Qpid Dispatch Router Book

Qpid Dispatch Router Book

Qpid Dispatch Router Book

REVISION HISTORY

NUMBER

DATE

DESCRIPTION

NAME

Qpid Dispatch Router Book iii

Contents

1 Introduction 1
1.1 OVerVIEW . . . o o o e e e e e 1

1.2 Benefits o e e 2

1.3 Features o it e e 2

2 Theory of Operation 3
2.1 OVEIVIEW . . o ot o i e e e e e 3
2.2 COoNNECLiONS v v v i e e e e e e e e e e e 3
221 LASIENETr o o e e e e e e e 3

222 COoNNECLOT . .« v v v vttt et e e e e e e e e e e e e e e e e 4

2.3 AdAIresses e 4
2.3.1 Mobile Addresses e e 5

2.3.1.1 Discovered Mobile Addresses 5

2.3.1.2 Configured Mobile Addresses L e 5

2.3.2 Link Route Addresses e 5

24 Message Routing L e 6
24.1 Routing Patterns L e e e e 6

2.4.2 Routing Mechanisms L e e e e e e e 6

2421 MessageRouted 6

2422 LinkRouted 7

2.4.3 Message Settlement L. e e e e e e e e e e e e 7

2.5 SECUIILY . . o o i o i i e e e 7

3 Using Qpid Dispatch 8
3.1 Configuration e e 8
32 To0IS. . o . e 8
32,1 qdstat e e e 8

322 qdmanage e e 8

3.3 Basic Usage and Examples L e e e e e 9
3.3.1 Standalone and Interior Modes 9

3.3.2 Mobile Subscribers e e 10

Qpid Dispatch Router Book iv

33.3 Dynamic Reply-To e 10

34 Link Routing o e e e 12
341 Configuration e e e e e 13

3.5 Indirect Waypoints and Auto-Links oL 14
3.5.1 Queue Waypoint Example e e e 14

3.5.2 Sharded Queue Example L 16

3.5.3 Dynamically Adding Shards e 17

3.5.4 Using a Different External Address on an Auto-Link 17

3.6 Policy 18
3.6.1 Definitions e e e 18
3.6.1.1 vhost . . . 18

3.6.2 Policy Features e e 18
3.6.2.1 Total Connection Limit e 18

3.6.22 VhostPolicy 18

3.6.2.3 Default Vhost oL 19

3.6.3 Policy Schema L e e e e 19
3.63.1 Global Policy 19

3.6.3.2 VhostPolicy e 19

3.6.3.3 Vhost User Group Settings Map o i v i it e e e 20

3.6.4 Policy Wildcard and User Name Substitution 20
3.64.1 Remote Host Wildcard e 21

3.6.4.2 AMAQP Source and Target Wildcard and Name Substitution 21

3.6.5 Composing Policies L e 21
3.6.5.1 Example 1. User Policy Disabled 21

3.6.5.2 Example 2. All Users Have Simple Connection Limits 21

3.6.5.3 Example 3. Admins Must Connect From Localhost 22

3.6.5.4 Example 4. Limiting Possible Memory Consumption 22

4 Technical Details and Specifications 24
4.1 Client Compatibility e 24
42 Addressing e e e e 24
4.2.1 Routing patterns v v v i e e e e e e e e e e e e e e e e e e e 25
422 Routing mechanisms 25
4221 Message routiNg v v v i i e e e e e e e e e e e e e e e e e e 25

43 AMQPMapping e e e 25
4.3.1 Message ANNOLAtiONS o vttt e e e e e e e e e e e e 26
4.3.2 Source/Target Capabilities o e e e 26

4.3.3 Dynamic-Node-Properties e e e 26

4.3.4 Addresses and Address Formats e 26

Qpid Dispatch Router Book v
43.4.1 AddressPatterns L. e 26

4.3.4.2 Supported Addresses e e e e e e 27

4.3.5 Implementation of the AMQP Management Specification 27
4.4 Configuration Entities e e e e e e e e 28
AA T TOULET . . . v v v v e et e e e e e e e e e e e e e e e 28
442 sslProfile 29
443 BSBNCT o o ot e e 30
444 CONNECIOT . .« . v v vt v v ettt et e e e e e e e 31
445 102 ..o e 33
4.4.6 address 33
447 linkRoute L e 34
448 autoLink e 34
449 console e e e e 35
4410 POLICY . . . v o e e e e e 35
4411 CONtAINET v vt e e e e e e e e e e e 36
4412 WAYPOINL . . . o v ot e e e e e e e e e e e e e e e e e e e 36
4.4.13 fixedAddress e 37
4.4.14 linkRoutePattern L e e 37
4.5 Operational Entities o L L e e e e e e e 37
4.5.1 0org.amg@p.management u e 37
4.5.1.1 Operation GET-TYPES e 38

4.5.1.2 Operation GET-ATTRIBUTES e 38

4.5.1.3 Operation GET-OPERATIONS e 38

4.5.1.4 Operation GET-ANNOTATIONS e e e e 38

45.1.5 Operation QUERY e 39

4.5.1.6 Operation GET-MGMT-NODES e i 39

452 management e e e e 39
4.5.2.1 Operation GET-SCHEMA-JSON e e e e e e 39

4522 Operation GET-LOG e 40

4.52.3 Operation GET-SCHEMA e e e e e e e s 40

453 1ogStatso e e 40
454 routerdinko 41
4.5.5 routeraddress L e e e e e e 41
456 routernode e e e 42
457 CONNECHON . . . v v v v v it e it e e e e e e e e e e e e e 43
458 allocator. e e e 44
4.5.9 Operations for all entity types 44
4.59.1 Operation READ e 44

4592 Operation CREATE e 44

Qpid Dispatch Router Book vi

4.5.9.3 Operation UPDATE 45

4594 Operation DELETE e 45

4.5.10 Operations for org.amgp.management entity type oo e e e e 45
4.5.10.1 Operation GET-TYPES 45

4.5.10.2 Operation GET-ATTRIBUTES e 46

4.5.10.3 Operation GET-OPERATIONS e e e 46

4.5.10.4 Operation GET-ANNOTATIONS o e e 46

4.5.10.5 Operation QUERY e 46

4.5.10.6 Operation GET-MGMT-NODES e 47

4.5.11 Operations for management entity type v o i i i e e e e e e e e e e e e 47
4.5.11.1 Operation GET-SCHEMA-JSON e 47

4.5.11.2 Operation GET-LOG e 47

4.5.11.3 Operation GET-SCHEMA e e e e e e s 48

5 Console 49
5.1 Console OVEIVIEW L. L 49
5.2 Consoleinstallation 49
52,1 PrerequiSites o i e e e e e e e 49

522 Theconsolefiles 49

5.3 Console OPeration i e e e e e e e e e e e e e e e e 50
5.3.1 Loggingintoarouternetwork Lo 50

532 OVEIVIEW PAZE . .« . v v vt e e e e e e e e e 50

5.3.3 Topology Pageo e e 50
534 LiStpage oo . i e e e e e e e e e e 50

535 ChartS page o o ot e e e e e e e e e 51
5.3.6 Schemapage e 51

Qpid Dispatch Router Book 1/51

Chapter 1

Introduction

1.1 Overview

The Dispatch router is an AMQP message router that provides advanced interconnect capabilities. It allows flexible routing of
messages between any AMQP-enabled endpoints, whether they be clients, servers, brokers or any other entity that can send or
receive standard AMQP messages.

A messaging client can make a single AMQP connection into a messaging bus built of Dispatch routers and, over that connection,
exchange messages with one or more message brokers, and at the same time exchange messages directly with other endpoints
without involving a broker at all.

The router is an intermediary for messages but it is not a broker. It does not take responsibility for messages. It will, however,
propagate settlement and disposition across a network such that delivery guarantees are met. In other words: the router network
will deliver the message, possibly via several intermediate routers, and it will route the acknowledgement of that message by
the ultimate receiver back across the same path. This means that responsibility for the message is transfered from the original
sender to the ultimate receiver as if they were directly connected. However this is done via a flexible network that allows highly
configurable routing of the message transparent to both sender and receiver.

There are some patterns where this enables "brokerless messaging” approaches that are preferable to brokered approaches. In
other cases a broker is essential (in particular where you need the separation of responsibility and/or the buffering provided by
store-and-forward) but a dispatch network can still be useful to tie brokers and clients together into patterns that are difficult with
a single broker.

For a "brokerless" example, consider the common brokered implementation of the request-response pattern, a client puts a request
on a queue and then waits for a reply on another queue. In this case the broker can be a hindrance - the client may want to know
immediatly if there is nobody to serve the request, but typically it can only wait for a timeout to discover this. With a dispatch
network, the client can be informed immediately if its message cannot be delivered because nobody is listening. When the client
receives acknowledgement of the request it knows not just that it is sitting on a queue, but that it has actually been received by
the server.

For an exampe of using dispatch to enhance the use of brokers, consider using an array of brokers to implement a scalable
distributed work queue. A dispatch network can make this appear as a single queue, with senders publishing to a single address
and receivers subscribing to a single address. The dispatch network can distribute work to any broker in the array and collect
work from any broker for any receiver. Brokers can be shut down or added without affecting clients. This elegantly solves the
common difficulty of "stuck messages" when implementing this pattern with brokers alone. If a receiver is connected to a broker
that has no messages, but there are messages on another broker, you have to somehow transfer them or leave them "stuck". With
a dispatch network, all the receivers are connected to all the brokers. If there is a message anywhere it can be delivered to any
receiver.

The router is meant to be deployed in topologies of multiple routers, preferably with redundant paths. It uses link-state routing
protocols and algorithms (similar to OSPF or IS-IS from the networking world) to calculate the best path from every point to
every other point and to recover quickly from failures. It does not need to use clustering for high availability; rather, it relies on
redundant paths to provide continued connectivity in the face of system or network failure. Because it never takes responsibility
for messages it is effectively stateless. Messages not delivered to their final destination will not be acknowledged to the sender
and therefore the sender can re-send such messages if it is disconnected from the network.

Qpid Dispatch Router Book 2/51

1.2 Benefits

Simplifies connectivity

* An endpoint can do all of its messaging through a single transport connection

* Avoid opening holes in firewalls for incoming connections
Provides messaging connectivity where there is no TCP/IP connectivity

* A server or broker can be in a private IP network (behind a NAT firewall) and be accessible by messaging endpoints in other
networks (learn more).

Simplifies reliability

* Reliability and availability are provided using redundant topology, not server clustering

Reliable end-to-end messaging without persistent stores

» Use a message broker only when you need store-and-forward semantics

1.3 Features

* Can be deployed stand-alone or in a network of routers

— Supports arbitrary network topology - no restrictions on redundancy

* Automatic route computation - adjusts quickly to changes in topology

¢ Provides remote access to brokers or other AMQP servers

* Security

Qpid Dispatch Router Book 3/51

Chapter 2

Theory of Operation

This section introduces some key concepts about the router.

2.1 Overview

The router is an application layer program running as a normal user program or as a daemon.

The router accepts AMQP connections from clients and creates AMQP connections to brokers or AMQP-based services. The
router classifies incoming AMQP messages and routes the messages between message producers and message consumers.

The router is meant to be deployed in topologies of multiple routers, preferably with redundant paths. It uses link-state routing
protocols and algorithms similar to OSPF or IS-IS from the networking world to calculate the best path from every message
source to every message destination and to recover quickly from failures. The router relies on redundant network paths to
provide continued connectivity in the face of system or network failure.

A messaging client can make a single AMQP connection into a messaging bus built with routers and, over that connection,
exchange messages with one or more message brokers connected to any router in the network. At the same time the client can
exchange messages directly with other endpoints without involving a broker at all.

2.2 Connections

The router connects clients, servers, AMQP services, and other routers through network connections.

2.2.1 Listener

The router provides listeners that accept client connections. A client connecting to a router listener uses the same methods that
it would use to connect to a broker. From the client’s perspective the router connection and link establishment are identical to
broker connection and link establishment.

Several types of listeners are defined by their role.

Role Description

normal The connection is used for AMQP clients using normal message delivery.

inter-router The connection is assumed to be to another router in the network. Inter-router discovery and
routing protocols can only be used over inter-router connections.

route-container The connection is a broker or other resource that holds known addresses. The router will use
this connection to create links as necessary. The addresses are available for routing only after
the remote resource has created a connection.

Qpid Dispatch Router Book 4 /51

2.2.2 Connector

The router can also be configured to create outbound connections to messaging brokers or other AMQP entities using connectors.
A connector is defined with the network address of the broker and the name or names of the resources that are available in that
broker. When a router connects to a broker through a connector it uses the same methods a normal messaging client would use
when connecting to the broker.

Several types of connectors are defined by their role.

Role Description

normal The connection is used for AMQP clients using normal message delivery. On this connector
the router will initiate the connection but it will never create any links. Links are to be created
by the peer that accepts the connection.

inter-router The connection is assumed to be to another router in the network. Inter-router discovery and
routing protocols can only be used over inter-router connections.
route-container The connection is to a broker or other resource that holds known addresses. The router will use

this connection to create links as necessary. The addresses are available for routing only after
the router has created a connection to the remote resource.

