Z3
Public Member Functions | Data Fields
ModelRef Class Reference
+ Inheritance diagram for ModelRef:

Public Member Functions

def __init__ (self, m, ctx)
 
def __del__ (self)
 
def __repr__ (self)
 
def sexpr (self)
 
def eval (self, t, model_completion=False)
 
def evaluate (self, t, model_completion=False)
 
def __len__ (self)
 
def get_interp (self, decl)
 
def num_sorts (self)
 
def get_sort (self, idx)
 
def sorts (self)
 
def get_universe (self, s)
 
def __getitem__ (self, idx)
 
def decls (self)
 
def translate (self, target)
 
def __copy__ (self)
 
def __deepcopy__ (self, memo={})
 
- Public Member Functions inherited from Z3PPObject
def use_pp (self)
 

Data Fields

 model
 
 ctx
 

Detailed Description

Model/Solution of a satisfiability problem (aka system of constraints).

Definition at line 5960 of file z3py.py.

Constructor & Destructor Documentation

◆ __init__()

def __init__ (   self,
  m,
  ctx 
)

Definition at line 5963 of file z3py.py.

5963  def __init__(self, m, ctx):
5964  assert ctx is not None
5965  self.model = m
5966  self.ctx = ctx
5967  Z3_model_inc_ref(self.ctx.ref(), self.model)
5968 
void Z3_API Z3_model_inc_ref(Z3_context c, Z3_model m)
Increment the reference counter of the given model.

◆ __del__()

def __del__ (   self)

Definition at line 5969 of file z3py.py.

5969  def __del__(self):
5970  if self.ctx.ref() is not None:
5971  Z3_model_dec_ref(self.ctx.ref(), self.model)
5972 
void Z3_API Z3_model_dec_ref(Z3_context c, Z3_model m)
Decrement the reference counter of the given model.

Member Function Documentation

◆ __copy__()

def __copy__ (   self)

Definition at line 6230 of file z3py.py.

6230  def __copy__(self):
6231  return self.translate(self.ctx)
6232 

◆ __deepcopy__()

def __deepcopy__ (   self,
  memo = {} 
)

Definition at line 6233 of file z3py.py.

6233  def __deepcopy__(self, memo={}):
6234  return self.translate(self.ctx)
6235 

◆ __getitem__()

def __getitem__ (   self,
  idx 
)
If `idx` is an integer, then the declaration at position `idx` in the model `self` is returned. If `idx` is a declaration, then the actual interpretation is returned.

The elements can be retrieved using position or the actual declaration.

>>> f = Function('f', IntSort(), IntSort())
>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0, x < 2, f(x) == 0)
>>> s.check()
sat
>>> m = s.model()
>>> len(m)
2
>>> m[0]
x
>>> m[1]
f
>>> m[x]
1
>>> m[f]
[else -> 0]
>>> for d in m: print("%s -> %s" % (d, m[d]))
x -> 1
f -> [else -> 0]

Definition at line 6159 of file z3py.py.

6159  def __getitem__(self, idx):
6160  """If `idx` is an integer, then the declaration at position `idx` in the model `self` is returned. If `idx` is a declaration, then the actual interpretation is returned.
6161 
6162  The elements can be retrieved using position or the actual declaration.
6163 
6164  >>> f = Function('f', IntSort(), IntSort())
6165  >>> x = Int('x')
6166  >>> s = Solver()
6167  >>> s.add(x > 0, x < 2, f(x) == 0)
6168  >>> s.check()
6169  sat
6170  >>> m = s.model()
6171  >>> len(m)
6172  2
6173  >>> m[0]
6174  x
6175  >>> m[1]
6176  f
6177  >>> m[x]
6178  1
6179  >>> m[f]
6180  [else -> 0]
6181  >>> for d in m: print("%s -> %s" % (d, m[d]))
6182  x -> 1
6183  f -> [else -> 0]
6184  """
6185  if _is_int(idx):
6186  if idx >= len(self):
6187  raise IndexError
6188  num_consts = Z3_model_get_num_consts(self.ctx.ref(), self.model)
6189  if (idx < num_consts):
6190  return FuncDeclRef(Z3_model_get_const_decl(self.ctx.ref(), self.model, idx), self.ctx)
6191  else:
6192  return FuncDeclRef(Z3_model_get_func_decl(self.ctx.ref(), self.model, idx - num_consts), self.ctx)
6193  if isinstance(idx, FuncDeclRef):
6194  return self.get_interp(idx)
6195  if is_const(idx):
6196  return self.get_interp(idx.decl())
6197  if isinstance(idx, SortRef):
6198  return self.get_universe(idx)
6199  if z3_debug():
6200  _z3_assert(False, "Integer, Z3 declaration, or Z3 constant expected")
6201  return None
6202 
Z3_func_decl Z3_API Z3_model_get_func_decl(Z3_context c, Z3_model m, unsigned i)
Return the declaration of the i-th function in the given model.
Z3_func_decl Z3_API Z3_model_get_const_decl(Z3_context c, Z3_model m, unsigned i)
Return the i-th constant in the given model.
def is_const(a)
Definition: z3py.py:1162
unsigned Z3_API Z3_model_get_num_consts(Z3_context c, Z3_model m)
Return the number of constants assigned by the given model.
def z3_debug()
Definition: z3py.py:56

