MySQL++ Reference Manual
2.2.3

Generated by Doxygen 1.3.5

Tue Apr 17 08:42:12 2007

Contents

1 MySQL-++ Reference Manual 1
1.1 Getting Started 1
1.2 Major Classes o o i e e e e 1
1.3 Major Files e 1
1.4 TIf You Have Questions... o . o e 1
1.5 Licensing o i e e e e 2

2 MySQL-++ Namespace Index 3
2.1 MySQL++ Namespace List 3

3 MySQL-++ Hierarchical Index 5
3.1 MySQL++ Class Hierarchy 5

4 MySQL++ Class Index 7
41 MySQL++ Class List o 00 o e

5 MySQL-++ File Index 9
51 MySQL++ File List o o e 9

6 MySQL+-+ Namespace Documentation 11
6.1 mysqlpp Namespace Reference 11

7 MySQL-++ Class Documentation 33
7.1 AutoFlag< T > Class Template Reference 33
7.2 mysqlpp::BadConversion Class Reference 34
7.3 mysqlpp::BadFieldName Class Reference 36
7.4 mysqlpp::BadNullConversion Class Reference 37
7.5 mysqlpp::BadOption Class Reference, 38
7.6 mysqlpp::BadParamCount Class Reference 39

7.7 mysqlpp::BadQuery Class Reference 40

ii

CONTENTS

7.8
7.9
7.10
7.11
7.12
7.13

7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26
7.27
7.28
7.29
7.30
7.31
7.32
7.33
7.34
7.35
7.36
7.37
7.38
7.39
7.40
7.41
7.42
7.43

mysqlpp::BasicLock Class Reference 41
mysqlpp::ColData_Tmpl< Str > Class Template Reference 42
mysqlpp::Connection Class Reference 46
mysqlpp::ConnectionFailed Class Reference 57
mysqlpp::const_string Class Reference 58
mysqlpp::const _subscript container< OnType, ValueType, ReturnType, Size-

Type, Diff Type > Class Template Reference 61
mysqlpp::Date Struct Reference Lo oo oo 63
mysqlpp::DateTime Struct Reference 65
mysqlpp::DBSelectionFailed Class Reference 68
mysqlpp::DTbase< T > Struct Template Reference 69
mysqlpp::EndOfResults Class Reference 71
mysqlpp::EndOfResultSets Class Reference 72
mysqlpp::equal list b< Seql, Seq2, Manip > Struct Template Reference 73
mysqlpp::equal _list _ba< Seql, Seq2, Manip > Struct Template Reference 75
mysqlpp::Exception Class Reference 77
mysqlpp::FieldNames Class Reference 78
mysqlpp::Fields Class Reference 79
mysqlpp::FieldTypes Class Reference 80
mysqlpp::Lock Class Reference 81
mysqlpp::Lockable Class Reference 82
mysqlpp::LockFailed Class Reference 83
mysqlpp:mysql type info Class Reference 84
mysqlpp::NoExceptions Class Reference 89
mysqlpp::Null< Type, Behavior > Class Template Reference 90
mysqlpp:null _type Class Reference oo L. 93
mysqlpp::NullisBlank Struct Reference 94
mysqlpp::NullisNull Struct Reference, 95
mysqlpp::NullisZero Struct Reference oL 96
mysqlpp::ObjectNotInitialized Class Reference 97
mysqlpp::OptionalExceptions Class Reference 98
mysqlpp::Query Class Reference 100
mysqlpp::ResNSel Class Reference 112
mysqlpp::Result Class Reference 113
mysqlpp::ResUse Class Reference 115
mysqlpp::Row Class Reference o oL 120
mysqlpp::iscoped _var_set< T > Class Template Reference 129

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

CONTENTS iii

7.44 mysqlpp::Set< Container > Class Template Reference 130
7.45 mysqlpp::SQLParseElement Struct Reference 131
7.46 mysqlpp::SQLQueryParms Class Reference 133
7.47 mysqlpp::SQLString Class Reference 135
7.48 mysqlpp::subscript iterator< OnType, ReturnType, SizeType, DiffType > Class
Template Reference e 137
7.49 mysqlpp::Time Struct Reference. 139
7.50 mysqlpp::tiny int Class Reference 0oL 141
7.51 mysqlpp::Transaction Class Reference 144
7.52 mysqlpp::value list b< Seq, Manip > Struct Template Reference 146
7.53 mysqlpp::value list ba< Seq, Manip > Struct Template Reference 148
8 MySQL-++ File Documentation 151
8.1 autoflag.h File Reference 151
8.2 coldata.h File Reference 152
8.3 common.h File Reference 153
8.4 connection.h File Reference 154
8.5 const_string.h File Reference Lo ool 155
8.6 convert.h File Reference Lo 156
8.7 datetime.h File Reference o 157
8.8 exceptions.h File Reference, 158
8.9 field names.h File Reference 159
8.10 field types.h File Reference Lo oo oo 160
8.11 fields.h File Reference 161
8.12 lockable.h File Reference 162
8.13 manip.h File Reference Lo 163
8.14 myset.h File Reference L 164
8.15 mysql++.h File Reference L 165
8.16 noexceptions.h File Reference 167
8.17 null.h File Reference e 168
8.18 gparms.h File Reference 169
8.19 query.h File Reference L 170
8.20 resiter.h File Reference Lo 172
8.21 result.h File Reference 173
8.22 row.h File Reference 174
8.23 sql_string.h File Reference oo 175
8.24 sql types.h File Reference 176

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

iv

CONTENTS

8.25 stream2string.h File Reference oo oL, 177
8.26 string util.h File Reference 178
8.27 tiny_int.h File Referenceo o L 179
8.28 transaction.h File Reference L. 180
8.29 type info.h File Reference 181
8.30 wvallist.h File Reference L 182

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

Chapter 1

MySQL-+-+ Reference Manual

1.1 Getting Started

The best place to get started is the user manual. It provides a guide to the example programs
and more.

1.2 Major Classes

In MySQL++, the main wuser-facing classes are mysqlpp::Connection(p.46),
mysqlpp::Query(p. 100), mysqlpp::Result(p. 113), and mysqlpp::Row(p. 120).

In addition, MySQL++ has a mechanism called Specialized SQL Structures (SSQLS), which allow
you to create C++ structures that parallel the definition of the tables in your database schema.
These let you manipulate the data in your database using native C++ data structures. Programs
using this feature often include very little SQL code, because MySQL++ can generate most of
what you need automatically when using SSQLSes. There is a whole chapter in the user manual
on how to use this feature of the library, plus a section in the user manual’s tutorial chapter to
introduce it. It’s possible to use MySQL++ effectively without using SSQLS, but it sure makes
some things a lot easier.

1.3 Major Files

The only two header files your program ever needs to include are mysql-++.h, and optionally
custom.h. (The latter implements the SSQLS mechanism.) All of the other files are used within
the library only.

1.4 If You Have Questions...

If you want to email someone to ask questions about this library, we greatly prefer
that you send mail to the MySQL-++ mailing list, which you can subscribe to here:
http://lists.mysql.com/plusplus

That mailing list is archived, so if you have questions, do a search to see if the question has been
asked before.

2 MySQL++ Reference Manual

You may find people’s individual email addresses in various files within the MySQL~++ distribu-
tion. Please do not send mail to them unless you are sending something that is inherently personal.
Questions that are about MySQL++ usage may well be ignored if you send them to our personal
email accounts. Those of us still active in MySQL++ development monitor the mailing list, so
you aren’t getting any extra "coverage" by sending messages to those addresses in addition to the
mailing list.

1.5 Licensing

MySQL++ is licensed under the GNU Lesser General Public License, which you should have
received with the distribution package in a file called "LGPL" or "LICENSE". You can also view
it here: http://www.gnu.org/licenses/lgpl.html or receive a copy by writing to Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

Chapter 2

MySQL++ Namespace Index

2.1 MySQL++ Namespace List

Here is a list of all documented namespaces with brief descriptions:

mysqlpp e e e e e e e

MySQL+-+ Namespace Index

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

Chapter 3

MySQL++ Hierarchical Index

3.1 MySQL-++ Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

AutoFlag< T > . . L . .
mysqlpp::ColData_ Tmpl< Str > o e
mysqlpp::const_string L. L
mysqlpp::const _subscript _container< OnType, ValueType, ReturnType, SizeType,

DiffType > e e
mysqlpp::const _subscript _container< Fields, Field >

mysqlpp:=Fields oL
mysqlpp::const _subscript _container< Result, Row, const Row >
mysqglpp=Result oL
mysqlpp::const _subscript _container< Row, ColData, const ColData >
mysalpp=Row L

mysqlpp::DThase< T > o e
mysqlpp::DTbase< Date > o e e e e

mysqglpp=Dateo L
mysqlpp::DThase< DateTime >
mysqlpp::DateTime L
mysqlpp::DTbase< Time > e
mysqlpp:=Time oL e e e e

mysqlpp::equal list b< Seql, Seq2, Manip > L.
mysqlpp::equal list _ba< Seql, Seq2, Manip >o
mysqlpp:Exception Lo L

mysqlpp:BadConversion Lo e
mysqlpp::BadFieldName
mysqlpp::BadNullConversion L e
mysqlpp:BadOption oL o
mysqlpp:BadParamCount Lo
mysqlpp:BadQuery oL
mysqlpp::ConnectionFailed Lo
mysqlpp::DBSelectionFailedo Lo
mysqlpp:EndOfResults Lo
mysqlpp:EndOfResultSets oL

MySQL-++ Hierarchical Index

mysqlpp::LockFailed L 83
mysqlpp::ObjectNotInitialized L 97
mysqlpp::FieldNames oL 78
mysqlpp:FieldTypes 0 . L oo 80
mysqalpp:Locko 81
mysqlpp::BasicLocko 41
mysqlpp::Lockable 82
mysqlpp::Connection oL e e 46
mysqlpp:QUeEryo e e e e e e 100
mysqlpp:mysgl _type _info 84
mysqlpp::NoExceptions L 89
mysqlpp::Null< Type, Behavior > 0. 90
mysqglpp:mull _type. e 93
mysqglpp:NullisBlank 0o o 94
mysqlpp:=NullisNull0 .o 95
mysqlpp:NullisZero 96
mysqlpp::OptionalExceptions 98
mysqlpp::Connectiono e e 46
mysqlpp:QUery L L e e e e e 100
mysqlpp:ResUse L e 115
mysqlpp=Result oL 113
mysqlpp=Row . . . L L 120
mysqlpp:ResNSel 112
mysqlpp:scoped _var _set< T > . . . Lo 129
mysqlpp::Set< Container > 130
mysqlpp::SQLParseElement 131
mysqlpp::SQLQueryParms oL 133
mysqlpp::SQLString oL e 135
mysqlpp::subscript _iterator< OnType, ReturnType, SizeType, Diff Type > 137
mysqlpp:tiny _int ... L. L L e 141
mysqlpp::Transaction Lo 144
mysqlpp::value list b< Seq, Manip > Lo 146
mysqlpp::value list ba< Seq, Manip > o oL 148

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

Chapter 4

MySQL++4 Class Index

4.1 MySQL-++ Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

AutoFlag< T > (A template for setting a flag on a variable as long as the object that
set it is in scope. Flag resets when object goes out of scope. Works on anything

that looks like bool) L 33
mysqlpp::BadConversion (Exception(p.77) thrown when a bad type conversion is

attempted) 34
mysqlpp::BadFieldName (Exception(p.77) thrown when a requested named field

doesn’texist) 36
mysqlpp::BadNullConversion (Exception(p. 77) thrown when you attempt to con-

vert a SQL null to an incompatible type) L. 37
mysqlpp::BadOption (Exception(p.77) thrown when you pass an unrecognized op-

tion to Connection::set option()(p.55)). 38
mysqlpp::BadParamCount (Exception(p.77) thrown when not enough query pa-

rameters are provided) L L 39
mysqlpp::BadQuery (Exception(p.77) thrown when MySQL encounters a problem

while processing your query) Lo 40
mysqlpp::BasicLock (Trivial Lock(p. 81) subclass, using a boolean variable as the lock

flag) . . . e 41
mysqlpp::ColData Tmpl< Str > (Template for string data that can convert itself

to any standard C data type) 42
mysqlpp::Connection (Manages the connection to the MySQL database) 46

mysqlpp::ConnectionFailed (Exception(p.77) thrown when there is a problem
establishing the database server connection. It’s also thrown if Connec-

tion::shutdown()(p.55) fails) L Lo oL 57
mysqlpp::const _string (Wrapper for const chars to make it behave in a way more
useful to MySQL++) .« . . o o e e 58

mysqlpp::const _subscript container< OnType, ValueType, ReturnType,
SizeType, Diff Type > (A base class that one derives from to become a random

access container, which can be accessed with subscript notation) 61
mysqlpp::Date (C++ form of MySQL’s DATE type) 63
mysqlpp::DateTime (C++ form of MySQL’s DATETIME type). 65
mysqlpp::DBSelectionFailed (Exception(p.77) thrown when the program tries to

select a new database and the server refuses for some reason) 68

mysqlpp::DTbase< T > (Base class template for MySQL++ date and time classes) 69

MySQL++ Class Index

mysqlpp::EndOfResults (Exception(p.77) thrown when ResUse::fetch -

row()(p. 118) walks off the end of a use-query’sresult set) 71
mysqlpp::EndOfResultSets (Exception(p.77) thrown when Query::store -

next()(p. 107) walks off the end of a use-query’s multi result sets) 72
mysqlpp::equal list b< Seql, Seq2, Manip > (Same as equal list ba(p.75),

plus the option to have some elements of the equals clause suppressed) 73
mysqlpp::equal list ba< Seql, Seq2, Manip > (Holds two lists of items, typically

used to construct a SQL "equals clause") L. 75
mysqlpp::Exception (Base class for all MySQL+-+ custom exceptions) 77
mysqlpp::FieldNames (Holds a list of SQL field names) 78
mysqlpp::Fields (A container similar to std::vector for holding

mysqlpp::Field(p.14) records) Lo 79
mysqlpp::FieldTypes (A vector of SQL field types) 80
mysqlpp::Lock (Abstract base class for lock implementation, used by Lockable(p.82)) 81
mysqlpp::Lockable (Interface allowing a class to declare itself as "lockable") 82
mysqlpp::LockFailed (Exception(p.77) thrown when a Lockable(p. 82) object fails) 83
mysqlpp::mysql_type info (Holds basic type information for ColData) 84
mysqlpp::NoExceptions (Disable exceptions in an object derived from Optional-

Exceptions(p.98)) 89
mysqlpp::Null< Type, Behavior > (Class for holding data from a SQL column with

the NULL attribute). oo 90
mysqlpp::null type (The type of the global mysqlpp::null(p. 20) object) 93

mysqlpp::NullisBlank (Class for objects that define SQL null as a blank C string) . 94
mysqlpp::NullisNull (Class for objects that define SQL null in terms of MySQL+-+s

null type(p.93)) 95
mysqlpp::NullisZero (Class for objects that define SQL nullas0) 96
mysqlpp::ObjectNotInitialized (Exception(p.77) thrown when you try to use an

object that isn’t completely initialized), 97
mysqlpp::OptionalExceptions (Interface allowing a class to have optional exceptions) 98
mysqlpp::Query (A class for building and executing SQL queries) 100
mysqlpp::ResNSel (Holds the information on the success of queries that don’t return

anyresults) e e 112
mysqlpp::Result (This class manages SQL result sets) 113
mysqlpp::ResUse (A basic result set class, for use with "use" queries) 115
mysqlpp::Row (Manages rows from aresult set) 120
mysqlpp::scoped var set< T > (Sets a variable to a given value temporarily) . . 129
mysqlpp::Set< Container > (A special std::set derivative for holding MySQL data

SEUS) v i e e e e e 130
mysqlpp::SQLParseElement (Used within Query(p. 100) to hold elements for param-

eterized queries) 131
mysqlpp::SQLQueryParms (This class holds the parameter values for filling template

QUETIES) © v v o i e i e e e e e 133
mysqlpp::SQLString (A specialized std: : string that will convert from any valid My-

SQLGYPE) - o o o o e e e e e 135
mysqlpp::subscript _iterator< OnType, ReturnType, SizeType, Diff Type >

(Tterator that can be subscripted) 137
mysqlpp::Time (C++ form of MySQL’s TIME type) 139
mysqlpp::tiny _int (Class for holding an SQL tiny _int(p.141) object) 141

mysqlpp::Transaction (Helper object for creating exception-safe SQL transactions) . 144
mysqlpp::value list b< Seq, Manip > (Same as value list ba(p.148), plus the

option to have some elements of the list suppressed) 146
mysqlpp::value list ba< Seq, Manip > (Holds a list of items, typically used to
construct a SQL "value list") Lo L 148

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

Chapter 5

MySQL++ File Index

5.1 MySQL++ File List

Here is a list of all documented files with brief descriptions:

autoflag.h (Defines a template for setting a flag within a given variable scope, and

resetting it when exiting that scope) L. 151
coldata.h (Declares classes for converting string data to any of the basic C types). . . 152
common.h (This file includes top-level definitions for use both internal to the library,

and outside it. Contrast mysql++.h)o L. 153
connection.h (Declares the Connectionclass) 154
const string.h (Declares a wrapper for const charx which behaves in a way more

Cuseful t0 MySQLA+)« o e e e e e 155
convert.h (Declares various string-to-integer type conversion templates) 156
datetime.h (Declares classes to add MySQL-compatible date and time types to C++’s

TyPe SYStem) e e e e e e e e 157
exceptions.h (Declares the MySQL-++-specific exception classes) 158
field names.h (Declares a class to hold a list of field names) 159
field types.h (Declares a class to hold a list of SQL field type info) 160
fields.h (Declares a class for holding information about a set of fields) 161
lockable.h (Declares interface that allows a class to declare itself as "lockable") 162
manip.h (Declares std: : ostream manipulators useful with SQL syntax) 163
myset.h (Declares templates for generating custom containers used elsewhere in the

library) oo 164
mysql++.h (The main MySQL++ header file) 165
noexceptions.h (Declares interface that allows exceptions to be optional) 167
null.h (Declares classes that implement SQL "null" semantics within C++’s type system)168
gparms.h (Declares the template query parameter-related stuff) 169
query.h (Defines a class for building and executing SQL queries) 170
querydef.h e ??
resiter.h (Declares templates for adapting existing classes to be iteratable random-access

COMBAIMErS) . .« . o i ittt e e e 172
result.h (Declares classes for holding SQL query result sets) 173
row.h (Declares the classes for holding row data from a result set) 174
sql string.h (Declares an std: : string derivative that adds some things needed within

T thelibrary) 175

sql _types.h (Declares the closest C+-+ equivalent of each MySQL column type) . . . 176

MySQL-++ File Index

stream2string.h (Declares an adapter that converts something that can be inserted into

a C++ stream into a string type)o o o e 177
string util.h (Declares string-handling utility functions used within the library) . . . 178
tiny int.h (Declares class for holding a SQL tiny _int) 179
transaction.h (Declares the Transactionclass) 180
type info.h (Declares classes that provide an interface between the SQL and C++ type

SYSEEIMS) . . . o e 181
vallist.h (Declares templates for holding lists of values) 182

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

Chapter 6

MySQL++ Namespace
Documentation

6.1 mysqlpp Namespace Reference

Classes

e class BadConversion

Exception(p. 77) thrown when a bad type conversion is attempted.

o class BadFieldName

Exception(p. 77) thrown when a requested named field doesn’t exist.

e class BadNullConversion

Exception(p. 77) thrown when you attempt to convert a SQL null to an incompatible type.

e class BadOption

Exception(p.77) thrown when you pass an wunrecognized option to Connection::set -
option()(p. 55).

e class BadParamCount

Exception(p. 77) thrown when not enough query parameters are provided.

e class BadQuery

Exception(p. 77) thrown when MySQL encounters a problem while processing your query.

e class BasicLock

Trivial Lock(p. 81) subclass, using a boolean variable as the lock flag.

e class ColData_Tmpl
Template for string data that can convert itself to any standard C data type.

e class Connection
Manages the connection to the MySQL database.

12

MySQL—++ Namespace Documentation

struct Connection::OptionInfo
class ConnectionFailed

Exception(p. 77) thrown when there is a problem establishing the database server comnection.
It’s also thrown if Connection::shutdown()(p. 55) fails.

class const _string

Wrapper for const charx to make it behave in a way more useful to MySQL++.

class const subscript container

A base class that one derives from to become a random access container, which can be accessed
with subscript notation.

struct Date
C++ form of MySQL’s DATE type.

struct DateTime
C++ form of MySQL’s DATETIME type.

class DBSelectionFailed

Exception(p. 77) thrown when the program tries to select a new database and the server refuses
for some reason.

struct DTbase
Base class template for MySQL++ date and time classes.

class EndOfResults

Exception(p. 77) thrown when ResUse::fetch _row()(p.118) walks off the end of a use-query’s
result set.

class EndOfResultSets

Exception(p. 77) thrown when Query::store_next()(p.107) walks off the end of a use-query’s
multi result sets.

struct equal list b

Same as equal list ba(p.75), plus the option to have some elements of the equals clause
suppressed.

struct equal list ba

Holds two lists of items, typically used to construct a SQL "equals clause”.

class Exception

Base class for all MySQL++ custom ezceptions.

class FieldNames
Holds a list of SQL field names.

class Fields

A container similar to std: :vector for holding mysqlpp::Field(p. 14) records.

class FieldTypes
A vector of SQL field types.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 13

class Lock

Abstract base class for lock implementation, used by Lockable(p. 82).

class Lockable

Interface allowing a class to declare itself as "lockable".

class LockFailed
Exception(p. 77) thrown when a Lockable(p. 82) object fails.

class mysql type info
Holds basic type information for ColData.

class NoExceptions

Disable exceptions in an object derived from OptionalExceptions(p. 98).

class Null
Class for holding data from a SQL column with the NULL attribute.

class null type

The type of the global mysqlpp::null(p. 20) object.

struct NullisBlank
Class for objects that define SQL null as a blank C string.

struct NullisNull
Class for objects that define SQL null in terms of MySQL++’s null _type(p.93).

struct NullisZero
Class for objects that define SQL null as 0.

class ObjectNotInitialized

Exception(p. 77) thrown when you try to use an object that isn’t completely initialized.

class OptionalExceptions

Interface allowing a class to have optional ezceptions.

class Query

A class for building and ezecuting SQL queries.

class ResNSel

Holds the information on the success of queries that don’t return any results.

class Result

This class manages SQL result sets.

class ResUse

A basic result set class, for use with "use" queries.

class Row

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

14 MySQL—++ Namespace Documentation

Manages rows from a result set.

e class scoped var_set

Sets a variable to a given value temporarily.

e class Set

A special std::set derivative for holding MySQL data sets.

o struct SQLParseElement

Used within Query(p.100) to hold elements for parameterized queries.

e class SQLQueryParms

This class holds the parameter values for filling template queries.

e class SQLString
A specialized std: :string that will convert from any valid MySQL type.

e class subscript _iterator

Iterator that can be subscripted.

e struct Time

C++ form of MySQL’s TIME type.

e class tiny int

Class for holding an SQL tiny int(p.141) object.

e class Transaction

Helper object for creating exception-safe SQL transactions.

e struct value list b

Same as value list ba(p. 148), plus the option to have some elements of the list suppressed.

e struct value_list_ba

Holds a list of items, typically used to construct a SQL "value list".

Typedefs

e typedef ColData Tmpl< const string > ColData

The type that is returned by constant rows.

e typedef ColData Tmpl< std::string > MutableColData
The type that is returned by mutable rows.

o typedef MYSQL FIELD Field
Alias for MYSQL_FIELD.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 15

Enumerations

enum quote type0 { quote }

enum quote only typeO { quote only }

enum quote double only type0O { quote double only }
enum escape _type0 { escape }

enum do_nothing typeO { do_nothing }

enum ignore typeO { ignore }

enum query reset { DONT RESET, RESET QUERY }

Used for indicating whether a query object should auto-reset.

Functions

std::ostream & operator<< (std::ostream &o, const const string &str)

Inserts a const _string(p. 58) into a C++ stream.

int compare (const const _string &lhs, const const _string &rhs)

Calls lhs.compare(), passing rhs.

bool operator== (const_string &lhs, const _string &rhs)

Returns true if lhs is the same as rhs.

bool operator!= (const _string &lhs, const _string &rhs)

Returns true if lhs is not the same as rhs.

bool operator< (const string &lhs, const _string &rhs)

Returns true if lhs is lezically less than rhs.

bool operator<= (const _string &lhs, const _string &rhs)

Returns true if lhs is lezically less or equal to rhs.

bool operator> (const string &lhs, const _string &rhs)

Returns true if lhs is lexically greater than rhs.

bool operator>= (const_string &lhs, const _string &rhs)

Returns true if lhs is lexically greater than or equal to rhs.

std::ostream & operator<< (std::ostream &os, const Date &d)
Inserts a Date(p. 63) object into a C++ stream.

std::ostream & operator<< (std::ostream &os, const Time &t)

Inserts a Time(p. 139) object into a C++ stream in a MySQL-compatible format.

std::ostream & operator<< (std::ostream &os, const DateTime &dt)
Inserts a DateTime(p. 65) object into a C++ stream in a MySQL-compatible format.

SQLQueryParms & operator<< (quote type2 p, SQLString &in)
Inserts a SQLString(p. 135) into a stream, quoted and escaped.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

16

MySQL—++ Namespace Documentation

template<> ostream & operator<< (quote typel o, const string &in)

Inserts a C++ string into a stream, quoted and escaped.

template<> ostream & operator<< (quote typel o, const char xconst &in)

Inserts a C string into a stream, quoted and escaped.

template<class Str> ostream & manip (quote_typel o, const ColData Tmpl< Str >
&in)
Utility function used by operator<<(quote_typel, ColData).

template<> ostream & operator<< (quote_typel o, const ColData Tmpl< string >
&in)

Inserts a ColData into a stream, quoted and escaped.

template<> ostream & operator<< (quote_typel o, const ColData Tmpl< const -
string > &in)

Inserts a ColData with const string into a stream, quoted and escaped.

ostream & operator<< (ostream &o, const ColData Tmpl< string > &in)

Inserts a ColData into a stream.

ostream & operator<< (ostream &o, const ColData Tmpl< const _string > &in)

Inserts a ColData with const string into a stream.

Query & operator<< (Query &o, const ColData Tmpl< string > &in)
Insert a ColData into a SQLQuery.

Query & operator<< (Query &o, const ColData Tmpl< const _string > &in)
Insert a ColData with const string into a SQLQuery.

SQLQueryParms & operator<< (quote_ only type2 p, SQLString &in)
Inserts a SQLString(p. 135) into a stream, quoting it unless it’s data that needs no quoting.

template<> ostream & operator<< (quote_only typel o, const ColData Tmpl<
string > &in)

Inserts a ColData into a stream, quoted.

template<> ostream & operator<< (quote_only typel o, const ColData Tmpl<
const string > &in)

Inserts a ColData with const string into a stream, quoted.

SQLQueryParms & operator<< (quote double only type2 p, SQLString &in)

Inserts a SQLString(p. 135) into a stream, double-quoting it (") unless it’s data that needs no
quoting.

template<> ostream & operator<< (quote_double_only_typel o, const ColData -
Tmpl< string > &in)

Inserts a ColData into a stream, double-quoted (").

template<> ostream & operator<< (quote_double_only_typel o, const ColData -
Tmpl< const_string > &in)

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 17

Inserts a ColData with const string into a stream, double-quoted (").