2.3 Addresses

AMQP addresses are used to control the flow of messages across a network of routers. Addresses are used in a number of
different places in the AMQP 1.0 protocol. They can be used in a specific message in the fo and reply-to fields of a message’s
properties. They are also used during the creation of links in the address field of a source or a target.

Note

Addresses in this discussion refer to AMQP protocol addresses and not to TCP/IP network addresses. TCP/IP network ad-
dresses are used by messaging clients, brokers, and routers to create AMQP connections. AMQP protocol addresses are the
names of source and destination endpoints for messages within the messaging network.

Addresses designate various kinds of entities in a messaging network:

* Endpoint processes that consume data or offer a service
* Topics that match multiple consumers to multiple producers

* Entities within a messaging broker:

— Queues
— Durable Topics

— Exchanges

The syntax of an AMQP address is opaque as far as the router network is concerned. A syntactical structure may be used by the
administrator who creates addresses but the router treats them as opaque strings.

The router maintains several classes of address based on how the address is configured or discovered.

Address Type Description

mobile The address is a rendezvous point between senders and receivers. The router aggregates
and serializes messages from senders and distributes messages to receivers.

link route The address defines a private messaging path between a sender and a receiver. The router
simply passes messages between the end points.

Qpid Dispatch Router Book 5/51

2.3.1 Mobile Addresses

Routers consider addresses to be mobile such that any users of an address may be directly connected to any router in a network
and may move around the topology. In cases where messages are broadcast to or balanced across multiple consumers, the address
users may be connected to multiple routers in the network.

Mobile addresses are rendezvous points for senders and receivers. Messages arrive at the mobile address and are dispatched to
their destinations according to the routing defined for the mobile address. The details of these routing patterns are discussed later.

Mobile addresses may be discovered during normal router operation or configured through management settings.

2.3.1.1 Discovered Mobile Addresses

Mobile addresses are created when a client creates a link to a source or destination address that is unknown to the router network.

Suppose a service provider wants to offer my-service that clients may use. The service provider must open a receiver link with
source address my-service. The router creates a mobile address my-service and propagates the address so that it is known to every
router in the network.

Later a client wants to use the service and creates a sending link with target address my-service. The router matches the service
provider’s receiver having source address my-service to the client’s sender having target address my-service and routes messages
between the two.

Any number of other clients can create links to the service as well. The clients do not have to know where in the router network
the service provider is physically located nor are the clients required to connect to a specific router to use the service. Regardless
of how many clients are using the service the service provider needs only a single connection and link into the router network.

Another view of this same scenario is when a client tries to use the service before service provider has connected to the network.
In this case the router network creates the mobile address my-service as before. However, since the mobile address has only
client sender links and no receiver links the router stalls the clients and prevents them from sending any messages. Later, after
the service provider connects and creates the receiver link, the router will issue credits to the clients and the messages will begin
to flow between the clients and the service.

The service provider can connect, disconnect, and reconnect from a different location without having to change any of the clients
or their connections. Imagine having the service running on a laptop. One day the connection is from corporate headquarters
and the next day the connection is from some remote location. In this case the service provider’s computer will typically have
different host IP addresses for each connection. Using the router network the service provider connects to the router network
and offers the named service and the clients connect to the router network and consume from the named service. The router
network routes messages between the mobile addresses effectively masking host IP addresses of the service provider and the
client systems.

2.3.1.2 Configured Mobile Addresses

Mobile addresses may be configured using the router autoLink object. An address created via an autoLink represents a queue,
topic, or other service in an external broker. Logically the autoLink addresses are treated by the router network as if the broker
had connected to the router and offered the services itself.

For each configured mobile address the router will create a single link to the external resource. Messages flow between sender
links and receiver links the same regardless if the mobile address was discovered or configured.

Multiple autoLink objects may define the same address on multiple brokers. In this case the router network creates a sharded
resource split between the brokers. Any client can seamlessly send and receive messages from either broker.

Note that the brokers do not need to be clustered or federated to receive this treatment. The brokers may even be from different
vendors or be different versions of the same broker yet still work together to provide a larger service platform.

2.3.2 Link Route Addresses

Link route addresses may be configured using the router /inkRoute object. An link route address represents a queue, topic,
or other service in an external broker similar to addresses configured by autoLink objects. For link route addresses the router

Qpid Dispatch Router Book 6/51

propagates a separate link attachment to the broker resource for each incoming client link. The router does not automatically
create any links to the broker resource.

Using link route addresses the router network does not participate in aggregated message distribution. The router simply passes
message delivery and settlement between the two end points.

2.4 Message Routing

Addresses have semantics associated with them that are assigned when the address is provisioned or discovered. The semantics
of an address control how routers behave when they see the address being used. Address semantics include the following
considerations:

* Routing pattern - balanced, closest, multicast

* Routing mechanism - message routed, link routed

2.4.1 Routing Patterns

Routing patterns define the paths that a message with a mobile address can take across a network. These routing patterns can be
used for both direct routing, in which the router distributes messages between clients without a broker, and indirect routing, in
which the router enables clients to exchange messages through a broker.

Pattern Description

Balanced An anycast method which allows multiple receivers to use the same address. In this case,
messages (or links) are routed to exactly one of the receivers and the network attempts to
balance the traffic load across the set of receivers using the same address. This routing delivers
messages to receivers based on how quickly they settle the deliveries. Faster receivers get more
messages.

Closest An anycast method in which even if there are more receivers for the same address, every
message is sent along the shortest path to reach the destination. This means that only one
receiver will get the message. Each message is delivered to the closest receivers in terms of
topology cost. If there are multiple receivers with the same lowest cost, deliveries will be
spread evenly among those receivers.

Multicast Having multiple consumers on the same address at the same time, messages are routed such
that each consumer receives one copy of the message.

2.4.2 Routing Mechanisms
The fact that addresses can be used in different ways suggests that message routing can be accomplished in different ways. Before
going into the specifics of the different routing mechanisms, it would be good to first define what is meant by the term routing:

In a network built of multiple, interconnected routers ’routing’
determines which connection to use to send a message directly
to its destination or one step closer to its destination.

Each router serves as the terminus of a collection of incoming and outgoing links. Some of the links are designated for message
routing, and others are designated for link routing. In both cases, the links either connect directly to endpoints that produce and
consume messages, or they connect to other routers in the network along previously established connections.

2.4.2.1 Message Routed

Message routing occurs upon delivery of a message and is done based on the address in the message’s to field.

Qpid Dispatch Router Book 7151

When a delivery arrives on an incoming message-routing link, the router extracts the address from the delivered message’s fo
field and looks the address up in its routing table. The lookup results in zero or more outgoing links onto which the message shall
be resent.

Message routing can also occur without an address in the message’s to field if the incoming link has a target address. In fact, if
the sender uses a link with a target address, the fo field shall be ignored even if used.

2.4.2.2 Link Routed
Link routing occurs when a new link is attached to the router across one of its AMQP connections. It is done based on the
target.address field of an inbound link and the source.address field of an outbound link.

Link routing uses the same routing table that message routing uses. The difference is that the routing occurs during the link-
attach operation, and link attaches are propagated along the appropriate path to the destination. What results is a chain of links,
connected end-to-end, from source to destination. It is similar to a virtual circuit in a telecom system.

Each router in the chain holds pairs of link termini that are tied together. The router then simply exchanges all deliveries, delivery
state changes, and link state changes between the two termini.

The endpoints that use the link chain do not see any difference in behavior between a link chain and a single point-to-point link.
All of the features available in the link protocol (flow control, transactional delivery, etc.) are available over a routed link-chain.

2.4.3 Message Settlement
Messages may be delivered with varying degrees of reliability.

e At most once
e At least once

» Exactly once

The reliability is negotiated between the client and server during link establishment. The router handles all levels of reliability
by treating messages as either pre-settled or unsettled.

Delivery Handling

pre-settled If the arriving delivery is pre-settled (i.e., fire and forget), the incoming delivery shall be settled
by the router, and the outgoing deliveries shall also be pre-settled. In other words, the
pre-settled nature of the message delivery is propagated across the network to the message’s
destination.

unsettled Unsettled delivery is also propagated across the network. Because unsettled delivery records
cannot be discarded, the router tracks the incoming deliveries and keeps the association of the
incoming deliveries to the resulting outgoing deliveries. This kept association allows the router
to continue to propagate changes in delivery state (settlement and disposition) back and forth
along the path which the message traveled.

2.5 Security

The router uses the SSL protocol and related certificates and SASL protocol mechanisms to encrypt and authenticate remote
peers. Router listeners act as network servers and router connectors act as network clients. Both connection types may be
configured securely with SSL and SASL.

The router Policy module is an optional authorization mechanism enforcing user connection restrictions and AMQP resource
access control.

Qpid Dispatch Router Book 8/51

Chapter 3

Using Qpid Dispatch

3.1 Configuration

The default configuration file is installed in /usr/etc/qpid-dispatch/qdrouterd.conf. This configuration file will cause the router
to run in standalone mode, listening on the standard AMQP port (5672). Dispatch Router looks for the configuration file in the
installed location by default. If you wish to use a different path, the "-c" command line option will instruct Dispatch Router as to
which configuration to load.

To run the router, invoke the executable: gdrouterd [-c my-config-file]

For more details of the configuration file see the gdrouterd.conf{5) man page.

3.2 Tools

3.2.1 qdstat

gdstat is a command line tool that lets you view the status of a Dispatch Router. The following options are useful for seeing what
the router is doing:

Option Description

-1 Print a list of AMQP links attached to the router. Links are unidirectional. Outgoing links are
usually associated with a subscription address. The tool distinguishes between endpoint links and
router links. Endpoint links are attached to clients using the router. Router links are attached to
other routers in a network of routbers.

-a Print a list of addresses known to the router.
-n Print a list of known routers in the network.
-C Print a list of connections to the router.
--autolinks Print a list of configured auto-links.
--linkroutes Print a list of configures link-routes.

For complete details see the gdstat(8) man page and the output of gdstat —-help.

3.2.2 qgdmanage

gdmanage is a general-purpose AMQP management client that allows you to not only view but modify the configuration of a
running dispatch router.

For example you can query all the connection entities in the router:

Qpid Dispatch Router Book 9/51

$ gdmanage query —--type connection

To enable logging debug and higher level messages by default:

$ gdmanage update log/DEFAULT enable=debug+

In fact, everything that can be configured in the configuration file can also be created in a running router via management. For
example to create a new listener in a running router:

$ gdmanage create type=listener port=5555

Now you can connect to port 5555, for exampple:

$ gdmanage query -b localhost:5555 —-type listener

For complete details see the gdmanage(8) man page and the output of gdmanage --help. Also for details of what can be
configured see the gdrouterd.conf(5) man page.

3.3 Basic Usage and Examples

3.3.1 Standalone and Interior Modes

The router can operate stand-alone or as a node in a network of routers. The mode is configured in the router section of
the configuration file. In stand-alone mode, the router does not attempt to collaborate with any other routers and only routes
messages among directly connected endpoints.

If your router is running in stand-alone mode, gdstat -a will look like the following:

$ gdstat -a
Router Addresses
class addr phs distrib in-proc local remote cntnr 1in out thru <«
to-proc from-proc

local $_management_internal closest 1 0 0 0 0 0 0 <«
0 0

local Sdisplayname closest 1 0 0 0 0 0 0 <«
0 0

mobile $management 0 closest 1 0 0 0 1 0 0 <«
1 0

local Smanagement closest 1 0 0 0 0 0 0 ¢
0 0

local temp.l1GThU11£fR7N+BDP closest O 1 0 0 0 0 0 <
0 0

Note that there are a number of known addresses. $management is the address of the router’s embedded management agent.
temp.1GThUIIfR7N+BDP is the temporary reply-to address of the gdstat client making requests to the agent.

If you change the mode to interior and restart the processs, the same command will yield additional addresses which are used for
inter-router communication:

$ gdstat -a
Router Addresses
class addr phs distrib in-proc local remote c¢cntnr in out <~
thru to-proc from-proc

local $_management_internal closest 1 0 0 0 0 0 0 <
0 0

Qpid Dispatch Router Book 10/ 51

local Sdisplayname closest 1 0 0 0 0 0 <
0 0

mobile $management closest 1 0 0 0 0 0 <«
1 0

local Smanagement closest 1 0 0 0 0 0 <
0 0

local gdhello flood 1 0 0 0 0 0 0 <«
0 10

local gdrouter flood 1 0 0 0 0 0 0 <
0 0

topo gdrouter flood 1 0 0 0 0 0 0 <
0 1

local gdrouter.ma multicast 1 0 0 0 0 0 0 <
0 0

topo gdrouter.ma multicast 1 0 0 0 0 0 0 <
0 0

local temp.wfx54+zf+YWQF3T closest 0 1 0 0 0 0 0 <«
0 0

3.3.2 Mobile Subscribers

The term "mobile subscriber” simply refers to the fact that a client may connect to the router and subscribe to an address to
receive messages sent to that address. No matter where in the network the subscriber attaches, the messages will be routed to the
appropriate destination.

