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Introduction

On 21 January 2006 Qucs 0.0.8 was released by the Qucs development team. This
is the first version of the package to include digital circuit simulation based on
VHDL. FreeHDL1 being chosen as the VHDL engine. In the period following the
release of Qucs 0.0.8 there has been considerable activity centred around finding
and correcting a number of bugs in the Qucs digital simulation code. Many of these
fixes are now included in the latest CVS code and will eventually form part of the
next Qucs release. This tutorial note is an attempt on my part to communicate
to other Qucs users a number of background ideas concerning the capabilities and
limitations of the current state of Qucs VHDL simulation. Much of the information
reported here was assembled by the author while assisting Michael Margraf to test
and debug the VHDL code generated by Qucs. In the future, if there is enough
interest in these notes, or indeed in Qucs VHDL simulation in general, I will update
them as the Qucs digital simulation features are improved.

Qucs digital simulation follows a complex set of steps that are mostly transparent
to the software user. In step one, a schematic representing a digital circuit under
test is drawn. This schematic consists of an interconnected group of Qucs digital
components, one or more user defined digital subcircuits (if required), and a copy
of the digital simulation icon with the timing or truth table parameters set. In
step two, the information recorded on a circuit schematic is converted into a text
file containing VHDL statements. These describe the circuit components, their
connection, and a testbench for simulating circuit performance. Next, FreeHDL is
launched by Qucs to convert the VHDL code file into a C++ source program. This
is compiled to form an executable machine code simulation of the original circuit.
Finally, Qucs runs this program, collects signal data as digital signal events take
place and displays signal waveforms as a function of time or digital data in a truth
table format.

The VHDL code generated by Qucs 0.0.8 is limited in its scope by the following
factors:

• Digital gates are described by data flow concurrent statements.

• Flip-flops and the digital signal generator are described by process state-
ments.

• Component connection wires (signals) can only be of type bit as defined in
the standard VHDL library2.

1The FreeHDL Project, http://www.freehdl.seul.org/.
2Signal type bit only defines logic signals ’0’ and ’1’. Care must be taken to ensure that signal

1

http://www.freehdl.seul.org/


• Digital bus structures are not allowed in this release of the Qucs package.

• Digital subcircuits can be drawn as schematics and associated with a symbol
in a similar fashion to analogue subcircuits.

• Digital subcircuit pins can have type in, out, inout or analog. Qucs treats
pins of type analog the same as VHDL pin type inout.

• Once defined digital subcircuits may be placed and connected to other com-
ponents on schematics.

• Multiple copies of the same digital subcircuit are allowed on a single schematic.

• Digital subcircuits may also be nested; nesting has been tested to a depth of
four.

Simulating simple digital circuits

The most basic form of digital circuit that can be simulated is one consisting
entirely of Qucs predefined digital components drawn on a schematic having only
one level of design hierarchy. The truth table for a simple combinational circuit of
this type is shown in Table 1.

Output F can be expressed in sum of products Boolean form as

F = A.B.C + A.B.C + A.B.C + A.B.C

contention does not occur during simulation because the resulting logic state cannot be modelled
with type bit. Signal contention can happen when two or more digital devices attempt to drive
the same wire with logic ’0’ and logic ’1’ signals at the same time. Moreover, it is not possible
to simulate the performance of tristate devices using VHDL signal type bit.

A B C F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Table 1: Truth table for a logic circuit with inputs A, B, C and output F.

2



On minimisation, using Boolean algebra or a Karnaugh map, output F becomes

F = A.C + B.C

The schematic for example 1 is illustrated in Fig. 1. This diagram was constructed
using the same techniques employed for drawing analogue schematics.

Notes on drawing digital schematics

• The only predefined Qucs components that can be used to draw a digital
circuit schematic are (1) the digital components listed in the digital com-
ponents icon window, (2) the ground symbol, and (3) the digital simulation
icon.

• A useful tip when drawing digital schematics is to adopt the matrix approach
shown in Fig. 1. Input signals flow from top to bottom of the schematic and
output signals are positioned on the right-hand side of a horizontal line.
This makes checking the circuit schematic for errors much easier than the
case where diagrams have wires connecting components in an unstructured
way.

• Input and output wires (signals) should be given names consistant with the
circuit being simulated, A, B, C and F in Fig. 1. If the signal wires are
not named by the user, Qucs will allocate them different arbitrary names.
This can make identification and selection of signals for display on an output
waveform graph, and indeed checking for errors in a large circuit, much more
difficult than it need be.

• Notice in Fig. 1 the international symbols for the logic gates are shown on
the schematic.
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Figure 1: Qucs schematic for minimised logic function F.

VHDL code generated by Qucs

Clicking the Qucs Simulate menu button (or pressing key F2) starts the simulation
process. At an early phase in this process Qucs writes a text file to disk that
contains the VHDL code for the circuit being simulated. This file can be displayed
by clicking on the show last netlist drop down menu or by pressing key F6.
The VHDL code produced by Qucs for the circuit shown in Fig. 1 is presented in
Table 2.

Signals identified by nnnet0 and nnnet1 in Table 2 have been allocated these names
by Qucs; nnnet0 and nnnet1 are internal signal nets that are not named on the
circuit schematic shown in Fig. 1. Fig. 2 illustrates the starting section of a typical
Qucs digital functional waveform plot. This style of plot illustrates signal events
without component delays. If required, signal delays can be specified for individual
gates and other components (from the component edit properties menu). The
VHDL code generated for components with delays will then reflect such changes,
for example adding a 10 ns delay to signal CB in Table 2 generates VHDL code

CB <= not C after 10 ns ;

Readers will probably have observed that the Qucs version number referred to
in Table 2 VHDL listing is 0.0.9. This is the current CVS development version
number. Qucs 0.0.9 includes a number of important bug fixes. The remainder of
these notes assume readers have downloaded, and recompiled, the latest CVS code
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−− Qucs 0 . 0 . 9 t u t 1 e x1 . sch
entity TestBench i s
end entity ;
use work . a l l ;

architecture Arch TestBench of TestBench i s
signal CB, A, B, F , C,

nnnet0 ,
nnnet1 : b i t ;

begin
nnnet0 <= C and A;
nnnet1 <= CB and B;
CB <= not C;

A: process
begin

A <= ’ 0 ’ ; wait for 40 ns ;
A <= ’ 1 ’ ; wait for 40 ns ;

end process ;

B: process
begin

B <= ’ 0 ’ ; wait for 20 ns ;
B <= ’ 1 ’ ; wait for 20 ns ;

end process ;

F <= nnnet1 or nnnet0 ;

C: process
begin

C <= ’ 0 ’ ; wait for 10 ns ;
C <= ’ 1 ’ ; wait for 10 ns ;

end process ;

end architecture ;

Table 2: VHDL code for the circuit shown in Fig. 1.
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from Sourceforge.net3.
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Figure 2: Digital functional waveforms for the circuit shown in Fig. 1.

Truth tables

Truth tables are one of the most fundamental and convenient ways of displaying
digital circuit data. Qucs has a built-in facility that allows a truth table to be
generated from a schematic drawing. This feature is particularly useful when
checking minimised logic designs for errors. Lets consider a simple but instructive
example: A logic circuit has four binary inputs A, B, C, and D, and one output
P. Output P is logic ’1’ when inputs ABCD are numbers in the decimal sequence
3, 5, 7, 11 and 13. In Boolean sum of product form

P = A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D + A.B.C.D

This simplifies to

P = D.(A.B + B ⊕ C)

The schematic for the sum of products equation for P is shown in Fig. 3(a). Simi-
larly Fig. 3(b) presents the schematic for a minimised P equation. Setting the dig-
ital simulation type to TruthTable, rather than TimeList, causes Qucs on pressing
key F2, to generate a truth table based on the information provided on a circuit
schematic. The number of truth table inputs, and indeed outputs, correspond to
the number of input generators and the number of named outputs. Truth tables
for both schematics are given in Table 3(a) and 3(b). Comparing these two tables
clearly indicates that they are not identical and moreover confirms that the min-
imised solution is not correct. Reworking the minimisation procedure points to
the error being a missing signal inversion. The correct Boolean equation for P is

P = D.(A.B + B ⊕ C)

3Please note, Qucs Linux release 0.0.8 will normally simulate single hierarchy digital circuits
without error. However, Qucs 0.0.8 does fail at the VHDL to C++ conversion phase if a schematic
includes more than one ground symbol.
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3(a): Truth table for sum of products
equation P

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

a.X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

b.X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

c.X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

d.X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

p.X
0
0
0
1
0
1
0
1
0
0
0
1
0
1
0
0

3(b): Truth table for minimised equation P

0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

a.X
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

b.X
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1

c.X
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1

d.X
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

p.X
0
0
0
1
0
1
0
0
0
0
0
1
0
1
0
1
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Digital subcircuits

Although it is possible to draw complex schematic diagrams using only the pre-
defined digital components supplied with Qucs, this technique can be extremely
tedious, and is of course, prone to error. When drawing large schematics we re-
quire a design procedure that naturally subdivides groups of digital components
into self contained units. These units can then be treated in the same way as
basic digital components when placing and connecting them on a schematic draw-
ing. In the world of analogue and digital circuit design such units are often called
subcircuits.4 A subcircuit is defined by three major attributes plus a number of
other properties. The major attributes are, firstly a digital circuit that defines
circuit function, secondly a circuit symbol that depicts a circuit in a higher level
of a design hierarchy, and thirdly the subcircuit input/output pins shown on the
subcircuit symbol. Other properties include for example, signal path delays. The
process for generating digital subcircuits is identical to that used for analogue sub-
circuits. It is best demonstrated by considering an example. Figure 4 shows the
schematic for a four input combinational circuit.

After drawing a subcircuit schematic, input and output5 pins are attached to signal
ports. Input port pins of type in are shown on circuit diagrams as a green symbol,
signals W, X, Y, and Z, in Fig. 4. Ouput port pins of type out are coloured red,
signal G in Fig. 4. Signal flow through a port is indicated by the direction of the
port symbol arrow head. Input/output signals, and any other signals that need
to be easily identified, are also named. Once the subcircuit schematic is complete,
pressing key F3 causes Qucs to generate a subcircuit symbol. The drawing tools
listed as icons in the Qucs paintings window can be used to edit Qucs generated
subcircuit symbols. The input/output port pins on a subcircuit symbol have the
same type and name as those on the original subcircuit schematic. Fig. 5 shows
the finished symbol for subcircuit COMB1. In these notes, symbol outlines are
shown drawn in accordance with the international code for logic symbols6. To test
our new subcircuit we place it’s symbol on a blank drawing sheet and apply test
signals to the input pins and observe the signals at the output pin. Fig. 6 shows a
typical test circuit. Subcircuit Gen4bit generates a 4 bit test pattern synchronised

4The circuit simulator SPICE is a well known example of a widely used CAD program that
makes extensive use of subcircuits in circuit design.

5Qucs 0.0.8 has a bug which causes a VHDL compile error when subcircuit pins are specified
as type out. A work around for this bug is to specify subcircuit output pins as type analog. The
Qucs routines that generate the circuit VHDL code convert pin type analog into VHDL type
inout. FreeHDL is then able to compile the generated VHDL code without error. This bug has
been corrected in Qucs 0.0.9.

6Ian, Kampel, A practical introduction to the new logic symbols, Butterworths, 1985, ISBN
0-408-01461-X.
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Figure 4: Combinational logic circuit with inputs W, X, Y, Z, and output G.

to the input of a digital clock. The specification for Gen4bit is given in the next
section of these notes7. The test pattern waveform and output signal G are shown
plotted as a function of time in Fig. 7.

7Subcircuit Gen4bit includes other nested subcircuits. Qucs 0.0.8 has a bug that causes
VHDL compile errors with some configurations of nested subcircuits. This has been fixed in
version 0.0.9.
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Figure 5: Qucs symbol for a logic circuit with inputs W, X, Y, Z, and output G.
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Figure 6: Test schematic for a logic circuit with inputs W, X, Y, Z, and output G.

11



dtime

r.X
clock.X
b0.X
b1.X
b2.X
b3.X
g.X

5n 10n 20n 30n 40n 50n 60n 70n 80n 90n 100n 110n

Figure 7: Digital functional waveforms for a logic circuit with inputs W, X, Y, Z,
and output G.

12



Building a digital component library

The Qucs graphical user interface includes good project handling features. Com-
bining these features with the Qucs subcircuit capabilities provides all the tools
required for the development of a library of common digital components. Such
a library can be stored in a master project and the individual component files
imported into other projects when required. Here are a few components that I
developed during a recent series of tests aimed at detecting bugs in the VHDL
code generated by Qucs.

Logic zero

L0

SUB
File=name

0
L0

Logic one

L1

SUB
File=name

1 1

Y1

L1
L1

G2bit - 2 bit pattern generator

SUB
File=name

B1

B0

CLK

B0

B1

RES R

Gen2bit
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G4bit - 4 bit pattern generator
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MUX2to1 - 2 input to 1 output multiplexer

EN A Y
1 X L
0 0 D0
0 1 D1

SUB
File=name

MUX

ENB

A
Y

D1

D0

EN

0

1

0 0} G
1

1

Y4&

Y3

&

Y2

1

Y1
YA

D0

D1

D1

Y
D0

A
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MUX4to1 - 4 input to 1 multiplexer

B A EN Y
X X 1 0
0 0 0 D0
0 1 0 D1
1 0 0 D2
1 1 0 D3

SUB
File=name

ENB

A

B

D0

D1

D3

D2

Y

MUX
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0
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} 0
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&
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&
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&
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2 bit adder
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SUB
File=name
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Y7
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&
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=1

Y10
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S1

S2
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Subcircuit VHDL code generated by Qucs

Qucs generates a separate entity-architecture model for each subcircuit. These
component definitions are compiled into the work library by FreeHDL. Here is the
VHDL code from two of the previous examples.