¢ SQLQueryParms & operator<< (escape_type2 p, SQLString &in)
Inserts a SQLString(p. 135) into a stream, escaping special SQL characters.

e template<> std::ostream & operator<< (escape typel o, const std::string &in)

Inserts a C++ string into a stream, escaping special SQL characters.

e template<> ostream & operator<< (escape typel o, const char xconst &in)

Inserts a C string into a stream, escaping special SQL characters.

e template<class Str> ostream & manip (escape_typel o, const ColData Tmpl< Str
> &in)
Utility function used by operator<< (escape_typel, ColData).

o template<> std::ostream & operator<< (escape_typel o, const ColData Tmpl<
std::string > &in)

Inserts a ColData into a stream, escaping special SQL characters.

o template<> std:ostream & operator<< (escape_typel o, const ColData Tmpl<
const string > &in)

Inserts a ColData with const string into a stream, escaping special SQL characters.

¢ SQLQueryParms & operator<< (do_nothing type2 p, SQLString &in)
Inserts a SQLString(p. 135) into a stream, with no escaping or quoting.

¢ SQLQueryParms & operator<< (ignore type2 p, SQLString &in)

Inserts a SQLString(p. 135) into a stream, with no escaping or quoting, and without marking
the string as having been "processed”.

e template<class T> std::ostream & operator<< (escape typel o, const T &in)
Inserts any type T into a stream that has an operator<< defined for it.

e template<> std::ostream & operator<< (escape_typel o, char xconst &in)

Inserts a C string into a stream, escaping special SQL characters.

e template<class Container> std::ostream & operator<< (std::ostream &s, const Set< Con-
tainer > &d)

Inserts a Set(p.130) object into a C++ stream.

e unsigned int get library version ()

Get the current MySQL++ library version number.

e template<class Type, class Behavior> std::ostream & operator<< (std::ostream &o, const
Null< Type, Behavior > &n)

Inserts null-able data into a C++ stream if it 4s not actually null. Otherwise, insert something
appropriate for null data.

e void swap (ResUse &x, ResUse &y)
Swaps two ResUse(p.115) objects.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

18

MySQL—++ Namespace Documentation

void swap (Result &x, Result &y)
Swaps two Result(p. 113) objects.

template<class Strng, class T> Strng stream2string (const T &object)

Converts a stream-able object to any type that can be initialized from an std::string.

void strip (std::string &s)
Strips blanks at left and right ends.

void escape _string (std:string &s)
C++ equivalent of mysql escape_ string().

void str _to_upr (std::string &s)

Changes case of string to upper.

void str_to lwr (std::string &s)

Changes case of string to lower.

void strip__all blanks (std::string &s)

Remowves all blanks.

void strip_all non num (std:string &s)

Remowves all non-numerics.

bool operator== (const mysql type info &a, const mysql type info &b)
Returns true if two mysql type info(p.84) objects are equal.

bool operator!= (const mysql type info &a, const mysql type info &b)
Returns true if two mysql type info(p.84) objects are not equal.

bool operator== (const std::type_info &a, const mysql type info &b)

Returns true if a given mysql type info(p.84) object is equal to a given C++ type_info
object.

bool operator!= (const std::type_info &a, const mysql type info &b)

Returns true if a given mysql type info(p.84) object is not equal to a given C++ type_info
object.

bool operator== (const mysql type info &a, const std::type_info &b)

Returns true if a given mysql type info(p.84) object is equal to a given C++ type_info
object.

bool operator!= (const mysql type info &a, const std::type_info &b)
Returns true if o given mysql type info(p.84) object is not equal to a given C++ type_ info
object.

void create vector (size_t size, std::vector< bool > &v, bool t0, bool t1, bool t2, bool
t3, bool t4, bool t5, bool t6, bool t7, bool t8, bool t9, bool ta, bool tb, bool tc)

Create a vector of bool with the given arguments as values.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 19

e template<class Container> void create vector (const Container &c, std::vector< bool
> &v, std:string s0, std::string s1, std::string s2, std::string s3, std::string s4, std:string
sb, std::string s6, std::string s7, std::string s8, std::string s9, std::string sa, std::string sb,
std::string sc)

Create a vector of bool using a list of named fields.

¢ template<class Seql, class Seq2, class Manip> std::ostream & operator<< (std::ostream
&o, const equal list ba< Seql, Seq2, Manip > &el)

Inserts an equal _list _ba(p.75) into an std::ostream.

e template<class Seql, class Seq2, class Manip> std::ostream & operator<< (std::ostream
&o, const equal list b< Seql, Seq2, Manip > &el)
Same as operator<< for equal list ba(p.75), plus the option to suppress insertion of some
list items in the stream.

e template<class Seq, class Manip> std::ostream & operator<< (std::ostream &o, const
value list ba< Seq, Manip > &cl)

Inserts a value list ba(p. 148) into an std::ostream.

¢ template<class Seq, class Manip> std::ostream & operator<< (std::ostream &o, const
value list b< Seq, Manip > &cl)

Same as operator<< for value list ba(p. 148), plus the option to suppress insertion of some
list items in the stream.

o template<class Seq> value list ba< Seq, do_nothing type0 > value list (const

Seq &s, const char xd=",")
Constructs a value list _ba(p. 148).

e template<class Seq, class Manip> value list ba< Seq, Manip > value list (const Seq
&s, const char xd, Manip m)

Constructs a value list _ba(p. 148).

e template<class Seq, class Manip> value list b< Seq, Manip > value list (const Seq
&s, const char xd, Manip m, const std::vector< bool > &vb)

Constructs a value list _b(p. 146) (sparse value list).

e template<class Seq, class Manip> value list b< Seq, Manip > value _list (const Seq &s,
const char xd, Manip m, bool t0, bool t1=false, bool t2=false, bool t3=false, bool t4=false,
bool t5=false, bool t6=false, bool t7=false, bool t8=false, bool t9=false, bool ta=false, bool
tb=false, bool tc=false)

Constructs a value list _b(p. 146) (sparse value list).

e template<class Seq> value list b< Seq, do_nothing type0 > value list (const Seq
&s, const char *d, bool t0, bool t1=false, bool t2=false, bool t3=false, bool t4=false, bool
tb=false, bool t6=false, bool t7=false, bool t8=false, bool t9=false, bool ta=false, bool
tb=false, bool tc=false)

Constructs a sparse value list.

o template<class Seq> value list b< Seq, do nothing type0 > value list (const Seq
&s, bool t0, bool t1=false, bool t2=false, bool t3=false, bool t4=false, bool t5=false, bool
t6=false, bool t7=false, bool t&=false, bool t9=false, bool ta=false, bool tb=false, bool
tc=false)

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

20

MySQL—++ Namespace Documentation

Constructs a sparse value list.

template<class Seql, class Seq2> equal list ba< Seql, Seq2, do_nothing type0 >
equal list (const Seql &sl, const Seq2 &s2, const char *d=",", const char *e—"—")

Constructs an equal list ba(p. 75).

template<class Seql, class Seq2, class Manip> equal list ba< Seql, Seq2, Manip >
equal list (const Seql &sl, const Seq2 &s2, const char *d, const char xe, Manip m)

Constructs an equal _list _ba(p. 75).

template<class Seql, class Seq2, class Manip> equal list b< Seql, Seq2, Manip >
equal list (const Seql &s1, const Seq2 &s2, const char xd, const char e, Manip m, const
std::vector< bool > &vb)

Constructs a equal _list _b(p.73) (sparse equal list).

template<class Seql, class Seq2, class Manip> equal list b< Seql, Seq2, Manip >
equal list (const Seql &sl1, const Seq2 &s2, const char *d, const char e, Manip m, bool
t0, bool t1= false, bool t2= false bool t3=false, bool t4=false, bool t5=false, bool t6=false,
bool t7=false, bool t8=false, bool t9=false, bool ta=false, bool tb=false, bool tc=false)

Constructs a equal list b(p.73) (sparse equal list).

template<class Seql, class Seq2> equal list b< Seql, Seq2, do nothing type0 >
equal list (const Seql &sl, const Seq2 &s2, const char *d, const char *e, bool t0, bool
t1=false, bool t2=false, bool t3=false, bool t4=false, bool t5=false, bool t6=false, bool
t7=false, bool t8=false, bool t9=false, bool ta=false, bool tb=false, bool tc=false)

Constructs a equal_list _b(p.73) (sparse equal list).

template<class Seql, class Seq2> equal list b< Seql, Seq2, do nothing type0 >
equal list (const Seql &sl, const Seq2 ‘&s2, const char *d, bool t0, bool t1=false, bool
t2= false, bool t3=false, bool td=false, bool tb=false, bool t6=false, bool t7=false, bool
t8=false, bool t9=false, bool ta=false, bool tb=false, bool tc=false)

Constructs a equal list b(p.73) (sparse equal list).

template<class Seql, class Seq2> equal list b< Seql, Seq2, do nothing type0 >
equal list (const Seql &sl, const Seq2 &s2, bool t0, bool t1=false, bool t2=false, bool
t3=false, bool t4=false, bool t5=false, bool t6=false, bool t7=false, bool t8=false, bool
t9=false, bool ta=false, bool tb=false, bool tc=false)

Constructs a equal list b(p.73) (sparse equal list).

Variables

e bool dont quote auto = false

Set(p.130) to true if you want to suppress automatic quoting.

e const null type null = null type()

Global 'null’ instance. Use wherever you need a SQL null. (As opposed to a C++ language null
pointer or null character.).

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 21

6.1.1 Detailed Description

All global symbols in MySQL++ are in namespace mysqlpp. This is needed because many symbols
are rather generic (e.g. Row(p. 120), Query(p. 100)...), so there is a serious danger of conflicts.

6.1.2 Enumeration Type Documentation
6.1.2.1 enum mysqlpp::do_nothing type0

The 'do_nothing’ manipulator.

Does exactly what it says: nothing. Used as a dummy manipulator when you are required to use
some manipulator but don’t want anything to be done to the following item. When used with
SQLQueryParms(p. 133) it will make sure that it does not get formatted in any way, overriding
any setting set by the template query.

Enumeration values:
do_ nothing insert into a std::ostream to override manipulation of next item

6.1.2.2 enum mysqlpp::escape_type0

The ’escape’ manipulator.

Calls mysql escape string() in the MySQL C API on the following argument to prevent any
special SQL characters from being interpreted.

6.1.2.3 enum mysqlpp::ignore type0

The ’ignore’ manipulator.

Only valid when used with SQLQueryParms(p. 133). It’s a dummy manipulator like the do_-
nothing manipulator, except that it will not override formatting set by the template query. It
is simply ignored.

Enumeration values:
ignore insert into a std::ostream as a dummy manipulator

6.1.2.4 enum mysqlpp::quote double only type0

The ’double _quote only’ manipulator.

Similar to quote_only manipulator, except that it uses double quotes instead of single
quotes.

Enumeration values:
quote_double_only insert into a std::ostream to double-quote next item

6.1.2.5 enum mysqlpp::quote only type0

The ’quote_only’ manipulator.

Similar to quote manipulator, except that it doesn’t escape special SQL characters.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

22 MySQL—++ Namespace Documentation

Enumeration values:
quote_only insert into a std::ostream to single-quote next item

6.1.2.6 enum mysqlpp::quote type0

The standard ’quote’ manipulator.

Insert this into a stream to put single quotes around the next item in the stream, and escape
characters within it that are ’special’ in SQL. This is the most generally useful of the manipula-
tors.

Enumeration values:
quote insert into a std::ostream to single-quote and escape next item

6.1.3 Function Documentation

6.1.3.1 template<class Container> void mysqlpp::create vector (const Container
& ¢, std::vector< bool > & v, std::string s0, std::string s1, std::string s2,
std::string 83, std::string s4, std::string s5, std::string s6, std::string s7,
std::string $8, std::string s9, std::string sa, std::string sb, std::string sc)

Create a vector of bool using a list of named fields.

This function is used with the ResUse(p. 115) and Result(p. 113) containers, which have a field -
num() member function that maps a field name to its position number. So for each named field,
we set the bool in the vector at the corresponding position to true.

This function is used within the library to build the vector used in calling the vector form of
Row::equal list()(p.123), Row::value list()(p.128), and Row::field list()(p.125). See the
"Harnessing SSQLS Internals" section of the user manual to see that feature at work.

6.1.3.2 void mysqlpp::create vector (size t size, std::vector< bool > & v, bool %0,
bool t1 = false, bool t2 = false, bool t3 = false, bool ¢/ = false, bool t5 =
false, bool t6 = false, bool {7 = false, bool {8 = false, bool t9 = false, bool
ta = false, bool tb = false, bool tc = false)

Create a vector of bool with the given arguments as values.

This function takes up to 13 bools, with the size parameter controlling the actual number of
parameters we pay attention to.

This function is used within the library to build the vector used in calling the vector form of
Row::equal list()(p.123), Row::value list()(p.128), and Row::field list()(p.125). See the
"Harnessing SSQLS Internals" section of the user manual to see that feature at work.

6.1.3.3 template<class Seql, class Seq2> equal list b<Seql, Seq2,
do nothing type0> equal list (const Seql & s1, const Seq2 & s2, bool 0,
bool t1 = false, bool t2 = false, bool {3 = false, bool t4 = false, bool t5 =
false, bool 16 = false, bool t7 = false, bool {8 = false, bool t9 = false, bool
ta = false, bool tb = false, bool tc¢ = false)

Constructs a equal _list _b(p. 73) (sparse equal list).

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 23

Same as equal list(Seq&, Seq&, const chark, bool, bool...) except that it doesn’t take the const
charx argument. It uses a comma for the delimiter. This form is useful for building simple
equals lists, where no manipulators are necessary, and the default delimiter and equals symbol are
suitable.

6.1.3.4 template<class Seql, class Seq2> equal list b<Seql, Seq2,
do nothing type0> equal list (const Seql & s1, const Seq2 & s2, const
char * d, bool t0, bool t1 = false, bool t2 = false, bool t3 = false, bool t/ =
false, bool t5 = false, bool t6 = false, bool ¢t7 = false, bool t8 = false, bool
t9 = false, bool ta = false, bool tb = false, bool tc = false)

Constructs a equal list _b(p.73) (sparse equal list).

Same as equal _list(Seq&, Seq&, const chark, const charx, bool, bool...) except that it doesn’t
take the second const charx argument. It uses " = " for the equals symbol.

6.1.3.5 template<class Seql, class Seq2> equal list b<Seql, Seq2,
do nothing type0> equal list (const Seql & s1, const Seq2 & s2, const
char % d, const char x e, bool t0, bool t1 = false, bool t2 = false, bool t3 =
false, bool t4 = false, bool t5 = false, bool t6 = false, bool t7 = false, bool
t8 = false, bool t9 = false, bool ta = false, bool tb = false, bool tc = false)

Constructs a equal _list b(p.73) (sparse equal list).

Same as equal list(Seq&, Seq&, const chark, const char, Manip, bool, bool...) except that it
doesn’t take the Manip argument. It uses the do_ nothing manipulator instead, meaning that
none of the elements are escaped when being inserted into a stream.

6.1.3.6 template<class Seql, class Seq2, class Manip> equal list b<Seql, Seq2,
Manip> equal list (const Seql & s1, const Seq2 & s2, const char * d, const
char x e, Manip m, bool 10, bool t1 = false, bool {2 = false, bool t3 = false,
bool t4 = false, bool t5 = false, bool t6 = false, bool t7 = false, bool 8 =
false, bool t9 = false, bool ta = false, bool tb = false, bool tc = false)

Constructs a equal _list b(p. 73) (sparse equal list).

Same as equal _list(Seq&, Seq&, const char*, const charx, Manip, vector<bool>&) except that it
takes boolean parameters instead of a list of bools.

6.1.3.7 template<class Seql, class Seq2, class Manip> equal list b<Seql, Seq2,
Manip> equal list (const Seql & s1, const Seq2 & s2, const char x d, const
char * e, Manip m, const std::vector< bool > & wvb)

Constructs a equal list b(p.73) (sparse equal list).

Same as equal list(Seq&, Seq&, const charx, const charx, Manip) except that you can pass a
vector of bools. For each true item in that list, operator<< adds the corresponding item is put
in the equal list. This lets you pass in sequences when you don’t want all of the elements to be
inserted into a stream.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

24 MySQL—++ Namespace Documentation

6.1.3.8 template<class Seql, class Seq2, class Manip> equal list ba<Seql, Seq2,
Manip> equal list (const Seql & s1, const Seq2 & s2, const char * d, const
char % e, Manip m)

Constructs an equal list ba(p. 75).

Same as equal list(Seq&, Seq&, const charx, const charx) except that it also lets you specify the
manipulator. Use this version if the data must be escaped or quoted when being inserted into a
stream.

6.1.3.9 template<class Seql, class Seq2> equal list ba<Seql, Seq2,
do nothing type0> equal list (const Seql & s1, const Seq2 & s2, const

char x d = ",", const char x e =" = ")

Constructs an equal list ba(p. 75).

This function returns an equal list that uses the ’do_nothing’ manipulator. That is, the items
are not quoted or escaped in any way when inserted into a stream. See equal list(Seq, Seq, const
charx, const charx, Manip) if you need a different manipulator.

The idea is for both lists to be of equal length because corresponding elements from each list are
handled as pairs, but if one list is shorter than the other, the generated list will have that many
elements.

Parameters:
s1 items on the left side of the equals sign when the equal list is inserted into a stream

82 items on the right side of the equals sign
d delimiter operator<< should place between pairs

e what operator<< should place between items in each pair; by default, an equals sign, as
that is the primary use for this mechanism.

6.1.3.10 MYSQLPP_EXPORT unsigned int mysqlpp::get library version ()

Get the current MySQL++ library version number.

MySQL++ version number that the program is actually linked to, encoded by MYSQLPP -
VERSION macro. Compare this value to the MYSQLPP HEADER VERSION constant in

order to ensure that your program is using header files from the same version of MySQL-++ as
the actual library you’re linking to.

6.1.3.11 template<class Seq, class Manip> std::ostream& operator<< (std::ostream
& o, const value list b< Seq, Manip > & cl)

Same as operator<< for value list ba(p.148), plus the option to suppress insertion of some
list items in the stream.

See value list b’s documentation for examples of how this works.

6.1.3.12 template<class Seq, class Manip> std::ostream& operator<< (std::ostream
& o, const value list ba< Seq, Manip > & cl)

Inserts a value list ba(p.148) into an std::ostream.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 25

Given a list (a, b) and a delimiter D, this operator will insert "aDb" into the stream.

See value list ba’s documentation for concrete examples.

See also:
value list()(p.31)

6.1.3.13 template<class Seql, class Seq2, class Manip> std::ostreamé& operator<<
(std::ostream & o, const equal list b< Seql, Seq2, Manip > & el)

Same as operator<< for equal list ba(p. 75), plus the option to suppress insertion of some list
items in the stream.

See equal list_b’s documentation for examples of how this works.

6.1.3.14 template<class Seql, class Seq2, class Manip> std::ostreamé& operator<<
(std::ostream & o, const equal list ba< Seql, Seq2, Manip > & el)
Inserts an equal list ba(p.75) into an std::ostream.

Given two lists (a, b) and (c, d), a delimiter D, and an equals symbol E, this operator will insert
"aEcDbEAd" into the stream.

See equal _list ba’s documentation for concrete examples.

See also:
equal list()(p.24)

6.1.3.15 template<> std::ostream& operator<< (escape typel o, char xconst &
in) [inline]
Inserts a C string into a stream, escaping special SQL characters.

This version exists solely to handle constness problems. We force everything to the completely-
const version: operator<<(escape typel, const charx const&).

6.1.3.16 template<class T> std::ostream& operator<< (escape typel o, const T
& in) [inline]
Inserts any type T into a stream that has an operator<< defined for it.

Does not actually escape that data! Use one of the other forms of operator<< for the escape
manipulator if you need escaping. This template exists to catch cases like inserting an int after
the escape manipulator: you don’t actually want escaping in this instance.

6.1.3.17 template<> MYSQLPP EXPORT std::ostream & mysqlpp::operator<<
(escape_typel o, const ColData Tmpl< const string > & in)
Inserts a ColData with const string into a stream, escaping special SQL characters.

Because ColData was designed to contain MySQL type data, we may choose not to escape the
data, if it is not needed.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

26 MySQL—++ Namespace Documentation

6.1.3.18 template<> MYSQLPP EXPORT std::ostream & mysqlpp::operator<<
(escape typel o, const ColData Tmpl< std::string > & in)
Inserts a ColData into a stream, escaping special SQL characters.

Because ColData was designed to contain MySQL type data, we may choose not to escape the
data, if it is not needed.

6.1.3.19 template<> MYSQLPP EXPORT std::ostream & mysqlpp::operator<<
(escape typel o, const char xconst & in)
Inserts a C string into a stream, escaping special SQL characters.

Because C’s type system lacks the information we need to second- guess this manipulator, we
always run the escaping algorithm on the data, even if it’s not needed.

6.1.3.20 template<> MYSQLPP EXPORT std::ostream & mysqlpp::operator<<
(escape_typel o, const std::string & in)
Inserts a C++ string into a stream, escaping special SQL characters.

Because std::string lacks the type information we need, the string is always escaped, even if it
doesn’t need it.

6.1.3.21 MYSQLPP_ EXPORT SQLQueryParms & mysqlpp::operator<<
(escape type2 p, SQLString & in)
Inserts a SQLString(p. 135) into a stream, escaping special SQL characters.

We actually only do the escaping if in.is_string is set but in.dont _escape is not. If that is not the
case, we insert the string data directly.

6.1.3.22 template<> ostream& operator<< (quote double only typel o, const
ColData_Tmpl< const _string > & in)
Inserts a ColData with const string into a stream, double-quoted (").

Because ColData was designed to contain MySQL type data, we may choose not to actually quote
the data, if it is not needed.

6.1.3.23 template<> ostream& operator<< (quote double only typel o, const
ColData_Tmpl< string > & in)
Inserts a ColData into a stream, double-quoted (").

Because ColData was designed to contain MySQL type data, we may choose not to actually quote
the data, if it is not needed.

6.1.3.24 SQLQueryParms& operator<< (quote double only type2 p, SQLString
& in)

Inserts a SQLString(p. 135) into a stream, double-quoting it (") unless it’s data that needs no
quoting.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 27

We make the decision to quote the data based on the in.s_string flag. You can set it yourself,
but SQLString’s ctors should set it correctly for you.

6.1.3.25 template<> ostream& operator<< (quote only typel o, const
ColData Tmpl< const string > & in)

Inserts a ColData with const string into a stream, quoted.

Because ColData was designed to contain MySQL type data, we may choose not to actually quote
the data, if it is not needed.

6.1.3.26 template<> ostream& operator<< (quote only typel o, const
ColData Tmpl< string > & in)

Inserts a ColData into a stream, quoted.

Because ColData was designed to contain MySQL type data, we may choose not to actually quote
the data, if it is not needed.

6.1.3.27 SQLQueryParms& operator<< (quote only type2 p, SQLString & in)

Inserts a SQLString(p. 135) into a stream, quoting it unless it’s data that needs no quoting.

We make the decision to quote the data based on the in.s_string flag. You can set it yourself,
but SQLString’s ctors should set it correctly for you.

6.1.3.28 Query& operator<< (Query & o, const ColData Tmpl< const string >
& in)
Insert a ColData with const string into a SQLQuery.

This operator appears to be a workaround for a weakness in one compiler’s implementation of the
C++ type system. See Wishlist for current plan on what to do about this.

6.1.3.29 Query& operator<< (Query & o, const ColData Tmpl< string > & in)

Insert a ColData into a SQLQuery.

This operator appears to be a workaround for a weakness in one compiler’s implementation of the
C++ type system. See Wishlist for current plan on what to do about this.

6.1.3.30 ostream& operator<< (ostream & o, const ColData Tmpl< const string
> & in)

Inserts a ColData with const string into a stream.

Because ColData was designed to contain MySQL type data, this operator has the information
needed to choose to quote and/or escape the data as it is inserted into the stream, even if you
don’t use any of the quoting or escaping manipulators.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

28 MySQL—++ Namespace Documentation

6.1.3.31 ostream& operator<< (ostream & o, const ColData Tmpl< string > &
Inserts a ColData into a stream.

Because ColData was designed to contain MySQL type data, this operator has the information
needed to choose to quote and/or escape the data as it is inserted into the stream, even if you
don’t use any of the quoting or escaping manipulators.

6.1.3.32 template<> ostream& operator<< (quote typel o, const
ColData_Tmpl< const _string > & in)

Inserts a ColData with const string into a stream, quoted and escaped.

Because ColData was designed to contain MySQL type data, we may choose not to actually quote
or escape the data, if it is not needed.

6.1.3.33 template<> ostreamé& operator<< (quote_typel 0, const
ColData_Tmpl< string > & in)

Inserts a ColData into a stream, quoted and escaped.

Because ColData was designed to contain MySQL type data, we may choose not to actually quote
or escape the data, if it is not needed.

6.1.3.34 template<> ostreamé& operator<< (quote_typel 0, const char xconst &
Inserts a C string into a stream, quoted and escaped.

Because C strings lack the type information we need, the string is both quoted and escaped,
always.

6.1.3.35 template<> ostream& operator<< (quote typel o, const string & in)

Inserts a C++ string into a stream, quoted and escaped.

Because std::string lacks the type information we need, the string is both quoted and escaped,
always.

6.1.3.36 SQLQueryParms& operator<< (quote type2 p, SQLString & in)

Inserts a SQLString(p. 135) into a stream, quoted and escaped.
If in.is_string is set and in.dont__escape is not set, the string is quoted and escaped.
If both in.is_string and in.dont__escape are set, the string is quoted but not escaped.

If in.is_string is not set, the data is inserted as-is. This is the case when you initialize SQL-
String(p. 135) with one of the constructors taking an integral type, for instance.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 29

6.1.3.37 MYSQLPP _ EXPORT std::ostream & mysqlpp::operator<< (std::ostream
& o0s, const DateTime & dt)

Inserts a DateTime(p. 65) object into a C++ stream in a MySQL-compatible format.
The date and time are inserted into the stream, in that order, with a space between them.

Parameters:
0s stream to insert date and time into

dt date/time object to insert into stream

6.1.3.38 MYSQLPP_ EXPORT std::ostream & mysqlpp::operator<< (std::ostream
& 0s, const Time & t)

Inserts a Time(p. 139) object into a C++ stream in a MySQL-compatible format.
The format is HH:MM:SS, zero-padded.

Parameters:
08 stream to insert time into

t time to insert into stream

6.1.3.39 MYSQLPP _EXPORT std::ostream & mysqlpp::operator<< (std::ostream
& o0s, const Date & d)

Inserts a Date(p.63) object into a C++ stream.
The format is YYYY-MM-DD, zero-padded.

Parameters:
0s stream to insert date into

d date to insert into stream

6.1.3.40 template<class Strng, class T> Strng stream?2string (const T & object)

Converts a stream-able object to any type that can be initialized from an std: :string.

This adapter takes any object that has an out_stream() member function and converts it to a
string type. An example of such a type within the library is mysqlpp::Date(p. 63).

6.1.3.41 template<class Seq> value list b<Seq, do nothing type0> value list
(const Seq & s, bool %0, bool t1 = false, bool t2 = false, bool t3 = false,
bool t4 = false, bool t5 = false, bool t6 = false, bool {7 = false, bool {8 =
false, bool t9 = false, bool ta = false, bool tb = false, bool tc = false)

Constructs a sparse value list.