To illustrate a subscription on a stand-alone router, you can use the examples that are provided with Qpid Proton. Using the
simple_recv.py example receiver:

$ python ./simple_recv.py —a 127.0.0.1/my—-address

This command creates a receiving link subscribed to the specified address. To verify the subscription:

$ gdstat -a
Router Addresses

class addr phs distrib in-proc 1local remote cntnr in out thru ¢«
to-proc from-proc

local $_management_internal closest 1 0 0 0 0 0 0 <«
0 0

local Sdisplayname closest 1 0 0 0 0 0 0 ¢
0 0

mobile S$management 0 closest 1 0 0 0 2 0 0 <«
2 0

local Smanagement closest 1 0 0 0 0 0 0 <
0 0

mobile my-address 0 closest O 1 0 0 0 0 0 ¢
0 0

local temp.75_d2X23x_KOT51 closest O 1 0 0 0 0 0 <«
0 0

You can then, in a separate command window, run a sender to produce messages to that address:

$ python ./simple_send.py -a 127.0.0.1/my—-address

3.3.3 Dynamic Reply-To

Dynamic reply-to can be used to obtain a reply-to address that routes back to a client’s receiving link regardless of how many
hops it has to take to get there. To illustrate this feature, see below a simple program (written in C++ against the qpid::messaging
API) that queries the management agent of the attached router for a list of other known routers’ management addresses.

Qpid Dispatch Router Book

11/51

#include <gpid/messaging/Address.h>
#include <gpid/messaging/Connection.h>
#include <gpid/messaging/Message.h>
#include <gpid/messaging/Receiver.h>
#include <gpid/messaging/Sender.h>
#include <gpid/messaging/Session.h>

using namespace gpid::messaging;
using namespace gpid::types;

using std::stringstream;
using std::string;

int main () {
const char* url = "amgp:tcp:127.0.0.1:5672";
std::string connectionOptions = "{protocol:amgpl.O0}";

Connection connection(url, connectionOptions);
connection.open() ;

Session session = connection.createSession|();
Sender sender = session.createSender ("mgmt");

// create reply receiver and get the reply-to address
Receilver receiver = session.createReceiver ("#");
Address responseAddress = receiver.getAddress();

Message request;
request.setReplyTo (responseAddress) ;

request .setProperty ("x—amgp—-to", "amgp:/_local/$management") ;

request.setProperty ("operation", "DISCOVER-MGMT-NODES") ;
request.setProperty ("type", "org.amgp.management");
request.setProperty ("name, "self");

sender.send (request) ;

Message response = receiver.fetch();

Variant content (response.getContentObject ());

std::cout << "Response: " << content << std::endl << std

connection.close();

The equivalent program written in Python against the Proton Messenger API:

from proton import Messenger, Message

def main () :
host = "0.0.0.0:5672"

messenger = Messenger ()
messenger.start ()
messenger.route ("amgp:/+", "amgp://%$s/$1" % host)

reply_subscription = messenger.subscribe ("amgp:/#")
reply_address = reply_subscription.address
request = Message ()

response = Message ()

request.address = "amgp:/_local/$management"
request.reply_to = reply_address

::endl;

request.properties = {u’operation’ : u’DISCOVER-MGMT-NODES’,
u’ type’ : u’org.amgp.management’,

Qpid Dispatch Router Book 12/ 51

u’ name’ : u’'self’}

messenger.put (request)
messenger.send()
messenger.recv ()
messenger.get (response)

))

print "Response: %r" % response.body
messenger.stop ()

main ()

3.4 Link Routing

This feature was introduced in Qpid Dispatch 0.4. This feature was significantly updated in Qpid Dispatch 0.6.

Link-routing is an alternative strategy for routing messages across a network of routers. With the existing message-routing
strategy, each router makes a routing decision on a per-message basis when the message is delivered. Link-routing is different
because it makes routing decisions when link-attach frames arrive. A link is effectively chained across the network of routers
from the establishing node to the destination node. Once the link is established, the transfer of message deliveries, flow frames,
and dispositions is performed across the routed link.

The main benefit to link-routing is that endpoints can use the full link protocol to interact with other endpoints in far-flung parts
of the network. For example, a client can establish a receiver across the network to a queue on a remote broker and use link credit
to control the flow of messages from the broker. Similarly, a receiver can establish a link to a topic on a remote broker using a
server-side filter.

Why would one want to do this? One reason is to provide client isolation. A network like the following can be deployed:

Public Network

- +
| - + \
| Bl | Rp | \
| +/—=\-+ \
| / \ \
| / \ \
- \———+
/ \
/ \
/ \
Private Net A / \ Private Net B
fommmmmmmmeme==) == i S +
| to—=/=+ | e | | | | | |
| B2 | Ra | | | | Rb | Cl |
| +———— + | | +———— + |
I | | |
I | | |
o + - +

The clients in Private Net B can be constrained (by firewall policy) to only connect to the Router in their own network. Using
link-routing, these clients can access queues, topics, and other AMQP services that are in the Public Network or even in Private
Net A.

For example, The router Ra can be configured to expose queues in broker B2 to the network. Client C1 can then establish a
connection to Rb, the local router, open a subscribing link to "b2.event-queue", and receive messages stored on that queue in
broker B2.

C1 is unable to create a TCP/IP connection to B1 because of its isolation (and because B2 is itself in a private network). However,
with link routing, C1 can interact with B2 using the AMQP link protocol.

Qpid Dispatch Router Book 13/ 51

Note that in this case, neither C1 nor B2 have been modified in any way and neither need be aware of the fact that there is a
message-router network between them.

3.4.1 Configuration

Starting with the configured topology shown above, how is link-routing configured to support the example described above?
First, router Ra needs to be told how to make a connection to the broker B2:

connector {
name: broker
role: route-container
host: <B2-url>
port: <B2-port>
saslMechanisms: ANONYMOUS

This route-container connector tells the router how to connect to an external AMQP container when it is needed. The name
"broker" will be used later to refer to this connection.

Now, the router must be configured to route certain addresses to B2:

linkRoute {
prefix: b2
dir: in
connection: broker

linkRoute {
prefix: b2
dir: out
connection: broker

The linkRoute tells router Ra that any sender or receiver that is attached with a target or source (respectively) whos address begins
with "b2", should be routed to the broker B2 (via the route-container connector).

Note that receiving and sending links are configured and routed separately. This allows configuration of link routes for listeners
only or senders only. A direction of "in" matches client senders (i.e. links that carry messages inbound to the router network).
Direction "out" matches client receivers.

Examples of addresses that "begin with 2" include:

* b2
* b2.queues

* b2.queues.appl

When the route-container connector is configured, router Ra establishes a connection to the broker. Once the connection is open,
Ra tells the other routers (Rp and Rb) that it is a valid destination for link-routes to the "b2" prefix. This means that sender or
receiver links attached to Rb or Rp will be routed via the shortest path to Ra where they are then routed outbound to the broker
B2.

On Rp and Rb, it is advisable to add the identical configuration. It is permissible for a linkRoute configuration to reference a
connection that does not exist.

This configuration tells the routers that link-routing is intended to be available for targets and sources starting with "b2". This is
important because it is possible that B2 might be unavailable or shut off. If B2 is unreachable, Ra will not advertize itself as a
destination for "b2" and the other routers might never know that "b2" was intended for link-routing.

The above configuration allows Rb and Rp to reject attaches that should be routed to B2 with an error message that indicates that
there is no route available to the destination.

Qpid Dispatch Router Book 14 /51

3.5 Indirect Waypoints and Auto-Links

This feature was introduced in Qpid Dispatch 0.6. It is a significant improvement on an earlier somewhat experimental feature
called Waypoints.

Auto-link is a feature of Qpid Dispatch Router that enables a router to actively attach a link to a node on an external AMQP
container. The obvious application for this feature is to route messages through a queue on a broker, but other applications are
possible as well.

An auto-link manages the lifecycle of one AMQP link. If messages are to be routed to and from a queue on a broker, then two
auto-links are needed: one for sending messages to the queue and another for receiving messages from the queue. The container
to which an auto-link attempts to attach may be identified in one of two ways:

¢ The name of the connector/listener that resulted in the connection of the container, or

* The AMQP container-id of the remote container.

3.5.1 Queue Waypoint Example

Here is an example configuration for routing messages deliveries through a pair of queues on a broker:

connector {
name: broker
role: route-container
host: <hostname>
port: <port>
saslMechanisms: ANONYMOUS

address {
prefix: queue
waypoint: yes

autoLink {
addr: queue.first
dir: in
connection: broker

autoLink {
addr: queue.first
dir: out
connection: broker

autoLink {
addr: queue.second
dir: in
connection: broker

autoLink {
addr: queue.second
dir: out
connection: broker

The address entity identifies a namespace gueue. that will be used for routing messages through queues via autolinks. The
four aut oLink entities identify the head and tail of two queues on the broker that will be connected via auto-links.

If there is no broker connected, the auto-links shall remain inactive. This can be observed by using the gdstat tool:

Qpid Dispatch Router Book 15/ 51

$ gdstat —--autolinks

AutoLinks
addr dir phs extAddr 1link status lastErr
queue.first in 1 inactive
queue.first out 0 inactive
queue.second in 1 inactive
queue.second out 0 inactive

If a broker comes online with a queue called gueue.first, the auto-links will attempt to activate:

$ gdstat --autolinks

AutoLinks
addr dir phs extAddr 1link status lastErr
queue.first in 6 active
queue.first out active

queue.second in
queue.second out

failed Node not found: queue.second
failed ©Node not found: queue.second

O P O

Note that two of the auto-links are in failed state because the queue does not exist on the broker.
If we now use the Qpid Proton example application simple_send.py to send three messages to queue.first via the router:

S python simple_send.py —-a 127.0.0.1/queue.first -m3
all messages confirmed

and then look at the address statistics on the router:

$ gdstat -a
Router Addresses
class addr phs distrib in-proc local remote cntnr in out thru to- ¢«
proc from-proc

mobile queue.first 1 balanced 0 0 0 0 0 0 0 0 ¢
0

mobile queue.first 0 balanced 0 1 0 0 3 3 0 0 <«
0

we see that queue.first appears twice in the list of addresses. The phs, or phase column shows that there are two phases for the
address. Phase 0 is for routing message deliveries from producers to the tail of the queue (the out auto-link associated with the
queue). Phase 1 is for routing deliveries from the head of the queue to subscribed consumers.

Note that three deliveries have been counted in the "in" and "out" columns for phase 0. The "in" column represents the three
messages that arrived from simple_send.py and the out column represents the three deliveries to the queue on the broker.

If we now use simple_recv.py to receive three messages from this address:

$ python simple_recv.py —-a 127.0.0.1:5672/queue.first -m3
{u’ sequence’: int32(1)}
{u’ sequence’: int32(2)}
{u’ sequence’: int32(3)}

We receive the three queued messages. Looking at the addresses again, we see that phase 1 was used to deliver those messages
from the queue to the consumer.

$ gdstat -a
Router Addresses
class addr phs distrib in-proc local remote cntnr in out thru to- ¢«
proc from-proc

Qpid Dispatch Router Book 16/ 51

mobile queue.first 1 balanced 0 0 0 0 3 3 0 0 <«
0

mobile queue.first 0 balanced 0 1 0 0 3 3 0 0 <«
0

Note that even in a multi-router network, and with multiple producers and consumers for queue.first, all deliveries will be routed
through the queue on the connected broker.

3.5.2 Sharded Queue Example

Here is an extension of the above example to illustrate how Qpid Dispatch Router can be used to create a distributed queue in
which multiple brokers share the message-queueing load.

connector {
name: brokerl
role: route-container
host: <hostname>
port: <port>
saslMechanisms: ANONYMOUS

connector {
name: broker2
role: route-container
host: <hostname>
port: <port>
saslMechanisms: ANONYMOUS

address {
prefix: queue
waypoint: yes

autoLink {
addr: queue.first
dir: in
connection: brokerl

autoLink {
addr: queue.first
dir: out
connection: brokerl

autoLink {
addr: queue.first
dir: in
connection: broker2

autoLink {
addr: queue.first
dir: out
connection: broker2

Qpid Dispatch Router Book 17 /51

In the above configuration, there are two instances of queue.first on brokers 1 and 2. Message traffic from producers to address
queue.first shall be balanced between the two instance and messages from the queues shall be balanced across the collection of
subscribers to the same address.

3.5.3 Dynamically Adding Shards

Since configurable entities in the router can also be accessed via the management protocol, we can remotely add a shard to the
above example using gdmanage:

gdmanage create —--type org.apache.gpid.dispatch.connector host=<host> port=<port> name= <>
broker3

gdmanage create —--type org.apache.gpid.dispatch.router.config.autolLink addr=queue.first dir <
=in connection=broker3

gdmanage create —-type org.apache.gpid.dispatch.router.config.autolLink addr=queue.first dir <«
=out connection=broker3

3.5.4 Using a Different External Address on an Auto-Link

Sometimes, greater flexibility is needed with regard to the addressing of a waypoint. For example, the above sharded-queue
example requires that the two instances of the queue have the same name/address. Auto-links can be configured with an in-
dependent externalAddr that allows the waypoint to have a different address than that which is used by the senders and
receivers.

