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Chapter 1

Introduction

The purpose of this report is description of background mathematics used in Quc-
sactivefilter.

Qucsactivefilter is powerful active filter design tool. It could be called from Tools-
> Active Filters menu. It allows you to build active filter circuit and simulate it
with Qucs. Qucsactivefilter builds active filters circuits based on RC-components
and operational amplifier (opamp).

It is need to define following four groups of parameters to calculate active filter:

1. Frequency response approximation type. Butterworth, Chebyshev, Inverse
Chebyshev, Cauer (Elliptic) and Bessel filters are available.

2. Frequency response parameters: filter gain and bandwidth.

3. Filter topology. Sallen-Key, Mutifeedback (MFB) and Cauer topologies are
available.

4. Filter type. Low-pass, high-pass, band-pass and band-stop filters are avail-
able.

Filter synthesis method used by Qucsactivefilter is based on filter transfer function
poles and zeros analysis in frequency domain.



Chapter 2

Filter transfer function

2.1 Frequency domain filter response
There are 4 main types frequency domain filter responses:

1. Low-pass filter (LPF)

2. High-pass filter (HPF)
3. Band-pass filter (BPF)
4. Band-stop filter (BSF)

Magnitude responses |H (jw)| of ideal filters are shown in the Figure 2.1.

By w. denote the cutoff frequency of the filter. LPF passes all frequencies below
w. and rejects all frequencies upper w.. HPF operates contrariwise. Magnitude
responses of ideal filters have rectangular form. Magnitude responses of physical
filters have smoothed curves form. Frequency response of HPF ,BPF and BSF
could be normalized to low-pass prototype. For this reason we consider low-pass
active filter further. It will be shown how to transform HPF, BPF, and BSF to
low-pass prototype filter.
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Figure 2.1: Magnitude responses of ideal filters

2.2 Transfer function general form

Active filters are characterized by transfer function in frequency domain. Common
form of the filter transfer function is given here:

by S™ 4+ byy18™ 4 .+ bys® + bys + by
aps™ +av1sn 4+ .+ ags? +ais + ag

H(s) = (2.1)

The filter order N is:

N = max(m,n) (2.2)

Filter order determines the number of filter sections and filter circuit complexity.
Active filter consists of & = |N/2| 2-nd order section and & = [N mod 2] 1-st
order sections.

Zeros of the transfer function are the roots of numerator. Poles are the roots of
denominator. We need to know filter transfer function to determine components
(resistors and capacitors — RC) values of the active filter circuit.

We can obtain magnitude A(w) and phase 6(w) responses using transfer function:

Aw) = [H(jw)] (2.3)
0(w) = arg(H (jw)) (2.4)
Qucsactivefilter uses filter design algorithms provided by [1].
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2.3 Poles and Zeros

Transfer function could be represented as a ratio of numerator P(s) and denomi-
nator Q(s) polynomials. Each of these polynomials could be factorized:

(s —z1)(s — 22)(s — 23) ... (S — 2m)
(s —=p1)(s —p2)(s —ps) ... (s —pn)

H(s) = — H, (2.5)

The roots of the numerator z1, 29, 23, ..., 2., are called zeros of the transfer func-
tion. The roots of the denominator py, ps, ps3, . .., p, are called poles of the transfer
function. The n-th order polynomial has n roots. Hy is DC gain of the filter.

If P(s) and Q(s) are polynomials with real coefficients, each pole or zero has its
complex-conjugated pair. For example for n-th order:

Pi = Pn—i = Opi £ W (2.6)

2 = Zpn—i = Oz & Jwy (2-7)

o; is real part of the pole or zero:

opi = Rpil wp = Spi] (2.8)

w; is imaginary part of the pole or zero:

0. = R|z] Wy = 2] (2.9)

2.4 Time domain parameters

The impulse response h(t) is the filter output signal when Dirac delta impulse is
applied to its input. Impulse response is inverse Laplace transform of the filter
transfer function:

h(t) = L7H(s)] (2.10)

The step response ¢(t) is the filter output signal when unit step is applied to filter
input. Step response could be expressed via inverse Laplace transform:

g(t) =L~ {@} (2.11)

Impulse response is derivative of step response

(t) = ol 2.12)



The phase delay 7,(w) of a system is defined using phase response 6(w)

 0w)

» (2.13)

Tp(w)

Phase delay is time delay of the sinusoidal signal of frequency w passing through
the filter.
The group delay is defined as

d
Ty(w) = —Eé(w) (2.14)
The group delay is the measure of modulated signal distortion. Group delay is

important for high-quality audio signals amplification.

2.5 Transfer function approximations

Magnitude and phase response type depends on transfer function numerator and
denominator polynomials coefficients a; and b;. Substituting different sets of a; and
b; we can implement different filters: low-pass, high-pass, band-pass and band-stop.
The following polynomials are the most frequently used for the active filters design
purposes :

1. Butterworth

2. Chebyshev — Type I

3. Chebyshev — Type II (Inverse Chebyshev)
4. Cauer

5. Bessel

6. Legendre

Polynomials coefficients are calculated using filter approximation. Every transfer
function approximation has its own set of poles and zeros. It is need to note that
Butterworth, Chebyshev Type I and Bessel filters have no zeros.
Qucsactivefilter evaluates poles and zeros for given approximation and then
evaluates RC-elements values for each section of active filter.

