
Qucs

A Tutorial

Qucs Simulation of SPICE Netlists

Mike Brinson

Copyright c© 2007 Mike Brinson <mbrin72043@yahoo.co.uk>

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation. A copy of the license is included in
the section entitled ”GNU Free Documentation License”.

Introduction

During the 1960’s and 70’s, the academic community worked tirelessly to develop
computer simulation programs that could act as aids in the process of circuit de-
sign. One of the best known of these programs is SPICE1. First released in 1972 by
the University of California at Berkeley, SPICE has become an industrial standard
circuit simulator. Qucs is a modern circuit simulation program which attempts to
bring together a range of established and emerging circuit simulation technologies
to form a ”Quite Universal Circuit Simulator”. Although not yet finished, a sub-
stantial part of the central core of the package is functioning, allowing it to be used
as a simulation engine for the analysis and design of real circuits. Many of the ba-
sic circuit components and simulation domains found in SPICE are also available
in Qucs. Over the last three decades the SPICE simulation circuit netlist language
has become a standard for describing, interchanging and publishing semiconductor
device models and circuit data. Today, most semiconductor device manufacturers
provide SPICE models or subcircuit netlists for their discreet components and in-
tegrated circuits. One area where Qucs and SPICE differ significantly is in their
circuit file netlist formats which are very different2. Qucs cannot directly simulate
standard SPICE circuit netlists but requires them to be converted to their Qucs
equivalent prior to simulation. The purpose of this tutorial note is to introduce
readers to a number of techniques that allow SPICE netlists to be simulated by
Qucs, secondly to indicate the limitations of the current SPICE to Qucs netlist
conversion process, and finally to present a preview of how Qucs is likely develop
in the future in the area of SPICE netlist compatibility.

The basic SPICE netlist format

SPICE simulation input data are text files which describe circuit structure, com-
ponent data and requested simulation tasks for the circuit who’s performance is
being simulated. Such text files form the fundamental input data to the SPICE
simulation engine, and normally include:

• A title statement

• Circuit node names

• Circuit element values
1The origins and background to the development of the SPICE simulator are described by

Ronald A. Rohrer in Circuit Simulation - the early years, illuminating SPICE’s strengths, un-
covering weaknesses, and projecting its future, IEEE Circuits and Devices, 1992, pp 32-37.

2The Qucs netlist grammar is defined in appendix A1, of the Qucs Technical Papers.

1

• Voltage and current source descriptions

• Analysis command statements

• Output data statements

• Other command statements

In SPICE 23circuit node names (nets) are identified by integers numbered from
0 to 9999. SPICE 34 allows a mixture of letters and numbers for node names.
All circuit nodes must have a DC path to ground. Ground node is always node 0
and is considered global. Circuit element values are expressed as integers or real
numbers in scientific notation, for example 5, 0.5e1 5.0, or in engineering notation
using suffixes. The available SPICE suffixes are f = 1e-15 (femto), p = 1e-12
(pico), n = 1e-9 (nano), u = 1e-6 (micro), mil = 25e-6, m = 1e-3 (milli), k =
1e3 (kilo), meg = 1e6 (mega), g = 1e9 (giga) and t = 1e12 (tera). Component
unit abbreviations are allowed in circuit value descriptions. However, these must
not be separated from their associated values by spaces. Commonly used unit
abbreviations are V = Volt, A = Amps. Hz = Hertz, ohm = Ohm(Ω), H = Henry,
F = Farad and deg = Degree. SPICE input data files have the following format:

1. Title

2. * starts a comment line

3. Circuit description

4. Simulation directives

5. Data output directives

6. .end

A typical SPICE input data file for a discreet component circuit is shown in Fig. 1.
In this netlist all nodes are shown numbered, following the SPICE 2 node naming
convention. Also the power supply, AC input signal generator and output load
are not included. Essentially, the netlist shown in Fig. 1 represents the amplifier
without any external components connected to it. Although Qucs cannot directly

3A guide to SPICE 2 features and simulation data format is given in SPICE Version 2G
User’s Guide, A Vladimirescu, Kaihe Zhang, A.R. Newton, D. O. Pederson and A. Sangiovanni-
Vincentelli, August 1981, Department of Electrical Engineering and Computer Sciences, Univer-
sity of California, Berkeley, Ca., 94720, US.

4See SPICE 3 Version 3F User’s Manual, B. Johnson, T. Quarles,A.R. Newton, D. O. Ped-
erson and A. Sangiovanni-Vincentelli, October 1992, Department of Electrical Engineering and
Computer Sciences, University of California, Berkeley, Ca., 94720, US.

2

simulate SPICE netlists the software does contain a SPICE to Qucs netlist con-
version program called QUCSCONV. This routine takes as input a SPICE netlist
file and outputs an equivalent Qucs formatted netlist file. The Qucs netlist file can
be read and simulated by the Qucs simulation engine. To make the process trans-
parent, and indeed straightforward for users, the conversion stage in simulating
SPICE netlist files5 has been automated via the Qucs GUI simulate command (F2
key). SPICE netlist files can be linked to a Qucs SPICE netlist schematic symbol.6

These in turn can be connected, on a schematic, to any other appropriate Qucs
component symbol or user defined symbol. Figure 2 shows the resulting schematic
for the two stage BJT circuit. In this diagram the external voltage sources and
amplifier load have been added together with the usual Qucs icons for DC and
AC simulation of the circuit. During simulation Qucs treats the SPICE netlist
component as a subcircuit7 and generates the appropriate Qucs netlist code. For
example, the netlist shown in Fig. 3 illustrates the Qucs style netlist code for the
two stage BJT amplifier. Simulation of the two stage BJT amplifier gives the
output waveforms displayed in Fig. 4.

5For convenience SPICE netlist files are often denoted with the extention cir and stored in a
Qucs project under the other category.

6The schematic symbol SPICE netlist can be found in the file components section of the
components icon lists on the left hand side of the GUI. Its connection pin list may be setup and
edited via the Edit SPICE component properties dialogue.

7Hence the need to separate the external voltage sources and amplifier load from the main
amplifier circuit.