Here’s an example:

connector {
name: broker
role: route-container
host: <hostname>
port: <port>
saslMechanisms: ANONYMOUS

address {
prefix: queue
waypoint: yes

autoLink {
addr: queue.first
externalAddr: broker_qgueue
dir: in
connection: broker

autoLink {
addr: queue.first
externalAddr: broker_gueue
dir: out
connection: broker

In the above configuration, the router network provides waypoint routing for the address queue.first, where senders and receivers
use that address to send and receive messages. However, the queue on the broker is named "broker_queue". The address is
translated through the auto-link that is established to the broker.

In this example, the endpoints (senders and receivers) are unaware of the broker_queue address and simply interact with
queue.first. Likewise, the broker is unaware of the queue.first address and behaves as though a sender and a receiver is attached
each using the address broker_queue.

The gdstat tool shows the external address for auto-links.

Qpid Dispatch Router Book 18/ 51

$ gdstat —--autolinks

AutoLinks
addr dir phs extAddr link status lastErr
queue.first in 1 broker_queue 6 active
queue.first out 0 broker_qgqueue 7 active

3.6 Policy

The Policy module is an optional authorization mechanism enforcing user connection restrictions and AMQP resource access
control.

Policy is assigned when a connection is created. The connection properties AMQP virtual host, authenticated user name, and
connection remote host are passed to the policy engine for a connection allow/deny decision. If the connection is allowed then
the user is assigned to a group that names a set of AMQP resource limits that are enforced for the lifetime of the connection.

Note
Policy limits are applied only to incoming user network connections. Policy limits are not applied to interrouter connections nor
are they applied to router connections outbound to waypoints.

3.6.1 Definitions

3.6.1.1 vhost

A vhost is typically the name of the host to which the client AMQP connection is directed. For example, suppose a client
application opens connection URL:

amgp://bigbroker.example.com:5672/favorite_subject

The client will signal virtual host name bigbroker.example.com to the router during AMQP connection startup. Router Policy
intercepts the virtual host bigbroker.example.com and applies a vhost policy with that name to the connection.

3.6.2 Policy Features

3.6.2.1 Total Connection Limit

A router may be configured with a total connection limit. This limit controls the maximum number of simultaneous incoming
user connections that are allowed at any time. It protects the router from file descriptor resource exhaustion in the face of many
incoming client connections. This limit is specified and enforced independently of any other Policy settings.

3.6.2.2 Vhost Policy
Vhost policy defines users and assigns them to user groups. Each user group defines the remote hosts from which the members
may connect to the router network, and what resources in the router network the group members are allowed to access.

Vhost policy also defines connection count limits to control the number of users that may be simultaneously connected to the
vhost.

Note
A vhost user may be assigned to one user group only.

Qpid Dispatch Router Book 19/ 51

3.6.2.3 Default Vhost

A default vhost may be defined. The default vhost policy is used for connections whose vhost is otherwise not defined in the
policy database.

Example 2 Section 3.6.5.2 illustrates how the default vhost feature can be used to apply a single vhost policy set of restrictions
to any number of vhost connections.

3.6.3 Policy Schema

Policy configuration is specified in two schema objects.

policy = {
<global settings>
}

vhost = {
id: vhost-name
<connection limits>
groups: {
group—name: {
<user group settings>

}

The policy object is a singleton. Multiple vhost objects may be created as needed.

3.6.3.1 Global Policy

attribute default description

maxConnections 65535 Global maximum number of concurrent client
connections allowed. This limit is always enforced even
if no other policy settings have been defined. This limit is
applied to all incoming connections regardless of remote
host, authenticated user, or targeted vhost.

enableVhostPolicy false Enable vhost policy connection denial, and resource limit
enforcement.
policyDir " Absolute path to a directory that holds vhost definition

.json files. All vhost definitions in all .json files in this
directory are processed.

defaultVhost "$default” Vhost rule set name to use for connections with a vhost
that is otherwise not defined. Default vhost processing
may be disabled either by erasing the definition of
defaultVhost or by not defining a vhost object named

Sdefault.
3.6.3.2 Vhost Policy

attribute default description

id Vhost name must be unique.

maxConnections 65535 Maximum number of concurrent client connections
allowed.

maxConnectionsPerUser 65535 Maximum number of concurrent client connections
allowed for any user.

Qpid Dispatch Router Book

20/ 51

attribute default description

maxConnectionsPerRemoteHost 65535 Maximum number of concurrent client connections
allowed for any remote host.

allowUnknownUser false Allow unknown users who are not members of a defined
user group. Unknown users are assigned to the $default
user group and receive $default settings.

groups A map where each key is a user group name and the value

is a Vhost User Group Settings map.

3.6.3.3 Vhost User Group Settings Map

This object is the data value contained in entries in the policy/groups map.

Section/Attribute default description

Group Membership

users " Comma separated list of authenticated users in this group.

Connection Restrictions

remoteHosts " List of remote hosts from which the users may connect.
List values may be host names, numeric IP addresses,
numeric IP address ranges, or the wildcard *. An empty
list denies all access.

AMQP Connection Open Limits

maxFrameSize 2731-1 Largest frame that may be sent on this connection.
(AMQP Open, max-frame-size)

maxSessions 65535 Maximum number of sessions that may be created on this
connection. (AMQP Open, channel-max)

AMOQP Session Begin Limits

maxSessionWindow 2731-1 Incoming capacity for new sessions. (AMQP Begin,
incoming-window)

AMQP Link Attach

maxMessageSize 0 Largest message size supported by links created on this
connection. If this field is zero there is no maximum size
imposed by the link endpoint. (AMQP Attach,
max-message-size)

maxSenders 2731-1 Maximum number of sending links that may be created
on this connection.

maxReceivers 2°31-1 Maximum number of receiving links that may be created
on this connection.

allowDynamicSource false This connection is allowed to create receiving links using
the Dynamic Link Source feature.

allowAnonymousSender false This connection is allowed to create sending links using
the Anonymous Sender feature.

allowUserIdProxy false This connection is allowed to send messages with a
user_id property that differs from the connection’s
authenticated user id.

sources " List of Source addresses allowed when creating receiving
links. This list may be expressed as a CSV string or as a
list of strings. An empty list denies all access.

targets " List of Target addresses allowed when creating sending

links. This list may be expressed as a CSV string or as a
list of strings. An empty list denies all access.

3.6.4 Policy Wildcard and User Name Substitution

Policy provides several conventions to make writing rules easier.

Qpid Dispatch Router Book 21 /51

3.6.4.1 Remote Host Wildcard

Remote host rules may consist of a single asterisk character to specify all hosts.

remoteHosts: «

The asterisk must stand alone and cannot be appended to a host name or to an IP address fragment.

3.6.4.2 AMQP Source and Target Wildcard and Name Substitution

The rule definitions for sources and targets may include the username substitution token

{user}

or a trailing asterisk.

The username substitution token is replaced with the authenticated user name for the connection. Using this token, an admin-
istrator may allow access to some resources specific to each user without having to name each user individually. This token is
substituted once for the leftmost occurrence in the link name.

The asterisk is recognized only if it is the last character in the link name.

sources: tmp_{user}, tempx*, {user}-home-x*

3.6.5 Composing Policies

This section shows policy examples designed to illustrate some common use cases.

3.6.5.1 Example 1. User Policy Disabled

Policy is disabled when no policy configuation objects are defined. Any number of connections are allowed and all users have
access to all AMQP resources in the network.

3.6.5.2 Example 2. All Users Have Simple Connection Limits
This example shows how to keep users from overwhelming the router with connections. Any user can create up to ten connections
and the router will limit the aggregated user connection count to 100 connections total. No other restrictions apply.

This example also shows how to use a default vhost policy effectively. Only one vhost policy is defined and all user connections
regardless of the requested vhost use that policy.

policy {
maxConnections: 100 o
}
vhost {
name: $default (2
maxConnectionsPerUser: 10 (3
allowUnknownUser: true o
groups: {
Sdefault: {
remoteHosts: * (5
sources: = 0
targets: = (7

Qpid Dispatch Router Book 22 /51

© 6 6 0 0 ©

-

3.6.5

The global maxConnections limit of 100 is enforced.

No normal vhost names are defined; user is assigned to default vhost $default.

The vhost maxConnectionsPerUser limit of 10 is enforced.

No groups are defined to have any users but allowUnknownUser is true so all users are assigned to group $default.
The user is allowed to connect from any remote host.

The user is allowed to connect to any source or target in the AMQP network. Router system-wide values are used for the
other AMQP settings that are unspecified in the vhost rules.

.3 Example 3. Admins Must Connect From Localhost

This example shows how an admin group may be created and restricted to accessing a vhost only from localhost. The admin
users are allowed to connect to any AMQP resources while normal users are restricted.

In this example a user connects to vhost example.com.

vhost {

0,0
o
0,0

3.6.5.

name: example.com (1
allowUnknownUser: true (2
groups: {
admin: {
users: alice, bob (s
remoteHosts: 127.0.0.1, ::1 0
sources: x (5
targets: x 0
b o
Sdefault: {
remoteHosts: * (7
sources: news*, sports%, chat= o
targets: chatx (o

A connection to vhost example.com locates this vhost rule set.
If one of users alice or bob is connecting then she or he is assigned to the admin user group.

Any other user is not defined by a user group. However, since the allowUnknownUser setting is true then this user is
assigned to the $default user group.

Users in the admin user group must connect from localhost. Connections for an admin user from other hosts on the
network are denied.

Users in the admin user group are allowed to access any resource offered by the vhost service.
Other users are allowed to connect from any host.

Other users have source and target name lists that restrict the resources they are allowed to access.

4 Example 4. Limiting Possible Memory Consumption

Policy provides a mechanism to control how much system buffer memory a user connection can potentially consume. The
formula for computing buffer memory consumption for each session is

potential buffer usage = maxFrameSize * maxSessionWindow

Qpid Dispatch Router Book 23 /51

By adjusting maxFrameSize, maxSessions, and maxSessionWindow an administrator can prevent a user from consuming too much
memory by buffering messages in flight.

Note
The settings passed into the AMQP protocol connection and session negotiations. Normal AMQP session flow control limits
buffer consumption in due course with no processing cycles required by the router.

In this example normal users, the traders, are given smaller buffer allocations while high-capacity, automated data feeds are given
a higher buffer allocation. This example skips the details of settings unrelated to buffer allocation.

vhost {
name: traders.com (1
groups: {
traders: {

users: trader-1, trader-2,
maxFrameSize: 10000
maxSessionWindow: 500
maxSessions: 1

}I

feeds: {
users: nyse—feed, nasdag-feed
maxFrameSize: 60000
maxSessionWindow: 20000
maxSessions: 3

o These rules are for vhost traders.com.

(2] The traders group includes trader-1, trader-2, and any other user defined in the list.

©, 0 maxFrameSize and maxSessionWindow allow for at most 5,000,000 bytes of data to be in flight on each session.

(5] Only one session per connection is allowed.

(¢ In the feeds group two users are defined.

@, 0 maxFrameSize and maxSessionWindow allow for at most 1,200,000,000 bytes of data to be in flight on each session.

o Up to three sessions per connection are allowed.

Qpid Dispatch Router Book 24 /51

Chapter 4

Technical Details and Specifications

4.1 Client Compatibility

Dispatch Router should, in theory, work with any client that is compatible with AMQP 1.0. The following clients have been
tested:

Client Notes

gpid::messaging The Qpid messaging clients work with Dispatch Router as long as they are configured to use
the 1.0 version of the protocol. To enable AMQP 1.0 in the C++ client, use the
{protocol:amqp1.0} connection option.

Proton Reactor The Proton Reactor API is compatible with Dispatch Router.

Proton Messenger Messenger works with Dispatch Router.

4.2 Addressing

AMAQP addresses are used to control the flow of messages across a network of routers. Addresses are used in a number of
different places in the AMQP 1.0 protocol. They can be used in a specific message in the to and reply-to fields of a
message’s properties. They are also used during the creation of links in the address field of a source ora target.

Addresses designate various kinds of entities in a messaging network:

* Endpoint processes that consume data or offer a service
* Topics that match multiple consumers to multiple producers

* Entities within a messaging broker:

— Queues
— Durable Topics

— Exchanges

The syntax of an AMQP address is opaque as far as the router network is concerned. A syntactical structure may be used by
the administrator that creates addresses, but the router treats them as opaque strings. Routers consider addresses to be mobile
such that any address may be directly connected to any router in a network and may move around the topology. In cases where
messages are broadcast to or balanced across multiple consumers, an address may be connected to multiple routers in the network.

Addresses have semantics associated with them. When an address is created in the network, it is assigned a set of semantics (and
access rules) during a process called provisioning. The semantics of an address control how routers behave when they see the
address being used.

