# -*- Mode: python; tab-width: 4; indent-tabs-mode:nil; coding:utf-8 -*-
# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4
#
# MDAnalysis --- http://www.mdanalysis.org
# Copyright (c) 2006-2017 The MDAnalysis Development Team and contributors
# (see the file AUTHORS for the full list of names)
#
# Released under the GNU Public Licence, v2 or any higher version
#
# Please cite your use of MDAnalysis in published work:
#
# R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler,
# D. L. Dotson, J. Domanski, S. Buchoux, I. M. Kenney, and O. Beckstein.
# MDAnalysis: A Python package for the rapid analysis of molecular dynamics
# simulations. In S. Benthall and S. Rostrup editors, Proceedings of the 15th
# Python in Science Conference, pages 102-109, Austin, TX, 2016. SciPy.
#
# N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein.
# MDAnalysis: A Toolkit for the Analysis of Molecular Dynamics Simulations.
# J. Comput. Chem. 32 (2011), 2319--2327, doi:10.1002/jcc.21787
#
"""Water dynamics analysis --- :mod:`MDAnalysis.analysis.waterdynamics`
=======================================================================
:Author: Alejandro Bernardin
:Year: 2014-2015
:Copyright: GNU Public License v3
.. versionadded:: 0.11.0
This module provides functions to analize water dynamics trajectories and water
interactions with other molecules. The functions in this module are: water
orientational relaxation (WOR) [Yeh1999]_, hydrogen bond lifetimes (HBL)
[Rapaport1983]_, angular distribution (AD) [Grigera1995]_, mean square
displacement (MSD) [Brodka1994]_ and survival probability (SP) [Liu2004]_.
For more information about this type of analysis please refer to
[Araya-Secchi2014]_ (water in a protein cavity) and [Milischuk2011]_ (water in
a nanopore).
.. rubric:: References
.. [Rapaport1983] D.C. Rapaport (1983): Hydrogen bonds in water, Molecular
Physics: An International Journal at the Interface Between
Chemistry and Physics, 50:5, 1151-1162.
.. [Yeh1999] Yu-ling Yeh and Chung-Yuan Mou (1999). Orientational Relaxation
Dynamics of Liquid Water Studied by Molecular Dynamics Simulation,
J. Phys. Chem. B 1999, 103, 3699-3705.
.. [Grigera1995] Raul Grigera, Susana G. Kalko and Jorge Fischbarg
(1995). Wall-Water Interface. A Molecular Dynamics Study,
Langmuir 1996,12,154-158
.. [Liu2004] Pu Liu, Edward Harder, and B. J. Berne (2004).On the Calculation
of Diffusion Coefficients in Confined Fluids and Interfaces with
an Application to the Liquid-Vapor Interface of Water,
J. Phys. Chem. B 2004, 108, 6595-6602.
.. [Brodka1994] Aleksander Brodka (1994). Diffusion in restricted volume,
Molecular Physics, 1994, Vol. 82, No. 5, 1075-1078.
.. [Araya-Secchi2014] Araya-Secchi, R., Tomas Perez-Acle, Seung-gu Kang, Tien
Huynh, Alejandro Bernardin, Yerko Escalona, Jose-Antonio
Garate, Agustin D. Martinez, Isaac E. Garcia, Juan
C. Saez, Ruhong Zhou (2014). Characterization of a novel
water pocket inside the human Cx26 hemichannel
structure. Biophysical journal, 107(3), 599-612.
.. [Milischuk2011] Anatoli A. Milischuk and Branka M. Ladanyi. Structure and
dynamics of water confined in silica
nanopores. J. Chem. Phys. 135, 174709 (2011); doi:
10.1063/1.3657408
Example use of the analysis classes
-----------------------------------
HydrogenBondLifetimes
~~~~~~~~~~~~~~~~~~~~~
Analyzing hydrogen bond lifetimes (HBL) :class:`HydrogenBondLifetimes`, both
continuos and intermittent. In this case we are analyzing how residue 38
interact with a water sphere of radius 6.0 centered on the geometric center of
protein and residue 42. If the hydrogen bond lifetimes are very stable, we can
assume that residue 38 is hydrophilic, on the other hand, if the are very
unstable, we can assume that residue 38 is hydrophobic::
import MDAnalysis
from MDAnalysis.analysis.waterdynamics import HydrogenBondLifetimes as HBL
u = MDAnalysis.Universe(pdb, trajectory)
selection1 = "byres name OH2 and sphzone 6.0 protein and resid 42"
selection2 = "resid 38"
HBL_analysis = HBL(universe, selection1, selection2, 0, 2000, 30)
HBL_analysis.run()
time = 0
#now we print the data ready to plot. The first two columns are the HBLc vs t
#plot and the second two columns are the HBLi vs t graph
for HBLc, HBLi in HBL_analysis.timeseries:
print("{time} {HBLc} {time} {HBLi}".format(time=time, HBLc=HBLc, HBLi=HBLi))
time += 1
#we can also plot our data
plt.figure(1,figsize=(18, 6))
#HBL continuos
plt.subplot(121)
plt.xlabel('time')
plt.ylabel('HBLc')
plt.title('HBL Continuos')
plt.plot(range(0,time),[column[0] for column in HBL_analysis.timeseries])
#HBL intermitent
plt.subplot(122)
plt.xlabel('time')
plt.ylabel('HBLi')
plt.title('HBL Intermitent')
plt.plot(range(0,time),[column[1] for column in HBL_analysis.timeseries])
plt.show()
where HBLc is the value for the continuos hydrogen bond lifetimes and HBLi is
the value for the intermittent hydrogen bond lifetime, t0 = 0, tf = 2000 and
dtmax = 30. In this way we create 30 windows timestep (30 values in x
axis). The continuos hydrogen bond lifetimes should decay faster than
intermittent.
