![]() |
NFFT
3.3.1
|
00001 /* 00002 * Copyright (c) 2002, 2016 Jens Keiner, Stefan Kunis, Daniel Potts 00003 * 00004 * This program is free software; you can redistribute it and/or modify it under 00005 * the terms of the GNU General Public License as published by the Free Software 00006 * Foundation; either version 2 of the License, or (at your option) any later 00007 * version. 00008 * 00009 * This program is distributed in the hope that it will be useful, but WITHOUT 00010 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS 00011 * FOR A PARTICULAR PURPOSE. See the GNU General Public License for more 00012 * details. 00013 * 00014 * You should have received a copy of the GNU General Public License along with 00015 * this program; if not, write to the Free Software Foundation, Inc., 51 00016 * Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. 00017 */ 00018 #include <stdlib.h> 00019 #include <math.h> 00020 #include <limits.h> 00021 #include <complex.h> 00022 00023 #include "nfft3.h" 00024 00025 #ifndef MAX 00026 #define MAX(a,b) (((a)>(b))?(a):(b)) 00027 #endif 00028 00035 static void reconstruct(char* filename,int N,int M,int iteration , int weight) 00036 { 00037 int j,k,l; 00038 double t0, t1; 00039 double time,min_time,max_time,min_inh,max_inh; 00040 double t,real,imag; 00041 double w,epsilon=0.0000003; /* epsilon is a the break criterium for 00042 the iteration */; 00043 mri_inh_3d_plan my_plan; 00044 solver_plan_complex my_iplan; 00045 FILE* fp,*fw,*fout_real,*fout_imag,*finh,*ftime; 00046 int my_N[3],my_n[3]; 00047 int flags = PRE_PHI_HUT| PRE_PSI |MALLOC_X| MALLOC_F_HAT| 00048 MALLOC_F| FFTW_INIT| FFT_OUT_OF_PLACE; 00049 unsigned infft_flags = CGNR | PRECOMPUTE_DAMP; 00050 00051 double Ts; 00052 double W; 00053 int N3; 00054 int m=2; 00055 double sigma = 1.25; 00056 00057 ftime=fopen("readout_time.dat","r"); 00058 finh=fopen("inh.dat","r"); 00059 00060 min_time=INT_MAX; max_time=INT_MIN; 00061 for(j=0;j<M;j++) 00062 { 00063 fscanf(ftime,"%le ",&time); 00064 if(time<min_time) 00065 min_time = time; 00066 if(time>max_time) 00067 max_time = time; 00068 } 00069 00070 fclose(ftime); 00071 00072 Ts=(min_time+max_time)/2.0; 00073 00074 00075 min_inh=INT_MAX; max_inh=INT_MIN; 00076 for(j=0;j<N*N;j++) 00077 { 00078 fscanf(finh,"%le ",&w); 00079 if(w<min_inh) 00080 min_inh = w; 00081 if(w>max_inh) 00082 max_inh = w; 00083 } 00084 fclose(finh); 00085 00086 N3=ceil((MAX(fabs(min_inh),fabs(max_inh))*(max_time-min_time)/2.0+m/(2*sigma))*4*sigma); 00087 /* N3 has to be even */ 00088 if(N3%2!