Package mdp :: Package nodes :: Class RBFExpansionNode
[hide private]
[frames] | no frames]

Class RBFExpansionNode


Expand input space with Gaussian Radial Basis Functions (RBFs).

The input data is filtered through a set of unnormalized Gaussian
filters, i.e.::

   y_j = exp(-0.5/s_j * ||x - c_j||^2)

for isotropic RBFs, or more in general::

   y_j = exp(-0.5 * (x-c_j)^T S^-1 (x-c_j))

for anisotropic RBFs.

Instance Methods [hide private]
 
__init__(self, centers, sizes, dtype=None)
:Arguments: centers Centers of the RBFs.
 
_execute(self, x)
 
_init_RBF(self, centers, sizes)
 
execute(self, x)
Process the data contained in `x`.

Inherited from unreachable.newobject: __long__, __native__, __nonzero__, __unicode__, next

Inherited from object: __delattr__, __format__, __getattribute__, __hash__, __new__, __reduce__, __reduce_ex__, __setattr__, __sizeof__, __subclasshook__

    Inherited from Node
 
__add__(self, other)
 
__call__(self, x, *args, **kwargs)
Calling an instance of `Node` is equivalent to calling its `execute` method.
 
__repr__(self)
repr(x)
 
__str__(self)
str(x)
 
_check_input(self, x)
 
_check_output(self, y)
 
_check_train_args(self, x, *args, **kwargs)
 
_get_supported_dtypes(self)
Return the list of dtypes supported by this node.
 
_get_train_seq(self)
 
_if_training_stop_training(self)
 
_inverse(self, x)
 
_pre_execution_checks(self, x)
This method contains all pre-execution checks.
 
_pre_inversion_checks(self, y)
This method contains all pre-inversion checks.
 
_refcast(self, x)
Helper function to cast arrays to the internal dtype.
 
_set_dtype(self, t)
 
_set_input_dim(self, n)
 
_set_output_dim(self, n)
 
_stop_training(self, *args, **kwargs)
 
_train(self, x)
 
copy(self, protocol=None)
Return a deep copy of the node.
 
get_current_train_phase(self)
Return the index of the current training phase.
 
get_dtype(self)
Return dtype.
 
get_input_dim(self)
Return input dimensions.
 
get_output_dim(self)
Return output dimensions.
 
get_remaining_train_phase(self)
Return the number of training phases still to accomplish.
 
get_supported_dtypes(self)
Return dtypes supported by the node as a list of :numpy:`dtype` objects.
 
has_multiple_training_phases(self)
Return True if the node has multiple training phases.
 
inverse(self, y, *args, **kwargs)
Invert `y`.
 
is_training(self)
Return True if the node is in the training phase, False otherwise.
 
save(self, filename, protocol=-1)
Save a pickled serialization of the node to `filename`.
 
set_dtype(self, t)
Set internal structures' dtype.
 
set_input_dim(self, n)
Set input dimensions.
 
set_output_dim(self, n)
Set output dimensions.
 
stop_training(self, *args, **kwargs)
Stop the training phase.
 
train(self, x, *args, **kwargs)
Update the internal structures according to the input data `x`.
Static Methods [hide private]
 
is_invertible()
Return True if the node can be inverted, False otherwise.
 
is_trainable()
Return True if the node can be trained, False otherwise.
Properties [hide private]

Inherited from object: __class__

    Inherited from Node
  _train_seq
List of tuples::
  dtype
dtype
  input_dim
Input dimensions
  output_dim
Output dimensions
  supported_dtypes
Supported dtypes
Method Details [hide private]

__init__(self, centers, sizes, dtype=None)
(Constructor)

 

:Arguments:
  centers
    Centers of the RBFs. The dimensionality
    of the centers determines the input dimensionality;
    the number of centers determines the output
    dimensionalities
  sizes
    Radius of the RBFs.

    ``sizes`` is a list with one element for each RBF, either
    a scalar (the variance of the RBFs for isotropic RBFs)
    or a covariance matrix (for anisotropic RBFs).
    If ``sizes`` is not a list, the same variance/covariance
    is used for all RBFs.

Overrides: object.__init__

_execute(self, x)

 
Overrides: Node._execute

_init_RBF(self, centers, sizes)

 

execute(self, x)

 
Process the data contained in `x`.

If the object is still in the training phase, the function
`stop_training` will be called.
`x` is a matrix having different variables on different columns
and observations on the rows.

By default, subclasses should overwrite `_execute` to implement
their execution phase. The docstring of the `_execute` method
overwrites this docstring.

Overrides: Node.execute

is_invertible()
Static Method

 
Return True if the node can be inverted, False otherwise.

Overrides: Node.is_invertible
(inherited documentation)

is_trainable()
Static Method

 
Return True if the node can be trained, False otherwise.

Overrides: Node.is_trainable
(inherited documentation)