr OSRSetAuthority (OGRSpatialReferenceH hSRS, const char ∗ pszTargetKey, const char ∗ pszAuthority,
int nCode)

Set the authority for a node.

This function is the same as OGRSpatialReference::SetAuthority() (p. ??).

13.20.2.71 OGRErr OSRSetBonne (OGRSpatialReferenceH hSRS, double dfStandardParallel, double dfCentralMeridian,
double dfFalseEasting, double dfFalseNorthing)

Bonne

13.20.2.72 OGRErr OSRSetCEA (OGRSpatialReferenceH hSRS, double dfStdP1, double dfCentralMeridian, double
dfFalseEasting, double dfFalseNorthing)

Cylindrical Equal Area

13.20.2.73 OGRErr OSRSetCompoundCS (OGRSpatialReferenceH hSRS, const char ∗ pszName, OGRSpatialReferenceH
hHorizSRS, OGRSpatialReferenceH hVertSRS)

Setup a compound coordinate system.

This function is the same as OGRSpatialReference::SetCompoundCS() (p. ??)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

670 File Documentation

13.20.2.74 OGRErr OSRSetCS (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double
dfFalseEasting, double dfFalseNorthing)

Cassini-Soldner

13.20.2.75 OGRErr OSRSetEC (OGRSpatialReferenceH hSRS, double dfStdP1, double dfStdP2, double dfCenterLat, double
dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

Equidistant Conic

13.20.2.76 OGRErr OSRSetEckert (OGRSpatialReferenceH hSRS, int nVariation, double dfCentralMeridian, double
dfFalseEasting, double dfFalseNorthing)

Eckert I-VI

13.20.2.77 OGRErr OSRSetEckertIV (OGRSpatialReferenceH hSRS, double dfCentralMeridian, double dfFalseEasting, double
dfFalseNorthing)

Eckert IV

13.20.2.78 OGRErr OSRSetEckertVI (OGRSpatialReferenceH hSRS, double dfCentralMeridian, double dfFalseEasting, double
dfFalseNorthing)

Eckert VI

13.20.2.79 OGRErr OSRSetEquirectangular (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double
dfFalseEasting, double dfFalseNorthing)

Equirectangular

13.20.2.80 OGRErr OSRSetEquirectangular2 (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong,
double dfPseudoStdParallel1, double dfFalseEasting, double dfFalseNorthing)

Equirectangular generalized form

13.20.2.81 OGRErr CPL_STDCALL OSRSetFromUserInput (OGRSpatialReferenceH hSRS, const char ∗ pszDef)

Set spatial reference from various text formats.

This function is the same as OGRSpatialReference::SetFromUserInput() (p. ??)

13.20.2.82 OGRErr OSRSetGaussSchreiberTMercator (OGRSpatialReferenceH hSRS, double dfCenterLat, double
dfCenterLong, double dfScale, double dfFalseEasting, double dfFalseNorthing)

Gauss Schreiber Transverse Mercator

13.20.2.83 OGRErr OSRSetGeocCS (OGRSpatialReferenceH hSRS, const char ∗ pszName)

Set the user visible PROJCS name.

This function is the same as OGRSpatialReference::SetGeocCS() (p. ??)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.20 ogr_srs_api.h File Reference 671

Since

OGR 1.9.0

13.20.2.84 OGRErr OSRSetGeogCS (OGRSpatialReferenceH hSRS, const char ∗ pszGeogName, const char ∗ pszDatumName,
const char ∗ pszSpheroidName, double dfSemiMajor, double dfInvFlattening, const char ∗ pszPMName, double
dfPMOffset, const char ∗ pszAngularUnits, double dfConvertToRadians)

Set geographic coordinate system.

This function is the same as OGRSpatialReference::SetGeogCS() (p. ??)