=0) 00089 N3++; 00090 00091 W= MAX(fabs(min_inh),fabs(max_inh))/(0.5-((double) m)/N3); 00092 00093 my_N[0]=N;my_n[0]=ceil(N*sigma); 00094 my_N[1]=N; my_n[1]=ceil(N*sigma); 00095 my_N[2]=N3; my_n[2]=ceil(N3*sigma); 00096 00097 /* initialise nfft */ 00098 mri_inh_3d_init_guru(&my_plan, my_N, M, my_n, m, sigma, flags, 00099 FFTW_MEASURE| FFTW_DESTROY_INPUT); 00100 00101 if (weight) 00102 infft_flags = infft_flags | PRECOMPUTE_WEIGHT; 00103 00104 /* initialise my_iplan, advanced */ 00105 solver_init_advanced_complex(&my_iplan,(nfft_mv_plan_complex*)(&my_plan), infft_flags ); 00106 00107 /* get the weights */ 00108 if(my_iplan.flags & PRECOMPUTE_WEIGHT) 00109 { 00110 fw=fopen("weights.dat","r"); 00111 for(j=0;j<my_plan.M_total;j++) 00112 { 00113 fscanf(fw,"%le ",&my_iplan.w[j]); 00114 } 00115 fclose(fw); 00116 } 00117 00118 /* get the damping factors */ 00119 if(my_iplan.flags & PRECOMPUTE_DAMP) 00120 { 00121 for(j=0;j<N;j++){ 00122 for(k=0;k<N;k++) { 00123 int j2= j-N/2; 00124 int k2= k-N/2; 00125 double r=sqrt(j2*j2+k2*k2); 00126 if(r>(double) N/2) 00127 my_iplan.w_hat[j*N+k]=0.0; 00128 else 00129 my_iplan.w_hat[j*N+k]=1.0; 00130 } 00131 } 00132 } 00133 00134 fp=fopen(filename,"r"); 00135 ftime=fopen("readout_time.dat","r"); 00136 00137 for(j=0;j<my_plan.M_total;j++) 00138 { 00139 fscanf(fp,"%le %le %le %le",&my_plan.plan.x[3*j+0],&my_plan.plan.x[3*j+1],&real,&imag); 00140 my_iplan.y[j]=real+ _Complex_I*imag; 00141 fscanf(ftime,"%le ",&my_plan.plan.x[3*j+2]); 00142 00143 my_plan.plan.x[3*j+2] = (my_plan.plan.x[3*j+2]-Ts)*W/N3; 00144 } 00145 fclose(fp); 00146 fclose(ftime); 00147 00148 00149 finh=fopen("inh.dat","r"); 00150 for(j=0;j<N*N;j++) 00151 { 00152 fscanf(finh,"%le ",&my_plan.w[j]); 00153 my_plan.w[j]/=W; 00154 } 00155 fclose(finh); 00156 00157 00158 if(my_plan.plan.flags & PRE_PSI) { 00159 nfft_precompute_psi(&my_plan.plan); 00160 } 00161 if(my_plan.plan.flags & PRE_FULL_PSI) { 00162 nfft_precompute_full_psi(&my_plan.plan); 00163 } 00164 00165 /* init some guess */ 00166 for(j=0;j<my_plan.N_total;j++) 00167 { 00168 my_iplan.f_hat_iter[j]=0.0; 00169 } 00170 00171 t0 = nfft_clock_gettime_seconds(); 00172 00173 /* inverse trafo */ 00174 solver_before_loop_complex(&my_iplan); 00175 for(l=0;l<iteration;l++) 00176 { 00177 /* break if dot_r_iter is smaller than epsilon*/ 00178 if(my_iplan.dot_r_iter<epsilon) 00179 break; 00180 fprintf(stderr,"%e, %i of %i\n",sqrt(my_iplan.dot_r_iter), 00181 l+1,iteration); 00182 solver_loop_one_step_complex(&my_iplan); 00183 } 00184 00185 t1 = nfft_clock_gettime_seconds(); 00186 t = t1-t0; 00187 00188 fout_real=fopen("output_real.dat","w"); 00189 fout_imag=fopen("output_imag.dat","w"); 00190 00191 for (j=0;j<N*N;j++) { 00192 /* Verschiebung wieder herausrechnen */ 00193 my_iplan.f_hat_iter[j]*=cexp(-2.0*_Complex_I*M_PI*Ts*my_plan.w[j]*W); 00194 00195 fprintf(fout_real,"%le ",creal(my_iplan.f_hat_iter[j])); 00196 fprintf(fout_imag,"%le ",cimag(my_iplan.f_hat_iter[j])); 00197 } 00198 00199 fclose(fout_real); 00200 fclose(fout_imag); 00201 solver_finalize_complex(&my_iplan); 00202 mri_inh_3d_finalize(&my_plan); 00203 } 00204 00205 00206 int main(int argc, char **argv) 00207 { 00208 if (argc <= 5) { 00209 00210 printf("usage: ./reconstruct_data_inh_3d FILENAME N M ITER WEIGHTS\n"); 00211 return 1; 00212 } 00213 00214 reconstruct(argv[1],atoi(argv[2]),atoi(argv[3]),atoi(argv[4]),atoi(argv[5])); 00215 00216 return 1; 00217 } 00218 /* \} */