Z3
Functions
C API

Functions

Z3_string Z3_API Z3_get_error_msg_ex (Z3_context c, Z3_error_code err)
 Return a string describing the given error code. Retained function name for backwards compatibility within v4.1. More...
 

Algebraic Numbers

Z3_bool Z3_API Z3_algebraic_is_value (Z3_context c, Z3_ast a)
 Return Z3_TRUE if can be used as value in the Z3 real algebraic number package. More...
 
Z3_bool Z3_API Z3_algebraic_is_pos (Z3_context c, Z3_ast a)
 Return the Z3_TRUE if a is positive, and Z3_FALSE otherwise. More...
 
Z3_bool Z3_API Z3_algebraic_is_neg (Z3_context c, Z3_ast a)
 Return the Z3_TRUE if a is negative, and Z3_FALSE otherwise. More...
 
Z3_bool Z3_API Z3_algebraic_is_zero (Z3_context c, Z3_ast a)
 Return the Z3_TRUE if a is zero, and Z3_FALSE otherwise. More...
 
int Z3_API Z3_algebraic_sign (Z3_context c, Z3_ast a)
 Return 1 if a is positive, 0 if a is zero, and -1 if a is negative. More...
 
Z3_ast Z3_API Z3_algebraic_add (Z3_context c, Z3_ast a, Z3_ast b)
 Return the value a + b. More...
 
Z3_ast Z3_API Z3_algebraic_sub (Z3_context c, Z3_ast a, Z3_ast b)
 Return the value a - b. More...
 
Z3_ast Z3_API Z3_algebraic_mul (Z3_context c, Z3_ast a, Z3_ast b)
 Return the value a * b. More...
 
Z3_ast Z3_API Z3_algebraic_div (Z3_context c, Z3_ast a, Z3_ast b)
 Return the value a / b. More...
 
Z3_ast Z3_API Z3_algebraic_root (Z3_context c, Z3_ast a, unsigned k)
 Return the a^(1/k) More...
 
Z3_ast Z3_API Z3_algebraic_power (Z3_context c, Z3_ast a, unsigned k)
 Return the a^k. More...
 
Z3_bool Z3_API Z3_algebraic_lt (Z3_context c, Z3_ast a, Z3_ast b)
 Return Z3_TRUE if a < b, and Z3_FALSE otherwise. More...
 
Z3_bool Z3_API Z3_algebraic_gt (Z3_context c, Z3_ast a, Z3_ast b)
 Return Z3_TRUE if a > b, and Z3_FALSE otherwise. More...
 
Z3_bool Z3_API Z3_algebraic_le (Z3_context c, Z3_ast a, Z3_ast b)
 Return Z3_TRUE if a <= b, and Z3_FALSE otherwise. More...
 
Z3_bool Z3_API Z3_algebraic_ge (Z3_context c, Z3_ast a, Z3_ast b)
 Return Z3_TRUE if a >= b, and Z3_FALSE otherwise. More...
 
Z3_bool Z3_API Z3_algebraic_eq (Z3_context c, Z3_ast a, Z3_ast b)
 Return Z3_TRUE if a == b, and Z3_FALSE otherwise. More...
 
Z3_bool Z3_API Z3_algebraic_neq (Z3_context c, Z3_ast a, Z3_ast b)
 Return Z3_TRUE if a != b, and Z3_FALSE otherwise. More...
 
Z3_ast_vector Z3_API Z3_algebraic_roots (Z3_context c, Z3_ast p, unsigned n, Z3_ast a[])
 Given a multivariate polynomial p(x_0, ..., x_{n-1}, x_n), returns the roots of the univariate polynomial p(a[0], ..., a[n-1], x_n). More...
 
int Z3_API Z3_algebraic_eval (Z3_context c, Z3_ast p, unsigned n, Z3_ast a[])
 Given a multivariate polynomial p(x_0, ..., x_{n-1}), return the sign of p(a[0], ..., a[n-1]). More...
 

Types

Most of the types in the C API are opaque pointers.

  • Z3_config: configuration object used to initialize logical contexts.
  • Z3_context: manager of all other Z3 objects, global configuration options, etc.
  • Z3_symbol: Lisp-like symbol used to name types, constants, and functions. A symbol can be created using string or integers.
  • Z3_ast: abstract syntax tree node. That is, the data-structure used in Z3 to represent terms, formulas and types.
  • Z3_sort: kind of AST used to represent types.
  • Z3_func_decl: kind of AST used to represent function symbols.
  • Z3_app: kind of AST used to represent function applications.
  • Z3_pattern: kind of AST used to represent pattern and multi-patterns used to guide quantifier instantiation.
  • Z3_constructor: type constructor for a (recursive) datatype.
  • Z3_constructor_list: list of constructors for a (recursive) datatype.
  • Z3_params: parameter set used to configure many components such as: simplifiers, tactics, solvers, etc.
  • Z3_param_descrs: provides a collection of parameter names, their types, default values and documentation strings. Solvers, tactics, and other objects accept different collection of parameters.
  • Z3_model: model for the constraints asserted into the logical context.
  • Z3_func_interp: interpretation of a function in a model.
  • Z3_func_entry: representation of the value of a Z3_func_interp at a particular point.
  • Z3_fixedpoint: context for the recursive predicate solver.
  • Z3_optimize: context for solving optimization queries.
  • Z3_ast_vector: vector of Z3_ast objects.
  • Z3_ast_map: mapping from Z3_ast to Z3_ast objects.
  • Z3_goal: set of formulas that can be solved and/or transformed using tactics and solvers.
  • Z3_tactic: basic building block for creating custom solvers for specific problem domains.
  • Z3_probe: function/predicate used to inspect a goal and collect information that may be used to decide which solver and/or preprocessing step will be used.
  • Z3_apply_result: collection of subgoals resulting from applying of a tactic to a goal.
  • Z3_solver: (incremental) solver, possibly specialized by a particular tactic or logic.
  • Z3_stats: statistical data for a solver.
enum  Z3_lbool { Z3_L_FALSE = -1, Z3_L_UNDEF, Z3_L_TRUE }
 Lifted Boolean type: false, undefined, true. More...
 
enum  Z3_symbol_kind { Z3_INT_SYMBOL, Z3_STRING_SYMBOL }
 The different kinds of symbol. In Z3, a symbol can be represented using integers and strings (See #Z3_get_symbol_kind). More...
 
enum  Z3_parameter_kind {
  Z3_PARAMETER_INT, Z3_PARAMETER_DOUBLE, Z3_PARAMETER_RATIONAL, Z3_PARAMETER_SYMBOL,
  Z3_PARAMETER_SORT, Z3_PARAMETER_AST, Z3_PARAMETER_FUNC_DECL
}
 The different kinds of parameters that can be associated with function symbols. More...
 
enum  Z3_sort_kind {
  Z3_UNINTERPRETED_SORT, Z3_BOOL_SORT, Z3_INT_SORT, Z3_REAL_SORT,
  Z3_BV_SORT, Z3_ARRAY_SORT, Z3_DATATYPE_SORT, Z3_RELATION_SORT,
  Z3_FINITE_DOMAIN_SORT, Z3_FLOATING_POINT_SORT, Z3_ROUNDING_MODE_SORT, Z3_SEQ_SORT,
  Z3_RE_SORT, Z3_UNKNOWN_SORT = 1000
}
 The different kinds of Z3 types (See #Z3_get_sort_kind). More...
 
enum  Z3_ast_kind {
  Z3_NUMERAL_AST, Z3_APP_AST, Z3_VAR_AST, Z3_QUANTIFIER_AST,
  Z3_SORT_AST, Z3_FUNC_DECL_AST, Z3_UNKNOWN_AST = 1000
}
 The different kinds of Z3 AST (abstract syntax trees). That is, terms, formulas and types. More...
 
enum  Z3_decl_kind {
  Z3_OP_TRUE = 0x100, Z3_OP_FALSE, Z3_OP_EQ, Z3_OP_DISTINCT,
  Z3_OP_ITE, Z3_OP_AND, Z3_OP_OR, Z3_OP_IFF,
  Z3_OP_XOR, Z3_OP_NOT, Z3_OP_IMPLIES, Z3_OP_OEQ,
  Z3_OP_INTERP, Z3_OP_ANUM = 0x200, Z3_OP_AGNUM, Z3_OP_LE,
  Z3_OP_GE, Z3_OP_LT, Z3_OP_GT, Z3_OP_ADD,
  Z3_OP_SUB, Z3_OP_UMINUS, Z3_OP_MUL, Z3_OP_DIV,
  Z3_OP_IDIV, Z3_OP_REM, Z3_OP_MOD, Z3_OP_TO_REAL,
  Z3_OP_TO_INT, Z3_OP_IS_INT, Z3_OP_POWER, Z3_OP_STORE = 0x300,
  Z3_OP_SELECT, Z3_OP_CONST_ARRAY, Z3_OP_ARRAY_MAP, Z3_OP_ARRAY_DEFAULT,
  Z3_OP_SET_UNION, Z3_OP_SET_INTERSECT, Z3_OP_SET_DIFFERENCE, Z3_OP_SET_COMPLEMENT,
  Z3_OP_SET_SUBSET, Z3_OP_AS_ARRAY, Z3_OP_ARRAY_EXT, Z3_OP_BNUM = 0x400,
  Z3_OP_BIT1, Z3_OP_BIT0, Z3_OP_BNEG, Z3_OP_BADD,
  Z3_OP_BSUB, Z3_OP_BMUL, Z3_OP_BSDIV, Z3_OP_BUDIV,
  Z3_OP_BSREM, Z3_OP_BUREM, Z3_OP_BSMOD, Z3_OP_BSDIV0,
  Z3_OP_BUDIV0, Z3_OP_BSREM0, Z3_OP_BUREM0, Z3_OP_BSMOD0,
  Z3_OP_ULEQ, Z3_OP_SLEQ, Z3_OP_UGEQ, Z3_OP_SGEQ,
  Z3_OP_ULT, Z3_OP_SLT, Z3_OP_UGT, Z3_OP_SGT,
  Z3_OP_BAND, Z3_OP_BOR, Z3_OP_BNOT, Z3_OP_BXOR,
  Z3_OP_BNAND, Z3_OP_BNOR, Z3_OP_BXNOR, Z3_OP_CONCAT,
  Z3_OP_SIGN_EXT, Z3_OP_ZERO_EXT, Z3_OP_EXTRACT, Z3_OP_REPEAT,
  Z3_OP_BREDOR, Z3_OP_BREDAND, Z3_OP_BCOMP, Z3_OP_BSHL,
  Z3_OP_BLSHR, Z3_OP_BASHR, Z3_OP_ROTATE_LEFT, Z3_OP_ROTATE_RIGHT,
  Z3_OP_EXT_ROTATE_LEFT, Z3_OP_EXT_ROTATE_RIGHT, Z3_OP_INT2BV, Z3_OP_BV2INT,
  Z3_OP_CARRY, Z3_OP_XOR3, Z3_OP_BSMUL_NO_OVFL, Z3_OP_BUMUL_NO_OVFL,
  Z3_OP_BSMUL_NO_UDFL, Z3_OP_BSDIV_I, Z3_OP_BUDIV_I, Z3_OP_BSREM_I,
  Z3_OP_BUREM_I, Z3_OP_BSMOD_I, Z3_OP_PR_UNDEF = 0x500, Z3_OP_PR_TRUE,
  Z3_OP_PR_ASSERTED, Z3_OP_PR_GOAL, Z3_OP_PR_MODUS_PONENS, Z3_OP_PR_REFLEXIVITY,
  Z3_OP_PR_SYMMETRY, Z3_OP_PR_TRANSITIVITY, Z3_OP_PR_TRANSITIVITY_STAR, Z3_OP_PR_MONOTONICITY,
  Z3_OP_PR_QUANT_INTRO, Z3_OP_PR_DISTRIBUTIVITY, Z3_OP_PR_AND_ELIM, Z3_OP_PR_NOT_OR_ELIM,
  Z3_OP_PR_REWRITE, Z3_OP_PR_REWRITE_STAR, Z3_OP_PR_PULL_QUANT, Z3_OP_PR_PULL_QUANT_STAR,
  Z3_OP_PR_PUSH_QUANT, Z3_OP_PR_ELIM_UNUSED_VARS, Z3_OP_PR_DER, Z3_OP_PR_QUANT_INST,
  Z3_OP_PR_HYPOTHESIS, Z3_OP_PR_LEMMA, Z3_OP_PR_UNIT_RESOLUTION, Z3_OP_PR_IFF_TRUE,
  Z3_OP_PR_IFF_FALSE, Z3_OP_PR_COMMUTATIVITY, Z3_OP_PR_DEF_AXIOM, Z3_OP_PR_DEF_INTRO,
  Z3_OP_PR_APPLY_DEF, Z3_OP_PR_IFF_OEQ, Z3_OP_PR_NNF_POS, Z3_OP_PR_NNF_NEG,
  Z3_OP_PR_NNF_STAR, Z3_OP_PR_CNF_STAR, Z3_OP_PR_SKOLEMIZE, Z3_OP_PR_MODUS_PONENS_OEQ,
  Z3_OP_PR_TH_LEMMA, Z3_OP_PR_HYPER_RESOLVE, Z3_OP_RA_STORE = 0x600, Z3_OP_RA_EMPTY,
  Z3_OP_RA_IS_EMPTY, Z3_OP_RA_JOIN, Z3_OP_RA_UNION, Z3_OP_RA_WIDEN,
  Z3_OP_RA_PROJECT, Z3_OP_RA_FILTER, Z3_OP_RA_NEGATION_FILTER, Z3_OP_RA_RENAME,
  Z3_OP_RA_COMPLEMENT, Z3_OP_RA_SELECT, Z3_OP_RA_CLONE, Z3_OP_FD_CONSTANT,
  Z3_OP_FD_LT, Z3_OP_SEQ_UNIT, Z3_OP_SEQ_EMPTY, Z3_OP_SEQ_CONCAT,
  Z3_OP_SEQ_PREFIX, Z3_OP_SEQ_SUFFIX, Z3_OP_SEQ_CONTAINS, Z3_OP_SEQ_EXTRACT,
  Z3_OP_SEQ_REPLACE, Z3_OP_SEQ_AT, Z3_OP_SEQ_LENGTH, Z3_OP_SEQ_INDEX,
  Z3_OP_SEQ_TO_RE, Z3_OP_SEQ_IN_RE, Z3_OP_RE_PLUS, Z3_OP_RE_STAR,
  Z3_OP_RE_OPTION, Z3_OP_RE_CONCAT, Z3_OP_RE_UNION, Z3_OP_LABEL = 0x700,
  Z3_OP_LABEL_LIT, Z3_OP_DT_CONSTRUCTOR =0x800, Z3_OP_DT_RECOGNISER, Z3_OP_DT_ACCESSOR,
  Z3_OP_DT_UPDATE_FIELD, Z3_OP_PB_AT_MOST =0x900, Z3_OP_PB_LE, Z3_OP_PB_GE,
  Z3_OP_PB_EQ, Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN, Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY, Z3_OP_FPA_RM_TOWARD_POSITIVE,
  Z3_OP_FPA_RM_TOWARD_NEGATIVE, Z3_OP_FPA_RM_TOWARD_ZERO, Z3_OP_FPA_NUM, Z3_OP_FPA_PLUS_INF,
  Z3_OP_FPA_MINUS_INF, Z3_OP_FPA_NAN, Z3_OP_FPA_PLUS_ZERO, Z3_OP_FPA_MINUS_ZERO,
  Z3_OP_FPA_ADD, Z3_OP_FPA_SUB, Z3_OP_FPA_NEG, Z3_OP_FPA_MUL,
  Z3_OP_FPA_DIV, Z3_OP_FPA_REM, Z3_OP_FPA_ABS, Z3_OP_FPA_MIN,
  Z3_OP_FPA_MAX, Z3_OP_FPA_FMA, Z3_OP_FPA_SQRT, Z3_OP_FPA_ROUND_TO_INTEGRAL,
  Z3_OP_FPA_EQ, Z3_OP_FPA_LT, Z3_OP_FPA_GT, Z3_OP_FPA_LE,
  Z3_OP_FPA_GE, Z3_OP_FPA_IS_NAN, Z3_OP_FPA_IS_INF, Z3_OP_FPA_IS_ZERO,
  Z3_OP_FPA_IS_NORMAL, Z3_OP_FPA_IS_SUBNORMAL, Z3_OP_FPA_IS_NEGATIVE, Z3_OP_FPA_IS_POSITIVE,
  Z3_OP_FPA_FP, Z3_OP_FPA_TO_FP, Z3_OP_FPA_TO_FP_UNSIGNED, Z3_OP_FPA_TO_UBV,
  Z3_OP_FPA_TO_SBV, Z3_OP_FPA_TO_REAL, Z3_OP_FPA_TO_IEEE_BV, Z3_OP_FPA_MIN_I,
  Z3_OP_FPA_MAX_I, Z3_OP_INTERNAL, Z3_OP_UNINTERPRETED
}
 The different kinds of interpreted function kinds. More...
 
enum  Z3_param_kind {
  Z3_PK_UINT, Z3_PK_BOOL, Z3_PK_DOUBLE, Z3_PK_SYMBOL,
  Z3_PK_STRING, Z3_PK_OTHER, Z3_PK_INVALID
}
 The different kinds of parameters that can be associated with parameter sets. (see Z3_mk_params). More...
 
enum  Z3_ast_print_mode { Z3_PRINT_SMTLIB_FULL, Z3_PRINT_LOW_LEVEL, Z3_PRINT_SMTLIB_COMPLIANT, Z3_PRINT_SMTLIB2_COMPLIANT }
 Z3 pretty printing modes (See Z3_set_ast_print_mode). More...
 
enum  Z3_error_code {
  Z3_OK, Z3_SORT_ERROR, Z3_IOB, Z3_INVALID_ARG,
  Z3_PARSER_ERROR, Z3_NO_PARSER, Z3_INVALID_PATTERN, Z3_MEMOUT_FAIL,
  Z3_FILE_ACCESS_ERROR, Z3_INTERNAL_FATAL, Z3_INVALID_USAGE, Z3_DEC_REF_ERROR,
  Z3_EXCEPTION
}
 Z3 error codes (See Z3_get_error_code). More...
 
enum  Z3_goal_prec { Z3_GOAL_PRECISE, Z3_GOAL_UNDER, Z3_GOAL_OVER, Z3_GOAL_UNDER_OVER }
 A Goal is essentially a set of formulas. Z3 provide APIs for building strategies/tactics for solving and transforming Goals. Some of these transformations apply under/over approximations. More...
 
typedef int Z3_bool
 Z3 Boolean type. It is just an alias for int. More...
 
typedef const char * Z3_string
 Z3 string type. It is just an alias for const char *. More...
 
typedef Z3_stringZ3_string_ptr
 
typedef void Z3_error_handler(Z3_context c, Z3_error_code e)
 Z3 custom error handler (See Z3_set_error_handler). More...
 
#define Z3_TRUE   1
 True value. It is just an alias for 1. More...
 
#define Z3_FALSE   0
 False value. It is just an alias for 0. More...
 

Global Parameters

void Z3_API Z3_global_param_set (Z3_string param_id, Z3_string param_value)
 Set a global (or module) parameter. This setting is shared by all Z3 contexts. More...
 
void Z3_API Z3_global_param_reset_all (void)
 Restore the value of all global (and module) parameters. This command will not affect already created objects (such as tactics and solvers). More...
 
Z3_bool Z3_API Z3_global_param_get (Z3_string param_id, Z3_string_ptr param_value)
 Get a global (or module) parameter. More...
 

Create configuration

Z3_config Z3_API Z3_mk_config (void)
 Create a configuration object for the Z3 context object. More...
 
void Z3_API Z3_del_config (Z3_config c)
 Delete the given configuration object. More...
 
void Z3_API Z3_set_param_value (Z3_config c, Z3_string param_id, Z3_string param_value)
 Set a configuration parameter. More...
 

Context and AST Reference Counting

Z3_context Z3_API Z3_mk_context (Z3_config c)
 Create a context using the given configuration. More...
 
Z3_context Z3_API Z3_mk_context_rc (Z3_config c)
 Create a context using the given configuration. This function is similar to Z3_mk_context. However, in the context returned by this function, the user is responsible for managing Z3_ast reference counters. Managing reference counters is a burden and error-prone, but allows the user to use the memory more efficiently. The user must invoke Z3_inc_ref for any Z3_ast returned by Z3, and Z3_dec_ref whenever the Z3_ast is not needed anymore. This idiom is similar to the one used in BDD (binary decision diagrams) packages such as CUDD. More...
 
void Z3_API Z3_del_context (Z3_context c)
 Delete the given logical context. More...
 
void Z3_API Z3_inc_ref (Z3_context c, Z3_ast a)
 Increment the reference counter of the given AST. The context c should have been created using Z3_mk_context_rc. This function is a NOOP if c was created using Z3_mk_context. More...
 
void Z3_API Z3_dec_ref (Z3_context c, Z3_ast a)
 Decrement the reference counter of the given AST. The context c should have been created using Z3_mk_context_rc. This function is a NOOP if c was created using Z3_mk_context. More...
 
void Z3_API Z3_update_param_value (Z3_context c, Z3_string param_id, Z3_string param_value)
 Set a value of a context parameter. More...
 
void Z3_API Z3_interrupt (Z3_context c)
 Interrupt the execution of a Z3 procedure. This procedure can be used to interrupt: solvers, simplifiers and tactics. More...
 

Parameters

Z3_params Z3_API Z3_mk_params (Z3_context c)
 Create a Z3 (empty) parameter set. Starting at Z3 4.0, parameter sets are used to configure many components such as: simplifiers, tactics, solvers, etc. More...
 
void Z3_API Z3_params_inc_ref (Z3_context c, Z3_params p)
 Increment the reference counter of the given parameter set. More...
 
void Z3_API Z3_params_dec_ref (Z3_context c, Z3_params p)
 Decrement the reference counter of the given parameter set. More...
 
void Z3_API Z3_params_set_bool (Z3_context c, Z3_params p, Z3_symbol k, Z3_bool v)
 Add a Boolean parameter k with value v to the parameter set p. More...
 
void Z3_API Z3_params_set_uint (Z3_context c, Z3_params p, Z3_symbol k, unsigned v)
 Add a unsigned parameter k with value v to the parameter set p. More...
 
void Z3_API Z3_params_set_double (Z3_context c, Z3_params p, Z3_symbol k, double v)
 Add a double parameter k with value v to the parameter set p. More...
 
void Z3_API Z3_params_set_symbol (Z3_context c, Z3_params p, Z3_symbol k, Z3_symbol v)
 Add a symbol parameter k with value v to the parameter set p. More...
 
Z3_string Z3_API Z3_params_to_string (Z3_context c, Z3_params p)
 Convert a parameter set into a string. This function is mainly used for printing the contents of a parameter set. More...
 
void Z3_API Z3_params_validate (Z3_context c, Z3_params p, Z3_param_descrs d)
 Validate the parameter set p against the parameter description set d. More...
 

Parameter Descriptions

void Z3_API Z3_param_descrs_inc_ref (Z3_context c, Z3_param_descrs p)
 Increment the reference counter of the given parameter description set. More...
 
void Z3_API Z3_param_descrs_dec_ref (Z3_context c, Z3_param_descrs p)
 Decrement the reference counter of the given parameter description set. More...
 
Z3_param_kind Z3_API Z3_param_descrs_get_kind (Z3_context c, Z3_param_descrs p, Z3_symbol n)
 Return the kind associated with the given parameter name n. More...
 
unsigned Z3_API Z3_param_descrs_size (Z3_context c, Z3_param_descrs p)
 Return the number of parameters in the given parameter description set. More...
 
Z3_symbol Z3_API Z3_param_descrs_get_name (Z3_context c, Z3_param_descrs p, unsigned i)
 Return the number of parameters in the given parameter description set. More...
 
Z3_string Z3_API Z3_param_descrs_get_documentation (Z3_context c, Z3_param_descrs p, Z3_symbol s)
 Retrieve documentation string corresponding to parameter name s. More...
 
Z3_string Z3_API Z3_param_descrs_to_string (Z3_context c, Z3_param_descrs p)
 Convert a parameter description set into a string. This function is mainly used for printing the contents of a parameter description set. More...
 

Symbols

Z3_symbol Z3_API Z3_mk_int_symbol (Z3_context c, int i)
 Create a Z3 symbol using an integer. More...
 
Z3_symbol Z3_API Z3_mk_string_symbol (Z3_context c, Z3_string s)
 Create a Z3 symbol using a C string. More...
 

Sorts

Z3_sort Z3_API Z3_mk_uninterpreted_sort (Z3_context c, Z3_symbol s)
 Create a free (uninterpreted) type using the given name (symbol). More...
 
Z3_sort Z3_API Z3_mk_bool_sort (Z3_context c)
 Create the Boolean type. More...
 
Z3_sort Z3_API Z3_mk_int_sort (Z3_context c)
 Create the integer type. More...
 
Z3_sort Z3_API Z3_mk_real_sort (Z3_context c)
 Create the real type. More...
 
Z3_sort Z3_API Z3_mk_bv_sort (Z3_context c, unsigned sz)
 Create a bit-vector type of the given size. More...
 
Z3_sort Z3_API Z3_mk_finite_domain_sort (Z3_context c, Z3_symbol name, unsigned __int64 size)
 Create a named finite domain sort. More...
 
Z3_sort Z3_API Z3_mk_array_sort (Z3_context c, Z3_sort domain, Z3_sort range)
 Create an array type. More...
 
Z3_sort Z3_API Z3_mk_tuple_sort (Z3_context c, Z3_symbol mk_tuple_name, unsigned num_fields, Z3_symbol const field_names[], Z3_sort const field_sorts[], Z3_func_decl *mk_tuple_decl, Z3_func_decl proj_decl[])
 Create a tuple type. More...
 
Z3_sort Z3_API Z3_mk_enumeration_sort (Z3_context c, Z3_symbol name, unsigned n, Z3_symbol const enum_names[], Z3_func_decl enum_consts[], Z3_func_decl enum_testers[])
 Create a enumeration sort. More...
 
Z3_sort Z3_API Z3_mk_list_sort (Z3_context c, Z3_symbol name, Z3_sort elem_sort, Z3_func_decl *nil_decl, Z3_func_decl *is_nil_decl, Z3_func_decl *cons_decl, Z3_func_decl *is_cons_decl, Z3_func_decl *head_decl, Z3_func_decl *tail_decl)
 Create a list sort. More...
 
Z3_constructor Z3_API Z3_mk_constructor (Z3_context c, Z3_symbol name, Z3_symbol recognizer, unsigned num_fields, Z3_symbol const field_names[], Z3_sort_opt const sorts[], unsigned sort_refs[])
 Create a constructor. More...
 
void Z3_API Z3_del_constructor (Z3_context c, Z3_constructor constr)
 Reclaim memory allocated to constructor. More...
 
Z3_sort Z3_API Z3_mk_datatype (Z3_context c, Z3_symbol name, unsigned num_constructors, Z3_constructor constructors[])
 Create datatype, such as lists, trees, records, enumerations or unions of records. The datatype may be recursive. Return the datatype sort. More...
 
Z3_constructor_list Z3_API Z3_mk_constructor_list (Z3_context c, unsigned num_constructors, Z3_constructor const constructors[])
 Create list of constructors. More...
 
void Z3_API Z3_del_constructor_list (Z3_context c, Z3_constructor_list clist)
 Reclaim memory allocated for constructor list. More...
 
void Z3_API Z3_mk_datatypes (Z3_context c, unsigned num_sorts, Z3_symbol const sort_names[], Z3_sort sorts[], Z3_constructor_list constructor_lists[])
 Create mutually recursive datatypes. More...
 
void Z3_API Z3_query_constructor (Z3_context c, Z3_constructor constr, unsigned num_fields, Z3_func_decl *constructor, Z3_func_decl *tester, Z3_func_decl accessors[])
 Query constructor for declared functions. More...
 

Constants and Applications

Z3_func_decl Z3_API Z3_mk_func_decl (Z3_context c, Z3_symbol s, unsigned domain_size, Z3_sort const domain[], Z3_sort range)
 Declare a constant or function. More...
 
Z3_ast Z3_API Z3_mk_app (Z3_context c, Z3_func_decl d, unsigned num_args, Z3_ast const args[])
 Create a constant or function application. More...
 
Z3_ast Z3_API Z3_mk_const (Z3_context c, Z3_symbol s, Z3_sort ty)
 Declare and create a constant. More...
 
Z3_func_decl Z3_API Z3_mk_fresh_func_decl (Z3_context c, Z3_string prefix, unsigned domain_size, Z3_sort const domain[], Z3_sort range)
 Declare a fresh constant or function. More...
 
Z3_ast Z3_API Z3_mk_fresh_const (Z3_context c, Z3_string prefix, Z3_sort ty)
 Declare and create a fresh constant. More...
 

Propositional Logic and Equality

Z3_ast Z3_API Z3_mk_true (Z3_context c)
 Create an AST node representing true. More...
 
Z3_ast Z3_API Z3_mk_false (Z3_context c)
 Create an AST node representing false. More...
 
Z3_ast Z3_API Z3_mk_eq (Z3_context c, Z3_ast l, Z3_ast r)
 Create an AST node representing l = r. More...
 
Z3_ast Z3_API Z3_mk_distinct (Z3_context c, unsigned num_args, Z3_ast const args[])
 Create an AST node representing distinct(args[0], ..., args[num_args-1]). More...
 
Z3_ast Z3_API Z3_mk_not (Z3_context c, Z3_ast a)
 Create an AST node representing not(a). More...
 
Z3_ast Z3_API Z3_mk_ite (Z3_context c, Z3_ast t1, Z3_ast t2, Z3_ast t3)
 Create an AST node representing an if-then-else: ite(t1, t2, t3). More...
 
Z3_ast Z3_API Z3_mk_iff (Z3_context c, Z3_ast t1, Z3_ast t2)
 Create an AST node representing t1 iff t2. More...
 
Z3_ast Z3_API Z3_mk_implies (Z3_context c, Z3_ast t1, Z3_ast t2)
 Create an AST node representing t1 implies t2. More...
 
Z3_ast Z3_API Z3_mk_xor (Z3_context c, Z3_ast t1, Z3_ast t2)
 Create an AST node representing t1 xor t2. More...
 
Z3_ast Z3_API Z3_mk_and (Z3_context c, unsigned num_args, Z3_ast const args[])
 Create an AST node representing args[0] and ... and args[num_args-1]. More...
 
Z3_ast Z3_API Z3_mk_or (Z3_context c, unsigned num_args, Z3_ast const args[])
 Create an AST node representing args[0] or ... or args[num_args-1]. More...
 

Integers and Reals

Z3_ast Z3_API Z3_mk_add (Z3_context c, unsigned num_args, Z3_ast const args[])
 Create an AST node representing args[0] + ... + args[num_args-1]. More...
 
Z3_ast Z3_API Z3_mk_mul (Z3_context c, unsigned num_args, Z3_ast const args[])
 Create an AST node representing args[0] * ... * args[num_args-1]. More...
 
Z3_ast Z3_API Z3_mk_sub (Z3_context c, unsigned num_args, Z3_ast const args[])
 Create an AST node representing args[0] - ... - args[num_args - 1]. More...
 
Z3_ast Z3_API Z3_mk_unary_minus (Z3_context c, Z3_ast arg)
 Create an AST node representing - arg. More...
 
Z3_ast Z3_API Z3_mk_div (Z3_context c, Z3_ast arg1, Z3_ast arg2)
 Create an AST node representing arg1 div arg2. More...
 
Z3_ast Z3_API Z3_mk_mod (Z3_context c, Z3_ast arg1, Z3_ast arg2)
 Create an AST node representing arg1 mod arg2. More...
 
Z3_ast Z3_API Z3_mk_rem (Z3_context c, Z3_ast arg1, Z3_ast arg2)
 Create an AST node representing arg1 rem arg2. More...
 
Z3_ast Z3_API Z3_mk_power (Z3_context c, Z3_ast arg1, Z3_ast arg2)
 Create an AST node representing arg1 ^ arg2. More...
 
Z3_ast Z3_API Z3_mk_lt (Z3_context c, Z3_ast t1, Z3_ast t2)
 Create less than. More...
 
Z3_ast Z3_API Z3_mk_le (Z3_context c, Z3_ast t1, Z3_ast t2)
 Create less than or equal to. More...
 
Z3_ast Z3_API Z3_mk_gt (Z3_context c, Z3_ast t1, Z3_ast t2)
 Create greater than. More...
 
Z3_ast Z3_API Z3_mk_ge (Z3_context c, Z3_ast t1, Z3_ast t2)
 Create greater than or equal to. More...
 
Z3_ast Z3_API Z3_mk_int2real (Z3_context c, Z3_ast t1)
 Coerce an integer to a real. More...
 
Z3_ast Z3_API Z3_mk_real2int (Z3_context c, Z3_ast t1)
 Coerce a real to an integer. More...
 
Z3_ast Z3_API Z3_mk_is_int (Z3_context c, Z3_ast t1)
 Check if a real number is an integer. More...
 

Bit-vectors

Z3_ast Z3_API Z3_mk_bvnot (Z3_context c, Z3_ast t1)
 Bitwise negation. More...
 
Z3_ast Z3_API Z3_mk_bvredand (Z3_context c, Z3_ast t1)
 Take conjunction of bits in vector, return vector of length 1. More...
 
Z3_ast Z3_API Z3_mk_bvredor (Z3_context c, Z3_ast t1)
 Take disjunction of bits in vector, return vector of length 1. More...
 