Same as value list(Seq&, const charx, Manip, bool, bool...) but without the Manip or delimiter
parameters. We use the do_nothing manipulator, meaning that the value list items are neither
escaped nor quoted when being inserted into a stream. The delimiter is a comma. This form is
suitable for lists of simple data, such as integers.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

30 MySQL—++ Namespace Documentation

6.1.3.42 template<class Seq> value list b<Seq, do nothing type0> value list
(const Seq & s, const char x d, bool t0, bool t1 = false, bool t2 = false,
bool t3 = false, bool t} = false, bool t5 = false, bool t6 = false, bool t7 =
false, bool t8 = false, bool t9 = false, bool ta = false, bool tb = false, bool
tc = false)

Constructs a sparse value list.

Same as value list(Seq&, const charx, Manip, bool, bool...) but without the Manip parameter.
We use the do_nothing manipulator, meaning that the value list items are neither escaped nor
quoted when being inserted into a stream.

6.1.3.43 template<class Seq, class Manip> value list b<Seq, Manip> value list
(const Seq & s, const char * d, Manip m, bool t0, bool t1 = false, bool 2
= false, bool t3 = false, bool t/ = false, bool t5 = false, bool t6 = false,
bool t7 = false, bool t8 = false, bool t9 = false, bool ta = false, bool tb =
false, bool tc = false)

Constructs a value list _b(p.146) (sparse value list).

Same as value list(Seq&, const charx, Manip, const vector<bool>&), except that it takes the
bools as arguments instead of wrapped up in a vector object.

6.1.3.44 template<class Seq, class Manip> value list b<Seq, Manip> value list
(const Seq & s, const char * d, Manip m, const std::vector< bool > & vb)
[inline]

Constructs a value list _b(p.146) (sparse value list).

Parameters:
s an STL sequence of items in the value list

d delimiter operator<< should place between items
m manipulator to use when inserting items into a stream

vb for each item in this vector that is true, the corresponding item in the value list is inserted
into a stream; the others are suppressed

6.1.3.45 template<class Seq, class Manip> value list ba<Seq, Manip> value list
(const Seq & s, const char x d, Manip m)

Constructs a value list ba(p.148).

Parameters:
s an STL sequence of items in the value list

d delimiter operator<< should place between items

m manipulator to use when inserting items into a stream

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

6.1 mysqlpp Namespace Reference 31

6.1.3.46 template<class Seq> value list ba<Seq, do nothing type0> value list
(const Seq & s, const char x d = ",")
Constructs a value list ba(p.148).

This function returns a value list that uses the ’"do_nothing’ manipulator. That is, the items are
not quoted or escaped in any way. See value list(Seq, const charx, Manip) if you need to specify
a manipulator.

Parameters:
s an STL sequence of items in the value list

d delimiter operator<< should place between items
6.1.4 Variable Documentation
6.1.4.1 bool mysqlpp::dont quote auto — false

Set(p. 130) to true if you want to suppress automatic quoting.

Works only for ColData inserted into C++ streams.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

32

MySQL—++ Namespace Documentation

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

Chapter 7

MySQL++4 Class Documentation

7.1 AutoFlag< T > Class Template Reference

A template for setting a flag on a variable as long as the object that set it is in scope. Flag resets
when object goes out of scope. Works on anything that looks like bool.

#include <autoflag.h>
Collaboration diagram for AutoFlag< T >:

Public Member Functions

e AutoFlag (T &ref)

Constructor: sets ref to true.

e ~AutoFlag ()

Destructor: sets referent passed to ctor to false.

7.1.1 Detailed Description
template<class T = bool> class AutoFlag< T >

A template for setting a flag on a variable as long as the object that set it is in scope. Flag resets
when object goes out of scope. Works on anything that looks like bool.

The documentation for this class was generated from the following file:

e autoflag.h

34 MySQL++ Class Documentation

7.2 mysqlpp::BadConversion Class Reference

Exception(p. 77) thrown when a bad type conversion is attempted.
#include <exceptions.h>

Inheritance diagram for mysqlpp::BadConversion:Collaboration diagram for mysqlpp::Bad-
Conversion:

Public Member Functions

e BadConversion (const char *tn, const char xd, size_t r, size_t a)

Create exception object, building error string dynamically.

e BadConversion (const std::string &w, const char xtn, const char *d, size_t r, size_t a)

Create exception object, given completed error string.

¢ BadConversion (const char sw="")

Create exception object, with error string only.

¢ ~BadConversion () throw ()

Destroy exception.

Public Attributes

e const char * type name

name of type we tried to convert to

o std:string data

string form of data we tried to convert

o size t retrieved

documentation needed!

e size t actual size

documentation needed!

7.2.1 Detailed Description

Exception(p. 77) thrown when a bad type conversion is attempted.

7.2.2 Constructor & Destructor Documentation

7.2.2.1 mysqlpp::BadConversion::BadConversion (const char % tn, const char * d,
size_t 7, size_t a) [inlinel

Create exception object, building error string dynamically.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.2 mysqlpp::BadConversion Class Reference 35

Parameters:
tn type name we tried to convert to

d string form of data we tried to convert
r 77

a ??

7.2.2.2 mysqlpp::BadConversion::BadConversion (const std::string & w, const char
* tn, const char * d, size_t 7, size_t a) [inline]

Create exception object, given completed error string.

Parameters:
w the "what" error string

tn type name we tried to convert to

d string form of data we tried to convert
r 7?7

a ??

7.2.2.3 mysqlpp::BadConversion::BadConversion (const char *+ w = "") [inline,
explicit]

Create exception object, with error string only.

Parameters:
w the "what" error string

All other data members are initialize to default values

The documentation for this class was generated from the following file:

e exceptions.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

36 MySQL++ Class Documentation

7.3 mysqlpp::BadFieldName Class Reference

Exception(p. 77) thrown when a requested named field doesn’t exist.
#include <exceptions.h>

Inheritance diagram for mysqlpp::BadFieldName:Collaboration diagram for mysqlpp::BadField-
Name:

Public Member Functions

e BadFieldName (const char xbad _field)

Create exception object.

¢ ~BadFieldName () throw ()

Destroy exception.

7.3.1 Detailed Description

Exception(p. 77) thrown when a requested named field doesn’t exist.

Thrown by Row::lookup by name() when you pass a field name that isn’t in the result set.
7.3.2 Constructor & Destructor Documentation

7.3.2.1 mysqlpp::BadFieldName::BadFieldName (const char * bad_field) [inline,
explicit]

Create exception object.

Parameters:
bad_ field name of field the MySQL server didn’t like

The documentation for this class was generated from the following file:

e exceptions.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.4 mysqlpp::BadNullConversion Class Reference 37

7.4 mysqlpp::BadNullConversion Class Reference

Exception(p. 77) thrown when you attempt to convert a SQL null to an incompatible type.
#include <exceptions.h>

Inheritance diagram for mysqlpp::BadNullConversion:Collaboration diagram for mysqlpp::Bad-
NullConversion:

Public Member Functions

e BadNullConversion (const char sw="")

Create exception object.

7.4.1 Detailed Description

Exception(p. 77) thrown when you attempt to convert a SQL null to an incompatible type.

The documentation for this class was generated from the following file:

e exceptions.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

38 MySQL++ Class Documentation

7.5 mysqlpp::BadOption Class Reference

Exception(p.77) thrown when you pass an unrecognized option to Connection::iset -
option()(p. 55).

#include <exceptions.h>

Inheritance diagram for mysqlpp::BadOption:Collaboration diagram for mysqlpp::BadOption:

Public Member Functions

e BadOption (const char *w, Connection::Option o)

Create exception object, taking C string.

e BadOption (const std::string &w, Connection::Option o)
Create exception object, taking C++ string.

¢ Connection::Option what option () const
Return the option that failed.

7.5.1 Detailed Description

Exception(p.77) thrown when you pass an unrecognized option to Connection::set -
option()(p. 55).

The documentation for this class was generated from the following file:

¢ exceptions.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.6 mysqlpp::BadParamCount Class Reference 39

7.6 mysqlpp::BadParamCount Class Reference

Exception(p. 77) thrown when not enough query parameters are provided.
#include <exceptions.h>

Inheritance diagram for mysqlpp::BadParamCount:Collaboration diagram for mysqlpp::Bad-
ParamCount:

Public Member Functions

¢ BadParamCount (const char xw="")

Create exception object.

¢ ~BadParamCount () throw ()

Destroy exception.

7.6.1 Detailed Description

Exception(p. 77) thrown when not enough query parameters are provided.
This is used in handling template queries.

The documentation for this class was generated from the following file:

e exceptions.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

40 MySQL++ Class Documentation

7.7 mysqlpp::BadQuery Class Reference

Exception(p. 77) thrown when MySQL encounters a problem while processing your query.
#include <exceptions.h>

Inheritance diagram for mysqlpp::BadQuery:Collaboration diagram for mysqlpp::BadQuery:

Public Member Functions

e BadQuery (const char xw="")

Create exception object, taking C string.

e BadQuery (const std::string &w)
Create exception object, taking C++ string.

7.7.1 Detailed Description

Exception(p. 77) thrown when MySQL encounters a problem while processing your query.

This exception is typically only thrown when the server rejects a SQL query. In v1.7, it was used
as a more generic exception type, for no particularly good reason.

The documentation for this class was generated from the following file:

e exceptions.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.8 mysqlpp::BasicLock Class Reference 41

7.8 mysqlpp::BasicLock Class Reference

Trivial Lock(p. 81) subclass, using a boolean variable as the lock flag.
#include <lockable.h>

Inheritance diagram for mysqlpp::BasicLock:Collaboration diagram for mysqlpp::BasicLock:

Public Member Functions

e BasicLock (bool locked=false)
Create object.

e ~BasicLock ()
Destroy object.

¢ bool lock ()
Lock(p.81) the object.

e void unlock ()
Unlock the object.

e bool locked () const

Returns true if object is locked.

¢ void set (bool b)
Set(p.130) the lock state.

7.8.1 Detailed Description

Trivial Lock(p. 81) subclass, using a boolean variable as the lock flag.

This is the only Lock(p.81) implementation available in this version of MySQL++. It will be
supplemented with a better implementation for use with threads at a later date.

7.8.2 Member Function Documentation
7.8.2.1 bool mysqlpp::BasicLock::lock () [inline, virtuall

Lock(p. 81) the object.

Returns:
true if object was already locked

Implements mysqlpp::Lock (p.81).

The documentation for this class was generated from the following file:

e lockable.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

42 MySQL++ Class Documentation

7.9 mysqlpp::ColData Tmpl< Str > Class Template Refer-
ence

Template for string data that can convert itself to any standard C data type.
#include <coldata.h>

Collaboration diagram for mysqlpp::ColData_Tmpl< Str >:

Public Member Functions

¢ ColData_ Tmpl ()

Default constructor.

e ColData Tmpl (bool n, mysql type info t=mysql type info::string type)
Constructor allowing you to set the null flag and the type data.

e ColData Tmpl (const char sstr, mysql type info t=mysql type info::string -
type, bool n=false)

Null-terminated C string version of full ctor.

e ColData Tmpl (const char *str, typename Str:size_type len, mysql type info
t=mysql type info::istring type, bool n=false)

Full constructor.

e mysql type info type () const
Get this object’s current MySQL type.

¢ bool quote q () const
Returns true if data of this type should be quoted, false otherwise.

¢ bool escape q () const

Returns true if data of this type should be escaped, false otherwise.

¢ template<class Type> Type conv (Type dummy) const

Template for converting data from one type to another.

e void it _is mnull ()

Set(p.130) a flag indicating that this object is a SQL null.

e const bool is_null () const
Returns true if this object is a SQL null.

e const std::string & get string () const
Returns the string form of this object’s data.

e operator cchar x () const

Returns a const char pointer to the string form of this object’s data.

e operator signed char () const

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.9 mysqlpp::ColData Tmpl< Str > Class Template Reference 43

Converts this object’s string data to a signed char.

e operator unsigned char () const

Converts this object’s string data to an unsigned char.

e operator int () const

Converts this object’s string data to an int.

e operator unsigned int () const

Converts this object’s string data to an unsigned int.

e operator short int () const

Converts this object’s string data to a short int.

e operator unsigned short int () const

Converts this object’s string data to an unsigned short int.

e operator long int () const

Converts this object’s string data to a long int.

e operator unsigned long int () const

Converts this object’s string data to an unsigned long int.

¢ operator longlong () const

Converts this object’s string data to the platform- specific longlong’ type, usually a 64-bit integer.

¢ operator ulonglong () const

Converts this object’s string data to the platform- specific 'ulonglong’ type, usually a 64-bit un-
signed integer.

e operator float () const

Converts this object’s string data to a float.

e operator double () const

Converts this object’s string data to a double.

e operator bool () const

Converts this object’s string data to a bool.

e template<class T, class B> operator Null () const
Converts this object to a SQL null.

7.9.1 Detailed Description
template<class Str> class mysqlpp::ColData Tmpl< Str >

Template for string data that can convert itself to any standard C data type.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

44 MySQL++ Class Documentation

Do not use this class directly. Use the typedef ColData or MutableColData instead. Col-
Data is a ColData _Tmpl(p.42)<const std::string> and MutableColData is a ColData -
Tmpl<std::string>(p. 44).

The ColData types add to the C++ string type the ability to automatically convert the string
data to any of the basic C types. This is important with SQL, because all data coming from the
database is in string form. MySQL++ uses this class internally to hold the data it receives from
the server, so you can use it naturally, because it does the conversions implicitly:

ColData("12.86") + 2.0

That works fine, but be careful. If you had said this instead:

ColData("12.86") + 2

the result would be 14 because 2 is an integer, and C++’s type conversion rules put the ColData
object in an integer context.

If these automatic conversions scare you, define the macro NO_BINARY OPERS to disable this
behavior.

This class also has some basic information about the type of data stored in it, to allow it to do
the conversions more intelligently than a trivial implementation would allow.

7.9.2 Constructor & Destructor Documentation

7.9.2.1 template<class Str> mysqlpp::ColData Tmpl< Str >::ColData_Tmpl ()
[inline]

Default constructor.

Null(p. 90) flag is set to false, type data is not set, and string data is left empty.

It’s probably a bad idea to use this ctor, becuase there’s no way to set the type data once the
object’s constructed.

7.9.2.2 template<class Str> mysqlpp::ColData Tmpl< Str >::ColData Tmpl
(bool n, mysql type info ¢ = mysql type info::string type) [inline,
explicit]

Constructor allowing you to set the null flag and the type data.

Parameters:
n if true, data is a SQL null

t MySQL type information for data being stored

7.9.2.3 template<class Str> mysqlpp::ColData Tmpl< Str >::ColData Tmpl
(const char x str, mysql type info ¢ = mysql type info:string type,
bool n = false) [inline, explicit]

Null-terminated C string version of full ctor.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.9 mysqlpp::ColData Tmpl< Str > Class Template Reference 45

Parameters:
str the string this object represents

t MySQL type information for data within str
n if true, str is a SQL null

7.9.2.4 template<class Str> mysqlpp::ColData Tmpl< Str >::ColData Tmpl
(const char * str, typename Str::size type len, mysql type info t =
mysql type info::string type, bool n = false) [inline, explicit]

Full constructor.

Parameters:
str the string this object represents

len the length of the string; embedded nulls are legal
t MySQL type information for data within str

n if true, str is a SQL null

7.9.3 Member Function Documentation

7.9.3.1 template<class Str> template<class T, class B> mysqlpp::ColData_Tmpl<
Str >::operator Null< T, B > () const
Converts this object to a SQL null.

Returns a copy of the global null object if the string data held by the object is exactly equal to
"NULL". Else, it constructs an empty object of type T and tries to convert it to Null<T, B>.

The documentation for this class was generated from the following file:

e coldata.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

46 MySQL++ Class Documentation

7.10 mysqlpp::Connection Class Reference

Manages the connection to the MySQL database.
#include <connection.h>

Inheritance diagram for mysqlpp::Connection:Collaboration diagram for mysqlpp::Connection:

Public Types
e enum OptionArgType { opt_type none, opt type string, opt type integer,
opt_type boolean }

Legal types of option arguments.

e enum Option {
opt FIRST = -1, opt _connect timeout = 0, opt compress, opt named pipe,
opt init command, opt read default file, opt read default group, opt -

set charset dir,

opt set charset name, opt local infile, opt protocol, opt shared -
memory base name,

opt read timeout, opt write timeout, opt use result, opt use remote -
connection,

opt use embedded connection, opt guess connection, opt_ set client ip,
opt secure auth,

opt multi statements, opt report data truncation, opt reconnect, opt -
COUNT }

Per-connection options you can set with set _option()(p. 55).

Public Member Functions

e Connection (bool te=true)

Create object without connecting it to the MySQL server.

e Connection (const char xdb, const char xhost="", const char xuser="", const char
xpasswd="", uint port=0, my bool compress=0, unsigned int connect timeout=60, cchar
xsocket _name=0, unsigned int client flag=0)

Create object and connect to database server in one step.

¢ Connection (const Connection &other)

Establish a new connection using the same parameters as an existing C API connection.

e bool connect (const MYSQL &mysql)

Establish a new connection using the same parameters as an existing C API connection.

¢ ~Connection ()

Destroy connection object.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.10

mysqlpp::Connection Class Reference 47

bool connect (cchar xdb="", cchar xhost="", cchar *user="", cchar xpasswd="", uint
port=0, my_bool compress=0, unsigned int connect_timeout=60, cchar *socket name=0,
unsigned int client _flag=0)

Connect to database after object is created.

void close ()

Close connection to MySQL server.

std::string info ()
Calls MySQL C API function mysql_info() and returns result as a C++ string.

bool connected () const

return true if connection was established successfully

bool success () const

Return true if the last query was successful.

void purge ()
Alias for close()(p. 51).

Query query ()
Return a new query object.

operator bool ()
Alias for success()(p. 47).

Connection & operator= (const Connection &rhs)

Copy an ezisting Connection(p. 46) object’s state into this object.

const char x error ()

Return error message for last MySQL error associated with this connection.

int errnum ()

Return last MySQL error number associated with this connection.

int refresh (unsigned int refresh options)
Wraps MySQL C API function mysql_refresh().

int ping ()
"Pings" the MySQL database

int kill (unsigned long pid)
Kill a MySQL server thread.

std::string client _info ()
Get MySQL client library version.

std::string host _info ()

Get information about the network connection.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

48

MySQL++ Class Documentation

int proto__info ()

Returns version number of MySQL protocol this connection is using.

std::string server _info ()

Get the MySQL server’s version number.

std::string stat ()

Returns information about MySQL server status.

bool create db (const std::string &db)

Create o database.

bool drop _db (const std::string &db)
Drop a database.

bool select db (const std::string &db)
Change to a different database.

bool select _db (const char *db)
Change to a different database.

bool reload ()
Ask MySQL server to reload the grant tables.

bool shutdown ()
Ask MySQL server to shut down.

st_mysql_options get options () const

Return the connection options object.

bool set _option (Option option)

Sets a connection option, with no argument.

bool set _option (Option option, const char xarg)

Sets a connection option, with string argument.

bool set _option (Option option, unsigned int arg)

Sets a connection option, with integer argument.

bool set option (Option option, bool arg)

Sets a connection option, with Boolean argument.

void enable ssl (const char skey=0, const char kcert=0, const char ca=0, const char
xcapath=0, const char xcipher=0)

Enable SSL-encrypted connection.

my _ulonglong affected rows ()

Return the number of rows affected by the last query.

my _ulonglong insert _id ()

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.10 mysqlpp::Connection Class Reference 49

Get ID generated for an AUTO_INCREMENT column in the previous INSERT query.

e std::ostream & api_ version (std::ostream &os)

Insert C API version we’re linked against into C++ stream.

Protected Member Functions

e void disconnect ()

Drop the connection to the database server.

e bool option pending (Option option, bool arg) const

Returns true if the given option is to be set once connection comes up.

¢ void apply pending options ()
For each option in pending option queue, call set _option()(p. 55).

¢ bool bad option (Option option, OptionArgType type)

Generic wrapper for bad_ option_ ().

e bool bad option type (Option option)

Handles call of incorrect set__option()(p. 55) overload.

¢ bool bad option value (Option option)
Handles bad option values sent to set _option()(p. 55).

¢ OptionArgType option arg type (Option option)

Given option value, return its proper argument type.

¢ bool set option impl (mysgl _option moption, const void xarg=0)

Set(p.130) MySQL C API connection option.

e void copy (const Connection &other)

Establish a new connection as a copy of an existing one.

Friends

e class ResNSel
e class ResUse
e class Query

7.10.1 Detailed Description

Manages the connection to the MySQL database.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

50 MySQL++ Class Documentation

7.10.2 Member Enumeration Documentation
7.10.2.1 enum mysqlpp::Connection::Option

Per-connection options you can set with set option()(p. 55).

This is currently a combination of the MySQL C API mysql_option and enum_mysql_set_option
enums. It may be extended in the future.

7.10.3 Constructor & Destructor Documentation
7.10.3.1 mysqlpp::Connection::Connection (bool te = true)

Create object without connecting it to the MySQL server.

Parameters:
te if true, exceptions are thrown on errors

7.10.3.2 mysqlpp::Connection::Connection (const char * db, const char x host = "",

const char * user = "", const char x passwd = "", uint port = 0, my bool
compress = 0, unsigned int connect timeout = 60, cchar * socket name
= 0, unsigned int client flag = 0)

Create object and connect to database server in one step.

This constructor allows you to most fully specify the options used when connecting to the MySQL
database. It is the thinnest layer in MySQL++ over the MySQL C API function mysql_real_-
connect (). The correspondence isn’t exact as we have some additional parameters you’d have to
set with mysql_option() when using the C API.

Parameters:
db name of database to use

host host name or TP address of MySQL server, or 0 if server is running on the same host as
your program

user user name to log in under, or 0 to use the user name this program is running under

passwd password to use when logging in

port TCP port number MySQL server is listening on, or 0 to use default value

compress if true, compress data passing through connection, to save bandwidth at the ex-
pense of CPU time

connect_ timeout max seconds to wait for server to respond to our connection attempt

socket name Unix domain socket server is using, if connecting to MySQL server on the
same host as this program running on, or 0 to use default name

client_ flag special connection flags. See MySQL C API documentation for mysql_real_-
connect () for details.

7.10.3.3 mysqlpp::Connection::Connection (const Connection & other)

Establish a new connection using the same parameters as an existing C API connection.

Parameters:
other existing Connection(p. 46) object

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.10 mysqlpp::Connection Class Reference 51

7.10.4 Member Function Documentation
7.10.4.1 my ulonglong mysqlpp::Connection::affected rows () [inline]

Return the number of rows affected by the last query.
Simply wraps mysql_affected_rows() in the C APIL

7.10.4.2 ostream & mysqlpp::Connection::api_version (std::ostream & o0s)

Insert C API version we’re linked against into C++ stream.

Version will be of the form X.Y.Z, where X is the major version number, Y the minor version, and
Z the bug fix number.

7.10.4.3 void mysqlpp::Connection::apply pending options () [protected]

For each option in pending option queue, call set option()(p.55).

Called within connect()(p.51) method after connection is established. Despools options in the
order given to set _option()(p.55).

7.10.4.4 std::string mysqlpp::Connection::client info () [inline]

Get MySQL client library version.
Simply wraps mysql_get_client_info() in the C APL

7.10.4.5 void mysqlpp::Connection::close () [inline]

Close connection to MySQL server.

Closes the connection to the MySQL server.

nn nn
’

7.10.4.6 bool mysqlpp::Connection::connect (cchar *« db = "", cchar * host =
cchar x user = "", cchar * passwd = "", uint port = 0, my_ bool compress
= 0, unsigned int connect_timeout = 60, cchar x socket name = 0,
unsigned int client flag = 0)

Connect to database after object is created.

It’s better to use the connect-on-create constructor if you can. See its documentation for the
meaning of these parameters.

If you call this method on an object that is already connected to a database server, the previous
connection is dropped and a new connection is established.

7.10.4.7 bool mysqlpp::Connection::connect (const MYSQL & mysql)
Establish a new connection using the same parameters as an existing C API connection.

Parameters:
mysql existing MySQL C API connection object

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

52 MySQL++ Class Documentation

7.10.4.8 bool mysqlpp::Connection::connected () const [inline]
return true if connection was established successfully

Returns:
true if connection was established successfully

7.10.4.9 void mysqlpp::Connection::copy (const Connection & other) [protected]
Establish a new connection as a copy of an existing one.

Parameters:
other the connection to copy

7.10.4.10 bool mysqlpp::Connection::create db (const std::string & db)

Create a database.

Parameters:
db name of database to create

Returns:
true if database was created successfully

7.10.4.11 void mysqlpp::Connection::disconnect () [protected]

Drop the connection to the database server.

This method is protected because it should only be used within the library. Unless you use the
default constructor, this object should always be connected.

7.10.4.12 bool mysqlpp::Connection::drop _db (const std::string & db)
Drop a database.

Parameters:
db name of database to destroy

Returns:
true if database was created successfully

7.10.4.13 void mysqlpp::Connection::enable_ssl (const char * key = 0, const char
* cert = 0, const char *x ca = 0, const char * capath = 0, const char x
cipher = 0)

Enable SSL-encrypted connection.

Must be called before connection is established.

Wraps mysql_ssl_set() in MySQL C APL

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.10 mysqlpp::Connection Class Reference 53

7.10.4.14 int mysqlpp::Connection::errnum () [inline]

Return last MySQL error number associated with this connection.

Simply wraps mysql_errno() in the C APIL.

7.10.4.15 const char* mysqlpp::Connection::error () [inline]

Return error message for last MySQL error associated with this connection.

Simply wraps mysql_error() in the C APIL.

7.10.4.16 std::string mysqlpp::Connection::host _info () [inline]

Get information about the network connection.
String contains info about type of connection and the server hostname.

Simply wraps mysql_get_host_info() in the C APIL

7.10.4.17 my _ulonglong mysqlpp::Connection::insert id () [inline]

Get ID generated for an AUTO INCREMENT column in the previous INSERT query.

Return values:
0 if the previous query did not generate an ID. Use the SQL function LAST _INSERT_ID()
if you need the last ID generated by any query, not just the previous one.

7.10.4.18 int mysqlpp::Connection::kill (unsigned long pid) [inline]

Kill a MySQL server thread.

Parameters:
pid ID of thread to kill

Simply wraps mysql_kill() in the C APIL

7.10.4.19 mysqlpp::Connection::operator bool () [inline]

Alias for success()(p. 47).

Alias for success()(p-47) member function. Allows you to have code constructs like this:

Connection conn;
. use conn
if (conn) {
. last SQL query was successful
}
else {
. error occurred in SQL query

}

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

54 MySQL++ Class Documentation

7.10.4.20 bool mysqlpp::Connection::option pending (Option option, bool arg)
const [protected]

Returns true if the given option is to be set once connection comes up.

Parameters:
option option to check for in queue

arg argument to match against

7.10.4.21 int mysqlpp::Connection::ping ()

"Pings" the MySQL database

Wraps mysql_ping() in the C API. As a result, this function will try to reconnect to the server
if the connection has been dropped.

Return values:
0 if server is responding, regardless of whether we had to reconnect or not

nonzero if either we already know the connection is down and cannot re-establish it, or if
the server did not respond to the ping and we could not re-establish the connection.