WaterOrientationalRelaxation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Analyzing water orientational relaxation (WOR)
:class:`WaterOrientationalRelaxation`. In this case we are analyzing "how fast"
water molecules are rotating/changing direction. If WOR is very stable we can
assume that water molecules are rotating/changing direction very slow, on the
other hand, if WOR decay very fast, we can assume that water molecules are
rotating/changing direction very fast::
import MDAnalysis
from MDAnalysis.analysis.waterdynamics import WaterOrientationalRelaxation as WOR
u = MDAnalysis.Universe(pdb, trajectory)
selection = "byres name OH2 and sphzone 6.0 protein and resid 42"
WOR_analysis = WOR(universe, selection, 0, 1000, 20)
WOR_analysis.run()
time = 0
#now we print the data ready to plot. The first two columns are WOR_OH vs t plot,
#the second two columns are WOR_HH vs t graph and the third two columns are WOR_dip vs t graph
for WOR_OH, WOR_HH, WOR_dip in WOR_analysis.timeseries:
print("{time} {WOR_OH} {time} {WOR_HH} {time} {WOR_dip}".format(time=time, WOR_OH=WOR_OH, WOR_HH=WOR_HH,WOR_dip=WOR_dip))
time += 1
#now, if we want, we can plot our data
plt.figure(1,figsize=(18, 6))
#WOR OH
plt.subplot(131)
plt.xlabel('time')
plt.ylabel('WOR')
plt.title('WOR OH')
plt.plot(range(0,time),[column[0] for column in WOR_analysis.timeseries])
#WOR HH
plt.subplot(132)
plt.xlabel('time')
plt.ylabel('WOR')
plt.title('WOR HH')
plt.plot(range(0,time),[column[1] for column in WOR_analysis.timeseries])
#WOR dip
plt.subplot(133)
plt.xlabel('time')
plt.ylabel('WOR')
plt.title('WOR dip')
plt.plot(range(0,time),[column[2] for column in WOR_analysis.timeseries])
plt.show()
where t0 = 0, tf = 1000 and dtmax = 20. In this way we create 20 windows
timesteps (20 values in the x axis), the first window is created with 1000
timestep average (1000/1), the second window is created with 500 timestep
average(1000/2), the third window is created with 333 timestep average (1000/3)
and so on.
AngularDistribution
~~~~~~~~~~~~~~~~~~~
Analyzing angular distribution (AD) :class:`AngularDistribution` for OH vector,
HH vector and dipole vector. It returns a line histogram with vector
orientation preference. A straight line in the output plot means no
preferential orientation in water molecules. In this case we are analyzing if
water molecules have some orientational preference, in this way we can see if
water molecules are under an electric field or if they are interacting with
something (residue, protein, etc)::
import MDAnalysis
from MDAnalysis.analysis.waterdynamics import AngularDistribution as AD
u = MDAnalysis.Universe(pdb, trajectory)
selection = "byres name OH2 and sphzone 6.0 (protein and (resid 42 or resid 26) )"
bins = 30
AD_analysis = AD(universe,selection,bins)
AD_analysis.run()
#now we print data ready to graph. The first two columns are P(cos(theta)) vs cos(theta) for OH vector ,
#the seconds two columns are P(cos(theta)) vs cos(theta) for HH vector and thirds two columns
#are P(cos(theta)) vs cos(theta) for dipole vector
for bin in range(bins):
print("{AD_analysisOH} {AD_analysisHH} {AD_analysisDip}".format(AD_analysis.graph0=AD_analysis.graph[0][bin], AD_analysis.graph1=AD_analysis.graph[1][bin],AD_analysis.graph2=AD_analysis.graph[2][bin]))
#and if we want to graph our results
plt.figure(1,figsize=(18, 6))
#AD OH
plt.subplot(131)
plt.xlabel('cos theta')
plt.ylabel('P(cos theta)')
plt.title('PDF cos theta for OH')
plt.plot([float(column.split()[0]) for column in AD_analysis.graph[0][:-1]],[float(column.split()[1]) for column in AD_analysis.graph[0][:-1]])
#AD HH
plt.subplot(132)
plt.xlabel('cos theta')
plt.ylabel('P(cos theta)')
plt.title('PDF cos theta for HH')
plt.plot([float(column.split()[0]) for column in AD_analysis.graph[1][:-1]],[float(column.split()[1]) for column in AD_analysis.graph[1][:-1]])
#AD dip
plt.subplot(133)
plt.xlabel('cos theta')
plt.ylabel('P(cos theta)')
plt.title('PDF cos theta for dipole')
plt.plot([float(column.split()[0]) for column in AD_analysis.graph[2][:-1]],[float(column.split()[1]) for column in AD_analysis.graph[2][:-1]])
plt.show()
where `P(cos(theta))` is the angular distribution or angular probabilities.