Z3_ast Z3_API Z3_mk_bvand (Z3_context c, Z3_ast t1, Z3_ast t2)
 Bitwise and. More...
 
Z3_ast Z3_API Z3_mk_bvor (Z3_context c, Z3_ast t1, Z3_ast t2)
 Bitwise or. More...
 
Z3_ast Z3_API Z3_mk_bvxor (Z3_context c, Z3_ast t1, Z3_ast t2)
 Bitwise exclusive-or. More...
 
Z3_ast Z3_API Z3_mk_bvnand (Z3_context c, Z3_ast t1, Z3_ast t2)
 Bitwise nand. More...
 
Z3_ast Z3_API Z3_mk_bvnor (Z3_context c, Z3_ast t1, Z3_ast t2)
 Bitwise nor. More...
 
Z3_ast Z3_API Z3_mk_bvxnor (Z3_context c, Z3_ast t1, Z3_ast t2)
 Bitwise xnor. More...
 
Z3_ast Z3_API Z3_mk_bvneg (Z3_context c, Z3_ast t1)
 Standard two's complement unary minus. More...
 
Z3_ast Z3_API Z3_mk_bvadd (Z3_context c, Z3_ast t1, Z3_ast t2)
 Standard two's complement addition. More...
 
Z3_ast Z3_API Z3_mk_bvsub (Z3_context c, Z3_ast t1, Z3_ast t2)
 Standard two's complement subtraction. More...
 
Z3_ast Z3_API Z3_mk_bvmul (Z3_context c, Z3_ast t1, Z3_ast t2)
 Standard two's complement multiplication. More...
 
Z3_ast Z3_API Z3_mk_bvudiv (Z3_context c, Z3_ast t1, Z3_ast t2)
 Unsigned division. More...
 
Z3_ast Z3_API Z3_mk_bvsdiv (Z3_context c, Z3_ast t1, Z3_ast t2)
 Two's complement signed division. More...
 
Z3_ast Z3_API Z3_mk_bvurem (Z3_context c, Z3_ast t1, Z3_ast t2)
 Unsigned remainder. More...
 
Z3_ast Z3_API Z3_mk_bvsrem (Z3_context c, Z3_ast t1, Z3_ast t2)
 Two's complement signed remainder (sign follows dividend). More...
 
Z3_ast Z3_API Z3_mk_bvsmod (Z3_context c, Z3_ast t1, Z3_ast t2)
 Two's complement signed remainder (sign follows divisor). More...
 
Z3_ast Z3_API Z3_mk_bvult (Z3_context c, Z3_ast t1, Z3_ast t2)
 Unsigned less than. More...
 
Z3_ast Z3_API Z3_mk_bvslt (Z3_context c, Z3_ast t1, Z3_ast t2)
 Two's complement signed less than. More...
 
Z3_ast Z3_API Z3_mk_bvule (Z3_context c, Z3_ast t1, Z3_ast t2)
 Unsigned less than or equal to. More...
 
Z3_ast Z3_API Z3_mk_bvsle (Z3_context c, Z3_ast t1, Z3_ast t2)
 Two's complement signed less than or equal to. More...
 
Z3_ast Z3_API Z3_mk_bvuge (Z3_context c, Z3_ast t1, Z3_ast t2)
 Unsigned greater than or equal to. More...
 
Z3_ast Z3_API Z3_mk_bvsge (Z3_context c, Z3_ast t1, Z3_ast t2)
 Two's complement signed greater than or equal to. More...
 
Z3_ast Z3_API Z3_mk_bvugt (Z3_context c, Z3_ast t1, Z3_ast t2)
 Unsigned greater than. More...
 
Z3_ast Z3_API Z3_mk_bvsgt (Z3_context c, Z3_ast t1, Z3_ast t2)
 Two's complement signed greater than. More...
 
Z3_ast Z3_API Z3_mk_concat (Z3_context c, Z3_ast t1, Z3_ast t2)
 Concatenate the given bit-vectors. More...
 
Z3_ast Z3_API Z3_mk_extract (Z3_context c, unsigned high, unsigned low, Z3_ast t1)
 Extract the bits high down to low from a bit-vector of size m to yield a new bit-vector of size n, where n = high - low + 1. More...
 
Z3_ast Z3_API Z3_mk_sign_ext (Z3_context c, unsigned i, Z3_ast t1)
 Sign-extend of the given bit-vector to the (signed) equivalent bit-vector of size m+i, where m is the size of the given bit-vector. More...
 
Z3_ast Z3_API Z3_mk_zero_ext (Z3_context c, unsigned i, Z3_ast t1)
 Extend the given bit-vector with zeros to the (unsigned) equivalent bit-vector of size m+i, where m is the size of the given bit-vector. More...
 
Z3_ast Z3_API Z3_mk_repeat (Z3_context c, unsigned i, Z3_ast t1)
 Repeat the given bit-vector up length i. More...
 
Z3_ast Z3_API Z3_mk_bvshl (Z3_context c, Z3_ast t1, Z3_ast t2)
 Shift left. More...
 
Z3_ast Z3_API Z3_mk_bvlshr (Z3_context c, Z3_ast t1, Z3_ast t2)
 Logical shift right. More...
 
Z3_ast Z3_API Z3_mk_bvashr (Z3_context c, Z3_ast t1, Z3_ast t2)
 Arithmetic shift right. More...
 
Z3_ast Z3_API Z3_mk_rotate_left (Z3_context c, unsigned i, Z3_ast t1)
 Rotate bits of t1 to the left i times. More...
 
Z3_ast Z3_API Z3_mk_rotate_right (Z3_context c, unsigned i, Z3_ast t1)
 Rotate bits of t1 to the right i times. More...
 
Z3_ast Z3_API Z3_mk_ext_rotate_left (Z3_context c, Z3_ast t1, Z3_ast t2)
 Rotate bits of t1 to the left t2 times. More...
 
Z3_ast Z3_API Z3_mk_ext_rotate_right (Z3_context c, Z3_ast t1, Z3_ast t2)
 Rotate bits of t1 to the right t2 times. More...
 
Z3_ast Z3_API Z3_mk_int2bv (Z3_context c, unsigned n, Z3_ast t1)
 Create an n bit bit-vector from the integer argument t1. More...
 
Z3_ast Z3_API Z3_mk_bv2int (Z3_context c, Z3_ast t1, Z3_bool is_signed)
 Create an integer from the bit-vector argument t1. If is_signed is false, then the bit-vector t1 is treated as unsigned. So the result is non-negative and in the range [0..2^N-1], where N are the number of bits in t1. If is_signed is true, t1 is treated as a signed bit-vector. More...
 
Z3_ast Z3_API Z3_mk_bvadd_no_overflow (Z3_context c, Z3_ast t1, Z3_ast t2, Z3_bool is_signed)
 Create a predicate that checks that the bit-wise addition of t1 and t2 does not overflow. More...
 
Z3_ast Z3_API Z3_mk_bvadd_no_underflow (Z3_context c, Z3_ast t1, Z3_ast t2)
 Create a predicate that checks that the bit-wise signed addition of t1 and t2 does not underflow. More...
 
Z3_ast Z3_API Z3_mk_bvsub_no_overflow (Z3_context c, Z3_ast t1, Z3_ast t2)
 Create a predicate that checks that the bit-wise signed subtraction of t1 and t2 does not overflow. More...
 
Z3_ast Z3_API Z3_mk_bvsub_no_underflow (Z3_context c, Z3_ast t1, Z3_ast t2, Z3_bool is_signed)
 Create a predicate that checks that the bit-wise subtraction of t1 and t2 does not underflow. More...
 
Z3_ast Z3_API Z3_mk_bvsdiv_no_overflow (Z3_context c, Z3_ast t1, Z3_ast t2)
 Create a predicate that checks that the bit-wise signed division of t1 and t2 does not overflow. More...
 
Z3_ast Z3_API Z3_mk_bvneg_no_overflow (Z3_context c, Z3_ast t1)
 Check that bit-wise negation does not overflow when t1 is interpreted as a signed bit-vector. More...
 
Z3_ast Z3_API Z3_mk_bvmul_no_overflow (Z3_context c, Z3_ast t1, Z3_ast t2, Z3_bool is_signed)
 Create a predicate that checks that the bit-wise multiplication of t1 and t2 does not overflow. More...
 
Z3_ast Z3_API Z3_mk_bvmul_no_underflow (Z3_context c, Z3_ast t1, Z3_ast t2)
 Create a predicate that checks that the bit-wise signed multiplication of t1 and t2 does not underflow. More...
 

Arrays

Z3_ast Z3_API Z3_mk_select (Z3_context c, Z3_ast a, Z3_ast i)
 Array read. The argument a is the array and i is the index of the array that gets read. More...
 
Z3_ast Z3_API Z3_mk_store (Z3_context c, Z3_ast a, Z3_ast i, Z3_ast v)
 Array update. More...
 
Z3_ast Z3_API Z3_mk_const_array (Z3_context c, Z3_sort domain, Z3_ast v)
 Create the constant array. More...
 
Z3_ast Z3_API Z3_mk_map (Z3_context c, Z3_func_decl f, unsigned n, Z3_ast const *args)
 Map f on the argument arrays. More...
 
Z3_ast Z3_API Z3_mk_array_default (Z3_context c, Z3_ast array)
 Access the array default value. Produces the default range value, for arrays that can be represented as finite maps with a default range value. More...
 

Sets

Z3_sort Z3_API Z3_mk_set_sort (Z3_context c, Z3_sort ty)
 Create Set type. More...
 
Z3_ast Z3_API Z3_mk_empty_set (Z3_context c, Z3_sort domain)
 Create the empty set. More...
 
Z3_ast Z3_API Z3_mk_full_set (Z3_context c, Z3_sort domain)
 Create the full set. More...
 
Z3_ast Z3_API Z3_mk_set_add (Z3_context c, Z3_ast set, Z3_ast elem)
 Add an element to a set. More...
 
Z3_ast Z3_API Z3_mk_set_del (Z3_context c, Z3_ast set, Z3_ast elem)
 Remove an element to a set. More...
 
Z3_ast Z3_API Z3_mk_set_union (Z3_context c, unsigned num_args, Z3_ast const args[])
 Take the union of a list of sets. More...
 
Z3_ast Z3_API Z3_mk_set_intersect (Z3_context c, unsigned num_args, Z3_ast const args[])
 Take the intersection of a list of sets. More...
 
Z3_ast Z3_API Z3_mk_set_difference (Z3_context c, Z3_ast arg1, Z3_ast arg2)
 Take the set difference between two sets. More...
 
Z3_ast Z3_API Z3_mk_set_complement (Z3_context c, Z3_ast arg)
 Take the complement of a set. More...
 
Z3_ast Z3_API Z3_mk_set_member (Z3_context c, Z3_ast elem, Z3_ast set)
 Check for set membership. More...
 
Z3_ast Z3_API Z3_mk_set_subset (Z3_context c, Z3_ast arg1, Z3_ast arg2)
 Check for subsetness of sets. More...
 
Z3_ast Z3_API Z3_mk_array_ext (Z3_context c, Z3_ast arg1, Z3_ast arg2)
 Create array extensionality index given two arrays with the same sort. The meaning is given by the axiom: (=> (= (select A (array-ext A B)) (select B (array-ext A B))) (= A B)) More...
 

Numerals

Z3_app Z3_API Z3_to_app (Z3_context c, Z3_ast a)
 Create a numeral of a given sort. More...
 
Z3_func_decl Z3_API Z3_to_func_decl (Z3_context c, Z3_ast a)
 Convert an AST into a FUNC_DECL_AST. This is just type casting. More...
 
Z3_string Z3_API Z3_get_numeral_string (Z3_context c, Z3_ast a)
 Return numeral value, as a string of a numeric constant term. More...
 
Z3_string Z3_API Z3_get_numeral_decimal_string (Z3_context c, Z3_ast a, unsigned precision)
 Return numeral as a string in decimal notation. The result has at most precision decimal places. More...
 
Z3_ast Z3_API Z3_get_numerator (Z3_context c, Z3_ast a)
 Return the numerator (as a numeral AST) of a numeral AST of sort Real. More...
 
Z3_ast Z3_API Z3_get_denominator (Z3_context c, Z3_ast a)
 Return the denominator (as a numeral AST) of a numeral AST of sort Real. More...
 
Z3_bool Z3_API Z3_get_numeral_small (Z3_context c, Z3_ast a, __int64 *num, __int64 *den)
 Return numeral value, as a pair of 64 bit numbers if the representation fits. More...
 
Z3_bool Z3_API Z3_get_numeral_int (Z3_context c, Z3_ast v, int *i)
 Similar to Z3_get_numeral_string, but only succeeds if the value can fit in a machine int. Return Z3_TRUE if the call succeeded. More...
 
Z3_bool Z3_API Z3_get_numeral_uint (Z3_context c, Z3_ast v, unsigned *u)
 Similar to Z3_get_numeral_string, but only succeeds if the value can fit in a machine unsigned int. Return Z3_TRUE if the call succeeded. More...
 
Z3_bool Z3_API Z3_get_numeral_uint64 (Z3_context c, Z3_ast v, unsigned __int64 *u)
 Similar to Z3_get_numeral_string, but only succeeds if the value can fit in a machine unsigned __int64 int. Return Z3_TRUE if the call succeeded. More...
 
Z3_bool Z3_API Z3_get_numeral_int64 (Z3_context c, Z3_ast v, __int64 *i)
 Similar to Z3_get_numeral_string, but only succeeds if the value can fit in a machine __int64 int. Return Z3_TRUE if the call succeeded. More...
 
Z3_bool Z3_API Z3_get_numeral_rational_int64 (Z3_context c, Z3_ast v, __int64 *num, __int64 *den)
 Similar to Z3_get_numeral_string, but only succeeds if the value can fit as a rational number as machine __int64 int. Return Z3_TRUE if the call succeeded. More...
 
Z3_ast Z3_API Z3_get_algebraic_number_lower (Z3_context c, Z3_ast a, unsigned precision)
 Return a lower bound for the given real algebraic number. The interval isolating the number is smaller than 1/10^precision. The result is a numeral AST of sort Real. More...
 
Z3_ast Z3_API Z3_get_algebraic_number_upper (Z3_context c, Z3_ast a, unsigned precision)
 Return a upper bound for the given real algebraic number. The interval isolating the number is smaller than 1/10^precision. The result is a numeral AST of sort Real. More...
 
Z3_ast Z3_API Z3_pattern_to_ast (Z3_context c, Z3_pattern p)
 Convert a Z3_pattern into Z3_ast. This is just type casting. More...
 
unsigned Z3_API Z3_get_pattern_num_terms (Z3_context c, Z3_pattern p)
 Return number of terms in pattern. More...
 
Z3_ast Z3_API Z3_get_pattern (Z3_context c, Z3_pattern p, unsigned idx)
 Return i'th ast in pattern. More...
 
unsigned Z3_API Z3_get_index_value (Z3_context c, Z3_ast a)
 Return index of de-Brujin bound variable. More...
 
Z3_bool Z3_API Z3_is_quantifier_forall (Z3_context c, Z3_ast a)
 Determine if quantifier is universal. More...
 
unsigned Z3_API Z3_get_quantifier_weight (Z3_context c, Z3_ast a)
 Obtain weight of quantifier. More...
 
unsigned Z3_API Z3_get_quantifier_num_patterns (Z3_context c, Z3_ast a)
 Return number of patterns used in quantifier. More...
 
Z3_pattern Z3_API Z3_get_quantifier_pattern_ast (Z3_context c, Z3_ast a, unsigned i)
 Return i'th pattern. More...
 
unsigned Z3_API Z3_get_quantifier_num_no_patterns (Z3_context c, Z3_ast a)
 Return number of no_patterns used in quantifier. More...
 
Z3_ast Z3_API Z3_get_quantifier_no_pattern_ast (Z3_context c, Z3_ast a, unsigned i)
 Return i'th no_pattern. More...
 
unsigned Z3_API Z3_get_quantifier_num_bound (Z3_context c, Z3_ast a)
 Return number of bound variables of quantifier. More...
 
Z3_symbol Z3_API Z3_get_quantifier_bound_name (Z3_context c, Z3_ast a, unsigned i)
 Return symbol of the i'th bound variable. More...
 
Z3_sort Z3_API Z3_get_quantifier_bound_sort (Z3_context c, Z3_ast a, unsigned i)
 Return sort of the i'th bound variable. More...
 
Z3_ast Z3_API Z3_get_quantifier_body (Z3_context c, Z3_ast a)
 Return body of quantifier. More...
 
Z3_ast Z3_API Z3_simplify (Z3_context c, Z3_ast a)
 Interface to simplifier. More...
 
Z3_ast Z3_API Z3_simplify_ex (Z3_context c, Z3_ast a, Z3_params p)
 Interface to simplifier. More...
 
Z3_string Z3_API Z3_simplify_get_help (Z3_context c)
 Return a string describing all available parameters. More...
 
Z3_param_descrs Z3_API Z3_simplify_get_param_descrs (Z3_context c)
 Return the parameter description set for the simplify procedure. More...
 

Modifiers

Z3_ast Z3_API Z3_update_term (Z3_context c, Z3_ast a, unsigned num_args, Z3_ast const args[])
 Update the arguments of term a using the arguments args. The number of arguments num_args should coincide with the number of arguments to a. If a is a quantifier, then num_args has to be 1. More...
 
Z3_ast Z3_API Z3_substitute (Z3_context c, Z3_ast a, unsigned num_exprs, Z3_ast const from[], Z3_ast const to[])
 Substitute every occurrence of from[i] in a with to[i], for i smaller than num_exprs. The result is the new AST. The arrays from and to must have size num_exprs. For every i smaller than num_exprs, we must have that sort of from[i] must be equal to sort of to[i]. More...
 
Z3_ast Z3_API Z3_substitute_vars (Z3_context c, Z3_ast a, unsigned num_exprs, Z3_ast const to[])
 Substitute the free variables in a with the expressions in to. For every i smaller than num_exprs, the variable with de-Bruijn index i is replaced with term to[i]. More...
 
Z3_ast Z3_API Z3_translate (Z3_context source, Z3_ast a, Z3_context target)
 Translate/Copy the AST a from context source to context target. AST a must have been created using context source. More...
 

Models

void Z3_API Z3_model_inc_ref (Z3_context c, Z3_model m)
 Increment the reference counter of the given model. More...
 
void Z3_API Z3_model_dec_ref (Z3_context c, Z3_model m)
 Decrement the reference counter of the given model. More...
 
Z3_bool Z3_API Z3_model_eval (Z3_context c, Z3_model m, Z3_ast t, Z3_bool model_completion, Z3_ast *v)
 Evaluate the AST node t in the given model. Return Z3_TRUE if succeeded, and store the result in v. More...
 
Z3_ast Z3_API Z3_model_get_const_interp (Z3_context c, Z3_model m, Z3_func_decl a)
 Return the interpretation (i.e., assignment) of constant a in the model m. Return NULL, if the model does not assign an interpretation for a. That should be interpreted as: the value of a does not matter. More...
 
Z3_bool Z3_API Z3_model_has_interp (Z3_context c, Z3_model m, Z3_func_decl a)
 Test if there exists an interpretation (i.e., assignment) for a in the model m. More...
 
Z3_func_interp Z3_API Z3_model_get_func_interp (Z3_context c, Z3_model m, Z3_func_decl f)
 Return the interpretation of the function f in the model m. Return NULL, if the model does not assign an interpretation for f. That should be interpreted as: the f does not matter. More...
 
unsigned Z3_API Z3_model_get_num_consts (Z3_context c, Z3_model m)
 Return the number of constants assigned by the given model. More...
 
Z3_func_decl Z3_API Z3_model_get_const_decl (Z3_context c, Z3_model m, unsigned i)
 Return the i-th constant in the given model. More...
 
unsigned Z3_API Z3_model_get_num_funcs (Z3_context c, Z3_model m)
 Return the number of function interpretations in the given model. More...
 
Z3_func_decl Z3_API Z3_model_get_func_decl (Z3_context c, Z3_model m, unsigned i)
 Return the declaration of the i-th function in the given model. More...
 
unsigned Z3_API Z3_model_get_num_sorts (Z3_context c, Z3_model m)
 Return the number of uninterpreted sorts that m assigs an interpretation to. More...
 
Z3_sort Z3_API Z3_model_get_sort (Z3_context c, Z3_model m, unsigned i)
 Return a uninterpreted sort that m assigns an interpretation. More...
 
Z3_ast_vector Z3_API Z3_model_get_sort_universe (Z3_context c, Z3_model m, Z3_sort s)
 Return the finite set of distinct values that represent the interpretation for sort s. More...
 
Z3_bool Z3_API Z3_is_as_array (Z3_context c, Z3_ast a)
 The (_ as-array f) AST node is a construct for assigning interpretations for arrays in Z3. It is the array such that forall indices i we have that (select (_ as-array f) i) is equal to (f i). This procedure returns Z3_TRUE if the a is an as-array AST node. More...
 
Z3_func_decl Z3_API Z3_get_as_array_func_decl (Z3_context c, Z3_ast a)
 Return the function declaration f associated with a (_ as_array f) node. More...
 
void Z3_API Z3_func_interp_inc_ref (Z3_context c, Z3_func_interp f)
 Increment the reference counter of the given Z3_func_interp object. More...
 
void Z3_API Z3_func_interp_dec_ref (Z3_context c, Z3_func_interp f)
 Decrement the reference counter of the given Z3_func_interp object. More...
 
unsigned Z3_API Z3_func_interp_get_num_entries (Z3_context c, Z3_func_interp f)
 Return the number of entries in the given function interpretation. More...
 
Z3_func_entry Z3_API Z3_func_interp_get_entry (Z3_context c, Z3_func_interp f, unsigned i)
 Return a "point" of the given function intepretation. It represents the value of f in a particular point. More...
 
Z3_ast Z3_API Z3_func_interp_get_else (Z3_context c, Z3_func_interp f)
 Return the 'else' value of the given function interpretation. More...
 
unsigned Z3_API Z3_func_interp_get_arity (Z3_context c, Z3_func_interp f)
 Return the arity (number of arguments) of the given function interpretation. More...
 
void Z3_API Z3_func_entry_inc_ref (Z3_context c, Z3_func_entry e)
 Increment the reference counter of the given Z3_func_entry object. More...
 
void Z3_API Z3_func_entry_dec_ref (Z3_context c, Z3_func_entry e)
 Decrement the reference counter of the given Z3_func_entry object. More...
 
Z3_ast Z3_API Z3_func_entry_get_value (Z3_context c, Z3_func_entry e)
 Return the value of this point. More...
 
unsigned Z3_API Z3_func_entry_get_num_args (Z3_context c, Z3_func_entry e)
 Return the number of arguments in a Z3_func_entry object. More...
 
Z3_ast Z3_API Z3_func_entry_get_arg (Z3_context c, Z3_func_entry e, unsigned i)
 Return an argument of a Z3_func_entry object. More...
 

Interaction logging

Z3_bool Z3_API Z3_open_log (Z3_string filename)
 Log interaction to a file. More...
 
void Z3_API Z3_append_log (Z3_string string)
 Append user-defined string to interaction log. More...
 
void Z3_API Z3_close_log (void)
 Close interaction log. More...
 
void Z3_API Z3_toggle_warning_messages (Z3_bool enabled)
 Enable/disable printing warning messages to the console. More...
 

String conversion

void Z3_API Z3_set_ast_print_mode (Z3_context c, Z3_ast_print_mode mode)
 Select mode for the format used for pretty-printing AST nodes. More...
 
Z3_string Z3_API Z3_ast_to_string (Z3_context c, Z3_ast a)
 Convert the given AST node into a string. More...
 
Z3_string Z3_API Z3_pattern_to_string (Z3_context c, Z3_pattern p)
 
Z3_string Z3_API Z3_sort_to_string (Z3_context c, Z3_sort s)
 
Z3_string Z3_API Z3_func_decl_to_string (Z3_context c, Z3_func_decl d)
 
Z3_string Z3_API Z3_model_to_string (Z3_context c, Z3_model m)
 Convert the given model into a string. More...
 
Z3_string Z3_API Z3_benchmark_to_smtlib_string (Z3_context c, Z3_string name, Z3_string logic, Z3_string status, Z3_string attributes, unsigned num_assumptions, Z3_ast const assumptions[], Z3_ast formula)
 Convert the given benchmark into SMT-LIB formatted string. More...
 

Parser interface

Z3_ast Z3_API Z3_parse_smtlib2_string (Z3_context c, Z3_string str, unsigned num_sorts, Z3_symbol const sort_names[], Z3_sort const sorts[], unsigned num_decls, Z3_symbol const decl_names[], Z3_func_decl const decls[])
 Parse the given string using the SMT-LIB2 parser. More...
 
Z3_ast Z3_API Z3_parse_smtlib2_file (Z3_context c, Z3_string file_name, unsigned num_sorts, Z3_symbol const sort_names[], Z3_sort const sorts[], unsigned num_decls, Z3_symbol const decl_names[], Z3_func_decl const decls[])
 Similar to Z3_parse_smtlib2_string, but reads the benchmark from a file. More...
 
void Z3_API Z3_parse_smtlib_string (Z3_context c, Z3_string str, unsigned num_sorts, Z3_symbol const sort_names[], Z3_sort const sorts[], unsigned num_decls, Z3_symbol const decl_names[], Z3_func_decl const decls[])
 Parse the given string using the SMT-LIB parser. More...
 
void Z3_API Z3_parse_smtlib_file (Z3_context c, Z3_string file_name, unsigned num_sorts, Z3_symbol const sort_names[], Z3_sort const sorts[], unsigned num_decls, Z3_symbol const decl_names[], Z3_func_decl const decls[])
 Similar to Z3_parse_smtlib_string, but reads the benchmark from a file. More...
 
unsigned Z3_API Z3_get_smtlib_num_formulas (Z3_context c)
 Return the number of SMTLIB formulas parsed by the last call to Z3_parse_smtlib_string or Z3_parse_smtlib_file. More...
 
Z3_ast Z3_API Z3_get_smtlib_formula (Z3_context c, unsigned i)
 Return the i-th formula parsed by the last call to Z3_parse_smtlib_string or Z3_parse_smtlib_file. More...
 
unsigned Z3_API Z3_get_smtlib_num_assumptions (Z3_context c)
 Return the number of SMTLIB assumptions parsed by Z3_parse_smtlib_string or Z3_parse_smtlib_file. More...
 
Z3_ast Z3_API Z3_get_smtlib_assumption (Z3_context c, unsigned i)
 Return the i-th assumption parsed by the last call to Z3_parse_smtlib_string or Z3_parse_smtlib_file. More...
 
unsigned Z3_API Z3_get_smtlib_num_decls (Z3_context c)
 Return the number of declarations parsed by Z3_parse_smtlib_string or Z3_parse_smtlib_file. More...
 
Z3_func_decl Z3_API Z3_get_smtlib_decl (Z3_context c, unsigned i)
 Return the i-th declaration parsed by the last call to Z3_parse_smtlib_string or Z3_parse_smtlib_file. More...
 
unsigned Z3_API Z3_get_smtlib_num_sorts (Z3_context c)
 Return the number of sorts parsed by Z3_parse_smtlib_string or Z3_parse_smtlib_file. More...
 
Z3_sort Z3_API Z3_get_smtlib_sort (Z3_context c, unsigned i)
 Return the i-th sort parsed by the last call to Z3_parse_smtlib_string or Z3_parse_smtlib_file. More...
 
Z3_string Z3_API Z3_get_smtlib_error (Z3_context c)
 Retrieve that last error message information generated from parsing. More...
 

Error Handling

Z3_error_code Z3_API Z3_get_error_code (Z3_context c)
 Return the error code for the last API call. More...
 
void Z3_API Z3_set_error_handler (Z3_context c, Z3_error_handler h)
 Register a Z3 error handler. More...
 
void Z3_API Z3_set_error (Z3_context c, Z3_error_code e)
 Set an error. More...
 
Z3_string Z3_API Z3_get_error_msg (Z3_context c, Z3_error_code err)
 Return a string describing the given error code. More...
 

Floating-Point Arithmetic

Z3_sort Z3_API Z3_mk_fpa_rounding_mode_sort (Z3_context c)
 Create the RoundingMode sort. More...
 
Z3_ast Z3_API Z3_mk_fpa_round_nearest_ties_to_even (Z3_context c)
 Create a numeral of RoundingMode sort which represents the NearestTiesToEven rounding mode. More...
 
Z3_ast Z3_API Z3_mk_fpa_rne (Z3_context c)
 Create a numeral of RoundingMode sort which represents the NearestTiesToEven rounding mode. More...
 
Z3_ast Z3_API Z3_mk_fpa_round_nearest_ties_to_away (Z3_context c)
 Create a numeral of RoundingMode sort which represents the NearestTiesToAway rounding mode. More...
 
Z3_ast Z3_API Z3_mk_fpa_rna (Z3_context c)
 Create a numeral of RoundingMode sort which represents the NearestTiesToAway rounding mode. More...
 
Z3_ast Z3_API Z3_mk_fpa_round_toward_positive (Z3_context c)
 Create a numeral of RoundingMode sort which represents the TowardPositive rounding mode. More...
 
Z3_ast Z3_API Z3_mk_fpa_rtp (Z3_context c)
 Create a numeral of RoundingMode sort which represents the TowardPositive rounding mode. More...
 
Z3_ast Z3_API Z3_mk_fpa_round_toward_negative (Z3_context c)
 Create a numeral of RoundingMode sort which represents the TowardNegative rounding mode. More...
 
Z3_ast Z3_API Z3_mk_fpa_rtn (Z3_context c)
 Create a numeral of RoundingMode sort which represents the TowardNegative rounding mode. More...
 
Z3_ast Z3_API Z3_mk_fpa_round_toward_zero (Z3_context c)
 Create a numeral of RoundingMode sort which represents the TowardZero rounding mode. More...
 
Z3_ast Z3_API Z3_mk_fpa_rtz (Z3_context c)
 Create a numeral of RoundingMode sort which represents the TowardZero rounding mode. More...
 
Z3_sort Z3_API Z3_mk_fpa_sort (Z3_context c, unsigned ebits, unsigned sbits)
 Create a FloatingPoint sort. More...
 
Z3_sort Z3_API Z3_mk_fpa_sort_half (Z3_context c)
 Create the half-precision (16-bit) FloatingPoint sort. More...
 
Z3_sort Z3_API Z3_mk_fpa_sort_16 (Z3_context c)
 Create the half-precision (16-bit) FloatingPoint sort. More...
 
Z3_sort Z3_API Z3_mk_fpa_sort_single (Z3_context c)
 Create the single-precision (32-bit) FloatingPoint sort. More...
 
Z3_sort Z3_API Z3_mk_fpa_sort_32 (Z3_context c)
 Create the single-precision (32-bit) FloatingPoint sort. More...
 
Z3_sort Z3_API Z3_mk_fpa_sort_double (Z3_context c)
 Create the double-precision (64-bit) FloatingPoint sort. More...
 
Z3_sort Z3_API Z3_mk_fpa_sort_64 (Z3_context c)
 Create the double-precision (64-bit) FloatingPoint sort. More...
 
Z3_sort Z3_API Z3_mk_fpa_sort_quadruple (Z3_context c)
 Create the quadruple-precision (128-bit) FloatingPoint sort. More...
 
Z3_sort Z3_API Z3_mk_fpa_sort_128 (Z3_context c)
 Create the quadruple-precision (128-bit) FloatingPoint sort. More...
 
Z3_ast Z3_API Z3_mk_fpa_nan (Z3_context c, Z3_sort s)
 Create a floating-point NaN of sort s. More...
 
Z3_ast Z3_API Z3_mk_fpa_inf (Z3_context c, Z3_sort s, Z3_bool negative)
 Create a floating-point infinity of sort s. More...
 
Z3_ast Z3_API Z3_mk_fpa_zero (Z3_context c, Z3_sort s, Z3_bool negative)
 Create a floating-point zero of sort s. More...
 
Z3_ast Z3_API Z3_mk_fpa_fp (Z3_context c, Z3_ast sgn, Z3_ast exp, Z3_ast sig)
 Create an expression of FloatingPoint sort from three bit-vector expressions. More...
 
Z3_ast Z3_API Z3_mk_fpa_numeral_float (Z3_context c, float v, Z3_sort ty)
 Create a numeral of FloatingPoint sort from a float. More...
 
Z3_ast Z3_API Z3_mk_fpa_numeral_double (Z3_context c, double v, Z3_sort ty)
 Create a numeral of FloatingPoint sort from a double. More...
 
Z3_ast Z3_API Z3_mk_fpa_numeral_int (Z3_context c, signed v, Z3_sort ty)
 Create a numeral of FloatingPoint sort from a signed integer. More...
 
Z3_ast Z3_API Z3_mk_fpa_numeral_int_uint (Z3_context c, Z3_bool sgn, signed exp, unsigned sig, Z3_sort ty)
 Create a numeral of FloatingPoint sort from a sign bit and two integers. More...
 
Z3_ast Z3_API Z3_mk_fpa_numeral_int64_uint64 (Z3_context c, Z3_bool sgn, __int64 exp, __uint64 sig, Z3_sort ty)
 Create a numeral of FloatingPoint sort from a sign bit and two 64-bit integers. More...
 
Z3_ast Z3_API Z3_mk_fpa_abs (Z3_context c, Z3_ast t)
 Floating-point absolute value. More...
 
Z3_ast Z3_API Z3_mk_fpa_neg (Z3_context c, Z3_ast t)
 Floating-point negation. More...
 
Z3_ast Z3_API Z3_mk_fpa_add (Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
 Floating-point addition. More...
 
