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Chapter 1

Introduction

1.1 Philosophy

This package is about group recognition. It provides a generic framework to implement methods of
group recognition, regardless of what computational representation is used. This means, that the code
in this package is useful at least for permutation groups, matrix groups and projective groups. The
setup is described in [NS06].

The framework allows to build composition trees and handles the builtup and usage of these trees
in a generic way. It also contains a method selection (described in Chapter 4) that allows install
recognition methods in a convenient way and that automatically tries to try the different available
methods in a sensible order.

1.2 Overview over this manual

Chapter 2 describes the installation of this package.
Chapter 3 describes the generic, recursive procedure used for group recognition throughout this

package. At the heart of this procedure is the definition of “FindHomomorphism” methods, which is
also described in that chapter. For the choice of the right method for finding a homomorphism (or an
isomorphism) we use another generic procedure, the “method selection” which is not to be confused
with the GAP method selection.

Our own method selection is described in detail in Chapter 4, because it is interesting in its own
right and might be useful in other circumstances.

Chapter 6 describes the avalable “FindHomomorphism” methods.
Chapter 5 explains what one can do with a completed recognition tree.
Finally, Chapter 7 shows instructive examples for the usage of this package.

1.3 Feedback

For bug reports, feature requests and suggestions, please use our issue tracker.
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Chapter 2

Installation of the recog-Package

To install this package just extract the package’s archive file to the GAP pkg directory.
By default the recog package is not automatically loaded by GAP when it is installed. You must

load the package with LoadPackage("recog"); before its functions become available.
Please, send us an e-mail if you have any questions, remarks, suggestions, etc. concerning this

package. Also, we would like to hear about applications of this package.
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Chapter 3

Group Recognition

This chapter describes a generic framework for group recognition. The basic problem is, we want to
solve the constructive membership problem: given any g ∈ G, G = 〈X〉, write a straight line program
(SLP) from X to g, for g /∈ G (in the situation that G is naturally embedded into some bigger group),
the algorithm should fail. This is usually done by constructing some nice generators (and then writing
an SLP from the nice generators to g and concatenating with an SLP from X to the nice generators).
Often, for efficiency reasons, we will just store the nice generators and then only be interested in the
SLP from those to g. The framework presented here deals with exactly this process.

The generic framework was designed having three situations in mind: permutation groups, matrix
groups and projective groups. Although the methods used are quite different for those cases, there is
a common pattern in the procedure of recognition. Namely, first we have to find a homomorphism,
solve the constructive membership problem recursively in image and kernel, then put it together. The
recursion ends in groups where we can solve the constructive membership problem directly. The
general framework reflects this idea and separates it from the rest of the recognition methods.

Solution of the constructive membership problem comes in two stages: first a “recognition phase”
and then a “verification phase”. The recognition phase usually consists of randomised algorithms with
certain error or failure probabilities. The result is some kind of “recognition information” that will
describe the group already very well, but which is not yet proven to be correct. However, one can
already write arbitrary elements in the group as product of the given generators. In the verification
phase a presentation of the group is calculated, thereby proving that the group generated by the given
generators is in fact isomorphic to the group described by the recognition information. In many cases
the verification phase will be much more expensive than the recognition phase.

In the following sections, we describe the generic framework. We begin with a technical descrip-
tion of the recursive procedure and describe then the way methods to find homomorphism have to be
implemented. Finally, we have four sections in which we collect conventions for the recognition of
different types of groups.

No actual recognition methods are implemented in this package. See the recog package for an
implementation and description of them.

3.1 The recursive procedure

As explained at the beginning of this section, the heart of the recognition procedure is a function called
RecogniseGeneric (3.1.1) which gets a GAP group object and returns a so-called “recognition info
record” (see Subsection 3.2 for details). Success or failure will be indicated by this record being in the

6
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filter IsReady (3.2.4) or not.
To know how to find homomorphisms the function gets as another argument a database of methods

(see Section 3.3 for a description of the setup for methods for finding homomorphisms and Section
4.1 in Chapter 4 for details about method databases). This database will be different according to the
type of group in question.

To describe the algorithm executed by RecogniseGeneric (3.1.1) we first summarise it in steps:

1. Create a new, empty recognition info record.

2. Use the database of FindHomomorphism methods and the method selection procedure described
in Chapter 4 to try to find a homomorphism onto a smaller group or an isomorphism onto another
known group. Terminate with failure if this does not work.

3. If an isomorphism is found or a method somehow else recognises the group in question, such
that we can write elements as straight line programs in the generators from now on, then make
the recognition info record a leaf of the recognition tree and return success.

4. Otherwise the function sets up all the data for the homomorphism and calls itself with the
image of the homomorphism. Note that this might use another database of recognition methods
because the homomorphism might change the representation of the group.

5. After successful recognition of the factor group the procedure has to recognise the kernel of
the homomorphism. The first step for this is to find generators. If they are not already known
from the FindHomomorphism method, they are created by producing random elements in the
group, mapping them through the homomorphism, writing them as a straight line program in
the images of the generators and applying this straight line program to the original generators.
The quotient of the random element and the result of the straight line program lies in the kernel
of the homomorphism. After creating 20 (FIXME: is 20 correct?) random generators of the
kernel we assume for the moment that they generate the kernel.

6. The function RecogniseGeneric (3.1.1) can now call itself for the kernel. After successful
recognition of the kernel all the data for the node is completed and success is returned.

7. The function RecogniseGeneric (3.1.1) now acquires preimages of the nice generators behind
the homomorphism and appends the nice generators of the kernel. This list of generators is now
the list of nice generators for the current node.

Note that with the collected data one can write arbitrary elements of the group as a straight line
program in the generators as follows:

1. Map the element through the homomorphism.

2. Write the element in the factor group as a product of the nice generators in the factor group.

3. Apply the resulting straight line program to the preimages of those nice generators and calculate
the quotient, which will now lie in the kernel.

4. Write the kernel element as a straight line program in the kernel generators.

5. Assemble both straight line programs to one bigger straight line program (which is now in terms
of our own nice generators) and return it.
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If this procedure fails in the fourth step, this indicates that our random generators for the kernel did
not yet generate the full kernel and makes further recognition steps necessary. This will not happen
after a successful verification phase.

The latter procedure to write elements as straight line programs in the generators is implemented
in the function SLPforElementGeneric (3.3.2) which will be called automatically if one calls
the SLPforElement (3.2.14) function of the resulting recognition info record (see slpforelement
(3.2.13)).

It is now high time to give you the calling details of the main recursive recognition function:

3.1.1 RecogniseGeneric

. RecogniseGeneric(H, methoddb, depth[, knowledge]) (function)

. RecognizeGeneric(H, methoddb, depth[, knowledge]) (function)

Returns: fail for failure or a recognition info record.
H must be a GAP group object, methoddb must be a method database in the sense of Section

4.1 containing FindHomomorphism methods in the sense of Section 3.3. depth is an integer which
measures the depth in the recognition tree. It will be increased by one for each step we go into the tree.
The top level has depth 0. knowledge is an optional record the components of which are copied into
the new recognition info record which is created for the group H . Especially the component hints
can contain a list of additional find homomorphism methods (described by records as in Section 4.1)
which is prepended to the method database in methoddb before the recognition starts. This feature is
intended to give hints about prior knowledge about which find homomorphism method might succeed.

The function performs the algorithm described above and returns either fail in case of failure or
a recognition info record in case of success. For the content and definition of recognition info records
see Section 3.2.