MeanSquareDisplacement
~~~~~~~~~~~~~~~~~~~~~~
Analyzing mean square displacement (MSD) :class:`MeanSquareDisplacement` for
water molecules. In this case we are analyzing the average distance that water
molecules travels inside protein in XYZ direction (cylindric zone of radius
11[nm], Zmax 4.0[nm] and Zmin -8.0[nm]). A strong rise mean a fast movement of
water molecules, a weak rise mean slow movement of particles::
import MDAnalysis
from MDAnalysis.analysis.waterdynamics import MeanSquareDisplacement as MSD
u = MDAnalysis.Universe(pdb, trajectory)
selection = "byres name OH2 and cyzone 11.0 4.0 -8.0 protein"
MSD_analysis = MSD(universe, selection, 0, 1000, 20)
MSD_analysis.run()
#now we print data ready to graph. The graph
#represents MSD vs t
time = 0
for msd in MSD_analysis.timeseries:
print("{time} {msd}".format(time=time, msd=msd))
time += 1
#Plot
plt.xlabel('time')
plt.ylabel('MSD')
plt.title('MSD')
plt.plot(range(0,time),MSD_analysis.timeseries)
plt.show()
.. _SP-examples:
SurvivalProbability
~~~~~~~~~~~~~~~~~~~
Analyzing survival probability (SP) :class:`SurvivalProbability` for water
molecules. In this case we are analyzing how long water molecules remain in a
sphere of radius 12.3 centered in the geometrical center of resid 42, 26, 34
and 80. A slow decay of SP means a long permanence time of water molecules in
the zone, on the other hand, a fast decay means a short permanence time::
import MDAnalysis
from MDAnalysis.analysis.waterdynamics import SurvivalProbability as SP
u = MDAnalysis.Universe(pdb, trajectory)
selection = "byres name OH2 and sphzone 12.3 (resid 42 or resid 26 or resid 34 or resid 80) "
SP_analysis = SP(universe, selection, 0, 100, 20)
SP_analysis.run()
#now we print data ready to graph. The graph
#represents SP vs t
time = 0
for sp in SP_analysis.timeseries:
print("{time} {sp}".format(time=time, sp=sp))
time += 1
#Plot
plt.xlabel('time')
plt.ylabel('SP')
plt.title('Survival Probability')
plt.plot(range(0,time),MSD_analysis.timeseries)
plt.show()
.. _Output:
Output
------
HydrogenBondLifetimes
~~~~~~~~~~~~~~~~~~~~~
Hydrogen bond lifetimes (HBL) data is returned per window timestep, which is
stored in :attr:`HydrogenBondLifetimes.timeseries` (in all the following
descriptions, # indicates comments that are not part of the output)::
results = [
[ # time t0
<HBL_c>, <HBL_i>
],
[ # time t1
<HBL_c>, <HBL_i>
],
...
]
WaterOrientationalRelaxation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Water orientational relaxation (WOR) data is returned per window timestep,
which is stored in :attr:`WaterOrientationalRelaxation.timeseries`::
results = [
[ # time t0
<WOR_OH>, <WOR_HH>, <WOR_dip>
],
[ # time t1
<WOR_OH>, <WOR_HH>, <WOR_dip>
],
...
]
AngularDistribution
~~~~~~~~~~~~~~~~~~~
Angular distribution (AD) data is returned per vector, which is stored in
:attr:`AngularDistribution.graph`. In fact, AngularDistribution returns a
histogram::
results = [
[ # OH vector values
# the values are order in this way: <x_axis y_axis>
<cos_theta0 ang_distr0>, <cos_theta1 ang_distr1>, ...
],
[ # HH vector values
<cos_theta0 ang_distr0>, <cos_theta1 ang_distr1>, ...
],
[ # dip vector values
<cos_theta0 ang_distr0>, <cos_theta1 ang_distr1>, ...
],
]
MeanSquareDisplacement
~~~~~~~~~~~~~~~~~~~~~~
Mean Square Displacement (MSD) data is returned in a list, which each element
represents a MSD value in its respective window timestep. Data is stored in
:attr:`MeanSquareDisplacement.timeseries`::
results = [
#MSD values orders by window timestep
<MSD_t0>, <MSD_t1>, ...
]
SurvivalProbability
~~~~~~~~~~~~~~~~~~~
Survival Probability (SP) data is returned in a list, which each element
represents a SP value in its respective window timestep. Data is stored in
:attr:`SurvivalProbability.timeseries`::
results = [
# SP values order by window timestep
<SP_t0>, <SP_t1>, ...
]
Classes
--------
.. autoclass:: HydrogenBondLifetimes
:members:
:inherited-members:
.. autoclass:: WaterOrientationalRelaxation
:members:
:inherited-members:
.. autoclass:: AngularDistribution
:members:
:inherited-members:
.. autoclass:: MeanSquareDisplacement
:members:
:inherited-members:
.. autoclass:: SurvivalProbability
:members:
:inherited-members:
"""
from __future__ import print_function, division, absolute_import
from six.moves import range, zip_longest
import numpy as np
import multiprocessing
import MDAnalysis.analysis.hbonds
from MDAnalysis.lib.log import _set_verbose, ProgressMeter
[docs]class HydrogenBondLifetimes(object):
r"""Hydrogen bond lifetime analysis
This is a autocorrelation function that gives the "Hydrogen Bond Lifetimes"
(HBL) proposed by D.C. Rapaport [Rapaport1983]_. From this function we can
obtain the continuous and intermittent behavior of hydrogen bonds in
time. A fast decay in these parameters indicate a fast change in HBs
connectivity. A slow decay indicate very stables hydrogen bonds, like in
ice. The HBL is also know as "Hydrogen Bond Population Relaxation"
(HBPR). In the continuos case we have:
.. math::
C_{HB}^c(\tau) = \frac{\sum_{ij}h_{ij}(t_0)h'_{ij}(t_0+\tau)}{\sum_{ij}h_{ij}(t_0)}
where :math:`h'_{ij}(t_0+\tau)=1` if there is a H-bond between a pair
:math:`ij` during time interval :math:`t_0+\tau` (continuos) and
:math:`h'_{ij}(t_0+\tau)=0` otherwise. In the intermittent case we have:
.. math::
C_{HB}^i(\tau) = \frac{\sum_{ij}h_{ij}(t_0)h_{ij}(t_0+\tau)}{\sum_{ij}h_{ij}(t_0)}
where :math:`h_{ij}(t_0+\tau)=1` if there is a H-bond between a pair
:math:`ij` at time :math:`t_0+\tau` (intermittent) and
:math:`h_{ij}(t_0+\tau)=0` otherwise.