3

∗ A two−s tage BJT amp l i f i e r .
∗
∗ Input node 2 , output node 9
∗ Power supply Vcc connected to node 10
∗
c1 2 3 10 uf
r1 3 10 200k
r2 3 0 50k
r5 10 4 12k
q1 4 3 5 qmod
r6 5 0 3 .6 k
c2 4 6 10 uf
c4 5 0 15 uf
r3 10 6 120k
r4 6 0 30k
r7 10 7 6 .8 k
q2 7 6 8 qmod
r8 8 0 3 .6 k
c5 8 0 25 uf
c3 7 9 10 uf
∗
. model qmod npn (i s=2e−16 bf=50 br=1 rb=5 rc=1 re=0
+ c j e =0.4 pf v j e =0.8 me=0.4 c j c =0.5 pf v j c =0.8 cc s=1pf va=100)
∗
. end

Figure 1: SPICE netlist for a simple two stage BJT amplifier.

spice

2 9

10

Ref

X1
File=stoq_nl1.cir

V1
U=1m V

V2
U=15 V

RL
R=10k Ohm

dc simulation

DC1

ac simulation

AC1
Type=log
Start=10 Hz
Stop=100 MHz
Points=200

Equation

Eqn1
Phase=phase(vout.v)
gain=dB(vout.v/vin.v)

vin

vout

Figure 2: Qucs schematic for the two stage amplifier represented by the SPICE
netlist shown in Fig. 1.

4

. Def : s t o q n l 1 c i r net2 net9 net10 r e f
C:C3 net7 net9 C=”10uF”
C:C5 net8 r e f C=”25uF”
R:R8 net8 r e f R=”3.6k”
BJT:Q2 net6 net7 net8 r e f Type=”npn” I s =”2e−16” Bf=”50” Br=”1”

Rb=”5” Rc=”1” Re=”0” Cje=”0.4pF”Vje =”0.8” Mje=”0.4” Cjc=”0.5pF”
Vjc =”0.8” Cjs=”1pF” Vaf=”100” Nf=”1” Nr=”1” I k f =”0” Ikr =”0” Var=”0”
I s e =”0” Ne=”1.5” I s c =”0” Nc=”2” Rbm=”0” Irb =”0” Mjc=”0.33” Xcjc=”1”
Vjs =”0.75” Mjs=”0” Fc=”0.5” Vtf=”0” Tf=”0” Xtf=”0” I t f =”0” Tr=”0”

R:R7 net10 net7 R=”6.8k”
R:R4 net6 r e f R=”30k”
R:R3 net10 net6 R=”120k”
C:C4 net5 r e f C=”15uF”
C:C2 net4 net6 C=”10uF”
R:R6 net5 r e f R=”3.6k”
BJT:Q1 net3 net4 net5 r e f Type=”npn” I s =”2e−16” Bf=”50” Br=”1”

Rb=”5” Rc=”1” Re=”0” Cje=”0.4pF”Vje =”0.8” Mje=”0.4” Cjc=”0.5pF”
Vjc =”0.8” Cjs=”1pF” Vaf=”100” Nf=”1” Nr=”1” I k f =”0” Ikr =”0” Var=”0”
I s e =”0” Ne=”1.5” I s c =”0” Nc=”2” Rbm=”0” Irb =”0” Mjc=”0.33” Xcjc=”1”
Vjs =”0.75” Mjs=”0” Fc=”0.5” Vtf=”0” Tf=”0” Xtf=”0” I t f =”0” Tr=”0”

R:R5 net10 net4 R=”12k”
R:R2 net3 r e f R=”50k”
R:R1 net3 net10 R=”200k”
C:C1 net2 net3 C=”10uF”

. Def : End

Figure 3: Qucs format netlist for the two stage BJT amplifier: NOTE -In this
listing the entries for Q1 and Q2 have been edited so that they fit on the text
page.

5

10 100 1e3 1e4 1e5 1e6 1e7 1e8

40

60

acfrequency

ga
in

10 100 1e3 1e4 1e5 1e6 1e7 1e8

0

200

acfrequency

P
ha

se

10 100 1e3 1e4 1e5 1e6 1e7 1e8

0

2

4

acfrequency

vo
ut

.v

Figure 4: Simulation waveforms for the two stage amplifier.

6

Defining symbols for Qucs SPICE netlist compo-

nents

Qucs automatically generates the symbol for a SPICE netlist component and does
not allow users to edit the resulting symbol. One of the disadvantage of this
feature is that the placement of the symbol input and output pins may be in a
position which is contrary to accepted use or signal flow direction. To overcome
this limitation a user defined symbol may be constructed where the SPICE netlist
component is embedded within the new symbol. Figure 5 illustrates such a symbol
for the two stage BJT amplifier and the resulting Qucs netlist for the new symbol
is shown in Fig. 6. From Fig. 6 we observe that embedding a SPICE netlist
symbol, within a user defined symbol, introduces an additional subcircuit call in
the resulting Qucs netlist; this is probably a small price to pay for the convenience
that a user defined symbol brings to the overall simulation process.

spice

2 9

10

Ref

X1
File=stoq_nl1.cir

P_IN1

P_OUT1

P_VCC1

VCC

SUB1

Figure 5: User defined symbol for the two stage BJT amplifier.

7

. Def : s toq f i g5 amp net0 net1 net2
Sub :X1 net0 net1 net2 gnd Type=”s t o q n l 1 c i r ”
. Def : End

. Def : s t o q n l 1 c i r net2 net9 net10 r e f
C:C3 net7 net9 C=”10uF”
C:C5 net8 r e f C=”25uF”
R:R8 net8 r e f R=”3.6k”
BJT:Q2 net6 net7 net8 r e f Type=”npn” I s =”2e−16” Bf=”50” Br=”1”

Rb=”5” Rc=”1” Re=”0” Cje=”0.4pF”Vje =”0.8” Mje=”0.4” Cjc=”0.5pF”
Vjc =”0.8” Cjs=”1pF” Vaf=”100” Nf=”1” Nr=”1” I k f =”0” Ikr =”0” Var=”0”
I s e =”0” Ne=”1.5” I s c =”0” Nc=”2” Rbm=”0” Irb =”0” Mjc=”0.33” Xcjc=”1”
Vjs =”0.75” Mjs=”0” Fc=”0.5” Vtf=”0” Tf=”0” Xtf=”0” I t f =”0” Tr=”0”

R:R7 net10 net7 R=”6.8k”
R:R4 net6 r e f R=”30k”
R:R3 net10 net6 R=”120k”
C:C4 net5 r e f C=”15uF”
C:C2 net4 net6 C=”10uF”
R:R6 net5 r e f R=”3.6k”