You can define a; and b; coefficients of the transfer function (2.1) manually with
Qucsactivefilter. This method is suitable for unknown or new approximation.
Then Qucsactivefilter evaluates poles and zeros and builds filter circuit. See
Filter::calcUserTrFunc() in filter.cpp for details.
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2.6 Physical active filter transfer function

Physical active filter of N-th order consists of Ny = | N/2| 2-nd order sections and
N mod 2 1-st order sections. Physical filter consists of

Nyee = |N/2] + N mod 2 (2.15)

total 2-nd order and 1-st order sections.
So, transfer function can be represented as product of the each filter section transfer
functions.
For i-th 2-nd order section which have transfer function zeros (Cauer and Cheby-
shev Type II) we have following section transfer function:
52 + Ajw?
Hy(s) = H, e 2.16

2(s) 052 + Biwes + Cyw? (2.16)
And for i-th 2-nd order section without zeros (Butterworth, Chebyshev Type I)
and Bessel:

Ciw?
Hy(s) = H} e 2.17
2(5) 052 + Biwes + Cyw? ( )

For N — th 1-st order section:
Hy

Hi(s) = s+ Chw

(2.18)
where A, B, C — are determined by poles and zeros location; w, is filter cutoff
frequency.

H; is DC gain of the i-th section:

Hy = (Hy)'/Noee (2.19)

Let’s consider normalized form of the filter frequency response. For normalized
frequency response we assume w, = 1.

Common form of the filter transfer function could be factorized as below. For odd
order filters without transfer function zeros (Butterworth, Chebyshev Type-I and
Bessel):

N2 N2
1 C;
H(s)=H Hy(s) = H, 2.20
(5) 1(3)}1 2(5) Os—i—CNgs?—i—BistCi (2:20)
For odd order filter with transfer function zeros (Cauer and Chebyshev-Type-II)
Ny Ny 9
1 s° + Az
H(s)=H Hs(s) = H, 2.21
() 1(3)111 2(5) °s+CNZ,1—£32+B,-s+C¢ 221
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For even order filter without transfer function zeros:

No No C
Tl H () =, T 2.22
=1l -mll pise (2.22)
For even order filter with transfer function zeros:
No
s2+ A,
= H = H, 2.23
g 2(s) 0 H s+ Bis + C; (2.23)

Every 2-nd order factor matches one pair of complex conjugated poles and one
pair of complex conjugated zeros. First-order factor matches one real pole.

Filter synthesis method proposed in this paper uses A;, B;, C; coefficients to eval-
uate active filter RC-elements values. We should find A;, B;, C; coefficients using
poles and zeros location to find RC-elements values.

2.7 Physical active filter poles and zeros

Even N-th order physical active filter transfer function has no zeros or N/2 complex
conjugated pairs of zeros and N/2 complex conjugated pairs of poles. Odd order
physical active filter transfer function has additional real pole.

We need to solve numerator of i-th factor (2.16) equals zeros to find i-th zero pair
location:

s+ A; =0 (2.24)

Zi,N—i = :i:j\/ A,L (225)

And we can find coefficient A; by known i-th zero pair imaginary part 2.7:
Zi,N—i = :I:]wm (226)

A = W, (2.27)

Zeros of the physical active filter transfer function have no real part. Using this
equation (2.27) we can find A; coefficients by known zeros location. Zeros location
(and real and imaginary part) could be found using transfer function approxima-
tion (Butterworth, Chebyshev, etc.).

We need to solve the following quadratic equation to find i-th pole location (de-
nominator of i-th 2-nd order factor equals zero):

s>+ Bis+C; =0 (2.28)



Solution of this equation yields complex conjugated pair of poles:

B; \/—B}+4C; (2.20)

Di,N—i = Opi £ JWp; = -y + 5

We need to solve the next system of equations find B; and C; by known poles

location:
\/—B? +4C;
oy = YO A (2.30)
2
B
== 2.31
JP 9 ( )
Solution of this system yields:
B; = —20,; (2.32)

Odd order N-th filters have one N-th real pole py = oy £ 7 -0. To find this pole
we need to solve the following equation (denominator of the (2.18) equals zero):

s+Cy=0 (2.34)

Solution gives:
PN = ON = —CN (235)

And we can find Cy coefficient by known real part of N-th real pole:
CN — —ON (236)

Using poles and zeros location and equation (2.27), (2.32) and (2.33) we can find
A;, B;, C; coefficients, factorize transfer function to (2.21) form and find filter
RC-elements values.