The user will usually not call this function directly, but will use the following convenience func-
tions:

3.1.2 RecognisePermGroup

. RecognisePermGroup(H) (function)

. RecognizePermGroup(H) (function)

Returns: fail for failure or a recognition info record.
H must be a GAP permutation group object. This function calls RecogniseGeneric (3.1.1)

with the method database used for permutation groups, which is stored in the global variable
FindHomDbPerm (3.1.6), and no prior knowledge.

3.1.3 RecogniseMatrixGroup

. RecogniseMatrixGroup(H) (function)

. RecognizeMatrixGroup(H) (function)

Returns: fail for failure or a recognition info record.
H must be a GAP matrix group object. This function calls RecogniseGeneric (3.1.1) with the

method database used for matrix groups, which is stored in the global variable FindHomDbMatrix
(3.1.9), and no prior knowledge.
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3.1.4 RecogniseProjectiveGroup

. RecogniseProjectiveGroup(H) (function)

. RecognizeProjectiveGroup(H) (function)

Returns: fail for failure or a recognition info record.
H must be a GAP matrix group object. Since as of now no actual projective groups are imple-

mented in the GAP library we use matrix groups instead. The recognition will however view the
group as the projective group, i.e. the matrix group modulo its scalar matrices. This function calls
RecogniseGeneric (3.1.1) with the method database used for projective groups, which is stored in
the global variable FindHomDbProjective (3.1.12), and no prior knowledge.

3.1.5 RecogniseGroup

. RecogniseGroup(H) (function)

. RecognizeGroup(H) (function)

Returns: fail for failure or a recognition info record.
H must be a GAP group object. This function automatically dispatches to one of the two previous

functions RecognisePermGroup (3.1.2), or RecogniseMatrixGroup (3.1.3), according to the type
of the group H . Note that since currently there is no implementation of projective groups in the GAP
library, one cannot recognise a matrix group H as a projective group using this function.

3.1.6 FindHomDbPerm

. FindHomDbPerm (global variable)

This list contains the methods for finding homomorphisms for permutation group recognition that
are stored in the record FindHomMethodsPerm (3.1.7). As described in Section 4.1 each method is
described by a record. The list is always sorted with respect to decreasing ranks. The order in this
list tells in which order the methods should be applied. Use AddMethod (4.1.1) to add methods to this
database.

3.1.7 FindHomMethodsPerm

. FindHomMethodsPerm (global variable)

In this global record the functions that are methods for finding homomorphisms for permutation
group recognition are stored. We collect them all in this record such that we do not use up too many
global variable names.

3.1.8 SLPforElementFuncsPerm

. SLPforElementFuncsPerm (global variable)

This global record holds the functions that are methods for writing group elements as straight line
programs (SLPs) in terms of the generators after successful permutation group recognition. We collect
them all in this record such that we do not use up too many global variable names.
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3.1.9 FindHomDbMatrix

. FindHomDbMatrix (global variable)

This list contains the methods for finding homomorphisms for matrix group recognition that are
stored in the record FindHomMethodsMatrix (3.1.10). As described in Section 4.1 each method is
described by a record. The list is always sorted with respect to decreasing ranks. The order in this
list tells in which order the methods should be applied. Use AddMethod (4.1.1) to add methods to this
database.

3.1.10 FindHomMethodsMatrix

. FindHomMethodsMatrix (global variable)

In this global record the functions that are methods for finding homomorphisms for matrix group
recognition are stored. We collect them all in this record such that we do not use up too many global
variable names.

3.1.11 SLPforElementFuncsMatrix

. SLPforElementFuncsMatrix (global variable)

This global record holds the functions that are methods for writing group elements as straight line
programs (SLPs) in terms of the generators after successful matrix group recognition. We collect them
all in this record such that we do not use up too many global variable names.

3.1.12 FindHomDbProjective

. FindHomDbProjective (global variable)

This list contains the methods for finding homomorphisms for projective group recognition that
are stored in the record FindHomMethodsProjective (3.1.13). As described in Section 4.1 each
method is described by a record. The list is always sorted with respect to decreasing ranks. The order
in this list tells in which order the methods should be applied. Use AddMethod (4.1.1) to add methods
to this database.

3.1.13 FindHomMethodsProjective

. FindHomMethodsProjective (global variable)

In this global record the functions that are methods for finding homomorphisms for projective
group recognition are stored. We collect them all in this record such that we do not use up too many
global variable names.

3.1.14 SLPforElementFuncsProjective

. SLPforElementFuncsProjective (global variable)
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This global record holds the functions that are methods for writing group elements as straight line
programs (SLPs) in terms of the generators after successful projective group recognition. We collect
them all in this record such that we do not use up too many global variable names.

3.1.15 TryFindHomMethod

. TryFindHomMethod(H, method, projective) (function)

Returns: fail or false or a recognition info record.
Use this function to try to run a given find homomorphism method method on a group H . Indicate

by the boolean projective whether or not the method works in projective mode. For permutation
groups, set this to false. The result is either fail or false if the method fails or a recognition
info record ri. If the method created a leaf then ri will be a leaf, otherwise it will have the at-
tribute Homom (3.2.6) set, but no factor or kernel have been created or recognised yet. You can use
for example the methods in FindHomMethodsPerm (3.1.7) or FindHomMethodsMatrix (3.1.10) or
FindHomMethodsProjective (3.1.13) as the method argument.

3.2 Recognition info records

A recognition info record is a GAP positional object. It is a member of the family

3.2.1 RecognitionInfoFamily

. RecognitionInfoFamily (family)

and is in the category

3.2.2 IsRecognitionInfo

. IsRecognitionInfo (Category)

and is IsAttributeStoringRep (Reference: IsAttributeStoringRep), such that we can define
attributes for it, the values of which are stored once they are known. A recognition info record always
represents a whole binary tree of such records, see the attributes RIFac (3.2.9) and RIKer (3.2.10)
below.

The following filters are defined for recognition info records:

3.2.3 IsLeaf

. IsLeaf (Flag)

This flag indicates, whether or not a recognition info record represents a leaf in the recognition
tree. If it is not set, one finds at least one of the attributes RIFac (3.2.9) and RIKer (3.2.10) set for the
corresponding node. This flag is normally reset and has to be set by a find homomorphism method to
indicate a leaf.
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3.2.4 IsReady

. IsReady (Flag)

This flag indicates during the recognition procedure, whether a node in the recognition tree is
already completed or not. It is mainly set for debugging purposes during the recognition. However, if
the recognition fails somewhere in a leaf, this flag is not set and all nodes above will also not have this
flag set. In this way one can see whether the recognition failed and where the problem was.

The following attributes are defined for recognition info records:

3.2.5 Grp

. Grp(ri) (attribute)

The value of this attribute is the group that is to be recognised by this recognition info record
ri . This attribute is always present during recognition and after completion. Note that the generators
of the group object stored here always have a memory attached to them, such that elements that are
generated from them remember, how they were acquired.

3.2.6 Homom

. Homom(ri) (attribute)

The value of this attribute is the homomorphism that was found from the group described by the
recognition info record ri as a GAP object. It is set by a find homomorphism method that succeeded
to find a homomorphism (or isomorphism). It does not have to be set in leaf nodes of the recognition
tree.