BJT:Q1 net3 net4 net5 r e f Type=”npn” I s =”2e−16” Bf=”50” Br=”1”
Rb=”5” Rc=”1” Re=”0” Cje=”0.4pF”Vje =”0.8” Mje=”0.4” Cjc=”0.5pF”
Vjc =”0.8” Cjs=”1pF” Vaf=”100” Nf=”1” Nr=”1” I k f =”0” Ikr =”0” Var=”0”
I s e =”0” Ne=”1.5” I s c =”0” Nc=”2” Rbm=”0” Irb =”0” Mjc=”0.33” Xcjc=”1”
Vjs =”0.75” Mjs=”0” Fc=”0.5” Vtf=”0” Tf=”0” Xtf=”0” I t f =”0” Tr=”0”

R:R5 net10 net4 R=”12k”
R:R2 net3 r e f R=”50k”
R:R1 net3 net10 R=”200k”
C:C1 net2 net3 C=”10uF”

. Def : End

Figure 6: Qucs format netlist for the two stage BJT amplifier represented by a
user defined symbol: NOTE -In this listing the entries for Q1 and Q2 have been
edited so that they fit on the text page.

8

Handling SPICE subcircuits

Although Qucs treats SPICE netlist components as subcircuits the SPICE to Qucs
netlist conversion process still allows SPICE subcircuits to be defined within the
SPICE file being converted. Such subcircuits then become local subcircuits to the
SPICE netlist component to which they are attached. This allows complex circuits
consisting of many related, but often different, circuit blocks to be represented by
a single symbol in a Qucs schematic. In such cases the resulting symbol represents
a true subsection of an entire circuit rather than a simple single circuit function
subcircuit. To demonstrate this feature consider the following examples; (1) a
multisection LC delay line and (2) a CMOS ring counter.

Subcircuit example 1: a multisection LC delay line

The SPICE netlist for a ten section LC passive delay line is shown in Fig. 7. In
this listing each LC delay section is represented by a SPICE subcircuit and these
sections are connected in series to form the overall delay line. Figures 8 and 9
present the resulting Qucs netlist and generated waveforms obtained with the test
circuit shown in Fig. 10.

Subcircuit example 2: a two section CMOS ring counter

Subcircuit example one only contains a single local subcircuit. The next example
demonstrates how SPICE listings with more than one subcircuit are handled by
Qucs. Such circuits are representative of more complex electronic systems which
form easily identifiable subsystem blocks.8 Fig. 11 shows the SPICE netlist for
a simple two section CMOS ring counter. This circuit is modelled at discreet
component level and uses basic level one MOS parameters to define the MOS
transistors. These are then combined to form NAND and NOR subcircuits. Again
for completeness the resulting Qucs netlist is shown in Fig. 12 together with a
typical set of counter input and output signal waveforms, Fig. 13.

8One significant advantage that Qucs has when compared to netlist entry only circuit sim-
ulators is that it is possible the define schematic symbols for subsystem blocks that comprise
discreet components and one or more local subcircuits. These may then be employed like any
other Qucs symbols when constructing circuit schematics.

9

∗ Z0 = 320 Ohm.
∗
. subckt l c n1 n2
l 1 n1 n2 10uh
c1 n2 0 10 pf
. ends
∗
r s n9 n10 320ohm
x1 n10 n11 l c
x2 n11 n12 l c
x3 n12 n13 l c
x4 n13 n14 l c
x5 n14 n15 l c
x6 n15 n16 l c
x7 n16 n17 l c
x8 n17 n18 l c
x9 n18 n19 l c
x10 n19 n20 l c
r l n20 0 320ohm
. end

Figure 7: SPICE netlist for a ten section LC delay line..

. Def : s t o q f i g 1 0 a net0 net10 net1 net2 net3 net4
net5 net6 net7 net8 net9

Sub :X1 net0 net10 net1 net2 net3 net4
net5 net6 net7 net8 net9 gnd Type=”t e s t 3 p p c i r ”

. Def : End

. Def : t e s t 3 p p c i r netN9 netN11 netN12 netN13 netN14
netN15 netN16 netN17 netN18 netN19 netN20 r e f

R:RL netN20 r e f R=”320Ohm”
Sub :X10 r e f netN19 netN20 Type=”LC”
Sub :X9 r e f netN18 netN19 Type=”LC”
Sub :X8 r e f netN17 netN18 Type=”LC”
Sub :X7 r e f netN16 netN17 Type=”LC”
Sub :X6 r e f netN15 netN16 Type=”LC”
Sub :X5 r e f netN14 netN15 Type=”LC”
Sub :X4 r e f netN13 netN14 Type=”LC”
Sub :X3 r e f netN12 netN13 Type=”LC”
Sub :X2 r e f netN11 netN12 Type=”LC”
Sub :X1 r e f netN10 netN11 Type=”LC”
R:RS netN9 netN10 R=”320Ohm”
. Def :LC r e f netN1 netN2
L : L1 netN1 netN2 L=”10uH”
C:C1 netN2 r e f C=”10pF”
. Def : End

. Def : End

Figure 8: Qucs netlist for a 10 section LC delay line: NOTE -In this listing the
entries for the .Def statements have been edited so that they fit on the text page.

10

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

1

time

vi
n.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

0.2

time

v1
0.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

0.2

time

v2
0.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

0.2

time

v3
0.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

0.2

time

v4
0.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

0.2

time

v5
0.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7
-0.1

0

0.1

0.2

time

v6
0.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7
-0.2

0

0.2

time

v8
0.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

-0.1

0

0.1

time

v9
0.

V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

0.05

time

v1
00

.V
t

0 1e-8 2e-8 3e-8 4e-8 5e-8 6e-8 7e-8 8e-8 9e-8 1e-7 1.1e-7 1.2e-7

0

0.2

time

v7
0.

V
t

Figure 9: Simulation waveforms for a 10 section LC delay line.

11

V1
U1=0 V
U2=1 V
T1=0
T2=5 n

20nS

10nS

40nS

30nS

50nS

60nS

70nS

80nS

90nS

100nS

SUB1

transient
simulation

TR1
Type=lin
Start=0
Stop=120 ns
IntegrationMethod=Gear
Order=6

vin

v10

v20

v30

v40

v50

v60

v70

v80

v90

v100

Figure 10: LC delay line test circuit.