10



Chapter 3

Low-pass filters transfer function
approximations

3.1 Butterworth

3.1.1 Transfer function

Butterworth filter implements magnitude response as flat as possible in pass band.
Magnitude response monolitically decays outside passband.
Normalized magnitude response of N-th order the Butterworth filter has the form:

1) =\ [ G

Transfer function of N-th order Butterworth filter could be factorized as following:

1 1
H(s) = N s - (s —p1)(s—p2)...(s—pn) (3:2)
(s —pi)

=1

where p; are transfer function poles. Butterworth filter has no zeros. Poles location
could be determined as following [2]:

1095 204+ N —1 21+ N —1
- — ITl(2iHN-1)/2N] _ i igin [ 22— —
pi=e coS ( 5N ) + jsin ( 5N ) (3.3)

Filter: :calcButterworth() function implements such poles location evaluation
according equation (3.3). For sources see filter.cpp.
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Figure 3.1: Typical 4-th order Butterworth filter magnitude response

3.1.2 Minimun order estimation

We need to know maximum passband attenuation A, and minimum stopband
attenuation A, to estimate minimum Butterworth order. These attenuations often
are measured in decibels (dB).

These values are determined by absolute attenuation «,, at cutoff frequency w, and
attenuation «; at stopband frequency ws.

A, = 20log o, (3.4)

As = 201og o (3.5)

The next equation determines the minimum order of the Butterworth filter.

N — 1 . log(10%14s — 1)

2log(ws/we) log(100-14» — 1)

This filter has A, attenuation value at cutoff frequency w, and at least A attenu-
ation at stopband frequency ws.

(3.6)

3.2 Chebyshev Type-1

3.2.1 Transfer function

Chebyshev filters provide more sharp transition from pass band to stop band than
Butterworth filter. Passband magnitude response of the Chebyshev filter is not
flat. It has ripple in passband R, up to 3dB.

12



Magnitude response of the N — th order Chebyshev Type-I filter is determined by
equation:

1

H(jw) = 3.7
U= A (37)

where T%(w) is N-th order Chebyshev polynomial.
T%(x) = cos(N arccos(z)) (3.8)

¢ is the ripple coefficient:

e =/10015 — 1 (3.9)

For R,=3dB we obtain ¢ = 1. For R,=0dB (no ripple) we obtain ¢ = 0.

|H(jw)]

Figure 3.2: Typical 4-th order Chebyshev filter magnitude response

The poles p; of the Chebyshev Type-I filter could be evaluated as following [2].
The poles are the roots of the N-th order Chebyshev polynomial:

pi = 0; + jwi (3.10)

0; = —sin (%) sinh {% sinh ™! (é)} (3.11)
w; = Cos (%) cosh [% sinh ™! (é)} (3.12)

Chebyshev filters have no zeros. We should know filter order N and acceptable
bandpass ripple R, to find filter poles. Filter: :calcChebyshev function evaluates
Chebyshev filter poles using equations (3.11) and (3.12) (see filter.cpp).

13



3.2.2 Minimun order estimation

The minimum order N of the Chebyshev filter can be estimated using following
equation. We assume A, = R,

_ cosh™(1/(10014: — 1) /e?)
cosh™ (wy/we)

where ¢ could be evaluated from equation (3.9). It’s need to know stopband
attenuation A, (dB), passband ripple R, (dB), cutoff frequency w,, and stopband
frequency w,. Filter: :calcChebyshev () function performs such estimation. See
filter.cpp for source code.

Chebyshev Type-1 and Butterworth filters are the most frequently used ones.

(3.13)

3.3 Chebyshev Type-11

3.3.1 Transfer function

Magnitude response of the N —th order Chebyshev Type-I (or inverse Chebyshev)
filter is determined by equation:

. 1
H(jw) = - (3.14)
14—
V' e
where Ty (w) is Chebyshev polynomial (3.8).
Stopband ripple Ry is determined by e
1
S (3.15)

VI001Rs — 1

Typical magnitude response of the 4-th order Chebyshev Type-II filter is shown in
the Figure 3.3.

You can see from this figure that this filter has flat response at passband and ripple
at stopband.

N-th order Chebyshev Type-II filter has N imaginary zeros. The location of the
1-th zero z; could be estimated using following equations:

1

14

(3.17)

Wy = —



Qg F----------+ ==
| )
L
1 ! w

Figure 3.3: Typical 4-th order Chebyshev Type-II filter magnitude response

Also N-th order Chebyshev Type-II filter has N imaginary poles. The location
of the 7-th pole p; is determined by following equations. The poles are inverse to
poles of the Chebyshev Type-I filter. And Chebyshev Type-II filters are known as
inverse Chebyshev filters.

1
= 3.18
P Opi + JWpi ( )

;= —sin (%) sinh l% sinh ™! (é)} (3.19)

Wpi = COS (%) cosh {% sinh ™ (%)} (3.20)

3.3.2 Minimun order estimation

The minimum order N of the Chebyshev filter can be estimated using following
equation. We assume A, = R;.

N — cosh™(/(10014: — 1))
- cosh ™ (w, /w,)
It’s need to know stopband attenuation A (dB), cutoff frequency w., and stopband

frequency wy. Filter::calcInvChebyshev() function performs such estimation.
See filter.cpp for source code.