Parameters
----------
universe : Universe
Universe object
selection1 : str
Selection string for first selection [‘byres name OH2’].
It could be any selection available in MDAnalysis, not just water.
selection2 : str
Selection string to analize its HBL against selection1
t0 : int
frame where analysis begins
tf : int
frame where analysis ends
dtmax : int
Maximum dt size, `dtmax` < `tf` or it will crash.
nproc : int
Number of processors to use, by default is 1.
.. versionadded:: 0.11.0
"""
def __init__(self, universe, selection1, selection2, t0, tf, dtmax,
nproc=1):
self.universe = universe
self.selection1 = selection1
self.selection2 = selection2
self.t0 = t0
self.tf = tf - 1
self.dtmax = dtmax
self.nproc = nproc
self.timeseries = None
def _getC_i(self, HBP, t0, t):
"""
This function give the intermitent Hydrogen Bond Lifetime
C_i = <h(t0)h(t)>/<h(t0)> between t0 and t
"""
C_i = 0
for i in range(len(HBP[t0])):
for j in range(len(HBP[t])):
if (HBP[t0][i][0] == HBP[t][j][0] and HBP[t0][i][1] == HBP[t][j][1]):
C_i += 1
break
if len(HBP[t0]) == 0:
return 0.0
else:
return float(C_i) / len(HBP[t0])
def _getC_c(self, HBP, t0, t):
"""
This function give the continous Hydrogen Bond Lifetime
C_c = <h(t0)h'(t)>/<h(t0)> between t0 and t
"""
C_c = 0
dt = 1
begt0 = t0
HBP_cp = HBP
HBP_t0 = HBP[t0]
newHBP = []
if t0 == t:
return 1.0
while t0 + dt <= t:
for i in range(len(HBP_t0)):
for j in range(len(HBP_cp[t0 + dt])):
if (HBP_t0[i][0] == HBP_cp[t0 + dt][j][0] and
HBP_t0[i][1] == HBP_cp[t0 + dt][j][1]):
newHBP.append(HBP_t0[i])
break
C_c = len(newHBP)
t0 += dt
HBP_t0 = newHBP
newHBP = []
if len(HBP[begt0]) == 0:
return 0
else:
return C_c / float(len(HBP[begt0]))
def _intervC_c(self, HBP, t0, tf, dt):
"""
This function gets all the data for the h(t0)h(t0+dt)', where
t0 = 1,2,3,...,tf. This function give us one point of the final plot
HBL vs t
"""
a = 0
count = 0
for i in range(len(HBP)):
if (t0 + dt <= tf):
if t0 == t0 + dt:
b = self._getC_c(HBP, t0, t0)
break
b = self._getC_c(HBP, t0, t0 + dt)
t0 += dt
a += b
count += 1
if count == 0:
return 1.0
return a / count
def _intervC_i(self, HBP, t0, tf, dt):
"""
This function gets all the data for the h(t0)h(t0+dt), where
t0 = 1,2,3,...,tf. This function give us a point of the final plot
HBL vs t
"""
a = 0
count = 0
for i in range(len(HBP)):
if (t0 + dt <= tf):
b = self._getC_i(HBP, t0, t0 + dt)
t0 += dt
a += b
count += 1
return a / count
def _finalGraphGetC_i(self, HBP, t0, tf, maxdt):
"""
This function gets the final data of the C_i graph.
"""
output = []
for dt in range(maxdt):
a = self._intervC_i(HBP, t0, tf, dt)
output.append(a)
return output
def _finalGraphGetC_c(self, HBP, t0, tf, maxdt):
"""
This function gets the final data of the C_c graph.
"""
output = []
for dt in range(maxdt):
a = self._intervC_c(HBP, t0, tf, dt)
output.append(a)
return output
def _getGraphics(self, HBP, t0, tf, maxdt):
"""
Function that join all the results into a plot.
"""
a = []
cont = self._finalGraphGetC_c(HBP, t0, tf, maxdt)
inte = self._finalGraphGetC_i(HBP, t0, tf, maxdt)
for i in range(len(cont)):
fix = [cont[i], inte[i]]
a.append(fix)
return a
def _HBA(self, ts, conn, universe, selAtom1, selAtom2,
verbose=None, quiet=None):
"""
Main function for calculate C_i and C_c in parallel.