Z3_ast Z3_API Z3_mk_fpa_sub (Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
 Floating-point subtraction. More...
 
Z3_ast Z3_API Z3_mk_fpa_mul (Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
 Floating-point multiplication. More...
 
Z3_ast Z3_API Z3_mk_fpa_div (Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2)
 Floating-point division. More...
 
Z3_ast Z3_API Z3_mk_fpa_fma (Z3_context c, Z3_ast rm, Z3_ast t1, Z3_ast t2, Z3_ast t3)
 Floating-point fused multiply-add. More...
 
Z3_ast Z3_API Z3_mk_fpa_sqrt (Z3_context c, Z3_ast rm, Z3_ast t)
 Floating-point square root. More...
 
Z3_ast Z3_API Z3_mk_fpa_rem (Z3_context c, Z3_ast t1, Z3_ast t2)
 Floating-point remainder. More...
 
Z3_ast Z3_API Z3_mk_fpa_round_to_integral (Z3_context c, Z3_ast rm, Z3_ast t)
 Floating-point roundToIntegral. Rounds a floating-point number to the closest integer, again represented as a floating-point number. More...
 
Z3_ast Z3_API Z3_mk_fpa_min (Z3_context c, Z3_ast t1, Z3_ast t2)
 Minimum of floating-point numbers. More...
 
Z3_ast Z3_API Z3_mk_fpa_max (Z3_context c, Z3_ast t1, Z3_ast t2)
 Maximum of floating-point numbers. More...
 
Z3_ast Z3_API Z3_mk_fpa_leq (Z3_context c, Z3_ast t1, Z3_ast t2)
 Floating-point less than or equal. More...
 
Z3_ast Z3_API Z3_mk_fpa_lt (Z3_context c, Z3_ast t1, Z3_ast t2)
 Floating-point less than. More...
 
Z3_ast Z3_API Z3_mk_fpa_geq (Z3_context c, Z3_ast t1, Z3_ast t2)
 Floating-point greater than or equal. More...
 
Z3_ast Z3_API Z3_mk_fpa_gt (Z3_context c, Z3_ast t1, Z3_ast t2)
 Floating-point greater than. More...
 
Z3_ast Z3_API Z3_mk_fpa_eq (Z3_context c, Z3_ast t1, Z3_ast t2)
 Floating-point equality. More...
 
Z3_ast Z3_API Z3_mk_fpa_is_normal (Z3_context c, Z3_ast t)
 Predicate indicating whether t is a normal floating-point number. More...
 
Z3_ast Z3_API Z3_mk_fpa_is_subnormal (Z3_context c, Z3_ast t)
 Predicate indicating whether t is a subnormal floating-point number. More...
 
Z3_ast Z3_API Z3_mk_fpa_is_zero (Z3_context c, Z3_ast t)
 Predicate indicating whether t is a floating-point number with zero value, i.e., +zero or -zero. More...
 
Z3_ast Z3_API Z3_mk_fpa_is_infinite (Z3_context c, Z3_ast t)
 Predicate indicating whether t is a floating-point number representing +oo or -oo. More...
 
Z3_ast Z3_API Z3_mk_fpa_is_nan (Z3_context c, Z3_ast t)
 Predicate indicating whether t is a NaN. More...
 
Z3_ast Z3_API Z3_mk_fpa_is_negative (Z3_context c, Z3_ast t)
 Predicate indicating whether t is a negative floating-point number. More...
 
Z3_ast Z3_API Z3_mk_fpa_is_positive (Z3_context c, Z3_ast t)
 Predicate indicating whether t is a positive floating-point number. More...
 
Z3_ast Z3_API Z3_mk_fpa_to_fp_bv (Z3_context c, Z3_ast bv, Z3_sort s)
 Conversion of a single IEEE 754-2008 bit-vector into a floating-point number. More...
 
Z3_ast Z3_API Z3_mk_fpa_to_fp_float (Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
 Conversion of a FloatingPoint term into another term of different FloatingPoint sort. More...
 
Z3_ast Z3_API Z3_mk_fpa_to_fp_real (Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
 Conversion of a term of real sort into a term of FloatingPoint sort. More...
 
Z3_ast Z3_API Z3_mk_fpa_to_fp_signed (Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
 Conversion of a 2's complement signed bit-vector term into a term of FloatingPoint sort. More...
 
Z3_ast Z3_API Z3_mk_fpa_to_fp_unsigned (Z3_context c, Z3_ast rm, Z3_ast t, Z3_sort s)
 Conversion of a 2's complement unsigned bit-vector term into a term of FloatingPoint sort. More...
 
Z3_ast Z3_API Z3_mk_fpa_to_ubv (Z3_context c, Z3_ast rm, Z3_ast t, unsigned sz)
 Conversion of a floating-point term into an unsigned bit-vector. More...
 
Z3_ast Z3_API Z3_mk_fpa_to_sbv (Z3_context c, Z3_ast rm, Z3_ast t, unsigned sz)
 Conversion of a floating-point term into a signed bit-vector. More...
 
Z3_ast Z3_API Z3_mk_fpa_to_real (Z3_context c, Z3_ast t)
 Conversion of a floating-point term into a real-numbered term. More...
 

Z3-specific floating-point extensions

unsigned Z3_API Z3_fpa_get_ebits (Z3_context c, Z3_sort s)
 Retrieves the number of bits reserved for the exponent in a FloatingPoint sort. More...
 
unsigned Z3_API Z3_fpa_get_sbits (Z3_context c, Z3_sort s)
 Retrieves the number of bits reserved for the significand in a FloatingPoint sort. More...
 
Z3_bool Z3_API Z3_fpa_get_numeral_sign (Z3_context c, Z3_ast t, int *sgn)
 Retrieves the sign of a floating-point literal. More...
 
Z3_string Z3_API Z3_fpa_get_numeral_significand_string (Z3_context c, Z3_ast t)
 Return the significand value of a floating-point numeral as a string. More...
 
Z3_bool Z3_API Z3_fpa_get_numeral_significand_uint64 (Z3_context c, Z3_ast t, __uint64 *n)
 Return the significand value of a floating-point numeral as a uint64. More...
 
Z3_string Z3_API Z3_fpa_get_numeral_exponent_string (Z3_context c, Z3_ast t)
 Return the exponent value of a floating-point numeral as a string. More...
 
Z3_bool Z3_API Z3_fpa_get_numeral_exponent_int64 (Z3_context c, Z3_ast t, __int64 *n)
 Return the exponent value of a floating-point numeral as a signed 64-bit integer. More...
 
Z3_ast Z3_API Z3_mk_fpa_to_ieee_bv (Z3_context c, Z3_ast t)
 Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format. More...
 
Z3_ast Z3_API Z3_mk_fpa_to_fp_int_real (Z3_context c, Z3_ast rm, Z3_ast exp, Z3_ast sig, Z3_sort s)
 Conversion of a real-sorted significand and an integer-sorted exponent into a term of FloatingPoint sort. More...
 

Interpolation facilities

Z3_ast Z3_API Z3_mk_interpolant (Z3_context c, Z3_ast a)
 Create an AST node marking a formula position for interpolation. More...
 
Z3_context Z3_API Z3_mk_interpolation_context (Z3_config cfg)
 This function generates a Z3 context suitable for generation of interpolants. Formulas can be generated as abstract syntax trees in this context using the Z3 C API. More...
 
Z3_ast_vector Z3_API Z3_get_interpolant (Z3_context c, Z3_ast pf, Z3_ast pat, Z3_params p)
 
Z3_lbool Z3_API Z3_compute_interpolant (Z3_context c, Z3_ast pat, Z3_params p, Z3_ast_vector *interp, Z3_model *model)
 
Z3_string Z3_API Z3_interpolation_profile (Z3_context ctx)
 
int Z3_API Z3_read_interpolation_problem (Z3_context ctx, unsigned *num, Z3_ast *cnsts[], unsigned *parents[], Z3_string filename, Z3_string_ptr error, unsigned *num_theory, Z3_ast *theory[])
 Read an interpolation problem from file. More...
 
int Z3_API Z3_check_interpolant (Z3_context ctx, unsigned num, Z3_ast cnsts[], unsigned parents[], Z3_ast *interps, Z3_string_ptr error, unsigned num_theory, Z3_ast theory[])
 
void Z3_API Z3_write_interpolation_problem (Z3_context ctx, unsigned num, Z3_ast cnsts[], unsigned parents[], Z3_string filename, unsigned num_theory, Z3_ast theory[])
 

Polynomials

Z3_ast_vector Z3_API Z3_polynomial_subresultants (Z3_context c, Z3_ast p, Z3_ast q, Z3_ast x)
 Return the nonzero subresultants of p and q with respect to the "variable" x. More...
 

Real Closed Fields

void Z3_API Z3_rcf_del (Z3_context c, Z3_rcf_num a)
 Delete a RCF numeral created using the RCF API. More...
 
Z3_rcf_num Z3_API Z3_rcf_mk_rational (Z3_context c, Z3_string val)
 Return a RCF rational using the given string. More...
 
Z3_rcf_num Z3_API Z3_rcf_mk_small_int (Z3_context c, int val)
 Return a RCF small integer. More...
 
Z3_rcf_num Z3_API Z3_rcf_mk_pi (Z3_context c)
 Return Pi. More...
 
Z3_rcf_num Z3_API Z3_rcf_mk_e (Z3_context c)
 Return e (Euler's constant) More...
 
Z3_rcf_num Z3_API Z3_rcf_mk_infinitesimal (Z3_context c)
 Return a new infinitesimal that is smaller than all elements in the Z3 field. More...
 
unsigned Z3_API Z3_rcf_mk_roots (Z3_context c, unsigned n, Z3_rcf_num const a[], Z3_rcf_num roots[])
 Store in roots the roots of the polynomial a[n-1]*x^{n-1} + ... + a[0]. The output vector roots must have size n. It returns the number of roots of the polynomial. More...
 
Z3_rcf_num Z3_API Z3_rcf_add (Z3_context c, Z3_rcf_num a, Z3_rcf_num b)
 Return the value a + b. More...
 
Z3_rcf_num Z3_API Z3_rcf_sub (Z3_context c, Z3_rcf_num a, Z3_rcf_num b)
 Return the value a - b. More...
 
Z3_rcf_num Z3_API Z3_rcf_mul (Z3_context c, Z3_rcf_num a, Z3_rcf_num b)
 Return the value a * b. More...
 
Z3_rcf_num Z3_API Z3_rcf_div (Z3_context c, Z3_rcf_num a, Z3_rcf_num b)
 Return the value a / b. More...
 
Z3_rcf_num Z3_API Z3_rcf_neg (Z3_context c, Z3_rcf_num a)
 Return the value -a. More...
 
Z3_rcf_num Z3_API Z3_rcf_inv (Z3_context c, Z3_rcf_num a)
 Return the value 1/a. More...
 
Z3_rcf_num Z3_API Z3_rcf_power (Z3_context c, Z3_rcf_num a, unsigned k)
 Return the value a^k. More...
 
Z3_bool Z3_API Z3_rcf_lt (Z3_context c, Z3_rcf_num a, Z3_rcf_num b)
 Return Z3_TRUE if a < b. More...
 
Z3_bool Z3_API Z3_rcf_gt (Z3_context c, Z3_rcf_num a, Z3_rcf_num b)
 Return Z3_TRUE if a > b. More...
 
Z3_bool Z3_API Z3_rcf_le (Z3_context c, Z3_rcf_num a, Z3_rcf_num b)
 Return Z3_TRUE if a <= b. More...
 
Z3_bool Z3_API Z3_rcf_ge (Z3_context c, Z3_rcf_num a, Z3_rcf_num b)
 Return Z3_TRUE if a >= b. More...
 
Z3_bool Z3_API Z3_rcf_eq (Z3_context c, Z3_rcf_num a, Z3_rcf_num b)
 Return Z3_TRUE if a == b. More...
 
Z3_bool Z3_API Z3_rcf_neq (Z3_context c, Z3_rcf_num a, Z3_rcf_num b)
 Return Z3_TRUE if a != b. More...
 
Z3_string Z3_API Z3_rcf_num_to_string (Z3_context c, Z3_rcf_num a, Z3_bool compact, Z3_bool html)
 Convert the RCF numeral into a string. More...
 
Z3_string Z3_API Z3_rcf_num_to_decimal_string (Z3_context c, Z3_rcf_num a, unsigned prec)
 Convert the RCF numeral into a string in decimal notation. More...
 
void Z3_API Z3_rcf_get_numerator_denominator (Z3_context c, Z3_rcf_num a, Z3_rcf_num *n, Z3_rcf_num *d)
 Extract the "numerator" and "denominator" of the given RCF numeral. We have that a = n/d, moreover n and d are not represented using rational functions. More...
 

Detailed Description

Macro Definition Documentation

§ Z3_FALSE

#define Z3_FALSE   0

False value. It is just an alias for 0.

Definition at line 100 of file z3_api.h.

Referenced by model::eval().

§ Z3_TRUE

#define Z3_TRUE   1

True value. It is just an alias for 1.

Definition at line 95 of file z3_api.h.

Typedef Documentation

§ Z3_bool

typedef int Z3_bool

Z3 Boolean type. It is just an alias for int.

Definition at line 84 of file z3_api.h.

§ Z3_error_handler

typedef void Z3_error_handler(Z3_context c, Z3_error_code e)

Z3 custom error handler (See Z3_set_error_handler).

Definitions for update_api.py

def_Type('CONFIG', 'Z3_config', 'Config') def_Type('CONTEXT', 'Z3_context', 'ContextObj') def_Type('AST', 'Z3_ast', 'Ast') def_Type('APP', 'Z3_app', 'Ast') def_Type('SORT', 'Z3_sort', 'Sort') def_Type('FUNC_DECL', 'Z3_func_decl', 'FuncDecl') def_Type('PATTERN', 'Z3_pattern', 'Pattern') def_Type('MODEL', 'Z3_model', 'Model') def_Type('LITERALS', 'Z3_literals', 'Literals') def_Type('CONSTRUCTOR', 'Z3_constructor', 'Constructor') def_Type('CONSTRUCTOR_LIST', 'Z3_constructor_list', 'ConstructorList') def_Type('SOLVER', 'Z3_solver', 'SolverObj') def_Type('GOAL', 'Z3_goal', 'GoalObj') def_Type('TACTIC', 'Z3_tactic', 'TacticObj') def_Type('PARAMS', 'Z3_params', 'Params') def_Type('PROBE', 'Z3_probe', 'ProbeObj') def_Type('STATS', 'Z3_stats', 'StatsObj') def_Type('AST_VECTOR', 'Z3_ast_vector', 'AstVectorObj') def_Type('AST_MAP', 'Z3_ast_map', 'AstMapObj') def_Type('APPLY_RESULT', 'Z3_apply_result', 'ApplyResultObj') def_Type('FUNC_INTERP', 'Z3_func_interp', 'FuncInterpObj') def_Type('FUNC_ENTRY', 'Z3_func_entry', 'FuncEntryObj') def_Type('FIXEDPOINT', 'Z3_fixedpoint', 'FixedpointObj') def_Type('OPTIMIZE', 'Z3_optimize', 'OptimizeObj') def_Type('PARAM_DESCRS', 'Z3_param_descrs', 'ParamDescrs') def_Type('RCF_NUM', 'Z3_rcf_num', 'RCFNumObj')

Definition at line 1337 of file z3_api.h.

§ Z3_string

typedef const char* Z3_string

Z3 string type. It is just an alias for const char *.

Definition at line 89 of file z3_api.h.

§ Z3_string_ptr

Definition at line 90 of file z3_api.h.

Enumeration Type Documentation

§ Z3_ast_kind

The different kinds of Z3 AST (abstract syntax trees). That is, terms, formulas and types.

  • Z3_APP_AST: constant and applications
  • Z3_NUMERAL_AST: numeral constants
  • Z3_VAR_AST: bound variables
  • Z3_QUANTIFIER_AST: quantifiers
  • Z3_SORT_AST: sort
  • Z3_FUNC_DECL_AST: function declaration
  • Z3_UNKNOWN_AST: internal
Enumerator
Z3_NUMERAL_AST 
Z3_APP_AST 
Z3_VAR_AST 
Z3_QUANTIFIER_AST 
Z3_SORT_AST 
Z3_FUNC_DECL_AST 
Z3_UNKNOWN_AST 

Definition at line 183 of file z3_api.h.

184 {
186  Z3_APP_AST,
187  Z3_VAR_AST,
189  Z3_SORT_AST,
191  Z3_UNKNOWN_AST = 1000
192 } Z3_ast_kind;
Z3_ast_kind
The different kinds of Z3 AST (abstract syntax trees). That is, terms, formulas and types...
Definition: z3_api.h:183

§ Z3_ast_print_mode

Z3 pretty printing modes (See Z3_set_ast_print_mode).

  • Z3_PRINT_SMTLIB_FULL: Print AST nodes in SMTLIB verbose format.
  • Z3_PRINT_LOW_LEVEL: Print AST nodes using a low-level format.
  • Z3_PRINT_SMTLIB_COMPLIANT: Print AST nodes in SMTLIB 1.x compliant format.
  • Z3_PRINT_SMTLIB2_COMPLIANT: Print AST nodes in SMTLIB 2.x compliant format.
Enumerator
Z3_PRINT_SMTLIB_FULL 
Z3_PRINT_LOW_LEVEL 
Z3_PRINT_SMTLIB_COMPLIANT 
Z3_PRINT_SMTLIB2_COMPLIANT 

Definition at line 1261 of file z3_api.h.

1261  {
Z3_ast_print_mode
Z3 pretty printing modes (See Z3_set_ast_print_mode).
Definition: z3_api.h:1261

§ Z3_decl_kind

The different kinds of interpreted function kinds.

  • Z3_OP_TRUE The constant true.
  • Z3_OP_FALSE The constant false.
  • Z3_OP_EQ The equality predicate.
  • Z3_OP_DISTINCT The n-ary distinct predicate (every argument is mutually distinct).
  • Z3_OP_ITE The ternary if-then-else term.
  • Z3_OP_AND n-ary conjunction.
  • Z3_OP_OR n-ary disjunction.
  • Z3_OP_IFF equivalence (binary).
  • Z3_OP_XOR Exclusive or.
  • Z3_OP_NOT Negation.
  • Z3_OP_IMPLIES Implication.
  • Z3_OP_OEQ Binary equivalence modulo namings. This binary predicate is used in proof terms. It captures equisatisfiability and equivalence modulo renamings.
  • Z3_OP_INTERP Marks a sub-formula for interpolation.
  • Z3_OP_ANUM Arithmetic numeral.
  • Z3_OP_AGNUM Arithmetic algebraic numeral. Algebraic numbers are used to represent irrational numbers in Z3.
  • Z3_OP_LE <=.
  • Z3_OP_GE >=.
  • Z3_OP_LT <.
  • Z3_OP_GT >.
  • Z3_OP_ADD Addition - Binary.
  • Z3_OP_SUB Binary subtraction.
  • Z3_OP_UMINUS Unary minus.
  • Z3_OP_MUL Multiplication - Binary.
  • Z3_OP_DIV Division - Binary.
  • Z3_OP_IDIV Integer division - Binary.
  • Z3_OP_REM Remainder - Binary.
  • Z3_OP_MOD Modulus - Binary.
  • Z3_OP_TO_REAL Coercion of integer to real - Unary.
  • Z3_OP_TO_INT Coercion of real to integer - Unary.
  • Z3_OP_IS_INT Check if real is also an integer - Unary.
  • Z3_OP_POWER Power operator x^y.
  • Z3_OP_STORE Array store. It satisfies select(store(a,i,v),j) = if i = j then v else select(a,j). Array store takes at least 3 arguments.
  • Z3_OP_SELECT Array select.
  • Z3_OP_CONST_ARRAY The constant array. For example, select(const(v),i) = v holds for every v and i. The function is unary.
  • Z3_OP_ARRAY_DEFAULT Default value of arrays. For example default(const(v)) = v. The function is unary.
  • Z3_OP_ARRAY_MAP Array map operator. It satisfies mapf[i] = f(a1[i],...,a_n[i]) for every i.
  • Z3_OP_SET_UNION Set union between two Booelan arrays (two arrays whose range type is Boolean). The function is binary.
  • Z3_OP_SET_INTERSECT Set intersection between two Boolean arrays. The function is binary.
  • Z3_OP_SET_DIFFERENCE Set difference between two Boolean arrays. The function is binary.
  • Z3_OP_SET_COMPLEMENT Set complement of a Boolean array. The function is unary.
  • Z3_OP_SET_SUBSET Subset predicate between two Boolean arrays. The relation is binary.
  • Z3_OP_AS_ARRAY An array value that behaves as the function graph of the function passed as parameter.
  • Z3_OP_ARRAY_EXT Array extensionality function. It takes two arrays as arguments and produces an index, such that the arrays are different if they are different on the index.
  • Z3_OP_BNUM Bit-vector numeral.
  • Z3_OP_BIT1 One bit bit-vector.
  • Z3_OP_BIT0 Zero bit bit-vector.
  • Z3_OP_BNEG Unary minus.
  • Z3_OP_BADD Binary addition.
  • Z3_OP_BSUB Binary subtraction.
  • Z3_OP_BMUL Binary multiplication.
  • Z3_OP_BSDIV Binary signed division.
  • Z3_OP_BUDIV Binary unsigned division.
  • Z3_OP_BSREM Binary signed remainder.
  • Z3_OP_BUREM Binary unsigned remainder.
  • Z3_OP_BSMOD Binary signed modulus.
  • Z3_OP_BSDIV0 Unary function. bsdiv(x,0) is congruent to bsdiv0(x).
  • Z3_OP_BUDIV0 Unary function. budiv(x,0) is congruent to budiv0(x).
  • Z3_OP_BSREM0 Unary function. bsrem(x,0) is congruent to bsrem0(x).
  • Z3_OP_BUREM0 Unary function. burem(x,0) is congruent to burem0(x).
  • Z3_OP_BSMOD0 Unary function. bsmod(x,0) is congruent to bsmod0(x).
  • Z3_OP_ULEQ Unsigned bit-vector <= - Binary relation.
  • Z3_OP_SLEQ Signed bit-vector <= - Binary relation.
  • Z3_OP_UGEQ Unsigned bit-vector >= - Binary relation.
  • Z3_OP_SGEQ Signed bit-vector >= - Binary relation.
  • Z3_OP_ULT Unsigned bit-vector < - Binary relation.
  • Z3_OP_SLT Signed bit-vector < - Binary relation.
  • Z3_OP_UGT Unsigned bit-vector > - Binary relation.
  • Z3_OP_SGT Signed bit-vector > - Binary relation.
  • Z3_OP_BAND Bit-wise and - Binary.
  • Z3_OP_BOR Bit-wise or - Binary.
  • Z3_OP_BNOT Bit-wise not - Unary.
  • Z3_OP_BXOR Bit-wise xor - Binary.
  • Z3_OP_BNAND Bit-wise nand - Binary.
  • Z3_OP_BNOR Bit-wise nor - Binary.
  • Z3_OP_BXNOR Bit-wise xnor - Binary.
  • Z3_OP_CONCAT Bit-vector concatenation - Binary.
  • Z3_OP_SIGN_EXT Bit-vector sign extension.
  • Z3_OP_ZERO_EXT Bit-vector zero extension.
  • Z3_OP_EXTRACT Bit-vector extraction.
  • Z3_OP_REPEAT Repeat bit-vector n times.
  • Z3_OP_BREDOR Bit-vector reduce or - Unary.
  • Z3_OP_BREDAND Bit-vector reduce and - Unary.
  • Z3_OP_BCOMP .
  • Z3_OP_BSHL Shift left.
  • Z3_OP_BLSHR Logical shift right.
  • Z3_OP_BASHR Arithmetical shift right.
  • Z3_OP_ROTATE_LEFT Left rotation.
  • Z3_OP_ROTATE_RIGHT Right rotation.
  • Z3_OP_EXT_ROTATE_LEFT (extended) Left rotation. Similar to Z3_OP_ROTATE_LEFT, but it is a binary operator instead of a parametric one.
  • Z3_OP_EXT_ROTATE_RIGHT (extended) Right rotation. Similar to Z3_OP_ROTATE_RIGHT, but it is a binary operator instead of a parametric one.
  • Z3_OP_INT2BV Coerce integer to bit-vector. NB. This function is not supported by the decision procedures. Only the most rudimentary simplification rules are applied to this function.
  • Z3_OP_BV2INT Coerce bit-vector to integer. NB. This function is not supported by the decision procedures. Only the most rudimentary simplification rules are applied to this function.
  • Z3_OP_CARRY Compute the carry bit in a full-adder. The meaning is given by the equivalence (carry l1 l2 l3) <=> (or (and l1 l2) (and l1 l3) (and l2 l3)))
  • Z3_OP_XOR3 Compute ternary XOR. The meaning is given by the equivalence (xor3 l1 l2 l3) <=> (xor (xor l1 l2) l3)
  • Z3_OP_PR_UNDEF: Undef/Null proof object.
  • Z3_OP_PR_TRUE: Proof for the expression 'true'.
  • Z3_OP_PR_ASSERTED: Proof for a fact asserted by the user.
  • Z3_OP_PR_GOAL: Proof for a fact (tagged as goal) asserted by the user.
  • Z3_OP_PR_MODUS_PONENS: Given a proof for p and a proof for (implies p q), produces a proof for q.

           T1: p
           T2: (implies p q)
           

    The second antecedents may also be a proof for (iff p q).

  • Z3_OP_PR_REFLEXIVITY: A proof for (R t t), where R is a reflexive relation. This proof object has no antecedents. The only reflexive relations that are used are equivalence modulo namings, equality and equivalence. That is, R is either '~', '=' or 'iff'.
  • Z3_OP_PR_SYMMETRY: Given an symmetric relation R and a proof for (R t s), produces a proof for (R s t).
           T1: (R t s)
           [symmetry T1]: (R s t)
           
    T1 is the antecedent of this proof object.
  • Z3_OP_PR_TRANSITIVITY: Given a transitive relation R, and proofs for (R t s) and (R s u), produces a proof for (R t u).
        T1: (R t s)
        T2: (R s u)
        [trans T1 T2]: (R t u)
        
  • Z3_OP_PR_TRANSITIVITY_STAR: Condensed transitivity proof. This proof object is only used if the parameter PROOF_MODE is 1. It combines several symmetry and transitivity proofs.
     Example:
     <div class="fragment"><pre class="fragment">
     T1: (R a b)
     T2: (R c b)
     T3: (R c d)
     [trans* T1 T2 T3]: (R a d)
     </pre></div>
     R must be a symmetric and transitive relation.
    
     Assuming that this proof object is a proof for (R s t), then
     a proof checker must check if it is possible to prove (R s t)
     using the antecedents, symmetry and transitivity.  That is,
     if there is a path from s to t, if we view every
     antecedent (R a b) as an edge between a and b.
    
  • Z3_OP_PR_MONOTONICITY: Monotonicity proof object.

           T1: (R t_1 s_1)
           ...
           Tn: (R t_n s_n)
           

    Remark: if t_i == s_i, then the antecedent Ti is suppressed. That is, reflexivity proofs are supressed to save space.

  • Z3_OP_PR_QUANT_INTRO: Given a proof for (~ p q), produces a proof for (~ (forall (x) p) (forall (x) q)).

    T1: (~ p q)

  • Z3_OP_PR_DISTRIBUTIVITY: Distributivity proof object. Given that f (= or) distributes over g (= and), produces a proof for

    (= (f a (g c d)) (g (f a c) (f a d)))

    If f and g are associative, this proof also justifies the following equality:

    (= (f (g a b) (g c d)) (g (f a c) (f a d) (f b c) (f b d)))

    where each f and g can have arbitrary number of arguments.

    This proof object has no antecedents. Remark. This rule is used by the CNF conversion pass and instantiated by f = or, and g = and.

  • Z3_OP_PR_AND_ELIM: Given a proof for (and l_1 ... l_n), produces a proof for l_i

        T1: (and l_1 ... l_n)
        
  • Z3_OP_PR_NOT_OR_ELIM: Given a proof for (not (or l_1 ... l_n)), produces a proof for (not l_i).

        T1: (not (or l_1 ... l_n))
        [not-or-elim T1]: (not l_i)
        
  • Z3_OP_PR_REWRITE: A proof for a local rewriting step (= t s). The head function symbol of t is interpreted.

    This proof object has no antecedents. The conclusion of a rewrite rule is either an equality (= t s), an equivalence (iff t s), or equi-satisfiability (~ t s). Remark: if f is bool, then = is iff.

   Examples:
   <div class="fragment"><pre class="fragment">
   (= (+ x 0) x)
   (= (+ x 1 2) (+ 3 x))
   (iff (or x false) x)
   </pre></div>
  • Z3_OP_PR_REWRITE_STAR: A proof for rewriting an expression t into an expression s. This proof object is used if the parameter PROOF_MODE is 1. This proof object can have n antecedents. The antecedents are proofs for equalities used as substitution rules. The object is also used in a few cases if the parameter PROOF_MODE is 2. The cases are:
    • When applying contextual simplification (CONTEXT_SIMPLIFIER=true)
    • When converting bit-vectors to Booleans (BIT2BOOL=true)
    • When pulling ite expression up (PULL_CHEAP_ITE_TREES=true)
  • Z3_OP_PR_PULL_QUANT: A proof for (iff (f (forall (x) q(x)) r) (forall (x) (f (q x) r))). This proof object has no antecedents.
  • Z3_OP_PR_PULL_QUANT_STAR: A proof for (iff P Q) where Q is in prenex normal form. This proof object is only used if the parameter PROOF_MODE is 1. This proof object has no antecedents.
  • Z3_OP_PR_PUSH_QUANT: A proof for:

           (iff (forall (x_1 ... x_m) (and p_1[x_1 ... x_m] ... p_n[x_1 ... x_m]))
                (and (forall (x_1 ... x_m) p_1[x_1 ... x_m])
                  ...
                (forall (x_1 ... x_m) p_n[x_1 ... x_m])))
                

    This proof object has no antecedents.

  • Z3_OP_PR_ELIM_UNUSED_VARS: A proof for (iff (forall (x_1 ... x_n y_1 ... y_m) p[x_1 ... x_n]) (forall (x_1 ... x_n) p[x_1 ... x_n]))

    It is used to justify the elimination of unused variables. This proof object has no antecedents.

  • Z3_OP_PR_DER: A proof for destructive equality resolution: (iff (forall (x) (or (not (= x t)) P[x])) P[t]) if x does not occur in t.

    This proof object has no antecedents.

    Several variables can be eliminated simultaneously.

  • Z3_OP_PR_QUANT_INST: A proof of (or (not (forall (x) (P x))) (P a))
  • Z3_OP_PR_HYPOTHESIS: Mark a hypothesis in a natural deduction style proof.
  • Z3_OP_PR_LEMMA:

           T1: false
           

    This proof object has one antecedent: a hypothetical proof for false. It converts the proof in a proof for (or (not l_1) ... (not l_n)), when T1 contains the open hypotheses: l_1, ..., l_n. The hypotheses are closed after an application of a lemma. Furthermore, there are no other open hypotheses in the subtree covered by the lemma.

  • Z3_OP_PR_UNIT_RESOLUTION:
           T1:      (or l_1 ... l_n l_1' ... l_m')
           T2:      (not l_1)
           ...
           T(n+1):  (not l_n)
           [unit-resolution T1 ... T(n+1)]: (or l_1' ... l_m')
           
  • Z3_OP_PR_IFF_TRUE:
        T1: p
        [iff-true T1]: (iff p true)
        
  • Z3_OP_PR_IFF_FALSE:
        T1: (not p)
        [iff-false T1]: (iff p false)
        
  • Z3_OP_PR_COMMUTATIVITY:
     [comm]: (= (f a b) (f b a))
    
     f is a commutative operator.
    
     This proof object has no antecedents.
     Remark: if f is bool, then = is iff.
    
  • Z3_OP_PR_DEF_AXIOM: Proof object used to justify Tseitin's like axioms:
     <div class="fragment"><pre class="fragment">
     (or (not (and p q)) p)
     (or (not (and p q)) q)
     (or (not (and p q r)) p)
     (or (not (and p q r)) q)
     (or (not (and p q r)) r)
     ...
     (or (and p q) (not p) (not q))
     (or (not (or p q)) p q)
     (or (or p q) (not p))
     (or (or p q) (not q))
     (or (not (iff p q)) (not p) q)
     (or (not (iff p q)) p (not q))
     (or (iff p q) (not p) (not q))
     (or (iff p q) p q)
     (or (not (ite a b c)) (not a) b)
     (or (not (ite a b c)) a c)
     (or (ite a b c) (not a) (not b))
     (or (ite a b c) a (not c))
     (or (not (not a)) (not a))
     (or (not a) a)
     </pre></div>
     This proof object has no antecedents.
     Note: all axioms are propositional tautologies.
     Note also that 'and' and 'or' can take multiple arguments.
     You can recover the propositional tautologies by
     unfolding the Boolean connectives in the axioms a small
     bounded number of steps (=3).
    
  • Z3_OP_PR_DEF_INTRO: Introduces a name for a formula/term. Suppose e is an expression with free variables x, and def-intro introduces the name n(x). The possible cases are:

    When e is of Boolean type:

    or:

    when e only occurs positively.