7.10.4.22 int mysqlpp::Connection::proto_info () [inline]

Returns version number of MySQL protocol this connection is using.

Simply wraps mysql_get_proto_info() in the C APL

7.10.4.23 Query mysqlpp::Connection::query ()

Return a new query object.

The returned query object is tied to this MySQL connection, so when you call a method like
execute() (p.105) on that object, the query is sent to the server this object is connected to.

7.10.4.24 int mysqlpp::Connection::refresh (unsigned int refresh options)
[inline]
Wraps MySQL C API function mysql_refresh().

The corresponding C API function is undocumented. All T know is that it’s
used by mysqldump and mysqladmin, according to MySQL bug database entry
http://bugs.mysql.com/bug.php?id=9816 If that entry changes to say that the function
is now documented, reevaluate whether we need to wrap it. It may be that it’s not supposed to
be used by regular end-user programs.

7.10.4.25 bool mysqlpp::Connection::reload ()

Ask MySQL server to reload the grant tables.
User must have the "reload" privilege.

Simply wraps mysql_reload() in the C APIL. Since that function is deprecated, this one is, too.
The MySQL++ replacement is execute("FLUSH PRIVILEGES").

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.10 mysqlpp::Connection Class Reference 55

7.10.4.26 std::string mysqlpp::Connection::server info () [inline]

Get the MySQL server’s version number.

Simply wraps mysql_get_server_info() in the C APL

7.10.4.27 bool mysqlpp::Connection::set option (Option option)
Sets a connection option, with no argument.

Parameters:
option any of the Option enum constants

Based on the option you give, this function calls either mysql_options() or mysql_set_server_-
option() in the C APIL

There are several overloaded versions of this function. The others take an additional argument for
the option and differ only by the type of the option. Unlike with the underlying C API, it does
matter which of these overloads you call: if you use the wrong argument type or pass an argument
where one is not expected (or vice versa), the call will either throw an exception or return false,
depending on the object’s "throw exceptions" flag.

This mechanism parallels the underlying C API structure fairly closely, but do not expect this
to continue in the future. Its very purpose is to 'paper over’ the differences among the C APT’s
option setting mechanisms, so it may become further abstracted from these mechanisms.

Return values:
true if option was successfully set

If exceptions are enabled, a false return means the C API rejected the option, or the connection is
not established and so the option was queued for later processing. If exceptions are disabled, false
can also mean that the argument was of the wrong type (wrong overload was called), the option
value was out of range, or the option is not supported by the C API, most because it isn’t a high
enough version. These latter cases will cause BadOption(p. 38) exceptions otherwise.

7.10.4.28 bool mysqlpp::Connection::set option impl (mysql option moption,
const void x arg = 0) [protected]

Set(p.130) MySQL C API connection option.

Wraps mysql_options() in C API This is an internal implementation detail, to be used only by
the public overloads above.

7.10.4.29 bool mysqlpp::Connection::shutdown ()

Ask MySQL server to shut down.
User must have the "shutdown" privilege.
Simply wraps mysql_shutdown() in the C APL

7.10.4.30 std::string mysqlpp::Connection::stat () [inline]

Returns information about MySQL server status.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

56 MySQL++ Class Documentation

String is similar to that returned by the mysqladmin status command. Among other things, it
contains uptime in seconds, and the number of running threads, questions and open tables.

The documentation for this class was generated from the following files:

e connection.h
e connection.cpp

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.11 mysqlpp::ConnectionFailed Class Reference 57

7.11 mysqlpp::ConnectionFailed Class Reference

Exception(p. 77) thrown when there is a problem establishing the database server connection.
It’s also thrown if Connection::shutdown()(p. 55) fails.

#include <exceptions.h>

Inheritance diagram for mysqlpp::ConnectionFailed: Collaboration diagram for
mysqlpp::ConnectionFailed:

Public Member Functions

e ConnectionFailed (const char sw="")

Create exception object.

7.11.1 Detailed Description

Exception(p. 77) thrown when there is a problem establishing the database server connection.
It’s also thrown if Connection::shutdown()(p. 55) fails.

The documentation for this class was generated from the following file:

e exceptions.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

58 MySQL++ Class Documentation

7.12 mysqlpp::const string Class Reference

Wrapper for const charx to make it behave in a way more useful to MySQL++.

#include <const_string.h>

Public Types

e typedef const char value type
Type of the data stored in this object, when it is not equal to SQL null.

typedef unsigned int size type

Type of "size" integers.

typedef const char & const reference

Type used when returning a reference to a character in the string.

typedef const char * const iterator

Type of iterators.

typedef const _iterator iterator

Same as const_iterator because the data cannot be changed.

Public Member Functions

e const_string ()

Create empty string.

e const string (const char xstr)

Initialize string from existing C string.

e const_string (const char xstr, size type len)

Initialize string from existing C string of known length.

e const_string & operator= (const char *str)

Assignment operator.

e size type length () const

Return number of characters in the string.

e size type size () const

Return number of characters in string.

e const iterator begin () const

Return iterator pointing to the first character of the string.

¢ const iterator end () const

Return iterator pointing to one past the last character of the string.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.12 mysqlpp::const string Class Reference 59

e size type max_size () const

Return the mazimum number of characters in the string.

e const reference operator[] (size_type pos) const

Return a reference to a character within the string.

e const_reference at (size_type pos) const

Return a reference to a character within the string.

e const char * ¢_ str () const

Return a const pointer to the string data. Not necessarily null-terminated!

e const char * data () const
Alias for c¢_str()(p. 59).

e int compare (const const _string &str) const

Lezically compare this string to another.

7.12.1 Detailed Description

Wrapper for const charx to make it behave in a way more useful to MySQL++.
This class implements a small subset of the standard string class.

Objects are created from an existing const char# variable by copying the pointer only. Therefore,
the object pointed to by that pointer needs to exist for at least as long as the const _string(p. 58)
object that wraps it.

7.12.2 Member Function Documentation

7.12.2.1 const_reference mysqlpp::const string::at (size_type pos) const [inline]

Return a reference to a character within the string.

Unlike operator[]()(p.59), this function throws an std::out_of_range exception if the index
isn’t within range.

7.12.2.2 int mysqlpp::const _string::compare (const const string & str) const
[inline]

Lexically compare this string to another.

Parameters:
str string to compare against this one

Return values:
<0 if strl is lexically "less than" str2

0 if strl is equal to str2
>0 if strl is lexically "greater than" str2

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

60 MySQL++ Class Documentation

7.12.2.3 size type mysqlpp::const string::max size () const [inline]

Return the maximum number of characters in the string.

Because this is a const string, this is just an alias for size()(p. 58); its size is always equal to the
amount of data currently stored.

The documentation for this class was generated from the following file:

e const_string.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.13 mysqlpp::const _subscript container< OnType, ValueType, ReturnType,
SizeType, DiffType > Class Template Reference 61

7.13 mysqlpp::const subscript container< OnType, Value-
Type, ReturnType, SizeType, Diff Type > Class Tem-
plate Reference

A base class that one derives from to become a random access container, which can be accessed
with subscript notation.

#include <resiter.h>

Inheritance diagram for mysqlpp::const subscript container< OnType, ValueType, ReturnType,
SizeType, Diff Type >:

Public Types

o typedef const subscript container< OnType, ValueType, ReturnType, SizeType, Diff-
Type > this_type
this object’s type

e typedef subscript iterator< const this type, ReturnType, SizeType, DiffType > iter-
ator

mutable iterator type

e typedef iterator const iterator

constant iterator type

e typedef const std:reverse_iterator< iterator > reverse iterator

mutable reverse iterator type

e typedef const std:reverse_iterator< const iterator > const reverse iterator

const reverse iterator type

o typedef ValueType value type

type of data stored in container

e typedef value type & reference

reference to value_ type

e typedef value type & const reference

const ref to value_type

e typedef value type * pointer

pointer to value_ type

e typedef value type * const pointer

const pointer to value_type

e typedef DiffType difference type

for index differences

o typedef SizeType size type

for returned sizes

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

62 MySQL++ Class Documentation

Public Member Functions

e virtual ~const subscript container ()

Destroy object.

e virtual size type size () const=0

Return count of elements in container.

e virtual ReturnType at (SizeType i) const=0

Return element at given indez in container.

¢ size type max_size () const

Return mazimum number of elements that can be stored in container without resizing.

¢ bool empty () const

Returns true if container is empty.

e iterator begin () const

Return iterator pointing to first element in the container.

e iterator end () const

Return iterator pointing to one past the last element in the container.

e reverse iterator rbegin () const

Return reverse iterator pointing to first element in the container.

e reverse iterator rend () const

Return reverse iterator pointing to one past the last element in the container.

7.13.1 Detailed Description

template<class OnType, class ValueType, class ReturnType = const ValueType&,
class SizeType = wunsigned int, class DiffType = int> class mysqlpp::const -
subscript container< OnType, ValueType, ReturnType, SizeType, Diff Type >

A base class that one derives from to become a random access container, which can be accessed
with subscript notation.
OnType must have the member functions operator[] (SizeType) and

The documentation for this class was generated from the following file:

e resiter.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.14 mysqlpp::Date Struct Reference 63

7.14 mysqlpp::Date Struct Reference

C++ form of MySQL’s DATE type.
#include <datetime.h>

Inheritance diagram for mysqlpp::Date:Collaboration diagram for mysqlpp::Date:

Public Member Functions

e Date ()

Default constructor.

e Date (short int y, tiny _int m, tiny int d)

Initialize object.

e Date (const Date &other)
Initialize object as a copy of another Date(p. 63).

¢ Date (const DateTime &other)
Initialize object from date part of date/time object.

e Date (cchar xstr)
Initialize object from a MySQL date string.

¢ Date (const ColData &str)
Initialize object from a MySQL date string.

e Date (const std::string &str)
Initialize object from a MySQL date string.

¢ MYSQLPP EXPORT short int compare (const Date &other) const

Compare this date to another.

e MYSQLPP_EXPORT cchar * convert (cchar x)
Parse a MySQL date string into this object.

Public Attributes

e short int year

the year

e tiny int month

the month, 1-12

e tiny int day
the day, 1-31

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

64 MySQL++ Class Documentation

7.14.1 Detailed Description

C++ form of MySQL’s DATE type.
Objects of this class can be inserted into streams, and initialized from MySQL DATE strings.

7.14.2 Constructor & Destructor Documentation

7.14.2.1 mysqlpp::Date::Date (cchar x str) [inline]

Initialize object from a MySQL date string.

String must be in the YYYY-MM-DD format. It doesn’t have to be zero-padded.
7.14.2.2 mysqlpp::Date::Date (const ColData & str) [inline]
Initialize object from a MySQL date string.

See also:
Date(ccharx)(p. 64)

7.14.2.3 mysqlpp::Date::Date (const std::string & str) [inline]

Initialize object from a MySQL date string.

See also:
Date(ccharx)(p. 64)

7.14.3 Member Function Documentation
7.14.3.1 short int mysqlpp::Date::compare (const Date & other) const [virtuall

Compare this date to another.

Returns < 0 if this date is before the other, 0 of they are equal, and > 0 if this date is after the
other.

Implements mysqlpp::DTbase< Date > (p.70).

7.14.4 Member Data Documentation
7.14.4.1 short int mysqlpp::Date::year

the year
No surprises; the year 2005 is stored as the integer 2005.

The documentation for this struct was generated from the following files:

e datetime.h
¢ datetime.cpp

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.15 mysqlpp::DateTime Struct Reference 65

7.15 mysqlpp::DateTime Struct Reference

C++ form of MySQL’s DATETIME type.
#include <datetime.h>

Inheritance diagram for mysqlpp::DateTime:Collaboration diagram for mysqlpp::DateTime:

Public Member Functions

e DateTime ()

Default constructor.

e DateTime (const DateTime &other)
Initialize object as a copy of another Date(p. 63).

e DateTime (cchar #str)

Initialize object from a MySQL date-and-time string.

e DateTime (const ColData &str)
Initialize object from a MySQL date-and-time string.

e DateTime (const std::string &str)
Initialize object from a MySQL date-and-time string.

¢ DateTime (time t t)

Initialize object from a time_t.

e MYSQLPP_EXPORT short compare (const DateTime &other) const

Compare this datetime to another.

e MYSQLPP EXPORT cchar * convert (cchar x)
Parse a MySQL date and time string into this object.

e operator time t () const

Convert to time_t.

Public Attributes

e short int year

the year

e tiny int month
the month, 1-12

e tiny int day
the day, 1-31

e tiny int hour

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

66 MySQL++ Class Documentation

hour, 0-23

e tiny int minute

minute, 0-59

e tiny int second
second, 0-59

7.15.1 Detailed Description

C++ form of MySQL’s DATETIME type.
Objects of this class can be inserted into streams, and initialized from MySQL DATETIME strings.

7.15.2 Constructor & Destructor Documentation

7.15.2.1 mysqlpp::DateTime::DateTime (cchar % str) [inline]

Initialize object from a MySQL date-and-time string.

String must be in the HH:MM:SS format. It doesn’t have to be zero-padded.
7.15.2.2 mysqlpp::DateTime::DateTime (const ColData & str) [inline]
Initialize object from a MySQL date-and-time string.

See also:
DateTime(ccharx)(p. 66)

7.15.2.3 mysqlpp::DateTime::DateTime (const std::string & str) [inline]

Initialize object from a MySQL date-and-time string.

See also:
DateTime(ccharx)(p. 66)

7.15.3 Member Function Documentation

7.15.3.1 short int mysqlpp::DateTime::compare (const DateTime & other) const
[virtuall

Compare this datetime to another.

Returns < 0 if this datetime is before the other, 0 of they are equal, and > 0 if this datetime is
after the other.

This method is protected because it is merely the engine used by the various operators in DT-
base(p. 69).

Implements mysqlpp::DTbase< DateTime > (p.70).

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.15 mysqlpp::DateTime Struct Reference

67

7.15.4 Member Data Documentation
7.15.4.1 short int mysqlpp::DateTime::year

the year
No surprises; the year 2005 is stored as the integer 2005.

The documentation for this struct was generated from the following files:

o datetime.h

e datetime.cpp

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

68 MySQL++ Class Documentation

7.16 mysqlpp::DBSelectionFailed Class Reference

Exception(p. 77) thrown when the program tries to select a new database and the server refuses
for some reason.

#include <exceptions.h>

Inheritance diagram for mysqlpp::DBSelectionFailed:Collaboration diagram for
mysqlpp::DBSelectionFailed:

Public Member Functions

e DBSelectionFailed (const char *w="")

Create exception object.

7.16.1 Detailed Description

Exception(p. 77) thrown when the program tries to select a new database and the server refuses
for some reason.

The documentation for this class was generated from the following file:

e exceptions.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.17 mysqlpp::DTbase< T > Struct Template Reference 69

7.17 mysqlpp::DTbase< T > Struct Template Reference

Base class template for MySQL-++ date and time classes.
#include <datetime.h>

Inheritance diagram for mysqlpp:DTbhase< T >:

Public Member Functions

e virtual ~NDTbase ()
Destroy object.

e operator std::string () const

Return a copy of the item in C++ string form.

e virtual MYSQLPP EXPORT short compare (const T &other) const=0

Compare this object to another of the same type.

e bool operator== (const T &other) const

Returns true if "other” is equal to this object.

e bool operator!= (const T &other) const

Returns true if "other" is not equal to this object.

e bool operator< (const T &other) const

Returns true if "other” is less than this object.

e bool operator<= (const T &other) const

Returns true if "other"” is less than or equal to this object.

e bool operator> (const T &other) const

Returns true if "other” is greater than this object.

e bool operator>= (const T &other) const

Returns true if "other"” is greater than or equal to this object.

7.17.1 Detailed Description
template<class T> struct mysqlpp::DTbase< T >

Base class template for MySQL++ date and time classes.

This template primarily defines the comparison operators, which are all implemented in terms of
compare()(p. 70). Each subclass implements that as a protected method, because these operators
are the only supported comparison method.

This template also defines interfaces for converting the object to a string form, which a subclass
must define.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

70 MySQL++ Class Documentation

7.17.2 Member Function Documentation

7.17.2.1 template<class T> virtual MYSQLPP EXPORT short mysqlpp::DTbase<
T >::compare (const T & other) const [pure virtuall
Compare this object to another of the same type.

Returns < 0 if this object is "before" the other, 0 of they are equal, and > 0 if this object is
"after" the other.

Implemented in mysqlpp::DateTime (p.66), mysqlpp::Date (p.64), and mysqlpp::Time
(p. 140).

The documentation for this struct was generated from the following file:

e datetime.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.18 mysqlpp::EndOfResults Class Reference 71

7.18 mysqlpp::EndOfResults Class Reference

Exception(p. 77) thrown when ResUse::fetch row()(p. 118) walks off the end of a use-query’s
result set.

#include <exceptions.h>

Inheritance diagram for mysqlpp::EndOfResults:Collaboration diagram for mysqlpp::EndOf-
Results:

Public Member Functions

¢ EndOfResults (const char xw="end of results")

Create exception object.

7.18.1 Detailed Description

Exception(p. 77) thrown when ResUse::fetch _row()(p. 118) walks off the end of a use-query’s
result set.

The documentation for this class was generated from the following file:

e exceptions.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

72 MySQL++ Class Documentation

7.19 mysqlpp::EndOfResultSets Class Reference

Exception(p. 77) thrown when Query::store next()(p. 107) walks off the end of a use-query’s
multi result sets.

#include <exceptions.h>

Inheritance diagram for mysqlpp::EndOfResultSets:Collaboration diagram for mysqlpp::EndOf-
ResultSets:

Public Member Functions

¢ EndOfResultSets (const char xw="end of result sets")

Create exception object.

7.19.1 Detailed Description

Exception(p. 77) thrown when Query::store next()(p.107) walks off the end of a use-query’s
multi result sets.

The documentation for this class was generated from the following file:

e exceptions.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.20 mysqlpp::equal list b< Seql, Seq2, Manip > Struct Template Reference 73

7.20 mysqlpp::equal list b< Seql, Seq2, Manip > Struct
Template Reference

Same as equal list ba(p.75), plus the option to have some elements of the equals clause sup-
pressed.

#include <vallist.h>

Collaboration diagram for mysqlpp::equal _list _b< Seql, Seq2, Manip >:

Public Member Functions

e equal list b (const Seql &sl, const Seq2 &s2, const std::vector< bool > &f, const char
xd, const char xe, Manip m)

Create object.

Public Attributes

e const Seql * list1
the list of objects on the left-hand side of the equals sign

o const Seq2 x list2
the list of objects on the right-hand side of the equals sign

e const std::vector< bool > fields

for each true item in the list, the pair in that position will be inserted into a C++ stream

e const char * delem

delimiter to use between each pair of elements

e const char x equl

"equal” sign to use between each item in each equal pair; doesn’t have to actually be " ="

e Manip manip

manipulator to use when inserting the equal_list into a C++ stream

7.20.1 Detailed Description

template<class Seql, class Seq2, class Manip> struct mysqlpp::equal list b< Seql,
Seq2, Manip >

Same as equal _list ba(p.75), plus the option to have some elements of the equals clause sup-
pressed.

Imagine an object of this type contains the lists (a, b, c¢) (d, e, f), that the object’s 'fields’ list is
(true, false, true), and that the object’s delimiter and equals symbols are set to " AND " and " =
" respectively. When you insert that object into a C++ stream, you would get "a = d AND ¢ =
.

See equal list ba’s documentation for more details.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

74 MySQL++ Class Documentation

7.20.2 Constructor & Destructor Documentation

7.20.2.1 template<class Seql, class Seq2, class Manip> mysqlpp::equal list b<
Seql, Seq2, Manip >::equal list b (const Seql & s1, const Seq2 & s2,
const std::vector< bool > & f, const char * d, const char * e, Manip m)
[inline]

Create object.

Parameters:
s1 list of objects on left-hand side of equal sign

82 list of objects on right-hand side of equal sign

f for each true item in the list, the pair of items in that position will be inserted into a C++
stream

d what delimiter to use between each group in the list when inserting the list into a C++
stream

e the "equals" sign between each pair of items in the equal list; doesn’t actually have to be
n_

m manipulator to use when inserting the list into a C+-+ stream

The documentation for this struct was generated from the following file:

e vallist.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.21 mysqlpp::equal list ba< Seql, Seq2, Manip > Struct Template Reference 75

7.21 mysqlpp::equal list ba< Seql, Seq2, Manip > Struct
Template Reference

Holds two lists of items, typically used to construct a SQL "equals clause".
#include <vallist.h>

Collaboration diagram for mysqlpp::equal list _ba< Seql, Seq2, Manip >:

Public Member Functions

e equal list ba (const Seql &sl1, const Seq2 &s2, const char *d, const char e, Manip m)
Create object.

Public Attributes

o const Seql * list1
the list of objects on the left-hand side of the equals sign

const Seq2 * list2
the list of objects on the right-hand side of the equals sign

const char * delem

delimiter to use between each pair of elements

const char * equl

"equal” sign to use between each item in each equal pair; doesn’t have to actually be " ="

e Manip manip

manipulator to use when inserting the equal_list into a C++ stream

7.21.1 Detailed Description

template<class Seql, class Seq2, class Manip> struct mysqlpp::equal list ba< Seql,
Seq2, Manip >

Holds two lists of items, typically used to construct a SQL "equals clause".
The WHERE clause in a SQL SELECT statment is an example of an equals clause.

Imagine an object of this type contains the lists (a, b) (c, d), and that the object’s delimiter and
equals symbols are set to ", " and " = " respectively. When you insert that object into a C+-+
stream, you would get "a = ¢, b = d".

This class is never instantiated by hand. The equal _list()(p. 24) functions build instances of this
structure template to do their work. MySQL++’s SSQLS mechanism calls those functions when
building SQL queries; you can call them yourself to do similar work. The "Harnessing SSQLS
Internals" section of the user manual has some examples of this.

See also:
equal list b(p.73)

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

76 MySQL++ Class Documentation

7.21.2 Constructor & Destructor Documentation

7.21.2.1 template<class Seql, class Seq2, class Manip> mysqlpp::equal list ba<
Seql, Seq2, Manip >::equal list ba (const Seql & s1, const Seq2 & s2,
const char * d, const char * e, Manip m) [inline]

Create object.

Parameters:
s1 list of objects on left-hand side of equal sign

82 list of objects on right-hand side of equal sign

d what delimiter to use between each group in the list when inserting the list into a C+-+
stream

e the "equals" sign between each pair of items in the equal list; doesn’t actually have to be
n — "!

m manipulator to use when inserting the list into a C++ stream

The documentation for this struct was generated from the following file:

e vallist.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.22 mysqlpp::Exception Class Reference

77

7.22 mysqlpp::Exception Class Reference

Base class for all MySQL++ custom exceptions.
#include <exceptions.h>

Inheritance diagram for mysqlpp::Exception:

Public Member Functions

¢ Exception (const Exception &e) throw ()

Create exception object as copy of another.

¢ Exception & operator= (const Exception &rhs) throw ()

Assign another exception object’s contents to this one.

¢ ~Exception () throw ()

Destroy exception object.

e virtual const char * what () const throw ()

Returns ezplanation of why exception was thrown.

Protected Member Functions

e Exception (const char xw="") throw ()

Create exception object.

¢ Exception (const std::string &w) throw ()

Create exception object.

Protected Attributes

o std:string what

ezplanation of why exception was thrown

7.22.1 Detailed Description

Base class for all MySQL++ custom exceptions.

The documentation for this class was generated from the following file:

e exceptions.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

78 MySQL++ Class Documentation

7.23 mysqlpp::FieldNames Class Reference

Holds a list of SQL field names.
#include <field_names.h>

Public Member Functions

e FieldNames ()

Default constructor.

e FieldNames (const ResUse xres)

Create field name list from a result set.

e FieldNames (int i)

Create empty field name list, reserving space for a fized number of field names.

¢ FieldNames & operator= (const ResUse #res)

Initializes the field list from a result set.

¢ FieldNames & operator= (int i)
Insert i empty field names at beginning of list.

e std:string & operator|] (int i)

Get the name of a field given its index.

e const std::string & operator[] (int i) const

Get the name of a field given its index, in const context.

e uint operator|] (std::string i) const

Get the index number of a field given its name.

7.23.1 Detailed Description

Holds a list of SQL field names.

The documentation for this class was generated from the following files:

e field names.h
e field names.cpp

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.24 mysqlpp::Fields Class Reference

79

7.24 mysqlpp::Fields Class Reference

A container similar to std: :vector for holding mysqlpp::Field(p. 14) records.

#include <fields.h>

Inheritance diagram for mysqlpp::Fields:Collaboration diagram for mysqlpp::Fields:

Public Member Functions

e Fields ()

Default constructor.

Fields (ResUse #r)

Create a field list from a result set.

const Field & at (Fields::size type i) const

Returns a field given its index.

const Field & at (int i) const

Returns a field given its index.

e size type size () const
get the number of fields

7.24.1 Detailed Description

A container similar to std: :vector for holding mysqlpp::Field(p. 14) records.

The documentation for this class was generated from the following files:

e fields.h
e fields.cpp

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

80 MySQL++ Class Documentation

7.25 mysqlpp::FieldTypes Class Reference

A vector of SQL field types.
#include <field_types.h>

Public Member Functions

e FieldTypes ()

Default constructor.

e FieldTypes (const ResUse xres)
Create list of field types from a result set.

e FieldTypes (int i)
Create fized-size list of uninitialized field types.

¢ FieldTypes & operator= (const ResUse *res)

Initialize field list based on a result set.

¢ FieldTypes & operator= (int i)
Insert a given number of uninitialized field type objects at the beginning of the list.

e mysql type info & operator|[] (int i)
Returns a field type within the list given its index.

e const mysql type info & operator[] (int i) const

Returns a field type within the list given its index, in const context.

7.25.1 Detailed Description

A vector of SQL field types.

7.25.2 Member Function Documentation
7.25.2.1 FieldTypes& mysqlpp::FieldTypes::operator= (int) [inline]
Insert a given number of uninitialized field type objects at the beginning of the list.

Parameters:
¢ number of field type objects to insert

The documentation for this class was generated from the following files:

e field types.h
e field types.cpp

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.26 mysqlpp::Lock Class Reference

81

7.26 mysqlpp::Lock Class Reference

Abstract base class for lock implementation, used by Lockable(p. 82).
#include <lockable.h>

Inheritance diagram for mysqlpp::Lock:

Public Member Functions

e virtual ~Lock ()

Destroy object.

e virtual bool lock ()=0
Lock(p.81) the object.

e virtual void unlock ()=0
Unlock the object.

e virtual bool locked () const=0

Returns true if object is locked.

e virtual void set (bool b)=0
Set(p.130) the lock state.

7.26.1 Detailed Description

Abstract base class for lock implementation, used by Lockable(p. 82).

7.26.2 Member Function Documentation
7.26.2.1 virtual bool mysqlpp::Lock::lock () [pure virtuall

Lock(p. 81) the object.

Returns:
true if object was already locked

Implemented in mysqlpp::BasicLock (p.41).

The documentation for this class was generated from the following file:

e lockable.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

82 MySQL++ Class Documentation

7.27 mysqlpp::Lockable Class Reference

Interface allowing a class to declare itself as "lockable".
#include <lockable.h>
Inheritance diagram for mysqlpp::Lockable:Collaboration diagram for mysqlpp::Lockable:

Protected Member Functions

e Lockable (bool locked)

Default constructor.

e virtual ~Lockable ()
Destroy object.

e virtual bool lock ()
Lock(p.81) the object.

e virtual void unlock ()
Unlock the object.

e bool locked () const

Returns true if object is locked.

e void set lock (bool b)

Set(p.130) the lock state. Protected, because this method is only for use by subclass assignment
operators and the like.