3.2.7 NiceGens

. NiceGens(ri) (attribute)

The value of this attribute must be set for all nodes and contains the nice generators. The
SLPforElement (3.2.14) function of the node will write its straight line program in terms of these
nice generators. For leaf nodes, the find homomorphism method is responsible to set the value of
NiceGens. By default, the original generators of the group at this node are taken. For a homomor-
phism (or isomorphism), the NiceGens will be the concatenation of preimages of the NiceGens of
the factor group (see pregensfac (3.2.8)) and the NiceGens of the kernel. A find homomorphism
method does not have to set NiceGens if it finds a homomorphism. Note however, that such a find
homomorphism method has to ensure somehow, that preimages of the NiceGens of the factor group
can be acquired. See calcnicegens (3.2.17), CalcNiceGens (3.2.20) and slptonice (3.2.21) for
instructions.

3.2.8 pregensfac

. pregensfac(ri) (attribute)
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The value of this attribute is only set for homomorphism nodes. In that case it contains preimages
of the nice generators in the factor group. This attribute is set automatically by the generic recursive
recognition function using the mechanism described with the attribute calcnicegens (3.2.17) below.
A find homomorphism does not have to touch this attribute.

3.2.9 RIFac

. RIFac(ri) (attribute)

The value of this attribute is the recognition info record of the image of the homomorphism that
was found from the group described by the recognition info record ri . It is set by the generic re-
cursive procedure after a find homomorphism method has succeeded to find a homomorphism (or
isomorphism). It does not have to be set in leaf nodes of the recognition tree. This attribute value
provides the link to the “factor” subtree of the recognition tree.

3.2.10 RIKer

. RIKer(ri) (attribute)

The value of this attribute is the recognition info record of the kernel of the homomorphism that
was found from the group described by the recognition info record ri . It is set by the generic re-
cursive procedure after a find homomorphism method has succeeded to find a homomorphism (or
isomorphism). It does not have to be set in leaf nodes of the recognition tree or if the homomorphism
is known to be an isomorphism. In the latter case the value of the attribute is set to fail. This attribute
value provides the link to the “kernel” subtree of the recognition tree.

3.2.11 RIParent

. RIParent(ri) (attribute)

The value of this attribute is the recognition info record of the parent of this node in the recognition
tree. The top node does not have this attribute set.

3.2.12 fhmethsel

. fhmethsel(ri) (attribute)

The value of this attribute is the record returned by the method selection (see Section 4.2) after it
ran to find a homomorphism (or isomorphism). It is there to be able to see which methods were tried
until the recognition of the node was completed.

3.2.13 slpforelement

. slpforelement(ri) (attribute)

After the recognition phase is completed for the node ri , we are by definition able to write ar-
bitrary elements in the group described by this node as a straight line program (SLP) in terms of the
nice generators stored in NiceGens (3.2.7). This attribute value is a function taking the node ri and
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a group element as its arguments and returning the above mentioned straight line program. For the
case that a find homomorphism method succeeds in finding a homomorphism, the generic recursive
function sets this attribute to the function SLPforElementGeneric (3.3.2) which does the job for the
generic homomorphism situation. In all other cases the successful find homomorphism method has to
set this attribute to a function doing the job. The find homomorphism method is free to store additional
data in the recognition info record or the group object such that the SLPforElement (3.2.14) function
can work.

3.2.14 SLPforElement

. SLPforElement(ri, x) (function)

Returns: a straight line program expressing x in the nice generators.
This is a wrapper function which extracts the value of the attribute slpforelement (3.2.13) and

calls that function with the arguments ri and x .

3.2.15 StdPresentation

. StdPresentation(ri) (attribute)

After the verification phase, the presentation is stored here. Details have still to be decided upon.

3.2.16 methodsforfactor

. methodsforfactor(ri) (attribute)

This attribute is initialised at the beginning of the recursive recognition function with the database
of find homomorphism methods that was used to recognise the group corresponding to the recogni-
tion info record ri . If the found homomorphism changes the representation of the group (going for
example from a matrix group to a permutation group), the find homomorphism method can report
this by exchanging the database of find homomorphism methods to be used in the recognition of the
image of the homomorphism by setting the value of this attribute to something different. It lies in the
responsibility of the find homomorphism method to do so, if the representation changes through the
homomorphism.

The following two attributes are concerned with the relation between the original generators and
the nice generators for a node. They are used to transport this information from a successful find
homomorphism method up to the recursive recognition function:

3.2.17 calcnicegens

. calcnicegens(ri) (attribute)

To make the recursion work, we have to acquire preimages of the nice generators in factor groups
under the homomorphism found. But we want to keep the information, how the nice generators were
found, locally at the node where they were found. This attribute solves this problem of acquiring
preimages in the following way: Its value must be a function, taking the recognition info record ri
as first argument, and a list origgens of preimages of the original generators of the current node,
and has to return corresponding preimages of the nice generators. Usually this task can be done by
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storing a straight line program writing the nice generators in terms of the original generators and
executing this with inputs origgens . Therefore the default value of this attribute is the function
CalcNiceGensGeneric (3.2.18) described below.

3.2.18 CalcNiceGensGeneric

. CalcNiceGensGeneric(ri, origgens) (function)

Returns: a list of preimages of the nice generators
This is the default function for leaf nodes for the attribute calcnicegens (3.2.17) described above.

It does the following: If the value of the attribute slptonice (3.2.21) is set, then it must be a straight
line program expressing the nice generators in terms of the original generators of this node. In that
case, this straight line program is executed with origgens as inputs and the result is returned. Other-
wise, origgens is returned as is. Therefore a leaf node just has to do nothing if the nice generators
are equal to the original generators, or can simply store the right straight line program into the attribute
slptonice (3.2.21) to fulfill its duties.

3.2.19 CalcNiceGensHomNode

. CalcNiceGensHomNode(ri, origgens) (function)

Returns: a list of preimages of the nice generators
This is the default function for homomorphism node for the attribute calcnicegens (3.2.17). It

just delegates to factor and kernel of the homomorphism, as the nice generators of a homomorphism
(or isomorphism) node are just the concatenation of the nice generators of the factor and the kernel. A
find homomorphism method finding a homomorphism or isomorphism does not have to do anything
with respect to nice generators.

3.2.20 CalcNiceGens

. CalcNiceGens(ri, origgens) (function)

Returns: a list of preimages of the nice generators
This is a wrapper function which extracts the value of the attribute calcnicegens (3.2.17) and

calls that function with the arguments ri and origgens .

3.2.21 slptonice

. slptonice(ri) (attribute)

As described above, the value, if set, must be a straight line program expressing the nice generators
at this node in terms of the original generators. This is for leaf nodes, that choose to use the default
function CalcNiceGensGeneric (3.2.18) installed in the calcnicegens (3.2.17) attribute.

The following three attributes are concerned with the administration of the kernel of a found
homomorphism. Find homomorphism methods use them to report to the main recursive recognition
function their knowledge about the kernel:

3.2.22 gensN

. gensN(ri) (attribute)
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The value of this mutable attribute is a list of generators of the kernel of the homomorphism found
at the node ri . It is initialised as an empty list when the recursive recognition function starts. Suc-
cessful find homomorphism methods may append generators of the kernel to this list if they happen to
stumble on them. After successful recognition of the image of the homomorphism the main recursive
recognition function will try to create a few more generators of the kernel and append them to the list
which is the value of the attribute gensN. The exact behaviour depends on the value of the attribute
findgensNmeth (3.2.23) below. The list of generators after that step is used to recognise the kernel.
Note that the generators in gensN have a memory attached to them, how they were obtained in terms
of the original generators of the current node.