Gen2bit
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entity Sub gen2bit i s
port (CLK: in b i t ;

R: in b i t ;
nnout B0 : out b i t ;
nnout B1 : out b i t ) ;

end entity ;
use work . a l l ;
architecture Arch Sub gen2bit of Sub gen2bit i s

signal B0b ,
B1b ,
JK,
nnnet0 ,
B0 ,
B1 : b i t ;

begin
FF0 : process ( nnnet0 , R, CLK)
begin

i f (R= ’1 ’) then B0 <= ’ 0 ’ ;
e l s i f ( nnnet0 = ’1 ’) then B0 <= ’ 1 ’ ;
e l s i f (CLK= ’1 ’ and CLK’ event ) then

B0 <= (JK and not B0) or (not JK and B0 ) ;
end i f ;

end process ;
B0b <= not B0 ;

FF1 : process ( nnnet0 , R, B0b)
begin

i f (R= ’1 ’) then B1 <= ’ 0 ’ ;
e l s i f ( nnnet0 = ’1 ’) then B1 <= ’ 1 ’ ;
e l s i f (B0b= ’1 ’ and B0b ’ event ) then

B1 <= (JK and not B1) or (not JK and B1 ) ;
end i f ;

end process ;
B1b <= not B1 ;

SUB2 : entity S u b l o g i c z e r o port map ( nnnet0 ) ;
nnout B0 <= B0 or ’ 0 ’ ;
nnout B1 <= B1 or ’ 0 ’ ;
SUB1 : entity Sub Logic one port map (JK ) ;

end architecture ;

2 bit adder

entity Sub fadd 2bi t i s
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port (A1 : in b i t ;
B1 : in b i t ;
A2 : in b i t ;
B2 : in b i t ;
CI : in b i t ;
nnout S1 : out b i t ;
nnout S2 : out b i t ;
nnout CO : out b i t ) ;

end entity ;
use work . a l l ;
architecture Arch Sub fadd 2bit of Sub fadd 2bi t i s

signal nnnet0 ,
nnnet1 ,
nnnet2 ,
nnnet3 ,
nnnet4 ,
nnnet5 ,
nnnet6 ,
S2 ,
CO,
S1 : b i t ;

begin
S1 <= CI xor B1 xor A1 ;
nnnet0 <= B2 xor A2 ;
nnnet1 <= nnnet0 and nnnet2 ;
nnnet3 <= B2 and A2 ;
nnnet2 <= nnnet4 or nnnet5 ;
nnnet4 <= nnnet6 and CI ;
nnnet5 <= B1 and A1 ;
S2 <= B2 xor A2 xor nnnet2 ;
CO <= nnnet3 or nnnet1 ;
nnnet6 <= B1 xor A1 ;
nnout S2 <= S2 or ’ 0 ’ ;
nnout CO <= CO or ’ 0 ’ ;
nnout S1 <= S1 or ’ 0 ’ ;

end architecture ;

Notes on subcircuit VHDL generation

• Qucs predefined digital components generate concurrent data flow signal
statements or process statements.

• Previously defined subcircuit symbols generate VHDL port map statements.
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• Type out entity port signals are prevented from being read as input signals
by masking each output signal using the logic function signal-name OR
’0’.8

• A VHDL

use work . a l l ;

statement is included before each subcircuit architecture definition to ensure
that FreeHDL can find any nested subcircuits 9.

• The complete VHDL code file for a digital design is composed from an outer
test bench entity-architecture model plus entity-architecture models for each
subcircuit specified in the design,

Subcircuit nesting: A more complex design exam-

ple

In theory there is no limit to the depth of subcircuit nesting allowed by Qucs. In
practice most digital circuit schematics can be constructed with a maximum of
four or five levels of design hierarchy. Figure 8 shows an example that was used
to test Qucs subcircuit nesting performance. The design is a simple RTL function
that uses a multiplexer to transfer data from one of two input registers to a single
output register. The next section of these notes outlines in detail the specification
of the subcircuits needed to build the RTL design. A set of sample simulation
waveforms showing the register transfer operation are illustrated in Fig. 9.

8Attempting to read entity port signals of type out results in a VHDL compile error.
9Strictly speaking it should not be necessary to specifically state the use of the work library as

this library is normally visible at all times when compiling entity-architecture models. However,
at this stage in the development of FreeHDL it does appear that it is necessary when using the
default FreeHDL VHDL library mapping.
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4 bit RTL design
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D flip-flop with load enable
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QuadMux
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dtime

clock.X
control1.X
control2.X
load.X
r1q0.X
r1q1.X
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Figure 9: Sample simulation waveforms for RTL design.

Update number one: May 2006

Although it is only a short time since the first version of these digital tutorial notes
was posted on the Qucs Sourceforge Web site, much has happened in the world of
Qucs digital simulation. Bugs in the Qucs code have been found, and fixed, and
a range of new features added to the software. These expand the power of Qucs
digital simulation and give users a glimpse of how the package will evolve in the
future. The purpose of these notes is firstly to update readers as to the changes to
Qucs digital simulation and secondly to explain how to use the new Qucs features.
Please note however, they are not intended to teach readers how to program using
VHDL.10

Bugs, corrections and small changes to the Qucs digital sim-
ulation code

All the bugs reported in the first version of these notes have been corrected in
the latest Qucs CVS code. These corrections are, of course, also included in Qucs
release 0.0.9. During testing a number of other annoying, but significant, bugs
have also been found and eliminated, these include

10A good introduction to the VHDL language and it’s application in digital system design can
be found in Digital System Design using VHDL by Charles H. Roth, Jr, PWS Publishing
Company, 1997, ISBN 0-534-95099-X.
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• Multiple input gates (three or more inputs) of types nand and nor failed at
the FreeHDL compile stage due to an error in the VHDL code generated by
Qucs.

• Signals names and, for example, component names constructed from a single
letter that was an abbreviation for a physical unit failed to compile.

• Changing digital component time delays caused component connections on
a schematic to be removed.

• GUI problems caused by errors in the symbol rotation and mirror code.

• Qucsconv code conversion errors caused the Qucs digital simulation cycle to
fail before plotting TimeList waveforms.

A number of changes to either the VHDL code generated by Qucs or the schematic
capture GUI have been introduced, these include

• The VHDL code generated by Qucs for the ground symbol has been changed
from

gnd <= gnd and ’ 0 ’ ;

to

gnd <= ’ 0 ’ ;

• The symbol for digital inout ports has been changed from the analogue pin
symbol to one that consists of the digital in and out pins drawn back-to-back.
This reflects the bidirectional status of an inout port.

A more complete list of all the bug corrections and other program modifications
can be found in the Qucs change log files.

New digital simulation features

The flow diagram illustrated in Fig. 10 shows a number of different simulation
routes for a digital circuit under test. The Qucs digital simulation facilities have
been improved to include direct simulation of VHDL testbench code and the sim-
ulation of circuit schematics that include digital components specified by VHDL
entity-architecture models. The various combinations that users can adopt for
Qucs digital circuit entry are as follows:
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1. Schematic circuit entry using predefined digital component symbols, subcir-
cuits generated using the same symbols and a copy of the digital simulation
icon; this is the approach described in the first version of these tutorial notes.

2. Circuit entry identical to 1 plus symbols for digital components specified by
VHDL entity-architecture models.

3. Circuit entry using the Qucs VHDL code editor. The text entered describes
both the circuit under test and the test vectors needed to drive the circuit
inputs during simulation.

Once the circuit under test has been entered into Qucs, clicking the Simulate menu
button, or pressing key F2, starts the Qucs digital simulation process.

Limitations

Before describing the new digital simulation features it is important that readers
understand the limitations that are inherent in the various digital simulation routes
described in the last section and illustrated in the flow diagram shown in Fig. 10.
Qucs schematic capture allows users to draw circuits consisting of predefined com-
ponent symbols and subcircuit symbols. At this stage in the development of the
GUI digital signals must be of type bit (as defined in the VHDL standard library
- library STD in the FreeHDL package) where individual signals flow through a
single wire. Qucs schematic drawing bus structures of VHDL type bit-vector, for
example, have not been implemented yet. This implies that the device symbol port
pins must represent single signals. Similarly the nets connecting pins on more than
one device can only be single signal nets and not bus structures. It is anticipated
that this will change in a future Qucs release.

Although the current release of FreeHDL is 0.0.1 the package implements a sub-
stantial subset of the entire VHDL language11. The major features not supported
by release 0.0.1 are:

• Shared variables.

• The following attributes; transaction, quiet, stable and delayed.

• User defined attributes.

• Groups.

11A complete description of the 1987 and 1993 specifications of the VHDL language can be
found in The Designer’s Guide to VHDL by Peter J Ashenden, second edition 2002, Morgan
Kaufmann Publishers, ISBN 1-55860-674-2.
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Figure 10: Flow diagram of Qucs digital simulation routes.
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• Guarded signal assignments.

• Currently drivers cannot be switched off.

The Qucs TimeList plotting program uses signal data output by the machine code
simulation program generated by the FreeHDL package12. A current limitation of
the TimeList plotting program is that it can only display signals of type bit. Bus
signal waveforms cannot be displayed.

Given the above limitations it is therefore possible to write VHDL code that can
be compiled by FreeHDL but will cause problems at either the schematic drawing
or output waveform plotting stages in the Qucs simulation cycle. As Qucs develops
it is expected that these limitations will be removed. On the subject of limitations
one final point to note: FreeHDL can simulate circuits described by the data types
and other features found in the

IEEE.std_logic_1164

library and other predefined libraries. However, at this stage in the development
of the Qucs software only the VHDL standard library may be used, implying that
data type bit must be used to represent logic signals.

Using the Qucs VHDL editor

Qucs release 0.0.9 includes a VHDL text editor13 that has all the usual edit features
plus colour coding of the various VHDL language statements. One unusual feature
of this editor is a zoom control that allows the text size to be increased or decreased
in a similar way to the schematic drawing zoom. The VHDL editor is included
in the Qucs package for two primary purposes, firstly for purely text file VHDL
simulation14 and secondly for the development of VHDL entity-architecture models
that can be linked to schematic capture symbols. The latter increases significantly
the capabilities of the Qucs software in that it allows libraries of hand-crafted
device models to be constructed. These new library devices will, given support by
the general Qucs user community, greatly expand the potential use of the Qucs
package. In this section the use of the VHDL text editor is demonstrated through a
series of digital circuit simulation examples. The included VHDL listings indicate
typical Qucs use of a number of the basic VHDL data types. The text also outlines
any limitations imposed by Qucs.

12The machine code simulation program outputs signal data in VCD format. This is then
converted to the Qucs TimeList data format by the qucsconv utility program.

13To launch the new VHDL editor click on the second icon from the left on the Qucs toolbar.
It can also be activated using the key sequence Ctrl+Shift+V.

14This is still the preferred method amongst many experienced users of VHDL. However, the
circuit schematic drawing approach does seem to be growing in popularity.
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• Example 1: A sum of products (SOP) combinational digital circuit.

The Boolean equation15 for a SOP combinational circuit is:

f = W.X.Y .Z + W.X.Y .Z + W.Y .Z + W.X.Y.Z

The VHDL code for a structural model of this combinational circuit and its
associated testbench is given in the following listing.

−− Qucs VHDL ed i t o r example 1
−−
entity t e s t v e c t o r i s −− Test v ec t o r genera tor .

port ( z , y , x , w : out b i t
) ;

end entity t e s t v e c t o r ;
−−
architecture behav ioura l of t e s t v e c t o r i s
begin
pz : process i s

begin
z <= ’0 ’ ; wait for 20 ns ;
z <= ’1 ’ ; wait for 20 ns ;

end process pz ;
py : process i s

begin
y <= ’0 ’ ; wait for 40 ns ;
y <= ’1 ’ ; wait for 40 ns ;

end process py ;
px : process i s

begin
x <= ’0 ’ ; wait for 80 ns ;
x <= ’1 ’ ; wait for 80 ns ;

end process px ;
pw : process i s

begin
w <= ’0 ’ ; wait for 160 ns ;
w <= ’1 ’ ; wait for 160 ns ;

end process pw;
end architecture behav ioura l ;
−−
entity and4 i s −− 4 input and ga te .