7.27.1 Detailed Description

Interface allowing a class to declare itself as "lockable".

A class derives from this one to acquire a standard interface for serializing operations that may
not be thread-safe.

7.27.2 Member Function Documentation
7.27.2.1 virtual bool mysqlpp::Lockable::lock () [inline, protected, virtuall

Lock(p. 81) the object.

Returns:
true if object was already locked

The documentation for this class was generated from the following file:

e lockable.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.28 mysqlpp::LockFailed Class Reference 83

7.28 mysqlpp::LockFailed Class Reference

Exception(p. 77) thrown when a Lockable(p. 82) object fails.
#include <exceptions.h>

Inheritance diagram for mysqlpp::LockFailed:Collaboration diagram for mysqlpp::LockFailed:

Public Member Functions

e LockFailed (const char *w="lock failed")

Create exception object.

7.28.1 Detailed Description

Exception(p. 77) thrown when a Lockable(p. 82) object fails.

Currently, "failure" means that the object is already locked when you make a call that tries to
lock it again. In the future, that case will probably result in the second thread blocking, but the
thread library could assert other errors that would keep this exception relevant.

The documentation for this class was generated from the following file:

¢ exceptions.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

84 MySQL++ Class Documentation

7.29 mysqlpp::mysql type info Class Reference

Holds basic type information for ColData.

#include <type_info.h>

Public Member Functions

e mysql type info (unsigned char n=static_cast< unsigned char >(-1))

Create object.

e mysql type info (enum_field_ _types t, bool _unsigned, bool _null)
Create object from MySQL C API type info.

e mysql type info (const MYSQL_FIELD &f)
Create object from a MySQL C API field.

e mysql type info (const mysql type info &t)

Create object as a copy of another.

e mysql type info (const std::type_info &t)
Create object from a C++ type_info object.

e mysql type info & operator= (unsigned char n)

Assign a new internal type value.

¢ mysql type info & operator= (const mysql type info &t)
Assign another mysql type info(p.84) object to this object.

e mysql type info & operator= (const std::type_info &t)
Assign a C++ type_info object to this object.

e const char * name () const

Returns an tmplementation-defined name of the C++ type.

e const char * sql name () const
Returns the name of the SQL type.

e const std::type_info & ¢_type () const
Returns the type_info for the C++ type associated with the SQL type.

e const unsigned int length () const
Return length of data in this field.

e const unsigned int max_length () const

Return mazimum length of data in this field.

e const mysql type info base type () const
Returns the type_info for the C++ type inside of the mysqlpp::Null(p. 90) type.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.29 mysqlpp::mysql type info Class Reference 85

int id () const
Returns the ID of the SQL type.

bool quote q () const
Returns true if the SQL type is of a type that needs to be quoted.

bool escape q () const

Returns true if the SQL type is of a type that needs to be escaped.

bool before (mysql type info &b)

Provides a way to compare two types for sorting.

Public Attributes

e unsigned int _length
field length, from MYSQL FIELD

e unsigned int _max length

maz data length, from MYSQL FIELD

Static Public Attributes

e const unsigned char string type = 20

The internal constant we use for our string type.

7.29.1 Detailed Description

Holds basic type information for ColData.

Class to hold basic type information for mysqlpp::ColData(p. 14).

7.29.2 Constructor & Destructor Documentation

7.29.2.1 mysqlpp::mysql type info::mysql type info (unsigned char n =
static cast<unsigned char>(-1)) [inline]

Create object.

Parameters:
n index into the internal type table

Because of the n parameter’s definition, this constructor shouldn’t be used outside the library.

The default is intended to try and crash a program using a default mysql type info(p.84)
object. This is a very wrong thing to do.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

86 MySQL++ Class Documentation

7.29.2.2 mysqlpp::mysql type info::mysql type info (enum field types ¢, bool
_ unsigned, bool null) [inline]

Create object from MySQL C API type info.

Parameters:
t the MySQL C API type ID for this type

_ unsigned if true, this is the unsigned version of the type

_ null if true, this type can hold a SQL null

7.29.2.3 mysqlpp::mysql type info::mysql type info (const MYSQL FIELD &
f) [inlinel

Create object from a MySQL C API field.

Parameters:
f field from which we extract the type info

7.29.2.4 mysqlpp::mysql type info::mysql type info (const std::type info & t)
[inline]
Create object from a C++ type_info object.

This tries to map a C++ type to the closest MySQL data type. It is necessarily somewhat
approximate.

7.29.3 Member Function Documentation

7.29.3.1 const mysql type info mysqlpp::mysql type info::base type () const
[inline]
Returns the type_info for the C++ type inside of the mysqlpp::Null(p. 90) type.

Returns the type info for the C++ type inside the mysqlpp::Null(p. 90) type. If the type is not
Null(p. 90) then this is the same as ¢_type()(p- 86).

7.29.3.2 bool mysqlpp::mysql type info::before (mysql type info & b) [inline]

Provides a way to compare two types for sorting.

Returns true if the SQL ID of this type is lower than that of another. Used by mysqlpp::type -
info _cmp when comparing types.

7.29.3.3 const std::type info& mysqlpp::mysql type info::c type () const
[inline]

Returns the type info for the C++ type associated with the SQL type.
Returns the C++ type_info record corresponding to the SQL type.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.29 mysqlpp::mysql type info Class Reference 87

7.29.3.4 bool mysqlpp::mysql type info::escape q () const
Returns true if the SQL type is of a type that needs to be escaped.

Returns:
true if the type needs to be escaped for syntactically correct SQL.

7.29.3.5 int mysqlpp::mysql type info::id () const [inline]

Returns the ID of the SQL type.

Returns the ID number MySQL uses for this type. Note: Do not depend on the value of this ID
as it may change between MySQL versions.

7.29.3.6 const unsigned int mysqlpp::mysql type info::length () const [inline]
Return length of data in this field.

This only works if you initialized this object from a MYSQL FIELD object.

7.29.3.7 const unsigned int mysqlpp::mysql type info::max length () const
[inline]

Return maximum length of data in this field.
This only works if you initialized this object from a MYSQL FIELD object.
7.29.3.8 const charx mysqlpp::mysql type info::name () const [inlinel

Returns an implementation-defined name of the C++ type.

Returns the name that would be returned by typeid().name()(p. 87) for the C++ type associated
with the SQL type.

7.29.3.9 mysql type info& mysqlpp::mysql type info::operator= (const
std::type info & t) [inline]

Assign a C++ type_info object to this object.

This tries to map a C++ type to the closest MySQL data type. It is necessarily somewhat
approximate.

7.29.3.10 mysql type info& mysqlpp::mysql type info::operator= (unsigned
char n) [inline]

Assign a new internal type value.

Parameters:
n an index into the internal MySQL++ type table

This function shouldn’t be used outside the library.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

88 MySQL++ Class Documentation

7.29.3.11 bool mysqlpp::mysql type info::quote q () const
Returns true if the SQL type is of a type that needs to be quoted.

Returns:
true if the type needs to be quoted for syntactically correct SQL.

7.29.3.12 const charx mysqlpp::mysql type info::sql name () const [inline]

Returns the name of the SQL type.
Returns the SQL name for the type.

7.29.4 Member Data Documentation

7.29.4.1 const unsigned char mysqlpp::mysql type info::string type = 20
[static]
The internal constant we use for our string type.

We expose this because other parts of MySQL++ need to know what the string constant is at the
moment.

The documentation for this class was generated from the following files:

e type_info.h
e type info.cpp

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.30 mysqlpp::NoExceptions Class Reference 89

7.30 mysqlpp::NoExceptions Class Reference

Disable exceptions in an object derived from OptionalExceptions(p.98).
#include <noexceptions.h>

Collaboration diagram for mysqlpp::NoExceptions:

Public Member Functions

¢ NoExceptions (OptionalExceptions &a)

Constructor.

e ~NoExceptions ()

Destructor.

7.30.1 Detailed Description

Disable exceptions in an object derived from OptionalExceptions(p.98).

This class was designed to be created on the stack, taking a reference to a subclass of Optional-
Exceptions(p.98). (We call that our "associate" object.) On creation, we save that object’s
current exception state, and disable exceptions. On destruction, we restore our associate’s previous
state.

7.30.2 Constructor & Destructor Documentation

7.30.2.1 mysqlpp::NoExceptions::NoExceptions (OptionalExceptions & a)
[inline]

Constructor.

Takes a reference to an OptionalExceptions(p.98) derivative, saves that object’s current excep-
tion state, and disables exceptions.

7.30.2.2 mysqlpp::NoExceptions::~NoExceptions () [inlinel]

Destructor.
Restores our associate object’s previous exception state.

The documentation for this class was generated from the following file:

¢ noexceptions.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

90 MySQL++ Class Documentation

7.31 mysqlpp::Null< Type, Behavior > Class Template Ref-
erence

Class for holding data from a SQL column with the NULL attribute.
#include <null.h>

Collaboration diagram for mysqlpp::Null< Type, Behavior >:

Public Types

e typedef Type value type
Type of the data stored in this object, when it is not equal to SQL null.

Public Member Functions

e Null ()

Default constructor.

Null (const Type &x)

Initialize the object with a particular value.

Null (const null _type &n)
Construct a Null(p. 90) equal to SQL null.

e operator Type & ()

Converts this object to Type.

e Null & operator= (const Type &x)

Assign a value to the object.

Null & operator= (const null _type &n)
Assign SQL null to this object.

Public Attributes

e Type data
The object’s value, when it is not SQL null.

e bool is_null

If set, this object is considered equal to SQL null.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.31 mysqlpp::Null< Type, Behavior > Class Template Reference 91

7.31.1 Detailed Description

template<class Type, class Behavior — NullisNull> class mysqlpp::Null< Type, Be-
havior >

Class for holding data from a SQL column with the NULL attribute.

This template is necessary because there is nothing in the C++ type system with the same
semantics as SQL’s null. In SQL, a column can have the optional 'NULL’ attribute, so there is a
difference in type between, say an int column that can be null and one that cannot be. C+-+’s
NULL constant does not have these features.

It’s important to realize that this class doesn’t hold nulls, it holds data that cen be null. It can
hold a non-null value, you can then assign null to it (using MySQL++’s global null object),
and then assign a regular value to it again; the object will behave as you expect throughout this
process.

Because one of the template parameters is a C++ type, the typeid() for a null int is different
than for a null string, to pick two random examples. See type info.cpp(p.??) for the table
SQL types that can be null.

7.31.2 Constructor & Destructor Documentation

7.31.2.1 template<class Type, class Behavior = NullisNull> mysqlpp::Null< Type,
Behavior >:Null () [inlinel
Default constructor.

"data" member is left uninitialized by this ctor, because we don’t know what to initialize it to.

7.31.2.2 template<class Type, class Behavior = NullisNull> mysqlpp::Null< Type,
Behavior >::Null (const Type &) [inline]

Initialize the object with a particular value.

The object is marked as "not null" if you use this ctor. This behavior exists because the class
doesn’t encode nulls, but rather data which can be null. The distinction is necessary because
'NULL’ is an optional attribute of SQL columns.

7.31.2.3 template<class Type, class Behavior = NullisNull> mysqlpp::Null< Type,
Behavior >::Null (const null type & m) [inline]

Construct a Null(p. 90) equal to SQL null.

This is typically used with the global null object. (Not to be confused with C’s NULL type.)
You can say something like...

Null<int> foo = null;

...to get a null int.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

92 MySQL++ Class Documentation

7.31.3 Member Function Documentation

7.31.3.1 template<class Type, class Behavior = NullisNull> mysqlpp::Null< Type,
Behavior >::operator Type & () [inline]
Converts this object to Type.

If is_null is set, returns whatever we consider that null "is", according to the Behavior parameter
you used when instantiating this template. See NullisNull(p. 95), NullisZero(p. 96) and Nullis-
Blank(p. 94).

Otherwise, just returns the ’data’ member.

7.31.3.2 template<class Type, class Behavior = NullisNull> Null& mysqlpp::Null<
Type, Behavior >::operator= (const null type & n) [inline]

Assign SQL null to this object.

This just sets the is_null flag; the data member is not affected until you call the Type() operator
on it.

7.31.3.3 template<class Type, class Behavior — NullisNull> Null& mysqlpp::Null<
Type, Behavior >::operator= (const Type & z) [inline]

Assign a value to the object.

This marks the object as "not null" as a side effect.

7.31.4 Member Data Documentation

7.31.4.1 template<class Type, class Behavior = NullisNull> bool mysqlpp::Null<
Type, Behavior >::is null

If set, this object is considered equal to SQL null.
This flag affects how the Type() and << operators work.

The documentation for this class was generated from the following file:

e null.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.32 mysqlpp::null type Class Reference

93

7.32 mysqlpp::null type Class Reference

The type of the global mysqlpp::null(p. 20) object.
#include <null.h>

7.32.1 Detailed Description

The type of the global mysqlpp::null(p. 20) object.

This class is for internal use only. Normal code should use Null(p. 90) instead.

The documentation for this class was generated from the following file:

e null.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

94 MySQL++ Class Documentation

7.33 mysqlpp::NullisBlank Struct Reference

Class for objects that define SQL null as a blank C string.
#include <null.h>

7.33.1 Detailed Description

Class for objects that define SQL null as a blank C string.
Returns "" when you ask what null is, and is empty when you insert it into a C++ stream.
Used for the behavior parameter for template Null(p. 90)

The documentation for this struct was generated from the following file:

e null.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.34 mysqlpp::NullisNull Struct Reference 95

7.34 mysqlpp::NullisNull Struct Reference

Class for objects that define SQL null in terms of MySQL-++’s null _type(p.93).
#include <null.h>

7.34.1 Detailed Description

Class for objects that define SQL null in terms of MySQL++’s null _type(p.93).

Returns a null _type(p. 93) instance when you ask what null is, and is "(NULL)" when you insert
it into a C++ stream.

Used for the behavior parameter for template Null(p. 90)

The documentation for this struct was generated from the following file:

e null.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

96 MySQL++ Class Documentation

7.35 mysqlpp::NullisZero Struct Reference

Class for objects that define SQL null as 0.
#include <null.h>

7.35.1 Detailed Description

Class for objects that define SQL null as 0.
Returns 0 when you ask what null is, and is zero when you insert it into a C+-+ stream.
Used for the behavior parameter for template Null(p. 90)

The documentation for this struct was generated from the following file:

e null.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.36 mysqlpp::ObjectNotlInitialized Class Reference 97
7.36 mysqlpp::ObjectNotInitialized Class Reference
Exception(p. 77) thrown when you try to use an object that isn’t completely initialized.
#include <exceptions.h>

Inheritance diagram for mysqlpp::ObjectNotlInitialized:Collaboration diagram for

mysqlpp::ObjectNotInitialized:

Public Member Functions

e ObjectNotInitialized (const char xw="")

Create exception object.

7.36.1 Detailed Description

Exception(p. 77) thrown when you try to use an object that isn’t completely initialized.

The documentation for this class was generated from the following file:

e exceptions.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

98 MySQL++ Class Documentation

7.37 mysqlpp::OptionalExceptions Class Reference

Interface allowing a class to have optional exceptions.
#include <noexceptions.h>

Inheritance diagram for mysqlpp::OptionalExceptions:

Public Member Functions

e OptionalExceptions (bool e=true)

Default constructor.

virtual ~OptionalExceptions ()
Destroy object.

void enable exceptions ()

Enable exceptions from the object.

void disable exceptions ()

Disable exceptions from the object.

¢ bool throw exceptions () const

Returns true if exceptions are enabled.

Protected Member Functions

e void set _exceptions (bool e)

Sets the exception state to a particular value.

Friends

o class NoExceptions

Declare NoExceptions(p. 89) to be our friend so it can access our protected functions.

7.37.1 Detailed Description

Interface allowing a class to have optional exceptions.

A class derives from this one to acquire a standard interface for disabling exceptions, possibly only
temporarily. By default, exceptions are enabled.

7.37.2 Constructor & Destructor Documentation

7.37.2.1 mysqlpp::OptionalExceptions::OptionalExceptions (bool e = true)
[inline]

Default constructor.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.37 mysqlpp::OptionalExceptions Class Reference 99

Parameters:
e if true, exceptions are enabled (this is the default)

7.37.3 Member Function Documentation

7.37.3.1 void mysqlpp::OptionalExceptions::set exceptions (bool e) [inline,
protected]
Sets the exception state to a particular value.

This method is protected because it is only intended for use by subclasses’ copy constructors and
the like.

The documentation for this class was generated from the following file:

e noexceptions.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

100

MySQL++ Class Documentation

7.38 mysqlpp::Query Class Reference

A class for building and executing SQL queries.

#include <query.h>

Inheritance diagram for mysqlpp::Query:Collaboration diagram for mysqlpp::Query:

Public Member Functions

Query (Connection xc, bool te=true)

Create a new query object attached to a connection.

Query (const Query &q)

Create a new query object as a copy of another.

Query & operator= (const Query &rhs)

Assign another query’s state to this object.

std::string error ()

Get the last error message that was set.

bool success ()

Returns true if the last operation succeeded.

void parse ()

Treat the contents of the query string as a template query.

void reset ()

Reset the query object so that it can be reused.

std::string preview ()

Return the query string currently in the buffer.

std::string preview (const SQLString &arg0)

Return the query string currently in the buffer with template query parameter substitution.

std::string preview (SQLQueryParms &p)

Return the query string currently in the buffer.

std::string str ()
Get built query as a null-terminated C++ string.

std::string str (const SQLString &arg0)

Get built query as a null-terminated C++ string with template query parameter substitution.

std::string str (query reset r)

Get built query as a null-terminated C++ string.

std::string str (SQLQueryParms &p)

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.38 mysqlpp::Query Class Reference 101

Get built query as a null-terminated C++ string.

o std:string str (SQLQueryParms &p, query reset r)
Get built query as a null-terminated C++ string.

e bool exec (const std::string &str)

Ezecute a query.

¢ ResNSel execute ()

Ezecute built-up query.

¢ ResNSel execute (const SQLString &str)

Execute query in a C++ string, or substitute string into a template query and execute it.

¢ ResNSel execute (const char xstr)

Ezecute query in a C string.

¢ ResNSel execute (const char xstr, size_t len)

Ezecute query in a known-length string of characters. This can include null characters.

e ResUse use ()

Ezecute a query that can return o result set.

¢ ResUse use (const SQLString &str)
Ezecute query in a C++ string.

e ResUse use (const char str)

Ezecute query in a C string.

e ResUse use (const char *str, size_t len)

Ezecute query in a known-length C string.

¢ Result store ()

Ezecute a query that can return a result set.

¢ Result store (const SQLString &str)
Ezecute query in a C++ string.

¢ Result store (const char xstr)

Ezecute query in a C string.

e Result store (const char xstr, size_t len)

Ezecute query in a known-length C string.

¢ Result store_next ()

Return next result set, when processing a multi-query.

¢ bool more _results ()

Return whether more results are waiting for a multi-query or stored procedure response.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

102

MySQL++ Class Documentation

template<class Sequence> void storein sequence (Sequence &con, query reset
r=RESET_QUERY)

Ezecute a query, storing the result set in an STL sequence container.

template<class Set> void storein _set (Set &con, query reset r=RESET_QUERY)

Ezxecute a query, storing the result set in an STL associative container.

template<class Container> void storein (Container &con, query reset r=RESET_-
QUERY)

Ezecute a query, and store the entire result set in an STL container.

template<class T> void storein (std::vector< T > &con, const char xs)

Specialization of storein _sequence()(p. 108) for std: :vector.

template<class T> void storein (std::deque< T > &con, const char xs)

Specialization of storein _sequence()(p. 108) for std: :deque.

template<class T> void storein (std::list< T > &con, const char xs)

Specialization of storein _sequence()(p. 108) for std::list.

template<class T> void storein (std::set< T > &con, const char xs)
Specialization of storein _set()(p.108) for std::set.

template<class T> void storein (std::multiset< T > &con, const char *s)
Specialization of storein _set()(p. 108) for std: :multiset.

template<class T> Query & update (const T &o, const T &n)

Replace an existing row’s data with new data.

template<class T> Query & insert (const T &v)

Insert a new row.

template<class Iter> Query & insert (Iter first, Iter last)

Insert multiple new rows.

template<class T> Query & replace (const T &v)

Insert new row unless there is an existing row that matches on a unique indez, in which case we
replace t.

operator bool ()

Return true if the last query was successful.

bool operator! ()

Return true if the last query failed.

Public Attributes

e SQLQueryParms def

The default template parameters.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.38 mysqlpp::Query Class Reference 103

Friends

e class SQLQueryParms

7.38.1 Detailed Description

A class for building and executing SQL queries.

This class is derived from SQLQuery. It adds to that a tie between the query object and a My-
SQL+-+ Connection (p.46) object, so that the query can be sent to the MySQL server we’re
connected to.

One does not generally create Query(p.100) objects directly. Instead, call
mysqlpp::Connection::query()(p. 54) to get one tied to that connection.

There are several ways to build and execute SQL queries with this class.

The way most like other database libraries is to pass a SQL statement to one of the execx(),
(p-105) storex(), (p.107) or use()(p-110) methods taking a C or C++ string. The query is
executed immediately, and any results returned.

For more complicated queries, you can use Query’s stream interface. You simply build up a query
using the Query(p. 100) instance as you would any other C++ stream object. When the query
string is complete, you call the overloaded version of execx(), storex() or use()(p. 110) that takes
no parameters, which executes the built query and returns any results.

If you are using the library’s Specialized SQL Structures feature, Query(p. 100) has several special
functions for generating common SQL queries from those structures. For instance, it offers the
insert() (p.105) method, which builds an INSERT query to add the contents of the SSQLS to
the database. As with the stream interface, these methods only build the query string; call one of
the parameterless methods mentioned previously to actually execute the query.

Finally, you can build "template queries". This is something like C’s printf () function, in
that you insert a specially-formatted query string into the object which contains placeholders
for data. You call the parse()(p.106) method to tell the Query(p.100) object that the query
string contains placeholders. Once that’s done, you can call any of the many overloaded methods
that take a number of SQLStrings (up to 25 by default) or any type that can be converted to
SQLString(p. 135), and those parameters will be inserted into the placeholders. When you call
one of the parameterless functions the execute the query, the final query string is assembled and
sent to the server.

See the user manual for more details about these options.

7.38.2 Constructor & Destructor Documentation
7.38.2.1 mysqlpp::Query::Query (Connection * ¢, bool te = true)

Create a new query object attached to a connection.

This is the constructor used by mysqlpp::Connection::query()(p. 54).

Parameters:
¢ connection the finished query should be sent out on

te if true, throw exceptions on errors

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

104 MySQL++ Class Documentation

7.38.2.2 mysqlpp::Query::Query (const Query & q)

Create a new query object as a copy of another.

This is not a traditional copy ctor! Its only purpose is to make it possible to assign the return of
Connection::query()(p. 54) to an empty Query(p.100) object. In particular, the stream buffer
and template query stuff will be empty in the copy, regardless of what values they have in the
original.

7.38.3 Member Function Documentation
7.38.3.1 std::string mysqlpp::Query::error ()

Get the last error message that was set.

This class has an internal error message string, but if it isn’t set, we return the last error message
that happened on the connection we’re bound to instead.

7.38.3.2 bool mysqlpp::Query::exec (const std::string & str)

Execute a query.

Same as execute()(p. 105), except that it only returns a flag indicating whether the query suc-
ceeded or not. It is basically a thin wrapper around the C API function mysql_real_query().

Parameters:
str the query to execute

Returns:
true if query was executed successfully

See also:
execute()(p. 105), store()(p. 107), storein()(p. 108), and use()(p. 110)
7.38.3.3 ResNSel mysqlpp::Query::execute (const char x str, size_t len)
Execute query in a known-length string of characters. This can include null characters.
Executes the query immediately, and returns the results.
7.38.3.4 ResNSel mysqlpp::Query::execute (const char x str)
Execute query in a C string.
Executes the query immediately, and returns the results.
7.38.3.5 ResNSel mysqlpp::Query::execute (const SQLString & str)

Execute query in a C++ string, or substitute string into a template query and execute it.

Parameters:
str If the object represents a compiled template query, substitutes this string in for the first
parameter. Otherwise, takes the string as a complete SQL query and executes it.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.38 mysqlpp::Query Class Reference 105

7.38.3.6 ResNSel mysqlpp::Query::execute () [inline]

Execute built-up query.

Use one of the execute()(p. 105) overloads if you don’t expect the server to return a result set. For
instance, a DELETE query. The returned ResNSel(p. 112) object contains status information
from the server, such as whether the query succeeded, and if so how many rows were affected.

This overloaded version of execute()(p. 105) simply executes the query that you have built up in
the object in some way. (For instance, via the insert()(p. 105) method, or by using the object’s
stream interface.)

Returns:
ResNSel(p. 112) status information about the query

See also:
exec()(p. 104), store()(p. 107), storein()(p. 108), and use()(p. 110)

7.38.3.7 template<class Iter> Query& mysqlpp::Query::insert (Iter first, Iter last)
[inline]
Insert multiple new rows.

Builds an INSERT SQL query using items from a range within an STL container. Insert the entire
contents of the container by using the begin() and end() iterators of the container as parameters
to this function.

Parameters:
first iterator pointing to first element in range to insert

last iterator pointing to one past the last element to insert

See also:
replace()(p. 106), update()(p. 109)

7.38.3.8 template<class T> Query& mysqlpp::Query::insert (const T & v)
[inline]

Insert a new row.

This function builds an INSERT SQL query. One uses it with MySQL++’s Specialized SQL
Structures mechanism.

Parameters:
U New row

See also:

replace()(p. 106), update()(p. 109)

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

106 MySQL++ Class Documentation

7.38.3.9 bool mysqlpp::Query::more_results ()

Return whether more results are waiting for a multi-query or stored procedure response.

If this function returns true, you must call store next()(p. 107) to fetch the next result set before
you can execute more queries.

Wraps mysql _more_results() in the MySQL C APL That function only exists in MySQL v4.1
and higher. Therefore, this function always returns false when built against older API libraries.

Returns:
true if another result set exists

7.38.3.10 Query & mysqlpp::Query::operator= (const Query & rhs)

Assign another query’s state to this object.

The same caveats apply to this operator as apply to the copy ctor.

7.38.3.11 void mysqlpp::Query::parse ()

Treat the contents of the query string as a template query.

This method sets up the internal structures used by all of the other members that accept template
query parameters. See the "Template Queries" chapter in the user manual for more information.

7.38.3.12 std::string mysqlpp::Query::preview (const SQLString & arg0) [inline]

Return the query string currently in the buffer with template query parameter substitution.

Parameters:
arg0 the value to substitute for the first template query parameter

7.38.3.13 template<class T> Query& mysqlpp::Query::replace (const T & v)
[inline]

Insert new row unless there is an existing row that matches on a unique index, in which case we
replace it.

This function builds a REPLACE SQL query. One uses it with MySQL++’s Specialized SQL
Structures mechanism.

Parameters:
v new row

See also:

insert()(p. 105), update()(p. 109)

7.38.3.14 void mysqlpp::Query::reset ()

Reset the query object so that it can be reused.

This erases the query string and the contents of the parameterized query element list.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.38 mysqlpp::Query Class Reference 107

7.38.3.15 Result mysqlpp::Query::store (const char * str, size t len)

Execute query in a known-length C string.