Address semantics include the following considerations:

Qpid Dispatch Router Book 25/ 51

* Routing pattern - direct, multicast, balanced
* Undeliverable action - drop, hold and retry, redirect

* Reliability - N destinations, etc.

4.2.1 Routing patterns

Routing patterns constrain the paths that a message can take across a network.

Pattern Description

Direct Direct routing allows for only one consumer to use an address at a time. Messages (or links)
follow the lowest cost path across the network from the sender to the one receiver.

Multicast Multicast routing allows multiple consumers to use the same address at the same time. Messages
are routed such that each consumer receives a copy of the message.

Balanced Balanced routing also allows multiple consumers to use the same address. In this case, messages
are routed to exactly one of the consumers, and the network attempts to balance the traffic load
across the set of consumers using the same address.

4.2.2 Routing mechanisms

The fact that addresses can be used in different ways suggests that message routing can be accomplished in different ways. Before
going into the specifics of the different routing mechanisms, it would be good to first define what is meant by the term routing:

In a network built of multiple routers connected by connections (i.e., nodes and edges in a graph), routing determines
which connection to use to send a message directly to its destination or one step closer to its destination.

Each router serves as the terminus of a collection of incoming and outgoing links. The links either connect directly to endpoints
that produce and consume messages, or they connect to other routers in the network along previously established connections.

4.2.2.1 Message routing

Message routing occurs upon delivery of a message and is done based on the address in the message’s t o field.

When a delivery arrives on an incoming link, the router extracts the address from the delivered message’s t o field and looks the
address up in its routing table. The lookup results in zero or more outgoing links onto which the message shall be resent.

Delivery Handling

pre-settled If the arriving delivery is pre-settled (i.e., fire and forget), the incoming delivery shall be settled
by the router, and the outgoing deliveries shall also be pre-settled. In other words, the
pre-settled nature of the message delivery is propagated across the network to the message’s
destination.

unsettled Unsettled delivery is also propagated across the network. Because unsettled delivery records
cannot be discarded, the router tracks the incoming deliveries and keeps the association of the
incoming deliveries to the resulting outgoing deliveries. This kept association allows the router
to continue to propagate changes in delivery state (settlement and disposition) back and forth
along the path which the message traveled.

4.3 AMQP Mapping

Dispatch Router is an AMQP router and as such, it provides extensions, code-points, and semantics for routing over AMQP. This
page documents the details of Dispatch Router’s use of AMQP.

Qpid Dispatch Router Book

26 /51

4.3.1 Message Annotations

The following Message Annotation fields are defined by Dispatch Router:

Field

Type

Description

x-opt-qd.ingress

string

The identity of the ingress router for a message-routed message.
The ingress router is the first router encountered by a transiting
message. The router will, if this field is present, leave it unaltered.
If the field is not present, the router shall insert the field with its
own identity.

x-opt-qd.trace

list of string

The list of routers through which this message-routed message has
transited. If this field is not present, the router shall do nothing. If
the field is present, the router shall append its own identity to the
end of the list.

x-opt-qd.to

string

To-Override for message-routed messages. If this field is present,
the address in this field shall be used for routing in lieu of the to
field in the message properties. A router may append, remove, or
modify this annotation field depending on the policy in place for
routing the message.

x-opt-qd.phase

integer

The address-phase, if not zero, for messages flowing between
routers.

4.3.2 Source/Target Capabilities

The following Capability values are used in Sources and Targets.

Capability

Description

qd.router

This capability is added to sources and targets that are used for inter-router message exchange.
This capability denotes a link used for router-control messages flowing between routers.

qd.router-data

This capability is added to sources and targets that are used for inter-router message exchange.
This capability denotes a link used for user messages being message-routed across an
inter-router connection.

4.3.3 Dynamic-Node-

Properties

The following dynamic-node-properties are used by Dispatch in Sources.

Property

Description

x-opt-qd.address

The node address describing the destination desired for a dynamic source. If this is absent,
the router will terminate any dynamic receivers. If this address is present, the router will
use the address to route the dynamic link attach to the proper destination container.

4.3.4 Addresses and Address Formats

The following AMQP addresses and address patterns are used within Dispatch Router.

4.3.4.1 Address Patterns

Pattern

Description

_local/<addr>

An address that references a locally attached endpoint. Messages using
this address pattern shall not be routed over more than one link.

Qpid Dispatch Router Book 27 /51

Pattern Description

_topo/0/<router>/<addr> An address that references an endpoint attached to a specific router node
in the network topology. Messages with addresses that follow this pattern
shall be routed along the shortest path to the specified router. Note that
addresses of this form are a-priori routable in that the address itself
contains enough information to route the message to its destination.

The 0 component immediately preceding the router-id is a placeholder for
an area which may be used in the future if area routing is implemented.
<addr> A mobile address. An address of this format represents an endpoint or a
set of distinct endpoints that are attached to the network in arbitrary
locations. It is the responsibility of the router network to determine which
router nodes are valid destinations for mobile addresses.

4.3.4.2 Supported Addresses

Address Description

Smanagement The management agent on the attached router/container. This address
would be used by an endpoint that is a management client/console/tool
wishing to access management data from the attached container.
_topo/0/Router.E/S$management | The management agent at Router.E in area 0. This address would be used
by a management client wishing to access management data from a specific
container that is reachable within the network.

_local/gdhello The router entity in each of the connected routers. This address is used to
communicate with neighbor routers and is exclusively for the HELLO
discovery protocol.

_local/gdrouter The router entity in each of the connected routers. This address is used by a
router to communicate with other routers in the network.

_topo/0/Router.E/gdrouter The router entity at the specifically indicated router. This address form is
used by a router to communicate with a specific router that may or may not
be a neighbor.

4.3.5 Implementation of the AMQP Management Specification

Qpid Dispatch is manageable remotely via AMQP. It is compliant with the emerging AMQP Management specification (draft 9).

Differences from the specification:

* The name attribute is not required when an entity is created. If not supplied it will be set to the same value as the system-
generated "identity" attribute. Otherwise it is treated as per the standard.

* The REGISTER and DEREGISTER operations are not implemented. The router automatically discovers peer routers via the
router network and makes their management addresses available via the standard GET-MGMT—-NODES operation. = Manage-
ment Schema

This chapter documents the set of management entity types that define configuration and management of a Dispatch Router.
A management entity type has a set of attributes that can be read, some attributes can also be updated. Some entity types also
support operations that can be called.

All management entity types have the following standard attributes:

type
The fully qualified type of the entity, e.g. org.apache.gpid.dispatch.router. This document uses the short
name without the org.apache.gpid.dispatch prefix e.g. router. The dispatch tools will accept the short or long
name.

name
A user-generated identity for the entity. This can be used in other entities that need to refer to the named entity.

Qpid Dispatch Router Book 28 /51

identity
A system-generated identity of the entity. It includes the short type name and some identifying information. E.g. 1og/
AGENT or listener/localhost:amgp

There are two main categories of management entity type.

Configuration Entities

Parameters that can be set in the configuration file (see gdrouterd.conf (5) man page) or set at run-time with the
gdmanage (8) tool.

Operational Entities
Run-time status values that can be queried using gdstat (8) or gdmanage (8) tools.

4.4 Configuration Entities

Configuration entities define the attributes allowed in the configuration file (see gdrouterd. conf (5)) but you can also create
entities once the router is running using the gdrouterd (8) tool’s create operation. Some entities can also be modified using
the update operation, see the entity descriptions below.

4.4.1 router

Tracks peer routers and computes routes to destinations. This entity is mandatory. The router will not start without this entity.

Operations allowed: READ

id (string, CREATE)
Router’s unique identity. One of id or routerld is required. The router will fail to start without id or routerld

mode (One of [standalone, interior], default=standalone, CREATE)
In standalone mode, the router operates as a single component. It does not participate in the routing protocol and therefore

will not cooperate with other routers. In interior mode, the router operates in cooperation with other interior routers in an
interconnected network.

area (string)
Unused placeholder.

version (string)
Software Version

helloInterval (integer, default=1, CREATE)
Interval in seconds between HELLO messages sent to neighbor routers.

helloMaxAge (integer, default=3, CREATE)
Time in seconds after which a neighbor is declared lost if no HELLO is received.

ralnterval (integer, default=30, CREATE)
Interval in seconds between Router-Advertisements sent to all routers in a stable network.

ralntervalFlux (integer, default=4, CREATE)
Interval in seconds between Router-Advertisements sent to all routers during topology fluctuations.

remoteLsMaxAge (integer, default=60, CREATE)
Time in seconds after which link state is declared stale if no RA is received.

addrCount (integer)
Number of addresses known to the router.

linkCount (integer)
Number of links attached to the router node.

Qpid Dispatch Router Book 29/ 51

nodeCount (integer)
Number of known peer router nodes.

linkRouteCount (integer)
Number of link routes attached to the router node.

autoLinkCount (integer)
Number of auto links attached to the router node.

connectionCount (integer)
Number of open connections to the router node.

workerThreads (integer, default=4, CREATE)
The number of threads that will be created to process message traffic and other application work (timers, non-amqp file
descriptors, etc.) .

debugDump (path, CREATE)
A file to dump debugging information that can’t be logged normally.

saslConfigPath (path, CREATE)
Absolute path to the SASL configuration file.

saslConfigName (string, default=qdrouterd, CREATE)
Name of the SASL configuration. This string + .conf is the name of the configuration file.

routerld (string, CREATE)
(DEPRECATED) Router’s unique identity. This attribute has been deprecated. Use id instead

mobileAddrMaxAge (integer, default=60, CREATE)
(DEPRECATED) This value is no longer used in the router.

4.4.2 sslProfile

Attributes for setting TLS/SSL configuration for connections.

Operations allowed: CREATE, DELETE, READ

certDb (path, CREATE)
The absolute path to the database that contains the public certificates of trusted certificate authorities (CA).

certFile (path, CREATE)
The absolute path to the file containing the PEM-formatted public certificate to be used on the local end of any connections
using this profile.

keyFile (path, CREATE)
The absolute path to the file containing the PEM-formatted private key for the above certificate.

passwordFile (path, CREATE)
If the above private key is password protected, this is the absolute path to a file containing the password that unlocks the
certificate key.

password (string, CREATE)
An alternative to storing the password in a file referenced by passwordFile is to supply the password right here in the
configuration file. This takes precedence over the passwordFile if both are specified.

uidFormat (string, CREATE)
A list of x509 client certificate fields that will be used to build a string that will uniquely identify the client certificate
owner. For e.g. a value of cou indicates that the uid will consist of ¢ - common name concatenated with o - organization-
company name concatenated with u - organization unit; or a value of 02 indicates that the uid will consist of o (organization
name) concatenated with 2 (the sha256 fingerprint of the entire certificate) . Allowed values can be any combination of ¢(
ISO3166 two character country code), s(state or province), /(Locality; generally - city), o(Organization - Company Name),

Qpid Dispatch Router Book 30/ 51

u(Organization Unit - typically certificate type or brand), n(CommonName - typically a user name for client certificates)
and I(shal certificate fingerprint, as displayed in the fingerprints section when looking at a certificate with say a web
browser is the hash of the entire certificate) and 2 (sha256 certificate fingerprint) and 5 (sha512 certificate fingerprint). The
user identifier (uid) that is generated based on the uidFormat is a string which has a semi-colon as a separator between the
components

displayNameFile (string, CREATE)
The absolute path to the file containing the unique id to display name mapping

4.4.3 listener

Listens for incoming connections to the router.

Operations allowed: CREATE, DELETE, READ

host (string, default=127.0.0.1, CREATE)
IP address: ipv4 or ipv6 literal or a host name

port (string, default=amqp, CREATE)
Port number or symbolic service name.

protocolFamily (One of [IPv4, IPv6], CREATE)
[IPv4, IPv6] IPv4: Internet Protocol version 4; IPv6: Internet Protocol version 6. If not specified, the protocol family will
be automatically determined from the address.

role (One of [normal, inter-router, route-container, on-demand), default=normal, CREATE)
The role of an established connection. In the normal role, the connection is assumed to be used for AMQP clients that are
doing normal message delivery over the connection. In the inter-router role, the connection is assumed to be to another
router in the network. Inter-router discovery and routing protocols can only be used over inter-router connections. route-
container role can be used for router-container connections, for example, a router-broker connection. on-demand role has
been deprecated.

cost (integer, default=1, CREATE)
For the inter-router role only. This value assigns a cost metric to the inter-router connection. The default (and minimum)
value is one. Higher values represent higher costs. The cost is used to influence the routing algorithm as it attempts to use
the path with the lowest total cost from ingress to egress.

sslProfile (string, CREATE)
Name of the ssIProfile.

sasIMechanisms (string, CREATE)
Space separated list of accepted SASL authentication mechanisms.

authenticatePeer (boolean, CREATE)
yes: Require the peer’s identity to be authenticated; no: Do not require any authentication.

requireEncryption (boolean, CREATE)
yes: Require the connection to the peer to be encrypted; no: Permit non-encrypted communication with the peer

requireSsl (boolean, CREATE)
yes: Require the use of SSL or TLS on the connection; no: Allow clients to connect without SSL or TLS.

trustedCerts (path, CREATE)
This optional setting can be used to reduce the set of available CAs for client authentication. If used, this setting must
provide the absolute path to a PEM file that contains the trusted certificates.

maxFrameSize (integer, default=16384, CREATE)
The maximum frame size in octets that will be used in the connection-open negotiation with a connected peer. The
frame size is the largest contiguous set of uninterrupted data that can be sent for a message delivery over the connection.
Interleaving of messages on different links is done at frame granularity. Policy settings, if specified, will overwrite this
value. Defaults to 16384.