12

∗ Two stage CMOS r ing counter c i r c u i t .
∗
x1 1 5 6 nand2
x2 1 6 7 nand2
x3 3 6 2 nand2
x4 2 7 3 nand2
x5 1 2 8 nor2
x6 1 8 9 nor2
x7 5 8 4 nor2
x8 4 9 5 nor2
∗
. model modp pmos(vto=−1 kp=10u
+ cgdo=0.2n cgso=0.2n cgbo=2n)
. model modn nmos(vto=1 kp=10u
+ cgdo=0.2n cgso=0.2n cgbo=2n)
∗
. subckt nand2 1 2 3
m1 3 1 4 4 modp w=40u l=5u
m2 3 2 4 4 modp w=40u l=5u
m3 5 1 0 0 modn w=20u l=5u
m4 3 2 5 5 modn w=20u l=5u
c1 1 0 10p
c2 2 0 10p
vcc 4 0 pu l s e (0 5 0 1ns 1ns 1 2)
. ends
∗
. subckt nor2 1 2 3
m1 4 1 7 7 modp w=40u l=5u
m2 3 2 4 4 modp w=40u l=5u
m3 3 2 0 0 modn w=20u l=5u
m4 3 1 0 0 modn w=20u l=5u
c1 1 0 10p
c2 2 0 10p
vcc 7 0 pu l s e (0 5 0 1ns 1ns 1 2)
. ends
. end

Figure 11: SPICE netlist for a two section CMOS ring counter.

13

Qucs 0 . 0 . 1 1 /media/hda2/OPAMP templates/ t e s t s t o q f i g 1 1 a . sch
. Def : s t o q f i g 1 1 a c i r net1 net4 r e f

. Def :NOR2 r e f net1 net2 net3
Vpulse :VCC net7 cnet0 U1=”0” U2=”5” T1=”0” Tr=”1ns ” Tf=”1ns ” T2=”1”
MOSFET:M1 net1 net4 net7 net7 Type=”p f e t ” W=”40u” L=”5u” Vt0=”−1”

Kp=”10u” Cgdo=”0.2n” Cgso=”0.2n” Cgbo=”2n” I s =”1e−14” N=”1”
Lambda=”0” Gamma=”0” Phi =”0.6”

MOSFET:M2 net2 net3 net4 net4 Type=”p f e t ” W=”40u” L=”5u” Vt0=”−1”
Kp=”10u” Cgdo=”0.2n” Cgso=”0.2n” Cgbo=”2n” I s =”1e−14” N=”1”
Lambda=”0” Gamma=”0” Phi =”0.6”

MOSFET:M3 net2 net3 r e f r e f Type=”n f e t ” W=”20u” L=”5u” Vt0=”1”
Kp=”10u” Cgdo=”0.2n” Cgso=”0.2n” Cgbo=”2n” I s =”1e−14” N=”1”
Lambda=”0” Gamma=”0” Phi =”0.6”

MOSFET:M4 net1 net3 r e f r e f Type=”n f e t ” W=”20u” L=”5u” Vt0=”1”
Kp=”10u” Cgdo=”0.2n” Cgso=”0.2n” Cgbo=”2n” I s =”1e−14” N=”1”
Lambda=”0” Gamma=”0” Phi =”0.6”

C:C1 net1 r e f C=”10p”
C:C2 net2 r e f C=”10p”
Vdc :VCC cnet0 r e f U=”0”
. Def : End
. Def :NAND2 r e f net1 net2 net3
Vpulse :VCC net4 cnet1 U1=”0” U2=”5” T1=”0” Tr=”1ns ” Tf=”1ns ” T2=”1”
MOSFET:M1 net1 net3 net4 net4 Type=”p f e t ” W=”40u” L=”5u” Vt0=”−1”

Kp=”10u” Cgdo=”0.2n” Cgso=”0.2n” Cgbo=”2n” I s =”1e−14” N=”1”
Lambda=”0” Gamma=”0” Phi =”0.6”

MOSFET:M2 net2 net3 net4 net4 Type=”p f e t ” W=”40u” L=”5u” Vt0=”−1”
Kp=”10u” Cgdo=”0.2n” Cgso=”0.2n” Cgbo=”2n” I s =”1e−14” N=”1”
Lambda=”0” Gamma=”0” Phi =”0.6”

MOSFET:M3 net1 net5 r e f r e f Type=”n f e t ” W=”20u” L=”5u” Vt0=”1”
Kp=”10u” Cgdo=”0.2n” Cgso=”0.2n” Cgbo=”2n” I s =”1e−14” N=”1”
Lambda=”0” Gamma=”0” Phi =”0.6”

MOSFET:M4 net2 net3 net5 net5 Type=”n f e t ” W=”20u” L=”5u” Vt0=”1”
Kp=”10u” Cgdo=”0.2n” Cgso=”0.2n” Cgbo=”2n” I s =”1e−14” N=”1”
Lambda=”0” Gamma=”0” Phi =”0.6”

C:C1 net1 r e f C=”10p”
C:C2 net2 r e f C=”10p”
Vdc :VCC cnet1 r e f U=”0”
. Def : End
Sub :X8 r e f net4 net9 net5 Type=”NOR2”
Sub :X7 r e f net5 net8 net4 Type=”NOR2”
Sub :X6 r e f net1 net8 net9 Type=”NOR2”
Sub :X5 r e f net1 net2 net8 Type=”NOR2”
Sub :X4 r e f net2 net7 net3 Type=”NAND2”
Sub :X3 r e f net3 net6 net2 Type=”NAND2”
Sub :X2 r e f net1 net6 net7 Type=”NAND2”
Sub :X1 r e f net1 net5 net6 Type=”NAND2”

. Def : End
Sub :X1 vin vout gnd Type=”s t o q f i g 1 1 a c i r ”
Vrect :V1 vin gnd U=”5 V” TH=”1 us ” TL=”1 us ” Tr=”1 ns ” Tf=”1 ns ” Td=”0 ns ”
.TR:TR1 Type=”l i n ” Star t =”0” Stop=”30u” Points =”1000” Integrat ionMethod=”Trapezo ida l ”
Order=”2” I n i t i a l S t e p =”0.01 ns ” MinStep=”1e−18” MaxIter=”150” r e l t o l =”0.01”
ab s t o l =”1 uA” vnto l =”100 uV” Temp=”26.85” LTErelto l=”1e−3” LTEabstol=”1e−4”
LTEfactor=”1” So lve r=”CroutLU” relaxTSR=”no ” in i t i a lDC=”yes ” MaxStep=”0”

Figure 12: Qucs netlist for a two section CMOS ring counter: NOTE -In this
listing the entries for MOSFETs and transient analysis have been edited so that
they fit on the text page.