(3.21)
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3.4 Cauer (Elliptic)

3.4.1 Transfer function and magnitude response

Cauer or Elliptic filters have ripple in pass band and in stop band. These filters
have the sharpest magnitude frequency response. Magnitude response is deter-
mined by following equation:
B 1

V14 2R3 (w/w,, L)
where Ry (w, L) is N-th order elliptic rational function with ripple parameter L.
Typical magnitude response is shown in the Figure 3.4.

[ H (jw) (3.22)

|H(jw)]

Figure 3.4: Typical 4-th order Cauer(Elliptic) filter magnitude response

You can see from this figure that Cauer filter has the most sharpest magnitude
response. But this filter has both bandpass ripple and bandstop ripple.

3.4.2 Minimun order estimation

We need to know cutoff frequency w,, stopband frequency w;, passband ripple R,,
stopband attenuation A;. We assume A, = R, and R, = A,. Minimum order
estimation method follows Handbook [3], page 95.

Minimun filter order could be estimated using following steps:

1. Determine selectivity factor k

k= w./ws (3.23)

16



2. Compute the modular constant ¢

q = u+2u® + 15u” + 150u'® (3.24)
1— 1 — k2
u = - (3.25)
2(1+ V1 —k?)
3. Compute the discrimination factor D
10014s — 1
D - W (326)
4. Estimate the minimum required order of the Cauer filter
log 16D
N = [Og—w (3.27)
log(1/q)

Filter::cauerOrderEstim() function implements this algorithm. See filter.cpp.

3.4.3 Poles and zeros

Elliptic rational functions are expressed via Jacobi elliptic cosine functions. By
this reason you should use polynomial approximations to find poles and zeros
of the transfer function. Qucsactivefilter uses algorithm based on Digital Filter
Designer’s Handbook [3].

This algorithm consists of three steps:

1. Estimate the minimum order of the Cauer filter using magnitude response
parameters

2. Evaluate coefficients A;, B;, C; for transfer function factorization (2.21) using
algorithm from pages 95 — 97 of the Handbook [3].

3. Find poles and zeros as roots of quadratic equation using equations (2.29)
and (2.27). You also need to find N-th real pole py for odd filter order.

Use following steps to calculate A;, B;, C; coefficient for every section of the N-th
order Cauer filter.

1. Determine selectivity factor & (3.23) and modular constant ¢ (3.24)

2. Compute V as

1 1049720 4 1
V = ﬁ ln (W) (328)

17



3. Compute py as

g/t 3 (1) sinh[(2m + 1)V]

po = |—"— (3.29)
0.5+ > (=1)mg™ cosh(2mV)
m=0
4. Compute W as
2 1/2
W= [(1 + %) (1+ kpg)l (3.30)
5. Determine the number r of 2-nd order sections
N
r=|—| (3.31)
2
6. For each i-th 2-nd order section ¢ = 1,2,...,r compute X; as

2¢14 3 (=1)mg™m D sin[(2m + 1) uwV/N]
XZ' _ m=0 — (332)
1425 (=1)mg™ cos(2mpum/N)
m=0

where
1, N odd
H= { i—1/2, N even (3.33)
7. For each i-th 2-nd order section ¢ = 1,2, ...,r compute Y; as
X2
Y, = {(1 — k:l ) (1-— ka)} (3.34)
8. Compute coefficients A;, B;, C; using W, X, Y;
1
2poY;
= ——5 3.36
e (3:36)
(poYi)* + (XiW)?
C; = 3.37
1+ RXP 0
9. For odd filter order compute N-th real pole py
PN = —DPo (3.38)

Filter: :cauerOrderEstim() and Filter::calcCauer() implement this algo-
rithm. These functions are called together. See filter.cpp.

18



3.5 Bessel

For all considered filter transfer approximations magnitude response was consid-
ered. Phase response was not taken into account. Bessel filter belongs to filters
with normalized phase delay 7, (2.13). Phase response of such filter is linear-
dependent on frequency

O(w) = —wT, (3.39)

Phase response of Bessel filters approaches to such dependency in some frequency
range.
Transfer function of the Bessel filter has following form:

0,(0)
On(s/we)

where 6,,(s) is n-th order reverse Bessel polynomial

H(s) = (3.40)

On(s) = Zaksk (3.41)

(2n — k)!
= kE=0,1,... 3.42
U= kgl (0 — k)! et (3-42)
For example for 5-th order Bessel polynomial:
945
H(s) = (3.43)

55 + 15s5% + 10553 4 42052 + 9455 + 945

Poles of Bessel transfer function could not be evaluated symbolically. Qucsactive-
filter uses precalculated poles tables for Bessel filters up to 20-th order. See header
bessel.h and Octave script bessel-poles.m

Bessel filter transfer function has no zeros.

Minimal order of the Bessel filter could not be evaluated too. You should define
it manually. See Filter::calcBessel() and filter.cpp for source code.
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Chapter 4

Other filter types

4.1 High-pass filters

High-pass filters calculation uses low-pass filter prototype. Then you can use low-
pass prototype to determine filter order and poles/zeros.