Qpid Dispatch Router Book 31/51

maxSessions (integer, default=32768, CREATE)
The maximum number of sessions that can be simultaneously active on the connection. Setting this value to zero selects
the default number of sessions. Policy settings, if specified, will overwrite this value. Defaults to 32768.

maxSessionFrames (integer, CREATE)
Session incoming window measured in transfer frames for sessions created on this connection. This is the number of
transfer frames that may simultaneously be in flight for all links in the session. Setting this value to zero selects the default
session window size. Policy settings, if specified, will overwrite this value. The numerical product of maxFrameSize and
maxSessionFrames may not exceed 23!-1- If (maxFrameSize x maxSessionFrames) exceeds 231_1 then maxSessionFrames is reduced
to (2°31-1 / maxFrameSize). maxSessionFrames has a minimum value of 1. Defaults to O (unlimited window).

idleTimeoutSeconds (integer, default=16, CREATE)
The idle timeout, in seconds, for connections through this listener. If no frames are received on the connection for this time
interval, the connection shall be closed.

stripAnnotations (One of [in, out, both, no], default=both, CREATE)
[in, out, both, no] in: Strip the dispatch router specific annotations only on ingress; out: Strip the dispatch router specific
annotations only on egress; both: Strip the dispatch router specific annotations on both ingress and egress; no - do not strip
dispatch router specific annotations

linkCapacity (integer, CREATE)
The capacity of links within this connection, in terms of message deliveries. The capacity is the number of messages that
can be in-flight concurrently for each link.

multiTenant (boolean, CREATE)
If true, apply multi-tenancy to endpoints connected at this listener. The address space is defined by the virtual host
(hostname field in the Open).

failoverList (string, CREATE)
A comma-separated list of failover urls to be supplied to connected clients. Form: [(amqplamqpslwslwss)://]host_or_ip[:port]

addr (string, default=127.0.0.1, CREATE)
(DEPRECATED)IP address: ipv4 or ipv6 literal or a host name. This attribute has been deprecated. Use host instead

allowNoSasl (boolean, CREATE)
(DEPRECATED) This attribute is now controlled by the authenticatePeer attribute.

requirePeerAuth (boolean, CREATE)
(DEPRECATED) This attribute is now controlled by the authenticatePeer attribute.

allowUnsecured (boolean, CREATE)
(DEPRECATED) This attribute is now controlled by the requireEncryption attribute.

http (boolean, CREATE)
Accept HTTP connections that can upgrade to AMQP over WebSocket

httpRoot (path, CREATE)
Serve HTTP files from this directory, defaults to the installed stand-alone console directory

logMessage (string, default=none, CREATE)
A comma separated list that indicates which components of the message should be logged. Defaults to none (log nothing).
If you want all properties and application properties of the message logged use all. Specific components of the message can
be logged by indicating the components via a comma separated list. The components are message-id, user-id, to, subject,
reply-to, correlation-id, content-type, content-encoding, absolute-expiry-time, creation-time, group-id, group-sequence,
reply-to-group-id, app-properties. The application-data part of the bare message will not be logged. No spaces are allowed

4.4.4 connector

Establishes an outgoing connection from the router.

Operations allowed: CREATE, DELETE, READ

Qpid Dispatch Router Book 32/ 51

host (string, default=127.0.0.1, CREATE)
IP address: ipv4 or ipv6 literal or a host name

port (string, default=amqp, CREATE)
Port number or symbolic service name.

protocolFamily (One of [IPv4, IPv6], CREATE)
[/Pv4, IPv6] TIPv4: Internet Protocol version 4; IPv6: Internet Protocol version 6. If not specified, the protocol family will
be automatically determined from the address.

role (One of [normal, inter-router, route-container, on-demand), default=normal, CREATE)
The role of an established connection. In the normal role, the connection is assumed to be used for AMQP clients that are
doing normal message delivery over the connection. In the inter-router role, the connection is assumed to be to another
router in the network. Inter-router discovery and routing protocols can only be used over inter-router connections. route-
container role can be used for router-container connections, for example, a router-broker connection. on-demand role has
been deprecated.

cost (integer, default=1, CREATE)
For the inter-router role only. This value assigns a cost metric to the inter-router connection. The default (and minimum)
value is one. Higher values represent higher costs. The cost is used to influence the routing algorithm as it attempts to use
the path with the lowest total cost from ingress to egress.

sslProfile (string, CREATE)
Name of the ssIProfile.

sasiMechanisms (string, CREATE)
Space separated list of accepted SASL authentication mechanisms.

allowRedirect (boolean, default=True, CREATE)
Allow the peer to redirect this connection to another address.

maxFrameSize (integer, default=16384, CREATE)
The maximum frame size in octets that will be used in the connection-open negotiation with a connected peer. The
frame size is the largest contiguous set of uninterrupted data that can be sent for a message delivery over the connection.
Interleaving of messages on different links is done at frame granularity. Policy settings will not overwrite this value.
Defaults to 16384.

maxSessions (integer, default=32768, CREATE)
The maximum number of sessions that can be simultaneously active on the connection. Setting this value to zero selects
the default number of sessions. Policy settings will not overwrite this value. Defaults to 32768.

maxSessionFrames (integer, CREATE)
Session incoming window measured in transfer frames for sessions created on this connection. This is the number of
transfer frames that may simultaneously be in flight for all links in the session. Setting this value to zero selects the
default session window size. Policy settings will not overwrite this value. The numerical product of maxFrameSize and
maxSessionFrames may not exceed 231-1- If (maxFrameSize x maxSessionFrames) exceeds 231_1 then maxSessionFrames is reduced
to (2°31-1 / maxFrameSize). maxSessionFrames has a minimum value of 1. Defaults to O (unlimited window).

idleTimeoutSeconds (integer, default=16, CREATE)
The idle timeout, in seconds, for connections through this connector. If no frames are received on the connection for this
time interval, the connection shall be closed.

stripAnnotations (One of [in, out, both, no), default=both, CREATE)
[in, out, both, no] in: Strip the dispatch router specific annotations only on ingress; out: Strip the dispatch router specific
annotations only on egress; both: Strip the dispatch router specific annotations on both ingress and egress; no - do not strip
dispatch router specific annotations

linkCapacity (integer, CREATE)
The capacity of links within this connection, in terms of message deliveries. The capacity is the number of messages that
can be in-flight concurrently for each link.

Qpid Dispatch Router Book 33 /51

verifyHostName (boolean, default=True, CREATE)
yes: Ensures that when initiating a connection (as a client) the host name in the URL to which this connector connects

to matches the host name in the digital certificate that the peer sends back as part of the SSL connection; no: Does not
perform host name verification

saslUsername (string, CREATE)
The user name that the connector is using to connect to a peer.

saslPassword (string, CREATE)
The password that the connector is using to connect to a peer.

addr (string, default=127.0.0.1, CREATE)
(DEPRECATED)IP address: ipv4 or ipv6 literal or a host name. This attribute has been deprecated. Use host instead

logMessage (string, default=none, CREATE)
A comma separated list that indicates which components of the message should be logged. Defaults to none (log nothing).
If you want all properties and application properties of the message logged use all. Specific components of the message can
be logged by indicating the components via a comma separated list. The components are message-id, user-id, to, subject,
reply-to, correlation-id, content-type, content-encoding, absolute-expiry-time, creation-time, group-id, group-sequence,
reply-to-group-id, app-properties. The application-data part of the bare message will not be logged. No spaces are allowed

44.5 log

Configure logging for a particular module. You can use the UPDATE operation to change log settings while the router is running.

Operations allowed: UPDATE, READ

module (One of [ROUTER, ROUTER_CORE, ROUTER_HELLO, ROUTER LS, ROUTER_MA, MESSAGE, SERVER, AGENT,

Module to configure. The special module DEFAULT specifies defaults for all modules.

enable (string, UPDATE)
Levels are: trace, debug, info, notice, warning, error, critical. The enable string is a comma-separated list of levels. A
level may have a trailing + to enable that level and above. For example trace,debug,warning+ means enable trace, debug,
warning, error and critical. The value none means disable logging for the module.

timestamp (boolean, UPDATE)
Include timestamp in log messages.

source (boolean, UPDATE)
Include source file and line number in log messages.

output (string, UPDATE)
Where to send log messages. Can be stderr, stdout, syslog or a file name.

4.4.6 address

Entity type for address configuration. This is used to configure the treatment of message-routed deliveries within a particular
address-space. The configuration controls distribution and address phasing.

Operations allowed: CREATE, DELETE, READ

prefix (string, required, CREATE)
The address prefix for the configured settings

distribution (One of [multicast, closest, balanced], default=balanced, CREATE)
Treatment of traffic associated with the address

waypoint (boolean, CREATE)
Designates this address space as being used for waypoints. This will cause the proper address-phasing to be used.

Qpid Dispatch Router Book 34 /51

ingressPhase (integer, CREATE)
Advanced - Override the ingress phase for this address

egressPhase (integer, CREATE)
Advanced - Override the egress phase for this address

4.4.7 linkRoute

Entity type for link-route configuration. This is used to identify remote containers that shall be destinations for routed link-
attaches. The link-routing configuration applies to an addressing space defined by a prefix.

Operations allowed: CREATE, DELETE, READ

prefix (string, required, CREATE)
The address prefix for the configured settings

containerld (string, CREATE)
ContainerID for the target container. Only one of containerld or connection should be specified for a linkRoute. Specifying
both will result in the linkRoute not being created.

connection (string, CREATE)

The name from a connector or listener. Only one of containerld or connection should be specified for a linkRoute. Speci-
fying both will result in the linkRoute not being created.

distribution (One of [linkBalanced), default=linkBalanced, CREATE)
Treatment of traffic associated with the address

dir (One of [in, out], required, CREATE)
The permitted direction of links: in means client senders; out means client receivers

operStatus (One of [inactive, active])

The operational status of this linkRoute: inactive - The remote container is not connected; active - the remote container is
connected and ready to accept link routed attachments.

4.4.8 autolLink

Entity type for configuring auto-links. Auto-links are links whose lifecycle is managed by the router. These are typically used to
attach to waypoints on remote containers (brokers, etc.).

Operations allowed: CREATE, DELETE, READ

addr (string, required, CREATE)
The address of the provisioned object

dir (One of [in, out], required, CREATE)
The direction of the link to be created. In means into the router, out means out of the router.

phase (integer, CREATE)
The address phase for this link. Defaults to 0 for out links and / for in links.

containerld (string, CREATE)
ContainerID for the target container. Only one of containerld or connection should be specified for an autoLink. Specifying
both will result in the autoLink not being created

connection (string, CREATE)
The name from a connector or listener. Only one of containerld or connection should be specified for an autoLink.
Specifying both will result in the autoLink not being created

externalAddr (string, CREATE)

If present, an alternate address of the node on the remote container. This is used if the node has a different address than the
address used internally by the router to route deliveries.

Qpid Dispatch Router Book 35/ 51

linkRef (string)
Reference to the org.apache.qpid.dispatch.router.link if the link exists

operStatus (One of [inactive, attaching, failed, active, quiescing, idle])
The operational status of this autoLink: inactive - The remote container is not connected; attaching - the link is attaching
to the remote node; failed - the link attach failed; active - the link is attached and operational; quiescing - the link is
transitioning to idle state; idle - the link is attached but there are no deliveries flowing and no unsettled deliveries.

lastError (string)
The error description from the last attach failure

4.4.9 console

Start a websocket/tcp proxy and http file server to serve the web console

Operations allowed: READ

listener (string)
The name of the listener to send the proxied tcp traffic to.

wsport (integer, default=5673)
port on which to listen for websocket traffic

proxy (string)
The full path to the proxy program to run.

home (string)
The full path to the html/css/js files for the console.

args (string)
Optional args to pass the proxy program for logging, authentication, etc.

4410 policy

Defines global connection limit

Operations allowed: READ

maxConnections (integer, default=65535, CREATE)
Global maximum number of concurrent client connections allowed. This limit is always enforced even if no other policy
settings have been defined.

enableVhostPolicy (boolean, CREATE)
Enable vhost policy user groups, connection denial, and resource limit enforcement

policyDir (path, CREATE)
Absolute path to a directory that holds vhost definition .json files. All vhost definitions in all .json files in this directory are
processed.

defaultVhost (string, CREATE)
Vhost rule set name to use for connections with a vhost that is otherwise not defined. Default vhost processing may be
disabled either by erasing the definition of defaultVhost or by not defining a vhost object named $default.

connectionsProcessed (integer) , connectionsDenied (integer) , connectionsCurrent (integer)
=== vhost

AMAQP virtual host policy definition of users, user groups, allowed remote hosts, and AMQP restrictions.