"""
verbose = _set_verbose(verbose, quiet, default=False)
finalGetResidue1 = selAtom1
finalGetResidue2 = selAtom2
frame = ts.frame
h = MDAnalysis.analysis.hbonds.HydrogenBondAnalysis(universe,
finalGetResidue1,
finalGetResidue2,
distance=3.5,
angle=120.0,
start=frame - 1,
stop=frame)
while True:
try:
h.run(verbose=verbose)
break
except:
print("error")
print("trying again")
sys.stdout.flush()
sys.stdout.flush()
conn.send(h.timeseries[0])
conn.close()
[docs] def run(self, **kwargs):
"""Analyze trajectory and produce timeseries"""
h_list = []
i = 0
if (self.nproc > 1):
while i < len(self.universe.trajectory):
jobs = []
k = i
for j in range(self.nproc):
# start
print("ts=", i + 1)
if i >= len(self.universe.trajectory):
break
conn_parent, conn_child = multiprocessing.Pipe(False)
while True:
try:
# new thread
jobs.append(
(multiprocessing.Process(
target=self._HBA,
args=(self.universe.trajectory[i],
conn_child, self.universe,
self.selection1, self.selection2,)),
conn_parent))
break
except:
print("error in jobs.append")
jobs[j][0].start()
i = i + 1
for j in range(self.nproc):
if k >= len(self.universe.trajectory):
break
rec01 = jobs[j][1]
received = rec01.recv()
h_list.append(received)
jobs[j][0].join()
k += 1
self.timeseries = self._getGraphics(
h_list, 0, self.tf - 1, self.dtmax)
else:
h_list = MDAnalysis.analysis.hbonds.HydrogenBondAnalysis(self.universe,
self.selection1,
self.selection2,
distance=3.5,
angle=120.0)
h_list.run(**kwargs)
self.timeseries = self._getGraphics(
h_list.timeseries, self.t0, self.tf, self.dtmax)
[docs]class WaterOrientationalRelaxation(object):
r"""Water orientation relaxation analysis
Function to evaluate the Water Orientational Relaxation proposed by Yu-ling
Yeh and Chung-Yuan Mou [Yeh1999_]. WaterOrientationalRelaxation indicates
"how fast" water molecules are rotating or changing direction. This is a
time correlation function given by:
.. math::
C_{\hat u}(\tau)=\langle \mathit{P}_2[\mathbf{\hat{u}}(t_0)\cdot\mathbf{\hat{u}}(t_0+\tau)]\rangle
where :math:`P_2=(3x^2-1)/2` is the second-order Legendre polynomial and :math:`\hat{u}` is
a unit vector along HH, OH or dipole vector.
Parameters
----------
universe : Universe
Universe object
selection : str
Selection string for water [‘byres name OH2’].
t0 : int
frame where analysis begins
tf : int
frame where analysis ends
dtmax : int
Maximum dt size, `dtmax` < `tf` or it will crash.
.. versionadded:: 0.11.0
"""
def __init__(self, universe, selection, t0, tf, dtmax, nproc=1):
self.universe = universe
self.selection = selection
self.t0 = t0
self.tf = tf
self.dtmax = dtmax
self.nproc = nproc
self.timeseries = None
def _repeatedIndex(self, selection, dt, totalFrames):
"""
Indicates the comparation between all the t+dt.
The results is a list of list with all the repeated index per frame
(or time).
Ex: dt=1, so compare frames (1,2),(2,3),(3,4)...
Ex: dt=2, so compare frames (1,3),(3,5),(5,7)...
Ex: dt=3, so compare frames (1,4),(4,7),(7,10)...
"""
rep = []
for i in range(int(round((totalFrames - 1) / float(dt)))):
if (dt * i + dt < totalFrames):
rep.append(self._sameMolecTandDT(
selection, dt * i, (dt * i) + dt))
return rep
def _getOneDeltaPoint(self, universe, repInd, i, t0, dt):
"""
Gives one point to calculate the mean and gets one point of the plot
C_vect vs t.
Ex: t0=1 and tau=1 so calculate the t0-tau=1-2 intervale.
Ex: t0=5 and tau=3 so calcultate the t0-tau=5-8 intervale.
i = come from getMeanOnePoint (named j) (int)
"""
valOH = 0
valHH = 0
valdip = 0
n = 0
for j in range(len(repInd[i]) // 3):
begj = 3 * j
universe.trajectory[t0]
Ot0 = repInd[i][begj]
H1t0 = repInd[i][begj + 1]
H2t0 = repInd[i][begj + 2]
OHVector0 = H1t0.position - Ot0.position
HHVector0 = H1t0.position - H2t0.position
dipVector0 = ((H1t0.position + H2t0.position) * 0.5) - Ot0.position
universe.trajectory[t0 + dt]
Otp = repInd[i][begj]
H1tp = repInd[i][begj + 1]
H2tp = repInd[i][begj + 2]
OHVectorp = H1tp.position - Otp.position
HHVectorp = H1tp.position - H2tp.position
dipVectorp = ((H1tp.position + H2tp.position) * 0.5) - Otp.position
normOHVector0 = np.linalg.norm(OHVector0)
normOHVectorp = np.linalg.norm(OHVectorp)
normHHVector0 = np.linalg.norm(HHVector0)
normHHVectorp = np.linalg.norm(HHVectorp)
normdipVector0 = np.linalg.norm(dipVector0)
normdipVectorp = np.linalg.norm(dipVectorp)
unitOHVector0 = [OHVector0[0] / normOHVector0,
OHVector0[1] / normOHVector0,
OHVector0[2] / normOHVector0]
unitOHVectorp = [OHVectorp[0] / normOHVectorp,
OHVectorp[1] / normOHVectorp,
OHVectorp[2] / normOHVectorp]
unitHHVector0 = [HHVector0[0] / normHHVector0,
HHVector0[1] / normHHVector0,
HHVector0[2] / normHHVector0]
unitHHVectorp = [HHVectorp[0] / normHHVectorp,
HHVectorp[1] / normHHVectorp,
HHVectorp[2] / normHHVectorp]
unitdipVector0 = [dipVector0[0] / normdipVector0,
dipVector0[1] / normdipVector0,
dipVector0[2] / normdipVector0]
unitdipVectorp = [dipVectorp[0] / normdipVectorp,
dipVectorp[1] / normdipVectorp,
dipVectorp[2] / normdipVectorp]
valOH += self.lg2(np.dot(unitOHVector0, unitOHVectorp))
valHH += self.lg2(np.dot(unitHHVector0, unitHHVectorp))
valdip += self.lg2(np.dot(unitdipVector0, unitdipVectorp))
n += 1
return (valOH/n, valHH/n, valdip/n) if n > 0 else (0, 0, 0)
def _getMeanOnePoint(self, universe, selection1, selection_str, dt,
totalFrames):
"""
This function gets one point of the plot C_vec vs t. It uses the
_getOneDeltaPoint() function to calculate the average.