    When e is of the form (ite cond th el):

    Otherwise: [def-intro]: (= n e)

  • Z3_OP_PR_APPLY_DEF: [apply-def T1]: F ~ n F is 'equivalent' to n, given that T1 is a proof that n is a name for F.
  • Z3_OP_PR_IFF_OEQ: T1: (iff p q) [iff~ T1]: (~ p q)
  • Z3_OP_PR_NNF_POS: Proof for a (positive) NNF step. Example:

           T1: (not s_1) ~ r_1
           T2: (not s_2) ~ r_2
           T3: s_1 ~ r_1'
           T4: s_2 ~ r_2'
                                     (and (or r_1 r_2') (or r_1' r_2)))
           

    The negation normal form steps NNF_POS and NNF_NEG are used in the following cases: (a) When creating the NNF of a positive force quantifier. The quantifier is retained (unless the bound variables are eliminated). Example

            T1: q ~ q_new
         

    (b) When recursively creating NNF over Boolean formulas, where the top-level connective is changed during NNF conversion. The relevant Boolean connectives for NNF_POS are 'implies', 'iff', 'xor', 'ite'. NNF_NEG furthermore handles the case where negation is pushed over Boolean connectives 'and' and 'or'.

  • Z3_OP_PR_NNF_NEG: Proof for a (negative) NNF step. Examples:

           T1: (not s_1) ~ r_1
           ...
           Tn: (not s_n) ~ r_n
       and
           T1: (not s_1) ~ r_1
           ...
           Tn: (not s_n) ~ r_n
       and
           T1: (not s_1) ~ r_1
           T2: (not s_2) ~ r_2
           T3: s_1 ~ r_1'
           T4: s_2 ~ r_2'
                                    (and (or r_1 r_2) (or r_1' r_2')))
        
  • Z3_OP_PR_NNF_STAR: A proof for (~ P Q) where Q is in negation normal form.

    This proof object is only used if the parameter PROOF_MODE is 1.

    This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO.

  • Z3_OP_PR_CNF_STAR: A proof for (~ P Q) where Q is in conjunctive normal form. This proof object is only used if the parameter PROOF_MODE is 1. This proof object may have n antecedents. Each antecedent is a PR_DEF_INTRO.
  • Z3_OP_PR_SKOLEMIZE: Proof for:
     <div class="fragment"><pre class="fragment">
     [sk]: (~ (not (forall x (p x y))) (not (p (sk y) y)))
     [sk]: (~ (exists x (p x y)) (p (sk y) y))
     </pre></div>
    
     This proof object has no antecedents.
    
  • Z3_OP_PR_MODUS_PONENS_OEQ: Modus ponens style rule for equi-satisfiability.

           T1: p
           T2: (~ p q)
           
    • Z3_OP_PR_TH_LEMMA: Generic proof for theory lemmas.

      The theory lemma function comes with one or more parameters. The first parameter indicates the name of the theory. For the theory of arithmetic, additional parameters provide hints for checking the theory lemma. The hints for arithmetic are:

      • farkas - followed by rational coefficients. Multiply the coefficients to the inequalities in the lemma, add the (negated) inequalities and obtain a contradiction.
      • triangle-eq - Indicates a lemma related to the equivalence:
                 (iff (= t1 t2) (and (<= t1 t2) (<= t2 t1)))
              
      • gcd-test - Indicates an integer linear arithmetic lemma that uses a gcd test.
    • Z3_OP_PR_HYPER_RESOLVE: Hyper-resolution rule.

      The premises of the rules is a sequence of clauses. The first clause argument is the main clause of the rule. with a literal from the first (main) clause.

      Premises of the rules are of the form

                   (or l0 l1 l2 .. ln)
           

      or

                (=> (and l1 l2 .. ln) l0)
           

      or in the most general (ground) form:

                (=> (and ln+1 ln+2 .. ln+m) (or l0 l1 .. ln))
           

      In other words we use the following (Prolog style) convention for Horn implications: The head of a Horn implication is position 0, the first conjunct in the body of an implication is position 1 the second conjunct in the body of an implication is position 2

      For general implications where the head is a disjunction, the first n positions correspond to the n disjuncts in the head. The next m positions correspond to the m conjuncts in the body.

      The premises can be universally quantified so that the most general non-ground form is:

                (forall (vars) (=> (and ln+1 ln+2 .. ln+m) (or l0 l1 .. ln)))
           

      The hyper-resolution rule takes a sequence of parameters. The parameters are substitutions of bound variables separated by pairs of literal positions from the main clause and side clause.

      • Z3_OP_RA_STORE: Insert a record into a relation. The function takes n+1 arguments, where the first argument is the relation and the remaining n elements correspond to the n columns of the relation.
      • Z3_OP_RA_EMPTY: Creates the empty relation.
      • Z3_OP_RA_IS_EMPTY: Tests if the relation is empty.
      • Z3_OP_RA_JOIN: Create the relational join.
      • Z3_OP_RA_UNION: Create the union or convex hull of two relations. The function takes two arguments.
      • Z3_OP_RA_WIDEN: Widen two relations. The function takes two arguments.
      • Z3_OP_RA_PROJECT: Project the columns (provided as numbers in the parameters). The function takes one argument.
      • Z3_OP_RA_FILTER: Filter (restrict) a relation with respect to a predicate. The first argument is a relation. The second argument is a predicate with free de-Brujin indices corresponding to the columns of the relation. So the first column in the relation has index 0.
      • Z3_OP_RA_NEGATION_FILTER: Intersect the first relation with respect to negation of the second relation (the function takes two arguments). Logically, the specification can be described by a function

        target = filter_by_negation(pos, neg, columns)

        where columns are pairs c1, d1, .., cN, dN of columns from pos and neg, such that target are elements in x in pos, such that there is no y in neg that agrees with x on the columns c1, d1, .., cN, dN.

      • Z3_OP_RA_RENAME: rename columns in the relation. The function takes one argument. The parameters contain the renaming as a cycle.
      • Z3_OP_RA_COMPLEMENT: Complement the relation.
      • Z3_OP_RA_SELECT: Check if a record is an element of the relation. The function takes n+1 arguments, where the first argument is a relation, and the remaining n arguments correspond to a record.
      • Z3_OP_RA_CLONE: Create a fresh copy (clone) of a relation. The function is logically the identity, but in the context of a register machine allows for Z3_OP_RA_UNION to perform destructive updates to the first argument.
      • Z3_OP_FD_LT: A less than predicate over the finite domain Z3_FINITE_DOMAIN_SORT.
      • Z3_OP_LABEL: A label (used by the Boogie Verification condition generator). The label has two parameters, a string and a Boolean polarity. It takes one argument, a formula.
      • Z3_OP_LABEL_LIT: A label literal (used by the Boogie Verification condition generator). A label literal has a set of string parameters. It takes no arguments.
      • Z3_OP_DT_CONSTRUCTOR: datatype constructor.
      • Z3_OP_DT_RECOGNISER: datatype recognizer.
      • Z3_OP_DT_ACCESSOR: datatype accessor.
      • Z3_OP_DT_UPDATE_FIELD: datatype field update.
      • Z3_OP_PB_AT_MOST: Cardinality constraint. E.g., x + y + z <= 2
      • Z3_OP_PB_LE: Generalized Pseudo-Boolean cardinality constraint. Example 2*x + 3*y <= 4
      • Z3_OP_PB_GE: Generalized Pseudo-Boolean cardinality constraint. Example 2*x + 3*y + 2*z >= 4
      • Z3_OP_PB_EQ: Generalized Pseudo-Boolean equality constraint. Example 2*x + 1*y + 2*z + 1*u = 4
      • Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN: Floating-point rounding mode RNE
      • Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY: Floating-point rounding mode RNA
      • Z3_OP_FPA_RM_TOWARD_POSITIVE: Floating-point rounding mode RTP
      • Z3_OP_FPA_RM_TOWARD_NEGATIVE: Floating-point rounding mode RTN
      • Z3_OP_FPA_RM_TOWARD_ZERO: Floating-point rounding mode RTZ
      • Z3_OP_FPA_NUM: Floating-point value
      • Z3_OP_FPA_PLUS_INF: Floating-point +oo
      • Z3_OP_FPA_MINUS_INF: Floating-point -oo
      • Z3_OP_FPA_NAN: Floating-point NaN
      • Z3_OP_FPA_PLUS_ZERO: Floating-point +zero
      • Z3_OP_FPA_MINUS_ZERO: Floating-point -zero
      • Z3_OP_FPA_ADD: Floating-point addition
      • Z3_OP_FPA_SUB: Floating-point subtraction
      • Z3_OP_FPA_NEG: Floating-point negation
      • Z3_OP_FPA_MUL: Floating-point multiplication
      • Z3_OP_FPA_DIV: Floating-point division
      • Z3_OP_FPA_REM: Floating-point remainder
      • Z3_OP_FPA_ABS: Floating-point absolute value
      • Z3_OP_FPA_MIN: Floating-point minimum
      • Z3_OP_FPA_MAX: Floating-point maximum
      • Z3_OP_FPA_FMA: Floating-point fused multiply-add
      • Z3_OP_FPA_SQRT: Floating-point square root
      • Z3_OP_FPA_ROUND_TO_INTEGRAL: Floating-point round to integral
      • Z3_OP_FPA_EQ: Floating-point equality
      • Z3_OP_FPA_LT: Floating-point less than
      • Z3_OP_FPA_GT: Floating-point greater than
      • Z3_OP_FPA_LE: Floating-point less than or equal
      • Z3_OP_FPA_GE: Floating-point greater than or equal
      • Z3_OP_FPA_IS_NAN: Floating-point isNaN
      • Z3_OP_FPA_IS_INF: Floating-point isInfinite
      • Z3_OP_FPA_IS_ZERO: Floating-point isZero
      • Z3_OP_FPA_IS_NORMAL: Floating-point isNormal
      • Z3_OP_FPA_IS_SUBNORMAL: Floating-point isSubnormal
      • Z3_OP_FPA_IS_NEGATIVE: Floating-point isNegative
      • Z3_OP_FPA_IS_POSITIVE: Floating-point isPositive
      • Z3_OP_FPA_FP: Floating-point constructor from 3 bit-vectors
      • Z3_OP_FPA_TO_FP: Floating-point conversion (various)
      • Z3_OP_FPA_TO_FP_UNSIGNED: Floating-point conversion from unsigend bit-vector
      • Z3_OP_FPA_TO_UBV: Floating-point conversion to unsigned bit-vector
      • Z3_OP_FPA_TO_SBV: Floating-point conversion to signed bit-vector
      • Z3_OP_FPA_TO_REAL: Floating-point conversion to real number
      • Z3_OP_FPA_TO_IEEE_BV: Floating-point conversion to IEEE-754 bit-vector
      • Z3_OP_INTERNAL: internal (often interpreted) symbol, but no additional information is exposed. Tools may use the string representation of the function declaration to obtain more information.
      • Z3_OP_UNINTERPRETED: kind used for uninterpreted symbols.
Enumerator
Z3_OP_TRUE 
Z3_OP_FALSE 
Z3_OP_EQ 
Z3_OP_DISTINCT 
Z3_OP_ITE 
Z3_OP_AND 
Z3_OP_OR 
Z3_OP_IFF 
Z3_OP_XOR 
Z3_OP_NOT 
Z3_OP_IMPLIES 
Z3_OP_OEQ 
Z3_OP_INTERP 
Z3_OP_ANUM 
Z3_OP_AGNUM 
Z3_OP_LE 
Z3_OP_GE 
Z3_OP_LT 
Z3_OP_GT 
Z3_OP_ADD 
Z3_OP_SUB 
Z3_OP_UMINUS 
Z3_OP_MUL 
Z3_OP_DIV 
Z3_OP_IDIV 
Z3_OP_REM 
Z3_OP_MOD 
Z3_OP_TO_REAL 
Z3_OP_TO_INT 
Z3_OP_IS_INT 
Z3_OP_POWER 
Z3_OP_STORE 
Z3_OP_SELECT 
Z3_OP_CONST_ARRAY 
Z3_OP_ARRAY_MAP 
Z3_OP_ARRAY_DEFAULT 
Z3_OP_SET_UNION 
Z3_OP_SET_INTERSECT 
Z3_OP_SET_DIFFERENCE 
Z3_OP_SET_COMPLEMENT 
Z3_OP_SET_SUBSET 
Z3_OP_AS_ARRAY 
Z3_OP_ARRAY_EXT 
Z3_OP_BNUM 
Z3_OP_BIT1 
Z3_OP_BIT0 
Z3_OP_BNEG 
Z3_OP_BADD 
Z3_OP_BSUB 
Z3_OP_BMUL 
Z3_OP_BSDIV 
Z3_OP_BUDIV 
Z3_OP_BSREM 
Z3_OP_BUREM 
Z3_OP_BSMOD 
Z3_OP_BSDIV0 
Z3_OP_BUDIV0 
Z3_OP_BSREM0 
Z3_OP_BUREM0 
Z3_OP_BSMOD0 
Z3_OP_ULEQ 
Z3_OP_SLEQ 
Z3_OP_UGEQ 
Z3_OP_SGEQ 
Z3_OP_ULT 
Z3_OP_SLT 
Z3_OP_UGT 
Z3_OP_SGT 
Z3_OP_BAND 
Z3_OP_BOR 
Z3_OP_BNOT 
Z3_OP_BXOR 
Z3_OP_BNAND 
Z3_OP_BNOR 
Z3_OP_BXNOR 
Z3_OP_CONCAT 
Z3_OP_SIGN_EXT 
Z3_OP_ZERO_EXT 
Z3_OP_EXTRACT 
Z3_OP_REPEAT 
Z3_OP_BREDOR 
Z3_OP_BREDAND 
Z3_OP_BCOMP 
Z3_OP_BSHL 
Z3_OP_BLSHR 
Z3_OP_BASHR 
Z3_OP_ROTATE_LEFT 
Z3_OP_ROTATE_RIGHT 
Z3_OP_EXT_ROTATE_LEFT 
Z3_OP_EXT_ROTATE_RIGHT 
Z3_OP_INT2BV 
Z3_OP_BV2INT 
Z3_OP_CARRY 
Z3_OP_XOR3 
Z3_OP_BSMUL_NO_OVFL 
Z3_OP_BUMUL_NO_OVFL 
Z3_OP_BSMUL_NO_UDFL 
Z3_OP_BSDIV_I 
Z3_OP_BUDIV_I 
Z3_OP_BSREM_I 
Z3_OP_BUREM_I 
Z3_OP_BSMOD_I 
Z3_OP_PR_UNDEF 
Z3_OP_PR_TRUE 
Z3_OP_PR_ASSERTED 
Z3_OP_PR_GOAL 
Z3_OP_PR_MODUS_PONENS 
Z3_OP_PR_REFLEXIVITY 
Z3_OP_PR_SYMMETRY 
Z3_OP_PR_TRANSITIVITY 
Z3_OP_PR_TRANSITIVITY_STAR 
Z3_OP_PR_MONOTONICITY 
Z3_OP_PR_QUANT_INTRO 
Z3_OP_PR_DISTRIBUTIVITY 
Z3_OP_PR_AND_ELIM 
Z3_OP_PR_NOT_OR_ELIM 
Z3_OP_PR_REWRITE 
Z3_OP_PR_REWRITE_STAR 
Z3_OP_PR_PULL_QUANT 
Z3_OP_PR_PULL_QUANT_STAR 
Z3_OP_PR_PUSH_QUANT 
Z3_OP_PR_ELIM_UNUSED_VARS 
Z3_OP_PR_DER 
Z3_OP_PR_QUANT_INST 
Z3_OP_PR_HYPOTHESIS 
Z3_OP_PR_LEMMA 
Z3_OP_PR_UNIT_RESOLUTION 
Z3_OP_PR_IFF_TRUE 
Z3_OP_PR_IFF_FALSE 
Z3_OP_PR_COMMUTATIVITY 
Z3_OP_PR_DEF_AXIOM 
Z3_OP_PR_DEF_INTRO 
Z3_OP_PR_APPLY_DEF 
Z3_OP_PR_IFF_OEQ 
Z3_OP_PR_NNF_POS 
Z3_OP_PR_NNF_NEG 
Z3_OP_PR_NNF_STAR 
Z3_OP_PR_CNF_STAR 
Z3_OP_PR_SKOLEMIZE 
Z3_OP_PR_MODUS_PONENS_OEQ 
Z3_OP_PR_TH_LEMMA 
Z3_OP_PR_HYPER_RESOLVE 
Z3_OP_RA_STORE 
Z3_OP_RA_EMPTY 
Z3_OP_RA_IS_EMPTY 
Z3_OP_RA_JOIN 
Z3_OP_RA_UNION 
Z3_OP_RA_WIDEN 
Z3_OP_RA_PROJECT 
Z3_OP_RA_FILTER 
Z3_OP_RA_NEGATION_FILTER 
Z3_OP_RA_RENAME 
Z3_OP_RA_COMPLEMENT 
Z3_OP_RA_SELECT 
Z3_OP_RA_CLONE 
Z3_OP_FD_CONSTANT 
Z3_OP_FD_LT 
Z3_OP_SEQ_UNIT 
Z3_OP_SEQ_EMPTY 
Z3_OP_SEQ_CONCAT 
Z3_OP_SEQ_PREFIX 
Z3_OP_SEQ_SUFFIX 
Z3_OP_SEQ_CONTAINS 
Z3_OP_SEQ_EXTRACT 
Z3_OP_SEQ_REPLACE 
Z3_OP_SEQ_AT 
Z3_OP_SEQ_LENGTH 
Z3_OP_SEQ_INDEX 
Z3_OP_SEQ_TO_RE 
Z3_OP_SEQ_IN_RE 
Z3_OP_RE_PLUS 
Z3_OP_RE_STAR 
Z3_OP_RE_OPTION 
Z3_OP_RE_CONCAT 
Z3_OP_RE_UNION 
Z3_OP_LABEL 
Z3_OP_LABEL_LIT 
Z3_OP_DT_CONSTRUCTOR 
Z3_OP_DT_RECOGNISER 
Z3_OP_DT_ACCESSOR 
Z3_OP_DT_UPDATE_FIELD 
Z3_OP_PB_AT_MOST 
Z3_OP_PB_LE 
Z3_OP_PB_GE 
Z3_OP_PB_EQ 
Z3_OP_FPA_RM_NEAREST_TIES_TO_EVEN 
Z3_OP_FPA_RM_NEAREST_TIES_TO_AWAY 
Z3_OP_FPA_RM_TOWARD_POSITIVE 
Z3_OP_FPA_RM_TOWARD_NEGATIVE 
Z3_OP_FPA_RM_TOWARD_ZERO 
Z3_OP_FPA_NUM 
Z3_OP_FPA_PLUS_INF 
Z3_OP_FPA_MINUS_INF 
Z3_OP_FPA_NAN 
Z3_OP_FPA_PLUS_ZERO 
Z3_OP_FPA_MINUS_ZERO 
Z3_OP_FPA_ADD 
Z3_OP_FPA_SUB 
Z3_OP_FPA_NEG 
Z3_OP_FPA_MUL 
Z3_OP_FPA_DIV 
Z3_OP_FPA_REM 
Z3_OP_FPA_ABS 
Z3_OP_FPA_MIN 
Z3_OP_FPA_MAX 
Z3_OP_FPA_FMA 
Z3_OP_FPA_SQRT 
Z3_OP_FPA_ROUND_TO_INTEGRAL 
Z3_OP_FPA_EQ 
Z3_OP_FPA_LT 
Z3_OP_FPA_GT 
Z3_OP_FPA_LE 
Z3_OP_FPA_GE 
Z3_OP_FPA_IS_NAN 
Z3_OP_FPA_IS_INF 
Z3_OP_FPA_IS_ZERO 
Z3_OP_FPA_IS_NORMAL 
Z3_OP_FPA_IS_SUBNORMAL 
Z3_OP_FPA_IS_NEGATIVE 
Z3_OP_FPA_IS_POSITIVE 
Z3_OP_FPA_FP 
Z3_OP_FPA_TO_FP 
Z3_OP_FPA_TO_FP_UNSIGNED 
Z3_OP_FPA_TO_UBV 
Z3_OP_FPA_TO_SBV 
Z3_OP_FPA_TO_REAL 
Z3_OP_FPA_TO_IEEE_BV 
Z3_OP_FPA_MIN_I 
Z3_OP_FPA_MAX_I 
Z3_OP_INTERNAL 
Z3_OP_UNINTERPRETED 

Definition at line 955 of file z3_api.h.

955  {
956  // Basic
957  Z3_OP_TRUE = 0x100,
958  Z3_OP_FALSE,
959  Z3_OP_EQ,
961  Z3_OP_ITE,
962  Z3_OP_AND,
963  Z3_OP_OR,
964  Z3_OP_IFF,
965  Z3_OP_XOR,
966  Z3_OP_NOT,
968  Z3_OP_OEQ,
969  Z3_OP_INTERP,
970 
971  // Arithmetic
972  Z3_OP_ANUM = 0x200,
973  Z3_OP_AGNUM,
974  Z3_OP_LE,
975  Z3_OP_GE,
976  Z3_OP_LT,
977  Z3_OP_GT,
978  Z3_OP_ADD,
979  Z3_OP_SUB,
980  Z3_OP_UMINUS,
981  Z3_OP_MUL,
982  Z3_OP_DIV,
983  Z3_OP_IDIV,
984  Z3_OP_REM,
985  Z3_OP_MOD,
987  Z3_OP_TO_INT,
988  Z3_OP_IS_INT,
989  Z3_OP_POWER,
990 
991  // Arrays & Sets
992  Z3_OP_STORE = 0x300,
993  Z3_OP_SELECT,
1004 
1005  // Bit-vectors
1006  Z3_OP_BNUM = 0x400,
1007  Z3_OP_BIT1,
1008  Z3_OP_BIT0,
1009  Z3_OP_BNEG,
1010  Z3_OP_BADD,
1011  Z3_OP_BSUB,
1012  Z3_OP_BMUL,
1013 
1014  Z3_OP_BSDIV,
1015  Z3_OP_BUDIV,
1016  Z3_OP_BSREM,
1017  Z3_OP_BUREM,
1018  Z3_OP_BSMOD,
1019 
1020  // special functions to record the division by 0 cases
1021  // these are internal functions
1022  Z3_OP_BSDIV0,
1023  Z3_OP_BUDIV0,
1024  Z3_OP_BSREM0,
1025  Z3_OP_BUREM0,
1026  Z3_OP_BSMOD0,
1027 
1028  Z3_OP_ULEQ,
1029  Z3_OP_SLEQ,
1030  Z3_OP_UGEQ,
1031  Z3_OP_SGEQ,
1032  Z3_OP_ULT,
1033  Z3_OP_SLT,
1034  Z3_OP_UGT,
1035  Z3_OP_SGT,
1036 
1037  Z3_OP_BAND,
1038  Z3_OP_BOR,
1039  Z3_OP_BNOT,
1040  Z3_OP_BXOR,
1041  Z3_OP_BNAND,
1042  Z3_OP_BNOR,
1043  Z3_OP_BXNOR,
1044 
1045  Z3_OP_CONCAT,
1048  Z3_OP_EXTRACT,
1049  Z3_OP_REPEAT,
1050 
1051  Z3_OP_BREDOR,
1052  Z3_OP_BREDAND,
1053  Z3_OP_BCOMP,
1054 
1055  Z3_OP_BSHL,
1056  Z3_OP_BLSHR,
1057  Z3_OP_BASHR,
1062 
1063  Z3_OP_INT2BV,
1064  Z3_OP_BV2INT,
1065  Z3_OP_CARRY,
1066  Z3_OP_XOR3,
1067 
1071  Z3_OP_BSDIV_I,
1072  Z3_OP_BUDIV_I,
1073  Z3_OP_BSREM_I,
1074  Z3_OP_BUREM_I,
1075  Z3_OP_BSMOD_I,
1076 
1077  // Proofs
1078  Z3_OP_PR_UNDEF = 0x500,
1079  Z3_OP_PR_TRUE,
1081  Z3_OP_PR_GOAL,
1098  Z3_OP_PR_DER,
1118 
1119  // Relational algebra
1120  Z3_OP_RA_STORE = 0x600,
1123  Z3_OP_RA_JOIN,
1134  Z3_OP_FD_LT,
1135 
1136  // Sequences
1145  Z3_OP_SEQ_AT,
1150 
1151  // regular expressions
1152  Z3_OP_RE_PLUS,
1153  Z3_OP_RE_STAR,
1157 
1158  // Auxiliary
1159  Z3_OP_LABEL = 0x700,
1161 
1162  // Datatypes
1163  Z3_OP_DT_CONSTRUCTOR=0x800,
1167 
1168  // Pseudo Booleans
1169  Z3_OP_PB_AT_MOST=0x900,
1170  Z3_OP_PB_LE,
1171  Z3_OP_PB_GE,
1172  Z3_OP_PB_EQ,
1173 
1174  // Floating-Point Arithmetic
1180 
1181  Z3_OP_FPA_NUM,
1184  Z3_OP_FPA_NAN,
1187 
1188  Z3_OP_FPA_ADD,
1189  Z3_OP_FPA_SUB,
1190  Z3_OP_FPA_NEG,
1191  Z3_OP_FPA_MUL,
1192  Z3_OP_FPA_DIV,
1193  Z3_OP_FPA_REM,
1194  Z3_OP_FPA_ABS,
1195  Z3_OP_FPA_MIN,
1196  Z3_OP_FPA_MAX,
1197  Z3_OP_FPA_FMA,
1200 
1201  Z3_OP_FPA_EQ,
1202  Z3_OP_FPA_LT,
1203  Z3_OP_FPA_GT,
1204  Z3_OP_FPA_LE,
1205  Z3_OP_FPA_GE,
1213 
1214  Z3_OP_FPA_FP,
1220 
1222 
1225 
1227 
1229 } Z3_decl_kind;
Z3_decl_kind
The different kinds of interpreted function kinds.
Definition: z3_api.h:955

§ Z3_error_code

Z3 error codes (See Z3_get_error_code).

  • Z3_OK: No error.
  • Z3_SORT_ERROR: User tried to build an invalid (type incorrect) AST.
  • Z3_IOB: Index out of bounds.
  • Z3_INVALID_ARG: Invalid argument was provided.
  • Z3_PARSER_ERROR: An error occurred when parsing a string or file.
  • Z3_NO_PARSER: Parser output is not available, that is, user didn't invoke Z3_parse_smtlib_string or Z3_parse_smtlib_file.
  • Z3_INVALID_PATTERN: Invalid pattern was used to build a quantifier.
  • Z3_MEMOUT_FAIL: A memory allocation failure was encountered.
  • Z3_FILE_ACCESS_ERRROR: A file could not be accessed.
  • Z3_INVALID_USAGE: API call is invalid in the current state.
  • Z3_INTERNAL_FATAL: An error internal to Z3 occurred.
  • Z3_DEC_REF_ERROR: Trying to decrement the reference counter of an AST that was deleted or the reference counter was not initialized with Z3_inc_ref.
  • Z3_EXCEPTION: Internal Z3 exception. Additional details can be retrieved using Z3_get_error_msg.
Enumerator
Z3_OK 
Z3_SORT_ERROR 
Z3_IOB 
Z3_INVALID_ARG 
Z3_PARSER_ERROR 
Z3_NO_PARSER 
Z3_INVALID_PATTERN 
Z3_MEMOUT_FAIL 
Z3_FILE_ACCESS_ERROR 
Z3_INTERNAL_FATAL 
Z3_INVALID_USAGE 
Z3_DEC_REF_ERROR 
Z3_EXCEPTION 

Definition at line 1286 of file z3_api.h.

§ Z3_goal_prec

A Goal is essentially a set of formulas. Z3 provide APIs for building strategies/tactics for solving and transforming Goals. Some of these transformations apply under/over approximations.

  • Z3_GOAL_PRECISE: Approximations/Relaxations were not applied on the goal (sat and unsat answers were preserved).
  • Z3_GOAL_UNDER: Goal is the product of a under-approximation (sat answers are preserved).
  • Z3_GOAL_OVER: Goal is the product of an over-approximation (unsat answers are preserved).
  • Z3_GOAL_UNDER_OVER: Goal is garbage (it is the product of over- and under-approximations, sat and unsat answers are not preserved).
Enumerator
Z3_GOAL_PRECISE 
Z3_GOAL_UNDER 
Z3_GOAL_OVER 
Z3_GOAL_UNDER_OVER 

Definition at line 1349 of file z3_api.h.

1350 {
1352  Z3_GOAL_UNDER,
1353  Z3_GOAL_OVER,
1355 } Z3_goal_prec;
Z3_goal_prec
A Goal is essentially a set of formulas. Z3 provide APIs for building strategies/tactics for solving ...
Definition: z3_api.h:1349

§ Z3_lbool

enum Z3_lbool

Lifted Boolean type: false, undefined, true.

Enumerator
Z3_L_FALSE 
Z3_L_UNDEF 
Z3_L_TRUE 

Definition at line 105 of file z3_api.h.

106 {
107  Z3_L_FALSE = -1,
108  Z3_L_UNDEF,
109  Z3_L_TRUE
110 } Z3_lbool;
Z3_lbool
Lifted Boolean type: false, undefined, true.
Definition: z3_api.h:105

§ Z3_param_kind

The different kinds of parameters that can be associated with parameter sets. (see Z3_mk_params).

  • Z3_PK_UINT integer parameters.
  • Z3_PK_BOOL boolean parameters.
  • Z3_PK_DOUBLE double parameters.
  • Z3_PK_SYMBOL symbol parameters.
  • Z3_PK_STRING string parameters.
  • Z3_PK_OTHER all internal parameter kinds which are not exposed in the API.
  • Z3_PK_INVALID invalid parameter.
Enumerator
Z3_PK_UINT 
Z3_PK_BOOL 
Z3_PK_DOUBLE 
Z3_PK_SYMBOL 
Z3_PK_STRING 
Z3_PK_OTHER 
Z3_PK_INVALID 

Definition at line 1243 of file z3_api.h.

1243  {
1244  Z3_PK_UINT,
1245  Z3_PK_BOOL,
1246  Z3_PK_DOUBLE,
1247  Z3_PK_SYMBOL,
1248  Z3_PK_STRING,
1249  Z3_PK_OTHER,
1251 } Z3_param_kind;
Z3_param_kind
The different kinds of parameters that can be associated with parameter sets. (see Z3_mk_params)...
Definition: z3_api.h:1243

§ Z3_parameter_kind

The different kinds of parameters that can be associated with function symbols.

See also
Z3_get_decl_num_parameters
Z3_get_decl_parameter_kind
  • Z3_PARAMETER_INT is used for integer parameters.
  • Z3_PARAMETER_DOUBLE is used for double parameters.
  • Z3_PARAMETER_RATIONAL is used for parameters that are rational numbers.
  • Z3_PARAMETER_SYMBOL is used for parameters that are symbols.
  • Z3_PARAMETER_SORT is used for sort parameters.
  • Z3_PARAMETER_AST is used for expression parameters.
  • Z3_PARAMETER_FUNC_DECL is used for function declaration parameters.
Enumerator
Z3_PARAMETER_INT 
Z3_PARAMETER_DOUBLE 
Z3_PARAMETER_RATIONAL 
Z3_PARAMETER_SYMBOL 
Z3_PARAMETER_SORT 
Z3_PARAMETER_AST 
Z3_PARAMETER_FUNC_DECL 

Definition at line 139 of file z3_api.h.

140 {
Z3_parameter_kind
The different kinds of parameters that can be associated with function symbols.
Definition: z3_api.h:139

§ Z3_sort_kind

The different kinds of Z3 types (See #Z3_get_sort_kind).

Enumerator
Z3_UNINTERPRETED_SORT 
Z3_BOOL_SORT 
Z3_INT_SORT 
Z3_REAL_SORT 
Z3_BV_SORT 
Z3_ARRAY_SORT 
Z3_DATATYPE_SORT 
Z3_RELATION_SORT 
Z3_FINITE_DOMAIN_SORT 
Z3_FLOATING_POINT_SORT 
Z3_ROUNDING_MODE_SORT 
Z3_SEQ_SORT 
Z3_RE_SORT 
Z3_UNKNOWN_SORT 

Definition at line 153 of file z3_api.h.

§ Z3_symbol_kind

The different kinds of symbol. In Z3, a symbol can be represented using integers and strings (See #Z3_get_symbol_kind).

See also
Z3_mk_int_symbol
Z3_mk_string_symbol
Enumerator
Z3_INT_SYMBOL 
Z3_STRING_SYMBOL 

Definition at line 119 of file z3_api.h.

120 {
Z3_symbol_kind
The different kinds of symbol. In Z3, a symbol can be represented using integers and strings (See #Z3...
Definition: z3_api.h:119

Function Documentation

§ Z3_algebraic_add()

Z3_ast Z3_API Z3_algebraic_add ( Z3_context  c,
Z3_ast  a,
Z3_ast  b 
)

Return the value a + b.

Precondition
Z3_algebraic_is_value(c, a)
Z3_algebraic_is_value(c, b)
Postcondition
Z3_algebraic_is_value(c, result)

§ Z3_algebraic_div()

Z3_ast Z3_API Z3_algebraic_div ( Z3_context  c,
Z3_ast  a,
Z3_ast  b 
)

Return the value a / b.

Precondition
Z3_algebraic_is_value(c, a)
Z3_algebraic_is_value(c, b)
!Z3_algebraic_is_zero(c, b)
Postcondition
Z3_algebraic_is_value(c, result)

§ Z3_algebraic_eq()

Z3_bool Z3_API Z3_algebraic_eq ( Z3_context  c,
Z3_ast  a,
Z3_ast  b 
)

Return Z3_TRUE if a == b, and Z3_FALSE otherwise.

Precondition
Z3_algebraic_is_value(c, a)
Z3_algebraic_is_value(c, b)

§ Z3_algebraic_eval()

int Z3_API Z3_algebraic_eval ( Z3_context  c,
Z3_ast  p,
unsigned  n,
Z3_ast  a[] 
)

Given a multivariate polynomial p(x_0, ..., x_{n-1}), return the sign of p(a[0], ..., a[n-1]).