14

0 2e-6 4e-6 6e-6 8e-6 1e-5 1.2e-5 1.4e-5 1.6e-5 1.8e-5 2e-5 2.2e-5 2.4e-5 2.6e-5 2.8e-5 3e-5

0

2

4

6

time

vi
n.

V
t

0 2e-6 4e-6 6e-6 8e-6 1e-5 1.2e-5 1.4e-5 1.6e-5 1.8e-5 2e-5 2.2e-5 2.4e-5 2.6e-5 2.8e-5 3e-5

0

2

4

6

time

vo
ut

.V
t

Figure 13: Two stage CMOS ring counter signal waveforms.

15

Limitations when converting SPICE netlists

Not all SPICE netlists can be converted to Qucs netlist format and simulated by
Qucs9. There are a number of reasons for this. The first and most obvious is due
to the fact that some SPICE components have not been implemented in Qucs yet.
Nonlinear controlled voltage and current sources are an example.10 There are also
a number of detailed differences between the SPICE and Qucs implementation of
components common to both simulators, one being the lack of PWL features in
the Qucs independent voltage and current sources. A second area that represents
a significant limitation, for those readers who regularly write SPICE netlists as
part of their simulation work, is the fact that Qucs contains a much greater range
of predefined primitive components that are not available in either the SPICE 2 or
SPICE 3 simulators. Perhaps this is not so much a limitation but an indication of
the current development effort being put into Qucs by the development team. As
the development of Qucs progresses it is expected that all the component features
found in SPICE will have a corresponding entry in Qucs11.

Extending the SPICE netlist language

The standard SPICE 2 and SPICE 3 hardware description languages do not allow
(1) component values to be defined by algebraic equations12 or (2) parameters
to be passed to subcircuits. This makes writing universal subcircuit models very
difficult, forcing semiconductor device manufacturers to issue individual SPICE
models for each device they manufacture rather than a single generalised model13

for a given type of integrated circuit. A well known example being the SPICE
Boyle14 operational amplifier models. A number of current commercial circuit

9A number of Qucs users have reported problems in the past when trying to simulate SPICE
netlists for components that have been published by device manufactures, see for example, ”Qucs
SPICE error - please...”, William Flyn <WF215@ca...>, 29.8.2006, Qucs help forum.

10SPICE 2 polynomal controlled voltage and current sources and SPICE 3 type B sources are
not implemented in any of the Qucs versions so far released. Their implementation is on the
to-do list but no date for their implementation has been fixed yet.

11Future plans in this area are discussed in a later section of these notes.
12Please note this is not strictly true as SPICE 3 B sources can be defined by equations

involving simulation variables and other data.
13In a generalised model only one model description is provided for each generic component/-

circuit. Different component models are formed by passing parameters to the generalised model.
SPICE employs this approach to represent semiconductor devices through the use of the .model
statement. However, in the .model case the code for each type of semiconductor device is hard-
wired into the simulator code rather than being defined by a subcircuit.

14Boyle,G.R., B.M. Cohn, D.O. Pederson, and J.E. Solomon, 1974, Macromodeling of inte-
grated circuit amplifiers, IEEE Journal of Solid-State Circuits (December).

16

simulators15 have been extended to include the parameter based features outlined
above. In the case of those simulators based on the unextended Berkely SPICE 2G6
or SPICE 3F516 code a different approach is often adopted. This is based on the
use of a preprocessor, similar to that found in the C language, which takes as input
a parameter and equation style netlist and outputs a standard SPICE netlist with
the parameters and equations evaluated to give a numerical result. The advantage
of this approach is that the preprocessor can be used with any SPICE simulator or
indeed with Qucs. Two such preprocessors are SPICEPRM and SPICEPP.17 The
flow diagram for the Qucs simulation sequence including a SPICE preprocessing
stage is shown in Fig. 14. This diagram clearly shows how both standard SPICE
and parameterised netlists can be linked into the Qucs simulation cycle. Of the
two SPICE preprocessors introduced above SPICEPP is probably the most useful
from a Qucs users point of view18 as it adds more features to the overall simulation
process. Hence the notes that follow will concentrate on describing how SPICEPP
can be used with Qucs.

The SPICEPP preprocessor

SPICEPP19 is a preprocessor for Berkeley SPICE 3F5, adding support for a number
of structures found in commercial SPICE simulators, specifically SPICE commands
.param, .global, .lib, .temp, .meas and inline comments ($). The remainder of
these notes explain the use of commands .param, .global and the inline comment
as these add specific functionality to Qucs that is not provided by other sections
of the Qucs simulation software. The definition of these commands are:

• .param data=dataval <data2=dataval2> The .param statement
adds the ability to parameterise SPICE data, including component values,
voltages, currents and equations.

• .globel node1 <node2> The .global statement causes the named
nodes to override local subcircuit nodes of the same name.

15For example PSPICE, HSPICE and IS-SPICE.
16For example NGSPICE, TCLSPICE and WINSPICE.
17(1) Andrew J. Borsa, SPICEPRM, A SPICE preprocessor for parameterised subcircuits, V

0.11, 1996, <andy@moose.mv.com> (SPICEPRM can be downloaded from the Sourceforge.net
ngspice project.) and (2) John Shaehen, SPICEPP, A SPICE proprocessor for SPICE 3F5, V
1.5, 2000, <john@reptechnic.com.au>. (SPICEPP can be downloaded from the Sourceforge.net
tclspice project.)

18SPICEPP was written after SPICEPRM and extends the facilities offered by SPICEPRM.
19SPICEPP is written in PERL. The SPICEPP.pl script should be copied to a directory on

your search path. On my system I keep it in the Qucs bin directory. PERL must also be installed
on your system.

17

Qucs GUI

SPICE

Parameterised
netlist

SPICE

Preprocessor
Generate SPICE
netlist symbol

Predefined Qucs
component symbols

User defined subcircuit symbols

Generated using Qucs schematic
capture

Qucs
library

components

File XXXX File XXXX.cir

CIRCUIT
entered using Qucs
schematic capture

SIMULATE

QUCSATOR

Simulation
output
data

Run

View

Qucs netlist code

Generate Qucs netlist code
from GUI schematic, including
conversion of SPICE code to
Qucs netlist format

Qucs plots
and tables

Figure 14: Flow diagram of Qucs simulator stages including SPICE preprocessing.