13.20.2.85 OGRErr OSRSetGEOS (OGRSpatialReferenceH hSRS, double dfCentralMeridian, double dfSatelliteHeight, double
dfFalseEasting, double dfFalseNorthing)

GEOS - Geostationary Satellite View

13.20.2.86 OGRErr OSRSetGH (OGRSpatialReferenceH hSRS, double dfCentralMeridian, double dfFalseEasting, double
dfFalseNorthing)

Goode Homolosine

13.20.2.87 OGRErr OSRSetGnomonic (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double
dfFalseEasting, double dfFalseNorthing)

Gnomonic

13.20.2.88 OGRErr OSRSetGS (OGRSpatialReferenceH hSRS, double dfCentralMeridian, double dfFalseEasting, double
dfFalseNorthing)

Gall Stereograpic

13.20.2.89 OGRErr OSRSetHOM (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double dfAzimuth,
double dfRectToSkew, double dfScale, double dfFalseEasting, double dfFalseNorthing)

Set a Hotine Oblique Mercator projection using azimuth angle.

Hotine Oblique Mercator using azimuth angle

This is the same as the C++ method OGRSpatialReference::SetHOM() (p. ??)

13.20.2.90 OGRErr OSRSetHOM2PNO (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfLat1, double dfLong1,
double dfLat2, double dfLong2, double dfScale, double dfFalseEasting, double dfFalseNorthing)

Set a Hotine Oblique Mercator projection using two points on projection centerline.

Hotine Oblique Mercator using two points on centerline

This is the same as the C++ method OGRSpatialReference::SetHOM2PNO() (p. ??)

13.20.2.91 OGRErr OSRSetIGH (OGRSpatialReferenceH hSRS)

Interrupted Goode Homolosine

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

672 File Documentation

13.20.2.92 OGRErr OSRSetIWMPolyconic (OGRSpatialReferenceH hSRS, double dfLat1, double dfLat2, double dfCenterLong,
double dfFalseEasting, double dfFalseNorthing)

International Map of the World Polyconic

13.20.2.93 OGRErr OSRSetKrovak (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double
dfAzimuth, double dfPseudoStdParallelLat, double dfScale, double dfFalseEasting, double dfFalseNorthing)

Krovak Oblique Conic Conformal

13.20.2.94 OGRErr OSRSetLAEA (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double
dfFalseEasting, double dfFalseNorthing)

Lambert Azimuthal Equal-Area

13.20.2.95 OGRErr OSRSetLCC (OGRSpatialReferenceH hSRS, double dfStdP1, double dfStdP2, double dfCenterLat, double
dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

Lambert Conformal Conic

13.20.2.96 OGRErr OSRSetLCC1SP (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double
dfScale, double dfFalseEasting, double dfFalseNorthing)

Lambert Conformal Conic 1SP

13.20.2.97 OGRErr OSRSetLCCB (OGRSpatialReferenceH hSRS, double dfStdP1, double dfStdP2, double dfCenterLat,
double dfCenterLong, double dfFalseEasting, double dfFalseNorthing)

Lambert Conformal Conic (Belgium)

13.20.2.98 OGRErr OSRSetLinearUnits (OGRSpatialReferenceH hSRS, const char ∗ pszUnits, double dfInMeters)

Set the linear units for the projection.

This function is the same as OGRSpatialReference::SetLinearUnits() (p. ??)

13.20.2.99 OGRErr OSRSetLinearUnitsAndUpdateParameters (OGRSpatialReferenceH hSRS, const char ∗ pszUnits, double
dfInMeters)

Set the linear units for the projection.

This function is the same as OGRSpatialReference::SetLinearUnitsAndUpdateParameters() (p. ??)

13.20.2.100 OGRErr OSRSetLocalCS (OGRSpatialReferenceH hSRS, const char ∗ pszName)

Set the user visible LOCAL_CS name.

This function is the same as OGRSpatialReference::SetLocalCS() (p. ??)