Precondition
p is a Z3 expression that contains only arithmetic terms and free variables.
forall i in [0, n) Z3_algebraic_is_value(c, a[i])

§ Z3_algebraic_ge()

Z3_bool Z3_API Z3_algebraic_ge ( Z3_context  c,
Z3_ast  a,
Z3_ast  b 
)

Return Z3_TRUE if a >= b, and Z3_FALSE otherwise.

Precondition
Z3_algebraic_is_value(c, a)
Z3_algebraic_is_value(c, b)

§ Z3_algebraic_gt()

Z3_bool Z3_API Z3_algebraic_gt ( Z3_context  c,
Z3_ast  a,
Z3_ast  b 
)

Return Z3_TRUE if a > b, and Z3_FALSE otherwise.

Precondition
Z3_algebraic_is_value(c, a)
Z3_algebraic_is_value(c, b)

§ Z3_algebraic_is_neg()

Z3_bool Z3_API Z3_algebraic_is_neg ( Z3_context  c,
Z3_ast  a 
)

Return the Z3_TRUE if a is negative, and Z3_FALSE otherwise.

Precondition
Z3_algebraic_is_value(c, a)

§ Z3_algebraic_is_pos()

Z3_bool Z3_API Z3_algebraic_is_pos ( Z3_context  c,
Z3_ast  a 
)

Return the Z3_TRUE if a is positive, and Z3_FALSE otherwise.

Precondition
Z3_algebraic_is_value(c, a)

§ Z3_algebraic_is_value()

Z3_bool Z3_API Z3_algebraic_is_value ( Z3_context  c,
Z3_ast  a 
)

Return Z3_TRUE if can be used as value in the Z3 real algebraic number package.

§ Z3_algebraic_is_zero()

Z3_bool Z3_API Z3_algebraic_is_zero ( Z3_context  c,
Z3_ast  a 
)

Return the Z3_TRUE if a is zero, and Z3_FALSE otherwise.

Precondition
Z3_algebraic_is_value(c, a)

§ Z3_algebraic_le()

Z3_bool Z3_API Z3_algebraic_le ( Z3_context  c,
Z3_ast  a,
Z3_ast  b 
)

Return Z3_TRUE if a <= b, and Z3_FALSE otherwise.

Precondition
Z3_algebraic_is_value(c, a)
Z3_algebraic_is_value(c, b)

§ Z3_algebraic_lt()

Z3_bool Z3_API Z3_algebraic_lt ( Z3_context  c,
Z3_ast  a,
Z3_ast  b 
)

Return Z3_TRUE if a < b, and Z3_FALSE otherwise.

Precondition
Z3_algebraic_is_value(c, a)
Z3_algebraic_is_value(c, b)

§ Z3_algebraic_mul()

Z3_ast Z3_API Z3_algebraic_mul ( Z3_context  c,
Z3_ast  a,
Z3_ast  b 
)

Return the value a * b.

Precondition
Z3_algebraic_is_value(c, a)
Z3_algebraic_is_value(c, b)
Postcondition
Z3_algebraic_is_value(c, result)

§ Z3_algebraic_neq()

Z3_bool Z3_API Z3_algebraic_neq ( Z3_context  c,
Z3_ast  a,
Z3_ast  b 
)

Return Z3_TRUE if a != b, and Z3_FALSE otherwise.

Precondition
Z3_algebraic_is_value(c, a)
Z3_algebraic_is_value(c, b)

§ Z3_algebraic_power()

Z3_ast Z3_API Z3_algebraic_power ( Z3_context  c,
Z3_ast  a,
unsigned  k 
)

Return the a^k.

Precondition
Z3_algebraic_is_value(c, a)
Postcondition
Z3_algebraic_is_value(c, result)

§ Z3_algebraic_root()

Z3_ast Z3_API Z3_algebraic_root ( Z3_context  c,
Z3_ast  a,
unsigned  k 
)

Return the a^(1/k)

Precondition
Z3_algebraic_is_value(c, a)
k is even => !Z3_algebraic_is_neg(c, a)
Postcondition
Z3_algebraic_is_value(c, result)

§ Z3_algebraic_roots()

Z3_ast_vector Z3_API Z3_algebraic_roots ( Z3_context  c,
Z3_ast  p,
unsigned  n,
Z3_ast  a[] 
)

Given a multivariate polynomial p(x_0, ..., x_{n-1}, x_n), returns the roots of the univariate polynomial p(a[0], ..., a[n-1], x_n).

Precondition
p is a Z3 expression that contains only arithmetic terms and free variables.
forall i in [0, n) Z3_algebraic_is_value(c, a[i])
Postcondition
forall r in result Z3_algebraic_is_value(c, result)

§ Z3_algebraic_sign()

int Z3_API Z3_algebraic_sign ( Z3_context  c,
Z3_ast  a 
)

Return 1 if a is positive, 0 if a is zero, and -1 if a is negative.

Precondition
Z3_algebraic_is_value(c, a)

§ Z3_algebraic_sub()

Z3_ast Z3_API Z3_algebraic_sub ( Z3_context  c,
Z3_ast  a,
Z3_ast  b 
)

Return the value a - b.

Precondition
Z3_algebraic_is_value(c, a)
Z3_algebraic_is_value(c, b)
Postcondition
Z3_algebraic_is_value(c, result)

§ Z3_append_log()

void Z3_API Z3_append_log ( Z3_string  string)

Append user-defined string to interaction log.

The interaction log is opened using Z3_open_log. It contains the formulas that are checked using Z3. You can use this command to append comments, for instance.

Referenced by z3py::append_log().

§ Z3_ast_to_string()

Z3_string Z3_API Z3_ast_to_string ( Z3_context  c,
Z3_ast  a 
)

Convert the given AST node into a string.

Warning
The result buffer is statically allocated by Z3. It will be automatically deallocated when Z3_del_context is invoked. So, the buffer is invalidated in the next call to Z3_ast_to_string.
See also
Z3_pattern_to_string
Z3_sort_to_string

Referenced by FiniteDomainRef::as_string(), z3::operator<<(), and AstRef::sexpr().

§ Z3_benchmark_to_smtlib_string()

Z3_string Z3_API Z3_benchmark_to_smtlib_string ( Z3_context  c,
Z3_string  name,
Z3_string  logic,
Z3_string  status,
Z3_string  attributes,
unsigned  num_assumptions,
Z3_ast const  assumptions[],
Z3_ast  formula 
)

Convert the given benchmark into SMT-LIB formatted string.

Warning
The result buffer is statically allocated by Z3. It will be automatically deallocated when Z3_del_context is invoked. So, the buffer is invalidated in the next call to Z3_benchmark_to_smtlib_string.
Parameters
c- context.
name- name of benchmark. The argument is optional.
logic- the benchmark logic.
status- the status string (sat, unsat, or unknown)
attributes- other attributes, such as source, difficulty or category.
num_assumptions- number of assumptions.
assumptions- auxiliary assumptions.
formula- formula to be checked for consistency in conjunction with assumptions.

Referenced by solver::to_smt2(), and Solver::to_smt2().

§ Z3_check_interpolant()

int Z3_API Z3_check_interpolant ( Z3_context  ctx,
unsigned  num,
Z3_ast  cnsts[],
unsigned  parents[],
Z3_ast *  interps,
Z3_string_ptr  error,
unsigned  num_theory,
Z3_ast  theory[] 
)

Check the correctness of an interpolant. The Z3 context must have no constraints asserted when this call is made. That means that after interpolating, you must first fully pop the Z3 context before calling this. See Z3_interpolate for meaning of parameters.

Parameters
ctxThe Z3 context. Must be generated by Z3_mk_interpolation_context
numThe number of constraints in the sequence
cnstsArray of constraints (AST's in context ctx)
parentsThe parents vector (or NULL for sequence)
interpsThe interpolant to check
errorReturns an error message if interpolant incorrect (do not free the string)
num_theoryNumber of theory terms
theoryTheory terms

Return value is Z3_L_TRUE if interpolant is verified, Z3_L_FALSE if incorrect, and Z3_L_UNDEF if unknown.

§ Z3_close_log()

void Z3_API Z3_close_log ( void  )

Close interaction log.

§ Z3_compute_interpolant()

Z3_lbool Z3_API Z3_compute_interpolant ( Z3_context  c,
Z3_ast  pat,
Z3_params  p,
Z3_ast_vector *  interp,
Z3_model *  model 
)

§ Z3_dec_ref()

void Z3_API Z3_dec_ref ( Z3_context  c,
Z3_ast  a 
)

Decrement the reference counter of the given AST. The context c should have been created using Z3_mk_context_rc. This function is a NOOP if c was created using Z3_mk_context.

Referenced by AstRef::__del__(), ast::operator=(), and ast::~ast().

§ Z3_del_config()

void Z3_API Z3_del_config ( Z3_config  c)

Delete the given configuration object.

Deprecated:
See also
Z3_mk_config

Referenced by config::~config().

§ Z3_del_constructor()

void Z3_API Z3_del_constructor ( Z3_context  c,
Z3_constructor  constr 
)

Reclaim memory allocated to constructor.

Parameters
clogical context.
constrconstructor.

§ Z3_del_constructor_list()

void Z3_API Z3_del_constructor_list ( Z3_context  c,
Z3_constructor_list  clist 
)

Reclaim memory allocated for constructor list.

Each constructor inside the constructor list must be independently reclaimed using Z3_del_constructor.

Parameters
clogical context.
clistconstructor list container.

§ Z3_del_context()

void Z3_API Z3_del_context ( Z3_context  c)

Delete the given logical context.

See also
Z3_mk_context

Referenced by Context::__del__(), and context::~context().

§ Z3_fpa_get_ebits()

unsigned Z3_API Z3_fpa_get_ebits ( Z3_context  c,
Z3_sort  s 
)

Retrieves the number of bits reserved for the exponent in a FloatingPoint sort.

Parameters
clogical context
sFloatingPoint sort

§ Z3_fpa_get_numeral_exponent_int64()

Z3_bool Z3_API Z3_fpa_get_numeral_exponent_int64 ( Z3_context  c,
Z3_ast  t,
__int64 n 
)

Return the exponent value of a floating-point numeral as a signed 64-bit integer.

Parameters
clogical context
ta floating-point numeral
nexponent

Remarks: This function extracts the exponent in t, without normalization.

§ Z3_fpa_get_numeral_exponent_string()

Z3_string Z3_API Z3_fpa_get_numeral_exponent_string ( Z3_context  c,
Z3_ast  t 
)

Return the exponent value of a floating-point numeral as a string.

Parameters
clogical context
ta floating-point numeral

Remarks: This function extracts the exponent in t, without normalization.

§ Z3_fpa_get_numeral_sign()

Z3_bool Z3_API Z3_fpa_get_numeral_sign ( Z3_context  c,
Z3_ast  t,
int *  sgn 
)

Retrieves the sign of a floating-point literal.

Parameters
clogical context
ta floating-point numeral
sgnsign

Remarks: sets sgn to 0 if `t' is positive and to 1 otherwise, except for NaN, which is an invalid argument.

§ Z3_fpa_get_numeral_significand_string()

Z3_string Z3_API Z3_fpa_get_numeral_significand_string ( Z3_context  c,
Z3_ast  t 
)

Return the significand value of a floating-point numeral as a string.

Parameters
clogical context
ta floating-point numeral

Remarks: The significand s is always 0.0 <= s < 2.0; the resulting string is long enough to represent the real significand precisely.

§ Z3_fpa_get_numeral_significand_uint64()

Z3_bool Z3_API Z3_fpa_get_numeral_significand_uint64 ( Z3_context  c,
Z3_ast  t,
__uint64 n 
)

Return the significand value of a floating-point numeral as a uint64.

Parameters
clogical context
ta floating-point numeral
npointer to output uint64

Remarks: This function extracts the significand bits in t, without the hidden bit or normalization. Sets the Z3_INVALID_ARG error code if the significand does not fit into a uint64.

§ Z3_fpa_get_sbits()

unsigned Z3_API Z3_fpa_get_sbits ( Z3_context  c,
Z3_sort  s 
)

Retrieves the number of bits reserved for the significand in a FloatingPoint sort.

Parameters
clogical context
sFloatingPoint sort

§ Z3_func_decl_to_string()

Z3_string Z3_API Z3_func_decl_to_string ( Z3_context  c,
Z3_func_decl  d 
)

§ Z3_func_entry_dec_ref()

void Z3_API Z3_func_entry_dec_ref ( Z3_context  c,
Z3_func_entry  e 
)

Decrement the reference counter of the given Z3_func_entry object.

Referenced by func_entry::operator=(), and func_entry::~func_entry().

§ Z3_func_entry_get_arg()

Z3_ast Z3_API Z3_func_entry_get_arg ( Z3_context  c,
Z3_func_entry  e,
unsigned  i 
)

Return an argument of a Z3_func_entry object.

Precondition
i < Z3_func_entry_get_num_args(c, e)
See also
Z3_func_interp_get_entry

Referenced by func_entry::arg().

§ Z3_func_entry_get_num_args()

unsigned Z3_API Z3_func_entry_get_num_args ( Z3_context  c,
Z3_func_entry  e 
)

Return the number of arguments in a Z3_func_entry object.

See also
Z3_func_interp_get_entry

Referenced by func_entry::num_args().

§ Z3_func_entry_get_value()

Z3_ast Z3_API Z3_func_entry_get_value ( Z3_context  c,
Z3_func_entry  e 
)

Return the value of this point.

A Z3_func_entry object represents an element in the finite map used to encode a function interpretation.

See also
Z3_func_interp_get_entry

Referenced by func_entry::value().

§ Z3_func_entry_inc_ref()

void Z3_API Z3_func_entry_inc_ref ( Z3_context  c,
Z3_func_entry  e 
)

Increment the reference counter of the given Z3_func_entry object.

Referenced by func_entry::operator=().

§ Z3_func_interp_dec_ref()

void Z3_API Z3_func_interp_dec_ref ( Z3_context  c,
Z3_func_interp  f 
)

Decrement the reference counter of the given Z3_func_interp object.

Referenced by func_interp::operator=(), and func_interp::~func_interp().

§ Z3_func_interp_get_arity()

unsigned Z3_API Z3_func_interp_get_arity ( Z3_context  c,
Z3_func_interp  f 
)

Return the arity (number of arguments) of the given function interpretation.

§ Z3_func_interp_get_else()

Z3_ast Z3_API Z3_func_interp_get_else ( Z3_context  c,
Z3_func_interp  f 
)

Return the 'else' value of the given function interpretation.

A function interpretation is represented as a finite map and an 'else' value. This procedure returns the 'else' value.

Referenced by func_interp::else_value().

§ Z3_func_interp_get_entry()

Z3_func_entry Z3_API Z3_func_interp_get_entry ( Z3_context  c,
Z3_func_interp  f,
unsigned  i 
)

Return a "point" of the given function intepretation. It represents the value of f in a particular point.

Precondition
i < Z3_func_interp_get_num_entries(c, f)
See also
Z3_func_interp_get_num_entries

Referenced by func_interp::entry().

§ Z3_func_interp_get_num_entries()

unsigned Z3_API Z3_func_interp_get_num_entries ( Z3_context  c,
Z3_func_interp  f 
)

Return the number of entries in the given function interpretation.

A function interpretation is represented as a finite map and an 'else' value. Each entry in the finite map represents the value of a function given a set of arguments. This procedure return the number of element in the finite map of f.

Referenced by func_interp::num_entries().

§ Z3_func_interp_inc_ref()

void Z3_API Z3_func_interp_inc_ref ( Z3_context  c,
Z3_func_interp  f 
)

Increment the reference counter of the given Z3_func_interp object.

Referenced by func_interp::operator=().

§ Z3_get_algebraic_number_lower()

Z3_ast Z3_API Z3_get_algebraic_number_lower ( Z3_context  c,
Z3_ast  a,
unsigned  precision 
)

Return a lower bound for the given real algebraic number. The interval isolating the number is smaller than 1/10^precision. The result is a numeral AST of sort Real.

Precondition
Z3_is_algebraic_number(c, a)

§ Z3_get_algebraic_number_upper()

Z3_ast Z3_API Z3_get_algebraic_number_upper ( Z3_context  c,
Z3_ast  a,
unsigned  precision 
)

Return a upper bound for the given real algebraic number. The interval isolating the number is smaller than 1/10^precision. The result is a numeral AST of sort Real.

Precondition
Z3_is_algebraic_number(c, a)

§ Z3_get_as_array_func_decl()

Z3_func_decl Z3_API Z3_get_as_array_func_decl ( Z3_context  c,
Z3_ast  a 
)

Return the function declaration f associated with a (_ as_array f) node.

See also
Z3_is_as_array

§ Z3_get_denominator()

Z3_ast Z3_API Z3_get_denominator ( Z3_context  c,
Z3_ast  a 
)

Return the denominator (as a numeral AST) of a numeral AST of sort Real.

Precondition
Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST

§ Z3_get_error_code()

Z3_error_code Z3_API Z3_get_error_code ( Z3_context  c)

Return the error code for the last API call.

A call to a Z3 function may return a non Z3_OK error code, when it is not used correctly.

See also
Z3_set_error_handler

Referenced by context::check_error().

§ Z3_get_error_msg()

Z3_string Z3_API Z3_get_error_msg ( Z3_context  c,
Z3_error_code  err 
)

Return a string describing the given error code.

Referenced by context::check_error().

§ Z3_get_error_msg_ex()

Z3_string Z3_API Z3_get_error_msg_ex ( Z3_context  c,
Z3_error_code  err 
)

Return a string describing the given error code. Retained function name for backwards compatibility within v4.1.

§ Z3_get_index_value()

unsigned Z3_API Z3_get_index_value ( Z3_context  c,
Z3_ast  a 
)

Return index of de-Brujin bound variable.

Precondition
Z3_get_ast_kind(a) == Z3_VAR_AST

Referenced by z3py::get_var_index().

§ Z3_get_interpolant()

Z3_ast_vector Z3_API Z3_get_interpolant ( Z3_context  c,
Z3_ast  pf,
Z3_ast  pat,
Z3_params  p 
)

Compute an interpolant from a refutation. This takes a proof of "false" from a set of formulas C, and an interpolation pattern. The pattern pat is a formula combining the formulas in C using logical conjunction and the "interp" operator (see Z3_mk_interpolant). This interp operator is logically the identity operator. It marks the sub-formulas of the pattern for which interpolants should be computed. The interpolant is a map sigma from marked subformulas to formulas, such that, for each marked subformula phi of pat (where phi sigma is phi with sigma(psi) substituted for each subformula psi of phi such that psi in dom(sigma)):

1) phi sigma implies sigma(phi), and

2) sigma(phi) is in the common uninterpreted vocabulary between the formulas of C occurring in phi and those not occurring in phi

and moreover pat sigma implies false. In the simplest case an interpolant for the pattern "(and (interp A) B)" maps A to an interpolant for A /\ B.

The return value is a vector of formulas representing sigma. The vector contains sigma(phi) for each marked subformula of pat, in pre-order traversal. This means that subformulas of phi occur before phi in the vector. Also, subformulas that occur multiply in pat will occur multiply in the result vector.

In particular, calling Z3_get_interpolant on a pattern of the form (interp ... (interp (and (interp A_1) A_2)) ... A_N) will result in a sequence interpolant for A_1, A_2,... A_N.

Neglecting interp markers, the pattern must be a conjunction of formulas in C, the set of premises of the proof. Otherwise an error is flagged.

Any premises of the proof not present in the pattern are treated as "background theory". Predicate and function symbols occurring in the background theory are treated as interpreted and thus always allowed in the interpolant.

Interpolant may not necessarily be computable from all proofs. To be sure an interpolant can be computed, the proof must be generated by an SMT solver for which interpoaltion is supported, and the premises must be expressed using only theories and operators for which interpolation is supported.

Currently, the only SMT solver that is supported is the legacy SMT solver. Such a solver is available as the default solver in Z3_context objects produced by Z3_mk_interpolation_context. Currently, the theories supported are equality with uninterpreted functions, linear integer arithmetic, and the theory of arrays (in SMT-LIB terms, this is AUFLIA). Quantifiers are allowed. Use of any other operators (including "labels") may result in failure to compute an interpolant from a proof.

Parameters:

Parameters
clogical context.
pfa refutation from premises (assertions) C
patan interpolation pattern over C
pparameters

Referenced by context::get_interpolant().

§ Z3_get_numeral_decimal_string()

Z3_string Z3_API Z3_get_numeral_decimal_string ( Z3_context  c,
Z3_ast  a,
unsigned  precision 
)

Return numeral as a string in decimal notation. The result has at most precision decimal places.

Precondition
Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST || Z3_is_algebraic_number(c, a)

Referenced by expr::get_decimal_string(), and expr::is_numeral().

§ Z3_get_numeral_int()

Z3_bool Z3_API Z3_get_numeral_int ( Z3_context  c,
Z3_ast  v,
int *  i 
)

Similar to Z3_get_numeral_string, but only succeeds if the value can fit in a machine int. Return Z3_TRUE if the call succeeded.

Precondition
Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST
See also
Z3_get_numeral_string

Referenced by expr::is_numeral_i().

§ Z3_get_numeral_int64()

Z3_bool Z3_API Z3_get_numeral_int64 ( Z3_context  c,
Z3_ast  v,
__int64 i 
)

Similar to Z3_get_numeral_string, but only succeeds if the value can fit in a machine __int64 int. Return Z3_TRUE if the call succeeded.

Precondition
Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST
See also
Z3_get_numeral_string

Referenced by expr::is_numeral_i64().

§ Z3_get_numeral_rational_int64()

Z3_bool Z3_API Z3_get_numeral_rational_int64 ( Z3_context  c,
Z3_ast  v,
__int64 num,
__int64 den 
)

Similar to Z3_get_numeral_string, but only succeeds if the value can fit as a rational number as machine __int64 int. Return Z3_TRUE if the call succeeded.

Precondition
Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST
See also
Z3_get_numeral_string

§ Z3_get_numeral_small()

Z3_bool Z3_API Z3_get_numeral_small ( Z3_context  c,
Z3_ast  a,
__int64 num,
__int64 den 
)

Return numeral value, as a pair of 64 bit numbers if the representation fits.

Parameters
clogical context.
aterm.
numnumerator.
dendenominator.

Return Z3_TRUE if the numeral value fits in 64 bit numerals, Z3_FALSE otherwise.

Precondition
Z3_get_ast_kind(a) == Z3_NUMERAL_AST

§ Z3_get_numeral_string()

Z3_string Z3_API Z3_get_numeral_string ( Z3_context  c,
Z3_ast  a 
)

Return numeral value, as a string of a numeric constant term.

Precondition
Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST

Referenced by FiniteDomainNumRef::as_string(), and expr::is_numeral().

§ Z3_get_numeral_uint()

Z3_bool Z3_API Z3_get_numeral_uint ( Z3_context  c,
Z3_ast  v,
unsigned *  u 
)

Similar to Z3_get_numeral_string, but only succeeds if the value can fit in a machine unsigned int. Return Z3_TRUE if the call succeeded.

Precondition
Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST
See also
Z3_get_numeral_string

Referenced by expr::is_numeral_u().

§ Z3_get_numeral_uint64()

Z3_bool Z3_API Z3_get_numeral_uint64 ( Z3_context  c,
Z3_ast  v,
unsigned __int64 u 
)

Similar to Z3_get_numeral_string, but only succeeds if the value can fit in a machine unsigned __int64 int. Return Z3_TRUE if the call succeeded.

Precondition
Z3_get_ast_kind(c, v) == Z3_NUMERAL_AST
See also
Z3_get_numeral_string

Referenced by expr::is_numeral_u64().

§ Z3_get_numerator()

Z3_ast Z3_API Z3_get_numerator ( Z3_context  c,
Z3_ast  a 
)

Return the numerator (as a numeral AST) of a numeral AST of sort Real.

Precondition
Z3_get_ast_kind(c, a) == Z3_NUMERAL_AST

§ Z3_get_pattern()

Z3_ast Z3_API Z3_get_pattern ( Z3_context  c,
Z3_pattern  p,
unsigned  idx 
)

Return i'th ast in pattern.

§ Z3_get_pattern_num_terms()

unsigned Z3_API Z3_get_pattern_num_terms ( Z3_context  c,
Z3_pattern  p 
)

Return number of terms in pattern.

§ Z3_get_quantifier_body()

Z3_ast Z3_API Z3_get_quantifier_body ( Z3_context  c,
Z3_ast  a 
)

Return body of quantifier.

Precondition
Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

Referenced by expr::body().

§ Z3_get_quantifier_bound_name()

Z3_symbol Z3_API Z3_get_quantifier_bound_name ( Z3_context  c,
Z3_ast  a,
unsigned  i 
)

Return symbol of the i'th bound variable.

Precondition
Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

§ Z3_get_quantifier_bound_sort()

Z3_sort Z3_API Z3_get_quantifier_bound_sort ( Z3_context  c,
Z3_ast  a,
unsigned  i 
)

Return sort of the i'th bound variable.

Precondition
Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

§ Z3_get_quantifier_no_pattern_ast()

Z3_ast Z3_API Z3_get_quantifier_no_pattern_ast ( Z3_context  c,
Z3_ast  a,
unsigned  i 
)

Return i'th no_pattern.

Precondition
Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

§ Z3_get_quantifier_num_bound()

unsigned Z3_API Z3_get_quantifier_num_bound ( Z3_context  c,
Z3_ast  a 
)

Return number of bound variables of quantifier.

Precondition
Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

§ Z3_get_quantifier_num_no_patterns()

unsigned Z3_API Z3_get_quantifier_num_no_patterns ( Z3_context  c,
Z3_ast  a 
)

Return number of no_patterns used in quantifier.

Precondition
Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

§ Z3_get_quantifier_num_patterns()

unsigned Z3_API Z3_get_quantifier_num_patterns ( Z3_context  c,
Z3_ast  a 
)

Return number of patterns used in quantifier.

Precondition
Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

§ Z3_get_quantifier_pattern_ast()

Z3_pattern Z3_API Z3_get_quantifier_pattern_ast ( Z3_context  c,
Z3_ast  a,
unsigned  i 
)

Return i'th pattern.

Precondition
Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

§ Z3_get_quantifier_weight()

unsigned Z3_API Z3_get_quantifier_weight ( Z3_context  c,
Z3_ast  a 
)

Obtain weight of quantifier.

Precondition
Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

§ Z3_get_smtlib_assumption()

Z3_ast Z3_API Z3_get_smtlib_assumption ( Z3_context  c,
unsigned  i 
)

Return the i-th assumption parsed by the last call to Z3_parse_smtlib_string or Z3_parse_smtlib_file.

Precondition
i < Z3_get_smtlib_num_assumptions(c)

§ Z3_get_smtlib_decl()

Z3_func_decl Z3_API Z3_get_smtlib_decl ( Z3_context  c,
unsigned  i 
)

Return the i-th declaration parsed by the last call to Z3_parse_smtlib_string or Z3_parse_smtlib_file.

Precondition
i < Z3_get_smtlib_num_decls(c)

§ Z3_get_smtlib_error()

Z3_string Z3_API Z3_get_smtlib_error ( Z3_context  c)

Retrieve that last error message information generated from parsing.

§ Z3_get_smtlib_formula()

Z3_ast Z3_API Z3_get_smtlib_formula ( Z3_context  c,
unsigned  i 
)

Return the i-th formula parsed by the last call to Z3_parse_smtlib_string or Z3_parse_smtlib_file.

Precondition
i < Z3_get_smtlib_num_formulas(c)

§ Z3_get_smtlib_num_assumptions()

unsigned Z3_API Z3_get_smtlib_num_assumptions ( Z3_context  c)

Return the number of SMTLIB assumptions parsed by Z3_parse_smtlib_string or Z3_parse_smtlib_file.

§ Z3_get_smtlib_num_decls()

unsigned Z3_API Z3_get_smtlib_num_decls ( Z3_context  c)

Return the number of declarations parsed by Z3_parse_smtlib_string or Z3_parse_smtlib_file.

§ Z3_get_smtlib_num_formulas()

unsigned Z3_API Z3_get_smtlib_num_formulas ( Z3_context  c)

Return the number of SMTLIB formulas parsed by the last call to Z3_parse_smtlib_string or Z3_parse_smtlib_file.

§ Z3_get_smtlib_num_sorts()

unsigned Z3_API Z3_get_smtlib_num_sorts ( Z3_context  c)

Return the number of sorts parsed by Z3_parse_smtlib_string or Z3_parse_smtlib_file.

§ Z3_get_smtlib_sort()

Z3_sort Z3_API Z3_get_smtlib_sort ( Z3_context  c,
unsigned  i 
)

Return the i-th sort parsed by the last call to Z3_parse_smtlib_string or Z3_parse_smtlib_file.

Precondition
i < Z3_get_smtlib_num_sorts(c)

§ Z3_global_param_get()

Z3_bool Z3_API Z3_global_param_get ( Z3_string  param_id,
Z3_string_ptr  param_value 
)

Get a global (or module) parameter.

Returns Z3_FALSE if the parameter value does not exist.

See also
Z3_global_param_set
Remarks
This function cannot be invoked simultaneously from different threads without synchronization. The result string stored in param_value is stored in shared location.

Referenced by z3py::get_param().

§ Z3_global_param_reset_all()

void Z3_API Z3_global_param_reset_all ( void  )

Restore the value of all global (and module) parameters. This command will not affect already created objects (such as tactics and solvers).

See also
Z3_global_param_set

Referenced by z3::reset_params(), and z3py::reset_params().

§ Z3_global_param_set()

void Z3_API Z3_global_param_set ( Z3_string  param_id,
Z3_string  param_value 
)

Set a global (or module) parameter. This setting is shared by all Z3 contexts.

When a Z3 module is initialized it will use the value of these parameters when Z3_params objects are not provided.

The name of parameter can be composed of characters [a-z][A-Z], digits [0-9], '-' and '_'. The character '.' is a delimiter (more later).

The parameter names are case-insensitive. The character '-' should be viewed as an "alias" for '_'. Thus, the following parameter names are considered equivalent: "pp.decimal-precision" and "PP.DECIMAL_PRECISION".

This function can be used to set parameters for a specific Z3 module. This can be done by using <module-name>.<parameter-name>. For example: Z3_global_param_set('pp.decimal', 'true') will set the parameter "decimal" in the module "pp" to true.

Referenced by z3::set_param(), and z3py::set_param().

§ Z3_inc_ref()

void Z3_API Z3_inc_ref ( Z3_context  c,
Z3_ast  a 
)

Increment the reference counter of the given AST. The context c should have been created using Z3_mk_context_rc. This function is a NOOP if c was created using Z3_mk_context.

Referenced by ast::ast(), and ast::operator=().

§ Z3_interpolation_profile()

Z3_string Z3_API Z3_interpolation_profile ( Z3_context  ctx)

Return a string summarizing cumulative time used for interpolation. This string is purely for entertainment purposes and has no semantics.

Parameters
ctxThe context (currently ignored)

§ Z3_interrupt()

void Z3_API Z3_interrupt ( Z3_context  c)

Interrupt the execution of a Z3 procedure. This procedure can be used to interrupt: solvers, simplifiers and tactics.

Referenced by Context::interrupt(), and context::interrupt().

§ Z3_is_as_array()

Z3_bool Z3_API Z3_is_as_array ( Z3_context  c,
Z3_ast  a 
)

The (_ as-array f) AST node is a construct for assigning interpretations for arrays in Z3. It is the array such that forall indices i we have that (select (_ as-array f) i) is equal to (f i). This procedure returns Z3_TRUE if the a is an as-array AST node.

Z3 current solvers have minimal support for as_array nodes.

See also
Z3_get_as_array_func_decl

§ Z3_is_quantifier_forall()

Z3_bool Z3_API Z3_is_quantifier_forall ( Z3_context  c,
Z3_ast  a 
)

Determine if quantifier is universal.

Precondition
Z3_get_ast_kind(a) == Z3_QUANTIFIER_AST

§ Z3_mk_add()

Z3_ast Z3_API Z3_mk_add ( Z3_context  c,
unsigned  num_args,
Z3_ast const  args[] 
)

Create an AST node representing args[0] + ... + args[num_args-1].

The array args must have num_args elements. All arguments must have int or real sort.

Remarks
The number of arguments must be greater than zero.

Referenced by z3::operator+(), and z3py::Sum().

§ Z3_mk_and()

Z3_ast Z3_API Z3_mk_and ( Z3_context  c,
unsigned  num_args,
Z3_ast const  args[] 
)

Create an AST node representing args[0] and ... and args[num_args-1].

The array args must have num_args elements. All arguments must have Boolean sort.

Remarks
The number of arguments must be greater than zero.

Referenced by goal::as_expr(), z3::mk_and(), and z3::operator &&().

§ Z3_mk_app()

Z3_ast Z3_API Z3_mk_app ( Z3_context  c,
Z3_func_decl  d,
unsigned  num_args,
Z3_ast const  args[] 
)

Create a constant or function application.

See also
Z3_mk_func_decl

Referenced by FuncDeclRef::__call__(), and func_decl::operator()().

§ Z3_mk_array_default()

Z3_ast Z3_API Z3_mk_array_default ( Z3_context  c,
Z3_ast  array 
)

Access the array default value. Produces the default range value, for arrays that can be represented as finite maps with a default range value.

Parameters
clogical context.
arrayarray value whose default range value is accessed.