• Algebraic statements are enclosed in quotes ‘ ‘20.

• Inline comments start with the $ symbol and continue to the end of a line.

Circuit template models

When modelling devices or circuits for simulation a particularly productive ap-
proach is the use of a universal template that can be employed to generate models
for devices of the same type but with different characteristics. By simply changing
the parameters embedded in a universal template a new device model is generated
when the netlist code is passed through the SPICEPP preprocessor. Consider the
SPICE template model shown in Fig. 15. This represents a simple modular AC

20The ‘ character can be found on the most left key on the row of numerical keys (‘ 1 2 3 4 5
6 7 8 9 0 -) - this is the case on my keyboard.

18

macromodel21 for an OP AMP. OP AMP internal pins are given by integers and
external pins by names in SPICE 3 format. The parameters for a UA741 OP AMP
are shown listed at the start of the SPICE preprocessor netlist. These are used
in the calculation of the component values in later sections of the netlist. In all
cases parameters must be defined before they are used in component calculations.
Passing this listing through the SPICEPP preprocessor22 and generating a Qucs
user defined symbol for the UA741 OP AMP results in the Qucs netlist and symbol
shown in Figures 16 and 17. An application of the generated UA741 OP AMP
model is shown in Fig. 18. This circuit is a notch filter. In Fig. 18 the band re-
jection characteristic of the filter are realised by a twin-T RC network. Figure 19
shows the simulated small signal transfer characteristics of this filter.

21Details of the model derivation can be found in the Qucs Modelling Operational Amplifiers
tutorial, Qucs Web site.

22The SPICEPP PERL script can be run from a shell using the command spicepp.pl name.pp
> name.cir , where name is the name of the file to be processed.

19

∗
∗ Device p ins 1 . input in n , in p
∗ 2 . output out
∗
∗ ua741 OP AMP parameters
∗
. param vo f f = 0 .7m
. param ib = 80n
. param i o f f = 20n
. param rd = 2meg
. param cd = 1 .4p
. param cmrrdc = 31622.8
. param fcmz = 200 .0
. param aoldc = 199526
. param gbp = 1meg
. param fp2 = 3meg
. param ro = 75 .0
∗
∗ input s tage
∗
vo f f 1 in n 6 ’ v o f f /2 ’
v o f f 2 7 in p ’ v o f f /2 ’
ib1 0 6 ib
ib2 7 0 ib
i o f f 1 7 6 ’ i o f f /2 ’
r1 6 8 ’ rd /2 ’
r2 7 8 ’ rd /2 ’
c in1 6 7 cd
∗
∗ common−mode zero s tage
∗
ecm1 12 0 8 0 ’1 e6/cmrrdc ’
rcm1 12 13 1meg
ccm1 12 13 ’1/(2 ∗ 3 .1412 ∗ 1e6 ∗ fcmz) ’
rcm2 13 0 1
∗
∗ d i f f e r e n t i a l and common−mode
∗ s i g n a l summing s tage
∗
gmsum1 0 14 7 6 1
gmsum2 0 14 13 0 1
rsum1 14 0 1
∗
∗ vo l tage gain s tage 1
∗
gmp1 0 9 14 0 1
rado 9 0 ao ldc
cp1 9 0 ’1/(2 ∗ 3 .1412 ∗ gbp) ’
∗
∗ vo l tage gain s tage 2
∗
gmp2 0 11 9 0 1
rp2 11 0 1
cp2 11 0 ’1/(2 ∗ 3 .1412 ∗ fp2) ’
∗
∗ output s tage
∗
eos1 10 0 11 0 1
ros1 10 out ro
∗

Figure 15: SPICE template preprocessor netlist for a UA741 AC modular OP
AMP model. 20

. Def : s t o q f i g 1 7 net0 net1 net2
Sub :X1 net0 net1 net2 gnd Type=”s t o q f i g 1 5 c i r ”
. Def : End

. Def : s t o q f i g 1 5 c i r netIN N netOUT netIN P r e f
R:ROS1 net10 netOUT R=”75”
VCVS:EOS1 net11 net10 r e f r e f G=”1”
C:CP2 net11 r e f C=”5.30583 e−08”
R:RP2 net11 r e f R=”1”
VCCS:GMP2 net9 r e f net11 r e f G=”1”
C:CP1 net9 r e f C=”1.59175 e−07”
R:RADO net9 r e f R=”199526”
VCCS:GMP1 net14 r e f net9 r e f G=”1”
R:RSUM1 net14 r e f R=”1”
VCCS:GMSUM2 net13 r e f net14 r e f G=”1”
VCCS:GMSUM1 net7 r e f net14 net6 G=”1”
R:RCM2 net13 r e f R=”1”
C:CCM1 net12 net13 C=”7.95874 e−10”
R:RCM1 net12 net13 R=”1M”
VCVS:ECM1 net8 net12 r e f r e f G=”31.6228”
C: CIN1 net6 net7 C=”1.4 e−12”
R:R2 net7 net8 R=”1e+06”
R:R1 net6 net8 R=”1e+06”
Idc : IOFF1 net7 net6 I=”1e−08”
Idc : IB2 net7 r e f I=”8e−08”
Idc : IB1 r e f net6 I=”8e−08”
Vdc :VOFF2 net7 netIN P U=”0.00035”
Vdc :VOFF1 netIN N net6 U=”0.00035”

. Def : End

Figure 16: Qucs netlist for a UA741 AC modular OP AMP model.

spice

IN_N OUT

IN_P

Ref

X1
File=stoq_fig15.cir

P_IN_N

P_IN_P

P_OUT
-
+

SUB1

Figure 17: Qucs symbol for a UA741 AC modular OP AMP model.

21

-
+

SUB1

V1
U=1 V

C4
C=0.175u

C3
C=0.175u

C2
C=0.45u

R6
R=15k

R3
R=22k

R4
R=20k

R2
R=100

R1
R=100k

R5
R=6.8k

C1
C=2.2u

dc simulation

DC1

ac simulation

AC1
Type=lin
Start=10 Hz
Stop=101 Hz
Points=200Equation

Eqn1
gain_dB=dB(vout.v)
phase_deg=phase(vout.v)

vout

vin

Figure 18: A twin-T notch filter circuit.