Executes the query immediately, and returns an object that contains the entire result set. This is
less memory-efficient than use()(p. 110), but it lets you have random access to the results.

7.38.3.16 Result mysqlpp::Query::store (const char x str)

Execute query in a C string.

Executes the query immediately, and returns an object that contains the entire result set. This is
less memory-efficient than use()(p. 110), but it lets you have random access to the results.

7.38.3.17 Result mysqlpp::Query::store (const SQLString & str)

Execute query in a C++ string.

Executes the query immediately, and returns an object that contains the entire result set. This is
less memory-efficient than use()(p. 110), but it lets you have random access to the results.

7.38.3.18 Result mysqlpp::Query::store () [inline]

Execute a query that can return a result set.

Use one of the store()(p. 107) overloads to execute a query and retrieve the entire result set into
memory. This is useful if you actually need all of the records at once, but if not, consider using
one of the use()(p. 110) methods instead, which returns the results one at a time, so they don’t
allocate as much memory as store()(p. 107).

You must use store()(p. 107), storein()(p. 108) or use()(p. 110) for SELECT, SHOW, DESCRIBE and
EXPLAIN queries. You can use these functions with other query types, but since they don’t return
a result set, exec()(p.104) and execute()(p. 105) are more efficient.

The name of this method comes from the MySQL C API function it is implemented in terms of,
mysql_store_result().

This function has the same set of overloads as execute()(p. 105).

Returns:
Result(p. 113) object containing entire result set

See also:
exec()(p-104), execute()(p. 105), storein() (p. 108), and use()(p. 110)

7.38.3.19 Result mysqlpp::Query::store_next ()

Return next result set, when processing a multi-query.
There are two cases where you’d use this function instead of the regular store()(p. 107) functions.

First, when handling the result of executing multiple queries at once. (See this page in the
MySQL documentation for details.)

Second, when calling a stored procedure, MySQL can return the result as a set of results.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

108 MySQL++ Class Documentation

In either case, you must consume all results before making another MySQL query, even if you
don’t care about the remaining results or result sets.

As the MySQL documentation points out, you must set the MYSQL OPTION MULTI -
STATEMENTS_ ON flag on the connection in order to use this feature. See Connection::set -
option()(p. 55).

Multi-queries only exist in MySQL v4.1 and higher. Therefore, this function just wraps
store()(p.107) when built against older API libraries.

Returns:
Result(p. 113) object containing the next result set.

7.38.3.20 template<class Container> void mysqlpp::Query::storein (Container &
con, query reset r = RESET QUERY) [inline]

Execute a query, and store the entire result set in an STL container.

This is a set of specialized template functions that call either storein sequence()(p.108)
or storein set()(p.108), depending on the type of container you pass it. It understands
std: :vector, deque, list, slist (a common C++ library extension), set, and multiset.

Like the functions it wraps, this is actually an overloaded set of functions. See the other functions’
documentation for details.

Use this function if you think you might someday switch your program from using a set-associative
container to a sequence container for storing result sets, or vice versa.

See exec()(p.104), execute()(p.105), store()(p.107), and use()(p.110) for alternative query
execution mechanisms.

7.38.3.21 template<class Sequence> void mysqlpp::Query::storein_sequence
(Sequence & con, query reset r = RESET QUERY) [inline]

Execute a query, storing the result set in an STL sequence container.

This function works much like store()(p. 107) from the caller’s perspective, because it returns the
entire result set at once. It’s actually implemented in terms of use()(p.110), however, so that
memory for the result set doesn’t need to be allocated twice.

There are many overloads for this function, pretty much the same as for execute()(p. 105), except
that there is a Container parameter at the front of the list. So, you can pass a container and a
query string, or a container and template query parameters.

Parameters:
con any STL sequence container, such as std: :vector

r whether the query automatically resets after being used

See also:
exec()(p-104), execute()(p.105), store()(p. 107), and use()(p. 110)

7.38.3.22 template<class Set> void mysqlpp::Query::storein_set (Set & con,
query reset 7 = RESET QUERY) [inline]

Execute a query, storing the result set in an STL associative container.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.38 mysqlpp::Query Class Reference 109

The same thing as storein__sequence()(p. 108), except that it’s used with associative STL con-
tainers, such as std::set. Other than that detail, that method’s comments apply equally well to
this one.

7.38.3.23 std:string mysqlpp::Query::str (SQLQueryParms & p, query reset r)
Get built query as a null-terminated C++ string.

Parameters:
p template query parameters to use, overriding the ones this object holds, if any

r if equal to RESET_QUERY, query object is cleared after this call

7.38.3.24 std::string mysqlpp::Query::str (SQLQueryParms & p)
Get built query as a null-terminated C++ string.

Parameters:
p template query parameters to use, overriding the ones this object holds, if any

7.38.3.25 std::string mysqlpp::Query::str (query reset r) [inline]
Get built query as a null-terminated C++ string.

Parameters:
T if equal to RESET_QUERY, query object is cleared after this call

7.38.3.26 std::string mysqlpp::Query::str (const SQLString & arg0) [inline]
Get built query as a null-terminated C++ string with template query parameter substitution.

Parameters:
arg0 the value to substitute for the first template query parameter

7.38.3.27 bool mysqlpp::Query::success ()

Returns true if the last operation succeeded.

Returns true if the last query succeeded, and the associated Connection(p.46) object’s suc-
cess()(p. 109) method also returns true. If either object is unhappy, this method returns false.

7.38.3.28 template<class T> Query& mysqlpp::Query::update (const T & o, const
T & n) [inline]

Replace an existing row’s data with new data.

This function builds an UPDATE SQL query using the new row data for the SET clause, and the
old row data for the WHERE clause. One uses it with MySQL++s Specialized SQL Structures
mechanism.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

110 MySQL++ Class Documentation

Parameters:
o old row

. new row

See also:
insert()(p. 105), replace()(p. 106)

7.38.3.29 ResUse mysqlpp::Query::use (const char x str, size_t len)

Execute query in a known-length C string.

Executes the query immediately, and returns an object that lets you walk through the result set
one row at a time, in sequence. This is more memory-efficient than store()(p.107).

7.38.3.30 ResUse mysqlpp::Query::use (const char * str)

Execute query in a C string.

Executes the query immediately, and returns an object that lets you walk through the result set
one row at a time, in sequence. This is more memory-efficient than store()(p.107).

7.38.3.31 ResUse mysqlpp::Query::use (const SQLString & str)

Execute query in a C++ string.

Executes the query immediately, and returns an object that lets you walk through the result set
one row at a time, in sequence. This is more memory-efficient than store()(p. 107).

7.38.3.32 ResUse mysqlpp::Query::use () [inline]

Execute a query that can return a result set.

Use one of the use()(p.110) overloads if memory efficiency is important. They return an object
that can walk through the result records one by one, without fetching the entire result set from the
server. This is superior to store()(p. 107) when there are a large number of results; store()(p. 107)
would have to allocate a large block of memory to hold all those records, which could cause
problems.

A potential downside of this method is that MySQL database resources are tied up until the
result set is completely consumed. Do your best to walk through the result set as expeditiously
as possible.

The name of this method comes from the MySQL C API function that initiates the retrieval
process, mysql_use_result (). This method is implemented in terms of that function.

This function has the same set of overloads as execute()(p. 105).

Returns:
ResUse(p. 115) object that can walk through result set serially

See also:
exec()(p.104), execute()(p. 105), store()(p. 107) and storein()(p. 108)

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.38 mysqlpp::Query Class Reference

111

7.38.4 Member Data Documentation
7.38.4.1 SQLQueryParms mysqlpp::Query::def

The default template parameters.

Used for filling in parameterized queries.

The documentation for this class was generated from the following files:

e query.h
e query.cpp

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

112 MySQL++ Class Documentation

7.39 mysqlpp::ResNSel Class Reference

Holds the information on the success of queries that don’t return any results.

#include <result.h>

Public Member Functions

¢ ResNSel (Connection *q)

Initialize object.

e operator bool ()

Returns true if the query was successful.

Public Attributes

e bool success

if true, query was successful

e my_ulonglong insert id
last value used for AUTO_INCREMENT field

e my ulonglong rows

number of rows affected

o std:string info

additional info about query result

7.39.1 Detailed Description

Holds the information on the success of queries that don’t return any results.

The documentation for this class was generated from the following files:

e result.h
e result.cpp

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.40 mysqlpp::Result Class Reference 113

7.40 mysqlpp::Result Class Reference

This class manages SQL result sets.
#include <result.h>

Inheritance diagram for mysqlpp::Result:Collaboration diagram for mysqlpp::Result:

Public Member Functions

e Result ()

Default constructor.

¢ Result (MYSQL RES xresult, bool te=true)
Fully initialize object.

e Result (const Result &other)
Initialize object as a copy of another Result(p. 113) object.

e virtual ~Result ()

Destroy result set.

e const Row fetch row () const
Wraps mysql_fetch _row() in MySQL C APL

e my_ulonglong num_rows () const
Wraps mysql_num_ rows() in MySQL C API.

e void data_seek (uint offset) const
Wraps mysql_data_seek() in MySQL C APL

e size type size () const

Alias for num__rows()(p. 113), only with different return type.

e size_type rows () const

Alias for num__rows()(p.113), only with different return type.

e const Row at (size type i) const
Get the row with an offset of 1.

7.40.1 Detailed Description

This class manages SQL result sets.

Objects of this class are created to manage the result of "store" queries, where the result set is
handed to the program as single block of row data. (The name comes from the MySQL C API
function mysql_store_result () which creates these blocks of row data.)

This class is a random access container (in the STL sense) which is neither less-than comparable
nor assignable. This container provides a reverse random-access iterator in addition to the normal
forward one.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

114 MySQL++ Class Documentation

7.40.2 Member Function Documentation
7.40.2.1 const Row mysqlpp::Result::fetch row () const [inline]

Wraps mysql fetch row() in MySQL C APL

This is simply the const version of the same function in our parent class (p.115) . Why this
cannot actually be in our parent class is beyond me.

The documentation for this class was generated from the following file:

e result.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.41 mysqlpp::ResUse Class Reference 115

7.41 mysqlpp::ResUse Class Reference

A Dbasic result set class, for use with "use" queries.
#include <result.h>

Inheritance diagram for mysqlpp::ResUse:Collaboration diagram for mysqlpp::ResUse:

Public Member Functions

e ResUse ()

Default constructor.

e ResUse (MYSQL_RES xresult, Connection *c=0, bool te=true)
Create the object, fully initialized.

e ResUse (const ResUse &other)
Create a copy of another ResUse(p. 115) object.

e virtual ~ResUse ()

Destroy object.

¢ ResUse & operator= (const ResUse &other)
Copy another ResUse(p. 115) object’s data into this object.

e MYSQL_RES * raw_result ()
Return raw MySQL C API result set.

¢ Row fetch row ()
Wraps mysql_ fetch _row() in MySQL C APL

e unsigned long * fetch lengths () const
Wraps mysql_ fetch_lengths() in MySQL C APIL.

e Field & fetch field () const
Wraps mysql_ fetch_field() in MySQL C APIL.

e void field seek (int field)
Wraps mysql_ field_ seek() in MySQL C APIL.

e int num_fields () const
Wraps mysql_num_ fields() in MySQL C APL

¢ void parent leaving ()

Documentation needed!

e void purge ()
Free all resources held by the object.

e operator bool () const

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

116 MySQL++ Class Documentation

Return true if we have a valid result set.

e unsigned int columns () const

Return the number of columns in the result set.

e std:string & table ()

Get the name of table that the result set comes from.

e const std::string & table () const
Return the name of the table.

o int field num (const std::string &) const
Get the index of the named field.

o std:string & field name (int)
Get the name of the field at the given index.

e const std::string & field name (int) const
Get the name of the field at the given index.

¢ FieldNames & field names ()
Get the names of the fields within this result set.

e const FieldNames & field names () const
Get the names of the fields within this result set.

e void reset field names ()

Reset the names in the field list to their original values.

e mysql type info & field type (int i)
Get the MySQL type for a field given its indez.

e const mysql type info & field type (int) const
Get the MySQL type for a field given its indez.

¢ FieldTypes & field types ()
Get a list of the types of the fields within this result set.

e const FieldTypes & field types () const
Get a list of the types of the fields within this result set.

o void reset field types ()
Reset the field types to their original values.

e int names (const std::string &s) const
Alias for field _num()(p. 119).

o std:string & names (int i)
Alias for field name()(p.119).

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.41

mysqlpp::ResUse Class Reference

117

const std::string & names (int i) const

Alias for field name()(p. 119).

FieldNames & names ()

Alias for field names()(p. 116).

const FieldNames & names () const

Alias for field names()(p. 116).

void reset names ()

Alias for reset field names()(p.116).

mysql type info & types (int i)
Alias for field _type()(p. 116).

const mysql type info & types (int i) const
Alias for field _type()(p.116).

FieldTypes & types ()
Alias for field _types()(p.116).

const FieldTypes & types () const
Alias for field _types()(p-116).

void reset _types ()
Alias for reset field types()(p.116).

const Fields & fields () const
Get the underlying Fields(p. 79) structure.

const Field & fields (unsigned int i) const

Get the underlying Field structure given its index.

bool operator== (const ResUse &other) const

Returns true if the other ResUse(p. 115) object shares the same underlying C API result set as

this one.

bool operator!= (const ResUse &other) const

Returns true if the other ResUse(p. 115) object has a different underlying C API result set from

this one.

Protected Member Functions

void copy (const ResUse &other)

Copy another ResUse(p. 115) object’s contents into this one.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

118 MySQL++ Class Documentation

Protected Attributes

e Connection * conn

server result set comes from

MYSQL_RES * result
underlying C API result set

bool initialized

if true, object is fully initted

FieldNames * names

list of field names in result

FieldTypes * types _
list of field types in result

Fields fields _
list of fields in result

std::string table

table result set comes from

7.41.1 Detailed Description

A basic result set class, for use with "use" queries.

A "use" query is one where you make the query and then process just one row at a time in the result
instead of dealing with them all as a single large chunk. (The name comes from the MySQL C API
function that initiates this action, mysql_use_result().) By calling fetch row()(p.118) until
it throws a mysqlpp::BadQuery(p. 40) exception (or an empty row if exceptions are disabled),
you can process the result set one row at a time.

7.41.2 Member Function Documentation

7.41.2.1 void mysqlpp::ResUse::copy (const ResUse & other) [protected]

Copy another ResUse(p. 115) object’s contents into this one.

Self-copy is not allowed.

7.41.2.2 Row mysqlpp::ResUse::fetch _row () [inline]

Wraps mysql _fetch row() in MySQL C APL

This is not a thin wrapper. It does a lot of error checking before returning the
mysqlpp::Row(p. 120) object containing the row data.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.41 mysqlpp::ResUse Class Reference 119

7.41.2.3 std:string & mysqlpp::ResUse::field name (int)

Get the name of the field at the given index.
This is the inverse of field num()(p.119).

7.41.2.4 int mysqlpp::ResUse::field num (const std::string &) const

Get the index of the named field.
This is the inverse of field name()(p.119).

7.41.2.5 mysqlpp::ResUse::operator bool () const [inline]

Return true if we have a valid result set.
This operator is primarily used to determine if a query was successful:

Query q("....");
if (q.use()) {

Query::use()(p. 110) returns a ResUse(p. 115) object, and it won’t contain a valid result set if
the query failed.

7.41.2.6 bool mysqlpp::ResUse::operator== (const ResUse & other) const
[inline]

Returns true if the other ResUse(p. 115) object shares the same underlying C API result set as
this one.

This works because the underlying result set is stored as a pointer, and thus can be copied and
then compared.

7.41.2.7 void mysqlpp::ResUse::purge () [inline]

Free all resources held by the object.

This class’s destructor is little more than a call to purge()(p. 119), so you can think of this as a
way to re-use a ResUse(p. 115) object, to avoid having to completely re-create it.

7.41.2.8 const std::string& mysqlpp::ResUse::table () const [inline]

Return the name of the table.
This is only valid

The documentation for this class was generated from the following files:

e result.h
e result.cpp

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

120 MySQL++ Class Documentation

7.42 mysqlpp::Row Class Reference

Manages rows from a result set.
#include <row.h>

Inheritance diagram for mysqlpp::Row:Collaboration diagram for mysqlpp::Row:

Public Member Functions

e Row ()

Default constructor.

¢ Row (const MYSQL ROW &d, const ResUse xr, unsigned long xjj, bool te=true)

Create a row object.

e ~Row ()
Destroy object.

e const ResUse & parent () const

Get a reference to our parent class.

e size type size () const
Get the number of fields in the row.

e const ColData operator|] (const char xfield) const

Get the value of a field given its name.

¢ const ColData operator|] (size type i) const

Get the value of a field given its index.

e const ColData at (size_type i) const

Get the value of a field given its indez.

e const char * raw__data (int i) const

Return the value of a field as a C string given its index, in raw form.

e const std::string & raw _string (int i) const

Return the value of a field as a C++ string given its indez, in raw form.

e operator bool () const

Returns true if there is data in the row.

e template<class Manip> value list ba< Row, Manip > value list (const char *d=",",
Manip m=quote) const

Get a list of the values in this row.

e template<class Manip> value list b< Row, Manip > value list (const char *d, const
std::vector< bool > &vb, Manip m=quote) const

Get a list of the values in this row.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.42 mysqlpp::Row Class Reference 121

e value list b< Row, quote type0 > value list (const std::vector< bool > &vb)
const

Get a list of the values in this row.

e template<class Manip> value list b< Row, Manip > value list (const char xd, Manip
m, bool t0, bool t1=false, bool t2=false, bool t3=false, bool t4=false, bool t5=false, bool
t6=false, bool t7=false, bool t8=false, bool t9—=false, bool ta=false, bool tb=false, bool
tc=false) const

Get a list of the values in this row.

e value list b< Row, quote type0 > value list (const char *d, bool t0, bool t1=false,
bool t2=false, bool t3=false, bool t4=false, bool t5=false, bool t6=false, bool t7=false, bool
t8=false, bool t9=false, bool ta=false, bool tb=false, bool tc=false) const

Get a list of the values in this row.

e value list b< Row, quote type0 > value list (bool t0, bool t1=false, bool t2=false,
bool t3=false, bool t4=false, bool t5=false, bool t6=false, bool t7=false, bool t8—false, bool
t9=false, bool ta—=false, bool th=false, bool tc=false) const

Get a list of the values in this row.

e template<class Manip> value list b< Row, Manip > value list (const char xd, Manip

m, std::string s0, std::string s1="") gtd::string s2="", std::string s3="", std::string s4="",
std::string s5="", std::string s6="", std::string s7="", std::string s8="", std::string s9="",
std::string sa="", std::string sb="", std::string sc="") const

Get a list of the values in this row.

e value list b< Row, quote type0 > value list (const char xd, std:string s0,
std::string s1="", std::string s2="", std::string s3="", std::string s4="", std::string s5="",
std::string s6="" ", std::string s7="", std::string s8="", std::string s9="" std::string sa=" ",
std::string sb="", std::string sc="") const

Get a list of the values in this row.

e value list b< Row, quote typeO > value list (std:string s0, std::string s1="",
std: strlng $2="" std: :string $3="" std: :string s4="" std: :string s5="", std::string s6=""",
std::string s7=" ", std::string s8=" ", std::string s9*"", std::string sa= "", std::string sb=" ",
std::string sc="") const

Get a list of the values in this row.

¢ value list ba< FieldNames, do nothing type0 > field list (const char *d=",")
const

Get a list of the field names in this row.

o template<class Manip> value list ba< FieldNames, Manip > field list (const char
xd, Manip m) const

Get a list of the field names in this row.

e template<class Manip> value list b< FieldNames, Manip > field list (const char
d, Manip m, const std::vector< bool > &vb) const

Get a list of the field names in this row.

e value list b< FieldNames, quote type0 > field list (const char =d, const
std::vector< bool > &vb) const

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

122 MySQL++ Class Documentation

Get a list of the field names in this row.

¢ value list b< FieldNames, quote type0 > field list (const std:vector< bool >
&vb) const

Get a list of the field names in this row.

e template<class Manip> value list b< FieldNames, Manip > field list (const char xd,
Manip m, bool t0, bool t1=false, bool t2=false, bool t3=false, bool t4=false, bool t5=false,
bool t6=false, bool t7=false, bool t8=false, bool t9=false, bool ta=false, bool tb=false, bool
tc=false) const

Get a list of the field names in this row.

e value list b< FieldNames, quote type0 > field list (const char *d, bool t0, bool
t1=false, bool t2=false, bool t3=false, bool td=false, bool t5=false, bool t6=false, bool
t7=false, bool t8=false, bool t9=false, bool ta=false, bool tb=false, bool tc=false) const

Get a list of the field names in this row.

e value list b< FieldNames, quote type0 > field list (bool t0, bool t1=false, bool
t2=false, bool t3=false, bool t4=false, bool t5=false, bool t6=false, bool t7=false, bool
t8=false, bool t9=false, bool ta=false, bool tb=false, bool tc=false) const

Get a list of the field names in this row.

¢ equal list ba< FieldNames, Row, quote type0 > equal list (const char *d=",",
const char xe="=") const

Get an "equal list" of the fields and values in this row.

e template<class Manip> equal list ba< FieldNames, Row, Manip > equal list
(const char *d, const char xe, Manip m) const

Get an "equal list" of the fields and values in this row.

7.42.1 Detailed Description

Manages rows from a result set.

7.42.2 Constructor & Destructor Documentation

7.42.2.1 mysqlpp::Row::Row (const MYSQL ROW & d, const ResUse x r,
unsigned long * jj, bool te = true)

Create a row object.

Parameters:
d MySQL C API row data

r result set that the row comes from
47 length of each item in d

te if true, throw exceptions on errors

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.42 mysqlpp::Row Class Reference 123

7.42.3 Member Function Documentation
7.42.3.1 const ColData mysqlpp::Row::at (size_type %) const

Get the value of a field given its index.

If the index value is bad, the underlying std::vector is supposed to throw an exception, according
to the Standard.

For this function to work, the Result(p.113) or ResUse(p. 115) object that created this object
must still exist. In other words, you cannot re-use or destroy the result object until you are done
retrieving data from this row object.

See operator| |(const charx) for more caveats.

7.42.3.2 template<class Manip> equal list ba< FieldNames, Row, Manip >
mysqlpp::Row::equal list (const char x d, const char * e, Manip m) const

Get an "equal list" of the fields and values in this row.

This method’s parameters govern how the returned list will behave when you insert it into a C++
stream:

Parameters:
d delimiter to use between items

e the operator to use between elements

m the manipulator to use for each element

For example, if d is ",", e is " = ", and m is the quote manipulator, then the field and value lists
(a, b) (c, d’e) will yield an equal list that gives the following when inserted into a C+-+ stream:

’a’ = ’¢?, ’b’? = ’d?’e’

Notice how the single quote was ’escaped’ in the SQL way to avoid a syntax error.

7.42.3.3 equal list ba< FieldNames, Row, quote type0 >
mysqlpp::Row::equal list (const char x d = ",", const char x e = "=")
const

Get an "equal list" of the fields and values in this row.

When inserted into a C++ stream, the delimiter 'd’ will be used between the items, " =" is the
relationship operator, and items will be quoted and escaped.

7.42.3.4 value list b< FieldNames, quote type0 > mysqlpp::Row::field list
(bool t0, bool t1 = false, bool t2 = false, bool t3 = false, bool ¢/ = false,
bool t5 = false, bool t6 = false, bool t7 = false, bool {8 = false, bool 19 =
false, bool ta = false, bool tb = false, bool tc = false) const

Get a list of the field names in this row.

For each true parameter, the field name in that position within the row is added to the returned
list. When the list is inserted into a C++ stream, a comma will be placed between the items as
a delimiter, and the items will be quoted and escaped.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

124 MySQL++ Class Documentation

7.42.3.5 value list b< FieldNames, quote type0 > mysqlpp::Row::field list
(const char % d, bool 0, bool t1 = false, bool t2 = false, bool t3 = false,
bool t/ = false, bool t5 = false, bool t6 = false, bool t7 = false, bool t8 =
false, bool t9 = false, bool ta = false, bool tb = false, bool tc = false) const

Get a list of the field names in this row.

For each true parameter, the field name in that position within the row is added to the returned
list. When the list is inserted into a C++ stream, the delimiter ’d’ will be placed between the
items as a delimiter, and the items will be quoted and escaped.

7.42.3.6 template<class Manip> value list b< FieldNames, Manip >
mysqlpp::Row::field list (const char * d, Manip m, bool t0, bool t1 =
false, bool t2 = false, bool t3 = false, bool t4/ = false, bool t5 = false, bool
t6 = false, bool t7 = false, bool t8 = false, bool t9 = false, bool ta = false,
bool tb = false, bool tc = false) const

Get a list of the field names in this row.

For each true parameter, the field name in that position within the row is added to the returned
list. When the list is inserted into a C++ stream, the delimiter ’d’ will be placed between the
items as a delimiter, and the manipulator 'm’ used before each item.

7.42.3.7 value list b< FieldNames, quote type0 > mysqlpp::Row::field list
(const std::vector< bool > & wvb) const

Get a list of the field names in this row.

Parameters:
vb for each true item in this list, add that field name to the returned list; ignore the others

Field names will be quoted and escaped when inserted into a C++ stream, and a comma, will be
placed between them as a delimiter.

7.42.3.8 value list b< FieldNames, quote type0 > mysqlpp::Row::field list
(const char * d, const std::vector< bool > & vb) const

Get a list of the field names in this row.

Parameters:
d delimiter to place between the items when the list is inserted into a C++ stream

vb for each true item in this list, add that field name to the returned list; ignore the others

Field names will be quoted and escaped when inserted into a C++ stream.

7.42.3.9 template<class Manip> value list b< FieldNames, Manip >
mysqlpp::Row::field list (const char x d, Manip m, const std::vector<
bool > & wvb) const

Get a list of the field names in this row.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.42 mysqlpp::Row Class Reference 125

Parameters:
d delimiter to place between the items when the list is inserted into a C++ stream

m manipulator to use before each item when the list is inserted into a C++ stream

vb for each true item in this list, add that field name to the returned list; ignore the others

7.42.3.10 template<class Manip> value list ba< FieldNames, Manip >
mysqlpp::Row::field list (const char x d, Manip m) const

Get a list of the field names in this row.

Parameters:
d delimiter to place between the items when the list is inserted into a C++ stream

m manipulator to use before each item when the list is inserted into a C++ stream

7.42.3.11 value list ba< FieldNames, do nothing type0 >
mysqlpp::Row::field list (const char * d = ",") const
Get a list of the field names in this row.

When inserted into a C-++ stream, the delimiter ’d’ will be used between the items, and no
manipulator will be used on the items.

7.42.3.12 const ColData mysqlpp::Row::operator|] (size type %) const [inline]

Get the value of a field given its index.

This function is just syntactic sugar, wrapping the at()(p. 123) method. The at()(p. 123) method
is the only way to get at the first field in a result set by index, as row[0] is ambiguous: it could
call either operator]] overload.

See also:
at()(p.123) for the full documentation for this operator, and operator|]|(const charx) for
further caveats about using this operator.

7.42.3.13 const ColData mysqlpp::Row::operator[] (const char * field) const

Get the value of a field given its name.
If the field does not exist in this row, we throw a BadFieldName(p. 36) exception.

