
Biopython Tutorial and Cookbook

Je� Chang, Brad Chapman, Iddo Friedberg, Thomas Hamelryck, Michiel de Hoon, Peter Cock

Contents

Chapter 1

Introduction

1.1 What is Biopython?

The Biopython Project is an international association of developers of freely available Python (http://www.
python.org) tools for computational molecular biology. The web site http://www.biopython.org

http://www.python.org
http://www.python.org
http://www.biopython.org

� Interfaces to common bioinformatics programs such as:

{ Standalone Blast from NCBI

{ Clustalw alignment program.

� A standard sequence class that deals with sequences, ids on sequences, and sequence features.

� Tools for performing common operations on sequences, such as translation, transcription and weight
calculations.

�

http://biopython.org/DIST/docs/install/Installation.pdf
http://biopython.org/DIST/docs/install/Installation.html

Chapter 2

Quick Start { What can you do with
Biopython?

http://www.python.org/doc/

http://www.flickr.com/search/?q=lady+slipper+orchid&s=int&z=t
http://www.flickr.com/search/?q=lady+slipper+orchid&s=int&z=t
http://images.google.com/images?q=lady%20slipper%20orchid

2.4 Parsing sequence �le formats

http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Nucleotide
http://www.ncbi.nlm.nih.gov:80/entrez/query.fcgi?db=Nucleotide
file:examples/ls_orchid.fasta
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta
file:examples/ls_orchid.gbk
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk

2.4.2 Simple GenBank parsing example

Now let’s load the GenBank �le instead - notice that the code to do this is almost identical to the snippet

http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/SeqIO
http://www.expasy.org/
http://www.ncbi.nlm.nih.gov/Entrez/
http://www.ncbi.nlm.nih.gov/PubMed/

� SCOP

The code is these modules basically makes it easy to write python code that interact with the CGI scripts
on these pages, so that you can get results in an easy to deal with format. In some cases, the results can be
tightly integrated with the Biopython parsers to make it even easier to extract information.

Here we’ll show a simple example of performing a remote Entrez query. More information on the other
services is available in the Cookbook, which begins on page 41.

In section 2.3 of the parsing examples, we talked about using Entrez website to search the NCBI nucleotide
databases for info on Cypripedioideae, our friends the lady slipper orchids. Now, we’ll look at how to
automate that process using a python script. For Entrez searching, this is more useful for displaying results
then as a tool for getting seque24results

http://scop.mrc-lmb.cam.ac.uk/scop/
http://www.ncbi.nlm.nih.gov/entrez/query/static/linking.html

Snazzy! We can fetch things and display them automatically { you could use this to quickly set up
searches that you want to repeat on a daily basis and check by hand, or to set up a small CGI script to do
queries and locally save the results before displaying them (as a kind of lab notebook of our search results).
Hopefully whatever your task, the database connectivity code will make things lots easier for you!

2.6 What to do next

Now that you’ve made it this far, you hopefully have a good understanding of the basics of Biopython and

Chapter 3

Sequence objects

http://www.chem.qmw.ac.uk/iupac/

Seq(’AGTACACTGGT’, Alphabet())
>>> my_seq.alphabet
Alphabet()

However, where possible you should specify the alphabet explicitly when creating your sequence objects
- in this case an unambiguous DNA alphabet object:

ftp://ftp.ncbi.nlm.nih.gov/entrez/misc/data/gc.prt

>>> my_seq = Seq("GCCATTGTAATGGGCCGCTGAAAGGGTGCCCGA", IUPAC.unambiguous_dna)
>>> standard_translator.translate(my_seq)
Seq(’AIVMGR*KGAR’, IUPACProtein())
>>> mito_translator.translate(my_seq)
Seq(’AIVMGRWKGAR’, IUPACProtein())

Notice that the default translation will just go ahead and proceed blindly through a stop codon. If you
are aware that you are translating some kind of open reading frame and want to just see everything up until
the stop codon, this can be easily done with the translate_to_stop function:

>>> standard_translator.translate_to_stop(my_seq)
Seq(’AIVMGR’, IUPACProtein())

Chapter 4

Sequence Input/Output

In this chapter we’ll discuss the Bio.SeqIO module introduced earlier in more detail. This is a new interface
added to Biopython 1.43, which aims to provide a simple interface for working with assorted sequence �le

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.fasta
http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk

print len(seq_record.seq)
handle.close()