◆ __len__()

def __len__ (   self)
Return the number of constant and function declarations in the model `self`.

>>> f = Function('f', IntSort(), IntSort())
>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0, f(x) != x)
>>> s.check()
sat
>>> m = s.model()
>>> len(m)
2

Definition at line 6035 of file z3py.py.

6035  def __len__(self):
6036  """Return the number of constant and function declarations in the model `self`.
6037 
6038  >>> f = Function('f', IntSort(), IntSort())
6039  >>> x = Int('x')
6040  >>> s = Solver()
6041  >>> s.add(x > 0, f(x) != x)
6042  >>> s.check()
6043  sat
6044  >>> m = s.model()
6045  >>> len(m)
6046  2
6047  """
6048  return int(Z3_model_get_num_consts(self.ctx.ref(), self.model)) + int(Z3_model_get_num_funcs(self.ctx.ref(), self.model))
6049 
unsigned Z3_API Z3_model_get_num_consts(Z3_context c, Z3_model m)
Return the number of constants assigned by the given model.
unsigned Z3_API Z3_model_get_num_funcs(Z3_context c, Z3_model m)
Return the number of function interpretations in the given model.

◆ __repr__()

def __repr__ (   self)

Definition at line 5973 of file z3py.py.

5973  def __repr__(self):
5974  return obj_to_string(self)
5975 

◆ decls()

def decls (   self)
Return a list with all symbols that have an interpretation in the model `self`.
>>> f = Function('f', IntSort(), IntSort())
>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0, x < 2, f(x) == 0)
>>> s.check()
sat
>>> m = s.model()
>>> m.decls()
[x, f]

Definition at line 6203 of file z3py.py.

6203  def decls(self):
6204  """Return a list with all symbols that have an interpretation in the model `self`.
6205  >>> f = Function('f', IntSort(), IntSort())
6206  >>> x = Int('x')
6207  >>> s = Solver()
6208  >>> s.add(x > 0, x < 2, f(x) == 0)
6209  >>> s.check()
6210  sat
6211  >>> m = s.model()
6212  >>> m.decls()
6213  [x, f]
6214  """
6215  r = []
6216  for i in range(Z3_model_get_num_consts(self.ctx.ref(), self.model)):
6217  r.append(FuncDeclRef(Z3_model_get_const_decl(self.ctx.ref(), self.model, i), self.ctx))
6218  for i in range(Z3_model_get_num_funcs(self.ctx.ref(), self.model)):
6219  r.append(FuncDeclRef(Z3_model_get_func_decl(self.ctx.ref(), self.model, i), self.ctx))
6220  return r
6221 
expr range(expr const &lo, expr const &hi)
Definition: z3++.h:3431
Z3_func_decl Z3_API Z3_model_get_func_decl(Z3_context c, Z3_model m, unsigned i)
Return the declaration of the i-th function in the given model.
Z3_func_decl Z3_API Z3_model_get_const_decl(Z3_context c, Z3_model m, unsigned i)
Return the i-th constant in the given model.
unsigned Z3_API Z3_model_get_num_consts(Z3_context c, Z3_model m)
Return the number of constants assigned by the given model.
unsigned Z3_API Z3_model_get_num_funcs(Z3_context c, Z3_model m)
Return the number of function interpretations in the given model.