For this operator to work, the Result(p.113) or ResUse(p. 115) object that created this object
must still exist. In other words, you cannot re-use or destroy the result object until you are done
retrieving data from this row object.

Note that we return the ColData (p.42) object by value. The purpose of ColData is to make it
easy to convert the string data returned by the MySQL server to some more appropriate type, so
you’re almost certain to use this operator in a construct like this:

string s = row["myfield"];

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

126 MySQL++ Class Documentation

That accesses myfield within the row, returns a temporary ColData object, which is then auto-
matically converted to a std::string and copied into s. That works fine, but beware of this
similar but incorrect construct:

const char* pc = row["myfield"];

This one line of code does what you expect, but pc is then a dangling pointer: it points to
memory owned by the temporary ColData object, which will have been destroyed by the time you
get around to actually using the pointer.

This function is rather inefficient. If that is a concern for you, use at()(p.123), operator|](size_-
type) or the SSQLS mechanism’ instead.
7.42.3.14 const charx mysqlpp::Row::iraw data (int i) const [inline]

Return the value of a field as a C string given its index, in raw form.

This is the same thing as operator[], except that the data isn’t converted to a ColData object first.
Also, this method does not check for out-of-bounds array indices.
7.42.3.15 const std::string& mysqlpp::Row::iraw _string (int ¢) const [inline]

Return the value of a field as a C++ string given its index, in raw form.

This is the same thing as operator[], except that the data isn’t converted to a ColData object first.

7.42.3.16 value list b<Row, quote type0> mysqlpp::Row::value list (std::string
80, std::string s1 = "", std::string s2 = "", std::string s = "", std::string

84 = "", std::string 85 = "", std::string s6 = "", std::string s7 = "",
std::string s8 = "", std::string 89 = "", std::string sa = "", std::string sb
= "", std::string s¢c = "") const [inline]

Get a list of the values in this row.

The ’s’ parameters name the fields that will be added to the returned list. When inserted into a
C++ stream, a comma will be placed between the items as a delimiter, and items will be quoted
and escaped.

7.42.3.17 value list b<Row, quote type0> mysqlpp::Row::value list (const char
* d, std:string s0, std::string s1 = "", std::string s2 = "", std::string

83 = "", std::string s4 = "", std::string 85 = "", std::string s6 = "",
std::string s7 = "", std::string s8 = "", std::string s9 = "", std::string sa
= "", std:string sb = "", std::string s¢ = "") const [inline]

Get a list of the values in this row.

The ’s’ parameters name the fields that will be added to the returned list. When inserted into
a C++ stream, the delimiter ’d’ will be placed between the items, and items will be quoted and
escaped.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.42 mysqlpp::Row Class Reference 127

7.42.3.18 template<class Manip> value list b<Row, Manip>
mysqlpp::Row::value list (const char x d, Manip m, std::string s0,
std::string s1 = "", std::string s2 = "", std::string s = "", std::string

s4 = "", std::string 85 = "", std::string s6 = "", std::string s7 = "",
std::string s8 = "", std::string s9 = "", std::string sa = "", std::string sb
= "", std::string s¢c = "") const [inline]

Get a list of the values in this row.

The ’s’ parameters name the fields that will be added to the returned list. When inserted into a
C++ stream, the delimiter ’d’ will be placed between the items, and the manipulator 'm’ will be
inserted before each item.

7.42.3.19 value list b<Row, quote type0> mysqlpp::Row::value list (bool %0,
bool t1 = false, bool t2 = false, bool t3 = false, bool ¢/ = false, bool t5 =
false, bool t6 = false, bool t7 = false, bool t8 = false, bool t9 = false,
bool ta = false, bool th = false, bool tc = false) const [inline]

Get a list of the values in this row.

For each true parameter, the value in that position within the row is added to the returned list.
When the list is inserted into a C++ stream, the a comma will be placed between the items, as a
delimiter, and items will be quoted and escaped.

7.42.3.20 value list b<Row, quote type0> mysqlpp::Row::value list (const char
x d, bool t0, bool t1 = false, bool t2 = false, bool t3 = false, bool t4 =
false, bool t5 = false, bool t6 = false, bool t7 = false, bool t8 = false,
bool t9 = false, bool ta = false, bool tb = false, bool tc = false) const
[inline]

Get a list of the values in this row.

For each true parameter, the value in that position within the row is added to the returned list.
When the list is inserted into a C++ stream, the delimiter ’d’ will be placed between the items,
and items will be quoted and escaped.

7.42.3.21 template<class Manip> value list b<Row, Manip>
mysqlpp::Row::value list (const char * d, Manip m, bool 0, bool t1 =
false, bool t2 = false, bool t3 = false, bool t4 = false, bool t5 = false,
bool t6 = false, bool t7 = false, bool t8 = false, bool t9 = false, bool ta =
false, bool tb = false, bool tc = false) const [inline]

Get a list of the values in this row.

For each true parameter, the value in that position within the row is added to the returned list.
When the list is inserted into a C++ stream, the delimiter ’d’ will be placed between the items,
and the manipulator 'm’ used before each item.

7.42.3.22 value list b<Row, quote type0> mysqlpp::Row::value list (const
std::vector< bool > & vb) const [inline]

Get a list of the values in this row.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

128 MySQL++ Class Documentation

Parameters:
vb for each true item in this list, add that value to the returned list; ignore the others

Items will be quoted and escaped when inserted into a C++ stream, and a comma will be used
as a delimiter between the items.

7.42.3.23 template<class Manip> value list b<Row, Manip>
mysqlpp::Row::value list (const char * d, const std::vector< bool > & vb,
Manip m = quote) const [inline]

Get a list of the values in this row.

Parameters:
d delimiter to use between values

vb for each true item in this list, add that value to the returned list; ignore the others

m manipulator to use when inserting values into a stream

7.42.3.24 template<class Manip> value list ba<Row, Manip>
mysqlpp::Row::value list (const char x d = ",", Manip m = quote) const
[inline]

Get a list of the values in this row.

When inserted into a C++ stream, the delimiter ’d’ will be used between the items, and the
quoting and escaping rules will be set by the manipulator 'm’ you choose.

Parameters:
d delimiter to use between values

m manipulator to use when inserting values into a stream

The documentation for this class was generated from the following files:

e row.h
® TOW.CPP

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.43 mysqlpp::scoped var set< T > Class Template Reference 129

7.43 mysqlpp::scoped var set< T > Class Template Refer-
ence

Sets a variable to a given value temporarily.

Collaboration diagram for mysqlpp::scoped var set< T >:

Public Member Functions

e scoped var set (T &var, T new_ value)

Create object, saving old value, setting new value.

e ~scoped var_set ()

Destroy object, restoring old value.

7.43.1 Detailed Description
template<class T> class mysqlpp::scoped var set< T >

Sets a variable to a given value temporarily.

Saves existing value, sets new value, and restores old value when the object is destroyed. Used to
set a flag in an exception-safe manner.

The documentation for this class was generated from the following file:

e connection.cpp

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

130 MySQL++ Class Documentation

7.44 mysqlpp::Set< Container > Class Template Reference

A special std::set derivative for holding MySQL data sets.
#include <myset.h>

Public Member Functions

e Set ()

Default constructor.

Set (const char xstr)

Create object from a comma-separated list of values.

Set (const std::string &str)

Create object from a comma-separated list of values.

Set (const ColData &str)

Create object from a comma-separated list of values.

std::ostream & out stream (std::ostream &s) const

Insert this set’s data into a C++ stream in comma-separated format.

e operator std::string ()

Convert this set’s data to a string containing comma-separated items.

7.44.1 Detailed Description
template<class Container = std::set<std::string>> class mysqlpp::Set< Container >

A special std::set derivative for holding MySQL data sets.

The documentation for this class was generated from the following file:

¢ myset.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.45 mysqlpp::SQLParseElement Struct Reference

131

7.45 mysqlpp::SQLParseElement Struct Reference

Used within Query(p. 100) to hold elements for parameterized queries.

#include <gparms.h>

Public Member Functions

e SQLParseElement (std::string b, char o, signed char n)
Create object.

Public Attributes

e std:string before

string inserted before the parameter

e char option

the parameter option, or blank if none

e signed char num

the parameter position to use

7.45.1 Detailed Description

Used within Query(p.100) to hold elements for parameterized queries.

Each element has three parts:

The concept behind the before variable needs a little explaining. When a template query is
parsed, each parameter is parsed into one of these SQLParseElement(p.131) objects, but the
non-parameter parts of the template also have to be stored somewhere. MySQL+-+ chooses to
attach the text leading up to a parameter to that parameter. So, the before string is simply the

text copied literally into the finished query before we insert a value for the parameter.

The option character is currently one of 'q’, ’Q’, r’, 'R’ or ’ ’. See the "Template Queries" chapter

in the user manual for details.

The position value (num) allows a template query to have its parameters in a different order than
in the Query(p-100) method call. An example of how this can be helpful is in the "Template

Queries" chapter of the user manual.

7.45.2 Constructor & Destructor Documentation

7.45.2.1 mysqlpp::SQLParseElement::SQLParseElement (std::string b, char o,

signed char n) [inline]
Create object.

Parameters:
b the ’before’ value

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

132 MySQL++ Class Documentation

o the ’option’ value

n the 'num’ value

The documentation for this struct was generated from the following file:

e gparms.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.46 mysqlpp::SQLQueryParms Class Reference 133

7.46 mysqlpp::SQLQueryParms Class Reference

This class holds the parameter values for filling template queries.
#include <gparms.h>
Collaboration diagram for mysqlpp::SQLQueryParms:

Public Types

o typedef const SQLString & ss

Abbreviation so some of the declarations below don’t span many lines.

Public Member Functions

e SQLQueryParms ()

Default constructor.

¢ SQLQueryParms (Query *p)
Create object.

e bool bound ()

Returns true if we are bound to a query object.

e void clear ()
Clears the list.

e SQLString & operator|[] (size_type n)

Access element number n.

e const SQLString & operator|] (size_type n) const

Access element number n.

e SQLString & operator|] (const char xstr)

Access the value of the element with a key of str.

e const SQLString & operator[] (const char *str) const

Access the value of the element with a key of str.

e SQLQueryParms & operator<< (const SQLString &str)
Adds an element to the list.

¢ SQLQueryParms & operator+= (const SQLString &str)
Adds an element to the list.

¢ SQLQueryParms operator+ (const SQLQueryParms &other) const

Build a composite of two parameter lists.

e void set (ss a,ssb,ssc,ssd,sse,ssf, ssg ssh,ssi,ss]j ssk,ssl)

Set(p.130) the template query parameters.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

134 MySQL++ Class Documentation

Friends

e class Query

7.46.1 Detailed Description

This class holds the parameter values for filling template queries.

7.46.2 Constructor & Destructor Documentation
7.46.2.1 mysqlpp::SQLQueryParms::SQLQueryParms (Query * p) [inline]
Create object.

Parameters:
p pointer to the query object these parameters are tied to

7.46.3 Member Function Documentation
7.46.3.1 bool mysqlpp::SQLQueryParms::bound () [inline]

Returns true if we are bound to a query object.

Basically, this tells you which of the two ctors were called.

7.46.3.2 SQLQueryParms mysqlpp::SQLQueryParms::operator+ (const
SQLQueryParms & other) const
Build a composite of two parameter lists.

If this list is (a, b) and other is (¢, d, e, f, g), then the returned list will be (a, b, e, f, g). That
is, all of this list’s parameters are in the returned list, plus any from the other list that are in
positions beyond what exist in this list.

If the two lists are the same length or this list is longer than the other list, a copy of this list is
returned.

7.46.3.3 void mysqlpp::SQLQueryParms::set (ss a, ss b, ss ¢, ss d, ss e, ss f, ss g, ss
h, ss i, ss j, ss k, ss [) [inline]
Set(p. 130) the template query parameters.

Sets parameter 0 to a, parameter 1 to b, etc. There are overloaded versions of this function that
take anywhere from one to a dozen parameters.

The documentation for this class was generated from the following files:

¢ gparms.h
e (gparms.cpp

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.47 mysqlpp::SQLString Class Reference 135

7.47 mysqlpp::SQLString Class Reference

A specialized std: :string that will convert from any valid MySQL type.
#include <sql_string.h>

Public Member Functions

e SQLString ()

Default constructor; empty string.

e SQLString (const std::string &str)
Create object as a copy of a C++ string.

e SQLString (const char #str)
Create object as a copy of a C string.

e SQLString (const char *str, size _t len)

Create object as a copy of a known-length string of characters.

e SQLString (char i)

Create object as the string form of a char value.

e SQLString (unsigned char i)

Create object as the string form of an unsigned char wvalue.

e SQLString (short int i)

Create object as the string form of a short int wvalue.

e SQLString (unsigned short int i)

Create object as the string form of an unsigned short int wvalue.

e SQLString (int i)

Create object as the string form of an int wvalue.

e SQLString (unsigned int i)

Create object as the string form of an unsigned int value.

¢ SQLString (longlong i)

Create object as the string form of a longlong value.

e SQLString (ulonglong i)

Create object as the string form of an unsigned longlong value.

e SQLString (float i)

Create object as the string form of a float wvalue.

e SQLString (double i)

Create object as the string form of a double wvalue.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

136 MySQL++ Class Documentation

e SQLString & operator= (const char *str)
Copy a C string into this object.

e SQLString & operator—= (const std::string &str)
Copy a C++ string into this object.

Public Attributes

e bool is_string

If true, the object’s string data is a copy of another string. Otherwise, it’s the string form of an
integral type.

e bool dont _escape
If true, the string data doesn’t need to be SQL-escaped when building a query.

e bool processed
If true, one of the MySQL++ manipulators has processed the string data.

7.47.1 Detailed Description

A specialized std: :string that will convert from any valid MySQL type.

7.47.2 Member Data Documentation
7.47.2.1 bool mysqlpp::SQLString::processed

If true, one of the MySQL++ manipulators has processed the string data.

"Processing" is escaping special SQL characters, and/or adding quotes. See the documentation
for manip.h(p. 163) for details.

This flag is used by the template query mechanism, to prevent a string from being re-escaped
or re-quoted each time that query is reused. The flag is reset by operator=, to force the new
parameter value to be re-processed.

The documentation for this class was generated from the following files:

e sql_string.h
e sql string.cpp

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.48 mysqlpp::subscript _iterator< OnType, ReturnType, SizeType, DiffType >
Class Template Reference 137

7.48 mysqlpp::subscript iterator< OnType, ReturnType,
SizeType, Diff Type > Class Template Reference

Tterator that can be subscripted.
#include <resiter.h>

Collaboration diagram for mysqlpp::subscript iterator< OnType, ReturnType, SizeType, Diff-
Type >:

Public Member Functions

e subscript iterator ()

Default constructor.

¢ subscript _iterator (OnType *what, SizeType pos)

Create iterator given the container and a position within it.

¢ bool operator== (const subscript _iterator &;j) const

Return true if given iterator points to the same container and the same position within the
container.

¢ bool operator!= (const subscript _iterator &j) const

Return true if given iterator is different from this one, but points to the same container.

e bool operator< (const subscript _iterator &j) const

Return true if the given iterator points to the same container as this one, and that this iterator’s
position is less than the given iterator’s.

e bool operator> (const subscript _iterator &j) const

Return true if the given iterator points to the same container as this one, and that this iterator’s
position is greater than the given iterator’s.

¢ bool operator<= (const subscript__iterator &;j) const

Return true if the given iterator points to the same container as this one, and that this iterator’s
position is less than or equal to the given iterator’s.

e bool operator>= (const subscript iterator &j) const

Return true if the given iterator points to the same container as this one, and that this iterator’s
position is greater than or equal to the given iterator’s.

e ReturnType operator * () const

Dereference the iterator, returning a copy of the pointed-to element within the container.

e ReturnType operator|] (SizeType n) const

Return a copy of the element at the given position within the container.

e subscript _iterator & operator++- ()

Mowe the iterator to the next element, returning an iterator to that element.

e subscript _iterator operator++ (int)

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

138 MySQL++ Class Documentation

Mowe the iterator to the next element, returning an iterator to the element we were pointing at
before the change.

e subscript iterator & operator— ()

Mowe the iterator to the previous element, returning an iterator to that element.

e subscript _iterator operator— (int)

Move the iterator to the previous element, returning an iterator to the element we were pointing
at before the change.

e subscript _iterator & operator+= (SizeType n)

Advance iterator position by n.

¢ subscript iterator operator+ (SizeType n) const

Return an iterator n positions beyond this one.

e subscript iterator & operator-= (SizeType n)

Move iterator position back by n.

e subscript iterator operator- (SizeType n) const

Return an iterator n positions before this one.

e DiffType operator- (const subscript iterator &j) const

Return an iterator n positions before this one.

7.48.1 Detailed Description

template<class OnType, class ReturnType, class SizeType, class DiffType> class
mysqlpp::subscript _iterator< OnType, ReturnType, SizeType, Diff Type >

Tterator that can be subscripted.
This is the type of iterator used by the const subscript container(p.61) template.

The documentation for this class was generated from the following file:

e resiter.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.49 mysqlpp::Time Struct Reference 139

7.49 mysqlpp::Time Struct Reference

C++ form of MySQL’s TIME type.
#include <datetime.h>

Inheritance diagram for mysqlpp::Time:Collaboration diagram for mysqlpp::Time:

Public Member Functions

e Time ()

Default constructor.

e Time (tiny int h, tiny int m, tiny int s)

Initialize object.

e Time (const Time &other)

Initialize object as a copy of another Time(p. 139).

e Time (const DateTime &other)

Initialize object from time part of date/time object.

e Time (cchar *str)

Initialize object from a MySQL time string.

e Time (const ColData &str)
Initialize object from a MySQL time string.

e Time (const std::string &str)
Initialize object from a MySQL time string.

e MYSQLPP_EXPORT cchar * convert (cchar x)
Parse a MySQL time string into this object.

e MYSQLPP_ EXPORT short int compare (const Time &other) const

Compare this time to another.

Public Attributes

e tiny int hour

hour, 0-23

e tiny int minute

minute, 0-59

e tiny int second

second, 0-59

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

140 MySQL++ Class Documentation

7.49.1 Detailed Description

C++ form of MySQL’s TIME type.
Objects of this class can be inserted into streams, and initialized from MySQL TIME strings.

7.49.2 Constructor & Destructor Documentation
7.49.2.1 mysqlpp::Time::Time (cchar * str) [inline]

Initialize object from a MySQL time string.

String must be in the HH:MM:SS format. It doesn’t have to be zero-padded.
7.49.2.2 mysqlpp::Time::Time (const ColData & str) [inline]
Initialize object from a MySQL time string.

See also:
Time(ccharx)(p. 140)

7.49.2.3 mysqlpp::Time::Time (const std::string & str) [inline]
Initialize object from a MySQL time string.

See also:
Time(ccharx)(p. 140)

7.49.3 Member Function Documentation
7.49.3.1 short int mysqlpp::Time::compare (const Time & other) const [virtuall

Compare this time to another.

Returns < 0 if this time is before the other, 0 of they are equal, and > 0 if this time is after the
other.

Implements mysqlpp::DTbase< Time > (p.70).

The documentation for this struct was generated from the following files:

e datetime.h
e datetime.cpp

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.50 mysqlpp::tiny int Class Reference 141

7.50 mysqlpp::tiny int Class Reference

Class for holding an SQL tiny int(p.141) object.

#include <tiny_int.h>

Public Member Functions

e tiny int ()

Default constructor.

e tiny int (short int v)

Create object from any integral type that can be converted to a short int.

e operator short int () const

Return value as a short int.

e tiny int & operator= (short int v)

Assign a short int to the object.

e tiny int & operator+= (short int v)
Add another value to this object.

e tiny int & operator-= (short int v)

Subtract another value to this object.

e tiny int & operator = (short int v)

Multiply this value by another object.

e tiny int & operator/= (short int v)
Divide this value by another object.

e tiny int & operator%= (short int v)

Divide this value by another object and store the remainder.

e tiny int & operator &= (short int v)
Bitwise AND this value by another value.

e tiny int & operator|= (short int v)

Bitwise OR this value by another value.

e tiny int & operator”= (short int v)

Bitwise XOR this value by another value.

e tiny int & operator<<= (short int v)
Shift this value left by v positions.

e tiny int & operator>>= (short int v)
Shift this value right by v positions.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

142 MySQL++ Class Documentation

e tiny int & operator++ ()

Add one to this value and return that value.

e tiny int & operator— ()

Subtract one from this value and return that value.

e tiny int operator{+4- (int)

Add one to this value and return the previous value.

e tiny int operator— (int)

Subtract one from this value and return the previous value.

¢ tiny int operator- (const tiny int &i) const

Return this value minus i.

e tiny int operator+ (const tiny int &i) const

Return this value plus i.

e tiny int operator x (const tiny int &i) const

Return this value multiplied by 1.

e tiny int operator/ (const tiny int &i) const
Return this value divided by i.

e tiny int operator% (const tiny int &i) const
Return the modulus of this value divided by i.

e tiny int operator| (const tiny int &i) const
Return this value bitwise OR’d by i.

e tiny int operator & (const tiny int &i) const
Return this value bitwise AND’d by i.

e tiny int operator” (const tiny int &i) const
Return this value bitwise XOR’d by 1i.

e tiny int operator<< (const tiny int &i) const
Return this value bitwise shifted left by i.

e tiny int operator>> (const tiny int &i) const
Return this value bitwise shifted right by 1i.

7.50.1 Detailed Description

Class for holding an SQL tiny int(p.141) object.

This is required because the closest C++ type, char, doesn’t have all the right semantics. For
one, inserting a char into a stream won’t give you a number.

Several of the functions below accept a short int argument, but internally we store the data as
a char. Beware of integer overflows!

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.50 mysqlpp::tiny int Class Reference 143

7.50.2 Constructor & Destructor Documentation
7.50.2.1 mysqlpp::tiny int:tiny int () [inline]

Default constructor.
Value is uninitialized

The documentation for this class was generated from the following file:

e tiny int.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

144 MySQL++ Class Documentation

7.51 mysqlpp::Transaction Class Reference

Helper object for creating exception-safe SQL transactions.
#include <transaction.h>

Collaboration diagram for mysqlpp::Transaction:

Public Member Functions

e Transaction (Connection &conn, bool consistent=false)

Constructor.

e ~Transaction ()

Destructor.

e void commit ()

Commits the transaction.

e void rollback ()

Rolls back the transaction.

7.51.1 Detailed Description

Helper object for creating exception-safe SQL transactions.

7.51.2 Constructor & Destructor Documentation
7.51.2.1 Transaction::Transaction (Connection & conn, bool consistent = false)
Constructor.

Parameters:
conn The connection we use to manage the transaction set

consistent Whether to use "consistent snapshots" during the transaction. See the documen-
tation for "START TRANSACTION" in the MySQL manual for more on this.

7.51.2.2 Transaction::~Transaction ()

Destructor.

If the transaction has not been committed or rolled back by the time the destructor is called, it
is rolled back. This is the right thing because one way this can happen is if the object is being
destroyed as the stack is unwound to handle an exception. In that instance, you certainly want to
roll back the transaction.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.51 mysqlpp::Transaction Class Reference 145

7.51.3 Member Function Documentation
7.51.3.1 void Transaction::commit ()

Commits the transaction.

This commits all updates to the database using the connection we were created with since this
object was created. This is a no-op if the table isn’t stored using a transaction-aware storage
engine. See CREATE TABLE in the MySQL manual for details.

7.51.3.2 void Transaction::rollback ()

Rolls back the transaction.

This abandons all SQL statements made on the connection since this object was created. This
only works on tables stored using a transaction-aware storage engine. See CREATE TABLE in
the MySQL manual for details.

The documentation for this class was generated from the following files:

e transaction.h
e transaction.cpp

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

146 MySQL++ Class Documentation

7.52 mysqlpp::value list b< Seq, Manip > Struct Template
Reference

Same as value list ba(p. 148), plus the option to have some elements of the list suppressed.
#include <vallist.h>

Collaboration diagram for mysqlpp::value list b< Seq, Manip >:

Public Member Functions

e value list b (const Seq &s, const std::vector< bool > &f, const char *d, Manip m)
Create object.

Public Attributes

o const Seq * list

set of objects in the value list

e const std::vector< bool > fields

delimiter to use between each value in the list when inserting it into a C++ stream

e const char * delem

delimiter to use between each value in the list when inserting it into a C++ stream

e Manip manip

manipulator to use when inserting the list into a C++ stream

7.52.1 Detailed Description
template<class Seq, class Manip> struct mysqlpp::value list b< Seq, Manip >

Same as value list ba(p. 148), plus the option to have some elements of the list suppressed.

Imagine an object of this type contains the list (a, b, ¢), that the object’s 'fields’ list is (true,
false, true), and that the object’s delimiter is set to ":". When you insert that object into a C++
stream, you would get "a:c".

See value list ba’s documentation for more details.

7.52.2 Constructor & Destructor Documentation

7.52.2.1 template<class Seq, class Manip> mysqlpp::value list b< Seq, Manip
>:value list b (const Seq & s, const std::vector< bool > & f, const char
* d, Manip m) [inline]

Create object.

Parameters:
s set of objects in the value list

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.52 mysqlpp::value list b< Seq, Manip > Struct Template Reference 147

f for each true item in the list, the list item in that position will be inserted into a C+-+
stream

d what delimiter to use between each value in the list when inserting the list into a C++
stream

m manipulator to use when inserting the list into a C++ stream

The documentation for this struct was generated from the following file:

e vallist.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

148 MySQL++ Class Documentation

7.53 mysqlpp::value list ba< Seq, Manip > Struct Tem-
plate Reference

Holds a list of items, typically used to construct a SQL "value list".
#include <vallist.h>

Collaboration diagram for mysqlpp::value list ba< Seq, Manip >:

Public Member Functions

e value list ba (const Seq &s, const char xd, Manip m)
Create object.

Public Attributes

e const Seq * list

set of objects in the value list

e const char * delem

delimiter to use between each value in the list when inserting it into a C++ stream

e Manip manip

manipulator to use when inserting the list into a C++ stream

7.53.1 Detailed Description
template<class Seq, class Manip> struct mysqlpp::value list ba< Seq, Manip >

Holds a list of items, typically used to construct a SQL "value list".

The SQL INSERT statement has a VALUES clause; this class can be used to construct the list of
items for that clause.

Imagine an object of this type contains the list (a, b, c), and that the object’s delimiter symbol is
set to ", ". When you insert that object into a C++ stream, you would get "a, b, c".

This class is never instantiated by hand. The value list()(p.31) functions build instances of this
structure template to do their work. MySQL++’s SSQLS mechanism calls those functions when
building SQL queries; you can call them yourself to do similar work. The "Harnessing SSQLS
Internals" section of the user manual has some examples of this.

See also:
value list b(p.146)

7.53.2 Constructor & Destructor Documentation

7.53.2.1 template<class Seq, class Manip> mysqlpp::value list ba< Seq, Manip
>:value list ba (const Seq & s, const char % d, Manip m) [inline]

Create object.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

7.53 mysqlpp::value list ba< Seq, Manip > Struct Template Reference 149

Parameters:
s set of objects in the value list

d what delimiter to use between each value in the list when inserting the list into a C++
stream

m manipulator to use when inserting the list into a C+-+ stream

The documentation for this struct was generated from the following file:

e vallist.h

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

150 MySQL++ Class Documentation

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

Chapter 8

MySQL++ File Documentation

8.1 autoflag.h File Reference

Defines a template for setting a flag within a given variable scope, and resetting it when exiting
that scope.
Classes

e class AutoFlag

A template for setting a flag on a variable as long as the object that set it is in scope. Flag resets
when object goes out of scope. Works on anything that looks like bool.