§ Z3_mk_array_ext()

Z3_ast Z3_API Z3_mk_array_ext ( Z3_context  c,
Z3_ast  arg1,
Z3_ast  arg2 
)

Create array extensionality index given two arrays with the same sort. The meaning is given by the axiom: (=> (= (select A (array-ext A B)) (select B (array-ext A B))) (= A B))

§ Z3_mk_array_sort()

Z3_sort Z3_API Z3_mk_array_sort ( Z3_context  c,
Z3_sort  domain,
Z3_sort  range 
)

Create an array type.

We usually represent the array type as: [domain -> range]. Arrays are usually used to model the heap/memory in software verification.

See also
Z3_mk_select
Z3_mk_store

Referenced by context::array_sort().

§ Z3_mk_bool_sort()

Z3_sort Z3_API Z3_mk_bool_sort ( Z3_context  c)

Create the Boolean type.

This type is used to create propositional variables and predicates.

Referenced by context::bool_sort().

§ Z3_mk_bv2int()

Z3_ast Z3_API Z3_mk_bv2int ( Z3_context  c,
Z3_ast  t1,
Z3_bool  is_signed 
)

Create an integer from the bit-vector argument t1. If is_signed is false, then the bit-vector t1 is treated as unsigned. So the result is non-negative and in the range [0..2^N-1], where N are the number of bits in t1. If is_signed is true, t1 is treated as a signed bit-vector.

This function is essentially treated as uninterpreted. So you cannot expect Z3 to precisely reflect the semantics of this function when solving constraints with this function.

The node t1 must have a bit-vector sort.

§ Z3_mk_bv_sort()

Z3_sort Z3_API Z3_mk_bv_sort ( Z3_context  c,
unsigned  sz 
)

Create a bit-vector type of the given size.

This type can also be seen as a machine integer.

Remarks
The size of the bit-vector type must be greater than zero.

Referenced by context::bv_sort().

§ Z3_mk_bvadd()

Z3_ast Z3_API Z3_mk_bvadd ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Standard two's complement addition.

The nodes t1 and t2 must have the same bit-vector sort.

Referenced by z3::operator+().

§ Z3_mk_bvadd_no_overflow()

Z3_ast Z3_API Z3_mk_bvadd_no_overflow ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2,
Z3_bool  is_signed 
)

Create a predicate that checks that the bit-wise addition of t1 and t2 does not overflow.

The nodes t1 and t2 must have the same bit-vector sort.

§ Z3_mk_bvadd_no_underflow()

Z3_ast Z3_API Z3_mk_bvadd_no_underflow ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Create a predicate that checks that the bit-wise signed addition of t1 and t2 does not underflow.

The nodes t1 and t2 must have the same bit-vector sort.

§ Z3_mk_bvand()

Z3_ast Z3_API Z3_mk_bvand ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Bitwise and.

The nodes t1 and t2 must have the same bit-vector sort.

Referenced by z3::operator &().

§ Z3_mk_bvashr()

Z3_ast Z3_API Z3_mk_bvashr ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Arithmetic shift right.

It is like logical shift right except that the most significant bits of the result always copy the most significant bit of the second argument.

The semantics of shift operations varies between environments. This definition does not necessarily capture directly the semantics of the programming language or assembly architecture you are modeling.

The nodes t1 and t2 must have the same bit-vector sort.

Referenced by z3::ashr().

§ Z3_mk_bvlshr()

Z3_ast Z3_API Z3_mk_bvlshr ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Logical shift right.

It is equivalent to unsigned division by 2^x where x is the value of the third argument.

NB. The semantics of shift operations varies between environments. This definition does not necessarily capture directly the semantics of the programming language or assembly architecture you are modeling.

The nodes t1 and t2 must have the same bit-vector sort.

Referenced by z3::lshr().

§ Z3_mk_bvmul()

Z3_ast Z3_API Z3_mk_bvmul ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Standard two's complement multiplication.

The nodes t1 and t2 must have the same bit-vector sort.

Referenced by z3::operator*().

§ Z3_mk_bvmul_no_overflow()

Z3_ast Z3_API Z3_mk_bvmul_no_overflow ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2,
Z3_bool  is_signed 
)

Create a predicate that checks that the bit-wise multiplication of t1 and t2 does not overflow.

The nodes t1 and t2 must have the same bit-vector sort.

§ Z3_mk_bvmul_no_underflow()

Z3_ast Z3_API Z3_mk_bvmul_no_underflow ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Create a predicate that checks that the bit-wise signed multiplication of t1 and t2 does not underflow.

The nodes t1 and t2 must have the same bit-vector sort.

§ Z3_mk_bvnand()

Z3_ast Z3_API Z3_mk_bvnand ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Bitwise nand.

The nodes t1 and t2 must have the same bit-vector sort.

§ Z3_mk_bvneg()

Z3_ast Z3_API Z3_mk_bvneg ( Z3_context  c,
Z3_ast  t1 
)

Standard two's complement unary minus.

The node t1 must have bit-vector sort.

Referenced by z3::operator-().

§ Z3_mk_bvneg_no_overflow()

Z3_ast Z3_API Z3_mk_bvneg_no_overflow ( Z3_context  c,
Z3_ast  t1 
)

Check that bit-wise negation does not overflow when t1 is interpreted as a signed bit-vector.

The node t1 must have bit-vector sort.

§ Z3_mk_bvnor()

Z3_ast Z3_API Z3_mk_bvnor ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Bitwise nor.

The nodes t1 and t2 must have the same bit-vector sort.

§ Z3_mk_bvnot()

Z3_ast Z3_API Z3_mk_bvnot ( Z3_context  c,
Z3_ast  t1 
)

Bitwise negation.

The node t1 must have a bit-vector sort.

Referenced by z3::operator~().

§ Z3_mk_bvor()

Z3_ast Z3_API Z3_mk_bvor ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Bitwise or.

The nodes t1 and t2 must have the same bit-vector sort.

Referenced by z3::operator|().

§ Z3_mk_bvredand()

Z3_ast Z3_API Z3_mk_bvredand ( Z3_context  c,
Z3_ast  t1 
)

Take conjunction of bits in vector, return vector of length 1.

The node t1 must have a bit-vector sort.

§ Z3_mk_bvredor()

Z3_ast Z3_API Z3_mk_bvredor ( Z3_context  c,
Z3_ast  t1 
)

Take disjunction of bits in vector, return vector of length 1.

The node t1 must have a bit-vector sort.

§ Z3_mk_bvsdiv()

Z3_ast Z3_API Z3_mk_bvsdiv ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Two's complement signed division.

It is defined in the following way:

  • The floor of t1/t2 if t2 is different from zero, and t1*t2 >= 0.
  • The ceiling of t1/t2 if t2 is different from zero, and t1*t2 < 0.

If t2 is zero, then the result is undefined.

The nodes t1 and t2 must have the same bit-vector sort.

Referenced by z3::operator/().

§ Z3_mk_bvsdiv_no_overflow()

Z3_ast Z3_API Z3_mk_bvsdiv_no_overflow ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Create a predicate that checks that the bit-wise signed division of t1 and t2 does not overflow.

The nodes t1 and t2 must have the same bit-vector sort.

§ Z3_mk_bvsge()

Z3_ast Z3_API Z3_mk_bvsge ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Two's complement signed greater than or equal to.

The nodes t1 and t2 must have the same bit-vector sort.

Referenced by z3::operator>=().

§ Z3_mk_bvsgt()

Z3_ast Z3_API Z3_mk_bvsgt ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Two's complement signed greater than.

The nodes t1 and t2 must have the same bit-vector sort.

Referenced by z3::operator>().

§ Z3_mk_bvshl()

Z3_ast Z3_API Z3_mk_bvshl ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Shift left.

It is equivalent to multiplication by 2^x where x is the value of the third argument.

NB. The semantics of shift operations varies between environments. This definition does not necessarily capture directly the semantics of the programming language or assembly architecture you are modeling.

The nodes t1 and t2 must have the same bit-vector sort.

Referenced by z3::shl().

§ Z3_mk_bvsle()

Z3_ast Z3_API Z3_mk_bvsle ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Two's complement signed less than or equal to.

The nodes t1 and t2 must have the same bit-vector sort.

Referenced by z3::operator<=().

§ Z3_mk_bvslt()

Z3_ast Z3_API Z3_mk_bvslt ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Two's complement signed less than.

It abbreviates:

(or (and (= (extract[|m-1|:|m-1|] t1) bit1)
(= (extract[|m-1|:|m-1|] t2) bit0))
(and (= (extract[|m-1|:|m-1|] t1) (extract[|m-1|:|m-1|] t2))
(bvult t1 t2)))

The nodes t1 and t2 must have the same bit-vector sort.

Referenced by z3::operator<().

§ Z3_mk_bvsmod()

Z3_ast Z3_API Z3_mk_bvsmod ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Two's complement signed remainder (sign follows divisor).

If t2 is zero, then the result is undefined.

The nodes t1 and t2 must have the same bit-vector sort.

See also
Z3_mk_bvsrem

§ Z3_mk_bvsrem()

Z3_ast Z3_API Z3_mk_bvsrem ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Two's complement signed remainder (sign follows dividend).

It is defined as t1 - (t1 /s t2) * t2, where /s represents signed division. The most significant bit (sign) of the result is equal to the most significant bit of t1.

If t2 is zero, then the result is undefined.

The nodes t1 and t2 must have the same bit-vector sort.

See also
Z3_mk_bvsmod

Referenced by z3::srem().

§ Z3_mk_bvsub()

Z3_ast Z3_API Z3_mk_bvsub ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Standard two's complement subtraction.

The nodes t1 and t2 must have the same bit-vector sort.

Referenced by z3::operator-().

§ Z3_mk_bvsub_no_overflow()

Z3_ast Z3_API Z3_mk_bvsub_no_overflow ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Create a predicate that checks that the bit-wise signed subtraction of t1 and t2 does not overflow.

The nodes t1 and t2 must have the same bit-vector sort.

§ Z3_mk_bvsub_no_underflow()

Z3_ast Z3_API Z3_mk_bvsub_no_underflow ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2,
Z3_bool  is_signed 
)

Create a predicate that checks that the bit-wise subtraction of t1 and t2 does not underflow.

The nodes t1 and t2 must have the same bit-vector sort.

§ Z3_mk_bvudiv()

Z3_ast Z3_API Z3_mk_bvudiv ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Unsigned division.

It is defined as the floor of t1/t2 if t2 is different from zero. If t2 is zero, then the result is undefined.

The nodes t1 and t2 must have the same bit-vector sort.

Referenced by z3::udiv().

§ Z3_mk_bvuge()

Z3_ast Z3_API Z3_mk_bvuge ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Unsigned greater than or equal to.

The nodes t1 and t2 must have the same bit-vector sort.

Referenced by z3::uge().

§ Z3_mk_bvugt()

Z3_ast Z3_API Z3_mk_bvugt ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Unsigned greater than.

The nodes t1 and t2 must have the same bit-vector sort.

Referenced by z3::ugt().

§ Z3_mk_bvule()

Z3_ast Z3_API Z3_mk_bvule ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Unsigned less than or equal to.

The nodes t1 and t2 must have the same bit-vector sort.

Referenced by z3::ule().

§ Z3_mk_bvult()

Z3_ast Z3_API Z3_mk_bvult ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Unsigned less than.

The nodes t1 and t2 must have the same bit-vector sort.

Referenced by z3::ult().

§ Z3_mk_bvurem()

Z3_ast Z3_API Z3_mk_bvurem ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Unsigned remainder.

It is defined as t1 - (t1 /u t2) * t2, where /u represents unsigned division.

If t2 is zero, then the result is undefined.

The nodes t1 and t2 must have the same bit-vector sort.

Referenced by z3::urem().

§ Z3_mk_bvxnor()

Z3_ast Z3_API Z3_mk_bvxnor ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Bitwise xnor.

The nodes t1 and t2 must have the same bit-vector sort.

§ Z3_mk_bvxor()

Z3_ast Z3_API Z3_mk_bvxor ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Bitwise exclusive-or.

The nodes t1 and t2 must have the same bit-vector sort.

Referenced by z3::operator^().

§ Z3_mk_concat()

Z3_ast Z3_API Z3_mk_concat ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Concatenate the given bit-vectors.

The nodes t1 and t2 must have (possibly different) bit-vector sorts

The result is a bit-vector of size n1+n2, where n1 (n2) is the size of t1 (t2).

Referenced by z3::concat().

§ Z3_mk_config()

Z3_config Z3_API Z3_mk_config ( void  )

Create a configuration object for the Z3 context object.

Deprecated:

Configurations are created in order to assign parameters prior to creating contexts for Z3 interaction. For example, if the users wishes to use proof generation, then call:

Z3_set_param_value(cfg, "proof", "true")

Remarks
In previous versions of Z3, the Z3_config was used to store global and module configurations. Now, we should use Z3_global_param_set.

The following parameters can be set:

- proof  (Boolean)           Enable proof generation
- debug_ref_count (Boolean)  Enable debug support for Z3_ast reference counting
- trace  (Boolean)           Tracing support for VCC
- trace_file_name (String)   Trace out file for VCC traces
- timeout (unsigned)         default timeout (in milliseconds) used for solvers
- well_sorted_check          type checker
- auto_config                use heuristics to automatically select solver and configure it
- model                      model generation for solvers, this parameter can be overwritten when creating a solver
- model_validate             validate models produced by solvers
- unsat_core                 unsat-core generation for solvers, this parameter can be overwritten when creating a solver
See also
Z3_set_param_value
Z3_del_config

Referenced by Context::__init__(), and config::config().

§ Z3_mk_const()

Z3_ast Z3_API Z3_mk_const ( Z3_context  c,
Z3_symbol  s,
Z3_sort  ty 
)

Declare and create a constant.

This function is a shorthand for:

Z3_func_decl d = Z3_mk_func_decl(c, s, 0, 0, ty);
Z3_ast n = Z3_mk_app(c, d, 0, 0);
See also
Z3_mk_func_decl
Z3_mk_app

Referenced by z3py::Const(), and context::constant().

§ Z3_mk_const_array()

Z3_ast Z3_API Z3_mk_const_array ( Z3_context  c,
Z3_sort  domain,
Z3_ast  v 
)

Create the constant array.

The resulting term is an array, such that a select on an arbitrary index produces the value v.

Parameters
clogical context.
domaindomain sort for the array.
vvalue that the array maps to.

Referenced by z3::const_array().

§ Z3_mk_constructor()

Z3_constructor Z3_API Z3_mk_constructor ( Z3_context  c,
Z3_symbol  name,
Z3_symbol  recognizer,
unsigned  num_fields,
Z3_symbol const  field_names[],
Z3_sort_opt const  sorts[],
unsigned  sort_refs[] 
)

Create a constructor.

Parameters
clogical context.
nameconstructor name.
recognizername of recognizer function.
num_fieldsnumber of fields in constructor.
field_namesnames of the constructor fields.
sortsfield sorts, 0 if the field sort refers to a recursive sort.
sort_refsreference to datatype sort that is an argument to the constructor; if the corresponding sort reference is 0, then the value in sort_refs should be an index referring to one of the recursive datatypes that is declared.

§ Z3_mk_constructor_list()

Z3_constructor_list Z3_API Z3_mk_constructor_list ( Z3_context  c,
unsigned  num_constructors,
Z3_constructor const  constructors[] 
)

Create list of constructors.

Parameters
clogical context.
num_constructorsnumber of constructors in list.
constructorslist of constructors.

§ Z3_mk_context()

Z3_context Z3_API Z3_mk_context ( Z3_config  c)

Create a context using the given configuration.

Deprecated:

After a context is created, the configuration cannot be changed, although some parameters can be changed using Z3_update_param_value. All main interaction with Z3 happens in the context of a Z3_context.

In contrast to Z3_mk_context_rc, the life time of Z3_ast objects are determined by the scope level of #Z3_push and #Z3_pop. In other words, a Z3_ast object remains valid until there is a call to Z3_pop that takes the current scope below the level where the object was created.

Note that all other reference counted objects, including Z3_model, Z3_solver, Z3_func_interp have to be managed by the caller. Their reference counts are not handled by the context.

Further remarks:

  • Z3_sort, Z3_func_decl, Z3_app, Z3_pattern are Z3_ast's.
  • Z3 uses hash-consing, i.e., when the same Z3_ast is created twice, Z3 will return the same pointer twice.
See also
Z3_del_context

§ Z3_mk_context_rc()

Z3_context Z3_API Z3_mk_context_rc ( Z3_config  c)

Create a context using the given configuration. This function is similar to Z3_mk_context. However, in the context returned by this function, the user is responsible for managing Z3_ast reference counters. Managing reference counters is a burden and error-prone, but allows the user to use the memory more efficiently. The user must invoke Z3_inc_ref for any Z3_ast returned by Z3, and Z3_dec_ref whenever the Z3_ast is not needed anymore. This idiom is similar to the one used in BDD (binary decision diagrams) packages such as CUDD.

Remarks:

  • Z3_sort, Z3_func_decl, Z3_app, Z3_pattern are Z3_ast's.
  • After a context is created, the configuration cannot be changed.
  • All main interaction with Z3 happens in the context of a Z3_context.
  • Z3 uses hash-consing, i.e., when the same Z3_ast is created twice, Z3 will return the same pointer twice.

§ Z3_mk_datatype()

Z3_sort Z3_API Z3_mk_datatype ( Z3_context  c,
Z3_symbol  name,
unsigned  num_constructors,
Z3_constructor  constructors[] 
)

Create datatype, such as lists, trees, records, enumerations or unions of records. The datatype may be recursive. Return the datatype sort.

Parameters
clogical context.
namename of datatype.
num_constructorsnumber of constructors passed in.
constructorsarray of constructor containers.

§ Z3_mk_datatypes()

void Z3_API Z3_mk_datatypes ( Z3_context  c,
unsigned  num_sorts,
Z3_symbol const  sort_names[],
Z3_sort  sorts[],
Z3_constructor_list  constructor_lists[] 
)

Create mutually recursive datatypes.

Parameters
clogical context.
num_sortsnumber of datatype sorts.
sort_namesnames of datatype sorts.
sortsarray of datatype sorts.
constructor_listslist of constructors, one list per sort.

§ Z3_mk_distinct()

Z3_ast Z3_API Z3_mk_distinct ( Z3_context  c,
unsigned  num_args,
Z3_ast const  args[] 
)

Create an AST node representing distinct(args[0], ..., args[num_args-1]).

The distinct construct is used for declaring the arguments pairwise distinct. That is, Forall 0 <= i < j < num_args. not args[i] = args[j].

All arguments must have the same sort.

Remarks
The number of arguments of a distinct construct must be greater than one.

Referenced by ExprRef::__ne__(), z3py::Distinct(), z3::distinct(), and z3::operator!=().

§ Z3_mk_div()

Z3_ast Z3_API Z3_mk_div ( Z3_context  c,
Z3_ast  arg1,
Z3_ast  arg2 
)

Create an AST node representing arg1 div arg2.

The arguments must either both have int type or both have real type. If the arguments have int type, then the result type is an int type, otherwise the the result type is real.

Referenced by z3::operator/().

§ Z3_mk_empty_set()

Z3_ast Z3_API Z3_mk_empty_set ( Z3_context  c,
Z3_sort  domain 
)

Create the empty set.

Referenced by z3::empty_set().

§ Z3_mk_enumeration_sort()

Z3_sort Z3_API Z3_mk_enumeration_sort ( Z3_context  c,
Z3_symbol  name,
unsigned  n,
Z3_symbol const  enum_names[],
Z3_func_decl  enum_consts[],
Z3_func_decl  enum_testers[] 
)

Create a enumeration sort.

An enumeration sort with n elements. This function will also declare the functions corresponding to the enumerations.

Parameters
clogical context
namename of the enumeration sort.
nnumber of elemenets in enumeration sort.
enum_namesnames of the enumerated elements.
enum_constsconstants corresponding to the enumerated elements.
enum_testerspredicates testing if terms of the enumeration sort correspond to an enumeration.

For example, if this function is called with three symbols A, B, C and the name S, then s is a sort whose name is S, and the function returns three terms corresponding to A, B, C in enum_consts. The array enum_testers has three predicates of type (s -> Bool). The first predicate (corresponding to A) is true when applied to A, and false otherwise. Similarly for the other predicates.

Referenced by context::enumeration_sort().

§ Z3_mk_eq()

Z3_ast Z3_API Z3_mk_eq ( Z3_context  c,
Z3_ast  l,
Z3_ast  r 
)

Create an AST node representing l = r.

The nodes l and r must have the same type.

Referenced by ExprRef::__eq__(), and z3::operator==().

§ Z3_mk_ext_rotate_left()

Z3_ast Z3_API Z3_mk_ext_rotate_left ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Rotate bits of t1 to the left t2 times.

The nodes t1 and t2 must have the same bit-vector sort.

§ Z3_mk_ext_rotate_right()

Z3_ast Z3_API Z3_mk_ext_rotate_right ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Rotate bits of t1 to the right t2 times.

The nodes t1 and t2 must have the same bit-vector sort.

§ Z3_mk_extract()

Z3_ast Z3_API Z3_mk_extract ( Z3_context  c,
unsigned  high,
unsigned  low,
Z3_ast  t1 
)

Extract the bits high down to low from a bit-vector of size m to yield a new bit-vector of size n, where n = high - low + 1.

The node t1 must have a bit-vector sort.

Referenced by expr::extract().

§ Z3_mk_false()

Z3_ast Z3_API Z3_mk_false ( Z3_context  c)

Create an AST node representing false.

Referenced by context::bool_val().

§ Z3_mk_finite_domain_sort()

Z3_sort Z3_API Z3_mk_finite_domain_sort ( Z3_context  c,
Z3_symbol  name,
unsigned __int64  size 
)

Create a named finite domain sort.

To create constants that belong to the finite domain, use the APIs for creating numerals and pass a numeric constant together with the sort returned by this call. The numeric constant should be between 0 and the less than the size of the domain.

See also
Z3_get_finite_domain_sort_size

Referenced by z3py::FiniteDomainSort().

§ Z3_mk_fpa_abs()

Z3_ast Z3_API Z3_mk_fpa_abs ( Z3_context  c,
Z3_ast  t 
)

Floating-point absolute value.

Parameters
clogical context
tterm of FloatingPoint sort

§ Z3_mk_fpa_add()

Z3_ast Z3_API Z3_mk_fpa_add ( Z3_context  c,
Z3_ast  rm,
Z3_ast  t1,
Z3_ast  t2 
)

Floating-point addition.

Parameters
clogical context
rmterm of RoundingMode sort
t1term of FloatingPoint sort
t2term of FloatingPoint sort

rm must be of RoundingMode sort, t1 and t2 must have the same FloatingPoint sort.

§ Z3_mk_fpa_div()

Z3_ast Z3_API Z3_mk_fpa_div ( Z3_context  c,
Z3_ast  rm,
Z3_ast  t1,
Z3_ast  t2 
)

Floating-point division.

Parameters
clogical context
rmterm of RoundingMode sort
t1term of FloatingPoint sort.
t2term of FloatingPoint sort

The nodes rm must be of RoundingMode sort t1 and t2 must have the same FloatingPoint sort.

§ Z3_mk_fpa_eq()

Z3_ast Z3_API Z3_mk_fpa_eq ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Floating-point equality.

Parameters
clogical context
t1term of FloatingPoint sort
t2term of FloatingPoint sort

Note that this is IEEE 754 equality (as opposed to SMT-LIB =).

t1 and t2 must have the same FloatingPoint sort.

§ Z3_mk_fpa_fma()

Z3_ast Z3_API Z3_mk_fpa_fma ( Z3_context  c,
Z3_ast  rm,
Z3_ast  t1,
Z3_ast  t2,
Z3_ast  t3 
)

Floating-point fused multiply-add.

Parameters
clogical context
rmterm of RoundingMode sort
t1term of FloatingPoint sort
t2term of FloatingPoint sor
t3term of FloatingPoint sort

The result is round((t1 * t2) + t3)

rm must be of RoundingMode sort, t1, t2, and t3 must have the same FloatingPoint sort.

§ Z3_mk_fpa_fp()

Z3_ast Z3_API Z3_mk_fpa_fp ( Z3_context  c,
Z3_ast  sgn,
Z3_ast  exp,
Z3_ast  sig 
)

Create an expression of FloatingPoint sort from three bit-vector expressions.

This is the operator named `fp' in the SMT FP theory definition. Note that sign is required to be a bit-vector of size 1. Significand and exponent are required to be greater than 1 and 2 respectively. The FloatingPoint sort of the resulting expression is automatically determined from the bit-vector sizes of the arguments.

Parameters
clogical context
sgnsign
expexponent
sigsignificand

§ Z3_mk_fpa_geq()

Z3_ast Z3_API Z3_mk_fpa_geq ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Floating-point greater than or equal.

Parameters
clogical context
t1term of FloatingPoint sort
t2term of FloatingPoint sort

t1 and t2 must have the same FloatingPoint sort.

§ Z3_mk_fpa_gt()

Z3_ast Z3_API Z3_mk_fpa_gt ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Floating-point greater than.

Parameters
clogical context
t1term of FloatingPoint sort
t2term of FloatingPoint sort

t1 and t2 must have the same FloatingPoint sort.

§ Z3_mk_fpa_inf()

Z3_ast Z3_API Z3_mk_fpa_inf ( Z3_context  c,
Z3_sort  s,
Z3_bool  negative 
)

Create a floating-point infinity of sort s.

Parameters
clogical context
starget sort
negativeindicates whether the result should be negative

When negative is true, -oo will be generated instead of +oo.

§ Z3_mk_fpa_is_infinite()

Z3_ast Z3_API Z3_mk_fpa_is_infinite ( Z3_context  c,
Z3_ast  t 
)

Predicate indicating whether t is a floating-point number representing +oo or -oo.

Parameters
clogical context
tterm of FloatingPoint sort

t must have FloatingPoint sort.

§ Z3_mk_fpa_is_nan()

Z3_ast Z3_API Z3_mk_fpa_is_nan ( Z3_context  c,
Z3_ast  t 
)

Predicate indicating whether t is a NaN.

Parameters
clogical context
tterm of FloatingPoint sort

t must have FloatingPoint sort.

§ Z3_mk_fpa_is_negative()

Z3_ast Z3_API Z3_mk_fpa_is_negative ( Z3_context  c,
Z3_ast  t 
)

Predicate indicating whether t is a negative floating-point number.

Parameters
clogical context
tterm of FloatingPoint sort

t must have FloatingPoint sort.

§ Z3_mk_fpa_is_normal()

Z3_ast Z3_API Z3_mk_fpa_is_normal ( Z3_context  c,
Z3_ast  t 
)

Predicate indicating whether t is a normal floating-point number.

Parameters
clogical context
tterm of FloatingPoint sort

t must have FloatingPoint sort.

§ Z3_mk_fpa_is_positive()

Z3_ast Z3_API Z3_mk_fpa_is_positive ( Z3_context  c,
Z3_ast  t 
)

Predicate indicating whether t is a positive floating-point number.

Parameters
clogical context
tterm of FloatingPoint sort

t must have FloatingPoint sort.

§ Z3_mk_fpa_is_subnormal()

Z3_ast Z3_API Z3_mk_fpa_is_subnormal ( Z3_context  c,
Z3_ast  t 
)

Predicate indicating whether t is a subnormal floating-point number.

Parameters
clogical context
tterm of FloatingPoint sort

t must have FloatingPoint sort.

§ Z3_mk_fpa_is_zero()

Z3_ast Z3_API Z3_mk_fpa_is_zero ( Z3_context  c,
Z3_ast  t 
)

Predicate indicating whether t is a floating-point number with zero value, i.e., +zero or -zero.

Parameters
clogical context
tterm of FloatingPoint sort

t must have FloatingPoint sort.

§ Z3_mk_fpa_leq()

Z3_ast Z3_API Z3_mk_fpa_leq ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Floating-point less than or equal.

Parameters
clogical context
t1term of FloatingPoint sort
t2term of FloatingPoint sort

t1 and t2 must have the same FloatingPoint sort.

§ Z3_mk_fpa_lt()

Z3_ast Z3_API Z3_mk_fpa_lt ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Floating-point less than.

Parameters
clogical context
t1term of FloatingPoint sort
t2term of FloatingPoint sort

t1 and t2 must have the same FloatingPoint sort.

§ Z3_mk_fpa_max()

Z3_ast Z3_API Z3_mk_fpa_max ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Maximum of floating-point numbers.

Parameters
clogical context
t1term of FloatingPoint sort
t2term of FloatingPoint sort

t1, t2 must have the same FloatingPoint sort.

§ Z3_mk_fpa_min()

Z3_ast Z3_API Z3_mk_fpa_min ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Minimum of floating-point numbers.

Parameters
clogical context
t1term of FloatingPoint sort
t2term of FloatingPoint sort

t1, t2 must have the same FloatingPoint sort.

§ Z3_mk_fpa_mul()

Z3_ast Z3_API Z3_mk_fpa_mul ( Z3_context  c,
Z3_ast  rm,
Z3_ast  t1,
Z3_ast  t2 
)

Floating-point multiplication.

Parameters
clogical context
rmterm of RoundingMode sort
t1term of FloatingPoint sort
t2term of FloatingPoint sort

rm must be of RoundingMode sort, t1 and t2 must have the same FloatingPoint sort.

§ Z3_mk_fpa_nan()

Z3_ast Z3_API Z3_mk_fpa_nan ( Z3_context  c,
Z3_sort  s 
)

Create a floating-point NaN of sort s.

Parameters
clogical context
starget sort

§ Z3_mk_fpa_neg()

Z3_ast Z3_API Z3_mk_fpa_neg ( Z3_context  c,
Z3_ast  t 
)

Floating-point negation.

Parameters
clogical context
tterm of FloatingPoint sort

§ Z3_mk_fpa_numeral_double()

Z3_ast Z3_API Z3_mk_fpa_numeral_double ( Z3_context  c,
double  v,
Z3_sort  ty 
)

Create a numeral of FloatingPoint sort from a double.

This function is used to create numerals that fit in a double value. It is slightly faster than #Z3_mk_numeral since it is not necessary to parse a string.

Parameters
clogical context
vvalue
tysort

ty must be a FloatingPoint sort

See also
Z3_mk_numeral

§ Z3_mk_fpa_numeral_float()

Z3_ast Z3_API Z3_mk_fpa_numeral_float ( Z3_context  c,
float  v,
Z3_sort  ty 
)

Create a numeral of FloatingPoint sort from a float.

This function is used to create numerals that fit in a float value. It is slightly faster than #Z3_mk_numeral since it is not necessary to parse a string.

Parameters
clogical context
vvalue
tysort

ty must be a FloatingPoint sort

See also
Z3_mk_numeral

§ Z3_mk_fpa_numeral_int()

Z3_ast Z3_API Z3_mk_fpa_numeral_int ( Z3_context  c,
signed  v,
Z3_sort  ty 
)

Create a numeral of FloatingPoint sort from a signed integer.

Parameters
clogical context
vvalue
tyresult sort

ty must be a FloatingPoint sort

See also
Z3_mk_numeral

§ Z3_mk_fpa_numeral_int64_uint64()

Z3_ast Z3_API Z3_mk_fpa_numeral_int64_uint64 ( Z3_context  c,
Z3_bool  sgn,
__int64  exp,
__uint64  sig,
Z3_sort  ty 
)

Create a numeral of FloatingPoint sort from a sign bit and two 64-bit integers.

Parameters
clogical context
sgnsign bit (true == negative)
sigsignificand
expexponent
tyresult sort

ty must be a FloatingPoint sort

See also
Z3_mk_numeral

§ Z3_mk_fpa_numeral_int_uint()

Z3_ast Z3_API Z3_mk_fpa_numeral_int_uint ( Z3_context  c,
Z3_bool  sgn,
signed  exp,
unsigned  sig,
Z3_sort  ty 
)

Create a numeral of FloatingPoint sort from a sign bit and two integers.

Parameters
clogical context
sgnsign bit (true == negative)
sigsignificand
expexponent
tyresult sort

ty must be a FloatingPoint sort

See also
Z3_mk_numeral

§ Z3_mk_fpa_rem()

Z3_ast Z3_API Z3_mk_fpa_rem ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Floating-point remainder.

Parameters
clogical context
t1term of FloatingPoint sort
t2term of FloatingPoint sort

t1 and t2 must have the same FloatingPoint sort.

§ Z3_mk_fpa_rna()

Z3_ast Z3_API Z3_mk_fpa_rna ( Z3_context  c)

Create a numeral of RoundingMode sort which represents the NearestTiesToAway rounding mode.

Parameters
clogical context

§ Z3_mk_fpa_rne()

Z3_ast Z3_API Z3_mk_fpa_rne ( Z3_context  c)

Create a numeral of RoundingMode sort which represents the NearestTiesToEven rounding mode.

Parameters
clogical context

§ Z3_mk_fpa_round_nearest_ties_to_away()

Z3_ast Z3_API Z3_mk_fpa_round_nearest_ties_to_away ( Z3_context  c)

Create a numeral of RoundingMode sort which represents the NearestTiesToAway rounding mode.

Parameters
clogical context

§ Z3_mk_fpa_round_nearest_ties_to_even()

Z3_ast Z3_API Z3_mk_fpa_round_nearest_ties_to_even ( Z3_context  c)

Create a numeral of RoundingMode sort which represents the NearestTiesToEven rounding mode.

Parameters
clogical context

§ Z3_mk_fpa_round_to_integral()

Z3_ast Z3_API Z3_mk_fpa_round_to_integral ( Z3_context  c,
Z3_ast  rm,
Z3_ast  t 
)

Floating-point roundToIntegral. Rounds a floating-point number to the closest integer, again represented as a floating-point number.