◆ eval()

def eval (   self,
  t,
  model_completion = False 
)
Evaluate the expression `t` in the model `self`. If `model_completion` is enabled, then a default interpretation is automatically added for symbols that do not have an interpretation in the model `self`.

>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0, x < 2)
>>> s.check()
sat
>>> m = s.model()
>>> m.eval(x + 1)
2
>>> m.eval(x == 1)
True
>>> y = Int('y')
>>> m.eval(y + x)
1 + y
>>> m.eval(y)
y
>>> m.eval(y, model_completion=True)
0
>>> # Now, m contains an interpretation for y
>>> m.eval(y + x)
1

Definition at line 5980 of file z3py.py.

5980  def eval(self, t, model_completion=False):
5981  """Evaluate the expression `t` in the model `self`. If `model_completion` is enabled, then a default interpretation is automatically added for symbols that do not have an interpretation in the model `self`.
5982 
5983  >>> x = Int('x')
5984  >>> s = Solver()
5985  >>> s.add(x > 0, x < 2)
5986  >>> s.check()
5987  sat
5988  >>> m = s.model()
5989  >>> m.eval(x + 1)
5990  2
5991  >>> m.eval(x == 1)
5992  True
5993  >>> y = Int('y')
5994  >>> m.eval(y + x)
5995  1 + y
5996  >>> m.eval(y)
5997  y
5998  >>> m.eval(y, model_completion=True)
5999  0
6000  >>> # Now, m contains an interpretation for y
6001  >>> m.eval(y + x)
6002  1
6003  """
6004  r = (Ast * 1)()
6005  if Z3_model_eval(self.ctx.ref(), self.model, t.as_ast(), model_completion, r):
6006  return _to_expr_ref(r[0], self.ctx)
6007  raise Z3Exception("failed to evaluate expression in the model")
6008 
Z3_bool Z3_API Z3_model_eval(Z3_context c, Z3_model m, Z3_ast t, bool model_completion, Z3_ast *v)
Evaluate the AST node t in the given model. Return true if succeeded, and store the result in v.

Referenced by ModelRef.evaluate().

◆ evaluate()

def evaluate (   self,
  t,
  model_completion = False 
)
Alias for `eval`.

>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0, x < 2)
>>> s.check()
sat
>>> m = s.model()
>>> m.evaluate(x + 1)
2
>>> m.evaluate(x == 1)
True
>>> y = Int('y')
>>> m.evaluate(y + x)
1 + y
>>> m.evaluate(y)
y
>>> m.evaluate(y, model_completion=True)
0
>>> # Now, m contains an interpretation for y
>>> m.evaluate(y + x)
1

Definition at line 6009 of file z3py.py.

6009  def evaluate(self, t, model_completion=False):
6010  """Alias for `eval`.
6011 
6012  >>> x = Int('x')
6013  >>> s = Solver()
6014  >>> s.add(x > 0, x < 2)
6015  >>> s.check()
6016  sat
6017  >>> m = s.model()
6018  >>> m.evaluate(x + 1)
6019  2
6020  >>> m.evaluate(x == 1)
6021  True
6022  >>> y = Int('y')
6023  >>> m.evaluate(y + x)
6024  1 + y
6025  >>> m.evaluate(y)
6026  y
6027  >>> m.evaluate(y, model_completion=True)
6028  0
6029  >>> # Now, m contains an interpretation for y
6030  >>> m.evaluate(y + x)
6031  1
6032  """
6033  return self.eval(t, model_completion)
6034 

◆ get_interp()

def get_interp (   self,
  decl 
)
Return the interpretation for a given declaration or constant.

>>> f = Function('f', IntSort(), IntSort())
>>> x = Int('x')
>>> s = Solver()
>>> s.add(x > 0, x < 2, f(x) == 0)
>>> s.check()
sat
>>> m = s.model()
>>> m[x]
1
>>> m[f]
[else -> 0]

Definition at line 6050 of file z3py.py.