Similarly, if you wanted to read in a �le in another �le format, then assuming Bio.SeqIO.parse()

http://biopython.org/wiki/SeqIO
http://biopython.org/wiki/SeqIO

4.1.5 Getting a list of the records in a sequence �le

In the previous section we talked about the fact that Bio.SeqIO

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk

This time the keys are:

[’gi|2765596|emb|Z78471.1|PDZ78471’, ’gi|2765646|emb|Z78521.1|CCZ78521’, ...
..., ’gi|2765613|emb|Z78488.1|PTZ78488’, ’gi|2765583|emb|Z78458.1|PHZ78458’]

You should recognise these strings from when we parsed the FASTA �le earlier in Section 2.4.1. Suppose
you would rather have something else as the keys - like the accesion numbers. This brings us nicely to
SeqIO.to_dict()’s optional argument key_function, which lets you de�ne what to use as the dictionary
key for your records.

First you must write your own function to return the key you want (as a string) when given a SeqRecord

from Bio import SeqIO
handle = open("my_example.faa", "w")
SeqIO.write(my_records, handle, "fasta")
handle.close()

And if you open this �le in your favourite text editor it should look like this:

>gi|14150838|gb|AAK54648.1|AF376133_1 chalcone synthase [Cucumis sativus]
MMYQQGCFAGGTVLRLAK6r K

http://biopython.org/DIST/docs/tutorial/examples/ls_orchid.gbk

from Bio import SeqIO
in_handle = open("ls_orchid.gbk")
for record in SeqIO.parse(in_handle1

from Bio import SeqIO
SeqIO.write((make_rc_record(rec) for rec in \

SeqIO.parse(open("ls_orchid.fasta", "r"), "fasta") if len(rec.seq) < 700), \
open("rev_comp.fasta", "w"), "fasta")

Chapter 5

BLAST

Hey, everybody loves BLAST right? I mean, geez, how can get it get any easier to do comparisons between
one of your sequences and every other sequence in the known world? Heck, if I was writing the code to do

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/
ftp://ftp.ncbi.nlm.nih.gov/toolbox/
ftp://ftp.ncbi.nlm.nih.gov/blast/documents/formatdb.html
ftp://ftp.ncbi.nlm.nih.gov/blast/documents/formatdb.html

file:examples/m_cold.fasta
http://biopython.org/DIST/docs/tutorial/examples/m_cold.fasta
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/BLAST/

First, we need to get the info in the FASTA �le. The easiest way to do this is to use the Bio.SeqIO module.
In this example, we’ll use Bio.SeqIO.parse to parse the FASTA �le and store the �rst FASTA record in
the �le in a SeqRecord object (section 2.4.1 explains Bio.SeqIO.parse in more detail).

http://www.ncbi.nlm.nih.gov/blast/blast.cgi?Jform=0
http://www.ncbi.nlm.nih.gov/blast/blast.cgi?Jform=0
http://www.ncbi.nlm.nih.gov/BLAST/blast_program.html
http://www.ncbi.nlm.nih.gov/BLAST/blast_databases.html

>>> result_handle = open("my_blast.xml")

Figure 5.1: Class diagram for the Blast Record class representing all of the info in a BLAST report

35

Then we will assume we have a handle to a bunch of blast records, which we’ll call result_handle.
Getting a handle is described in full detail above in the blast parsing sections.

Now that we’ve got a parser and a handle, we are ready to set up the iterator with the following command:

5.7 Dealing with PSIBlast

Chapter 6

Cookbook { Cool things to do with it

6.1 SWISS-PROT

6.1.1 Retrieving a SWISS-PROT record

SwissProt (http://www.expasy.org/sprot/sprot-top.html) is a hand-curated database of protein se-

http://www.expasy.org/sprot/sprot-top.html

Note that we convert all_results, which is a string, into a handle before passing it. The iterator
requires a handle to be passed so that it can read in everything one line at a time. The Bio.File module
has a nice StringHandle, which conveniently will convert a string into a handle. Very nice! Now we are ready
to start extracting information.