"""
repInd = self._repeatedIndex(selection1, dt, totalFrames)
sumsdt = 0
n = 0.0
sumDeltaOH = 0.0
sumDeltaHH = 0.0
sumDeltadip = 0.0
for j in range(totalFrames // dt - 1):
a = self._getOneDeltaPoint(universe, repInd, j, sumsdt, dt)
sumDeltaOH += a[0]
sumDeltaHH += a[1]
sumDeltadip += a[2]
sumsdt += dt
n += 1
# if no water molecules remain in selection, there is nothing to get
# the mean, so n = 0.
return (sumDeltaOH / n, sumDeltaHH / n, sumDeltadip / n) if n > 0 else (0, 0, 0)
def _sameMolecTandDT(self, selection, t0d, tf):
"""
Compare the molecules in the t0d selection and the t0d+dt selection and
select only the particles that are repeated in both frame. This is to
consider only the molecules that remains in the selection after the dt
time has elapsed.
The result is a list with the indexs of the atoms.
"""
a = set(selection[t0d])
b = set(selection[tf])
sort = sorted(list(a.intersection(b)))
return sort
def _selection_serial(self, universe, selection_str):
selection = []
pm = ProgressMeter(universe.trajectory.n_frames,
interval=10, verbose=True)
for ts in universe.trajectory:
selection.append(universe.select_atoms(selection_str))
pm.echo(ts.frame)
return selection
[docs] @staticmethod
def lg2(x):
"""Second Legendre polynomial"""
return (3*x*x - 1)/2
[docs] def run(self, **kwargs):
"""Analyze trajectory and produce timeseries"""
# All the selection to an array, this way is faster than selecting
# later.
if self.nproc == 1:
selection_out = self._selection_serial(
self.universe, self.selection)
else:
# selection_out = self._selection_parallel(self.universe,
# self.selection, self.nproc)
# parallel selection to be implemented
selection_out = self._selection_serial(
self.universe, self.selection)
self.timeseries = []
for dt in list(range(1, self.dtmax + 1)):
output = self._getMeanOnePoint(
self.universe, selection_out, self.selection, dt, self.tf)
self.timeseries.append(output)
[docs]class AngularDistribution(object):
r"""Angular distribution function analysis
The angular distribution function (AD) is defined as the distribution
probability of the cosine of the :math:`\theta` angle formed by the OH
vector, HH vector or dipolar vector of water molecules and a vector
:math:`\hat n` parallel to chosen axis (z is the default value). The cosine
is define as :math:`\cos \theta = \hat u \cdot \hat n`, where :math:`\hat
u` is OH, HH or dipole vector. It creates a histogram and returns a list
of lists, see Output_. The AD is also know as Angular Probability (AP).
Parameters
----------
universe : Universe
Universe object
selection : str
Selection string to evaluate its angular distribution ['byres name OH2']
bins : int (optional)
Number of bins to create the histogram by means of :func:`numpy.histogram`
axis : {'x', 'y', 'z'} (optional)
Axis to create angle with the vector (HH, OH or dipole) and calculate
cosine theta ['z'].
.. versionadded:: 0.11.0
"""
def __init__(self, universe, selection_str, bins=40, nproc=1, axis="z"):
self.universe = universe
self.selection_str = selection_str
self.bins = bins
self.nproc = nproc
self.axis = axis
self.graph = None
def _getCosTheta(self, universe, selection, axis):
valOH = []
valHH = []
valdip = []
i = 0
while i <= (len(selection) - 1):
universe.trajectory[i]
line = selection[i].positions
Ot0 = line[::3]
H1t0 = line[1::3]
H2t0 = line[2::3]
OHVector0 = H1t0 - Ot0
HHVector0 = H1t0 - H2t0
dipVector0 = (H1t0 + H2t0) * 0.5 - Ot0
unitOHVector0 = OHVector0 / \
np.linalg.norm(OHVector0, axis=1)[:, None]
unitHHVector0 = HHVector0 / \
np.linalg.norm(HHVector0, axis=1)[:, None]
unitdipVector0 = dipVector0 / \
np.linalg.norm(dipVector0, axis=1)[:, None]
j = 0
while j < len(line) / 3:
if axis == "z":
valOH.append(unitOHVector0[j][2])
valHH.append(unitHHVector0[j][2])
valdip.append(unitdipVector0[j][2])
elif axis == "x":
valOH.append(unitOHVector0[j][0])
valHH.append(unitHHVector0[j][0])
valdip.append(unitdipVector0[j][0])
elif axis == "y":
valOH.append(unitOHVector0[j][1])
valHH.append(unitHHVector0[j][1])
valdip.append(unitdipVector0[j][1])
j += 1
i += 1
return (valOH, valHH, valdip)
def _getHistogram(self, universe, selection, bins, axis):
"""
This function gets a normalized histogram of the cos(theta) values. It
return a list of list.