High-pass filter transfer function H(s) could be mapped to low-pass prototype
filter transfer function Hypp(s’). The following transform should be used:

H(S) = HLPF(S/) (41)
5= Sl (4.2)

For cutoff frequency and stopband frequency the following transformations are
valid:

1
= 4.3
= (13
1
g 4.4
= — (1.4

We can map cutoff and stopband frequencies of high-pass filter to cutoff and stop-
band frequencies of low-pass prototype using these equations. Then we can use
common method of low-pass filters synthesis. We can obtain poles and zeros of
transfer function and determine RC-elements values.

4.2 Band-pass filters

Band-pass filter requires another transformations. By {2y denote the center fre-
quency. By AQ denote the bandwidth.

20



QO = A /wplwpg

AQ = wpe — wpi

(4.5)
(4.6)

where wy,; is lower cutoff frequency; wyy is upper cutoff frequency. Denote by T'W
transient bandwidth. Upper wy and lower w, cutoff frequencies are determined

as following:
Ws2 = Wp2 — TW

Ws1 = wp1 +TW
Quality factor of band-pass filter is:

£

@=23q

We get band-pass filter transfer function:

H(S) = HLPF(S/)

QQ
s =5+ 2
S

Low-pass prototype cutoff frequency w’, and stopband frequency w’ yield:
Y We yWs Y

W = A

[

wi = min(lw |, [wio)

2

r_ Q0
wsl - wSl -

Ws1

2

r_ Q0
Weo = Ws2 —

Ws2

(4.7)
(4.8)

(4.9)

(4.10)

(4.11)

(4.12)
(4.13)

(4.14)

(4.15)

Using these equation we can obtain low-pass filter cutoff and stopband frequencies.
Magnitude response ripple parameters are the same. Then we can obtain filter

order and poles/zeros.

Two 2-nd order sections match one complex conjugated pole/zero pair of low-pass

prototype. Band-pass filter has always even order.
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4.3 Band-stop filters

Band stop filters transfer function could be transformed into low-pass filter transfer
function using the presented substitution.

H(S) = HLPF(SI) (416)
, 1
S+ ?

Center frequencies €}y and bandwidth A are the same as for band-pass filter.
Cutoff frequency and bandwidth of the low-pass prototype could be estimated
using approach from the previous section.
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Chapter 5

Filter topologies

5.1 Active filter schematic synthesis algorithm

Active filter synthesis algorithm contains the following steps. For low-pass and
high-pass filters you can use this algorithm directly without any adaptations.
For band-pass and band-stop filters you should evaluate low-pass prototype cutoff
frequency and stopband frequency first. Filter::calcFilter() function imple-
ments these steps. See filter.cpp for sources. Additional information about used
filter topologies are provided in [1, 4, 5]

e Step 1: Select desired filter type (low-pass, high-pass, band-pass, band-
stop), filter topology, frequency response approximation type and following
frequency response parameters:

Cutoff frequency

Stopband frequency

Passband attenuation

Stopband attenuation

Passband ripple (for Chebyshev and Cauer filters only)

AR A A e

Passband gain

e Step la: For all filters except low-pass. Determine cutoff frequency, and
stopband frequency for low-pass prototype using methods from section 4.

e Step 2: Estimate filter order N using equation (3.6) for Butterworth filters,
equation (3.13) for Chebyshev Type-I filters, equation (3.21) for Chebyshev
Type-1I1 filter, equation (3.27) for Cauer filter.

23



e Step 3: Evaluate poles and zeros of the transfer function using order value
from previous step. Qucsactivefilter stores poles and zeros as complex num-
bers using std::complex class. You can access human-readable poles and
zeros list using Filter: :createPolesZerosList ().

e Step 4: Calculate number of 2-nd order sections and 1-st order sections
using equation (2.15). Even order filters contain only 2-nd order sections.
Odd order filters contain one 1-st order section too.

e Step 5: Evaluate A;, B;, C; coefficients for each 2-nd order section using
poles/zeros complex conjugated pairs obtained at step 3. For Chebyshev
Type-II and Cauer filters use equation (2.27), (2.32), and (2.33). Butter-
worth, Chebyshev Type-I, and Bessel filters have no zeros. You should cal-
culate only B; and C; for these filters. Use equations (2.32) and (2.33) for
this purpose.

e Step Ha: For odd order filters only evaluate first order section transfer
function coefficient C'y using equation (2.36).

e Step 6: Select desired filter topology and determine RC-elements values for
each 2-nd order filter section. You can use any of Sallen-Key (S-K) and Mul-
tifeedback(MFB) topologies for Butterworth, Chebyshev Type-I, and Bessel
filters. For Cauer and Chebyshev Type-II you should use only special Cauer
filter topology. RC-elements calculation algorithm is based on A;, B;, C;
coefficients. These coefficients are obtained at previous step.

e Step 6a: For odd order filters only determine RC-elements values of the 1-st
order section.