To get out the information, we’ll go through everything record by record using the iterator. For each
record, we’ll just print out some summary information:

while 1:
cur_record = s_iterator.next()

if cur_record is None:
break

print "description:", cur_record.description
for ref in cur_record.references:

print "authors:", ref.authors
print "title:", ref.title

print "classification:", cur_record.organism_classification
print

This prints out a summary like the following:

description: CHALCONE SYNTHASE 8 (EC 2.3.1.74) (NARINGENIN-CHALCONE SYNTHASE 8)
authors: Liew C.F., Lim S.H., Loh C.S., Goh C.J.;
title: "Molecular cloning and sequence analysis of chalcone synthase cDNAs of
Bromheadia finlaysoniana.";
classification: [’Eukaryota’, ’Viridiplantae’, ’Embryophyta’, ’Tracheophyta’,
’Spermatophyta’, ’Magnoliophyta’, ’Liliopsida’, ’Asparagales’, ’Orchidaceae’,
’Bromheadia’]

http://www.expasy.org/cgi-bin/sprot-search-de
http://www.expasy.org/cgi-bin/sprot-search-ful
http://www.expasy.org/cgi-bin/sprot-search-ful

from Bio.WWW import ExPASy
import re

handle = ExPASy.sprot_search_de("Orchid Chalcone Synthase")
or:
handle = ExPASy.sprot_search_ful("Orchid and {Chalcone Synthase}")
html_results = handle.read()
if "Number of sequences found" in html_results:

ids = re.findall(r’HREF="/uniprot/(\w+)"’, html_results)
else:

ids = re.findall(r’href="/cgi-bin/niceprot\.pl\?(\w+)"’, html_results)

6.2 PubMed

6.2.1 Sending a query to PubMed

If you are in the Medical �eld or interested in human issues (and many times even if you are not,/,arePubMed

http://www.ncbi.nlm.nih.gov/PubMed/

Now let’s look at how to use this nice dictionary to print out some information a-324(d)1(ictionary)-3ctieinformation ads. Wn just

http://www.ncbi.nlm.nih.gov/

2.

ftp://ftp.ncbi.nlm.nih.gov/genbank/genomes/Bacteria/Nanoarchaeum_equitans/AE017199.gbk
http://cvs.biopython.org/cgi-bin/viewcvs/viewcvs.cgi/*checkout*/biopython/Tests/GenBank/cor6_6.gb?rev=HEAD&cvsroot=biopython&content-type=text/plain

6.4.1 Clustalw

http://www-igbmc.u-strasbg.fr/BioInfo/ClustalX/Top.html
file:examples/opuntia.fasta
http://biopython.org/DIST/docs/tutorial/examples/opuntia.fasta

As the name suggests, this is a really simple consensus calculator, and will just add up all of the residues
at each point in the consensus, and if the most common value is higher than some threshold value (the default
is .3) will add the common residue to the consensus. If it doesn’t reach the threshold, it adds an ambiguity

2. The sequence passed to be displayed along the left side of the axis does not need to be the consensus.

http://www.lecb.ncifcrf.gov/~toms/paper/primer/
http://www.lecb.ncifcrf.gov/~toms/paper/primer/

Well, now that we have an idea what information content is being calculated in Biopython, let’s look at

file:examples/protein.aln
http://biopython.org/DIST/docs/tutorial/examples/protein.aln

from Bio import Clustalw
from Bio.Alphabet import IUPAC
from Bio.Align import AlignInfo

get an alignment object from a Clustalw alignment output
c_align = Clustalw.parse_file("protein.aln", IUPAC.protein)

Once you’ve got your log odds matrix, you can display it prettily using the function print_mat. Doing
this on our created matrix gives:

strand

Figure 6.1: UML diagram of the SMCRA data structure used to represent a macromolecular structure.

63

Disordered atoms and residues are represented by DisorderedAtom and DisorderedResidue classes, which
are both subclasses of the DisorderedEntityWrapper base class. They hide the complexity associated with

6.10.1.1 Structure

The second �eld in the Residue id is the sequence identi�er, an integer describing the position of the
residue in the chain.

The third �eld is a string, consisting of the insertion code. The insertion code is sometimes used to

a.get_bfactor() # B factor

a.get_occupancy() # occupancy

a.get_altloc() # alternative location specifie

a.get_sigatm() # std. dev. of atomic parameters

a.get_siguij() # std. dev. of anisotropic B factor

a.get_anisou() # anisotropic B factor

a.get_fullname() # atom name (with spaces, e.g. ".CA.")

To represent the atom coordinates, siguij, anisotropic B factor and sigatm Numpy arrays are used.