10 100
5

10

15

acfrequency

vo
ut

.v

10 100

16

18

20

22

24

acfrequency

ga
in

_d
B

10 100

0

50

acfrequency

ph
as

e_
de

g

Figure 19: Small signal transfer characteristics for a twin-T notch filter circuit.

22

Building circuit design equations into netlists

Figure 20 illustrates a bandpass filter that has a bandwidth which is small com-
pared to it’s center frequency. The circuit is often referred to as the Dalyiannis-
Friend filter after its developers. The filter center frequency f0, voltage gain mag-
nitude H0, bandwidth B and Q factor are given by the following equations:

• f0 =
1

2πC
√

(R1‖R2)R3

, where C = C1 = C2

• H0 =
R3

2R1

• B =
1

πR3C

• Q =
f0
B

=
1

2

√
R3

R1‖R2

When designing a filter for a specific specification, for example say f0 = 1kHz,
B = 200Hz and H0 = 10, values for the filter resistor and capacitor values need
to be calculated. This can, of course, be done manually. However, this process is
often tedious, especially if a number of filters need to be designed each with differ-
ent specifications. Circuit simulators are by their very nature primarily designed
to analyse and simulate the performance of circuits who’s component values are
known. As such they are tools for analysis rather than design. In practice, of
course, engineers employ circuit simulators to check their circuit designs. Qucs is
attempting to bridge the gap between design and analysis by using add-on soft-
ware components for designing circuits with well understood structures and design
procedures23.
In the previous section it was shown that the SPICEPP preprocessor could be
used to calculate model component values. By a simple extension of this concept
it is also possible to embed design equations into a netlist. Shown in Fig. 21 is a
SPICEPP netlist for the Dalyiannis-Friend filter. The UA741 OP AMP is modelled
with a SPICE subcircuit called opamp_ac and has its own set of parameters24.
The first set of design parameters represent the filter specification and are used
in the SPICEPP conversion process to calculate the filter resistor and capacitor
component values. Note also the use of inline comments for documenting the

23The Qucs Tools drop-down menu lists the currently available design functions that have been
implemented with release of Qucs you are using.

24These are defined within a subcircuit and should have names unique to the subcircuit model
being defined.

23

OP1

R1

R3

C1

C2

R2

Vout

Vin

Figure 20: The Dalyiannis-Friend bandpass filter circuit.

netlist code. Figures. 22 and 23 show a basic filter test circuit and the resulting
simulation transfer functions. Hence, not only can the SPICEPP preprocessor be
used for setting up device models but it can also aid the design of entire circuit
blocks provided design equations are available for a given circuit configuration. By
combining SPICEPP with Qucs a very significant design/analysis tool becomes
available opening up new possibilities for Qucs users.

24

∗ Dely iann i s Friend Bandpass f i l t e r des ign
∗ Design parameters
. param f c = 2000.0 $ F i l t e r c en te r f requency (Hz)
. param bw = 200.0 $ F i l t e r bandwidth (Hz)
. param q = 10 .0 $ F i l t e r q f a c t o r = f0 /bw
. param r3 i v = 200k $ Assumed value f o r r f 3
. param h0 = 10 .0 $ F i l t e r f 0 gain magnitude
∗
∗ F i l t e r c i r c u i t p ins : input n1 , output n3
∗
r3 n3 n4 r3 i v
c1 n2 n3 ’ q /(3 .1412∗ f c ∗ r 3 i v) ’
c2 n2 n4 ’ q /(3 .1412∗ f c ∗ r 3 i v) ’
r1 n1 n2 ’ r 3 i v /(2∗h0) ’
r2 n2 0 ’ r 3 i v /((4∗q∗q)−(2∗h0)) ’
x1 0 n4 n3 opamp ac

∗ s u b c i r c u i t por t s : in+ in− out
. subckt opamp ac in p in n out
∗
∗ ua741 OP AMP parameters
. param vo f f = 0 .7m
. param ib = 80n
. param i o f f = 20n
. param rd = 2meg
. param cd = 1 .4p
. param cmrrdc = 31622.8
. param fcmz = 200 .0
. param aoldc = 199526
. param gbp = 1meg
. param fp2 = 3meg
. param ro = 75 .0
∗ input s tage
vo f f 1 in n 6 ’ v o f f /2 ’
v o f f 2 7 in p ’ v o f f /2 ’
ib1 0 6 ib
ib2 7 0 ib
i o f f 1 7 6 ’ i o f f /2 ’
r1 6 8 ’ rd /2 ’
r2 7 8 ’ rd /2 ’
c in1 6 7 cd
∗ common−mode zero s tage
ecm1 12 0 8 0 ’1 e6/cmrrdc ’
rcm1 12 13 1meg
ccm1 12 13 ’1/(2 ∗ 3 .1412 ∗ 1e6 ∗ fcmz) ’
rcm2 13 0 1
∗ d i f f e r e n t i a l and common−mode s i g n a l summing s tage
gmsum1 0 14 7 6 1
gmsum2 0 14 13 0 1
rsum1 14 0 1
∗ vo l tage gain s tage 1
gmp1 0 9 14 0 1
rado 9 0 ao ldc
cp1 9 0 ’1/(2 ∗ 3 .1412 ∗ gbp) ’
∗ vo l tage gain s tage 2
gmp2 0 11 9 0 1
rp2 11 0 1
cp2 11 0 ’1/(2 ∗ 3 .1412 ∗ fp2) ’
∗
∗ output s tage
eos1 10 0 11 0 1
ros1 10 out ro
. ends

Figure 21: SPICEPP netlist for the Dalyiannis-Friend filter.
25

V1
U=1 V

ac simulation

AC1
Type=lin
Start=1000Hz
Stop=3000Hz
Points=200

spice
N1 N3

Ref

X1
File=df_filter.cir

Equation

Eqn1
phase_deg=phase(vout.v)
gain_dB=dB(vout.v)

vin vout

Figure 22: The Dalyiannis-Friend bandpass filter test circuit.