We obtain active filter RC-elements values list after these steps are performed.
Qucsactivefilter assumes ideal opamps for active filters. Now we can build filter
circuit. Qucsactivefilter builds filter circuit automatically. You can simple copy-
paste it into Qucs. Also you can access human-readable RC-elements list via
Filter: :createPartList().

The next sections contain description of active filters circuitry. Such circuitry is
used in Qucsactivefilter.

5.2 First-order section

5.2.1 Low pass filter

First order section of low-pass filters circuit is shown in the Figure 5.1
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O 1
Input R1

Figure 5.1: Low-pass first order active filter section

The transfer function of this section is following:

H(s) = Dol (5.1)

s+ Cuw,

where K, is passband voltage gain of filter section, and C' is transfer function
coefficient (2.36).
Denote by f. (Hz) the cutoff frequency:

We

fe= (5.2)

T or

RC-elements values could be determined as following:

o =2 ur) (5.3)
f.
o (5.4)
w.C1C
Ry = [i“]_%ll (5.5)
Ry = K,R; (5.6)

For unity gain K, = 1 we have R3 = 0 and Ry = 0o. R2 can be removed and R3
can be shorted to obtain unity gain.
Filter::calcFirstOrder implements these evaluations. See filter.cpp.

5.2.2 High pass filters

First order section of high-pass filters circuit is shown in the Figure 5.1

Transfer function is:
K,s

H(s) = s+ w./C
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Figure 5.2: High-pass first order active filter section

where C' is transfer function coefficient (2.36).
RC-elements values could be determined as following;:

%, [1F] (5.8)

_ C
B chl
R2 and R3 values could be determined using equations (5.5) and (5.6). For unity
gain K, =1 R2 should be removed and R3 should be shorted.
Filter::calcFirstOrder implements these evaluations. This method determines
RC-elements values for both low-pass and high-pass first order sections. See
filter.cpp for source code.

01:

Ry

(5.9)

5.3 Sallen-Key

5.3.1 Low pass filter

Sallen-Key topology of low-pass filter is shown in the Figure 5.3. This is second
order section.
Transfer function of Sallen-Key section has form:

K,Cw?
$2 + Bw,s + Cw?

H(s) = (5.10)
where B and C' are normalized coefficient for unity cutoff frequencies w. = 1 (2.32),
(2.33). These coefficient could be evaluated using poles and zeros location.

Consider Sallen-Key filter design procedure. C5 capacitance could be estimated as

following;:
10

z7
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R1 OP1

C1
T i =

Figure 5.3: Low-pass Sallen-Key active filter section

Then ' capacitance could be estimated:

(B2 + 4C(K, — 1)]Cq

< 12
O < e (5.12)
Then we can evaluate resistors values:
Rl = 2 (5.13)
we[BCy + \/[B% + 4C (K, — 1)|C3 — 4CC,Cy]
Ry = ; (5.14)
> CCCoRw? '
K,(Ry + R»)
= = 1
Ry = S (5.15)
Ry = K, (R, + R») (5.16)

For unity gain K, = 1, R3 should be removed and R4 should be shorted. SallenKey
class implements these evaluations and builds Sallen-Key circuit. See sallenkey.cpp.

5.3.2 High pass filters

Sallen-Key topology of high-pass filter is shown in the Figure 5.4. This is second
order section.
Transfer function of this section has the following form:

K,s?
H p—
) = T (BujCys +a2/C

(5.17)
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R (e

input  c2 OP1

Figure 5.4: High-pass Sallen-Key active filter section

where B and C' are normalized coefficients of the low-pass prototype filter. These
coefficients could be evaluated using poles and zeros location of the low-pass pro-
totype.

RC-elements values evaluation methods are similar to low-pass section. C1 and
C2 capacitors values are equals:

10
Then we can evaluate resistors values:
4C
Ry = (5.19)
[B+ /B2 +8C(K, — 1)]w.C}
C
Ri=— 5.20
! WEC%RQ ( )
K,Rs
— 21
=g 0 (5.21)
Ry=K,Ry (5.22)

For unity gain K,, = 1, R3 should be removed and R4 should be shorted. SallenKey
class implements these evaluations and builds Sallen-Key circuit. See sallenkey.cpp.

5.3.3 Band pass filter

Sallen-Key topology of band-pass filter is shown in the Figure 5.5. Two such
section should be connected in series to implement 2-nd order section of band-pass
filter.
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s

R1 OP1

C1 R3

Figure 5.5: Band pass Sallen-Key active filter section

Transfer function of this topology is:

P
H(s) = 2.23
) = s 778 o2

where p, (3, v are some coefficients. These coefficients depend on RC-elements
values.
Using this topology we can implement three types of filter sections:

1. Second order band-pass filter

2. Second-order (Chebyshev, Butterworth, or Cauer) band-pass filter section
that corresponds second-order section of an LPF prototype.