15The Boolean equation for function f has not been minimised. It is in a form derived directly
from a truth table and is introduced purely as an example to demonstrate the use of the Qucs
VHDL editor.
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port ( in1 , in2 , in3 , in4 : in b i t ;
out1 : out b i t

) ;
end entity and4 ;
−−
architecture dataf low of and4 i s
begin

out1 <= in1 and in2 and in3 and in4 ;
end architecture dataf low ;
−−
entity and3 i s −− 3 input and ga te .

port ( in1 , in2 , in3 : in b i t ;
out1 : out b i t

) ;
end entity and3 ;
−−
architecture dataf low of and3 i s
begin

out1 <= in1 and in2 and in3 ;
end architecture dataf low ;
−−
entity or4 i s −− 4 input or ga te .

port ( in1 , in2 , in3 , in4 : in b i t ;
out1 : out b i t

) ;
end entity or4 ;
−−
architecture dataf low of or4 i s
begin

out1 <= in1 or in2 or in3 or in4 ;
end architecture dataf low ;

entity inv i s −− I n v e r t e r .
port ( in1 : in b i t ;

out1 : out b i t
) ;

end entity inv ;
−−
architecture dataf low of inv i s
begin

out1 <= not in1 ;
end architecture dataf low ;
−−
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entity te s tbench i s −− Test bench outer e n t i t y wrapper .
end entity te s tbench ;
−−
l ibrary work ;
use work . a l l ;
−−
architecture s t r u c t u r a l of te s tbench i s −− Testbench a r c h i t e c t u r e .
signal b0 , b1 , b2 , b3 , zb , yb , xb , wb, a , b , c , d , f : b i t ;
begin

d1 : entity t e s t v e c t o r port map( b0 , b1 , b2 , b3 ) ;
d2 : entity inv port map( b0 , wb ) ;
d3 : entity inv port map( b1 , xb ) ;
d4 : entity inv port map( b2 , yb ) ;
d5 : entity inv port map( b3 , zb ) ;
d6 : entity and4 port map( zb , yb , b1 , wb, a ) ;
d7 : entity and4 port map( zb , yb , xb , wb, b ) ;
d8 : entity and3 port map( zb , yb , b0 , c ) ;
d9 : entity and4 port map( b0 , b1 , b2 , b3 , d ) ;
d10 : entity or4 port map( a , b , c , d , f ) ;

end architecture s t r u c t u r a l ;

On entry of this code into the Qucs VHDL text editor the text is colour
coded. Unfortunately, the colour coding is lost when printed, or pasted
into a word processor, or a layout package like LaTeX. The structure of the
VHDL listing follows the normal convention for text based VHDL simulation.
All component entity-architecture models must be defined before they are
referenced in other component models. The simulation test bench must be
the last entity-architecture model in the VHDL listing. During the VHDL
compile phase FreeHDL compiles the component entity-architecture models
to the work library16. These compiled models are then made available to the
simulation test bench through the use of the VHDL use statement inserted
in the listing prior to the testbench architecture statement. Once the VHDL
listing for the simulation has been typed into the Qucs VHDL code editor,
pressing key F2 starts the simulation process. The simulation duration can be
set using the Document Settings in the File dropdown menu (or by pressing
the Ctrl+. keys). Any VHDL syntax errors, or indeed typos, are written to
file and can be viewed by pressing key F5. Obviously if errors are reported
these need to be corrected using the VHDL text editor and the simulation
cycle restarted. A typical TimeList output for editor example 1 is shown in

16In most VHDL implementations library work is always visible and there is no requirement
to make it visible by using the library and use statements. However, FreeHDL appears to need
these statements at the linking phase otherwise the VHDL compiler fails.
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Fig. 11.

dtime

b0.X
b1.X
b2.X
b3.X
f.X

0 20n 40n 60n 80n 100n 120n 140n 160n 180n 200n 220n 240n 260n 280n 300n 320n

Figure 11: Sample simulation waveforms for VHDL editor example 1 design.

• Example 2: VHDL editor example 1 modelled using dataflow VHDL state-
ments.

The VHDL code for the second example is given in the next listing. The
VHDL style chosen to model the circuit is based on VHDL dataflow con-
current signal assignments. The input text vectors are generated using a
simple state machine rather than separate process statements. The test vec-
tor generator port specification uses entirely single signal bit types and can
be easily interfaced, without problems, to other components connected on a
Qucs schematic diagram. The procedure for generating schematic capture
component symbols from entity - architecture models is introduced in a later
section of these notes. The use of bit vector bus constructions is also il-
lustrated in this example. Qucs allows the use of bit vectors as signals or
variables in VHDL models provided all signals in the port statement of en-
tity declaration are of type bit only.17 A typical TimeList output for editor
example 2 is shown in Fig. 12.

−− Qucs VHDL ed i t o r example 2
−−
entity t e s t v e c t o r a i s

port ( RESET, CLOCK : in b i t ;
B0 , B1 , B2 , B3 : out b i t

) ;
end entity t e s t v e c t o r a ;
−−
architecture behav ioura l of t e s t v e c t o r a i s
signal p r e s e n t s t a t e , n e x t s t a t e : b i t v e c t o r (3 downto 0):= ”1111 ” ;
begin

17This is a restriction of Qucs 0.0.9 and will be removed in a later release of the package.
Also note signals of type bit vector that are declared in architecture definitions are listed in the
TimeList plot signal dialogue. However, a text message saying no data results if an attempt is
made to display them. Again this limitation will be removed in a later release of Qucs.
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−−
p1 : process (CLOCK ) i s

begin
i f (CLOCK’ event and CLOCK= ’1 ’) then

p r e s e n t s t a t e <= n e x t s t a t e ;
end i f ;

end process p1 ;
−−
p2 : process (RESET, p r e s e n t s t a t e ) i s

begin
i f (RESET = ’1 ’ ) then n e x t s t a t e <= ”1111 ” ;
end i f ;

case p r e s e n t s t a t e i s
when ”0000 ” => n e x t s t a t e <= ”0001 ” ;
when ”0001 ” => n e x t s t a t e <= ”0010 ” ;
when ”0010 ” => n e x t s t a t e <= ”0011 ” ;
when ”0011 ” => n e x t s t a t e <= ”0100 ” ;
when ”0100 ” => n e x t s t a t e <= ”0101 ” ;
when ”0101 ” => n e x t s t a t e <= ”0110 ” ;
when ”0110 ” => n e x t s t a t e <= ”0111 ” ;
when ”0111 ” => n e x t s t a t e <= ”1000 ” ;
when ”1000 ” => n e x t s t a t e <= ”1001 ” ;
when ”1001 ” => n e x t s t a t e <= ”1010 ” ;
when ”1010 ” => n e x t s t a t e <= ”1011 ” ;
when ”1011 ” => n e x t s t a t e <= ”1100 ” ;
when ”1100 ” => n e x t s t a t e <= ”1101 ” ;
when ”1101 ” => n e x t s t a t e <= ”1110 ” ;
when ”1110 ” => n e x t s t a t e <= ”1111 ” ;
when ”1111 ” => n e x t s t a t e <= ”0000 ” ;

end case ;
B3 <= n e x t s t a t e ( 3 ) ; B2 <= n e x t s t a t e ( 2 ) ;
B1 <= n e x t s t a t e ( 1 ) ; B0 <= n e x t s t a t e ( 0 ) ;

end process p2 ;
end architecture behav ioura l ;
−−
l ibrary work ;
use work . a l l ;
−−
entity te s tbench i s
end entity te s tbench ;
−−
architecture dataf low of te s tbench i s
signal r e s e t , c lk , b0 , b1 , b2 , b3 , zb : b i t ;
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signal yb , xb , wb, a , b , c , d , f : b i t ;
begin
p1 : process i s

begin
c l k <= ’ 0 ’ ; wait for 10 ns ;
c l k <= ’ 1 ’ ; wait for 10 ns ;

end process p1 ;
−−
p2 : process i s

begin
r e s e t <= ’ 1 ’ ; wait for 10 ns ;
r e s e t <= ’ 0 ’ ; wait for 2000 ns ;

end process p2 ;
−−
d1 : entity t e s t v e c t o r a port map( r e s e t , c lk , b0 , b1 , b2 , b3 ) ;
−−
−− Data f l ow model o f combinat iona l c i r c u i t

wb <= not b0 ; xb <= not b1 ; yb <= not b2 ; zb <= not b3 ;
a <= (wb and b1 ) and ( yb and zb ) ;
b <= (wb and xb ) and ( yb and zb ) ;
c <= b0 and ( yb and zb ) ;
d <= ( b0 and b1 ) and ( b2 and b3 ) ;
f <= a or b or c or d ;

end architecture dataf low ;

dtime

reset.X
b0.X
b1.X
b2.X
b3.X
f.X

0 10n 20n 30n 40n 50n 60n 70n 80n 90n 100n 110n 120n 130n 140n 150n 160n 170n

Figure 12: Sample simulation waveforms for VHDL editor example 2 design.

• Example 3: VHDL editor example 1 modelled using VHDL process state-
ments and variables.

The VHDL code for the third example is given in the listing at the end of
this paragraph. In this example the use of VHDL variables is illustrated.
The VHDL code for the vector generator is a little unusual in that rather
than using the traditional two process design employing signals, a single
process statement employing variables undertakes both the calculation of
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the next state data and the transfer of the next state information to the
present state. This approach is necessary because FreeHDL does not allowed
shared variables. Once again in this example only single bit data is passed
via the entity statement to the device under test. The device under test is
represented by a truth table encoded in a process statement. This is not the
most elegant code but it does serve the purpose of demonstrating the use
of different VHDL constructions and data types in Qucs digital simulation.
A typical TimeList plot for VHDL editor example 3 is shown in Fig. 13.
Comparison of the three output plots for the VHDL editor examples indicates
that all the simulation results are very similar with some slight differences in
the start up phase following the RESET pulse changing from logic ’1’ to logic
’0’. This is probably an effect due to the different initialisation sequences for
each of the test vector models.

−− Qucs VHDL ed i t o r example 3
−−
entity t e s t v e c t o r b i s

port ( RESET, CLOCK : in b i t ;
B0 , B1 , B2 , B3 : out b i t

) ;
end entity t e s t v e c t o r b ;
−−
architecture behav ioura l of t e s t v e c t o r b i s
begin
p1 : process (RESET, CLOCK) i s

variable p r e s e n t s t a t e , n e x t s t a t e :
b i t v e c t o r (3 downto 0):= ”0000 ” ;

begin
i f (RESET = ’1 ’ ) then n e x t s t a t e := ”0000 ” ;
e l s i f (CLOCK’ event and CLOCK= ’1 ’) then

p r e s e n t s t a t e := n e x t s t a t e ;
case p r e s e n t s t a t e i s
when ”0000 ” => n e x t s t a t e := ”0001 ” ;
when ”0001 ” => n e x t s t a t e := ”0010 ” ;
when ”0010 ” => n e x t s t a t e := ”0011 ” ;
when ”0011 ” => n e x t s t a t e := ”0100 ” ;
when ”0100 ” => n e x t s t a t e := ”0101 ” ;
when ”0101 ” => n e x t s t a t e := ”0110 ” ;
when ”0110 ” => n e x t s t a t e := ”0111 ” ;
when ”0111 ” => n e x t s t a t e := ”1000 ” ;
when ”1000 ” => n e x t s t a t e := ”1001 ” ;
when ”1001 ” => n e x t s t a t e := ”1010 ” ;
when ”1010 ” => n e x t s t a t e := ”1011 ” ;
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when ”1011 ” => n e x t s t a t e := ”1100 ” ;
when ”1100 ” => n e x t s t a t e := ”1101 ” ;
when ”1101 ” => n e x t s t a t e := ”1110 ” ;
when ”1110 ” => n e x t s t a t e := ”1111 ” ;
when ”1111 ” => n e x t s t a t e := ”0000 ” ;

end case ;
end i f ;

B3 <= n e x t s t a t e ( 3 ) ; B2 <= n e x t s t a t e ( 2 ) ;
B1 <= n e x t s t a t e ( 1 ) ; B0 <= n e x t s t a t e ( 0 ) ;

end process p1 ;
end architecture behav ioura l ;
−−
l ibrary work ;
use work . a l l ;
−−
entity te s tbench i s
end entity te s tbench ;
−−
architecture dataf low of te s tbench i s
signal r e s e t , c lk , b0 , b1 , b2 , b3 , f : b i t ;
begin
p1 : process i s

begin
c l k <= ’ 0 ’ ; wait for 10 ns ;
c l k <= ’ 1 ’ ; wait for 10 ns ;

end process p1 ;
−−
p2 : process i s

begin
r e s e t <= ’ 1 ’ ; wait for 10 ns ;
r e s e t <= ’ 0 ’ ; wait for 2000 ns ;

end process p2 ;
−−
d1 : entity t e s t v e c t o r b port map( r e s e t , c lk , b0 , b1 , b2 , b3 ) ;
−−
−− Behavioura l model o f combinat iona l c i r c u i t
p3 : process ( b3 , b2 , b1 , b0 ) i s

variable SEL : b i t v e c t o r (3 downto 0 ) ;
begin

SEL := b3&b2&b1&b0 ;
i f (SEL = ”0010 ”) then f <= ’ 1 ’ ;
e l s i f (SEL = ”0000 ”) then f <= ’ 1 ’ ;
e l s i f (SEL = ”1111 ”) then f <= ’ 1 ’ ;
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e l s i f (SEL = ”0001 ”) then f <= ’ 1 ’ ;
e l s i f (SEL = ”0011 ”) then f <= ’ 1 ’ ;
else f <= ’ 0 ’ ;
end i f ;

end process p3 ;
end architecture dataf low ;

dtime

reset.X
b0.X
b1.X
b2.X
b3.X
f.X
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Figure 13: Sample simulation waveforms for VHDL editor example 3 design.

Linking VHDL entity-architecture models to Qucs schematic
device symbols

VHDL was originally developed as a hardware description language for specify-
ing digital systems. Indeed many engineers still prefer to describe digital systems
entirely in VHDL statements rather than use schematic drawings. Once writ-
ten VHDL code is saved as a text file and becomes the input data for a VHDL
compiler/simulation package. Through popular demand a number of digital syn-
thesis/simulator CAD tools18 have started to include a facility that links VHDL
model code to a schematic capture symbol. It is then, of course, possible to use
a schematic diagram as the main entry media19 when designing and simulating a
digital design. Qucs release 0.0.9 has such a facility, allowing VHDL code models
to be linked to schematic symbols. When drawing digital design schematics, these
user defined symbols may be mixed with the Qucs predefined digital symbols and
other user defined subcircuit symbols. The process for linking VHDL code to Qucs
schematic drawing symbols is straightforward and will be illustrated in these notes
through two examples.

• Example 4: A 4 bit test vector pattern generator.