13.20.2.101 OGRErr OSRSetMC (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double
dfFalseEasting, double dfFalseNorthing)

Miller Cylindrical

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.20 ogr_srs_api.h File Reference 673

13.20.2.102 OGRErr OSRSetMercator (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double
dfScale, double dfFalseEasting, double dfFalseNorthing)

Mercator

13.20.2.103 OGRErr OSRSetMollweide (OGRSpatialReferenceH hSRS, double dfCentralMeridian, double dfFalseEasting,
double dfFalseNorthing)

Mollweide

13.20.2.104 OGRErr OSRSetNormProjParm (OGRSpatialReferenceH hSRS, const char ∗ pszParmName, double dfValue)

Set a projection parameter with a normalized value.

This function is the same as OGRSpatialReference::SetNormProjParm() (p. ??)

13.20.2.105 OGRErr OSRSetNZMG (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double
dfFalseEasting, double dfFalseNorthing)

New Zealand Map Grid

13.20.2.106 OGRErr OSRSetOM (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double dfAzimuth,
double dfRectToSkew, double dfScale, double dfFalseEasting, double dfFalseNorthing)

Oblique Mercator (aka HOM (variant B)

13.20.2.107 OGRErr OSRSetOrthographic (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double
dfFalseEasting, double dfFalseNorthing)

Orthographic

13.20.2.108 OGRErr OSRSetOS (OGRSpatialReferenceH hSRS, double dfOriginLat, double dfCMeridian, double dfScale,
double dfFalseEasting, double dfFalseNorthing)

Oblique Stereographic

13.20.2.109 OGRErr OSRSetPolyconic (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double
dfFalseEasting, double dfFalseNorthing)

Polyconic

13.20.2.110 OGRErr OSRSetProjCS (OGRSpatialReferenceH hSRS, const char ∗ pszName)

Set the user visible PROJCS name.

This function is the same as OGRSpatialReference::SetProjCS() (p. ??)

13.20.2.111 OGRErr OSRSetProjection (OGRSpatialReferenceH hSRS, const char ∗ pszProjection)

Set a projection name.

This function is the same as OGRSpatialReference::SetProjection() (p. ??)

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

674 File Documentation

13.20.2.112 OGRErr OSRSetProjParm (OGRSpatialReferenceH hSRS, const char ∗ pszParmName, double dfValue)

Set a projection parameter value.

This function is the same as OGRSpatialReference::SetProjParm() (p. ??)

13.20.2.113 OGRErr OSRSetPS (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double dfScale,
double dfFalseEasting, double dfFalseNorthing)

Polar Stereographic

13.20.2.114 OGRErr OSRSetRobinson (OGRSpatialReferenceH hSRS, double dfCenterLong, double dfFalseEasting, double
dfFalseNorthing)

Robinson

13.20.2.115 OGRErr OSRSetSinusoidal (OGRSpatialReferenceH hSRS, double dfCenterLong, double dfFalseEasting, double
dfFalseNorthing)

Sinusoidal

13.20.2.116 OGRErr OSRSetSOC (OGRSpatialReferenceH hSRS, double dfLatitudeOfOrigin, double dfCentralMeridian, double
dfFalseEasting, double dfFalseNorthing)

Swiss Oblique Cylindrical

13.20.2.117 OGRErr OSRSetStatePlane (OGRSpatialReferenceH hSRS, int nZone, int bNAD83)

Set State Plane projection definition.

This function is the same as OGRSpatialReference::SetStatePlane() (p. ??).

13.20.2.118 OGRErr OSRSetStatePlaneWithUnits (OGRSpatialReferenceH hSRS, int nZone, int bNAD83, const char ∗
pszOverrideUnitName, double dfOverrideUnit)

Set State Plane projection definition.

This function is the same as OGRSpatialReference::SetStatePlane() (p. ??).

13.20.2.119 OGRErr OSRSetStereographic (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double
dfScale, double dfFalseEasting, double dfFalseNorthing)

Stereographic

13.20.2.120 OGRErr OSRSetTargetLinearUnits (OGRSpatialReferenceH hSRS, const char ∗ pszTargetKey, const char ∗
pszUnits, double dfInMeters)

Set the linear units for the target node.