"""
a = self._getCosTheta(universe, selection, axis)
cosThetaOH = a[0]
cosThetaHH = a[1]
cosThetadip = a[2]
lencosThetaOH = len(cosThetaOH)
lencosThetaHH = len(cosThetaHH)
lencosThetadip = len(cosThetadip)
histInterval = bins
histcosThetaOH = np.histogram(cosThetaOH, histInterval, normed=True)
histcosThetaHH = np.histogram(cosThetaHH, histInterval, normed=True)
histcosThetadip = np.histogram(cosThetadip, histInterval, normed=True)
return (histcosThetaOH, histcosThetaHH, histcosThetadip)
def _hist2column(self, aList):
"""
This function transform from the histogram format
to a column format.
"""
a = []
for x in zip_longest(*aList, fillvalue="."):
a.append(" ".join(str(i) for i in x))
return a
[docs] def run(self, **kwargs):
"""Function to evaluate the angular distribution of cos(theta)"""
if self.nproc == 1:
selection = self._selection_serial(
self.universe, self.selection_str)
else:
# not implemented yet
# selection = self._selection_parallel(self.universe,
# self.selection_str,self.nproc)
selection = self._selection_serial(
self.universe, self.selection_str)
self.graph = []
output = self._getHistogram(
self.universe, selection, self.bins, self.axis)
# this is to format the exit of the file
# maybe this output could be improved
listOH = [list(output[0][1]), list(output[0][0])]
listHH = [list(output[1][1]), list(output[1][0])]
listdip = [list(output[2][1]), list(output[2][0])]
self.graph.append(self._hist2column(listOH))
self.graph.append(self._hist2column(listHH))
self.graph.append(self._hist2column(listdip))
def _selection_serial(self, universe, selection_str):
selection = []
pm = ProgressMeter(universe.trajectory.n_frames,
interval=10, verbose=True)
for ts in universe.trajectory:
selection.append(universe.select_atoms(selection_str))
pm.echo(ts.frame)
return selection
[docs]class MeanSquareDisplacement(object):
r"""Mean square displacement analysis
Function to evaluate the Mean Square Displacement (MSD_). The MSD gives the
average distance that particles travels. The MSD is given by:
.. math::
\langle\Delta r(t)^2\rangle = 2nDt
where :math:`r(t)` is the position of particle in time :math:`t`,
:math:`\Delta r(t)` is the displacement after time lag :math:`t`,
:math:`n` is the dimensionality, in this case :math:`n=3`,
:math:`D` is the diffusion coefficient and :math:`t` is the time.
.. _MSD: http://en.wikipedia.org/wiki/Mean_squared_displacement
Parameters
----------
universe : Universe
Universe object
selection : str
Selection string for water [‘byres name OH2’].
t0 : int
frame where analysis begins
tf : int
frame where analysis ends
dtmax : int
Maximum dt size, `dtmax` < `tf` or it will crash.
.. versionadded:: 0.11.0
"""
def __init__(self, universe, selection, t0, tf, dtmax, nproc=1):
self.universe = universe
self.selection = selection
self.t0 = t0
self.tf = tf
self.dtmax = dtmax
self.nproc = nproc
self.timeseries = None
def _repeatedIndex(self, selection, dt, totalFrames):
"""
Indicate the comparation between all the t+dt.
The results is a list of list with all the repeated index per frame
(or time).
- Ex: dt=1, so compare frames (1,2),(2,3),(3,4)...
- Ex: dt=2, so compare frames (1,3),(3,5),(5,7)...
- Ex: dt=3, so compare frames (1,4),(4,7),(7,10)...
"""
rep = []
for i in range(int(round((totalFrames - 1) / float(dt)))):
if (dt * i + dt < totalFrames):
rep.append(self._sameMolecTandDT(
selection, dt * i, (dt * i) + dt))
return rep
def _getOneDeltaPoint(self, universe, repInd, i, t0, dt):
"""
Gives one point to calculate the mean and gets one point of the plot
C_vect vs t.
- Ex: t0=1 and dt=1 so calculate the t0-dt=1-2 interval.
- Ex: t0=5 and dt=3 so calcultate the t0-dt=5-8 interva
i = come from getMeanOnePoint (named j) (int)
"""
valO = 0
n = 0
for j in range(len(repInd[i]) // 3):
begj = 3 * j
universe.trajectory[t0]
# Plus zero is to avoid 0to be equal to 0tp
Ot0 = repInd[i][begj].position + 0
universe.trajectory[t0 + dt]
# Plus zero is to avoid 0to be equal to 0tp
Otp = repInd[i][begj].position + 0
# position oxygen
OVector = Ot0 - Otp
# here it is the difference with
# waterdynamics.WaterOrientationalRelaxation
valO += np.dot(OVector, OVector)
n += 1
# if no water molecules remain in selection, there is nothing to get
# the mean, so n = 0.
return valO/n if n > 0 else 0
def _getMeanOnePoint(self, universe, selection1, selection_str, dt,
totalFrames):
"""
This function gets one point of the plot C_vec vs t. It's uses the
_getOneDeltaPoint() function to calculate the average.