6050  def get_interp(self, decl):
6051  """Return the interpretation for a given declaration or constant.
6052 
6053  >>> f = Function('f', IntSort(), IntSort())
6054  >>> x = Int('x')
6055  >>> s = Solver()
6056  >>> s.add(x > 0, x < 2, f(x) == 0)
6057  >>> s.check()
6058  sat
6059  >>> m = s.model()
6060  >>> m[x]
6061  1
6062  >>> m[f]
6063  [else -> 0]
6064  """
6065  if z3_debug():
6066  _z3_assert(isinstance(decl, FuncDeclRef) or is_const(decl), "Z3 declaration expected")
6067  if is_const(decl):
6068  decl = decl.decl()
6069  try:
6070  if decl.arity() == 0:
6071  _r = Z3_model_get_const_interp(self.ctx.ref(), self.model, decl.ast)
6072  if _r.value is None:
6073  return None
6074  r = _to_expr_ref(_r, self.ctx)
6075  if is_as_array(r):
6076  return self.get_interp(get_as_array_func(r))
6077  else:
6078  return r
6079  else:
6080  return FuncInterp(Z3_model_get_func_interp(self.ctx.ref(), self.model, decl.ast), self.ctx)
6081  except Z3Exception:
6082  return None
6083 
def is_const(a)
Definition: z3py.py:1162
def get_as_array_func(n)
Definition: z3py.py:6244
Z3_func_interp Z3_API Z3_model_get_func_interp(Z3_context c, Z3_model m, Z3_func_decl f)
Return the interpretation of the function f in the model m. Return NULL, if the model does not assign...
Z3_ast Z3_API Z3_model_get_const_interp(Z3_context c, Z3_model m, Z3_func_decl a)
Return the interpretation (i.e., assignment) of constant a in the model m. Return NULL,...
def z3_debug()
Definition: z3py.py:56
def is_as_array(n)
Definition: z3py.py:6240

Referenced by ModelRef.__getitem__(), and ModelRef.get_interp().

◆ get_sort()

def get_sort (   self,
  idx 
)
Return the uninterpreted sort at position `idx` < self.num_sorts().

>>> A = DeclareSort('A')
>>> B = DeclareSort('B')
>>> a1, a2 = Consts('a1 a2', A)
>>> b1, b2 = Consts('b1 b2', B)
>>> s = Solver()
>>> s.add(a1 != a2, b1 != b2)
>>> s.check()
sat
>>> m = s.model()
>>> m.num_sorts()
2
>>> m.get_sort(0)
A
>>> m.get_sort(1)
B

Definition at line 6099 of file z3py.py.

6099  def get_sort(self, idx):
6100  """Return the uninterpreted sort at position `idx` < self.num_sorts().
6101 
6102  >>> A = DeclareSort('A')
6103  >>> B = DeclareSort('B')
6104  >>> a1, a2 = Consts('a1 a2', A)
6105  >>> b1, b2 = Consts('b1 b2', B)
6106  >>> s = Solver()
6107  >>> s.add(a1 != a2, b1 != b2)
6108  >>> s.check()
6109  sat
6110  >>> m = s.model()
6111  >>> m.num_sorts()
6112  2
6113  >>> m.get_sort(0)
6114  A
6115  >>> m.get_sort(1)
6116  B
6117  """
6118  if idx >= self.num_sorts():
6119  raise IndexError
6120  return _to_sort_ref(Z3_model_get_sort(self.ctx.ref(), self.model, idx), self.ctx)
6121 
Z3_sort Z3_API Z3_model_get_sort(Z3_context c, Z3_model m, unsigned i)
Return a uninterpreted sort that m assigns an interpretation.

Referenced by ModelRef.sorts().

◆ get_universe()

def get_universe (   self,
  s 
)
Return the interpretation for the uninterpreted sort `s` in the model `self`.

>>> A = DeclareSort('A')
>>> a, b = Consts('a b', A)
>>> s = Solver()
>>> s.add(a != b)
>>> s.check()
sat
>>> m = s.model()
>>> m.get_universe(A)
[A!val!0, A!val!1]

Definition at line 6139 of file z3py.py.