Parameters
clogical context
rmterm of RoundingMode sort
tterm of FloatingPoint sort

t must be of FloatingPoint sort.

§ Z3_mk_fpa_round_toward_negative()

Z3_ast Z3_API Z3_mk_fpa_round_toward_negative ( Z3_context  c)

Create a numeral of RoundingMode sort which represents the TowardNegative rounding mode.

Parameters
clogical context

§ Z3_mk_fpa_round_toward_positive()

Z3_ast Z3_API Z3_mk_fpa_round_toward_positive ( Z3_context  c)

Create a numeral of RoundingMode sort which represents the TowardPositive rounding mode.

Parameters
clogical context

§ Z3_mk_fpa_round_toward_zero()

Z3_ast Z3_API Z3_mk_fpa_round_toward_zero ( Z3_context  c)

Create a numeral of RoundingMode sort which represents the TowardZero rounding mode.

Parameters
clogical context

§ Z3_mk_fpa_rounding_mode_sort()

Z3_sort Z3_API Z3_mk_fpa_rounding_mode_sort ( Z3_context  c)

Create the RoundingMode sort.

Parameters
clogical context

§ Z3_mk_fpa_rtn()

Z3_ast Z3_API Z3_mk_fpa_rtn ( Z3_context  c)

Create a numeral of RoundingMode sort which represents the TowardNegative rounding mode.

Parameters
clogical context

§ Z3_mk_fpa_rtp()

Z3_ast Z3_API Z3_mk_fpa_rtp ( Z3_context  c)

Create a numeral of RoundingMode sort which represents the TowardPositive rounding mode.

Parameters
clogical context

§ Z3_mk_fpa_rtz()

Z3_ast Z3_API Z3_mk_fpa_rtz ( Z3_context  c)

Create a numeral of RoundingMode sort which represents the TowardZero rounding mode.

Parameters
clogical context

§ Z3_mk_fpa_sort()

Z3_sort Z3_API Z3_mk_fpa_sort ( Z3_context  c,
unsigned  ebits,
unsigned  sbits 
)

Create a FloatingPoint sort.

Parameters
clogical context
ebitsnumber of exponent bits
sbitsnumber of significand bits
Remarks
ebits must be larger than 1 and sbits must be larger than 2.

§ Z3_mk_fpa_sort_128()

Z3_sort Z3_API Z3_mk_fpa_sort_128 ( Z3_context  c)

Create the quadruple-precision (128-bit) FloatingPoint sort.

Parameters
clogical context

§ Z3_mk_fpa_sort_16()

Z3_sort Z3_API Z3_mk_fpa_sort_16 ( Z3_context  c)

Create the half-precision (16-bit) FloatingPoint sort.

Parameters
clogical context

§ Z3_mk_fpa_sort_32()

Z3_sort Z3_API Z3_mk_fpa_sort_32 ( Z3_context  c)

Create the single-precision (32-bit) FloatingPoint sort.

Parameters
clogical context

§ Z3_mk_fpa_sort_64()

Z3_sort Z3_API Z3_mk_fpa_sort_64 ( Z3_context  c)

Create the double-precision (64-bit) FloatingPoint sort.

Parameters
clogical context

§ Z3_mk_fpa_sort_double()

Z3_sort Z3_API Z3_mk_fpa_sort_double ( Z3_context  c)

Create the double-precision (64-bit) FloatingPoint sort.

Parameters
clogical context

§ Z3_mk_fpa_sort_half()

Z3_sort Z3_API Z3_mk_fpa_sort_half ( Z3_context  c)

Create the half-precision (16-bit) FloatingPoint sort.

Parameters
clogical context

§ Z3_mk_fpa_sort_quadruple()

Z3_sort Z3_API Z3_mk_fpa_sort_quadruple ( Z3_context  c)

Create the quadruple-precision (128-bit) FloatingPoint sort.

Parameters
clogical context

§ Z3_mk_fpa_sort_single()

Z3_sort Z3_API Z3_mk_fpa_sort_single ( Z3_context  c)

Create the single-precision (32-bit) FloatingPoint sort.

Parameters
clogical context.

§ Z3_mk_fpa_sqrt()

Z3_ast Z3_API Z3_mk_fpa_sqrt ( Z3_context  c,
Z3_ast  rm,
Z3_ast  t 
)

Floating-point square root.

Parameters
clogical context
rmterm of RoundingMode sort
tterm of FloatingPoint sort

rm must be of RoundingMode sort, t must have FloatingPoint sort.

§ Z3_mk_fpa_sub()

Z3_ast Z3_API Z3_mk_fpa_sub ( Z3_context  c,
Z3_ast  rm,
Z3_ast  t1,
Z3_ast  t2 
)

Floating-point subtraction.

Parameters
clogical context
rmterm of RoundingMode sort
t1term of FloatingPoint sort
t2term of FloatingPoint sort

rm must be of RoundingMode sort, t1 and t2 must have the same FloatingPoint sort.

§ Z3_mk_fpa_to_fp_bv()

Z3_ast Z3_API Z3_mk_fpa_to_fp_bv ( Z3_context  c,
Z3_ast  bv,
Z3_sort  s 
)

Conversion of a single IEEE 754-2008 bit-vector into a floating-point number.

Produces a term that represents the conversion of a bit-vector term bv to a floating-point term of sort s.

Parameters
clogical context
bva bit-vector term
sfloating-point sort

s must be a FloatingPoint sort, t must be of bit-vector sort, and the bit-vector size of bv must be equal to ebits+sbits of s. The format of the bit-vector is as defined by the IEEE 754-2008 interchange format.

§ Z3_mk_fpa_to_fp_float()

Z3_ast Z3_API Z3_mk_fpa_to_fp_float ( Z3_context  c,
Z3_ast  rm,
Z3_ast  t,
Z3_sort  s 
)

Conversion of a FloatingPoint term into another term of different FloatingPoint sort.

Produces a term that represents the conversion of a floating-point term t to a floating-point term of sort s. If necessary, the result will be rounded according to rounding mode rm.

Parameters
clogical context
rmterm of RoundingMode sort
tterm of FloatingPoint sort
sfloating-point sort

s must be a FloatingPoint sort, rm must be of RoundingMode sort, t must be of floating-point sort.

§ Z3_mk_fpa_to_fp_int_real()

Z3_ast Z3_API Z3_mk_fpa_to_fp_int_real ( Z3_context  c,
Z3_ast  rm,
Z3_ast  exp,
Z3_ast  sig,
Z3_sort  s 
)

Conversion of a real-sorted significand and an integer-sorted exponent into a term of FloatingPoint sort.

Produces a term that represents the conversion of sig * 2^exp into a floating-point term of sort s. If necessary, the result will be rounded according to rounding mode rm.

Parameters
clogical context
rmterm of RoundingMode sort
expexponent term of Int sort
sigsignificand term of Real sort
sFloatingPoint sort

s must be a FloatingPoint sort, rm must be of RoundingMode sort, exp must be of int sort, sig must be of real sort.

§ Z3_mk_fpa_to_fp_real()

Z3_ast Z3_API Z3_mk_fpa_to_fp_real ( Z3_context  c,
Z3_ast  rm,
Z3_ast  t,
Z3_sort  s 
)

Conversion of a term of real sort into a term of FloatingPoint sort.

Produces a term that represents the conversion of term t of real sort into a floating-point term of sort s. If necessary, the result will be rounded according to rounding mode rm.

Parameters
clogical context
rmterm of RoundingMode sort
tterm of Real sort
sfloating-point sort

s must be a FloatingPoint sort, rm must be of RoundingMode sort, t must be of real sort.

§ Z3_mk_fpa_to_fp_signed()

Z3_ast Z3_API Z3_mk_fpa_to_fp_signed ( Z3_context  c,
Z3_ast  rm,
Z3_ast  t,
Z3_sort  s 
)

Conversion of a 2's complement signed bit-vector term into a term of FloatingPoint sort.

Produces a term that represents the conversion of the bit-vector term t into a floating-point term of sort s. The bit-vector t is taken to be in signed 2's complement format. If necessary, the result will be rounded according to rounding mode rm.

Parameters
clogical context
rmterm of RoundingMode sort
tterm of bit-vector sort
sfloating-point sort

s must be a FloatingPoint sort, rm must be of RoundingMode sort, t must be of bit-vector sort.

§ Z3_mk_fpa_to_fp_unsigned()

Z3_ast Z3_API Z3_mk_fpa_to_fp_unsigned ( Z3_context  c,
Z3_ast  rm,
Z3_ast  t,
Z3_sort  s 
)

Conversion of a 2's complement unsigned bit-vector term into a term of FloatingPoint sort.

Produces a term that represents the conversion of the bit-vector term t into a floating-point term of sort s. The bit-vector t is taken to be in unsigned 2's complement format. If necessary, the result will be rounded according to rounding mode rm.

Parameters
clogical context
rmterm of RoundingMode sort
tterm of bit-vector sort
sfloating-point sort

s must be a FloatingPoint sort, rm must be of RoundingMode sort, t must be of bit-vector sort.

§ Z3_mk_fpa_to_ieee_bv()

Z3_ast Z3_API Z3_mk_fpa_to_ieee_bv ( Z3_context  c,
Z3_ast  t 
)

Conversion of a floating-point term into a bit-vector term in IEEE 754-2008 format.

Parameters
clogical context
tterm of FloatingPoint sort

t must have FloatingPoint sort. The size of the resulting bit-vector is automatically determined.

Note that IEEE 754-2008 allows multiple different representations of NaN. This conversion knows only one NaN and it will always produce the same bit-vector represenatation of that NaN.

§ Z3_mk_fpa_to_real()

Z3_ast Z3_API Z3_mk_fpa_to_real ( Z3_context  c,
Z3_ast  t 
)

Conversion of a floating-point term into a real-numbered term.

Produces a term that represents the conversion of the floating-poiunt term t into a real number. Note that this type of conversion will often result in non-linear constraints over real terms.

Parameters
clogical context
tterm of FloatingPoint sort

§ Z3_mk_fpa_to_sbv()

Z3_ast Z3_API Z3_mk_fpa_to_sbv ( Z3_context  c,
Z3_ast  rm,
Z3_ast  t,
unsigned  sz 
)

Conversion of a floating-point term into a signed bit-vector.

Produces a term that represents the conversion of the floating-poiunt term t into a bit-vector term of size sz in signed 2's complement format. If necessary, the result will be rounded according to rounding mode rm.

Parameters
clogical context
rmterm of RoundingMode sort
tterm of FloatingPoint sort
szsize of the resulting bit-vector

§ Z3_mk_fpa_to_ubv()

Z3_ast Z3_API Z3_mk_fpa_to_ubv ( Z3_context  c,
Z3_ast  rm,
Z3_ast  t,
unsigned  sz 
)

Conversion of a floating-point term into an unsigned bit-vector.

Produces a term that represents the conversion of the floating-poiunt term t into a bit-vector term of size sz in unsigned 2's complement format. If necessary, the result will be rounded according to rounding mode rm.

Parameters
clogical context
rmterm of RoundingMode sort
tterm of FloatingPoint sort
szsize of the resulting bit-vector

§ Z3_mk_fpa_zero()

Z3_ast Z3_API Z3_mk_fpa_zero ( Z3_context  c,
Z3_sort  s,
Z3_bool  negative 
)

Create a floating-point zero of sort s.

Parameters
clogical context
starget sort
negativeindicates whether the result should be negative

When negative is true, -zero will be generated instead of +zero.

§ Z3_mk_fresh_const()

Z3_ast Z3_API Z3_mk_fresh_const ( Z3_context  c,
Z3_string  prefix,
Z3_sort  ty 
)

Declare and create a fresh constant.

This function is a shorthand for:

Z3_func_decl d = Z3_mk_fresh_func_decl(c, prefix, 0, 0, ty); Z3_ast n = Z3_mk_app(c, d, 0, 0);
Remarks
If prefix is NULL, then it is assumed to be the empty string.
See also
Z3_mk_func_decl
Z3_mk_app

§ Z3_mk_fresh_func_decl()

Z3_func_decl Z3_API Z3_mk_fresh_func_decl ( Z3_context  c,
Z3_string  prefix,
unsigned  domain_size,
Z3_sort const  domain[],
Z3_sort  range 
)

Declare a fresh constant or function.

Z3 will generate an unique name for this function declaration. If prefix is different from NULL, then the name generate by Z3 will start with prefix.

Remarks
If prefix is NULL, then it is assumed to be the empty string.
See also
Z3_mk_func_decl

§ Z3_mk_full_set()

Z3_ast Z3_API Z3_mk_full_set ( Z3_context  c,
Z3_sort  domain 
)

Create the full set.

Referenced by z3::full_set().

§ Z3_mk_func_decl()

Z3_func_decl Z3_API Z3_mk_func_decl ( Z3_context  c,
Z3_symbol  s,
unsigned  domain_size,
Z3_sort const  domain[],
Z3_sort  range 
)

Declare a constant or function.

Parameters
clogical context.
sname of the constant or function.
domain_sizenumber of arguments. It is 0 when declaring a constant.
domainarray containing the sort of each argument. The array must contain domain_size elements. It is 0 when declaring a constant.
rangesort of the constant or the return sort of the function.

After declaring a constant or function, the function Z3_mk_app can be used to create a constant or function application.

See also
Z3_mk_app

Referenced by context::function(), and z3py::Function().

§ Z3_mk_ge()

Z3_ast Z3_API Z3_mk_ge ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Create greater than or equal to.

The nodes t1 and t2 must have the same sort, and must be int or real.

Referenced by z3::operator>=().

§ Z3_mk_gt()

Z3_ast Z3_API Z3_mk_gt ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Create greater than.

The nodes t1 and t2 must have the same sort, and must be int or real.

Referenced by z3::operator>().

§ Z3_mk_iff()

Z3_ast Z3_API Z3_mk_iff ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Create an AST node representing t1 iff t2.

The nodes t1 and t2 must have Boolean sort.

§ Z3_mk_implies()

Z3_ast Z3_API Z3_mk_implies ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Create an AST node representing t1 implies t2.

The nodes t1 and t2 must have Boolean sort.

Referenced by z3::implies().

§ Z3_mk_int2bv()

Z3_ast Z3_API Z3_mk_int2bv ( Z3_context  c,
unsigned  n,
Z3_ast  t1 
)

Create an n bit bit-vector from the integer argument t1.

NB. This function is essentially treated as uninterpreted. So you cannot expect Z3 to precisely reflect the semantics of this function when solving constraints with this function.

The node t1 must have integer sort.

§ Z3_mk_int2real()

Z3_ast Z3_API Z3_mk_int2real ( Z3_context  c,
Z3_ast  t1 
)

Coerce an integer to a real.

There is also a converse operation exposed. It follows the semantics prescribed by the SMT-LIB standard.

You can take the floor of a real by creating an auxiliary integer constant k and and asserting mk_int2real(k) <= t1 < mk_int2real(k)+1.

The node t1 must have sort integer.

See also
Z3_mk_real2int
Z3_mk_is_int

Referenced by z3::to_real().

§ Z3_mk_int_sort()

Z3_sort Z3_API Z3_mk_int_sort ( Z3_context  c)

Create the integer type.

This type is not the int type found in programming languages. A machine integer can be represented using bit-vectors. The function Z3_mk_bv_sort creates a bit-vector type.

See also
Z3_mk_bv_sort

Referenced by context::int_sort().

§ Z3_mk_int_symbol()

Z3_symbol Z3_API Z3_mk_int_symbol ( Z3_context  c,
int  i 
)

Create a Z3 symbol using an integer.

Symbols are used to name several term and type constructors.

NB. Not all integers can be passed to this function. The legal range of unsigned integers is 0 to 2^30-1.

See also
Z3_mk_string_symbol

Referenced by context::int_symbol(), and z3py::to_symbol().

§ Z3_mk_interpolant()

Z3_ast Z3_API Z3_mk_interpolant ( Z3_context  c,
Z3_ast  a 
)

Create an AST node marking a formula position for interpolation.

The node a must have Boolean sort.

Referenced by z3::interpolant().

§ Z3_mk_interpolation_context()

Z3_context Z3_API Z3_mk_interpolation_context ( Z3_config  cfg)

This function generates a Z3 context suitable for generation of interpolants. Formulas can be generated as abstract syntax trees in this context using the Z3 C API.

Interpolants are also generated as AST's in this context.

If cfg is non-null, it will be used as the base configuration for the Z3 context. This makes it possible to set Z3 options to be used during interpolation. This feature should be used with some caution however, as it may be that certain Z3 options are incompatible with interpolation.

§ Z3_mk_is_int()

Z3_ast Z3_API Z3_mk_is_int ( Z3_context  c,
Z3_ast  t1 
)

Check if a real number is an integer.

See also
Z3_mk_int2real
Z3_mk_real2int

§ Z3_mk_ite()

Z3_ast Z3_API Z3_mk_ite ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2,
Z3_ast  t3 
)

Create an AST node representing an if-then-else: ite(t1, t2, t3).

The node t1 must have Boolean sort, t2 and t3 must have the same sort. The sort of the new node is equal to the sort of t2 and t3.

Referenced by z3py::If(), and z3::ite().

§ Z3_mk_le()

Z3_ast Z3_API Z3_mk_le ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Create less than or equal to.

The nodes t1 and t2 must have the same sort, and must be int or real.

Referenced by z3::operator<=().

§ Z3_mk_list_sort()

Z3_sort Z3_API Z3_mk_list_sort ( Z3_context  c,
Z3_symbol  name,
Z3_sort  elem_sort,
Z3_func_decl *  nil_decl,
Z3_func_decl *  is_nil_decl,
Z3_func_decl *  cons_decl,
Z3_func_decl *  is_cons_decl,
Z3_func_decl *  head_decl,
Z3_func_decl *  tail_decl 
)

Create a list sort.

A list sort over elem_sort This function declares the corresponding constructors and testers for lists.

Parameters
clogical context
namename of the list sort.
elem_sortsort of list elements.
nil_decldeclaration for the empty list.
is_nil_decltest for the empty list.
cons_decldeclaration for a cons cell.
is_cons_declcons cell test.
head_decllist head.
tail_decllist tail.

§ Z3_mk_lt()

Z3_ast Z3_API Z3_mk_lt ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Create less than.

The nodes t1 and t2 must have the same sort, and must be int or real.

Referenced by z3::operator<().

§ Z3_mk_map()

Z3_ast Z3_API Z3_mk_map ( Z3_context  c,
Z3_func_decl  f,
unsigned  n,
Z3_ast const *  args 
)

Map f on the argument arrays.

The n nodes args must be of array sorts [domain_i -> range_i]. The function declaration f must have type range_1 .. range_n -> range. v must have sort range. The sort of the result is [domain_i -> range].

See also
Z3_mk_array_sort
Z3_mk_store
Z3_mk_select

§ Z3_mk_mod()

Z3_ast Z3_API Z3_mk_mod ( Z3_context  c,
Z3_ast  arg1,
Z3_ast  arg2 
)

Create an AST node representing arg1 mod arg2.

The arguments must have int type.

§ Z3_mk_mul()

Z3_ast Z3_API Z3_mk_mul ( Z3_context  c,
unsigned  num_args,
Z3_ast const  args[] 
)

Create an AST node representing args[0] * ... * args[num_args-1].

The array args must have num_args elements. All arguments must have int or real sort.

Remarks
Z3 has limited support for non-linear arithmetic.
The number of arguments must be greater than zero.

Referenced by z3::operator*(), and z3py::Product().

§ Z3_mk_not()

Z3_ast Z3_API Z3_mk_not ( Z3_context  c,
Z3_ast  a 
)

Create an AST node representing not(a).

The node a must have Boolean sort.

Referenced by z3::operator!().

§ Z3_mk_or()

Z3_ast Z3_API Z3_mk_or ( Z3_context  c,
unsigned  num_args,
Z3_ast const  args[] 
)

Create an AST node representing args[0] or ... or args[num_args-1].

The array args must have num_args elements. All arguments must have Boolean sort.

Remarks
The number of arguments must be greater than zero.

Referenced by z3::mk_or(), and z3::operator||().

§ Z3_mk_params()

Z3_params Z3_API Z3_mk_params ( Z3_context  c)

Create a Z3 (empty) parameter set. Starting at Z3 4.0, parameter sets are used to configure many components such as: simplifiers, tactics, solvers, etc.

Remarks
Reference counting must be used to manage parameter sets, even when the Z3_context was created using Z3_mk_context instead of Z3_mk_context_rc.

Referenced by params::params().

§ Z3_mk_power()

Z3_ast Z3_API Z3_mk_power ( Z3_context  c,
Z3_ast  arg1,
Z3_ast  arg2 
)

Create an AST node representing arg1 ^ arg2.

The arguments must have int or real type.

Referenced by z3::pw().

§ Z3_mk_real2int()

Z3_ast Z3_API Z3_mk_real2int ( Z3_context  c,
Z3_ast  t1 
)

Coerce a real to an integer.

The semantics of this function follows the SMT-LIB standard for the function to_int

See also
Z3_mk_int2real
Z3_mk_is_int

§ Z3_mk_real_sort()

Z3_sort Z3_API Z3_mk_real_sort ( Z3_context  c)

Create the real type.

Note that this type is not a floating point number.

Referenced by context::real_sort().

§ Z3_mk_rem()

Z3_ast Z3_API Z3_mk_rem ( Z3_context  c,
Z3_ast  arg1,
Z3_ast  arg2 
)

Create an AST node representing arg1 rem arg2.

The arguments must have int type.

§ Z3_mk_repeat()

Z3_ast Z3_API Z3_mk_repeat ( Z3_context  c,
unsigned  i,
Z3_ast  t1 
)

Repeat the given bit-vector up length i.

The node t1 must have a bit-vector sort.

§ Z3_mk_rotate_left()

Z3_ast Z3_API Z3_mk_rotate_left ( Z3_context  c,
unsigned  i,
Z3_ast  t1 
)

Rotate bits of t1 to the left i times.

The node t1 must have a bit-vector sort.

§ Z3_mk_rotate_right()

Z3_ast Z3_API Z3_mk_rotate_right ( Z3_context  c,
unsigned  i,
Z3_ast  t1 
)

Rotate bits of t1 to the right i times.

The node t1 must have a bit-vector sort.

§ Z3_mk_select()

Z3_ast Z3_API Z3_mk_select ( Z3_context  c,
Z3_ast  a,
Z3_ast  i 
)

Array read. The argument a is the array and i is the index of the array that gets read.

The node a must have an array sort [domain -> range], and i must have the sort domain. The sort of the result is range.

See also
Z3_mk_array_sort
Z3_mk_store

Referenced by z3::select().

§ Z3_mk_set_add()

Z3_ast Z3_API Z3_mk_set_add ( Z3_context  c,
Z3_ast  set,
Z3_ast  elem 
)

Add an element to a set.

The first argument must be a set, the second an element.

Referenced by z3::set_add().

§ Z3_mk_set_complement()

Z3_ast Z3_API Z3_mk_set_complement ( Z3_context  c,
Z3_ast  arg 
)

Take the complement of a set.

Referenced by z3::set_complement().

§ Z3_mk_set_del()

Z3_ast Z3_API Z3_mk_set_del ( Z3_context  c,
Z3_ast  set,
Z3_ast  elem 
)

Remove an element to a set.

The first argument must be a set, the second an element.

Referenced by z3::set_del().

§ Z3_mk_set_difference()

Z3_ast Z3_API Z3_mk_set_difference ( Z3_context  c,
Z3_ast  arg1,
Z3_ast  arg2 
)

Take the set difference between two sets.

Referenced by z3::set_difference().

§ Z3_mk_set_intersect()

Z3_ast Z3_API Z3_mk_set_intersect ( Z3_context  c,
unsigned  num_args,
Z3_ast const  args[] 
)

Take the intersection of a list of sets.

Referenced by z3::set_intersect().

§ Z3_mk_set_member()

Z3_ast Z3_API Z3_mk_set_member ( Z3_context  c,
Z3_ast  elem,
Z3_ast  set 
)

Check for set membership.

The first argument should be an element type of the set.

Referenced by z3::set_member().

§ Z3_mk_set_sort()

Z3_sort Z3_API Z3_mk_set_sort ( Z3_context  c,
Z3_sort  ty 
)

Create Set type.

§ Z3_mk_set_subset()

Z3_ast Z3_API Z3_mk_set_subset ( Z3_context  c,
Z3_ast  arg1,
Z3_ast  arg2 
)

Check for subsetness of sets.

Referenced by z3::set_subset().

§ Z3_mk_set_union()

Z3_ast Z3_API Z3_mk_set_union ( Z3_context  c,
unsigned  num_args,
Z3_ast const  args[] 
)

Take the union of a list of sets.

Referenced by z3::set_union().

§ Z3_mk_sign_ext()

Z3_ast Z3_API Z3_mk_sign_ext ( Z3_context  c,
unsigned  i,
Z3_ast  t1 
)

Sign-extend of the given bit-vector to the (signed) equivalent bit-vector of size m+i, where m is the size of the given bit-vector.

The node t1 must have a bit-vector sort.

Referenced by z3::sext().

§ Z3_mk_store()

Z3_ast Z3_API Z3_mk_store ( Z3_context  c,
Z3_ast  a,
Z3_ast  i,
Z3_ast  v 
)

Array update.

The node a must have an array sort [domain -> range], i must have sort domain, v must have sort range. The sort of the result is [domain -> range]. The semantics of this function is given by the theory of arrays described in the SMT-LIB standard. See http://smtlib.org for more details. The result of this function is an array that is equal to a (with respect to select) on all indices except for i, where it maps to v (and the select of a with respect to i may be a different value).

See also
Z3_mk_array_sort
Z3_mk_select

Referenced by z3::store().

§ Z3_mk_string_symbol()

Z3_symbol Z3_API Z3_mk_string_symbol ( Z3_context  c,
Z3_string  s 
)

Create a Z3 symbol using a C string.

Symbols are used to name several term and type constructors.

See also
Z3_mk_int_symbol

Referenced by context::enumeration_sort(), context::str_symbol(), z3py::to_symbol(), and context::uninterpreted_sort().

§ Z3_mk_sub()

Z3_ast Z3_API Z3_mk_sub ( Z3_context  c,
unsigned  num_args,
Z3_ast const  args[] 
)

Create an AST node representing args[0] - ... - args[num_args - 1].

The array args must have num_args elements. All arguments must have int or real sort.

Remarks
The number of arguments must be greater than zero.

Referenced by z3::operator-().

§ Z3_mk_true()

Z3_ast Z3_API Z3_mk_true ( Z3_context  c)

Create an AST node representing true.

Referenced by context::bool_val().

§ Z3_mk_tuple_sort()

Z3_sort Z3_API Z3_mk_tuple_sort ( Z3_context  c,
Z3_symbol  mk_tuple_name,
unsigned  num_fields,
Z3_symbol const  field_names[],
Z3_sort const  field_sorts[],
Z3_func_decl *  mk_tuple_decl,
Z3_func_decl  proj_decl[] 
)

Create a tuple type.

A tuple with n fields has a constructor and n projections. This function will also declare the constructor and projection functions.

Parameters
clogical context
mk_tuple_namename of the constructor function associated with the tuple type.
num_fieldsnumber of fields in the tuple type.
field_namesname of the projection functions.
field_sortstype of the tuple fields.
mk_tuple_decloutput parameter that will contain the constructor declaration.
proj_decloutput parameter that will contain the projection function declarations. This field must be a buffer of size num_fields allocated by the user.

§ Z3_mk_unary_minus()

Z3_ast Z3_API Z3_mk_unary_minus ( Z3_context  c,
Z3_ast  arg 
)

Create an AST node representing - arg.

The arguments must have int or real type.

Referenced by z3::operator-().

§ Z3_mk_uninterpreted_sort()

Z3_sort Z3_API Z3_mk_uninterpreted_sort ( Z3_context  c,
Z3_symbol  s 
)

Create a free (uninterpreted) type using the given name (symbol).

Two free types are considered the same iff the have the same name.

Referenced by z3py::DeclareSort(), and context::uninterpreted_sort().

§ Z3_mk_xor()

Z3_ast Z3_API Z3_mk_xor ( Z3_context  c,
Z3_ast  t1,
Z3_ast  t2 
)

Create an AST node representing t1 xor t2.

The nodes t1 and t2 must have Boolean sort.

§ Z3_mk_zero_ext()

Z3_ast Z3_API Z3_mk_zero_ext ( Z3_context  c,
unsigned  i,
Z3_ast  t1 
)

Extend the given bit-vector with zeros to the (unsigned) equivalent bit-vector of size m+i, where m is the size of the given bit-vector.

The node t1 must have a bit-vector sort.

Referenced by z3::zext().

§ Z3_model_dec_ref()

void Z3_API Z3_model_dec_ref ( Z3_context  c,
Z3_model  m 
)

Decrement the reference counter of the given model.

Referenced by model::operator=(), and model::~model().

§ Z3_model_eval()

Z3_bool Z3_API Z3_model_eval ( Z3_context  c,
Z3_model  m,
Z3_ast  t,
Z3_bool  model_completion,
Z3_ast *  v 
)

Evaluate the AST node t in the given model. Return Z3_TRUE if succeeded, and store the result in v.

If model_completion is Z3_TRUE, then Z3 will assign an interpretation for any constant or function that does not have an interpretation in m. These constants and functions were essentially don't cares.

If model_completion is Z3_FALSE, then Z3 will not assign interpretations to constants for functions that do not have interpretations in m. Evaluation behaves as the identify function in this case.

The evaluation may fail for the following reasons:

  • t contains a quantifier.
  • the model m is partial, that is, it doesn't have a complete interpretation for uninterpreted functions. That is, the option MODEL_PARTIAL=true was used.
  • t is type incorrect.
  • Z3_interrupt was invoked during evaluation.

Referenced by model::eval().

§ Z3_model_get_const_decl()

Z3_func_decl Z3_API Z3_model_get_const_decl ( Z3_context  c,
Z3_model  m,
unsigned  i 
)

Return the i-th constant in the given model.

Precondition
i < Z3_model_get_num_consts(c, m)
See also
Z3_model_eval

Referenced by model::get_const_decl().

§ Z3_model_get_const_interp()

Z3_ast Z3_API Z3_model_get_const_interp ( Z3_context  c,
Z3_model  m,
Z3_func_decl  a 
)

Return the interpretation (i.e., assignment) of constant a in the model m. Return NULL, if the model does not assign an interpretation for a. That should be interpreted as: the value of a does not matter.

Precondition
Z3_get_arity(c, a) == 0

Referenced by model::get_const_interp().

§ Z3_model_get_func_decl()

Z3_func_decl Z3_API Z3_model_get_func_decl ( Z3_context  c,
Z3_model  m,
unsigned  i 
)

Return the declaration of the i-th function in the given model.

Precondition
i < Z3_model_get_num_funcs(c, m)
See also
Z3_model_get_num_funcs

Referenced by model::get_func_decl().

§ Z3_model_get_func_interp()

Z3_func_interp Z3_API Z3_model_get_func_interp ( Z3_context  c,
Z3_model  m,
Z3_func_decl  f 
)

Return the interpretation of the function f in the model m. Return NULL, if the model does not assign an interpretation for f. That should be interpreted as: the f does not matter.

Precondition
Z3_get_arity(c, f) > 0
Remarks
Reference counting must be used to manage Z3_func_interp objects, even when the Z3_context was created using Z3_mk_context instead of Z3_mk_context_rc.

Referenced by model::get_func_interp().

§ Z3_model_get_num_consts()

unsigned Z3_API Z3_model_get_num_consts ( Z3_context  c,
Z3_model  m 
)

Return the number of constants assigned by the given model.

See also
Z3_model_get_const_decl

Referenced by model::num_consts().

§ Z3_model_get_num_funcs()

unsigned Z3_API Z3_model_get_num_funcs ( Z3_context  c,
Z3_model  m 
)

Return the number of function interpretations in the given model.

A function interpretation is represented as a finite map and an 'else' value. Each entry in the finite map represents the value of a function given a set of arguments.

Referenced by model::num_funcs().

§ Z3_model_get_num_sorts()

unsigned Z3_API Z3_model_get_num_sorts ( Z3_context  c,
Z3_model  m 
)

Return the number of uninterpreted sorts that m assigs an interpretation to.

Z3 also provides an intepretation for uninterpreted sorts used in a formua. The interpretation for a sort s is a finite set of distinct values. We say this finite set is the "universe" of s.

See also
Z3_model_get_sort
Z3_model_get_sort_universe

§ Z3_model_get_sort()

Z3_sort Z3_API Z3_model_get_sort ( Z3_context  c,
Z3_model  m,
unsigned  i 
)

Return a uninterpreted sort that m assigns an interpretation.

Precondition
i < Z3_model_get_num_sorts(c, m)
See also
Z3_model_get_num_sorts
Z3_model_get_sort_universe

§ Z3_model_get_sort_universe()

Z3_ast_vector Z3_API Z3_model_get_sort_universe ( Z3_context  c,
Z3_model  m,
Z3_sort  s 
)

Return the finite set of distinct values that represent the interpretation for sort s.

See also
Z3_model_get_num_sorts
Z3_model_get_sort

§ Z3_model_has_interp()

Z3_bool Z3_API Z3_model_has_interp ( Z3_context  c,
Z3_model  m,
Z3_func_decl  a 
)

Test if there exists an interpretation (i.e., assignment) for a in the model m.

Referenced by model::has_interp().

§ Z3_model_inc_ref()

void Z3_API Z3_model_inc_ref ( Z3_context  c,
Z3_model  m 
)

Increment the reference counter of the given model.

Referenced by model::operator=().

§ Z3_model_to_string()

Z3_string Z3_API Z3_model_to_string ( Z3_context  c,
Z3_model  m 
)

Convert the given model into a string.