18See for example the XILINX, WebPACK software at http//www.xilinx.com/ise/logic_

design_prod/webpack.htm.
19Please note that at the start of the VHDL simulation process schematic drawings are con-

verted into a VHDL text file.
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Shown in Table 4 is the VHDL entity-architecture model listing for a 4 bit
binary pattern generator. The VHDL code is identical to the test vector code
introduced in the third VHDL editor example. After entering the VHDL
entity-architecture model code using the Qucs VHDL editor the finished
text is saved in a file with a suitable name and file extension vhdl. Qucs
then lists the model under the VHDL project category. Simply clicking on a
model name in the VHDL category, with the left hand mouse button, then
moving the mouse pointer to a suitable position on a schematic, causes Qucs
to move a symbol that represents the model onto the schematic drawing
sheet. Placement of the symbol at the position located by the mouse pointer
is achieved by clicking the left hand mouse button. The procedure is identical
to that used to select and place the Qucs predefined symbols on a schematic
drawing. Qucs automatically generates a rectangular symbol with a name
called VHDL that has the same number of pins as the port statement listed
in the VHDL model entity statement. Each of the pins is given a name
that corresponds to a name in the entity statement. Qucs fixes the order
of the pins on the generated symbol. It appears that it is not possible to
edit this symbol. However, subcircuit in, out or inout port symbols can
be attached to symbol VHDL and a user edited symbol generated. Fig. 14
shows the Qucs generated VHDL symbol with attached ports for the model
listed in Table 4. The edited symbol for the 4 bit binary pattern generator
is illustrated in Fig. 15. Notice that in Fig. 15 the order of the pins has
been changed to reflect the natural order for a device with it’s input pins
on the left and output pins on the right. VHDL model symbols can also
be generated by placing the VHDL file component, this is located in the
digital components viewlist, on a schematic. On editing the VHDL file name
property of this device to the name of a VHDL entity-architecture model file,
Qucs automatically generates a VHDL symbol. Defining your own symbol
then proceeds in a similar fashion to the way described above.

• Example 5: A 4 bit full adder.

VHDL model symbols may be combined with either the Qucs predefined
digital component symbols or other subcircuit symbols. In this example a
VHDL model for a simple one bit full adder is connected four times in a
serial fashion to form a 4 bit full adder. The VHDL model code for a simple
one bit full adder is given in Table 5. The associated symbol diagrams for
the one bit full adder are illustrated in Fig. 16 and Fig. 17.
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entity patgen 4b i t i s
port ( RESET, CLOCK : in b i t ;

B0 , B1 , B2 , B3 : out b i t
) ;

end entity patgen 4b i t ;
−−
architecture behav ioura l of patgen 4b i t i s
begin
p1 : process (RESET, CLOCK) i s

variable p r e s e n t s t a t e , n e x t s t a t e :
b i t v e c t o r (3 downto 0):= ”0000 ” ;

begin
i f (RESET = ’1 ’ ) then n e x t s t a t e := ”0000 ” ;
e l s i f (CLOCK’ event and CLOCK= ’1 ’) then
p r e s e n t s t a t e := n e x t s t a t e ;
case p r e s e n t s t a t e i s
when ”0000 ” => n e x t s t a t e := ”0001 ” ;
when ”0001 ” => n e x t s t a t e := ”0010 ” ;
when ”0010 ” => n e x t s t a t e := ”0011 ” ;
when ”0011 ” => n e x t s t a t e := ”0100 ” ;
when ”0100 ” => n e x t s t a t e := ”0101 ” ;
when ”0101 ” => n e x t s t a t e := ”0110 ” ;
when ”0110 ” => n e x t s t a t e := ”0111 ” ;
when ”0111 ” => n e x t s t a t e := ”1000 ” ;
when ”1000 ” => n e x t s t a t e := ”1001 ” ;
when ”1001 ” => n e x t s t a t e := ”1010 ” ;
when ”1010 ” => n e x t s t a t e := ”1011 ” ;
when ”1011 ” => n e x t s t a t e := ”1100 ” ;
when ”1100 ” => n e x t s t a t e := ”1101 ” ;
when ”1101 ” => n e x t s t a t e := ”1110 ” ;
when ”1110 ” => n e x t s t a t e := ”1111 ” ;
when ”1111 ” => n e x t s t a t e := ”0000 ” ;

end case ;
end i f ;
B3 <= n e x t s t a t e ( 3 ) ; B2 <= n e x t s t a t e ( 2 ) ;
B1 <= n e x t s t a t e ( 1 ) ; B0 <= n e x t s t a t e ( 0 ) ;

end process p1 ;
end architecture behav ioura l ;

Table 4: VHDL code for a 4 bit pattern generator.
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Figure 14: Qucs generated VHDL symbol with subcircuit ports for test pattern
generator.
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Figure 15: User defined 4 bit pattern generator symbol.

−− Fu l l adder − 1 b i t
entity f u l l a d d e r i s

port ( a , b , c in : in b i t ;
sum , cout : out b i t

) ;
end entity f u l l a d d e r ;
−−
architecture dataf low of f u l l a d d e r i s
begin

sum <= ( a xor b) xor c in ;
cout <= ( a and b) or ( a and c in ) or (b and c in ) ;

end architecture dataf low ;

Table 5: VHDL code for a 1 bit full adder.
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Figure 16: Qucs generated VHDL symbol with subcircuit ports for one bit full
adder.
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Figure 17: User defined one bit full symbol.

Figure 18 shows the schematic for a simple 4 bit ripple adder. The corre-
sponding user defined symbol for the 4 bit full adder is given in Fig. 19.
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coutb3
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�

CI
CO
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Figure 18: 4 bit full adder schematic.

Generating VHDL code from Qucs schematic drawings

Pressing key F2 causes Qucs to simulate the design entered by the Qucs user.
The input data for a simulation is either a VHDL text file, saved from the VHDL
text editor, or a VHDL code file generated by Qucs using the information encoded
on a schematic drawing. In this section of these tutorial notes a larger design
is introduced and the resulting VHDL code and simulation results are discussed.
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Figure 19: User defined 4 bit full adder symbol.

b3 b2 b1 b0
a3 a2 a1 a0
a0b3 a0b2 a0b1 a0b0

a1b3 a1b2 a1b1 a1b0
a2b3 a2b2 a2b1 a2b0

a3b3 a3b2 a3b1 a3b0
r7 r6 r5 r4 r3 r2 r1 r0

Table 6: Product table for a 4 bit by 4 bit combinational multiplier.

The example chosen for this purpose is a 4 bit by 4 bit combinational digital
multiplier. Both the 4 bit pattern generator and the 4 bit full adder outlined in
the last section form part of the central core of the 4 bit multiplier design and
it’s associated testbench. Table 6 shows the multiplication product table for a 4
bit by 4 bit combinational binary multiplier. Inputs to the device are binary bits
a3 a2 a1 a0 and b3 b2 b1 b0. The 4 by 4 multiplier device requires 16 and gates
(to generate the multiplier product terms), three four bit full adders (to sum the
output r terms) and two 4 bit pattern generators to test the 256 possible input
states. The multiplier output is represented in Table 6 by r7 r6 r5 r4 r3 r2 r1 and
r0. The circuit schematic for the 4 bit by 4 bit multiplier and test bench are given
in Fig. 20.

The VHDL code for this example is presented in the following listing. This listing

44



was generated by Qucs20. A small section of the TimeList waveform plot for the
digital multiplier is shown in Fig. 21. At 1.74 micro seconds input a is ”0101”, input
b is ”0111” and the output r is ”00100011” which is 35 in decimal. Taking a few
random checks of the simulation results indicates that the 4 bit by 4 bit multiplier
design works correctly. Notice that the VHDL code generated by Qucs for the 4
bit multiplier does not contain any propagation delay timing data. This could be
added to the and gates, if required. However, at this stage in the development of
Qucs digital simulation passing timing data, and other parameters, from device
symbols generated from VHDL models has not been implemented yet. The use
of VHDL generics is an obvious way this could be done. Generics are allowed, of
course, in text based VHDL simulations.

20Some readers will have noticed that the naming scheme for internal signal nets is different
in the multiplier VHDL listing when compared to the VHDL listings in the first version of these
notes. Towards the end of the 0.0.9 development phase the naming convention employed by Qucs
was changed to give a more flexible structure.
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Figure 20: A 4 bit by 4 bit combinational digital multiplier.
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−− Qucs 0 . 0 . 9
−− /mnt/hda2/ v hd l c omp l i b p r j / mu l t i p l i e r 4 b x 4 b i t . sch

entity patgen 4b i t i s
port ( RESET, CLOCK : in b i t ;

B0 , B1 , B2 , B3 : out b i t
) ;

end entity patgen 4b i t ;
−−
architecture behav ioura l of patgen 4b i t i s
begin

p1 : process (RESET, CLOCK) i s
variable p r e s e n t s t a t e , n e x t s t a t e :

b i t v e c t o r (3 downto 0) := ”0000 ” ;
begin

i f (RESET = ’1 ’ ) then n e x t s t a t e := ”0000 ” ;
e l s i f (CLOCK’ event and CLOCK= ’1 ’) then

p r e s e n t s t a t e := n e x t s t a t e ;
case p r e s e n t s t a t e i s

when ”0000 ” => n e x t s t a t e := ”0001 ” ;
when ”0001 ” => n e x t s t a t e := ”0010 ” ;
when ”0010 ” => n e x t s t a t e := ”0011 ” ;
when ”0011 ” => n e x t s t a t e := ”0100 ” ;
when ”0100 ” => n e x t s t a t e := ”0101 ” ;
when ”0101 ” => n e x t s t a t e := ”0110 ” ;
when ”0110 ” => n e x t s t a t e := ”0111 ” ;
when ”0111 ” => n e x t s t a t e := ”1000 ” ;
when ”1000 ” => n e x t s t a t e := ”1001 ” ;
when ”1001 ” => n e x t s t a t e := ”1010 ” ;
when ”1010 ” => n e x t s t a t e := ”1011 ” ;
when ”1011 ” => n e x t s t a t e := ”1100 ” ;
when ”1100 ” => n e x t s t a t e := ”1101 ” ;
when ”1101 ” => n e x t s t a t e := ”1110 ” ;
when ”1110 ” => n e x t s t a t e := ”1111 ” ;
when ”1111 ” => n e x t s t a t e := ”0000 ” ;

end case ;
end i f ;

B3 <= n e x t s t a t e ( 3 ) ; B2 <= n e x t s t a t e ( 2 ) ;
B1 <= n e x t s t a t e ( 1 ) ; B0 <= n e x t s t a t e ( 0 ) ;

end process p1 ;
end architecture behav ioura l ;

entity Sub patgen 4bit i s
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port ( net net0 : in b i t ;
net net5 : in b i t ;
ne t outne t ne t1 : out b i t ;
ne t outne t ne t3 : out b i t ;
ne t outne t ne t2 : out b i t ;
ne t outne t ne t4 : out b i t ) ;

end entity ;
use work . a l l ;
architecture Arch Sub patgen 4bit of Sub patgen 4bit i s

signal net net1 ,
net net2 ,
net net3 ,
net net4 : b i t ;

begin
net outne t ne t1 <= net net1 or ’ 0 ’ ;
ne t outne t ne t2 <= net net2 or ’ 0 ’ ;
ne t outne t ne t3 <= net net3 or ’ 0 ’ ;
ne t outne t ne t4 <= net net4 or ’ 0 ’ ;
X1 : entity patgen 4b i t port map ( net net0 , net net5 ,

net net1 , net net3 , net net2 , net net4 ) ;
end architecture ;

−− l o g i c z e r o . vhd l
entity l o g i c z e r o i s

port ( Y : out b i t
) ;

end entity l o g i c z e r o ;
−−
architecture dataf low of l o g i c z e r o i s
begin

Y <= ’ 0 ’ ;
end architecture dataf low ;

entity S u b l o g i c z e r o i s
port ( net outnetY : out b i t ) ;

end entity ;
use work . a l l ;
architecture Arch Sub log i c z e ro of S u b l o g i c z e r o i s

signal netY : b i t ;
begin

X1 : entity l o g i c z e r o port map ( netY ) ;
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net outnetY <= netY or ’ 0 ’ ;
end architecture ;