3.2.23 findgensNmeth

. findgensNmeth(ri) (attribute)

This attribute decides about how generators of the kernel of a found homomorphism are produced.
Its value has to be a record with at least two components bound. The first is method which holds a
function taking at least one argument ri and possibly more, and does not return anything. The second
is args which holds a list of arguments for the above mentioned function. The real list of arguments
is derived by prepending the recognition info record to the list of arguments in args. That is, the
following code is used to call the method:

methgensN := findmethgensN(ri);
CallFuncList(methgensN(ri).method,Concatenation([ri],methgensN.args));

The record is initialised upon creation of the recognition info record to calling FindKernelRandom
(3.2.24) with one argument of 20 (FIXME: is 20 correct?) (in addition to the first argument ri ). See
below for a choice of possible find kernel methods.

3.2.24 FindKernelRandom

. FindKernelRandom(ri, n) (function)

Returns: nothing
n random elements are generated, mapped through the homomorphism, written as a straight line

program in the generators. Then the straight line program is executed with the original generators
thereby producing elements in the same coset. The quotients are then elements of the kernel. The
kernel elements created are stored in the attribute gensN (3.2.22).

3.2.25 FindKernelDoNothing

. FindKernelDoNothing(ri, n) (function)

Returns: nothing
Does nothing. This function is intended to be set as method for producing kernel elements if

the kernel is known to be trivial or if one knows, that the attribute gensN (3.2.22) already contains a
complete set of generators for the kernel.
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3.2.26 FindKernelFastNormalClosure

. FindKernelFastNormalClosure(ri, nr) (function)

Returns: a probable generating set for the normal closure
This function takes the group G in the Grp (3.2.5) attribute in ri and the list of generators gens of

the kernel in gensN (3.2.22) and the positive integer nr . This function computes a probable generating
set of the normal closure in G of the group generated by the generators in gens . The integer nr
indicates how hard it should try.

3.2.27 gensNslp

. gensNslp(ri) (attribute)

The recursive recognition function calculates a straight line program that computes the generators
of the kernel stored in gensN (3.2.22) in terms of the generators of the group recognised by ri . This
straight line program is stored in the value of this mutable attribute. It is used by the generic function
SLPforElementGeneric (3.3.2).

3.2.28 immediateverification

. immediateverification(ri) (attribute)

Sometimes a find homomorphism has information that it will be difficult to create generators for
the kernel, for example if it is known that the kernel will need lots of generators. In that case this
attribute with the default boolean value false can be set to true. In that case, the generic recursive
recognition function will perform an immediate verification phase after the kernel has been recognised.
This is done as follows: A few random elements are created, mapped through the homomorphism and
written as an SLP in the nice generators there. Then this SLP is executed with preimages of those nice
generators. The quotient lies then in the kernel and is written as an SLP in terms of the nice generators
of the would be kernel. If this is not possible, then probably the creation of kernel generators was not
complete and a few more kernel elements are produced and recognition in the kernel starts all over
again. This is for example done in case of the “Imprimitive” method which maps onto the action on a
block system. In that case, the kernel often needs lots of generators.

The following attributes are used to give a successful find homomorphism method further possi-
bilities to transport knowledge about the group recognised by the current recognition info record to
the factor or kernel of the found homomorphism:

3.2.29 forkernel

. forkernel(ri) (attribute)

This attribute is initialised to a record with only the component hints bound to an empty list at
the beginning of the recursive recognition function. Find homomorphism methods can put acquired
knowledge about the group to be recognised (like for example an invariant subspace of a matrix group)
into this record. When a homomorphism is found and recognition goes on in its kernel, the value of
this attribute is taken as initialisation data for the newly created recognition info record for the kernel.
Thus, information is transported down to the recognition process for the kernel. The component hints
is special insofar as it has to contain records describing find homomorphism methods which might be
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particularly successful. They are prepended to the find homomorphism method database such that
they are called before any other methods. This is a means to give hints to the recognition procedure in
the kernel, because often during the finding of a homomorphism knowledge is acquired which might
help the recognition of the kernel.

3.2.30 forfactor

. forfactor(ri) (attribute)

This attribute is initialised to a record with only the component hints bound to an empty list at
the beginning of the recursive recognition function. Find homomorphism methods can put acquired
knowledge about the group to be recognised (like for example an invariant subspace of a matrix group)
into this record. When a homomorphism is found and recognition goes on in its image, the value of
this attribute is taken as initialisation data for the newly created recognition info record for the factor.
Thus, information is transported down to the recognition process for the factor. The component hints
is special insofar as it has to contain records describing find homomorphism methods which might be
particularly successful. They are prepended to the find homomorphism method database such that
they are called before any other methods. This is a means to give hints to the recognition procedure in
the factor, because often during the finding of a homomorphism knowledge is acquired which might
help the recognition of the factor.

3.2.31 isone

. isone(ri) (attribute)

This attribute returns a function that tests, whether or not an element of the group is equal to the
identity or not. Usually this is just the operation IsOne (Reference: IsOne) but for projective groups
it is a special function returning true for scalar matrices. In generic code, one should always use the
result of this attribute to compare an element to the identity such that the code works also for projective
groups. Find homomorphism methods usually do not have to set this attribute.

3.2.32 isequal

. isequal(ri) (attribute)

This attribute returns a function that compares two elements of the group being recognised. Usu-
ally this is just the operation EQ (Reference: equality of records) but for projective groups it is a
special function checking for equality up to a scalar factor. In generic code, one should always use the
result of this attribute to compare two elements such that the code works also for projective groups.
Find homomorphism methods usually do not have to set this attribute.

3.2.33 Other components of recognition info records

In this subsection we describe a few more components of recognition info records that can be queried
or set by find homomorphism methods. Not all of these components are bound in all cases. See
the individual descriptions about the conventions. Remember to use the !. notation to access these
components of a recognition info record.
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leavegensNuntouched
If this component is bound to true by a find homomorphism method or a find kernel generators
method, the generic mechanism to remove duplicates and identities in the generator for the
kernel is not used. This is important if your methods rely on the generating set of the kernel
being exactly as it was when found.

3.3 Methods to find homomorphisms

A “find homomorphism method” has the objective to, given a group G, either find a homomorphism
from G onto a group, or to find an isomorphism, or to solve the constructive membership problem
directly for G, or to fail.

In case a homomorphism is found, it has to report that homomorphism back to the calling recursive
recognition function together with as much information about the kernel as possible.

If a find homomorphism method determines that the node is a leaf in the recognition tree (by
solving the constructive membership problem directly), then it has to ensure, that arbitrary elements
can be written in terms of the nice generators of G. It does so by returning a function together with
possible extra data, that can perform this job.

Of course, the find homomorphism method also has to report, how the nice generators were ac-
quired in terms of the original generators.

If the find homomorphism method fails, it has to report, whether it has failed forever or if it
possibly makes sense to try to call this method again later.

Find homomorphism methods have to fit into the framework for method selection described in
Chapter 4. We now begin to describe the technical details of how a find homomorphism method has to
look like and what it has to do and what it is not allowed to do. We first explain the calling convention
by means of a hypothetical function:

3.3.1 FindHomomorphism

. FindHomomorphism(ri, G) (function)

Returns: One of the values Success, NeverApplicable, TemporaryFailure, or
NotEnoughInformation.