6139  def get_universe(self, s):
6140  """Return the interpretation for the uninterpreted sort `s` in the model `self`.
6141 
6142  >>> A = DeclareSort('A')
6143  >>> a, b = Consts('a b', A)
6144  >>> s = Solver()
6145  >>> s.add(a != b)
6146  >>> s.check()
6147  sat
6148  >>> m = s.model()
6149  >>> m.get_universe(A)
6150  [A!val!0, A!val!1]
6151  """
6152  if z3_debug():
6153  _z3_assert(isinstance(s, SortRef), "Z3 sort expected")
6154  try:
6155  return AstVector(Z3_model_get_sort_universe(self.ctx.ref(), self.model, s.ast), self.ctx)
6156  except Z3Exception:
6157  return None
6158 
Z3_ast_vector Z3_API Z3_model_get_sort_universe(Z3_context c, Z3_model m, Z3_sort s)
Return the finite set of distinct values that represent the interpretation for sort s.
def z3_debug()
Definition: z3py.py:56

Referenced by ModelRef.__getitem__().

◆ num_sorts()

def num_sorts (   self)
Return the number of uninterpreted sorts that contain an interpretation in the model `self`.

>>> A = DeclareSort('A')
>>> a, b = Consts('a b', A)
>>> s = Solver()
>>> s.add(a != b)
>>> s.check()
sat
>>> m = s.model()
>>> m.num_sorts()
1

Definition at line 6084 of file z3py.py.

6084  def num_sorts(self):
6085  """Return the number of uninterpreted sorts that contain an interpretation in the model `self`.
6086 
6087  >>> A = DeclareSort('A')
6088  >>> a, b = Consts('a b', A)
6089  >>> s = Solver()
6090  >>> s.add(a != b)
6091  >>> s.check()
6092  sat
6093  >>> m = s.model()
6094  >>> m.num_sorts()
6095  1
6096  """
6097  return int(Z3_model_get_num_sorts(self.ctx.ref(), self.model))
6098 
unsigned Z3_API Z3_model_get_num_sorts(Z3_context c, Z3_model m)
Return the number of uninterpreted sorts that m assigns an interpretation to.

Referenced by ModelRef.get_sort(), and ModelRef.sorts().

◆ sexpr()

def sexpr (   self)
Return a textual representation of the s-expression representing the model.

Definition at line 5976 of file z3py.py.

5976  def sexpr(self):
5977  """Return a textual representation of the s-expression representing the model."""
5978  return Z3_model_to_string(self.ctx.ref(), self.model)
5979 
Z3_string Z3_API Z3_model_to_string(Z3_context c, Z3_model m)
Convert the given model into a string.

Referenced by Fixedpoint.__repr__(), and Optimize.__repr__().

◆ sorts()

def sorts (   self)
Return all uninterpreted sorts that have an interpretation in the model `self`.

>>> A = DeclareSort('A')
>>> B = DeclareSort('B')
>>> a1, a2 = Consts('a1 a2', A)
>>> b1, b2 = Consts('b1 b2', B)
>>> s = Solver()
>>> s.add(a1 != a2, b1 != b2)
>>> s.check()
sat
>>> m = s.model()
>>> m.sorts()
[A, B]

Definition at line 6122 of file z3py.py.

6122  def sorts(self):
6123  """Return all uninterpreted sorts that have an interpretation in the model `self`.
6124 
6125  >>> A = DeclareSort('A')
6126  >>> B = DeclareSort('B')
6127  >>> a1, a2 = Consts('a1 a2', A)
6128  >>> b1, b2 = Consts('b1 b2', B)
6129  >>> s = Solver()
6130  >>> s.add(a1 != a2, b1 != b2)
6131  >>> s.check()
6132  sat
6133  >>> m = s.model()
6134  >>> m.sorts()
6135  [A, B]
6136  """
6137  return [ self.get_sort(i) for i in range(self.num_sorts()) ]
6138 
expr range(expr const &lo, expr const &hi)
Definition: z3++.h:3431

◆ translate()

def translate (   self,
  target 
)
Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`.

Definition at line 6222 of file z3py.py.