−− Fu l l adder − 1 b i t
entity f u l l a d d e r i s

port ( a , b , c in : in b i t ;
sum , cout : out b i t

) ;
end entity f u l l a d d e r ;
−−
architecture dataf low of f u l l a d d e r i s
begin

sum <= ( a xor b) xor c in ;
cout <= ( a and b) or ( a and c in ) or (b and c in ) ;

end architecture dataf low ;

entity S u b f u l l a d d e r 1 b i t i s
port ( net net0 : in b i t ;

net net1 : in b i t ;
net net2 : in b i t ;
ne t outne t ne t3 : out b i t ;
ne t outne t ne t4 : out b i t ) ;

end entity ;
use work . a l l ;
architecture Arch Sub fu l l adde r 1b i t of S u b f u l l a d d e r 1 b i t i s

signal net net3 ,
net net4 : b i t ;

begin
X1 : entity f u l l a d d e r port map ( net net0 , net net1 ,

net net2 , net net3 , net net4 ) ;
ne t outne t ne t3 <= net net3 or ’ 0 ’ ;
ne t outne t ne t4 <= net net4 or ’ 0 ’ ;

end architecture ;

entity S u b f u l l a d d e r 4 b i t i s
port ( net net0 : in b i t ;

net net1 : in b i t ;
net net2 : in b i t ;
net net3 : in b i t ;
net net4 : in b i t ;
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net net5 : in b i t ;
net net6 : in b i t ;
net net13 : in b i t ;
net net7 : in b i t ;
ne t outne t ne t8 : out b i t ;
ne t outne t ne t9 : out b i t ;
ne t outnet net10 : out b i t ;
ne t outnet net11 : out b i t ;
ne t outnet net12 : out b i t ) ;

end entity ;
use work . a l l ;
architecture Arch Sub fu l l adde r 4b i t of S u b f u l l a d d e r 4 b i t i s

signal net net14 ,
net net15 ,
net net16 ,
net net8 ,
net net9 ,
net net10 ,
net net11 ,
net net12 : b i t ;

begin
net outne t ne t8 <= net net8 or ’ 0 ’ ;
ne t outne t ne t9 <= net net9 or ’ 0 ’ ;
ne t outnet net10 <= net net10 or ’ 0 ’ ;
ne t outnet net11 <= net net11 or ’ 0 ’ ;
ne t outnet net12 <= net net12 or ’ 0 ’ ;
SUB4 : entity S u b f u l l a d d e r 1 b i t port map ( net net3 , net net13 ,

net net14 , net net11 , net net12 ) ;
SUB3 : entity S u b f u l l a d d e r 1 b i t port map ( net net2 , net net6 ,

net net15 , net net10 , net net14 ) ;
SUB2 : entity S u b f u l l a d d e r 1 b i t port map ( net net1 , net net5 ,

net net16 , net net9 , net net15 ) ;
SUB1 : entity S u b f u l l a d d e r 1 b i t port map ( net net0 , net net4 ,

net net7 , net net8 , net net16 ) ;
end architecture ;

entity TestBench i s
end entity ;
use work . a l l ;

architecture Arch TestBench of TestBench i s
signal netA0 , netA1 , netA2 , netA3 , netR , netB0 ,

netB1 , netB2 , netB3 , netR0 , netR1 , netR2 ,
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netR3 , netR4 , netR5 , netR6 , netR7 , netCLOCK,
net net0 , net net1 , net net2 , net net3 , net net4 ,
net net5 , net net6 , net net7 , net net8 , net net9 ,
net net10 , net net11 , net net12 , net net13 , net net14 ,
net net15 , net net16 , net net17 , net net18 , net net19 ,
net net20 , net net21 , net net22 , net net23 ,
net net24 : b i t ;

begin
SUB3 : entity Sub patgen 4bit port map ( netR , net net0 ,

netA0 , netA1 , netA2 , netA3 ) ;
SUB1 : entity Sub patgen 4bit port map ( netR , netCLOCK,

netB0 , netB1 , netB2 , netB3 ) ;

R: process
begin

netR <= ’ 1 ’ ; wait for 10 ns ;
netR <= ’ 0 ’ ; wait for 2000 ns ;

end process ;

CLOCK: process
begin

netCLOCK <= ’ 0 ’ ; wait for 10 ns ;
netCLOCK <= ’ 1 ’ ; wait for 10 ns ;

end process ;

ne t net0 <= not netB3 ;
netR0 <= netA0 and netB0 ;
net net1 <= netA0 and netB1 ;
net net2 <= netA0 and netB2 ;
net net3 <= netA0 and netB3 ;
SUB5 : entity S u b l o g i c z e r o port map ( net net4 ) ;
net net5 <= netA1 and netB0 ;
net net6 <= netA1 and netB1 ;
net net7 <= netA1 and netB2 ;
net net8 <= netA1 and netB3 ;
net net9 <= netA2 and netB0 ;
net net10 <= netA2 and netB1 ;
net net11 <= netA2 and netB2 ;
net net12 <= netA2 and netB3 ;
SUB4 : entity S u b f u l l a d d e r 4 b i t port map ( net net1 , net net2 ,

net net3 , net net4 , net net5 , net net6 , net net7 ,
net net8 , net net4 , netR1 , net net13 , net net14 ,
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net net15 , net net16 ) ;
SUB6 : entity S u b f u l l a d d e r 4 b i t port map ( net net13 , net net14 ,

net net15 , net net16 , net net9 , net net10 , net net11 ,
net net12 , net net4 , netR2 , net net17 , net net18 ,
net net19 , net net20 ) ;

net net21 <= netA3 and netB0 ;
net net22 <= netA3 and netB1 ;
net net23 <= netA3 and netB2 ;
net net24 <= netA3 and netB3 ;
SUB7 : entity S u b f u l l a d d e r 4 b i t port map ( net net17 , net net18 ,

net net19 , net net20 , net net21 , net net22 ,
net net23 , net net24 , net net4 , netR3 , netR4 ,
netR5 , netR6 , netR7 ) ;

end architecture ;
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Figure 21: A section of the 4 bit by 4 bit combinational digital multiplier TimeList
output waveforms.

Update number two: September 2006

Update number two in this tutorial series reports on the major changes that have
taken place to Qucs digital simulation since the first update was posted on the Qucs
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Web site roughly three months ago. During this period a number of significant, and
very critical, extensions have been implemented. Previous releases concentrated
on establishing a fundamental base for digital circuit simulation using the VHDL
language. The primary vehicle for representing circuit signals being the VHDL bit
and bit-vector signal types. The next release of Qucs (version 0.0.10) and FreeHDL
(version 0.0.3) extends the allowed signal types to include IEEE std_logic_1164

nine level logic, integers, and reals. Readers will appreciate that these changes are
the result of a great deal of work by the Qucs team and must be considered as very
much work in progress because not all the features offered by the FreeHDL imple-
mentation of the VHDL language are currently available via the Qucs schematic
capture and VHDL text file simulation routes. Although a significant amount of
testing has taken place it is likely that software bugs will come to light as more
Qucs users try the new features - if you find a bug please report it by posting a
note on the Qucs Web site. Adding new signal types to Qucs digital simulation
affects all sections of the simulation route from schematic capture to plotting and
tabulating input and output signals. Hence, although it may seem the wrong way
round, the place to first implement the necessary changes to accommodate the
new signal types is at the simulation results reporting stages of the Qucs package.
In release 0.0.10 no attempt has been made to add the new signal types to the
schematic capture part of the Qucs package.21 Recent work on the digital sections
of the Qucs package has concentrated on (1) improvements to VHDL language
entry using the Qucs colour coded VHDL text editor22, (2) modifications to Free-
HDL which allow a cleaner interface between Qucs and FreeHDL, (3) upgrades to
the data conversion of simulation results from the FreeHDL value change dump
format to the native Qucs format, and (4) major changes to the results reporting
routines that are accessed from the Qucs diagrams icon dialogue. A detailed list of
the software changes and bug fixes can be found in the Qucs and FreeHDL change
log files.

Simulating VHDL code using Qucs and FreeHDL.

The flow diagram drawn in Fig. 10 shows the relationship between Qucs and Free-
HDL, and the sequence that takes place during digital circuit simulation. This flow
diagram does not however, outline the details of the stages that are performed when
converting (1) VHDL circuit code into a machine code simulation program, and
(2) simulation output results into a format that can be plotted and tabulated by
Qucs. These are illustrated in the flow diagram presented in Fig. 22. The shell
script qucsdigi controls each of the stages in this sequence. A basic understanding

21Adding new signal types to Qucs schematic capture is on the to-do list.
22A number of editor bugs have been fixed and it is now possible for users to define their own

colour scheme for the various classes of VHDL reserved words and data types.
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of the process employed by Qucs and FreeHDL is needed if users of the software are
to be able to write meaningful VHDL code and simulate it using the two packages.
VHDL code is either generated from a schematic diagram automatically by Qucs
or entered using the Qucs VHDL text editor. The use of the schematic entry route
was described in update one of these tutorial notes. However, a number of readers
will probably have spotted that included in the VHDL code generated by Qucs
are references to VHDL libraries. The VHDL language uses libraries to provide
features that are not specified in the basic language definition but are commonly
used by all language processing systems; two such libraries are STD and IEEE.
When simulating digital circuits a basic knowledge of the structure of a simulation
task and how these employ VHDL libraries is essential. This implies that users of
the Qucs/FreeHDL software must appreciate how the system compiles and simu-
lates a VHDL circuit simulation task. Once the VHDL simulation code has been
entered via the VHDL text editor clicking the Qucs simulation button runs shell
script qucsdigi performing the sequence shown in Fig. 2223. Program freeehdl-v2cc
converts VHDL code into C++ functions. These are then compiled along with
a main C++ function. The next stage in the sequence links the compiled object
code with the object code from any references to items in the predefined VHDL
libraries to produce an executable digital simulation program. This is then run by
Qucs outputting a set of simulation results in value change dump (VCD) format24.
Finally a program called qucsconv converts the VCD simulation results into the
Qucs native data format ready for post processing as graphical or tabular diagrams
by Qucs.

23For the FreeHDL package to operate correctly the directory where the software is installed
must be included in the shell PATH from which Qucs is launched.

24The value change dump language was originally designed as a simulation waveform inter-
change format for Verilog HDL. The specification of the VCD format can be found at http://www-
ee.eng.hawaii.edu/ msmith/ASICs/HTML/Verilog/LRM/HTML/15/ch15.2.htm
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Figure 22: Detailed flow diagram showing VHDL code compilation and simulation
results processing.
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VHDL predefined packages and libraries.

All VHDL language processing systems provide a predefined VHDL package called
standard. This package defines many of the fundamental VHDL data types, for
example bit, character, integer and real. The predefined types, subtypes and
other functions in the package standard are stored in a library called STD. The
FreeHDL version of library STD includes an additional VHDL package called textio
which is used to input and output signal data from and to files. A second library
called IEEE defines (1) multivalued logic signals defined by nine different encoding
values, making it possible to model digital circuits that are composed from different
technology components, (2) logic signal subtypes and (3) an extensive range of
useful functions, procedures and overloaded operators. The FreeHDL version of
the IEEE library consists of the following packages:

1. std_logic_1164

2. numeric_bit

3. math_real

4. numeric_std

5. std_logic_arith

6. std_logic_unsigned

7. vital_timing

One other library is always defined by VHDL code processing systems namely the
work library. This library holds user compiled VHDL entity/architecture design
units.

VHDL simulation code structures.

In its most basic form VHDL circuit simulation code is structured as an entity-
architecture test bench which includes input signal test information.25 An example
outline of the basic format is

entity te s tbench i s
−− e n t i t y body s ta tements
end entity te s tbench ;
−−
architecture behav ioura l of te s tbench i s
−− a r c h i t e c t u r e body s ta tements
end architecture behav ioura l ;

25Test signals are often called test vectors.
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VHDL data types, functions and operators in package standard are always visible
to VHDL test bench code and reference to their use need not be added explicitly.
However, if the test bench entity-architecture uses data types or other items de-
fined in other libraries, for example the std_logic type in the IEEE library, then
reference to them needs to be added before each entity-architecture pair where they
are used. Libraries are referenced using the VHDL library and use statements. An
example showing how these statements are employed is outlined in the following
VHDL code segment:

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
entity te s tbench i s
−− e n t i t y body s ta tements
end entity te s tbench ;
−−
architecture behav ioura l of te s tbench i s
−− a r c h i t e c t u r e body s ta tements
end architecture behav ioura l ;

Here the VHDL code word all signifies that all items in a specific library are to be
made available for use in the following entity/architecture pair; testbench in the
above example. If more than one library is to be used then a library/use statement
is needed for each library reference. Most complete VHDL circuit simulation pro-
grams consist of more than one entity/architecture pair. In such cases the circuit
test bench, with its signal test vectors, must be the last entry in the program. An
example of a more complex VHDL program structure is

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
entity comp1 i s
−− e n t i t y body s ta tements
end entity comp1 ;
−−
architecture behav ioura l of comp1 i s
−− a r c h i t e c t u r e body s ta tements
end architecture behav ioura l ;
−−
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
entity comp2 i s
−− e n t i t y body s ta tements
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end entity comp2 ;
−−
architecture behav ioura l of comp2 i s
−− a r c h i t e c t u r e body s ta tements
end architecture behav ioura l ;

−−
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
use work . a l l ;
−−
entity te s tbench i s
−− e n t i t y body s ta tements
end entity te s tbench ;
−−
architecture behav ioura l of te s tbench i s
−− a r c h i t e c t u r e body s ta tements
end architecture behav ioura l ;

During the conversion of VHDL code to a machine code simulation program each
entity/architecture pair, prior to the final test bench entry, is compiled as a sep-
arate design unit and stored in the work library26. Compiled design units held in
the work library can be referenced in other entity/architecture models provided
the VHDL statement use work.all;27 is inserted in the VHDL simulation code prior
to each entity/architecture statement where they are referenced.

26The testbench entity/architecture pair is also, of course, compiled but this design unit is the
one that is run as the executable simulation program.

27References to individual items are also allowed by inserting, for example, use.work.comb1;
use.work.comb2; in the VHDL code.
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VHDL data types.

VHDL data
    types

Scalar

Integer  Real  Enumerated Physical

File Access Composite

Array  Record

Figure 23: VHDL data types

The chart shown in Fig. 23 indicates the different data types that are available
in the VHDL language. FreeHDL implements all these data types. In practical
circuit simulation the different VHDL data types are normally used to specify
(1) signals, (2) variables and (3) constants28. During simulation Qucs/FreeHDL
automatically stores the values of integer, real and enumerated bit signals as simu-
lation time progresses. Furthermore, bit_vector and IEEE signal types including
std_logic_vector are also stored. Signals of these types are then available for
plotting and tabulation using the Timing, Truth table, Tabular and Cartesian out-
put diagrams. Selected elements in user defined composite signals, those that are
stored in arrays for example29, can be assigned to the basic signal types then dis-
played.30. An example of how this is done is given in later sections of these update
tutorial notes. Note - the values of variables and constants are not recorded during
simulation.

28Type file is of course different in that it is used to store either test vectors, component data
such as ROM contents and output simulation results.