Find homomorphism methods take two arguments ri and G , of which ri is a recognition info
record and G is a GAP group object. The return value is one of the four possible values in the
framework for method selection described in Chapter 4 indicating success, failure, or (temporary)
non-applicability. The above mentioned additional information in case of success are all returned
by changing the recognition info record ri . For the conventions about what a find homomorphism
method has to do and return see below.

A failed or not applicable find homomorphism method does not have to report or do anything in the
recognition info record ri . However, it can collect information and store it either in the group object
or in the recognition info record. Note that for example it might be that a failed find homomorphism
method acquires additional information that allows another find homomorphism method to become
applicable.

A not applicable find homomorphism method should find out so relatively quickly, because oth-
erwise the whole process might be slowed down, because a find homomorphism method repeatedly
ponders about its applicability. Usually no big calculations should be triggered just to decide applica-
bility.
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A successful find homomorphism method has the following duties:

for leaves:
First it has to report whether the current node is a leaf or not in the recognition tree. That is, in
case a leaf was found the method has to do SetFilterObj(ri,IsLeaf); thereby setting the
IsLeaf (3.2.3) flag.

A method finding a homomorphism which is not an isomorphism indicates so by not touching
the flags. FIXME: What does that mean? Which flags? The IsLeaf filter? But then this sounds
as if isomorphisms require settings some flag.. but which?!? perhaps remove that sentence?

for leaves: SLPforElement (3.2.14) function
If a find homomorphism method has produced a leaf in the recognition tree, then it has to set
the attribute slpforelement (3.2.13) to a function like SLPforElementGeneric (3.3.2) that
can write an arbitrary element in G as a straight line program in the nice generators of G . The
method may store additional data into the recognition info record for this to work. It does not
have to set any other value in ri .

for leaves: information about nice generators
If a find homomorphism method has produced a leaf in the recognition tree, then it has to
report what are the nice generators of the group described by the leaf. To this end, it has
three possibilities: Firstly to do nothing, which means, that the original generators are the nice
generators. Secondly to store a straight line program expressing the nice generators in terms
of the original generators into the attribute slptonice (3.2.21). In that case, the generic frame
work takes care of the rest. The third possibility is to store a function into the value of the
attribute calcnicegens (3.2.17) which can calculate preimages of the nice generators in terms
of preimages of the original generators. See the function CalcNiceGensGeneric (3.2.18) for
an example of such a function.

for non-leaves: the homomorphism itself
If a find homomorphism method has found a homomorphism, it has to store it as a GAP ho-
momorphism object from G to the image group in the attribute Homom (3.2.6). Note that if your
homomorphism changes the representation (for example going from matrix groups to permuta-
tion groups), you will have to set the attribute methodsforfactor (3.2.16) accordingly.

for non-leaves: kernel generators
If a find homomorphism method has found a homomorphism, it has to provide information
about already known generators of the kernel. This is done firstly by appending known genera-
tors of the kernel to the attribute value of gensN (3.2.22) and secondly by leaving or changing
the attribute findgensNmeth (3.2.23) to a record describing the method that should be used
(for details see findgensNmeth (3.2.23)). If one does not change the default value, the recur-
sive recognition function will generate 20 (FIXME: is 20 correct?) random elements in G and
produce random generators of the kernel by dividing by a preimage of an image under the ho-
momorphism. Note that generators in gensN (3.2.22) have to have a memory attached to them
that stores, how they were acquired from the generators of G .

additional information
A find homomorphism method may store any data into the attributes forkernel (3.2.29) and
forfactor (3.2.30), which both are records. Components in these record that are bound during
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the recognition will be copied into the recognition info record of the kernel and factor respec-
tively of a found homomorphism upon creation and thus are available to all find homomorphism
methods called for the kernel and factor. This feature might be interesting to transport informa-
tion that is relevant for the recognition of the kernel or factor and was acquired during the
recognition of G itself.

A special role is played by the component hints in both of the above records, which can hold a
list of records describing find homomorphism methods that shall be tried first when recognising
the kernel or factor.

In addition, a find homomorphism method might set the attribute immediateverification
(3.2.28) to true, if it considers the problem of finding kernel generators particularly difficult.

To explain the calling conventions for SLPforElement (3.2.14) functions and for the sake of com-
pleteness we present now the function SLPforElementGeneric (3.3.2) which is used for the case of
a “homomorphism node”:

3.3.2 SLPforElementGeneric

. SLPforElementGeneric(ri, x) (function)

Returns: a GAP straight line program
This function takes as arguments a recognition info record ri and a group element x . It returns a

GAP straight line program that expresses the element x in terms of the nice generators of the group G
recognised by ri .

This generic function here does exactly this job for the generic situation that we found a homo-
morphism from G to some other group say H with kernel N. It first maps x via the homomorphism to
H and uses the recognition information there to write it as a straight line program in terms of the nice
generators of H. Then it applies this straight line program to the preimages of those nice generators
(see pregensfac (3.2.8)) thereby finding an element y of G with x · y−1 lying in the kernel N.

Then the function writes this element as a straight line program in the nice generators of N again
using the recursively acquired recognition info about N. In the end a concatenated straight line pro-
gram for x is built, which is in terms of the nice generators of the current node.

3.4 Conventions for the recognition of permutation groups

No conventions so far.

3.5 Conventions for the recognition of matrix groups

We are considering only the case of matrix groups over finite fields.
No conventions so far.

3.6 Conventions for the recognition of projective groups

We are considering only the case of projective groups over finite fields.
No conventions so far.



Chapter 4

Method Selection

The setup described in this chapter is intended for situations, in which lots of different methods are
available to fulfill a certain task, but in which it is not possible in the beginning to decide, which one
to use. Therefore this setup regulates, rather than just which method to choose, in which order the
various methods are tried. The methods themselves return whether they were successful and, if not,
whether it is sensible to try them again at a later stage.

The design is intentionally kept as simple as possible and at the same time as versatile as possible,
thereby providing a useful framework for many situations as described above.

Note the differences to the GAP method selection, which is designed with the idea in mind that
it will be quite clear in most situations, which one is “the best” method for a given set of input data,
and that we do not want to try different things. On the other hand, the GAP method selection is quite
complicated, which is to some extend necessary to make sure, that lots of different information about
the objects in question can be used to really find the best method.

Our setup here in particular has to fulfill the requirement, that in the end, with lots of methods
installed, one still has to be able to have an overview and to “prove”, that the whole system always
does the right thing.

4.1 What are methods?

A method is just a GAP function together with an agreement about what arguments it takes and what
result it returns. The agreement about the arguments of course has to be made for every situation in
which this generic method selection code is used, and the user is completely free there. A method can
(and has to) return one of the following four values:

Success
means that the method was successful and no more methods have to be tried.

NeverApplicable
means that the method was not successful and that there is no point to call the method again in
this situation whatsoever.

TemporaryFailure
means that the method temporarily failed, that it however could be sensible to call it again in
this situation at a later stage. This value is typical for a Las Vegas algorithm using randomised
methods, which has failed, but which may succeed when called again.

22
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NotEnoughInformation
means that the method for some reason refused to do its work. However, it is possible that it will
become applicable later such that it makes sense to call it again, may when more information is
available.

For administration in the method selection, a method is described by a record with the following
components bound:

method
holds the function itself.

rank
holds an integer used to sort the various methods. Higher numbers mean that the method is tried
earlier. The numbering scheme is left to the user.

stamp
holds a string value that uniquely describes the method. This is used for bookkeeping and to
keep track of what has to be tried how often.

comment
a string valued comment. This field is optional and can be left out.