3. Second-order band-pass filter section that corresponds first-order section of
an LPF prototype.

To calculate such section at first we should determine p, 3, v coefficients. The will
be following.

e For second order band-pass filter

e For second-order (Chebyshev, Butterworth, or Cauer) band-pass filter sec-
tion that corresponds second-order section of an LPF prototype. At first
coefficients B; and C; should be evaluated from poles and zeros set of low-
pass prototype using (2.32) and (2.33). Then supplementary coefficient D,
E; F, H should be calculated for every section of the filter.
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H=C+4Q* (5.25)

E=~l¢“7+‘”i_43%y) 526

B
BE

F=-— 27

0 (5.27)

D:Ei%?jé (5.28)

After this evaluation is performed we can evaluate p, 3, v coefficients. Second
order section of band-pass filter consists of two sections. For first section
coefficients are:

— 5.29
p 0 (5.29)
f=D/E (5.30)
v = D? (5.31)
And for second section:
K C
p= 0 (5.32)
f=— (5.33)
-~ DE '
1
v = 5P (5.34)

e For second-order band-pass filter section that corresponds first-order section
of an LPF prototype. We need to calculate coefficient C; from filter poles.
Coefficients are:

g v =10 (5.35)
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Having p, 3, v coefficients we can calculate RC-elements values:

10.0
Cr =Gy o [1F] (5.36)
JO— (5.37)
L puwoCh '
2
Ry = (5.38)
B4+ 1(p— B)? + 87w Ch
1 1 1
r= e (7t m) %
Ry = 2R, (5.40)

Now we can substitute RC-elements values and build filter circuit. SallenKey: :calcBandPass ()
implements these calculations. See sallenkey.cpp

5.4 Multifeedback

5.4.1 Low pass filter
Multifeedback (MFB) circuit of low-pass filter is shown in the Figure 5.6.

- output

input R2
C1

1 <

Figure 5.6: Low-pass multifeedback active filter section

Transfer function of this section has form (5.10). Having normalized transfer func-
tion coefficients B and C' we can determine RC-elements values. At first, select Cs
using equation (5.11). Then we can determine C; value

B2C,

< — .
Grs AC(K, + 1) (5:41)
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Using C and Cy we can determine resistors values

2(K,+1
Ry = (Ko +1) (5.42)
[BCQ + \/32022 — 400102(Kv + 1)]wc

R
Ry = 72 (5.43)

1
Ry = —+-—— 5.44
3 C’C’ngngg ( )

MFBfilter class is responsible for multifeedback filter circuit calculation and build-
ing. MFBfilter: :calcLowPass() method evaluates RC-elements values.
MFBfilter: :createLowPassSchematic() method builds low-pass filter schematic
for Qucs. See mfbfilter.cpp for source code.

5.4.2 High pass filters
Multifeedback (MFB) circuit of low-pass filter is shown in the Figure 5.7.

C2 R2

output

I I _
o i i— - —-0
input 1 R1
9 +

Figure 5.7: High-pass multifeedback active filter section

Transfer function of this section has form (5.17).
RC-elements value could be evaluated as following:

Cr=Cy— (5.45)
fe

C, = % (5.46)

Ry - m (5.47)

Ry = % (5.48)

MFBfilter::calcHighPass() and MFBfilter: :createHighPassSchematic() meth-
ods are responsible for multifeedback high-pass filter design. See mfbfilter.cpp
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5.4.3 Band pass filter
MFB band-pass filter section topology is shown in the Figure 5.8.

C1 R3

OP1

I output
Q LT 1 ¢ —0
input  R1 Cc2
+
E R2 f

Figure 5.8: Band pass multifeedback active filter section

This section has transfer function of the form (5.23). It is need to determine p,
B, ~v coefficients set using method presented in previous section. Having these
coefficients we can evaluate RC-elements values.

10.0
Cl = 27TOJO [IMF] (549)
Cy = Gilpf —7) (5.50)

Y
If Cy is less than zero (Cy < 0) we should put Cy = C}.

Ry = ” (5.51)
Ry — b (5.52)
[Ci(y = pB) +7Calwo
1 /1 1
R3 - m (a + ?2) (5.53)

Now we can substitute RC-elements values and build filter circuit. MFBfilter: :calcBandPass ()
implements these calculations. See mfbfilter.cpp

5.5 Cauer and Chebyshev Type-II filters

5.5.1 Low pass filter

Low-pass Cauer filter schematic is shown in the Figure 5.9. High-pass section of
Cauer filter has the same topology.
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Figure 5.9: Low-pass and high-pass Cauer active filter section

We should know A;, B;, and C; transfer function coefficients to evaluate RC-
elements values of the Cauer filter.
Capacitors values are:

10
Resistors values are:
Ry (5.55)
T oJCCl ’
BRsx
R, = 5.56
=K. (5.56)
R
Ry = 55 (5.57)
BRs
Rs = 5.58
5= G (5.58)
K,CR
Ry ==~ > (5.59)

SchCauer: :calcLowPass() and SchCauer::createlLowPassSchematic() meth-
ods implement these evaluation. See schcauer. cpp
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5.5.2 High pass filters

High-pass section of Cauer filters use the same topology as low-pass section (5.9).
Capacitors values could be determined using equation (5.54). R5 resistors value
using (5.55)

_ ABER;

= (5.60)
CR

Ry = 85 (5.61)

Ry = K, Rs (5.63)

SchCauer: :calcHighPass () and SchCauer: : createHighPassSchematic () meth-
ods implement these evaluation. See schcauer.cpp

5.5.3 Band pass filters

The topology of Cauer band-pass filter differs from LPF and HPF topology. Schematic
is presented in the Figure 5.10. There are two additional resistors R6 and R7.