This function is the same as OGRSpatialReference::SetTargetLinearUnits() (p. ??)

Since

OGR 1.9.0

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

13.20 ogr_srs_api.h File Reference 675

13.20.2.121 OGRErr OSRSetTM (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double dfScale,
double dfFalseEasting, double dfFalseNorthing)

Transverse Mercator

Special processing available for Transverse Mercator with GDAL >= 1.10 and PROJ >= 4.8 : see OGRSpatial←↩

Reference::exportToProj4() (p. ??).

13.20.2.122 OGRErr OSRSetTMG (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double
dfFalseEasting, double dfFalseNorthing)

Tunesia Mining Grid

13.20.2.123 OGRErr OSRSetTMSO (OGRSpatialReferenceH hSRS, double dfCenterLat, double dfCenterLong, double dfScale,
double dfFalseEasting, double dfFalseNorthing)

Transverse Mercator (South Oriented)

13.20.2.124 OGRErr OSRSetTMVariant (OGRSpatialReferenceH hSRS, const char ∗ pszVariantName, double dfCenterLat,
double dfCenterLong, double dfScale, double dfFalseEasting, double dfFalseNorthing)

Transverse Mercator variant

13.20.2.125 OGRErr OSRSetTOWGS84 (OGRSpatialReferenceH hSRS, double dfDX, double dfDY, double dfDZ, double dfEX,
double dfEY, double dfEZ, double dfPPM)

Set the Bursa-Wolf conversion to WGS84.

This function is the same as OGRSpatialReference::SetTOWGS84() (p. ??).

13.20.2.126 OGRErr OSRSetUTM (OGRSpatialReferenceH hSRS, int nZone, int bNorth)

Set UTM projection definition.

This is the same as the C++ method OGRSpatialReference::SetUTM() (p. ??)

13.20.2.127 OGRErr OSRSetVDG (OGRSpatialReferenceH hSRS, double dfCenterLong, double dfFalseEasting, double
dfFalseNorthing)

VanDerGrinten

13.20.2.128 OGRErr OSRSetVertCS (OGRSpatialReferenceH hSRS, const char ∗ pszVertCSName, const char ∗
pszVertDatumName, int nVertDatumType)

Setup the vertical coordinate system.

This function is the same as OGRSpatialReference::SetVertCS() (p. ??)

Since

OGR 1.9.0

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

676 File Documentation

13.20.2.129 OGRErr OSRSetWagner (OGRSpatialReferenceH hSRS, int nVariation, double dfFalseEasting, double
dfFalseNorthing)

Wagner I – VII

13.20.2.130 OGRErr OSRSetWellKnownGeogCS (OGRSpatialReferenceH hSRS, const char ∗ pszName)

Set a GeogCS based on well known name.

This function is the same as OGRSpatialReference::SetWellKnownGeogCS() (p. ??)

13.20.2.131 OGRErr OSRStripCTParms (OGRSpatialReferenceH hSRS)

Strip OGC CT Parameters.

This function is the same as OGRSpatialReference::StripCTParms() (p. ??).

13.20.2.132 OGRErr OSRValidate (OGRSpatialReferenceH hSRS)

Validate SRS tokens.

This function is the same as the C++ method OGRSpatialReference::Validate() (p. ??).

13.21 ogrsf_frmts.h File Reference

#include "cpl_progress.h"
#include "ogr_feature.h"
#include "ogr_featurestyle.h"

Classes

• class OGRLayer
• class OGRDataSource
• class OGRSFDriver
• class OGRSFDriverRegistrar

Functions

• void OGRRegisterAll ()

Register all drivers.

13.21.1 Detailed Description

Classes related to registration of format support, and opening datasets.

Generated on Sat Oct 24 2015 02:51:24 for OGR by Doxygen