The different methods for a certain task are collected in so-called “method databases”. A method
database is just a list of records, each describing a method in the format described above. Usually, the
ranks will be descending, but that is not necessary.

There is one convenience function to put a new method into a method database:

4.1.1 AddMethod

. AddMethod(db, meth, rank, stamp[, comment]) (function)

Returns: nothing
db must be a method database (list of records, see above) with non-ascending rank values. meth

is the method function, rank the rank and stamp a string valued stamp. The optional argument
comment can be a string comment. The record describing the method is created and inserted at the
correct position in the method database. Nothing is returned.

4.2 How methods are called

Whenever the method selection shall be used, one calls the following function:

4.2.1 CallMethods

. CallMethods(db, limit[, furtherargs]) (function)

Returns: a record ms describing this method selection procedure.
The argument db must be a method database in the sense of Section 4.1. limit must be a non-

negative integer. furtherargs stands for an arbitrary number of additional arguments, which are
handed down to the called methods. Of course they must fulfill the conventions defined for the methods
in the database db .
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The function first creates a “method selection” record keeping track of the things that happened
during the method trying procedure, which is also used during this procedure. Then it calls methods
with the algorithm described below and in the end returns the method selection record in its final state.

The method selection record has the following components:

inapplicableMethods
a record, in which for every method that returned NeverApplicable the value 1 is bound to the
component with name the stamp of the method.

failedMethods
a record, in which for every time a method returned TemporaryFailure the value bound to the
component with name the stamp of the method is increased by 1 (not being bound means zero).

successMethod
the stamp of the method that succeeded, if one did. This component is only bound after suc-
cessful completion.

result
a boolean value which is either Success or TemporaryFailure depending on whether a suc-
cessful method was found or the procedure gave up respectively. This component is only bound
after completion of the method selection procedure.

tolerance
the number of times all methods failed until one succeeded. See below.

The algorithm used by CallMethods (4.2.1) is extremely simple: It sets a counter tolerance to zero.
The main loop starts at the beginning of the method database and runs through the methods in turn.
Provided a method did not yet return NeverApplicable and did not yet return TemporaryFailure
more than tolerance times before, it is tried. According to the value returned by the method, the
following happens:

NeverApplicable
this is marked in the method selection record and the main loop starts again at the beginning of
the method database.

TemporaryFailure
this is counted in the method selection record and the main loop starts again at the beginning of
the method database.

NotEnoughInformation
the main loop goes to the next method in the method database.

true
this is marked in the method selection record and the procedure returns successfully.

If the main loop reaches the end of the method database without calling a method (because all meth-
ods have already failed or are not applicable), then the counter tolerance is increased by one and
everything starts all over again. This is repeated until tolerance is greater than the limit which is
the second argument of CallMethods (4.2.1). The last value of the tolerance counter is returned in
the component tolerance of the method selection record.
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Note that the main loop starts again at the beginning of the method database after each failed
method call! However, this does not lead to an infinite loop, because the failure is recorded in the
method selection record such that the method is skipped until the tolerance increases. Once the
tolerance has been increased methods having returned TemporaryFailure will be called again.
The idea behind this approach is that even failed methods can collect additional information about the
arguments changing them accordingly. This might give methods that come earlier and were not appli-
cable up to now the opportunity to begin working. Therefore one can install very good methods that
depend on some already known knowledge which will only be acquired during the method selection
procedure by other methods, with a high rank.



Chapter 5

After successful recognition

This chapter explains, what one can do with recognition info records after a successful recognition
(and possibly verification).

Of course, one can inspect the whole tree of recognition info records just by looking at the
stored attribute values. Moreover, constructive membership tests can be performed using the func-
tion SLPforElement (3.2.14), thereby writing an arbitrary element in terms of the nice generators,
which are stored in the attribute NiceGens (3.2.7). If fail is returned, then the element in question
does not lie in the recognised group or the recognition made an error.

Here is an example of a successful recognition tree:
Example

gap> g := DirectProduct(SymmetricGroup(12),SymmetricGroup(5));
Group([ (1,2,3,4,5,6,7,8,9,10,11,12), (1,2), (13,14,15,16,17), (13,14) ])
gap> ri := RecogniseGroup(g);
#I Finished rank 90 method "NonTransitive": success.
#I Going to the factor (depth=0, try=1).
#I Finished rank 95 method "VeryFewPoints": success.
#I Back from factor (depth=0).
#I Calculating preimages of nice generators.
#I Creating 20 random generators for kernel.
....................
#I Going to the kernel (depth=0).
#I Finished rank 80 method "Giant": success.
#I Back from kernel (depth=0).
<recoginfo NonTransitive
F:<recoginfo VeryFewPoints Size=120>
K:<recoginfo Giant Size=479001600>>

One sees that the recursive process runs, first it finds that the permutation action is not transitive, a
homomorphism is found by mapping onto the action on one of the orbits. The image is recognised to
permute only a few points. The kernel is recognised to be a full symmetric group in its natural action
on at least 10 points (recognised as “Giant”).

After this, we can write arbitrary group elements in the group g in terms of the nice generators:
Example

gap> x := PseudoRandom(g);
(1,12)(2,5,9,11,10,3,4)(7,8)(13,14,16,15,17)
gap> slp := SLPforElement(ri,x);

26
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<straight line program>
gap> ResultOfStraightLineProgram(slp,NiceGens(ri));
(1,12)(2,5,9,11,10,3,4)(7,8)(13,14,16,15,17)

Note that this example only works by using also the recog package which contains the necessary
recognition methods.

5.1 Functions and methods for recognition info records

If you need an element explicitly written in terms of the original generators, you can use the following
function:

5.1.1 SLPforNiceGens

. SLPforNiceGens(ri) (function)

Returns: an SLP expressing the nice generators in the original ones
This function assembles a possibly quite large straight line program expressing the nice generators

in terms of the original ones by using the locally stored information in the recognition tree recursively.
You can concatenate straight line programs in the nice generators with the result of this function

to explicitly write an element in terms of the original generators.

5.1.2 \in

. \in(x, ri) (method)

Returns: true or false
This method tests, whether the element x lies in the group recognised by the recognition info

record ri . Note that this is only a convenience method, in fact SLPforElement (3.2.14) is used and
the resulting straight line program is thrown away.

5.1.3 Size

. Size(ri) (method)

Returns: the size of the recognised group
This method calculates the size of the recognised group by multiplying the size of the factor and

the kernel recursively. It is assumed that leaf nodes know already or can calculate the size of their
group.

5.1.4 DisplayCompositionFactors

. DisplayCompositionFactors(ri) (function)

Returns: nothing
This function displays a composition series by using the recursive recognition tree. It only works,

if the usual operation CompositionSeries (Reference: CompositionSeries) works for all leaves.
THIS DOES CURRENTLY NOT WORK FOR PROJECTIVE GROUPS AND THUS FOR MATRIX
GROUPS!



Chapter 6

Methods for recognition

6.1 Methods for permutation groups

The following table gives an overview over the installed methods and their rank (higher rank means
higher priority, the method is tried earlier, see Chapter 4).