29Please note that signal types based on the composite type record will probably cause the
Qucs simulation cycle to fail - work on this data type has been added to the to-do list.

30Qucs/FreeHDL also automatically collects waveform data for composite signals based on
arrays of bit and IEEE signal types. However, in the case of large arrays care is needed when
plotting or tabulating these directly because the entire contents of an array is output each time
a signal is displayed.
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An example VHDL simulation employing integer signals.

The following VHDL code demonstrates how the integer data type can be used
to represent signals. In this example signals A, B change state on the rising edge
of clock clk. The code tests the addition of integer signals and constants using
arithmetic operators defined in library STD.31 The results from this simulation
are shown in Fig. 24.

−− A very ba s i c t e s t o f data type i n t e g e r .
entity te s tbench i s
end entity te s tbench ;
−−
architecture behav ioura l of te s tbench i s
signal A, B, C : i n t e g e r := 0 ;
signal c l k : b i t ;
begin
p0 : process i s −− Generate c l o c k s i g n a l .

begin
c l k <= ’ 0 ’ ; wait for 10 ns ;
c l k <= ’ 1 ’ ; wait for 10 ns ;

end process p0 ;
−−
p1 : process ( c l k ) i s

begin
i f ( c lk ’ event and c l k = ’1 ’) then

A <= A + 1 ;
B <= B + 2 ;

end i f ;
end process p1 ;

C <= A + B ;
end architecture behav ioura l ;

dtime

clk.X
a.R
b.R
c.R

0 10n 20n 30n 40n 50n 60n 70n 80n 90n 100n

0 1 1 2 2 3 3 4 4 5
0 2 2 4 4 6 6 8 8 10
0 3 3 6 6 9 9 12 12 15

Figure 24: Output results for a simple test bench example employing integer sig-
nals.

31The specification for the FreeHDL library STD can be found in text file freehdl-
0.0.3/std/standard.vhdl.
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Multivalued logic.

Although signal types bit and bit-vector are widely employed when simulating dig-
ital systems one of their great weaknesses is the fact that it is difficult to represent
signal bus systems simply using only logic ’0’ and logic ’1’ signal encoding. More-
over, circuits where bus signal contention occurs often result in simulation failure.
The IEEE std_logic_1164 package overcomes this limitation through the intro-
duction of a multivalued logic system which defines nine different logic values to
represent signal types and signal strengths. Not only is the bus contention problem
solved through logic resolving functions but the multivalued logic system allows
devices constructed from different manufacturing technologies to be simulated at
the same time, ensuring that the simulation process mirrors real circuit design
practices. The next two simulation examples introduce the nine value logic sys-
tem and demonstrate it’s use in the design of digital bus systems. Signals of type
real are also introduced to show their representation by Qucs. Listed below is the
VHDL code for a basic simulation which generates a set of IEEE std_logic, inte-
ger and real signals. Figure 25 illustrates how the Qucs Timing diagram displays
different signal types. A section of tabulated results are also given in Fig. 26.

l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
entity te s tbench i s
end entity te s tbench ;
−−
architecture behav ioura l of te s tbench i s
signal c l k : b i t ;
signal bv1 : b i t v e c t o r (8 downto 0 ) ;
signal s t d l 1 : s t d l o g i c v e c t o r (8 downto 0 ) ;
signal INT1 : i n t e g e r := 0 ;
signal INT2 : i n t e g e r := 99 ;
signal R1 : r e a l := 0 . 3 3 ;
signal R2 : r e a l := 9 9 . 0 ;
signal R3 : r e a l := 0 . 0 ;
signal R4 : r e a l := 0 . 0 ;
begin
p0 : process i s

begin
c l k <= ’ 0 ’ ; wait for 10 ns ;
c l k <= ’ 1 ’ ; wait for 10 ns ;

end process p0 ;
−−
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p1 : process ( c l k ) i s
variable v1 : i n t e g e r := 0 ;
begin

i f ( c lk ’ event and c l k = ’1 ’ ) then
v1 := v1+1;
case v1 i s

when 1 => bv1 <= ”000000000 ” ; s t d l 1 <= ”000000000 ” ;
when 2 => bv1 <= ”000000001 ” ; s t d l 1 <= ”000000001 ” ;
when 3 => bv1 <= ”000000011 ” ; s t d l 1 <= ”00000001X” ;
when 4 => bv1 <= ”000000111 ” ; s t d l 1 <= ”0000001XZ” ;
when 5 => bv1 <= ”000001111 ” ; s t d l 1 <= ”000001XZU” ;
when 6 => bv1 <= ”000011111 ” ; s t d l 1 <= ”00001XZUW” ;
when 7 => bv1 <= ”000111111 ” ; s t d l 1 <= ”0001XZUWL” ;
when 8 => bv1 <= ”001111111 ” ; s t d l 1 <= ”001XZUWLH” ;
when 9 => bv1 <= ”111111111 ” ; s t d l 1 <= ”01XZUWLH−” ;
when others => v1 := 0 ;

end case ;
end i f ;

end process p1 ;
p3 : process ( c l k ) i s

begin
i f ( c lk ’ event and c l k = ’1 ’) then

INT1 <= INT1 + 1 ;
INT2 <= INT2 −20;

end i f ;
−−

i f ( INT1 >= 9) then
INT1 <= 0 ;
INT2 <= 99 ;

end i f ;
end process p3 ;

−−
p4 : process ( c l k ) i s

Variable V2 : r e a l ;
begin

i f ( c lk ’ event and c l k = ’1 ’) then
R1 <= R1 + 1 . 0 ;
R2 <= R2 −20.0;
R3 <= R1∗R2 ;
R4 <= R2/(R1+0.0001) ;

end i f ;
−−

i f (R1 >= 2 0 . 0 ) then
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R1 <= 0 . 0 ;
R2 <= 9 9 . 0 ;

end i f ;
end process p4 ;

end architecture behav ioura l ;

dtime

clk.X
r1.R
r2.R
r3.R
r4.R
stdl1.X
int1.R
int2.R
bv1.X

0 10n 20n 30n 40n 50n 60n 70n

0.33 1.33 1.33 2.33 2.33 3.33 3.33 4.33
99 79 79 59 59 39 39 19
0 32.67 32.67 105.07 105.07 137.47 137.47 129.87
0 299.909 299.909 59.394 59.394 25.3208 25.3208 11.7114
XXXXXXXXX 000000000 000000000 000000001 000000001 00000001X 00000001X 0000001XZ
0 1 1 2 2 3 3 4
99 79 79 59 59 39 39 19
000000000 000000000 000000000 000000001 000000001 000000011 000000011 000000111

dtime

clk.X
r1.R
r2.R
r3.R
r4.R
stdl1.X
int1.R
int2.R
bv1.X

70n 80n 90n 100n 110n 120n 130n 140n

4.33 4.33 5.33 5.33 6.33 6.33 7.33 7.33
19 19 1 1 21 21 41 41
129.87 129.87 82.27 82.27 5.33 5.33 132.93 132.93
11.7114 11.7114 4.38789 4.38789 0.187614 0.187614 3.31748 3.31748
0000001XZ 0000001XZ 000001XZX 000001XZX 00001XZX0 00001XZX0 0001XZX00 0001XZX00
4 4 5 5 6 6 7 7
19 19 1 1 21 21 41 41
000000111 000000111 000001111 000001111 000011111 000011111 000111111 000111111

Figure 25: Output results illustrating the TimeList representation of signals.

The VCD waveform interchange standard encodes digital signals as four different
logic levels. These are ’0’, ’1’, ’Z’ (high impedance) and ’X’ (unknown). Table 7
lists how the nine ieee.std_logic signal levels are represented using the VCD
format. Until the VCD standard is revised the Qucs/FreeHDL package is restricted
to displaying simulation output data using the basic ’0’, ’1’, ’Z’ and ’X’ signal en-
coding. The next example shows how the IEEE std_logic signal type can be used
to simulate bus logic. The demonstration has been kept simple in order to keep
the VHDL code short. The code fragment simulates two tri-state buffers which
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VHDL signal levels VCD
’0’ Forcing logic 0 ’0’
’1’ Forcing logic 1 ’1’
’X’ Forcing unknown ’X’
’Z’ High impedance ’Z’
’U’ Uninitialised ’X’
’W’ Weak unknown ’0’
’L’ Weak logic 0 ’0’
’H” Weak logic 1 ’1’
’-’ Don’t care ’X’

Table 7: IEEE multivalue logic and VCD representation.

pass their outputs to bus drivers who’s outputs connect on a common signal bus.
The bus drivers ensure that the outputs from the tri-state buffers are kept sepa-
rate before combining onto the common bus line. This allows the output signals
from the tri-state buffers and the combined signal to be plotted separately. The
resulting waveforms clearly show the std_logic resolution function in operation,
see Fig. 27 . Note the effect of the 7 ns delay on the plotted waveforms and the
use of the VHDL generic statement to set the invert device delay value.

−− Demonstration o f a s imple bus s t r u c t u r e us ing
−− the IEEE s t d l o g i c data type .
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
entity buf i s

generic ( de lay : time := 0 ns ) ;
port ( in1 , c o n t r o l : in s t d l o g i c ;

out1 : out s t d l o g i c
) ;

end entity buf ;
architecture behav ioura l of buf i s
begin
p0 : process ( in1 , c o n t r o l ) i s

begin
i f ( c o n t r o l = ’1 ’ ) then out1 <= in1 after delay ;
else out1 <= ’Z ’ ;

end i f ;
end process p0 ;

end architecture behav ioura l ;
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−−
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
entity i n v e r t i s

generic ( de lay : time := 0 ns ) ;
port ( in1 : in s t d l o g i c ;

out1 : out s t d l o g i c
) ;

end entity i n v e r t ;
−−
architecture behav ioura l of i n v e r t i s
begin

out1 <= not in1 after delay ;
end architecture behav ioura l ;
−−
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−

entity buf2 i s
port ( in1 : in s t d l o g i c ;

out1 : out s t d l o g i c
) ;

end entity buf2 ;
−−
architecture dataf low of buf2 i s
begin

out1 <= in1 ;
end architecture dataf low ;
−−
l ibrary i e e e ;
use i e e e . s t d l o g i c 1 1 6 4 . a l l ;
−−
use work . a l l ;
−−
entity te s tbench i s
end entity te s tbench ;
−−
architecture s t r u c t u r a l of te s tbench i s
signal data in 1 , da ta in 2 : s t d l o g i c ;
signal data out 1 , data out 2 : s t d l o g i c ;
signal data cont ro l , c o n t r o l b u f 1 : s t d l o g i c ;
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signal r e s u l t : s t d l o g i c ;
−−
begin
p0 : process i s

begin
data in 1 <= ’ 0 ’ ; wait for 5 ns ;
da ta in 1 <= ’ 1 ’ ; wait for 5 ns ;

end process p0 ;
−−

data in 2 <= not data in 1 ;
−−
p1 : process i s

begin
da ta co n t ro l <= ’ 1 ’ ; wait for 40 ns ;
da ta co n t ro l <= ’ 0 ’ ; wait for 40 ns ;

end process p1 ;
−−
c1g1 : entity buf port map( in1 => data in 1 , c o n t r o l => data cont ro l ,

out1 => data out 1 ) ;
c1g2 : entity i n v e r t generic map ( de lay => 7 ns )

port map( in1 => data cont ro l , out1 => c o n t r o l b u f 1 ) ;
c1g3 : entity buf port map( in1 => data in 2 , c o n t r o l => cont ro l bu f1 ,

out1 => data out 2 ) ;
c1g4 : entity buf2 port map( in1 => data out 1 , out1 => r e s u l t ) ;
c1g5 : entity buf2 port map( in1 => data out 2 , out1 => r e s u l t ) ;
−−
end architecture s t r u c t u r a l ;
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0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1
1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0

clk.X

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0

int1.R

0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
0
1
1

int2.R

99
79
79
59
59
39
39
19
19
1
1
21
21
41
41
61
61
81
99
79
79

r1.R

0.33
1.33
1.33
2.33
2.33
3.33
3.33
4.33
4.33
5.33
5.33
6.33
6.33
7.33
7.33
8.33
8.33
9.33
9.33
10.33
10.33

r2.R

99
79
79
59
59
39
39
19
19
1
1
21
21
41
41
61
61
81
81
101
101

r3.R

0
32.67
32.67
105.07
105.07
137.47
137.47
129.87
129.87
82.27
82.27
5.33
5.33
132.93
132.93
300.53
300.53
508.13
508.13
755.73
755.73

r4.R

0
299.909
299.909
59.394
59.394
25.3208
25.3208
11.7114
11.7114
4.38789
4.38789
0.187614
0.187614
3.31748
3.31748
5.59338
5.59338
7.32284
7.32284
8.68158
8.68158

bv1.X

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1 1
0 0 0 0 1 1 1 1 1
0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

stdl1.X

X X X X X X X X X
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 X
0 0 0 0 0 0 0 1 X
0 0 0 0 0 0 1 X Z
0 0 0 0 0 0 1 X Z
0 0 0 0 0 1 X Z X
0 0 0 0 0 1 X Z X
0 0 0 0 1 X Z X 0
0 0 0 0 1 X Z X 0
0 0 0 1 X Z X 0 0
0 0 0 1 X Z X 0 0
0 0 1 X Z X 0 0 1
0 0 1 X Z X 0 0 1
0 1 X Z X 0 0 1 X
0 1 X Z X 0 0 1 X
0 1 X Z X 0 0 1 X
0 1 X Z X 0 0 1 X

dtime

0
1e-8
2e-8
3e-8
4e-8
5e-8
6e-8
7e-8
8e-8
9e-8
1e-7
1.1e-7
1.2e-7
1.3e-7
1.4e-7
1.5e-7
1.6e-7
1.7e-7
1.8e-7
1.9e-7

clk.X

0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1

int1.R

0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
0
1

int2.R

99
79
79
59
59
39
39
19
19
-1
-1
-21
-21
-41
-41
-61
-61
-81
99
79

r1.R

0.33
1.33
1.33
2.33
2.33
3.33
3.33
4.33
4.33
5.33
5.33
6.33
6.33
7.33
7.33
8.33
8.33
9.33
9.33
10.3

r2.R

99
79
79
59
59
39
39
19
19
-1
-1
-21
-21
-41
-41
-61
-61
-81
-81
-101

r3.R

0
32.7
32.7
105
105
137
137
130
130
82.3
82.3
-5.33
-5.33
-133
-133
-301
-301
-508
-508
-756

r4.R

0
300
300
59.4
59.4
25.3
25.3
11.7
11.7
4.39
4.39
-0.188
-0.188
-3.32
-3.32
-5.59
-5.59
-7.32
-7.32
-8.68

bv1.X

000000000
000000000
000000000
000000001
000000001
000000011
000000011
000000111
000000111
000001111
000001111
000011111
000011111
000111111
000111111
001111111
001111111
111111111
111111111
111111111

stdl1.X

XXXXXXXXX
000000000
000000000
000000001
000000001
00000001X
00000001X
0000001XZ
0000001XZ
000001XZX
000001XZX
00001XZX0
00001XZX0
0001XZX00
0001XZX00
001XZX001
001XZX001
01XZX001X
01XZX001X
01XZX001X