6222  def translate(self, target):
6223  """Translate `self` to the context `target`. That is, return a copy of `self` in the context `target`.
6224  """
6225  if z3_debug():
6226  _z3_assert(isinstance(target, Context), "argument must be a Z3 context")
6227  model = Z3_model_translate(self.ctx.ref(), self.model, target.ref())
6228  return Model(model, target)
6229 
def Model(ctx=None)
Definition: z3py.py:6236
Z3_model Z3_API Z3_model_translate(Z3_context c, Z3_model m, Z3_context dst)
translate model from context c to context dst.
def z3_debug()
Definition: z3py.py:56

Referenced by ModelRef.__copy__(), Solver.__copy__(), ModelRef.__deepcopy__(), and Solver.__deepcopy__().

Field Documentation

◆ ctx

ctx

Definition at line 5966 of file z3py.py.

Referenced by Probe.__call__(), ModelRef.__copy__(), Solver.__copy__(), ModelRef.__deepcopy__(), Statistics.__deepcopy__(), Solver.__deepcopy__(), Fixedpoint.__deepcopy__(), Optimize.__deepcopy__(), ApplyResult.__deepcopy__(), Tactic.__deepcopy__(), Probe.__deepcopy__(), ModelRef.__del__(), Statistics.__del__(), Solver.__del__(), Fixedpoint.__del__(), Optimize.__del__(), ApplyResult.__del__(), Tactic.__del__(), Probe.__del__(), Probe.__eq__(), Probe.__ge__(), ModelRef.__getitem__(), Statistics.__getitem__(), ApplyResult.__getitem__(), Probe.__gt__(), Probe.__le__(), ModelRef.__len__(), Statistics.__len__(), ApplyResult.__len__(), Probe.__lt__(), Probe.__ne__(), Statistics.__repr__(), Fixedpoint.add_cover(), Fixedpoint.add_rule(), Optimize.add_soft(), Tactic.apply(), ApplyResult.as_expr(), Solver.assert_and_track(), Optimize.assert_and_track(), Solver.assert_exprs(), Fixedpoint.assert_exprs(), Optimize.assert_exprs(), Solver.assertions(), Optimize.assertions(), Solver.check(), Optimize.check(), Solver.consequences(), ModelRef.decls(), Solver.dimacs(), ModelRef.eval(), Solver.from_file(), Optimize.from_file(), Solver.from_string(), Optimize.from_string(), Fixedpoint.get_answer(), Fixedpoint.get_assertions(), Fixedpoint.get_cover_delta(), Fixedpoint.get_ground_sat_answer(), ModelRef.get_interp(), Statistics.get_key_value(), Fixedpoint.get_num_levels(), Fixedpoint.get_rule_names_along_trace(), Fixedpoint.get_rules(), Fixedpoint.get_rules_along_trace(), ModelRef.get_sort(), ModelRef.get_universe(), Solver.help(), Fixedpoint.help(), Optimize.help(), Tactic.help(), Solver.import_model_converter(), Statistics.keys(), Optimize.maximize(), Optimize.minimize(), Solver.model(), Optimize.model(), Solver.non_units(), Solver.num_scopes(), ModelRef.num_sorts(), Optimize.objectives(), Solver.param_descrs(), Fixedpoint.param_descrs(), Optimize.param_descrs(), Tactic.param_descrs(), Fixedpoint.parse_file(), Fixedpoint.parse_string(), Solver.pop(), Optimize.pop(), Solver.proof(), Solver.push(), Optimize.push(), Fixedpoint.query(), Fixedpoint.query_from_lvl(), Solver.reason_unknown(), Fixedpoint.reason_unknown(), Optimize.reason_unknown(), Fixedpoint.register_relation(), Solver.reset(), Solver.set(), Fixedpoint.set(), Optimize.set(), Fixedpoint.set_predicate_representation(), ModelRef.sexpr(), Solver.sexpr(), Fixedpoint.sexpr(), Optimize.sexpr(), ApplyResult.sexpr(), Tactic.solver(), Solver.statistics(), Fixedpoint.statistics(), Optimize.statistics(), Solver.to_smt2(), Fixedpoint.to_string(), Solver.trail(), Solver.trail_levels(), ModelRef.translate(), Solver.translate(), Solver.units(), Solver.unsat_core(), Optimize.unsat_core(), and Fixedpoint.update_rule().

◆ model

model