300 TrivialPermGroup just go through generators and compare to the identity 6.1.1
100 ThrowAwayFixedPoints try to find a huge amount of (possible internal) fixed points 6.1.2
99 FewGensAbelian if very few generators, check IsAbelian and if yes, do KnownNilpotent 6.2.4
97 Pcgs use a Pcgs to calculate a StabChain 6.1.3
95 VeryFewPoints calculate a stabchain if we act on very few points 6.1.4
90 NonTransitive try to find non-transitivity and restrict to orbit 6.1.5
80 Giant tries to find Sn and An 6.1.6
70 Imprimitive for a imprimitive permutation group, restricts to block system 6.1.7
60 SnkSetswrSr tries to find jellyfish 6.1.8
55 StabilizerChain for a permutation group using a stabilizer chain (genss) 6.3.12
50 StabChain for a permutation group using a stabilizer chain 6.1.9

Table: Permutation group find homomorphism methods

6.1.1 TrivialPermGroup

This method is successful if and only if all generators of the permutation group G are equal to the
identity. Otherwise it returns false indicating that it will never succeed. This method is only installed
to handle the trivial case such that we do not have to take this case into account in the other methods.

6.1.2 ThrowAwayFixedPoints

This method defines a homomorphism of a permutation group G to the action on the moved points of
G if G does not have too many moved points. In the current setup, the homomorphism is defined if the
number k of moved points is at most 1/3 of the largest moved point of G , or k is at most half of the
number of points on which G is stored internally by GAP. The method returns false if it does not
define a homomorphism indicating that it will never succeed.

28
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6.1.3 Pcgs

This is the GAP library function to compute a stabiliser chain for a solvable permutation group. If the
method is successful then the calling node becomes a leaf node in the recursive scheme. If the input
group is not solvable then the method returns false.

6.1.4 VeryFewPoints

If a permutation group acts only on a few points (the current limit is at most 10 points) then a sta-
biliser chain is computed by the randomized GAP library function for that purpose. If the method is
successful then the calling node becomes a leaf node in the recursive scheme. If the input group acts
on more than 10 points then the method returns false.

6.1.5 Nontransitive

If a permutation group G acts nontransitively then this method computes a homomorphism to the
action of G on the orbit of the largest moved point. If G is transitive then the method returns false.

6.1.6 Giant

The method tries to determine whether the input group G is a giant (that is, An or Sn in its natural
action on n points). The output is either a data structure D containing nice generators for G and a
procedure to write an SLP for arbitrary elements of G from the nice generators; or false if G is not
transitive; or fail, in the case that no evidence was found that G is a giant, or evidence was found,
but the construction of D was unsuccessful. If the method constructs D then the calling node becomes
a leaf.

6.1.7 Imprimitive

If the input group is not known to be transitive then this method returns NotEnoughInformation. If
the input group is known to be transitive and primitive then the method returns false; otherwise, the
method tries to compute a nontrivial block system. If successful then a homomorphism to the action
on the blocks is defined; otherwise, the method returns false. If the method is successful then it also
gives a hint for the children of the node by determining whether the kernel of the action on the block
system is solvable. If the answer is yes then the default value 20 for the number of random generators
in the kernel construction is increased by the number of blocks.

6.1.8 SnkSetswrSr

This method tries to determine whether the input group G is acting primitively on N points, and is
isomorphic to a large subgroup of H o Sr where H is Sn acting on k-sets and N =

(n
k

)r and kr > 1.
“Large” means that G contains a subgroup isomorphic to Ar

n. If G is imprimitive then the output is
false. If G is primitive then the output is either a homomorphism into the natural imprimitive action
of G on nr points with r blocks of size n, or fail.
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6.1.9 StabChain

This is the randomized GAP library function for computing a stabiliser chain. The method selection
process ensures that this function is called only with small-base inputs, where the method works
efficiently.

6.2 Methods for matrix groups

The following table gives an overview over the installed methods and their rank (higher rank means
higher priority, the method is tried earlier, see Chapter 4). Note that there are not that many methods
for matrix groups since the system can switch to projective groups by dividing out the subgroup of
scalar matrices. The bulk of the recognition methods are then installed es methods for projective
groups.

3100 TrivialMatrixGroup check whether all generators are equal to the identity matrix 6.2.1
1175 KnownStabilizerChain use an already known stabilizer chain for this group 6.2.2
1100 DiagonalMatrices check whether all generators are multiples of the identity 6.2.3
1050 FewGensAbelian if very few generators, check IsAbelian and if yes, do KnownNilpotent 6.2.4
1000 ReducibleIso use the MeatAxe to find invariant subspaces 6.2.5
900 GoProjective divide out scalars and recognise projectively 6.2.8

Table: Matrix group find homomorphism methods

6.2.1 TrivialMatrixGroup

This method is successful if and only if all generators of a matrix group G are equal to the identity.
Otherwise, it returns false.

6.2.2 KnownStabilizerChain

TODO. use an already known stabilizer chain for this group

6.2.3 DiagonalMatrices

This method is successful if and only if all generators of a matrix group G are diagonal matrices.
Otherwise, it returns false.

6.2.4 FewGensAbelian

TODO. if very few generators, check IsAbelian and if yes, do KnownNilpotent

6.2.5 ReducibleIso

This method determines whether a matrix group G acts irreducibly. If yes, then it returns false. If
G acts reducibly then a composition series of the underlying module is computed and a base change
is performed to write G in a block lower triangular form. Also, the method passes a hint to the
image group that it is in block lower triangular form, so the image immediately can make recursive
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calls for the actions on the diagonal blocks, and then to the lower p-part. For the image the method
BlockLowerTriangular (see 6.2.6) is used.

Note that this method is implemented in a way such that it can also be used as a method for a
projective group G . In that case the recognition info record has the !.projective component bound
to true and this information is passed down to image and kernel.

6.2.6 BlockLowerTriangular

This method is only called when a hint was passed down from the method ReducibleIso (see 6.2.5).
In that case, it knows that a base change to block lower triangular form has been performed. The
method can then immediately find a homomorphism by mapping to the diagonal blocks. It sets up this
homomorphism and gives hints to image and kernel. For the image, the method BlockDiagonal (see
6.2.7) is used and for the kernel, the method LowerLeftPGroup (see 6.2.10) is used.

Note that this method is implemented in a way such that it can also be used as a method for a
projective group G . In that case the recognition info record has the !.projective component bound
to true and this information is passed down to image and kernel.

6.2.7 BlockDiagonal

This method is only called when a hint was passed down from the method BlockLowerTriangular
(see 6.2.6). In that case, it knows that the group is in block diagonal form. The method is used both in
the matrix- and the projective case.

The method immediately delegates to projective methods handling all the diagonal blocks pro-
jectively. This is done by giving a hint to the factor to use the method BlocksModScalars (see
6.3.4) is given. The method for the kernel then has to deal with only scalar blocks, either projec-
tively or with scalars, which is again done by giving a hint to either use BlockScalar (see 6.2.9) or
BlockScalarProj (see 6.3.13) respectively.

Note that this method is implemented in a way such that it can also be used as a method for a
projective group G . In that case the recognition info record has the !.projective component bound
to true and this information is passed down to image and kernel.

6.2.8 GoProjective

This method defines a homomorphism from a matrix group G into the projective group G modulo scalar
matrices. In fact, since projective groups in GAP are represented as matrix groups, the homomorphism
is the identity mapping and the only difference is that in the image the projective group methods can
be applied. The bulk of the work in matrix recognition is done in the projective group setting.