Figure 26: Output results illustrating tabular representation of signals.
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dtime

data_in_1.X
data_in_2.X
data_out_1.X
data_out_2.X
data_control.X
control_buf1.X
result.X

0 5n 7n 10n 15n 20n 25n 30n 35n 40n 45n 47n 50n 55n 60n 65n 70n 75n 80n

Z Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z Z Z Z

X X
Z Z

dtime

data_in_1.X
data_in_2.X
data_out_1.X
data_out_2.X
data_control.X
control_buf1.X
result.X

80n 85n 87n 90n 95n 100n 105n 110n 115n 120n 125n 127n 130n 135n 140n 145n 150n 155n

Z Z Z Z Z Z Z Z Z
Z Z Z Z Z Z Z Z Z

Z Z Z

Figure 27: Signal waveforms for the simple bus example.

Run debugging of VHDL simulation code.

The VHDL language has a number of built in features that allow the debugging of
VHDL code at simulation time. In this section the VHDL reserved words assert,
report and severity are introduced and their use as code debugging aids explained
by way of a more detailed design example. In the previous digital tutorial update
a structural design of a 4 bit digital multiplier was introduced as an example that
employed the Qucs schematic capture digital simulation route. The next example
extends the previous multiplier design to 16 bits. However, at a structural level
the larger multiplier becomes very detailed and it’s design can be prone to error.
To demonstrate the power of VHDL the 16 bit multiplier has been redesigned at a
functional level. A block diagram of the multiplier simulation test bench is given in
Fig. 28: firstly a clock strobes a data generator unit which generates a sequence of
integer numbers. These are converted to 16 bit_vectors and applied to the 16 bit
multiplier unit as inputs x and y; secondly the 16-bit multiplier on sensing a change
in inputs x or y converts these signals from 16 bit_vectors to integers, multiples
them and finally converts the integer result to 32 bit_vector output Res_bit.
Although standard library STD defines arithmetic operations for integers it does
not provide functions for the conversion of integers to bit_vectors or the reverse
operation. The following VHDL listing gives the complete simulation test bench

68



program for the 16 bit multiplier including the required data conversion functions.
VHDL debug or message reporting code using the reserved words assert, report and
severity have been added to the data_generator and functional_multiplier

architecture code. During simulation these text strings, and the simulation time
when they were actioned, are written to the Qucs log.txt file, giving a trace record
of the simulation activity. In cases where an error occurs at severity level failure
the simulation will terminate. FreeHDL allows VHDL report statements without
an accompanying assert statement.32 A typical Timing diagram plot for this design
is shown in Fig. 29

CLOCK

CLK

Data
generator

16 bit
functional
multiplier

X

Y
16

16

Res_bit

32

X => bit_vector(15 downto 0)

Y => bit_vector(15 downto 0)

Res_bit => bit_vector(31 downto 0)

Figure 28: Block diagram of a 16 bit functional multiplier.

−− 16 b i t d i g i t a l mu l t i p l i e r example .
−− Simulat ion t race us ing as se r t , r epor t and s e v e r i t y s ta tements .
−−
entity c l o ck i s

port ( c l k : out b i t ) ;
end entity c l o ck ;
−−
architecture behav ioura l of c l o ck i s
begin
p0 : process i s

32One of the changes at the 1993 revision of the IEEE VHDL 1076-1987 standard was to allow
report statements without the previous mandatory assert clause. FreeHDL attempts to comply
with the 1993 revision.

69



begin
c l k <= ’0 ’ ; wait for 10 ns ;
c l k <= ’1 ’ ; wait for 10 ns ;

end process p0 ;
end architecture behav ioura l ;
−−
entity data genera to r i s

port ( c l k : in b i t ;
x , y : out b i t v e c t o r (15 downto 0)

) ;
end entity data genera to r ;
−−
architecture behav ioura l of data genera to r i s
type mem array 16 i s array (1 to 8) of i n t e g e r ;
signal count : i n t e g e r := 0 ;
−−
function i n t e g e r t o v e c t o r 1 6 ( in t no : i n t e g e r ) return b i t v e c t o r
i s
variable ni : i n t e g e r ;
variable r e tu rn va lue : b i t v e c t o r (15 downto 0 ) ;
begin

assert ( n i < 0)
report ”Function i n t e g e r t o v e c t o r 3 2 : i n t e g e r number must be >= 0 ”
severity f a i l u r e ;

n i := int no ;
for i in r e turn va lue ’ Reverse Range loop

i f ( ( n i mod 2 ) =1 ) then r e tu rn va lue ( i ) := ’ 1 ’ ;
else r e tu rn va lue ( i ) := ’ 0 ’ ;
end i f ;
n i := ni /2 ;

end loop ;
return r e tu rn va lue ;

end i n t e g e r t o v e c t o r 1 6 ;
−−
begin
p1 : process ( c l k ) i s

variable x i : mem array 16 := (1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ) ;
variable y i : mem array 16 := (2 , 4 , 6 , 8 , 10 , 12 , 14 , 1 6 ) ;
variable xh , yh : i n t e g e r ;
variable count i : i n t e g e r ;

begin

count i := count +1;
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i f ( count i > 8 ) then
count i := 1 ;

end i f ;
xh := x i ( count i ) ;
yh := y i ( count i ) ;
x <= i n t e g e r t o v e c t o r 1 6 ( xh ) ;
y <= i n t e g e r t o v e c t o r 1 6 ( yh ) ;
count <= count i ;
report ”In proce s s p1 . data genera to r . ” ;

end process p1 ;
end architecture behav ioura l ;
−−
−−
entity f u n c t i o n a l m u l t i p l i e r i s

port ( x , y : in b i t v e c t o r (15 downto 0 ) ;
r e s b i t : out b i t v e c t o r (31 downto 0)

) ;
end entity f u n c t i o n a l m u l t i p l i e r ;
−−
−−
architecture behav ioura l of f u n c t i o n a l m u l t i p l i e r i s
−−
function v e c t o r t o i n t e g e r ( v1 : b i t v e c t o r ) return i n t e g e r i s
variable r e tu rn va lue : i n t e g e r :=0;
a l ias v2 : b i t v e c t o r ( v1 ’ length−1 downto 0) i s v1 ;
begin

for i in v2 ’ high downto 1 loop
i f ( v2 ( i ) = ’1 ’ ) then

r e tu rn va lue := ( r e tu rn va lue +1)∗2;
else

r e tu rn va lue := re tu rn va lue ∗2 ;
end i f ;

end loop ;
i f v2 (0 ) = ’1 ’ then r e tu rn va lue := re tu rn va lue +1;
end i f ;

return r e tu rn va lue ;
end v e c t o r t o i n t e g e r ;
−−
function i n t e g e r t o v e c t o r 3 2 ( in t no : i n t e g e r ) return b i t v e c t o r
i s
variable ni : i n t e g e r ;
variable value : b i t v e c t o r (31 downto 0 ) ;
begin

71



assert ( n i < 0)
report ”Function i n t e g e r t o v e c t o r 3 2 : i n t e g e r number must be >= 0 ”
severity f a i l u r e ;

n i := int no ;
for i in 0 to 31 loop

i f ( ( n i mod 2 ) =1 ) then value ( i ) := ’ 1 ’ ;
else value ( i ) := ’ 0 ’ ;
end i f ;
i f ni > 0 then ni := ni /2 ;
else ni := ( ni −1)/2;
end i f ;

end loop ;
return value ;

end i n t e g e r t o v e c t o r 3 2 ;
−−
begin
p0 : process (x , y ) i s

variable xi , yi , prod mult : i n t e g e r ;
begin

x i := v e c t o r t o i n t e g e r ( x ) ;
y i := v e c t o r t o i n t e g e r ( y ) ;
prod mult := x i ∗ y i ;
r e s b i t <= i n t e g e r t o v e c t o r 3 2 ( prod mult ) ;

report ”In proce s s p1 . f u n c t i o n a l m u l t i p l i e r ” ;
end process p0 ;

end architecture behav ioura l ;
−−
entity t e s t 2 v h d l 1 i s
end entity t e s t 2 v h d l 1 ;
−−
architecture behav ioura l of t e s t 2 v h d l 1 i s
signal c l k : b i t ;
signal x , y : b i t v e c t o r (15 downto 0 ) ;
signal r e s b i t : b i t v e c t o r (31 downto 0 ) ;
−−
begin
d1 : entity work . c l o ck port map ( c l k ) ;
d2 : entity work . data genera to r port map( c lk , x , y ) ;
d3 : entity work . f u n c t i o n a l m u l t i p l i e r port map ( x , y , r e s b i t ) ;

end architecture behav ioura l ;
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dtime

clk.X
res_bit.X
x.X
y.X

10n 20n 30n

00000000000000000000000000001000 00000000000000000000000000010010
0000000000000010 0000000000000011
0000000000000100 0000000000000110

dtime

clk.X
res_bit.X
x.X
y.X

20n 30n 40n

00000000000000000000000000010010 00000000000000000000000000100000
0000000000000011 0000000000000100
0000000000000110 0000000000001000

dtime

clk.X
res_bit.X
x.X
y.X

40n 50n 60n

00000000000000000000000000110010 00000000000000000000000001001000
0000000000000101 0000000000000110
0000000000001010 0000000000001100

dtime

clk.X
res_bit.X
x.X
y.X

60n 70n 80n

00000000000000000000000001100010 00000000000000000000000010000000
0000000000000111 0000000000001000
0000000000001110 0000000000010000

Figure 29: Typical timing diagram for the 16 bit functional multiplier.

More advanced output debug messages, and results tables, can be written to Qucs
message file log.txt by using the predefined data handling routines in STD library
package textio33. This package contains functions for reading and writing STD
data types from and to files34. The next segment of VHDL code illustrates how a
simple table of results can be written to file log.txt. The results table is shown in
Table 8.

−− Test t e x t i o package .
−−
l ibrary STD;
use STD. t e x t i o . a l l ;
−−
entity Qucs wr i t e t e s t i s

33The specification for the FreeHDL package textio can be found in text file freehdl-
0.0.3/std/textio.vhdl.

34VHDL allows data to be read from and written to the standard input and output streams
as well as user defined files. At this time only writing data to file log.txt and reading data from
user defined data files has been tested. Please note that the use of the textio package is very
much a cutting edge feature of the Qucs/FreeHDL software and is probably not bug free.
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end entity Qucs wr i t e t e s t ;
−−
architecture behav ioura l of Qucs wr i t e t e s t i s
begin
w r i t e t e s t : process i s

variable i n p u t l i n e , o u t p u t l i n e : l i n e ;
variable i n t1 : i n t e g e r := 10 ;

begin
wr i t e ( output l ine , s t r i ng ’ ( ” ” ) ) ;
w r i t e l i n e ( output , o u t p u t l i n e ) ;
wr i t e ( output l ine , s t r i ng ’ ( ”St r ing −> l og . txt ” ) ) ;
w r i t e l i n e ( output , o u t p u t l i n e ) ;

−−
t e s t L1 : for i c in 1 to 5 loop

i n t1 := in t1 + 1 ;
wr i t e ( output l ine , s t r i ng ’ ( ” in t1 = ” ) ) ;
wr i t e ( output l ine , i n t1 ) ;
wr i t e ( output l ine , s t r i ng ’ ( ” in t1 ˆ2 = ” )

) ;
wr i t e ( output l ine , i n t1 ∗ i n t1 ) ;
w r i t e l i n e ( output , o u t p u t l i n e ) ;

end loop t e s t L1 ;
report ”Fin i shed t e s t f o r loop . ” ;

end process w r i t e t e s t ;
end architecture behav ioura l ;
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Output:

----------

Starting new simulation on Thu 24. Aug 2006 at 13:10:56

running C++ conversion... done.

compiling functions... done.

compiling main... done.

linking... done.

simulating...

Output to STD output -> log.txt

int1 = 11 int1^2 = 121

int1 = 12 int1^2 = 144

int1 = 13 int1^2 = 169

int1 = 14 int1^2 = 196

int1 = 15 int1^2 = 225

0 fs + 0d: NOTE: Finished test for loop.

running VCD conversion... done.