Operations allowed: CREATE, UPDATE, DELETE, READ

Qpid Dispatch Router Book 36/ 51

id (string, required, CREATE)
The vhost name.

maxConnections (integer, default=65535, CREATE, UPDATE)
Maximum number of concurrent client connections allowed.

maxConnectionsPerUser (integer, default=65535, CREATE, UPDATE)
Maximum number of concurrent client connections allowed for any single user.

maxConnectionsPerHost (integer, default=65535, CREATE, UPDATE)
Maximum number of concurrent client connections allowed for any remote host.

allowUnknownUser (boolean, CREATE, UPDATE)
Unrestricted users, those who are not members of a defined user group, are allowed to connect to this application. Unre-
stricted users are assigned to the default user group and receive default settings.

groups (map, CREATE, UPDATE)
A map where each key is a user group name and the value is a map of the corresponding settings for that group.

4.4.11 container

(DEPRECATED)Attributes related to the AMQP container. This entity has been deprecated. Use the router entity instead.

Operations allowed: READ

containerName (string, CREATE)
The name of the AMQP container. If not specified, the container name will be set to a value of the container’s choosing.
The automatically assigned container name is not guaranteed to be persistent across restarts of the container.

workerThreads (integer, default=4, CREATE)
The number of threads that will be created to process message traffic and other application work (timers, non-amqp file
descriptors, etc.) .

debugDump (path, CREATE)
A file to dump debugging information that can’t be logged normally.

saslConfigPath (path, CREATE)
Absolute path to the SASL configuration file.

saslConfigName (string, CREATE)
Name of the SASL configuration. This string + .conf is the name of the configuration file.

4.4.12 waypoint

(DEPRECATED) A remote node that messages for an address pass through. This entity has been deprecated. Use autoLink
instead

Operations allowed: CREATE, DELETE, READ
address (string, required, CREATE)

The AMQP address of the waypoint.

connector (string, required, CREATE)
The name of the on-demand connector used to reach the waypoint’s container.

inPhase (integer, default=-1, CREATE)
The phase of the address as it is routed fo the waypoint.

outPhase (integer, default=-1, CREATE)
The phase of the address as it is routed from the waypoint.

Qpid Dispatch Router Book 37 /51

4413 fixedAddress

(DEPRECATED) Establishes treatment for addresses starting with a prefix. This entity has been deprecated. Use address instead
Operations allowed: CREATE, READ

prefix (string, required, CREATE)
The address prefix (always starting with /).

phase (integer, CREATE)
The phase of a multi-hop address passing through one or more waypoints.

SJanout (One of [multiple, single], default=multiple, CREATE)
One of multiple or single. Multiple fanout is a non-competing pattern. If there are multiple consumers using the same
address, each consumer will receive its own copy of every message sent to the address. Single fanout is a competing
pattern where each message is sent to only one consumer.

bias (One of [closest, spread], default=closest, CREATE)
Only if fanout is single. One of closest or spread. Closest bias means that messages to an address will always be deliv-
ered to the closest (lowest cost) subscribed consumer. Spread bias will distribute the messages across subscribers in an
approximately even manner.

4.4.14 linkRoutePattern

(DEPRECATED) An address pattern to match against link sources and targets to cause the router to link-route the attach across
the network to a remote node. This entity has been deprecated. Use linkRoute instead

Operations allowed: CREATE, READ

prefix (string, required, CREATE)
An address prefix to match against target and source addresses. This pattern must be of the form <fext>.<textl>.<textN>
or <text> or <text>. and matches any address that contains that prefix. For example, if the prefix is set to org.apache (or
org.apache.), any address that has the prefix org.apache (like org.apache.dev) will match. Note that a prefix must not start
with a (.), can end in a (.) and can contain zero or more dots (.). Any characters between the dots are simply treated as part
of the address

dir (One of [in, out, both), default=both, CREATE)
Link direction for match: in matches only links inbound to the client; out matches only links outbound from the client;
both matches any link.

connector (string, CREATE)
The name of the on-demand connector used to reach the target node’s container. If this value is not provided, it means that
the target container is expected to be connected to a different router in the network. This prevents links to a link-routable
address from being misinterpreted as message-routing links when there is no route to a valid destination available.

4.5 Operational Entities

Operational entities provide statistics and other run-time attributes of the router. The gdstat (8) tool provides a convenient
way to query run-time statistics. You can also use the general-purpose management tool gdmanage (8) to query operational
attributes.

4.5.1 org.amqp.management

The standard AMQP management node interface.

Operations allowed: QUERY, GET-TYPES, GET-ANNOTATIONS, GET-OPERATIONS, GET-ATTRIBUTES, GET-MGMT~-
NODES, READ

Qpid Dispatch Router Book 38/ 51

4.5.1.1 Operation GET-TYPES

Get the set of entity types and their inheritance relationships
REQUEST PROPERTIES
entityType (string)
If set, restrict query results to entities that extend (directly or indirectly) this type
identity (string)

Set to the value self

Response body (map) A map where each key is an entity type name (string) and the corresponding value is the list of the entity
types (strings) that it extends.

4.5.1.2 Operation GET-ATTRIBUTES

Get the set of entity types
REQUEST PROPERTIES
entityType (string)
If set, restrict query results to entities that extend (directly or indirectly) this type

identity (string)
Set to the value self

Response body (map) A map where each key is an entity type name (string) and the corresponding value is a list (of strings) of
attributes on that entity type.

4.5.1.3 Operation GET-OPERATIONS

Get the set of entity types and the operations they support
REQUEST PROPERTIES
entityType (string)
If set, restrict query results to entities that extend (directly or indirectly) this type

identity (string)
Set to the value self

Response body (map) A map where each key is an entity type name (string) and the corresponding value is the list of operation
names (strings) that it supports.

4.5.1.4 Operation GET-ANNOTATIONS
REQUEST PROPERTIES

entityType (string)
If set, restrict query results to entities that extend (directly or indirectly) this type

identity (string)

Set to the value self

Response body (map) A map where each key is an entity type name (string) and the corresponding value is the list of annotations
(strings) that it implements.

Qpid Dispatch Router Book 39/ 51

4.5.1.5 Operation QUERY

Query for attribute values of multiple entities.

Request body (map) A map containing the key att ributeNames with value a list of (string) attribute names to return. If the
list or the map is empty or the body is missing all attributes are returned.

REQUEST PROPERTIES

count (integer)
If set, specifies the number of entries from the result set to return. If not set return all from offset

entityType (string)
If set, restrict query results to entities that extend (directly or indirectly) this type

identity (string)
Set to the value self

offset (integer)

If set, specifies the number of the first element of the result set to be returned.

Response body (map) A map with two entries. attributeNames is a list of the attribute names returned. results is a list
of lists each containing the attribute values for a single entity in the same order as the names in the att ributeNames entry. If
an attribute name is not applicable for an entity then the corresponding value is null

RESPONSE PROPERTIES

count (integer)
Number of results returned

identity (string)
Set to the value self

4.5.1.6 Operation GET-MGMT-NODES

Get the addresses of all management nodes known to this router

REQUEST PROPERTIES

identity (string)
Set to the value self

Response body (list) A list of addresses (strings) of management nodes known to this management node.

4.5.2 management

Qpid dispatch router extensions to the standard org.amqgp.management interface.

Operations allowed: GET-SCHEMA, GET-JSON-SCHEMA, GET-LOG, PROFILE, QUERY, GET-TYPES, GET-ANNOTATI
ONS, GET-OPERATIONS, GET-ATTRIBUTES, GET-MGMT-NODES, READ

4.5.2.1 Operation GET-SCHEMA-JSON

Get the gdrouterd schema for this router in JSON format
REQUEST PROPERTIES
indent (integer)

Number of spaces to indent the formatted result. If not specified, the result is in minimal format, no unnecessary spaces or
newlines.

Qpid Dispatch Router Book 40/ 51

identity (string)
Set to the value self

Response body (string) The qdrouter schema as a JSON string.

4.5.2.2 Operation GET-LOG

Get recent log entries from the router.
REQUEST PROPERTIES
limit (integer)

Maximum number of log entries to get.
identity (string)

Set to the value self

Response body (string) A list of log entries where each entry is a list of: module name(string), level name(string), message
text(string), file name(string or None), line number(integer or None) , timestamp(integer)

4.5.2.3 Operation GET-SCHEMA

Get the gdrouterd schema for this router in AMQP map format

REQUEST PROPERTIES

identity (string)
Set to the value self

Response body (map) The qdrouter schema as a map.

4.5.3 logStats

histogram of the different severity-levels of events on the given log.
Operations allowed: READ
traceCount (integer)

How many trace-level events have happened on this log.

debugCount (integer)
How many debug-level events have happened on this log.

infoCount (integer)
How many info-level events have happened on this log.

noticeCount (integer)
How many notice-level events have happened on this log.

warningCount (integer)
How many warning-level events have happened on this log.

errorCount (integer)
How many error-level events have happened on this log.

criticalCount (integer)
How many critical-level events have happened on this log.

Qpid Dispatch Router Book 41/51

4.5.4 router.link

Link to another AMQP endpoint: router node, client or other AMQP process.

Operations allowed: UPDATE, READ

adminStatus (One of [enabled, disabled], default=enabled, UPDATE) , operStatus (One of [up, down, quiescing, idle]) , linkName (

Name assigned to the link in the Attach.

linkType (One of [endpoint, router-control, inter-router])
Type of link: endpoint: a link to a normally connected endpoint; inter-router: a link to another router in the network.

linkDir (One of [in, out])
Direction of delivery flow over the link, inbound or outbound to or from the router.

owningAddr (string)
Address assigned to this link during attach: The target for inbound links or the source for outbound links.

capacity (integer)
The capacity, in deliveries, for the link. The number of undelivered plus unsettled deliveries shall not exceed the capacity.
This is enforced by link flow control.

peer (string)
Identifier of the paired link if this is an attach-routed link.

undeliveredCount (integer)
The number of undelivered messages pending for the link.

unsettledCount (integer)
The number of unsettled deliveries awaiting settlement on the link

deliveryCount (integer)
The total number of deliveries that have traversed this link.

presettledCount (integer)
The total number of pre-settled deliveries.

acceptedCount (integer)
The total number of accepted deliveries.

rejectedCount (integer)
The total number of rejected deliveries.

releasedCount (integer)
The total number of released deliveries.

modifiedCount (integer)
The total number of modified deliveries.

4.5.5 router.address

AMQP address managed by the router.

Operations allowed: READ

distribution (One of [flood, multicast, closest, balanced, linkBalanced])
Forwarding treatment for the address: flood - messages delivered to all subscribers along all available paths (this will cause
duplicate deliveries if there are redundant paths); multi - one copy of each message delivered to all subscribers; anyClosest
- messages delivered to only the closest subscriber; anyBalanced - messages delivered to one subscriber with load balanced
across subscribers; linkBalanced - for link-routing, link attaches balanced across destinations.

Qpid Dispatch Router Book 42 /51

inProcess (integer)
The number of in-process subscribers for this address

subscriberCount (integer)
The number of local subscribers for this address (i.e. attached to this router)

remoteCount (integer)
The number of remote routers that have at least one subscriber to this address

containerCount (integer)
The number of attached containers that serve this route address

deliveriesIngress (integer)
The number of deliveries to this address that entered the router network on this router

deliveriesEgress (integer)
The number of deliveries to this address that exited the router network on this router

deliveries Transit (integer)
The number of deliveries to this address that transited this router to another router

deliveriesToContainer (integer)
The number of deliveries to this address that were given to an in-process subscriber

deliveriesFromContainer (integer)
The number of deliveries to this address that were originated from an in-process entity

key (string)
Internal unique (to this router) key to identify the address

remoteHostRouters (list)
List of remote routers on which there is a destination for this address.

transitOutstanding (list)
List of numbers of outstanding deliveries across a transit (inter-router) link for this address. This is for balanced distribution
only.

trackedDeliveries (integer)
Number of transit deliveries being tracked for this address (for balanced distribution).

4.5.6 router.node

Remote router node connected to this router.
Operations allowed: READ

id (string)
Remote node identifier.

protocolVersion (integer)
Router-protocol version supported by the node.

instance (integer)
Remote node boot number.

linkState (list)
List of remote node’s neighbours.

nextHop (string)
Neighbour ID of next hop to remote node from here.

validOrigins (list)
List of valid origin nodes for messages arriving via the re mote node, used for duplicate elimination in redundant networks.

Qpid Dispatch Router Book 43 /51

address (string)
Address of the remote node

routerLink (entityld)
Local link to remote node

cost (integer)
Reachability cost

lastTopoChange (integer)
Timestamp showing the most recent change to this node’s neighborhood.

4.5.7 connection

Connections to the router’s container.