6.2.9 BlockScalar

This method is only called by a hint. Alongside with the hint it gets a block decomposition respected
by the matrix group G to be recognised and the promise that all diagonal blocks of all group elements
will only be scalar matrices. This method recursively builds a balanced tree and does scalar recognition
in each leaf.
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6.2.10 LowerLeftPGroup

This method is only called by a hint from BlockLowerTriangular as the kernel of the homomor-
phism mapping to the diagonal blocks. The method uses the fact the this kernel is a p-group where p
is the characteristic of the underlying field. It exploits this fact and uses this special structure to find
nice generators and a method to express group elements in terms of these.

6.3 Methods for projective groups

The following table gives an overview over the installed methods and their rank (higher rank means
higher priority, the method is tried earlier, see Chapter 4). Note that the recognition for matrix group
switches to projective recognition rather soon in the recognition process such that most recognition
methods in fact are installed as methods for projective groups.

3000 TrivialProjectiveGroup check if all generators are scalar multiples of the identity matrix 6.3.1
1300 ProjDeterminant find homomorphism to non-zero scalars mod d-th powers 6.3.2
1250 FewGensAbelian if very few generators, check IsAbelian and if yes, do KnownNilpotent 6.2.4
1200 ReducibleIso use MeatAxe to find a composition series, do base change 6.2.5
1100 NotAbsolutelyIrred write over a bigger field with smaller degree 6.3.5
1050 ClassicalNatural check whether it is a classical group in its natural representation ??
1000 Subfield write over a smaller field with same degree 6.3.6
900 C3C5 compute a normal subgroup of derived and resolve C3 and C5 ??
850 C6 find either an (imprimitive) action or a symplectic one 6.3.9
840 D247 play games to find a normal subgroup ??
820 SporadicsByOrders generate a few random elements and compute the proj. orders ??
810 AltSymBBByDegree try BB recognition for dim+1 and/or dim+2 if sensible ??
800 Tensor find a tensor decomposition 6.3.10
700 FindElmOfEvenNormal find D2, D4 or D7 by finding an element of an even normal subgroup ??
600 LowIndex find an (imprimitive) action on subspaces 6.3.8
550 ComputeSimpleSocle compute simple socle of almost simple group ??
500 ThreeLargeElOrders look at three large element orders ??
400 LieTypeNonConstr do non-constructive recognition of Lie type groups ??
100 StabilizerChain last resort: compute a stabilizer chain (projectively) 6.3.12

Table: Projective group find homomorphism methods

6.3.1 TrivialProjectiveGroup

This method is successful if and only if all generators of a projective group G are equal to the identity
(that is, in the matrix representation of G , all matrices are scalars). Otherwise, it returns false.

6.3.2 ProjDeterminant

The method defines a homomorphism from a projective group G≤ PGL(d,q) to the cyclic group
GF(q)∗/D, where D is the set of dth powers in GF(q)∗. The image of a group element g ∈ G is the
determinant of a matrix representative of g, modulo D.
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6.3.3 ReducibleIso

This method is the same as the matrix group method with the same name (see 6.2.5), which is able to
take into account the projective mode.

6.3.4 BlocksModScalars

This method is only called when hinted from above. In this method it is understood that G should
neither be recognised as a matrix group nor as a projective group. Rather, it treats all diagonal blocks
modulo scalars which means that two matrices are considered to be equal, if they differ only by a scalar
factor in corresponding diagonal blocks, and this scalar can be different for each diagonal block. This
means that the kernel of the homomorphism mapping to a node which is recognised using this method
will have only scalar matrices in all diagonal blocks.

This method does the balanced tree approach mapping to subsets of the diagonal blocks and finally
using projective recognition to recognise single diagonal block groups.

6.3.5 NotAbsolutelyIrred

If an irreducible projective group G acts absolutely irreducibly then this method returns false. If G
is not absolutely irreducible then a homomorphism into a smaller dimensional representation over an
extension field is defined. A hint is handed down to the image that no test for absolute irreducibility
has to be done any more. Another hint is handed down to the kernel indicating that the only possible
kernel elements can be elements in the centraliser of G in PGL(d,q) that come from scalar matrices in
the extension field.

6.3.6 Subfield

When this method runs it knows that the projective group G acts absolutely irreducibly. It then tries
to realise this group over a smaller field. The algorithm used is the one using the “standard basis
approach” known from isomorphism testing of absolutely irreducible modules. It finds a base change
to write the projective group over the smallest field possible. Since the group is projective, it may
choose to multiply generators with arbitrary scalars to write them over a smaller field.

However, sometimes the correct scalar can not be guessed. Therefore, if the first approach does
not work, the method computes the derived subgroup. If the group can be written over a smaller field,
then taking commutators loses the scalars preventing a direct base change to work. Therefore, if the
derived subgroup still acts irreducibly, the standard basis approach can find the right base change that
could also do the job for the whole group. If it acts reducibly, the method Derived (see 6.3.7) which
is run next already has the computed derived subgroup and can try different things to find a reduction.

6.3.7 Derived

This method computes the derived subgroup, if this has not yet been done by other methods. It then
uses the MeatAxe to decide whether the derived subgroup acts irreducibly or not. If it acts reducibly,
then we can apply Clifford theory to the natural module. The natural module restricted to the derived
subgroup is a direct sum of simple modules. If all the summands are isomorphic, we immediately get
either an action of G on blocks or a tensor decomposition. Otherwise, we get an action of G on the
isotypic components. Either way, we find a reduction.

If the derived group acts irreducibly, we return false in the current implementation.
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6.3.8 LowIndex

This method is designed for the handling of the Aschbacher class C2 (stabiliser of a decomposition of
the underlying vector space), but may succeed on other types of input as well. Given G ≤ PGL(d,q),
the output is either the permutation action of G on a short orbit of subspaces or fail. In the current
setup, “short orbit” is defined to have length at most 4d.

6.3.9 C6

This method is designed for the handling of the Aschbacher class C6 (normaliser of an extraspecial
group). If the input G≤ PGL(d,q) does not satisfy d = rn and r|q−1 for some prime r and integer n
then the method returns false. Otherwise, it returns either a homomorphism of G into Sp(2n,r), or a
homomorphism into the C2 permutation action of G on a decomposition of GF(q)d , or fail.

6.3.10 Tensor

This method currently tries to find one tensor factor by powering up commutators of random elements
to elements of prime order. This seems to work quite well provided that the two tensor factors are not
“linked” too much such that there exist enough elements that act with different orders on both tensor
factors.

This method and its description needs some improvement.

6.3.11 TwoLargeElOrders

In the case when the input group G≤ PGL(d, pe) is suspected to be simple but not alternating, this
method takes the two largest element orders from a sample of pseudorandom elements of G . From
these element orders, it tries to determine whether G is of Lie type or sporadic, and the characteristic
of G if it is of Lie type. In the case when G is of Lie type of characteristic different from p or G is
sporadic, the method also provides a short list of the possible isomorphism types of G .

6.3.12 StabilizerChain

This method computes a stabiliser chain and a base and strong generating set using projective actions.
This is a last resort method since for bigger examples no short orbits can be found in the natural action.
The strong generators are the nice generator in this case and expressing group elements in terms of the
nice generators ist just sifting along the stabiliser chain.

6.3.13 BlockScalarProj

This method is only called by a hint. Alongside with the hint it gets a block decomposition respected
by the matrix group G to be recognised and the promise that all diagonal blocks of all group elements
will only be scalar matrices. This method simply norms the last diagonal block in all generators by
multiplying with a scalar and then delegates to BlockScalar (see 6.2.9) and matrix group mode to do
the recognition.
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Examples

TODO
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