Simulation ended on Thu 24. Aug 2006 at 13:10:57

Ready.

Errors:

--------

Table 8: Log.txt file showing tabular output results.
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Testing digital systems using test vectors stored on disk.

In an attempt on my part to review all the new features introduced in the previous
sections of this update the final example demonstrates how test vectors stored
on disk, as a text file, can be read by the simulation program at the start of a
simulation, then applied to the inputs of the digital system under test. The code
for this example is given in the following listing:

−− Test ing d i g i t a l c i r c u i t s us ing t e s t v e c t o r s
−− s t o r ed as a t e x t f i l e on d i s k .
−−
entity comb1 i s

port ( a , b , c , d : in b i t ;
y : out b i t

) ;
end entity comb1 ;
−−
architecture dataf low of comb1 i s
begin

y <= ( a nand b) or ( c and d ) ;
end architecture dataf low ;
−−
l ibrary STD;
use STD. t e x t i o . a l l ;
−−
entity te s tbench i s
end entity te s tbench ;
−−
architecture behav ioura l of te s tbench i s
signal c l o ck : b i t ;
signal v1 , v2 , v3 , v4 , y out : b i t ;
type a r r a y l i s t i s array (1 to 20) of b i t ;
signal v1sd , v2sd , v3sd , v4sd : a r r a y l i s t ;
−−
Procedure s t o r e d a t a ( variable number : out i n t e g e r ) i s
variable d1 , d2 , d3 , d4 : b i t ;
variable i n l i n e , o u t l i n e : l i n e ;
variable i : i n t e g e r ;
variable my str ing : s t r i n g (1 to 20) := cr & ”Constrained s t r i n g ” & cr ;
f i l e i n f i l e : t ex t open read mode i s ”/mnt/hda2/qucs −0.0 .10 f / t e s t 1 d a t a ” ;

begin
report my str ing ;
i := 1 ;
while not ( e n d f i l e ( i n f i l e ) ) loop
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r e a d l i n e ( i n f i l e , i n l i n e ) ;
read ( i n l i n e , d4 ) ;
read ( i n l i n e , d3 ) ;
read ( i n l i n e , d2 ) ;
read ( i n l i n e , d1 ) ;
v1sd ( i ) <= d1 ;
v2sd ( i ) <= d2 ;
v3sd ( i ) <= d3 ;
v4sd ( i ) <= d4 ;
report ”In f i l e read loop . ” ;
i := i +1;
i f ( i > 20) then exit ;
end i f ;
number:= i ;

end loop ;
end procedure s t o r e d a t a ;
−−
begin
p0 : process i s −− Generate a c l o c k s i g n a l .

begin
c l o ck <= ’ 1 ’ ; wait for 10 ns ;
c l o ck <= ’ 0 ’ ; wait for 10 ns ;

end process p0 ;
−−
g0 : entity work . comb1 port map ( v1 , v2 , v3 , v4 , y out ) ;
−−
p1 : process i s −− Read t e s t v e c t o r s from d i s k and
−− app ly data to c i r c u i t inpu t s .

variable no reads : i n t e g e r ;
variable i n l i n e , o u t l i n e : l i n e ;

begin
s t o r e d a t a ( no reads ) ;
wr i t e ( o u t l i n e , s t r i ng ’ ( ”count = ”) ) ;
wr i t e ( o u t l i n e , no reads −1);
w r i t e l i n e ( output , o u t l i n e ) ;

−−
for k in 1 to no reads−1 loop −− Count up .

wait until ( c lock ’ event and c l o ck = ’1 ’ ) ;
v1 <= v1sd ( k ) ;
v2 <= v2sd ( k ) ;
v3 <= v3sd ( k ) ;
v4 <= v4sd ( k ) ;
wr i t e ( o u t l i n e , s t r i ng ’ ( ”Time = ”) , l e f t , 8 ) ;
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wr i t e ( o u t l i n e , now , r i ght , 1 0 ) ;
wr i t e ( o u t l i n e , s t r i ng ’ ( ” Test v e c to r s −> ”) , r i ght , 20 ) ;
wr i t e ( o u t l i n e , v4 , l e f t , 2 ) ;
wr i t e ( o u t l i n e , v3 , l e f t , 2 ) ;
wr i t e ( o u t l i n e , v2 , l e f t , 2 ) ;
wr i t e ( o u t l i n e , v1 , l e f t , 2 ) ;
wr i t e ( o u t l i n e , s t r i ng ’ ( ”k = ”) , r i ght , 10 ) ;
wr i t e ( o u t l i n e , k ) ;
w r i t e l i n e ( output , o u t l i n e ) ;
wait until ( c lock ’ event and c l o ck = ’0 ’ ) ;

end loop ;
−−

for k in no reads−1 downto 1 loop −− Count down .
wait until ( c lock ’ event and c l o ck = ’1 ’ ) ;
v1 <= v1sd ( k ) ;
v2 <= v2sd ( k ) ;
v3 <= v3sd ( k ) ;
v4 <= v4sd ( k ) ;
wr i t e ( o u t l i n e , s t r i ng ’ ( ”Time = ”) , l e f t , 8 ) ;
wr i t e ( o u t l i n e , now , r i ght , 1 0 ) ;
wr i t e ( o u t l i n e , s t r i ng ’ ( ” Test v e c to r s −> ”) , r i ght , 20 ) ;
wr i t e ( o u t l i n e , v4 , l e f t , 2 ) ;
wr i t e ( o u t l i n e , v3 , l e f t , 2 ) ;
wr i t e ( o u t l i n e , v2 , l e f t , 2 ) ;
wr i t e ( o u t l i n e , v1 , l e f t , 2 ) ;
wr i t e ( o u t l i n e , s t r i ng ’ ( ”k = ”) , r i ght , 10 ) ;
wr i t e ( o u t l i n e , k ) ;
w r i t e l i n e ( output , o u t l i n e ) ;
wait until ( c lock ’ event and c l o ck = ’0 ’ ) ;

end loop ;
wait ;

end process p1 ;
end architecture behav ioura l ;

Although the listing above is relatively short, careful study of it’s contents should
allow readers to identify many of the new Qucs/FreeHDL features introduced ear-
lier. Moreover in some sections, the code illustrates extra features which will be
familiar to those Qucs/FreeHDL users who have a more advanced knowledge of
the VHDL language. These are listed below with a number of general points:

• The VHDL code simulates the performance of a simple combinational logic
circuit called comb1: this has four inputs (a, b, c, d) of type bit and one
output (y) of type bit35.

35Type bit was chosen for this example rather than one of the IEEE signal types because
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• The testbench being simulated consists of two processes: process p0 generates
a clock signal with a period of 20 ns; process p1 inputs test data held in file
test1_data 36 and stores it in four signal arrays (v1sd, v2sd, v3sd and v4sd),
applying this data to the inputs of the circuit under test at the leading edges
of the clock pulse. Note process p1 only executes once due to the wait
statement at its end.

• An instantiation of the comb1 component is included in the testbench archi-
tecture. Note the use of the VHDL entity work.comb1 construction, this is
an alternative for use work.all ;

• The test vector data held in file test_data is read by procedure store_data
which returns the number of lines of data read in variable number. File
handling, including reading data from disk, is undertaken with predefined
routines in package textio.

• The first report statement in procedure store_data writes string my_string

to file log.txt. My_string is an example of the VHDL constrained string type,
consisting of non-printable control characters37 concatenated with printable
characters.

• Two loops are employed in process p1 to apply signal test vectors to the
input of comb1: the first loop counts up from one and the second loop
counts down from the number of lines of test vectors read by procedure
store_data, effectively generating test vectors in a way similar to using an
up-down pattern generator counter. Note that the signal data is applied to
the circuit under test on the rising edge of the clock signal and that the
applied signal vector sequence is really up to the imagination of the VHDL
programmer.

• The write statements in the process p1 for loops demonstrate the formatted
version of the textio write statement. This greatly assists in setting up
tables of results. Table 9 gives a typical log.txt content for the comb1 test
simulation.

• In process p1 signals v1, v2, v3 and v4 are assigned an indexed value from
(type array_list) v1sd, v2sd, v3sd and v4sd signals. During simulation

package textio does not handle the IEEE multivalue logic types.
36I use the Knoppix version of the Linux/GNU operating system for all work on the Qucs

project. The absolute location of the test data file will depend on where Qucs and FreeHDL have
been installed and the location where work files are kept.

37Type character in package standard lists the two letter codes used by VHDL to represent
non-printable control characters.
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Qucs/FreeHDL stores signal values as a simulation progresses. Hence, it
is theoretically possible to display both the standard and composite signal
types. A typical waveform plot for signals v1, v2, v3, v4 and y_out is given
in Fig. 30. Fig. 31 illustrates a waveform plot of the composite signals v1sd,
v2sd, v3sd and v4sd. In Fig. 31 each group is plotted at a clock edge change
yielding identical groups of values; each vertical set of bits represents the
bit values for a single line in file test1_data. Compare the displayed values
in Fig. 31 with the contents of the test1_data file shown in Fig. 32. As
mentioned before some care is needed when plotting, or tabulating, composite
signals, particularly when the array sizes are large; array dimensions above
roughly 50 become difficult to plot on a normal resolution screen. In such
cases it is better to slice part of an array and assign the required values to a
signal that can be easily displayed.

dtime

v1.X
v2.X
v3.X
v4.X
y_out.X

180n 190n 200n 210n 220n 230n 240n 250n 260n 270n 280n 290n 300n 310n 320n 330n 340n 350n 360n

dtime

v1.X
v2.X
v3.X
v4.X
y_out.X

0 10n 20n 30n 40n 50n 60n 70n 80n 90n 100n 110n 120n 130n 140n 150n 160n 170n 180n

dtime

v1.X
v2.X
v3.X
v4.X
y_out.X

220n 230n 240n 250n 260n 270n 280n 290n 300n 310n 320n 330n 340n 350n 360n 370n 380n 390n 400n

dtime

v1.X
v2.X
v3.X
v4.X
y_out.X

400n 410n 420n 430n 440n 450n 460n 470n 480n 490n 500n 510n 520n 530n 540n 550n 560n 570n 580n

Figure 30: Typical timing diagram for comb1 simulation.
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Output :
−−−−−−−−−−
Sta r t i ng new s imu la t i on on Fr i 25 . Aug 2006 at 14 : 35 : 48
running C++ conver s i on . . . done .
compi l ing f u n c t i o n s . . . done .
compi l ing main . . . done .
l i n k i n g . . . done .
s imu la t ing . . .
0 f s + 0d : NOTE:
Constrained s t r i n g
0 f s + 0d : NOTE: In f i l e read loop .
.
0 f s + 0d : NOTE: In f i l e read loop .
count = 16
Time = 0 ns Test v e c to r s −> 0 0 0 0 k = 1
Time = 20 ns Test v e c to r s −> 0 0 0 0 k = 2
Time = 40 ns Test v e c to r s −> 0 0 0 1 k = 3
Time = 60 ns Test v e c to r s −> 0 0 1 0 k = 4
.
Time = 200 ns Test v e c to r s −> 1 0 0 1 k = 11
Time = 220 ns Test v e c to r s −> 1 0 1 0 k = 12
Time = 240 ns Test v e c to r s −> 1 0 1 1 k = 13
Time = 260 ns Test v e c to r s −> 1 1 0 0 k = 14
Time = 280 ns Test v e c to r s −> 1 1 0 1 k = 15
Time = 300 ns Test v e c to r s −> 1 1 1 0 k = 16
Time = 320 ns Test v e c to r s −> 1 1 1 1 k = 16
Time = 340 ns Test v e c to r s −> 1 1 1 1 k = 15
Time = 360 ns Test v e c to r s −> 1 1 1 0 k = 14
Time = 380 ns Test v e c to r s −> 1 1 0 1 k = 13
Time = 400 ns Test v e c to r s −> 1 1 0 0 k = 12
.
Time = 560 ns Test v e c to r s −> 0 1 0 0 k = 4
Time = 580 ns Test v e c to r s −> 0 0 1 1 k = 3
running VCD conver s i on . . . done .
Simulat ion ended on Fr i 25 . Aug 2006 at 14 : 35 : 50
Ready .
Errors :

Table 9: An edited version of the formatted tabular output results written to file
log.txt.
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dtime

v1sd.X
v2sd.X
v3sd.X
v4sd.X

40n 50n 60n 70n 80n

01010101010101010000 01010101010101010000 01010101010101010000 01010101010101010000
00110011001100110000 00110011001100110000 00110011001100110000 00110011001100110000
00001111000011110000 00001111000011110000 00001111000011110000 00001111000011110000
00000000111111110000 00000000111111110000 00000000111111110000 00000000111111110000

Figure 31: Typical timing diagram for composite signals v1sd, v2sd, v3sd and
v4sd.

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Figure 32: Comb1 simulation test vectors.

End note

Qucs 0.0.8 added digital simulation to the impressive list of features already avail-
able in the Qucs package. The 0.0.8 release represented a significant step forward
in the development of the Qucs project. The fact that there were bugs in the first
version of the digital simulator was not surprising given the complexity of the soft-
ware. Release 0.0.9 goes a long way to correcting the most annoying of these bugs.
It also adds a number of new features, the most notable being the new VHDL edi-
tor and the automatic generation of component symbols from hand crafted VHDL
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model code. Qucs 0.0.10 and FreeHDL 0.0.3 adds a range of new features to the
software, particularly important are the use of the IEEE std_logic_1164 package
and the file handling routines found in the textio package. My thanks to Michael
Margraf and Stefan Jahn for all their encouragement during the period that I have
been testing the Qucs VHDL digital simulation and the subsequent writing of these
notes.
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