Operations allowed: READ

container (string)
The container for this connection

opened (boolean)
The connection has been opened (i.e. AMQP OPEN)

host (string)
IP address and port number in the form addr:port.

dir (Onme of [in, out])
Direction of connection establishment in or out of the router.

role (string) , isAuthenticated (boolean)
Indicates whether the identity of the connection’s user is authentic.

isEncrypted (boolean)
Indicates whether the connection content is encrypted.

sasl (string)
SASL mechanism in effect for authentication.

user (string)
Identity of the authenticated user.

ssl (boolean)
True iff SSL/TLS is in effect for this connection.

sslProto (string)
SSL protocol name

sslCipher (string)
SSL cipher name

sslSsf (integer)
SSL strength factor in effect

tenant (string)
If multi-tenancy is on for this connection, the tenant space in effect

properties (map)
Connection properties supplied by the peer.

Qpid Dispatch Router Book 44 /51

4.5.8 allocator

Memory allocation pool.

Operations allowed: READ
typeName (string) , typeSize (integer) , transferBatchSize (integer) , localFreeListMax (integer) , globalFreeListMax (integer) , foi

=== vhostStats

Virtual host connection and access statistics.

Operations allowed: READ

id (string)
The vhost name.

connectionsApproved (integer) , connectionsDenied (integer) , connectionsCurrent (integer) , perUserState (map)
A map where the key is the authenticated user name and the value is a list of the user’s connections.

perHostState (map)
A map where the key is the host name and the value is a list of the host’s connections.

sessionDenied (integer) , senderDenied (integer) , receiverDenied (integer)
== Management Operations

The gdstat(8) and gdmanage(8) tools allow you to view or modify management entity attributes. They work by invoking manage-
ment operations. You can invoke these operations from any AMQP client by sending a message with the appropriate properties
and body to the $management address. The message should have a reply-to address indicating where the response should be sent.

4.5.9 Operations for all entity types
4.5.9.1 Operation READ

Read attributes of a single entity

REQUEST PROPERTIES

type (string)
Type of desired entity.

name (string)
Name of desired entity. Must supply name or identity.

identity (string)
Identity of desired entity. Must supply name or identity.

Response body (map) Attributes of the entity

4.5.9.2 Operation CREATE

Create a new entity.
Request body (map, required) Attributes for the new entity. Can include name and/or type.
REQUEST PROPERTIES
type (string, required)
Type of new entity.
name (string)

Name of new entity. Optional, defaults to identity.

Response body (map) Attributes of the entity

Qpid Dispatch Router Book 45/ 51

4.5.9.3 Operation UPDATE

Update attributes of an entity

Request body (map) Attributes to update for the entity. Can include name or identity.

REQUEST PROPERTIES
type (string)
Type of desired entity.

name (string)
Name of desired entity. Must supply name or identity.

identity (string)
Identity of desired entity. Must supply name or identity.

Response body (map) Updated attributes of the entity

4.5.9.4 Operation DELETE

Delete an entity
REQUEST PROPERTIES
type (string)

Type of desired entity.

name (string)
Name of desired entity. Must supply name or identity.

identity (string)
Identity of desired entity. Must supply name or identity.

4.5.10 Operations for org.amqp.management entity type

4.5.10.1 Operation GET-TYPES

Get the set of entity types and their inheritance relationships

REQUEST PROPERTIES

entityType (string)
If set, restrict query results to entities that extend (directly or indirectly) this type

identity (string)
Set to the value self

Response body (map) A map where each key is an entity type name (string) and the corresponding value is the list of the entity
types (strings) that it extends.

Qpid Dispatch Router Book 46/ 51

4.5.10.2 Operation GET-ATTRIBUTES

Get the set of entity types
REQUEST PROPERTIES
entityType (string)
If set, restrict query results to entities that extend (directly or indirectly) this type
identity (string)

Set to the value self

Response body (map) A map where each key is an entity type name (string) and the corresponding value is a list (of strings) of
attributes on that entity type.

4.5.10.3 Operation GET-OPERATIONS

Get the set of entity types and the operations they support
REQUEST PROPERTIES
entityType (string)
If set, restrict query results to entities that extend (directly or indirectly) this type
identity (string)

Set to the value self

Response body (map) A map where each key is an entity type name (string) and the corresponding value is the list of operation
names (strings) that it supports.

4.5.10.4 Operation GET-ANNOTATIONS

REQUEST PROPERTIES
entityType (string)

If set, restrict query results to entities that extend (directly or indirectly) this type
identity (string)

Set to the value self

Response body (map) A map where each key is an entity type name (string) and the corresponding value is the list of annotations
(strings) that it implements.

4.5.10.5 Operation QUERY

Query for attribute values of multiple entities.

Request body (map) A map containing the key att ributeNames with value a list of (string) attribute names to return. If the
list or the map is empty or the body is missing all attributes are returned.

REQUEST PROPERTIES
count (integer)
If set, specifies the number of entries from the result set to return. If not set return all from offset

entityType (string)
If set, restrict query results to entities that extend (directly or indirectly) this type

Qpid Dispatch Router Book 47 /51

identity (string)
Set to the value self

offset (integer)

If set, specifies the number of the first element of the result set to be returned.

Response body (map) A map with two entries. att ributeNames is a list of the attribute names returned. results is a list
of lists each containing the attribute values for a single entity in the same order as the names in the att ributeNames entry. If
an attribute name is not applicable for an entity then the corresponding value is null

RESPONSE PROPERTIES

count (integer)
Number of results returned

identity (string)
Set to the value self

4.5.10.6 Operation GET-MGMT-NODES

Get the addresses of all management nodes known to this router

REQUEST PROPERTIES

identity (string)
Set to the value self

Response body (list) A list of addresses (strings) of management nodes known to this management node.

4.5.11 Operations for management entity type
4.5.11.1 Operation GET-SCHEMA-JSON

Get the qdrouterd schema for this router in JSON format
REQUEST PROPERTIES
indent (integer)

Number of spaces to indent the formatted result. If not specified, the result is in minimal format, no unnecessary spaces or
newlines.

identity (string)
Set to the value self

Response body (string) The qdrouter schema as a JSON string.

4.5.11.2 Operation GET-LOG

Get recent log entries from the router.
REQUEST PROPERTIES

limit (integer)
Maximum number of log entries to get.

identity (string)
Set to the value self

Response body (string) A list of log entries where each entry is a list of: module name(string), level name(string), message
text(string), file name(string or None), line number(integer or None) , timestamp(integer)

Qpid Dispatch Router Book

48 /51

4.5.11.3 Operation GET-SCHEMA

Get the gqdrouterd schema for this router in AMQP map format

REQUEST PROPERTIES

identity (string)
Set to the value self

Response body (map) The qdrouter schema as a map.

Qpid Dispatch Router Book 49/ 51

Chapter 5

Console

5.1 Console overview

The console is an HTML based web site that displays information about a qpid dispatch router network.
The console requires an HTML web server that can serve static html, javascript, style sheets, and images.

The console only provides limited information about the clients that are attached to the router network and is therfore more
appropriate for administrators needing to know the layout and health of the router network.

5.2 Console installation

5.2.1 Prerequisites
The following need to be installed before running a console:

* One or more dispatch routers. See the documentation for the dispatch router for help in starting a router network.
* A websockets to tcp proxy.

* A web server. This can be any server capable of serving static html/js/css/image files.

To install a websockets to tcp proxy:

sudo dnf install python-websockify
websockify localhost:5673 localhost:5672

This will start the proxy listening to ws traffic on port 5673 and translating it to tcp on port 5672. One of the routers in the
network needs to have a listener configured on port 5672. That listener’s role should be normal. For example:

listener {
host: 0.0.0.0
role: normal
port: amgp
saslMechanisms: ANONYMOUS

5.2.2 The console files

The files for the console are located under the console/stand-alone directory in the source tree * index.html * plugin/

Copy these files to a directory under the the html or webapps directory of your web server. For example, for apache tomcat the
files should be under webapps/dispatch. Then the console is available as http://localhost:8080/dispatch

Qpid Dispatch Router Book 50/ 51

5.3 Console operation

5.3.1 Logging in to a router network

image

Enter the address of the websockets to tcp proxy that is connected to a router in the network.

The Autostart checkbox, when checked, will automatically log in with the previous host:port the next time you start the console.

5.3.2 Overview page

Qpid Dispatch Router Console

& Connect Owverview 7 Tope = List [l Charts = Schema
] Routers Addl’eSSGS
[] QDR A
QDR.B address v class ~¥ phase ¥ in.proc >~ local ¥ remote ~ in v out ¥
L] QDR.C gdhello local 1 20 0 0 0
] QDR.D
QDR X qdrouter local 1 0 0 0 0
L] QDR.Y gdrouterma | local 1 0 0 0 0
4 -_Addresses
gdrouter unknown: T 1 0 30 0 0

| $_management_internal
$displayname qdrouter.ma unknown: T 1 0 30 0 0
$management (mobile)

juy $managem... mobile 01 0 0 196 0
|| $management (local)
|] QDR A $managem... local 1 0 0 1,201 0
LJ QDRE $_manage... local 1 0 0 0 0
[] QDR.C

QDR.D $displayna... local 1 0 0 0 0
|| QDR X QDR.B router 0 0 5 1,201 0
[QDR.Y _ .
] qdhelio QDR.C router 0 0 B 1,201 0
|| gdrouter (local) QDR X router 0 0 5 0 0

drout ki :
L qdrouter (unknown: T) QDR.D router 0 0 5 1,201 0
| gdrouter.ma (unknown: T)
|| qdrouter.ma (local) QDR.Y router 0 0 [5 1,200 0
L] temp.HUS_uNRntbwi_38 QDR A router 0 0 5 1,222 0
Connections

temp HuS_... local 0 1 0 0 89

On the overview page, aggregate information about routers, addresses, and connections is displayed.

5.3.3 Topology page

image

This page displays the router network in a graphical form showing how the routers are connected and information about the
individual routers and links.

5.3.4 List page

image

Displays detailed information about entities such as routers, links, addresses, memory.

Qpid Dispatch Router Book 51 /51

5.3.5 Charts page

image

This page displays graphs of numeric values that are on the list page.
5.3.6 Schema page

image

This page displays the json schema that is used to manage the router network.

	Introduction
	Overview
	Benefits
	Features

	Theory of Operation
	Overview
	Connections
	Listener
	Connector

	Addresses
	Mobile Addresses
	Discovered Mobile Addresses
	Configured Mobile Addresses

	Link Route Addresses

	Message Routing
	Routing Patterns
	Routing Mechanisms
	Message Routed
	Link Routed

	Message Settlement

	Security

	Using Qpid Dispatch
	Configuration
	Tools
	qdstat
	qdmanage

	Basic Usage and Examples
	Standalone and Interior Modes
	Mobile Subscribers
	Dynamic Reply-To

	Link Routing
	Configuration

	Indirect Waypoints and Auto-Links
	Queue Waypoint Example
	Sharded Queue Example
	Dynamically Adding Shards
	Using a Different External Address on an Auto-Link

	Policy
	Definitions
	vhost

	Policy Features
	Total Connection Limit
	Vhost Policy
	Default Vhost

	Policy Schema
	Global Policy
	Vhost Policy
	Vhost User Group Settings Map

	Policy Wildcard and User Name Substitution
	Remote Host Wildcard
	AMQP Source and Target Wildcard and Name Substitution

	Composing Policies
	Example 1. User Policy Disabled
	Example 2. All Users Have Simple Connection Limits
	Example 3. Admins Must Connect From Localhost
	Example 4. Limiting Possible Memory Consumption

	Technical Details and Specifications
	Client Compatibility
	Addressing
	Routing patterns
	Routing mechanisms
	Message routing

	AMQP Mapping
	Message Annotations
	Source/Target Capabilities
	Dynamic-Node-Properties
	Addresses and Address Formats
	Address Patterns
	Supported Addresses

	Implementation of the AMQP Management Specification

	Configuration Entities
	router
	sslProfile
	listener
	connector
	log
	address
	linkRoute
	autoLink
	console
	policy
	container
	waypoint
	fixedAddress
	linkRoutePattern

	Operational Entities
	org.amqp.management
	Operation GET-TYPES
	Operation GET-ATTRIBUTES
	Operation GET-OPERATIONS
	Operation GET-ANNOTATIONS
	Operation QUERY
	Operation GET-MGMT-NODES

	management
	Operation GET-SCHEMA-JSON
	Operation GET-LOG
	Operation GET-SCHEMA

	logStats
	router.link
	router.address
	router.node
	connection
	allocator
	Operations for all entity types
	Operation READ
	Operation CREATE
	Operation UPDATE
	Operation DELETE

	Operations for org.amqp.management entity type
	Operation GET-TYPES
	Operation GET-ATTRIBUTES
	Operation GET-OPERATIONS
	Operation GET-ANNOTATIONS
	Operation QUERY
	Operation GET-MGMT-NODES

	Operations for management entity type
	Operation GET-SCHEMA-JSON
	Operation GET-LOG
	Operation GET-SCHEMA

	Console
	Console overview
	Console installation
	Prerequisites
	The console files

	Console operation
	Logging in to a router network
	Overview page
	Topology page
	List page
	Charts page
	Schema page