8.1.1 Detailed Description

Defines a template for setting a flag within a given variable scope, and resetting it when exiting
that scope.

152 MySQL++ File Documentation

8.2 coldata.h File Reference

Declares classes for converting string data to any of the basic C types.
#include "common.h"

#include "const_string.h"

#include "convert.h"

#include "exceptions.h"

#include "null.h"

#include "string_util.h"

#include "type_info.h"

#include <mysql.h>

#include <typeinfo>

#include <string>

#include <sstream>

#include <stdlib.h>

Include dependency graph for coldata.h:

This graph shows which files directly or indirectly include this file:

Namespaces

¢ namespace mysqlpp

8.2.1 Detailed Description

Declares classes for converting string data to any of the basic C types.

Roughly speaking, this defines classes that are the inverse of mysqlpp::SQLString(p. 135).

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

8.3 common.h File Reference 153

8.3 common.h File Reference

This file includes top-level definitions for use both internal to the library, and outside it. Contrast
mysql++.h.

#include <mysql.h>
Include dependency graph for common.h:

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.3.1 Detailed Description

This file includes top-level definitions for use both internal to the library, and outside it. Contrast
mysql++.h.

This file mostly takes care of platform differences.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

154 MySQL++ File Documentation

8.4 connection.h File Reference

Declares the Connection class.

#include "common.h"

#include "lockable.h"

#include "noexceptions.h"

#include <mysql.h>

#include <deque>

#include <string>

Include dependency graph for connection.h:

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.4.1 Detailed Description

Declares the Connection class.

Every program using MySQL++ must create a Connection object, which manages information
about the connection to the MySQL database, and performs connection-related operations once
the connection is up. Subordinate classes, such as Query and Row take their defaults as to whether
exceptions are thrown when errors are encountered from the Connection object that created them,
directly or indirectly.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

8.5 const _string.h File Reference 155

8.5 const string.h File Reference

Declares a wrapper for const chars which behaves in a way more useful to MySQL-++.
#include "common.h"

#include <algorithm>

#include <iostream>

#include <stdexcept>

#include <string>

Include dependency graph for const string.h:

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.5.1 Detailed Description

Declares a wrapper for const chars which behaves in a way more useful to MySQL-++.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

156 MySQL++ File Documentation

8.6 convert.h File Reference

Declares various string-to-integer type conversion templates.
#include "common.h"

#include <stdlib.h>

Include dependency graph for convert.h:

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.6.1 Detailed Description

Declares various string-to-integer type conversion templates.

These templates are the mechanism used within mysqlpp::ColData Tmpl(p. 42) for its string-

to-something conversions.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

8.7 datetime.h File Reference 157

8.7 datetime.h File Reference

Declares classes to add MySQL-compatible date and time types to C+-’s type system.
#include "common.h"

#include "coldata.h"

#include "stream2string.h"

#include "tiny_int.h"

#include <string>

#include <sstream>

#include <iostream>

Include dependency graph for datetime.h:

This graph shows which files directly or indirectly include this file:

Namespaces

¢ namespace mysqlpp

8.7.1 Detailed Description

Declares classes to add MySQL-compatible date and time types to C+-+’s type system.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

158 MySQL++ File Documentation

8.8 exceptions.h File Reference

Declares the MySQL-++-specific exception classes.
#include "connection.h"

#include <exception>

#include <string>

Include dependency graph for exceptions.h:

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.8.1 Detailed Description

Declares the MySQL-++-specific exception classes.

When exceptions are enabled for a given mysqlpp::OptionalExceptions(p. 98) derivative, any
of these exceptions can be thrown on error.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

8.9 field names.h File Reference 159

8.9 field names.h File Reference

Declares a class to hold a list of field names.

#include "coldata.h"

#include "string_util.h"

#include <algorithm>

#include <vector>

Include dependency graph for field names.h:

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.9.1 Detailed Description

Declares a class to hold a list of field names.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

160 MySQL++ File Documentation

8.10 field types.h File Reference

Declares a class to hold a list of SQL field type info.

#include "type_info.h"

#include <vector>

Include dependency graph for field types.h:

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.10.1 Detailed Description

Declares a class to hold a list of SQL field type info.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

8.11 fields.h File Reference

161

8.11 fields.h File Reference

Declares a class for holding information about a set of fields.
#include "resiter.h"

Include dependency graph for fields.h:

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.11.1 Detailed Description

Declares a class for holding information about a set of fields.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

162 MySQL++ File Documentation

8.12 lockable.h File Reference

Declares interface that allows a class to declare itself as "lockable".

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.12.1 Detailed Description

Declares interface that allows a class to declare itself as "lockable".

The meaning of a class being lockable is very much per-class specific in this version of MySQL-++-.
In a future version, it will imply that operations that aren’t normally thread-safe will use platform
mutexes if MySQL++ is configured to support them. This is planned for a version beyond v2.0.
(See the Wishlist for the plan.) In the meantime, do not depend on this mechanism for thread
safety; you will have to serialize access to some resources yourself.

To effect this variability in what it means for an object to be "locked", Lockable is only an
interface. It delegates the actual implementation to a subclass of the Lock interface, using the
Bridge pattern. (See Gamma et al.)

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

8.13 manip.h File Reference 163

8.13 manip.h File Reference

Declares std: :ostream manipulators useful with SQL syntax.
#include "common.h"

#include "datetime.h"

#include "myset.h"

#include "sql_string.h"

#include <mysql.h>

#include <iostream>

Include dependency graph for manip.h:

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.13.1 Detailed Description

Declares std: :ostream manipulators useful with SQL syntax.

These manipulators let you automatically quote elements or escape characters that are special in
SQL when inserting them into an std::ostream. Since mysqlpp::Query(p. 100) is an ostream,
these manipulators make it easier to build syntactically-correct SQL queries.

This file also includes operator<< definitions for ColData_Tmpl, one of the MySQL-++ string-
like classes. When inserting such items into a stream, they are automatically quoted and escaped
as necessary unless the global variable dont _quote auto is set to true. These operators are smart
enough to turn this behavior off when the stream is cout or cerr, however, since quoting and
escaping are surely not required in that instance.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

164 MySQL++ File Documentation

8.14 myset.h File Reference

Declares templates for generating custom containers used elsewhere in the library.
#include "common.h"

#include "coldata.h"

#include "stream2string.h"

#include <iostream>

#include <set>

#include <vector>

Include dependency graph for myset.h:

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.14.1 Detailed Description

Declares templates for generating custom containers used elsewhere in the library.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

8.15 mysql++.h File Reference 165

8.15 mysql+-+.h File Reference

The main MySQL++ header file.
#include "connection.h"

#include "query.h"

#include "sql_types.h"

Include dependency graph for mysql++.h:

Namespaces

e namespace mysqlpp

Defines

o #define MYSQLPP VERSION(major, minor, bugfix) (((major) << 16) | ((minor) <<
8) | (bugfix))

Encode MySQL++ library version number.

o #define MYSQLPP_HEADER_ VERSION MYSQLPP_VERSION(2, 2, 3)

Get the library version number that mysql++.h comes from.

8.15.1 Detailed Description

The main MySQL++ header file.

This file brings in all MySQL+-+ headers except for custom.h and custom-macros.h which are a
strictly optional feature of MySQL++.

There is no point in trying to optimize which headers you include, because the MySQL-++ headers
are so intertwined. You can only get trivial compile time benefits, at the expense of clarity.

8.15.2 Define Documentation

8.15.2.1 #define MYSQLPP HEADER_ VERSION MYSQLPP_ VERSION(2, 2,
3)

Get the library version number that mysql-++.h comes from.

MySQL++ Version number that the mysql++.h header file comes from, encoded by MYSQLPP _ -
VERSION macro. Compare this value to what mysqlpp lib_ version() returns in order to ensure
that your program is using header files from the same version of MySQL++ as the actual library
you’re linking to.

8.15.2.2 #define MYSQLPP _VERSION(major, minor, bugfix) (((major) << 16) |
((minor) << 8) | (bugfix))

Encode MySQL++ library version number.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

166 MySQL++ File Documentation

This macro takes major, minor and bugfix numbers (e.g. 1, 2, and 3) and encodes them like
0x010203.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

8.16 noexceptions.h File Reference 167

8.16 noexceptions.h File Reference

Declares interface that allows exceptions to be optional.

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.16.1 Detailed Description

Declares interface that allows exceptions to be optional.

A class may inherit from OptionalExceptions, which will add to it a mechanism by which a user
can tell objects of that class to suppress exceptions. (They are enabled by default.) This module
also declares a NoExceptions class, objects of which take a reference to any class derived from
OptionalExceptions. The NoExceptions constructor calls the method that disables exceptions,
and the destructor reverts them to the previous state. One uses the NoExceptions object within
a scope to suppress exceptions in that block, without having to worry about reverting the setting
when the block exits.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

168 MySQL++ File Documentation

8.17 null.h File Reference

Declares classes that implement SQL "null" semantics within C++’s type system.
#include "exceptions.h"

#include <iostream>

Include dependency graph for null.h:

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.17.1 Detailed Description

Declares classes that implement SQL "null" semantics within C++’s type system.

This is required because C+-+’s own NULL type is not semantically the same as SQL nulls.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

8.18 gparms.h File Reference 169

8.18 qgparms.h File Reference

Declares the template query parameter-related stuff.

#include "sql_string.h"

#include <vector>

Include dependency graph for qparms.h:

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.18.1 Detailed Description

Declares the template query parameter-related stuff.

The classes defined in this file are used by class Query when it parses a template query: they hold
information that it finds in the template, so it can assemble a SQL statement later on demand.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

170 MySQL++ File Documentation

8.19 query.h File Reference

Defines a class for building and executing SQL queries.
#include "common.h"

#include "lockable.h"

#include "noexceptions.h"

#include "qgparms.h"

#include "querydef.h"

#include "result.h"

#include "row.h"

#include "sql_string.h"

#include <mysql.h>

#include <deque>

#include <iomanip>

#include <list>

#include <map>

#include <set>

#include <sstream>

#include <vector>

Include dependency graph for query.h:

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

Defines

o #define MYSQLPP QUERY _ THISPTR xthis
Helper macro used inside MySQL++ to work around a VC++ 2003 bug.

8.19.1 Detailed Description

Defines a class for building and executing SQL queries.

8.19.2 Define Documentation
8.19.2.1 #define MYSQLPP_ QUERY_ THISPTR xthis

Helper macro used inside MySQL++ to work around a VC++ 2003 bug.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

8.19 query.h File Reference 171

This macro returns ’xthis’, either directly or upcast to Query’s base class to work around
an error in the overloaded operator lookup logic in VC++ 2003. For an explanation of
the problem, see: http://groups.google.com/group/microsoft.public.vc.stl/browse_-
thread/thread/9a68d84644e64f15

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

172 MySQL++ File Documentation

8.20 resiter.h File Reference

Declares templates for adapting existing classes to be iteratable random-access containers.
#include "common.h"

#include <iterator>

Include dependency graph for resiter.h:

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.20.1 Detailed Description

Declares templates for adapting existing classes to be iteratable random-access containers.

The file name seems to tie it to the mysqlpp::Result(p. 113) class, which is so adapted, but these
templates are also used to adapt the mysqlpp::Fields(p. 79) and mysqlpp::Row(p. 120) classes.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

8.21 result.h File Reference

173

8.21 result.h File Reference

Declares classes for holding SQL query result sets.
#include "common.h"
#include "exceptions.h"
#include "fields.h"
#include "field_names.h"
#include "field_types.h"
#include "noexceptions.h"
#include "resiter.h"
#include "row.h"

#include <mysql.h>
#include <map>

#include <set>

#include <string>

Include dependency graph for result.h:

This graph shows which files directly or indirectly include this file:

Namespaces

¢ namespace mysqlpp

8.21.1 Detailed Description

Declares classes for holding SQL query result sets.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

174 MySQL++ File Documentation

8.22 row.h File Reference

Declares the classes for holding row data from a result set.
#include "coldata.h"

#include "exceptions.h"

#include "noexceptions.h"

#include "resiter.h"

#include "vallist.h"

#include <vector>

#include <string>

#include <string.h>

Include dependency graph for row.h:

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.22.1 Detailed Description

Declares the classes for holding row data from a result set.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

8.23 sql string.h File Reference 175

8.23 sql _string.h File Reference

Declares an std: :string derivative that adds some things needed within the library.
#include "common.h"

#include <stdio.h>

#include <string>

Include dependency graph for sql _string.h:

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.23.1 Detailed Description

Declares an std: :string derivative that adds some things needed within the library.

This class adds some flags needed by other parts of MySQL-++, and it adds conversion functions
from any primitive type. This helps in inserting these primitive types into the database, because
we need everything in string form to build SQL queries.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

176 MySQL++ File Documentation

8.24 sql types.h File Reference

Declares the closest C++ equivalent of each MySQL column type.
#include "common.h"

#include "myset.h"

#include <string>

Include dependency graph for sql _types.h:

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.24.1 Detailed Description

Declares the closest C++ equivalent of each MySQL column type.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

8.25 stream2string.h File Reference 177

8.25 stream2string.h File Reference

Declares an adapter that converts something that can be inserted into a C++ stream into a string
type.

#include <sstream>
Include dependency graph for stream2string.h:
This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.25.1 Detailed Description

Declares an adapter that converts something that can be inserted into a C++ stream into a string
type.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

178 MySQL++ File Documentation

8.26 string util.h File Reference

Declares string-handling utility functions used within the library.
#include "common.h"

#include <ctype.h>

#include <string>

Include dependency graph for string util.h:

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.26.1 Detailed Description

Declares string-handling utility functions used within the library.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

8.27 tiny int.h File Reference

179

8.27 tiny int.h File Reference

Declares class for holding a SQL tiny _int.

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.27.1 Detailed Description

Declares class for holding a SQL tiny int.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

180 MySQL++ File Documentation

8.28 transaction.h File Reference

Declares the Transaction class.
#include "common.h"

Include dependency graph for transaction.h:

Namespaces

e namespace mysqlpp

8.28.1 Detailed Description

Declares the Transaction class.

This object works with the Connection class to automate the use of MySQL transactions. It allows
you to express these transactions directly in C++ code instead of sending the raw SQL commands.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

8.29 type info.h File Reference

181

8.29 type info.h File Reference

Declares classes that provide an interface between the SQL and C++ type systems.

#include "common.h"

#include <mysql.h>

#include <map>

#include <typeinfo>

Include dependency graph for type info.h:

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.29.1 Detailed Description

Declares classes that provide an interface between the SQL and C++ type systems.

These classes are mostly used internal to the library.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

182 MySQL++ File Documentation

8.30 wvallist.h File Reference

Declares templates for holding lists of values.

#include "manip.h"

#include <string>

#include <vector>

Include dependency graph for vallist.h:

This graph shows which files directly or indirectly include this file:

Namespaces

e namespace mysqlpp

8.30.1 Detailed Description

Declares templates for holding lists of values.

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

Index

~NoExceptions
mysqlpp::NoExceptions, 89

~Transaction
mysqlpp::Transaction, 144

affected _rows
mysqlpp::Connection, 51
api_ version
mysqlpp::Connection, 51
apply pending options
mysqlpp::Connection, 51
at
mysqlpp::const _string, 59
mysqlpp::Row, 123
AutoFlag, 33
autoflag.h, 151

BadConversion

mysqlpp::BadConversion, 34, 35
BadFieldName

mysqlpp::BadFieldName, 36
base type

mysqlpp::mysql type_info, 86
before

mysqlpp::mysql _type_info, 86
bound

mysqlpp::SQLQueryParms, 134

c_type
mysqlpp::mysql _type_info, 86
client__info
mysqlpp::Connection, 51
close
mysqlpp::Connection, 51
coldata.h, 152
ColData_Tmpl
mysqlpp::ColData_Tmpl, 44, 45
commit
mysqlpp::Transaction, 145
common.h, 153
compare
mysqlpp::const _string, 59
mysqlpp::Date, 64
mysqlpp::DateTime, 66
mysqlpp::DThase, 70

mysqlpp::Time, 140
connect

mysqlpp::Connection, 51
connected

mysqlpp::Connection, 51
Connection

mysqlpp::Connection, 50
connection.h, 154
const_string.h, 155
convert.h, 156
copy

mysqlpp::Connection, 52

mysqlpp::ResUse, 118
create_db

mysqlpp::Connection, 52
create vector

mysqlpp, 22

Date
mysqlpp::Date, 64
DateTime
mysqlpp::DateTime, 66
datetime.h, 157
def
mysqlpp::Query, 111
disconnect
mysqlpp::Connection, 52
do_nothing
mysqlpp, 21
do_nothing type0O
mysqlpp, 21
dont _quote_auto
mysqlpp, 31
drop_db
mysqlpp::Connection, 52

enable _ssl
mysqlpp::Connection, 52
equal list
mysqlpp, 22-24
mysqlpp::Row, 123
equal list b
mysqlpp::equal list b, 74
equal list ba
mysqlpp::equal list ba, 76

184

INDEX

errnum
mysqlpp::Connection, 52
error
mysqlpp::Connection, 53
mysqlpp::Query, 104
escape (
mysqlpp::mysql type_info, 86
escape_type0
mysqlpp, 21
exceptions.h, 158
exec
mysqlpp::Query, 104
execute

mysqlpp::Query, 104

fetch row
mysqlpp::Result, 114
mysqlpp::ResUse, 118
field list
mysqlpp::Row, 123-125
field name
mysqlpp::ResUse, 118
field names.h, 159
field num
mysqlpp::ResUse, 119
field types.h, 160
fields.h, 161

get library version
mysqlpp, 24

host _info
mysqlpp::Connection, 53

id

mysqlpp::mysql _type_info, 87
ignore

mysqlpp, 21
ignore__type0

mysqlpp, 21
insert

mysqlpp::Query, 105
insert_id

mysqlpp::Connection, 53
is_null

mysqlpp::Null, 92

kill
mysqlpp::Connection, 53

length
mysqlpp::mysql type info, 87
lock
mysqlpp::BasicLock, 41
mysqlpp::Lock, 81

mysqlpp::Lockable, 82
lockable.h, 162

manip.h, 163
max_length

mysqlpp::mysql _type_info, 87
max_ size

mysqlpp::const _string, 59
more_results

mysqlpp::Query, 105
myset.h, 164
mysql++.h, 165

MYSQLPP HEADER_VERSION,

165

MYSQLPP VERSION, 165
mysql type info

mysqlpp::mysql _type info, 85, 86
mysqlpp, 11

create_vector, 22

do_nothing, 21

do_nothing type0, 21

dont__quote auto, 31

equal list, 22-24

escape_type0, 21

get library version, 24

ignore, 21

ignore type0, 21

operator< <, 24-29

quote, 22

quote double only, 21

quote double only type0, 21

quote only, 22

quote _only type0, 21

quote _type0, 22

stream2string, 29

value list, 29, 30
mysqlpp::BadConversion, 34
mysqlpp::BadConversion

BadConversion, 34, 35
mysqlpp::BadFieldName, 36
mysqlpp::BadFieldName

BadFieldName, 36
mysqlpp::BadNullConversion, 37
mysqlpp::BadOption, 38
mysqlpp::BadParamCount, 39
mysqlpp::BadQuery, 40
mysqlpp::BasicLock, 41
mysqlpp::BasicLock

lock, 41
mysqlpp::ColData_ Tmpl, 42
mysqlpp::ColData_Tmpl

ColData,_ Tmpl, 44, 45

operator Null, 45
mysqlpp::Connection, 46

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

INDEX

185

affected _rows, 51

api_ version, 51

apply pending options, 51

client_info, 51

close, 51

connect, 51

connected, 51

Connection, 50

copy, 52

create_db, 52

disconnect, 52

drop_db, 52

enable ssl, 52

errnum, 52

error, 53

host _info, 53

insert_id, 53

kill, 53

operator bool, 53

Option, 50

option _pending, 53

ping, 54

proto_info, 54

query, 54

refresh, 54

reload, 54

server _info, 54

set _option, 55

set__option_impl, 55

shutdown, 55

stat, 55
mysqlpp::ConnectionFailed, 57
mysqlpp::const _string, 58

at, 59

compare, 59

max_ size, 59
mysqlpp::const _subscript container, 61
mysqlpp::Date, 63

compare, 64

Date, 64

year, 64
mysqlpp::DateTime, 65
mysqlpp::DateTime

compare, 66

DateTime, 66

year, 67
mysqlpp::DBSelectionFailed, 68
mysqlpp::DTbase, 69

compare, 70
mysqlpp::EndOfResults, 71
mysqlpp::EndOfResultSets, 72
mysqlpp::equal list b, 73

equal list b, 74
mysqlpp::equal list ba, 75

equal list ba, 76
mysqlpp::Exception, 77
mysqlpp::FieldNames, 78
mysqlpp::Fields, 79
mysqlpp::FieldTypes, 80
mysqlpp::FieldTypes

operator=, 80
mysqlpp::Lock, 81

lock, 81
mysqlpp::Lockable, 82

lock, 82
mysqlpp::LockFailed, 83
mysqlpp::mysql _type info, 84

base type, 86

before, 86

c_type, 86

escape_ q, 86

id, 87

length, 87

max_length, 87

mysql type_info, 85, 86

name, 87
operator=, 87
quote q, 87

sql _name, 88

string type, 88
mysqlpp::NoExceptions, 89
mysqlpp::NoExceptions

~NoExceptions, 89

NoExceptions, 89
mysqlpp::Null, 90

is_null, 92

Null, 91

operator Type &, 92

operator=, 92
mysqlpp::null _type, 93
mysqlpp::NullisBlank, 94
mysqlpp::NullisNull, 95
mysqlpp::NullisZero, 96
mysqlpp::ObjectNotlInitialized, 97
mysqlpp::OptionalExceptions, 98
mysqlpp::OptionalExceptions

OptionalExceptions, 98

set__exceptions, 99
mysqlpp::Query, 100

def, 111

error, 104

exec, 104

execute, 104

insert, 105

more _results, 105

operator=, 106

parse, 106

preview, 106

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

186

INDEX

Query, 103

replace, 106

reset, 106

store, 106, 107

store next, 107

storein, 108

storein _sequence, 108

storein_set, 108

str, 109

success, 109

update, 109

use, 110
mysqlpp::ResNSel, 112
mysqlpp::Result, 113

fetch row, 114
mysqlpp::ResUse, 115
mysqlpp::ResUse

copy, 118

fetch row, 118

field name, 118

field num, 119

operator bool, 119

operator==, 119

purge, 119

table, 119
mysqlpp::Row, 120

at, 123

equal list, 123

field list, 123-125

operator[], 125

raw _data, 126

raw_ string, 126

Row, 122

value list, 126-128
mysqlpp::scoped var _set, 129
mysqlpp::Set, 130
mysqlpp::SQLParseElement, 131
mysqlpp::SQLParseElement

SQLParseElement, 131
mysqlpp::SQLQueryParms, 133
mysqlpp::SQLQueryParms

bound, 134

operator+, 134

set, 134

SQLQueryParms, 134
mysqlpp::SQLString, 135

processed, 136
mysqlpp::subscript_iterator, 137
mysqlpp::Time, 139

compare, 140

Time, 140
mysqlpp::tiny _int, 141

tiny int, 143
mysqlpp::Transaction, 144

~Transaction, 144
commit, 145
rollback, 145
Transaction, 144
mysqlpp::value list b, 146
value list b, 146
mysqlpp::value list _ba, 148
value list ba, 148
MYSQLPP HEADER VERSION
mysql++.h, 165
MYSQLPP QUERY_ THISPTR
query.h, 170
MYSQLPP VERSION
mysql++.h, 165

name
mysqlpp::mysqgl type info, 87
NoExceptions
mysqlpp::NoExceptions, 89
noexceptions.h, 167
Null
mysqlpp::Null, 91
null.h, 168

operator bool
mysqlpp::Connection, 53
mysqlpp::ResUse, 119
operator Null
mysqlpp::ColData_ Tmpl, 45
operator Type &
mysqlpp::Null, 92
operator+
mysqlpp::SQLQueryParms, 134
operator<<
mysqlpp, 24-29
operator=
mysqlpp::FieldTypes, 80
mysqlpp::mysql type info, 87
mysqlpp::Null, 92
mysqlpp::Query, 106
operator=—=
mysqlpp::ResUse, 119
operator]]
mysqlpp::Row, 125
Option
mysqlpp::Connection, 50
option _pending
mysqlpp::Connection, 53
OptionalExceptions
mysqlpp::OptionalExceptions, 98

parse
mysqlpp::Query, 106
ping

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

INDEX

mysqlpp::Connection, 54
preview

mysqlpp::Query, 106
processed

mysqlpp::SQLString, 136
proto__info

mysqlpp::Connection, 54
purge

mysqlpp::ResUse, 119

gparms.h, 169
Query
mysqlpp::Query, 103
query
mysqlpp::Connection, 54
query.h, 170
MYSQLPP QUERY_ THISPTR, 170
quote
mysqlpp, 22
quote _double only
mysqlpp, 21
quote_double only type0
mysqlpp, 21
quote _only
mysqlpp, 22
quote _only type0
mysqlpp, 21
quote q
mysqlpp::mysql _type_info, 87
quote_type0
mysqlpp, 22

raw_data

mysqlpp::Row, 126
raw _string

mysqlpp::Row, 126
refresh

mysqlpp::Connection, 54
reload

mysqlpp::Connection, 54
replace

mysqlpp::Query, 106
reset

mysqlpp::Query, 106
resiter.h, 172
result.h, 173
rollback

mysqlpp::Transaction, 145
Row

mysqlpp::Row, 122
row.h, 174

server info
mysqlpp::Connection, 54

set
mysqlpp::SQLQueryParms, 134
set__exceptions
mysqlpp::OptionalExceptions, 99
set__option
mysqlpp::Connection, 55
set_option_impl
mysqlpp::Connection, 55
shutdown
mysqlpp::Connection, 55
sql name
mysqlpp::mysql_type_info, 88
sql string.h, 175
sql types.h, 176
SQLParseElement,
mysqlpp::SQLParseElement, 131
SQLQueryParms
mysqlpp::SQLQueryParms, 134
stat
mysqlpp::Connection, 55
store
mysqlpp::Query, 106, 107
store_next
mysqlpp::Query, 107
storein
mysqlpp::Query, 108
storein sequence
mysqlpp::Query, 108
storein_set
mysqlpp::Query, 108
str
mysqlpp::Query, 109
stream?2string
mysqlpp, 29
stream?2string.h, 177
string type
mysqlpp::mysql_type_info, 88
string util.h, 178
success

mysqlpp::Query, 109

table

mysqlpp::ResUse, 119
Time

mysqlpp::Time, 140
tiny int

mysqlpp::tiny _int, 143
tiny int.h, 179
Transaction

mysqlpp::Transaction, 144
transaction.h, 180
type_info.h, 181

update

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

188

INDEX

mysqlpp::Query, 109
use

mysqlpp::Query, 110

vallist.h, 182
value list
mysqlpp, 29, 30
mysqlpp::Row, 126-128
value list b
mysqlpp::value list b, 146
value_list _ba
mysqlpp::value _list ba, 148

year
mysqlpp::Date, 64
mysqlpp::DateTime, 67

Generated on Tue Apr 17 08:42:27 2007 for MySQL++ by Doxygen