1e3 1.5e3 2e3 2.5e3 3e3

0

5

10

acfrequency

vo
ut

.v

1.7e3 1.8e3 1.9e3 2e3 2.1e3 2.2e3

0

5

10

acfrequency

vo
ut

.v

1.7e3 1.8e3 1.9e3 2e3 2.1e3 2.2e3

-200

0

200

acfrequency

ph
as

e_
de

g

1e3 1.5e3 2e3 2.5e3 3e3

-200

0

200

acfrequency

ph
as

e_
de

g

1e3 1.5e3 2e3 2.5e3 3e3

0

10

20

acfrequency

ga
in

_d
B

Figure 23: Simulated small signal AC transfer functions for the Dalyiannis-Friend
bandpass filter.

26

Global nodes

In the SPICE 2 and SPICE 3 hardware description languages only the earth node
is global. By convention this is given node name 0 and is assumed by the SPICE
language passer to be earth whenever it occurs in a circuit netlist. When connecting
discreet components with other subcircuit blocks there is often a need for other
nodes to be designated global; the classic example being power supply nodes.
SPICEPP allows nodes to designated as global. These are effectively connected
together to form one net covering both outside and inside subcircuits. The best way
to understand the use of global nodes is to consider an example. Figure 11 gives
the SPICE netlist for the two section CMOS ring counter. Many readers would
possibly have noticed that in this netlist both the NAND2 and NOR2 subcircuits
include internal voltage sources25. This is, of course, not necessary and indeed
inefficient from a simulation point of view. A better approach would be to link
individual gates with a power supply net. The SPICEPP netlist given in Fig. 24
illustrates how the .global command can be used to define a global power supply
node. After passing this code through SPICEPP the SPICE netlist printed in
Fig. 25 results. Simulation with Qucs gives the same waveforms displayed in
Fig. 13.

25The DC voltage supply for each logic block is generated by a pulse source. This has the effect
of simulating the rising edge of the power supply switch on transient and aids DC convergence.

27

∗ Two stage CMOS r ing counter c i r c u i t .
∗
∗ External nodes : input 1 , output 4 , +ve supply nvcc
∗
∗ g l oba l node
∗
. g l oba l nvcc
∗
x1 1 5 6 nand2
x2 1 6 7 nand2
x3 3 6 2 nand2
x4 2 7 3 nand2
x5 1 2 8 nor2
x6 1 8 9 nor2
x7 5 8 4 nor2
x8 4 9 5 nor2
∗
. model modp pmos(vto=−1 kp=10u
+ cgdo=0.2n cgso=0.2n cgbo=2n)
. model modn nmos(vto=1 kp=10u
+ cgdo=0.2n cgso=0.2n cgbo=2n)
∗
. subckt nand2 1 2 3
m1 3 1 nvcc nvcc modp w=40u l=5u
m2 3 2 nvcc nvcc modp w=40u l=5u
m3 5 1 0 0 modn w=20u l=5u
m4 3 2 5 5 modn w=20u l=5u
c1 1 0 10p
c2 2 0 10p
∗vcc 4 0 pu l s e (0 5 0 1ns 1ns 1 2)
. ends
∗
. subckt nor2 1 2 3
m1 4 1 nvcc nvcc modp w=40u l=5u
m2 3 2 4 4 modp w=40u l=5u
m3 3 2 0 0 modn w=20u l=5u
m4 3 1 0 0 modn w=20u l=5u
c1 1 0 10p
c2 2 0 10p
∗vcc 7 0 pu l s e (0 5 0 1ns 1ns 1 2)
. ends

Figure 24: SPICEPP netlist for a two section CMOS ring counter with global
power supply net node nvcc.

28

∗ Two stage CMOS r ing counter c i r c u i t .
x1 1 5 6 nvcc nand2
x2 1 6 7 nvcc nand2
x3 3 6 2 nvcc nand2
x4 2 7 3 nvcc nand2
x5 1 2 8 nvcc nor2
x6 1 8 9 nvcc nor2
x7 5 8 4 nvcc nor2
x8 4 9 5 nvcc nor2
. model modp pmos vto=−1 kp=10u cgdo=0.2n cgso=0.2n cgbo=2n
. model modn nmos vto=1 kp=10u cgdo=0.2n cgso=0.2n cgbo=2n
. subckt nand2 1 2 3 nvcc
m1 3 1 nvcc nvcc modp w=40u l=5u
m2 3 2 nvcc nvcc modp w=40u l=5u
m3 5 1 0 0 modn w=20u l=5u
m4 3 2 5 5 modn w=20u l=5u
c1 1 0 10p
c2 2 0 10p
. ends
. subckt nor2 1 2 3 nvcc
m1 4 1 nvcc nvcc modp w=40u l=5u
m2 3 2 4 4 modp w=40u l=5u
m3 3 2 0 0 modn w=20u l=5u
m4 3 1 0 0 modn w=20u l=5u
c1 1 0 10p
c2 2 0 10p
. ends

Figure 25: SPICE netlist for a two section CMOS ring counter with global power
supply net node nvcc.

29

End Note

This tutorial note describes how SPICE netlists can be simulated using Qucs. The
text is much more than a basic outline of the processes needed to link SPICE cir-
cuit files to Qucs. While writing this note an attempt has been made to stress the
fact that topics like SPICE/Qucs netlist compatibility and conversion are impor-
tant to the future development of Qucs. So an interesting, and thought provoking
question, is how does Qucs develop next in relation to SPICE and indeed how
best is it to make sure that Qucs users can get the most from all the published
SPICE information and device models? After all there is no point in reinventing
the wheel! Complete compatibility with SPICE will not be possible until all the
basic SPICE 2 and SPICE 3 primitive components are added to Qucs. This will
take time but is happening as the Qucs team develops the package26. Adding
equations to component calculations is a very much a current active topic in Qucs
development. Recently, Michael Magraf has added parameter passing to the Qucs
GUI. Stefan Jahn will add the necessary simulator routines for handling equa-
tions and parameter passing when time allows. In the long term not only will it
be possible to determine component values using calculations at the simulation
initialisation phase but it will also be possible to allow such components to be
dependent on simulation voltage and current variables. Qucs will then be able to
simulate circuits containing nonlinear voltage and current sources like the SPICE
3 B component. These notes are very much a report on some of the work on Qucs
device modelling I have been doing in recent months. Again if there is enough
interest in this area of Qucs development I will upgrade them in the future. My
thanks to Stefan Jahn for all his encouragement while I have been developing the
material reported in this tutorial note.

26Michael Magraf has recently added a four terminal transmission line to Qucs. Future testing
will confirm if this is similar to the SPICE T component.

30