"""
repInd = self._repeatedIndex(selection1, dt, totalFrames)
sumsdt = 0
n = 0.0
sumDeltaO = 0.0
valOList = []
for j in range(totalFrames // dt - 1):
a = self._getOneDeltaPoint(universe, repInd, j, sumsdt, dt)
sumDeltaO += a
valOList.append(a)
sumsdt += dt
n += 1
# if no water molecules remain in selection, there is nothing to get
# the mean, so n = 0.
return sumDeltaO/n if n > 0 else 0
def _sameMolecTandDT(self, selection, t0d, tf):
"""
Compare the molecules in the t0d selection and the t0d+dt selection and
select only the particles that are repeated in both frame. This is to
consider only the molecules that remains in the selection after the dt
time has elapsed. The result is a list with the indexs of the atoms.
"""
a = set(selection[t0d])
b = set(selection[tf])
sort = sorted(list(a.intersection(b)))
return sort
def _selection_serial(self, universe, selection_str):
selection = []
pm = ProgressMeter(universe.trajectory.n_frames,
interval=10, verbose=True)
for ts in universe.trajectory:
selection.append(universe.select_atoms(selection_str))
pm.echo(ts.frame)
return selection
[docs] def run(self, **kwargs):
"""Analyze trajectory and produce timeseries"""
# All the selection to an array, this way is faster than selecting
# later.
if self.nproc == 1:
selection_out = self._selection_serial(
self.universe, self.selection)
else:
# parallel not yet implemented
# selection = selection_parallel(universe, selection_str, nproc)
selection_out = self._selection_serial(
self.universe, self.selection)
self.timeseries = []
for dt in list(range(1, self.dtmax + 1)):
output = self._getMeanOnePoint(
self.universe, selection_out, self.selection, dt, self.tf)
self.timeseries.append(output)
[docs]class SurvivalProbability(object):
r"""Survival probability analysis
Function to evaluate the Survival Probability (SP). The SP gives the
probability for a group of particles to remain in certain region. The SP is
given by:
.. math::
P(\tau) = \frac1T \sum_{t=1}^T \frac{N(t,t+\tau)}{N(t)}
where :math:`T` is the maximum time of simulation, :math:`\tau` is the
timestep and :math:`N` the number of particles in certain time.
Parameters
----------
universe : Universe
Universe object
selection : str
Selection string; any selection is allowed. With this selection you
define the region/zone where to analyze, e.g.: "selection_a" and "zone"
(see `SP-examples`_ )
t0 : int
frame where analysis begins
tf : int
frame where analysis ends
dtmax : int
Maximum dt size, `dtmax` < `tf` or it will crash.
.. versionadded:: 0.11.0
"""
def __init__(self, universe, selection, t0, tf, dtmax, nproc=1):
self.universe = universe
self.selection = selection
self.t0 = t0
self.tf = tf
self.dtmax = dtmax
self.nproc = nproc
self.timeseries = None
def _getOneDeltaPoint(self, selection, totalFrames, t0, tau):
"""
Gives one point to calculate the mean and gets one point of the plot
C_vect vs t.
- Ex: t0=1 and tau=1 so calculate the t0-tau=1-2 interval
- Ex: t0=5 and tau=3 so calculate the t0-tau=5-8 interval
"""
Ntau = self._NumPart_tau(selection, totalFrames, t0, tau)
Nt = float(self._NumPart(selection, t0))
return Ntau/Nt if Nt > 0 else 0
def _getMeanOnePoint(self, universe, selection1, selection_str, wint,
totalFrames):
"""
This function gets one point of the plot P(t) vs t. It uses the
_getOneDeltaPoint() function to calculate the average.
"""
n = 0.0
sumDeltaP = 0.0
for frame in range(totalFrames - wint):
a = self._getOneDeltaPoint(selection1, totalFrames, frame, wint)
sumDeltaP += a
n += 1
# if no water molecules remain in selection, there is nothing to get
# the mean, so n = 0.
return sumDeltaP/n if n > 0 else 0
def _NumPart_tau(self, selection, totalFrames, t0, tau):
"""
Compares the molecules in t0 selection and t0+tau selection and
select only the particles that remain from t0 to t0+tau. It returns
the number of remaining particles.
"""
a = set(selection[t0])
i = 0
while (t0 + i) < t0 + tau and (t0 + i) < totalFrames:
b = set(selection[t0 + i])
a = a.intersection(b)
i += 1
return len(a)
def _NumPart(self, selection, t):
return len(selection[t])
def _selection_serial(self, universe, selection_str):
selection = []
pm = ProgressMeter(universe.trajectory.n_frames,
interval=10, verbose=True)
for ts in universe.trajectory:
selection.append(universe.select_atoms(selection_str))
pm.echo(ts.frame)
return selection
[docs] def run(self, **kwargs):
"""Analyze trajectory and produce timeseries"""
# All the selection to an array, this way is faster than selecting
# later.
if self.nproc == 1:
selection_out = self._selection_serial(
self.universe, self.selection)
else:
# selection = selection_parallel(universe, selection_str, nproc)
# parallel selection to be implemented
selection_out = self._selection_serial(
self.universe, self.selection)
self.timeseries = []
for dt in list(range(1, self.dtmax + 1)):
output = self._getMeanOnePoint(
self.universe, selection_out, self.selection, dt, self.tf)
self.timeseries.append(output)