Warning
The result buffer is statically allocated by Z3. It will be automatically deallocated when Z3_del_context is invoked. So, the buffer is invalidated in the next call to Z3_model_to_string.

Referenced by z3::operator<<().

§ Z3_open_log()

Z3_bool Z3_API Z3_open_log ( Z3_string  filename)

Log interaction to a file.

Referenced by z3py::open_log().

§ Z3_param_descrs_dec_ref()

void Z3_API Z3_param_descrs_dec_ref ( Z3_context  c,
Z3_param_descrs  p 
)

Decrement the reference counter of the given parameter description set.

Referenced by param_descrs::operator=(), and param_descrs::~param_descrs().

§ Z3_param_descrs_get_documentation()

Z3_string Z3_API Z3_param_descrs_get_documentation ( Z3_context  c,
Z3_param_descrs  p,
Z3_symbol  s 
)

Retrieve documentation string corresponding to parameter name s.

Referenced by param_descrs::documentation().

§ Z3_param_descrs_get_kind()

Z3_param_kind Z3_API Z3_param_descrs_get_kind ( Z3_context  c,
Z3_param_descrs  p,
Z3_symbol  n 
)

Return the kind associated with the given parameter name n.

Referenced by param_descrs::kind().

§ Z3_param_descrs_get_name()

Z3_symbol Z3_API Z3_param_descrs_get_name ( Z3_context  c,
Z3_param_descrs  p,
unsigned  i 
)

Return the number of parameters in the given parameter description set.

Precondition
i < Z3_param_descrs_size(c, p)

Referenced by param_descrs::name().

§ Z3_param_descrs_inc_ref()

void Z3_API Z3_param_descrs_inc_ref ( Z3_context  c,
Z3_param_descrs  p 
)

Increment the reference counter of the given parameter description set.

Referenced by param_descrs::operator=(), and param_descrs::param_descrs().

§ Z3_param_descrs_size()

unsigned Z3_API Z3_param_descrs_size ( Z3_context  c,
Z3_param_descrs  p 
)

Return the number of parameters in the given parameter description set.

Referenced by param_descrs::size().

§ Z3_param_descrs_to_string()

Z3_string Z3_API Z3_param_descrs_to_string ( Z3_context  c,
Z3_param_descrs  p 
)

Convert a parameter description set into a string. This function is mainly used for printing the contents of a parameter description set.

Referenced by param_descrs::to_string().

§ Z3_params_dec_ref()

void Z3_API Z3_params_dec_ref ( Z3_context  c,
Z3_params  p 
)

Decrement the reference counter of the given parameter set.

Referenced by params::operator=(), and params::~params().

§ Z3_params_inc_ref()

void Z3_API Z3_params_inc_ref ( Z3_context  c,
Z3_params  p 
)

Increment the reference counter of the given parameter set.

Referenced by params::operator=(), and params::params().

§ Z3_params_set_bool()

void Z3_API Z3_params_set_bool ( Z3_context  c,
Z3_params  p,
Z3_symbol  k,
Z3_bool  v 
)

Add a Boolean parameter k with value v to the parameter set p.

Referenced by params::set().

§ Z3_params_set_double()

void Z3_API Z3_params_set_double ( Z3_context  c,
Z3_params  p,
Z3_symbol  k,
double  v 
)

Add a double parameter k with value v to the parameter set p.

Referenced by params::set().

§ Z3_params_set_symbol()

void Z3_API Z3_params_set_symbol ( Z3_context  c,
Z3_params  p,
Z3_symbol  k,
Z3_symbol  v 
)

Add a symbol parameter k with value v to the parameter set p.

Referenced by params::set().

§ Z3_params_set_uint()

void Z3_API Z3_params_set_uint ( Z3_context  c,
Z3_params  p,
Z3_symbol  k,
unsigned  v 
)

Add a unsigned parameter k with value v to the parameter set p.

Referenced by params::set().

§ Z3_params_to_string()

Z3_string Z3_API Z3_params_to_string ( Z3_context  c,
Z3_params  p 
)

Convert a parameter set into a string. This function is mainly used for printing the contents of a parameter set.

Referenced by z3::operator<<().

§ Z3_params_validate()

void Z3_API Z3_params_validate ( Z3_context  c,
Z3_params  p,
Z3_param_descrs  d 
)

Validate the parameter set p against the parameter description set d.

The procedure invokes the error handler if p is invalid.

§ Z3_parse_smtlib2_file()

Z3_ast Z3_API Z3_parse_smtlib2_file ( Z3_context  c,
Z3_string  file_name,
unsigned  num_sorts,
Z3_symbol const  sort_names[],
Z3_sort const  sorts[],
unsigned  num_decls,
Z3_symbol const  decl_names[],
Z3_func_decl const  decls[] 
)

Similar to Z3_parse_smtlib2_string, but reads the benchmark from a file.

Referenced by context::parse_file().

§ Z3_parse_smtlib2_string()

Z3_ast Z3_API Z3_parse_smtlib2_string ( Z3_context  c,
Z3_string  str,
unsigned  num_sorts,
Z3_symbol const  sort_names[],
Z3_sort const  sorts[],
unsigned  num_decls,
Z3_symbol const  decl_names[],
Z3_func_decl const  decls[] 
)

Parse the given string using the SMT-LIB2 parser.

It returns a formula comprising of the conjunction of assertions in the scope (up to push/pop) at the end of the string.

Referenced by context::parse_string().

§ Z3_parse_smtlib_file()

void Z3_API Z3_parse_smtlib_file ( Z3_context  c,
Z3_string  file_name,
unsigned  num_sorts,
Z3_symbol const  sort_names[],
Z3_sort const  sorts[],
unsigned  num_decls,
Z3_symbol const  decl_names[],
Z3_func_decl const  decls[] 
)

Similar to Z3_parse_smtlib_string, but reads the benchmark from a file.

§ Z3_parse_smtlib_string()

void Z3_API Z3_parse_smtlib_string ( Z3_context  c,
Z3_string  str,
unsigned  num_sorts,
Z3_symbol const  sort_names[],
Z3_sort const  sorts[],
unsigned  num_decls,
Z3_symbol const  decl_names[],
Z3_func_decl const  decls[] 
)

Parse the given string using the SMT-LIB parser.

The symbol table of the parser can be initialized using the given sorts and declarations. The symbols in the arrays sort_names and decl_names don't need to match the names of the sorts and declarations in the arrays sorts and decls. This is an useful feature since we can use arbitrary names to reference sorts and declarations defined using the C API.

The formulas, assumptions and declarations defined in str can be extracted using the functions: Z3_get_smtlib_num_formulas, Z3_get_smtlib_formula, Z3_get_smtlib_num_assumptions, Z3_get_smtlib_assumption, Z3_get_smtlib_num_decls, and Z3_get_smtlib_decl.

§ Z3_pattern_to_ast()

Z3_ast Z3_API Z3_pattern_to_ast ( Z3_context  c,
Z3_pattern  p 
)

Convert a Z3_pattern into Z3_ast. This is just type casting.

§ Z3_pattern_to_string()

Z3_string Z3_API Z3_pattern_to_string ( Z3_context  c,
Z3_pattern  p 
)

§ Z3_polynomial_subresultants()

Z3_ast_vector Z3_API Z3_polynomial_subresultants ( Z3_context  c,
Z3_ast  p,
Z3_ast  q,
Z3_ast  x 
)

Return the nonzero subresultants of p and q with respect to the "variable" x.

Precondition
p, q and x are Z3 expressions where p and q are arithmetic terms. Note that, any subterm that cannot be viewed as a polynomial is assumed to be a variable. Example: f(a) is a considered to be a variable in the polynomial

f(a)*f(a) + 2*f(a) + 1

§ Z3_query_constructor()

void Z3_API Z3_query_constructor ( Z3_context  c,
Z3_constructor  constr,
unsigned  num_fields,
Z3_func_decl *  constructor,
Z3_func_decl *  tester,
Z3_func_decl  accessors[] 
)

Query constructor for declared functions.

Parameters
clogical context.
constrconstructor container. The container must have been passed in to a Z3_mk_datatype call.
num_fieldsnumber of accessor fields in the constructor.
constructorconstructor function declaration, allocated by user.
testerconstructor test function declaration, allocated by user.
accessorsarray of accessor function declarations allocated by user. The array must contain num_fields elements.

§ Z3_rcf_add()

Z3_rcf_num Z3_API Z3_rcf_add ( Z3_context  c,
Z3_rcf_num  a,
Z3_rcf_num  b 
)

Return the value a + b.

§ Z3_rcf_del()

void Z3_API Z3_rcf_del ( Z3_context  c,
Z3_rcf_num  a 
)

Delete a RCF numeral created using the RCF API.

§ Z3_rcf_div()

Z3_rcf_num Z3_API Z3_rcf_div ( Z3_context  c,
Z3_rcf_num  a,
Z3_rcf_num  b 
)

Return the value a / b.

§ Z3_rcf_eq()

Z3_bool Z3_API Z3_rcf_eq ( Z3_context  c,
Z3_rcf_num  a,
Z3_rcf_num  b 
)

Return Z3_TRUE if a == b.

§ Z3_rcf_ge()

Z3_bool Z3_API Z3_rcf_ge ( Z3_context  c,
Z3_rcf_num  a,
Z3_rcf_num  b 
)

Return Z3_TRUE if a >= b.

§ Z3_rcf_get_numerator_denominator()

void Z3_API Z3_rcf_get_numerator_denominator ( Z3_context  c,
Z3_rcf_num  a,
Z3_rcf_num *  n,
Z3_rcf_num *  d 
)

Extract the "numerator" and "denominator" of the given RCF numeral. We have that a = n/d, moreover n and d are not represented using rational functions.

§ Z3_rcf_gt()

Z3_bool Z3_API Z3_rcf_gt ( Z3_context  c,
Z3_rcf_num  a,
Z3_rcf_num  b 
)

Return Z3_TRUE if a > b.

§ Z3_rcf_inv()

Z3_rcf_num Z3_API Z3_rcf_inv ( Z3_context  c,
Z3_rcf_num  a 
)

Return the value 1/a.

§ Z3_rcf_le()

Z3_bool Z3_API Z3_rcf_le ( Z3_context  c,
Z3_rcf_num  a,
Z3_rcf_num  b 
)

Return Z3_TRUE if a <= b.

§ Z3_rcf_lt()

Z3_bool Z3_API Z3_rcf_lt ( Z3_context  c,
Z3_rcf_num  a,
Z3_rcf_num  b 
)

Return Z3_TRUE if a < b.

§ Z3_rcf_mk_e()

Z3_rcf_num Z3_API Z3_rcf_mk_e ( Z3_context  c)

Return e (Euler's constant)

§ Z3_rcf_mk_infinitesimal()

Z3_rcf_num Z3_API Z3_rcf_mk_infinitesimal ( Z3_context  c)

Return a new infinitesimal that is smaller than all elements in the Z3 field.

§ Z3_rcf_mk_pi()

Z3_rcf_num Z3_API Z3_rcf_mk_pi ( Z3_context  c)

Return Pi.

§ Z3_rcf_mk_rational()

Z3_rcf_num Z3_API Z3_rcf_mk_rational ( Z3_context  c,
Z3_string  val 
)

Return a RCF rational using the given string.

§ Z3_rcf_mk_roots()

unsigned Z3_API Z3_rcf_mk_roots ( Z3_context  c,
unsigned  n,
Z3_rcf_num const  a[],
Z3_rcf_num  roots[] 
)

Store in roots the roots of the polynomial a[n-1]*x^{n-1} + ... + a[0]. The output vector roots must have size n. It returns the number of roots of the polynomial.

Precondition
The input polynomial is not the zero polynomial.

§ Z3_rcf_mk_small_int()

Z3_rcf_num Z3_API Z3_rcf_mk_small_int ( Z3_context  c,
int  val 
)

Return a RCF small integer.

§ Z3_rcf_mul()

Z3_rcf_num Z3_API Z3_rcf_mul ( Z3_context  c,
Z3_rcf_num  a,
Z3_rcf_num  b 
)

Return the value a * b.

§ Z3_rcf_neg()

Z3_rcf_num Z3_API Z3_rcf_neg ( Z3_context  c,
Z3_rcf_num  a 
)

Return the value -a.

§ Z3_rcf_neq()

Z3_bool Z3_API Z3_rcf_neq ( Z3_context  c,
Z3_rcf_num  a,
Z3_rcf_num  b 
)

Return Z3_TRUE if a != b.

§ Z3_rcf_num_to_decimal_string()

Z3_string Z3_API Z3_rcf_num_to_decimal_string ( Z3_context  c,
Z3_rcf_num  a,
unsigned  prec 
)

Convert the RCF numeral into a string in decimal notation.

§ Z3_rcf_num_to_string()

Z3_string Z3_API Z3_rcf_num_to_string ( Z3_context  c,
Z3_rcf_num  a,
Z3_bool  compact,
Z3_bool  html 
)

Convert the RCF numeral into a string.

§ Z3_rcf_power()

Z3_rcf_num Z3_API Z3_rcf_power ( Z3_context  c,
Z3_rcf_num  a,
unsigned  k 
)

Return the value a^k.

§ Z3_rcf_sub()

Z3_rcf_num Z3_API Z3_rcf_sub ( Z3_context  c,
Z3_rcf_num  a,
Z3_rcf_num  b 
)

Return the value a - b.

§ Z3_read_interpolation_problem()

int Z3_API Z3_read_interpolation_problem ( Z3_context  ctx,
unsigned *  num,
Z3_ast *  cnsts[],
unsigned *  parents[],
Z3_string  filename,
Z3_string_ptr  error,
unsigned *  num_theory,
Z3_ast *  theory[] 
)

Read an interpolation problem from file.

Parameters
ctxThe Z3 context. This resets the error handler of ctx.
filenameThe file name to read.
numReturns length of sequence.
cnstsReturns sequence of formulas (do not free)
parentsReturns the parents vector (or NULL for sequence)
errorReturns an error message in case of failure (do not free the string)
num_theoryNumber of theory terms
theoryTheory terms

Returns true on success.

File formats: Currently two formats are supported, based on SMT-LIB2. For sequence interpolants, the sequence of constraints is represented by the sequence of "assert" commands in the file.

For tree interpolants, one symbol of type bool is associated to each vertex of the tree. For each vertex v there is an "assert" of the form:

(implies (and c1 ... cn f) v)

where c1 .. cn are the children of v (which must precede v in the file) and f is the formula assiciated to node v. The last formula in the file is the root vertex, and is represented by the predicate "false".

A solution to a tree interpolation problem can be thought of as a valuation of the vertices that makes all the implications true where each value is represented using the common symbols between the formulas in the subtree and the remainder of the formulas.

§ Z3_set_ast_print_mode()

void Z3_API Z3_set_ast_print_mode ( Z3_context  c,
Z3_ast_print_mode  mode 
)

Select mode for the format used for pretty-printing AST nodes.

The default mode for pretty printing AST nodes is to produce SMT-LIB style output where common subexpressions are printed at each occurrence. The mode is called Z3_PRINT_SMTLIB_FULL. To print shared common subexpressions only once, use the Z3_PRINT_LOW_LEVEL mode. To print in way that conforms to SMT-LIB standards and uses let expressions to share common sub-expressions use Z3_PRINT_SMTLIB_COMPLIANT.

See also
Z3_ast_to_string
Z3_pattern_to_string
Z3_func_decl_to_string

§ Z3_set_error()

void Z3_API Z3_set_error ( Z3_context  c,
Z3_error_code  e 
)

Set an error.

§ Z3_set_error_handler()

void Z3_API Z3_set_error_handler ( Z3_context  c,
Z3_error_handler  h 
)

Register a Z3 error handler.

A call to a Z3 function may return a non Z3_OK error code, when it is not used correctly. An error handler can be registered and will be called in this case. To disable the use of the error handler, simply register with h=NULL.

Warning
Log files, created using Z3_open_log, may be potentially incomplete/incorrect if error handlers are used.
See also
Z3_get_error_code

§ Z3_set_param_value()

void Z3_API Z3_set_param_value ( Z3_config  c,
Z3_string  param_id,
Z3_string  param_value 
)

Set a configuration parameter.

Deprecated:

The following parameters can be set for

See also
Z3_mk_config

Referenced by Context::__init__(), and config::set().

§ Z3_simplify()

Z3_ast Z3_API Z3_simplify ( Z3_context  c,
Z3_ast  a 
)

Interface to simplifier.

Provides an interface to the AST simplifier used by Z3. It returns an AST object which is equal to the argument. The returned AST is simplified using algebraic simplificaiton rules, such as constant propagation (propagating true/false over logical connectives).

Referenced by expr::simplify(), and z3py::simplify().

§ Z3_simplify_ex()

Z3_ast Z3_API Z3_simplify_ex ( Z3_context  c,
Z3_ast  a,
Z3_params  p 
)

Interface to simplifier.

Provides an interface to the AST simplifier used by Z3. This procedure is similar to Z3_simplify, but the behavior of the simplifier can be configured using the given parameter set.

Referenced by expr::simplify(), and z3py::simplify().

§ Z3_simplify_get_help()

Z3_string Z3_API Z3_simplify_get_help ( Z3_context  c)

Return a string describing all available parameters.

Referenced by z3py::help_simplify().

§ Z3_simplify_get_param_descrs()

Z3_param_descrs Z3_API Z3_simplify_get_param_descrs ( Z3_context  c)

Return the parameter description set for the simplify procedure.

Referenced by param_descrs::simplify_param_descrs(), and z3py::simplify_param_descrs().

§ Z3_sort_to_string()

Z3_string Z3_API Z3_sort_to_string ( Z3_context  c,
Z3_sort  s 
)

§ Z3_substitute()

Z3_ast Z3_API Z3_substitute ( Z3_context  c,
Z3_ast  a,
unsigned  num_exprs,
Z3_ast const  from[],
Z3_ast const  to[] 
)

Substitute every occurrence of from[i] in a with to[i], for i smaller than num_exprs. The result is the new AST. The arrays from and to must have size num_exprs. For every i smaller than num_exprs, we must have that sort of from[i] must be equal to sort of to[i].

Referenced by expr::substitute(), and z3py::substitute().

§ Z3_substitute_vars()

Z3_ast Z3_API Z3_substitute_vars ( Z3_context  c,
Z3_ast  a,
unsigned  num_exprs,
Z3_ast const  to[] 
)

Substitute the free variables in a with the expressions in to. For every i smaller than num_exprs, the variable with de-Bruijn index i is replaced with term to[i].

Referenced by expr::substitute(), and z3py::substitute_vars().

§ Z3_to_app()

Z3_app Z3_API Z3_to_app ( Z3_context  c,
Z3_ast  a 
)

Create a numeral of a given sort.

Parameters
clogical context.
numeralA string representing the numeral value in decimal notation. The string may be of the form
{[num]*[.[num]*][E[+|-][num]+]}.
If the given sort is a real, then the numeral can be a rational, that is, a string of the form \ccode{[num]* / [num]*}.
\param ty The sort of the numeral. In the current implementation, the given sort can be an int, real, finite-domain, or bit-vectors of arbitrary size.
\sa Z3_mk_int
\sa Z3_mk_unsigned_int
/
Z3_ast Z3_API Z3_mk_numeral(Z3_context c, Z3_string numeral, Z3_sort ty);
Z3_ast Z3_API Z3_mk_real(Z3_context c, int num, int den);
Z3_ast Z3_API Z3_mk_int(Z3_context c, int v, Z3_sort ty);
Z3_ast Z3_API Z3_mk_unsigned_int(Z3_context c, unsigned v, Z3_sort ty);
Z3_ast Z3_API Z3_mk_int64(Z3_context c, __int64 v, Z3_sort ty);
Z3_ast Z3_API Z3_mk_unsigned_int64(Z3_context c, unsigned __int64 v, Z3_sort ty);
Z3_sort Z3_API Z3_mk_seq_sort(Z3_context c, Z3_sort s);
Z3_bool Z3_API Z3_is_seq_sort(Z3_context c, Z3_sort s);
Z3_sort Z3_API Z3_mk_re_sort(Z3_context c, Z3_sort seq);
Z3_bool Z3_API Z3_is_re_sort(Z3_context c, Z3_sort s);
Z3_sort Z3_API Z3_mk_string_sort(Z3_context c);
Z3_bool Z3_API Z3_is_string_sort(Z3_context c, Z3_sort s);
Z3_ast Z3_API Z3_mk_string(Z3_context c, Z3_string s);
Z3_bool Z3_API Z3_is_string(Z3_context c, Z3_ast s);
Z3_string Z3_API Z3_get_string(Z3_context c, Z3_ast s);
Z3_ast Z3_API Z3_mk_seq_empty(Z3_context c, Z3_sort seq);
Z3_ast Z3_API Z3_mk_seq_unit(Z3_context c, Z3_ast a);
Z3_ast Z3_API Z3_mk_seq_concat(Z3_context c, unsigned n, Z3_ast const args[]);
Z3_ast Z3_API Z3_mk_seq_prefix(Z3_context c, Z3_ast prefix, Z3_ast s);
Z3_ast Z3_API Z3_mk_seq_suffix(Z3_context c, Z3_ast suffix, Z3_ast s);
Z3_ast Z3_API Z3_mk_seq_contains(Z3_context c, Z3_ast container, Z3_ast containee);
Z3_ast Z3_API Z3_mk_seq_extract(Z3_context c, Z3_ast s, Z3_ast offset, Z3_ast length);
Z3_ast Z3_API Z3_mk_seq_replace(Z3_context c, Z3_ast s, Z3_ast src, Z3_ast dst);
Z3_ast Z3_API Z3_mk_seq_at(Z3_context c, Z3_ast s, Z3_ast index);
Z3_ast Z3_API Z3_mk_seq_length(Z3_context c, Z3_ast s);
Z3_ast Z3_API Z3_mk_seq_index(Z3_context c, Z3_ast s, Z3_ast substr, Z3_ast offset);
Z3_ast Z3_API Z3_mk_seq_to_re(Z3_context c, Z3_ast seq);
Z3_ast Z3_API Z3_mk_seq_in_re(Z3_context c, Z3_ast seq, Z3_ast re);
Z3_ast Z3_API Z3_mk_re_plus(Z3_context c, Z3_ast re);
Z3_ast Z3_API Z3_mk_re_star(Z3_context c, Z3_ast re);
Z3_ast Z3_API Z3_mk_re_option(Z3_context c, Z3_ast re);
Z3_ast Z3_API Z3_mk_re_union(Z3_context c, unsigned n, Z3_ast const args[]);
Z3_ast Z3_API Z3_mk_re_concat(Z3_context c, unsigned n, Z3_ast const args[]);
Z3_pattern Z3_API Z3_mk_pattern(Z3_context c, unsigned num_patterns, Z3_ast const terms[]);
Z3_ast Z3_API Z3_mk_bound(Z3_context c, unsigned index, Z3_sort ty);
Z3_ast Z3_API Z3_mk_forall(Z3_context c, unsigned weight,
unsigned num_patterns, Z3_pattern const patterns[],
unsigned num_decls, Z3_sort const sorts[],
Z3_symbol const decl_names[],
Z3_ast body);
Z3_ast Z3_API Z3_mk_exists(Z3_context c, unsigned weight,
unsigned num_patterns, Z3_pattern const patterns[],
unsigned num_decls, Z3_sort const sorts[],
Z3_symbol const decl_names[],
Z3_ast body);
Z3_ast Z3_API Z3_mk_quantifier(
Z3_context c,
Z3_bool is_forall,
unsigned weight,
unsigned num_patterns, Z3_pattern const patterns[],
unsigned num_decls, Z3_sort const sorts[],
Z3_symbol const decl_names[],
Z3_ast body);
Z3_ast Z3_API Z3_mk_quantifier_ex(
Z3_context c,
Z3_bool is_forall,
unsigned weight,
Z3_symbol quantifier_id,
Z3_symbol skolem_id,
unsigned num_patterns, Z3_pattern const patterns[],
unsigned num_no_patterns, Z3_ast const no_patterns[],
unsigned num_decls, Z3_sort const sorts[],
Z3_symbol const decl_names[],
Z3_ast body);
Z3_ast Z3_API Z3_mk_forall_const(
Z3_context c,
unsigned weight,
unsigned num_bound,
Z3_app const bound[],
unsigned num_patterns,
Z3_pattern const patterns[],
Z3_ast body
);
Z3_ast Z3_API Z3_mk_exists_const(
Z3_context c,
unsigned weight,
unsigned num_bound,
Z3_app const bound[],
unsigned num_patterns,
Z3_pattern const patterns[],
Z3_ast body
);
Z3_ast Z3_API Z3_mk_quantifier_const(
Z3_context c,
Z3_bool is_forall,
unsigned weight,
unsigned num_bound, Z3_app const bound[],
unsigned num_patterns, Z3_pattern const patterns[],
Z3_ast body
);
Z3_ast Z3_API Z3_mk_quantifier_const_ex(
Z3_context c,
Z3_bool is_forall,
unsigned weight,
Z3_symbol quantifier_id,
Z3_symbol skolem_id,
unsigned num_bound, Z3_app const bound[],
unsigned num_patterns, Z3_pattern const patterns[],
unsigned num_no_patterns, Z3_ast const no_patterns[],
Z3_ast body
);
Z3_symbol_kind Z3_API Z3_get_symbol_kind(Z3_context c, Z3_symbol s);
int Z3_API Z3_get_symbol_int(Z3_context c, Z3_symbol s);
Z3_string Z3_API Z3_get_symbol_string(Z3_context c, Z3_symbol s);
Z3_symbol Z3_API Z3_get_sort_name(Z3_context c, Z3_sort d);
unsigned Z3_API Z3_get_sort_id(Z3_context c, Z3_sort s);
Z3_ast Z3_API Z3_sort_to_ast(Z3_context c, Z3_sort s);
Z3_bool Z3_API Z3_is_eq_sort(Z3_context c, Z3_sort s1, Z3_sort s2);
Z3_sort_kind Z3_API Z3_get_sort_kind(Z3_context c, Z3_sort t);
unsigned Z3_API Z3_get_bv_sort_size(Z3_context c, Z3_sort t);
Z3_bool Z3_API Z3_get_finite_domain_sort_size(Z3_context c, Z3_sort s, unsigned __int64* r);
Z3_sort Z3_API Z3_get_array_sort_domain(Z3_context c, Z3_sort t);
Z3_sort Z3_API Z3_get_array_sort_range(Z3_context c, Z3_sort t);
Z3_func_decl Z3_API Z3_get_tuple_sort_mk_decl(Z3_context c, Z3_sort t);
unsigned Z3_API Z3_get_tuple_sort_num_fields(Z3_context c, Z3_sort t);
Z3_func_decl Z3_API Z3_get_tuple_sort_field_decl(Z3_context c, Z3_sort t, unsigned i);
unsigned Z3_API Z3_get_datatype_sort_num_constructors(
Z3_context c, Z3_sort t);
Z3_func_decl Z3_API Z3_get_datatype_sort_constructor(
Z3_context c, Z3_sort t, unsigned idx);
Z3_func_decl Z3_API Z3_get_datatype_sort_recognizer(
Z3_context c, Z3_sort t, unsigned idx);
Z3_func_decl Z3_API Z3_get_datatype_sort_constructor_accessor(Z3_context c,
Z3_sort t,
unsigned idx_c,
unsigned idx_a);
Z3_ast Z3_API Z3_datatype_update_field(Z3_context c, Z3_func_decl field_access,
Z3_ast t, Z3_ast value);
unsigned Z3_API Z3_get_relation_arity(Z3_context c, Z3_sort s);
Z3_sort Z3_API Z3_get_relation_column(Z3_context c, Z3_sort s, unsigned col);
Z3_ast Z3_API Z3_mk_atmost(Z3_context c, unsigned num_args,
Z3_ast const args[], unsigned k);
Z3_ast Z3_API Z3_mk_pble(Z3_context c, unsigned num_args,
Z3_ast const args[], int coeffs[],
int k);
Z3_ast Z3_API Z3_mk_pbeq(Z3_context c, unsigned num_args,
Z3_ast const args[], int coeffs[],
int k);
Z3_ast Z3_API Z3_func_decl_to_ast(Z3_context c, Z3_func_decl f);
Z3_bool Z3_API Z3_is_eq_func_decl(Z3_context c, Z3_func_decl f1, Z3_func_decl f2);
unsigned Z3_API Z3_get_func_decl_id(Z3_context c, Z3_func_decl f);
Z3_symbol Z3_API Z3_get_decl_name(Z3_context c, Z3_func_decl d);
Z3_decl_kind Z3_API Z3_get_decl_kind(Z3_context c, Z3_func_decl d);
unsigned Z3_API Z3_get_domain_size(Z3_context c, Z3_func_decl d);
unsigned Z3_API Z3_get_arity(Z3_context c, Z3_func_decl d);
Z3_sort Z3_API Z3_get_domain(Z3_context c, Z3_func_decl d, unsigned i);
Z3_sort Z3_API Z3_get_range(Z3_context c, Z3_func_decl d);
unsigned Z3_API Z3_get_decl_num_parameters(Z3_context c, Z3_func_decl d);
Z3_parameter_kind Z3_API Z3_get_decl_parameter_kind(Z3_context c, Z3_func_decl d, unsigned idx);
int Z3_API Z3_get_decl_int_parameter(Z3_context c, Z3_func_decl d, unsigned idx);
double Z3_API Z3_get_decl_double_parameter(Z3_context c, Z3_func_decl d, unsigned idx);
Z3_symbol Z3_API Z3_get_decl_symbol_parameter(Z3_context c, Z3_func_decl d, unsigned idx);
Z3_sort Z3_API Z3_get_decl_sort_parameter(Z3_context c, Z3_func_decl d, unsigned idx);
Z3_ast Z3_API Z3_get_decl_ast_parameter(Z3_context c, Z3_func_decl d, unsigned idx);
Z3_func_decl Z3_API Z3_get_decl_func_decl_parameter(Z3_context c, Z3_func_decl d, unsigned idx);
Z3_string Z3_API Z3_get_decl_rational_parameter(Z3_context c, Z3_func_decl d, unsigned idx);
Z3_ast Z3_API Z3_app_to_ast(Z3_context c, Z3_app a);
Z3_func_decl Z3_API Z3_get_app_decl(Z3_context c, Z3_app a);
unsigned Z3_API Z3_get_app_num_args(Z3_context c, Z3_app a);
Z3_ast Z3_API Z3_get_app_arg(Z3_context c, Z3_app a, unsigned i);
Z3_bool Z3_API Z3_is_eq_ast(Z3_context c, Z3_ast t1, Z3_ast t2);
unsigned Z3_API Z3_get_ast_id(Z3_context c, Z3_ast t);
unsigned Z3_API Z3_get_ast_hash(Z3_context c, Z3_ast a);
Z3_sort Z3_API Z3_get_sort(Z3_context c, Z3_ast a);
Z3_bool Z3_API Z3_is_well_sorted(Z3_context c, Z3_ast t);
Z3_lbool Z3_API Z3_get_bool_value(Z3_context c, Z3_ast a);
Z3_ast_kind Z3_API Z3_get_ast_kind(Z3_context c, Z3_ast a);
Z3_bool Z3_API Z3_is_app(Z3_context c, Z3_ast a);
Z3_bool Z3_API Z3_is_numeral_ast(Z3_context c, Z3_ast a);
Z3_bool Z3_API Z3_is_algebraic_number(Z3_context c, Z3_ast a);

§ Z3_to_func_decl()

Z3_func_decl Z3_API Z3_to_func_decl ( Z3_context  c,
Z3_ast  a 
)

Convert an AST into a FUNC_DECL_AST. This is just type casting.

Precondition
Z3_get_ast_kind(c, a) == Z3_FUNC_DECL_AST

§ Z3_toggle_warning_messages()

void Z3_API Z3_toggle_warning_messages ( Z3_bool  enabled)

Enable/disable printing warning messages to the console.

Warnings are printed after passing true, warning messages are suppressed after calling this method with false.

§ Z3_translate()

Z3_ast Z3_API Z3_translate ( Z3_context  source,
Z3_ast  a,
Z3_context  target 
)

Translate/Copy the AST a from context source to context target. AST a must have been created using context source.

Precondition
source != target

Referenced by AstRef::translate().

§ Z3_update_param_value()

void Z3_API Z3_update_param_value ( Z3_context  c,
Z3_string  param_id,
Z3_string  param_value 
)

Set a value of a context parameter.

Deprecated:
See also
Z3_global_param_set

Referenced by context::set().

§ Z3_update_term()

Z3_ast Z3_API Z3_update_term ( Z3_context  c,
Z3_ast  a,
unsigned  num_args,
Z3_ast const  args[] 
)

Update the arguments of term a using the arguments args. The number of arguments num_args should coincide with the number of arguments to a. If a is a quantifier, then num_args has to be 1.

§ Z3_write_interpolation_problem()

void Z3_API Z3_write_interpolation_problem ( Z3_context  ctx,
unsigned  num,
Z3_ast  cnsts[],
unsigned  parents[],
Z3_string  filename,
unsigned  num_theory,
Z3_ast  theory[] 
)

Write an interpolation problem to file suitable for reading with Z3_read_interpolation_problem. The output file is a sequence of SMT-LIB2 format commands, suitable for reading with command-line Z3 or other interpolating solvers.

Parameters
ctxThe Z3 context. Must be generated by z3_mk_interpolation_context
numThe number of constraints in the sequence
cnstsArray of constraints
parentsThe parents vector (or NULL for sequence)
filenameThe file name to write
num_theoryNumber of theory terms
theoryTheory terms