1
| I—
R3
I
11
C1
OP1
o —i |
input R1 1T + output
Y R2 ——0
OP3
R7
op2 R4
| I— -
s — R6
p c2

Figure 5.10: Low-pass and high-pass Cauer active filter section

Transfer function of such section has the following form:

ol + o)
s2 4+ Buwys + ywd

H(s) = (5.64)
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At first we need to determine A;, B;, C; coeflicients set (2.27), (2.32), and (2.33)
for every section of the filter. Qucsactivefilter build schematic only for even order
prototype of Cauer band-pass filters. If low-pass prototype has odd order, then
order is expanded to nearest even order.

It’s need to evaluate the following coefficients for every i-th section of the low-pass
prototype:

A A% +4A0?
4 =14 ATVATAAQ (5.65)

202
H = C+4Q? (5.66)
o é\/H - \/H;— 4B2(Q)? (5.67)
BE
F=-— .
0 (5.68)
D:Ei%?;é (5.69)

Let p be p = 2.0 [1].
Second order section of low-pass prototype corresponds two second-order sections
of band-pass filter. Capacitors values for these sections are equals.

20
Cl=02=""" (uF) (5.70)
Wo
Resistors values for the first section:
wD A

Ri=————— 4\ = 5.71
YT K, AEuC, NV (5:71)

)
Ry= ——— 5.72
2 DELUoCQ ( )

1
Ry = ——— 5.73
3 DEOJ()Cl ( )
For the second section:
,uA1 A

= /= .74
ot K,DEw,C, \ C (5.74)

DFE
Ry = 5.75
2= 5 (5.75)

uD
Ra = 5.76
5 EwOC'1 ( )
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For both sections:

Rs = R3 (5.77)
K, R5 C
Ry = p "\ (5.78)
. plRy
R¢ = 1 (5.79)
R; = uRy (5.80)

Now we can substitute RC-elements values and build filter circuit. SchCauer: : calcBandPass ()
implements these calculations. See schcauer.cpp

5.6 Band stop filters

Band stop filter can be implemented using Cauer active filter section topology for
band-pass filters (Figure 5.10).
Transfer function of such section has the following form:

p(s? + aw)

H —
(5) $2 4 Bwos + ywd

(5.81)

At first, we need to evaluate some coefficients for every section of low-pass proto-
type. These coefficients should be found using A;, B;, C; coefficients, that could
be found from poles and zeros of low-pass prototype transfer function.

For Cauer or Chebyshev Type-II coefficient Aj:

14+ +/1+4AQ?2

2AQ?

For Butterworth, Chebyshev Type-I, or Bessel filters we should put Ay = 1. Let
1 be p=2.0.
Other coefficients:

H=1+40Q? (5.83)
/H2 2()2
E, = %\/CU{“L H2 1B (5.84)
_ BE,
G = oC (5.85)
p, = &tver - V2G2_4 (5.86)
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For the first section:
a=A, B=—F 7=G (5.87)

For the second section:

1 1 1

«

Capacitors values should be evaluated using (5.70). Resistors values for first section
are:

_ up
Bi= o (5.89)
1
R, = 5.90
? BuwoCy ( )
K,aR
Ry = o (5.91)
gl
Ry— (5.92)
o woC .
K,
Ry = Bofts (5.93)
0
p R
pu— p— . 4
Fo= Rr == (5.94)

Now we can substitute RC-elements values and build filter circuit. SchCauer: : calcBandStop ()
implements these calculations. See schcauer.cpp
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Chapter 6

Conclusion

Qucsactivefilter is powerful tool that allows you to build filter circuits. The fol-
lowing filter topologies are implemented:

1. Sallen-Key low-pass, high-pass, and band-pass filters. Butterworth, Cheby-
shev Type-I, and Bessel approximations.

2. Multifeedback low-pass, high-pass, and band-pass filters. Butterworth, Cheby-
shev Type-I, and Bessel approximations.

3. Cauer low-pass, high-pass, and band-pass filters. Chebyshev Type-II and
Cauer approximations.

4. Cauer band-stop filters. Butterworth, Chebyshev Type-I, Bessel, and Cauer
approximations.

5. User defined transform function approximation — all types of filter topolo-
gies.

Background mathematics filter synthesis methods were considered. These methods
are used in Qucsactivefilter sources.

You can implement physical filters after filter circuit is built and simulated with
Qucs. It’s need to note that real RC-elements values have tolerances. You should
use RC-elements with at at least less than 1% tolerance. Filter circuit may require
RC-elements values trimming. For trimming methods see [1] and [6].
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