6.10.2 Disorder

6.10.2.1 General approach

Disorder should be dealt with from two points of view: the atom and the residue points of view. In general,

storing the DisorderedAtom object in a Residue object just like ordinary Atom objects. The DisorderedAtom

residue_id=("H_GLC", 10, " ")
residue=chain[residue_id]

Print all hetero residues in chain.

for residue in chain.get_list():
residue_id=residue.get_id()
hetfield=residue_id[0]
if hetfield[0]=="H":
print residue_id

Print out the coordinates of all CA atoms in a structure with B factor greater than 50.

for model in structure.get_list():
for chain in model.get_list():

for residue in chain.get_list():
if residue.has_id("CA"):

ca=residue["CA"]
if ca.get_bfactor()>50.0:

print ca.get_coord()

Print out all the residues that contain disordered atoms.

for model in structure.get_list()
for chain in model.get_list():

for residue in chain.get_list():
if residue.is_disordered():

6.10.5 Common problems in PDB �les

6.10.5.1 Examples

The PDBParser/Structure class was tested on about 800 structures (each belonging to a unique SCOP
superfamily). This takes about 20 minutes, or on average 1.5 seconds per structure. Parsing the structure
of the large ribosomal subunit (1FKK), which contains about 64000 atoms, takes 10 seconds on a 1000 MHz
PC.

Three exceptions were generated in cases where an unambiguous data structure could not be built. In all
three cases, the likely cause is an error in the PDB �le that should be corrected. Generating an exception in
these cases is much better than running the chance of incorrectly describing the structure in a data structure.

6.10.5.1.1 Duplicate residues

� The residue names of the residues in the case of point mutations (to store the Residue objects in a
DisorderedResidue object).

http://genepop.curtin.edu.au/

The value is the GenePop record.
rec is not altered.

rec_pops = rec.split_in_pops(pop_names)
#Splits a record in populations, that is, for each population, it creates
a new record, with a single population and all loci.
The result is returned in a dictionary, being each key
the population name. As population names are not available in GenePop,
they are passed in array (pop_names).
The value of each dictionary entry is the GenePop record.
rec is not altered.

You can only call cplot after having run fdist.
This will calculate the con�dence intervals (99% in this case) for a previous fdist run. A list of quadruples

6.12 Miscellaneous

6.12.1 Translating a DNA sequence to Protein

76

Chapter 7

Advanced

7.1 Sequence Class

7.2 Regression Testing Framework

7.3.7 Enzyme

The Enzyme.py module works with the enzyme.dat �le included with the Enzyme distribution. The Enzyme
Scanner produces the following events:

record
iyfificabutime

http://www.genome.ad.jp/kegg

dblinks_id
record_end

http://www.genome.ad.jp/kegg
http://www.nlm.nih.gov/pubs/osrm_nlm.html
http://www.nlm.nih.gov/pubs/osrm_nlm.html

english_abstract
entry_month
gene_symbol
identification
issue_part_supplement
issn
journal_title_code
language
special_list
last_revision_date
mesh_heading
mesh_tree_number
major_revision_date
no_author
substance_name
pagination
personal_name_as_subject
publication_type
number_of_references
cas_registry_number
record_originator
journal_subset
subheadings
secondary_source_id
source
title_abbreviation
title
transliterated_title
unique_identifier
volume_issue
year
pubmed_id

documentation
terminator

The PRODOC scanner produces the following events:

record
accession
prosite_reference
text
reference

7.3.12 SWISS-PROT

http://www-nbrf.georgetown.edu/pirwww/pirhome.shtml
http://www-nbrf.georgetown.edu/pirwww/pirhome.shtml

sequence_type
sequence_name
comment

http://ndbserver.rutgers.edu/NDB/NDBATLAS/index.html
http://ndbserver.rutgers.edu/NDB/NDBATLAS/index.html
http://pinguin.biologie.uni-jena.de/bioinformatik/networks/
http://numpy.scipy.org/#older_array
http://numpy.scipy.org/#older_array

enzyme
matrix_row
sum_is_constant_line
end_stochiometric
end_kernel
end_subsets
end_reduced_system
end_convex_basis
end_conservation_relations
end_elementary_modes

7.4 Substitution Matrices

7.4.1 SubsMat

v. build_later: default false. If true, user may supply only alphabet and empty dictionary, if
intending to build the matrix later. this skips the sanity check of alphabet size vs. matrix
size.

(b) entropy(self,obs_freq_mat)

i. obs_freq_mat

(b) Generating the observed frequency matrix (OFM)
Use:

OFM = SubsMat._build_obs_freq_mat(ARM)

Chapter 8

Where to go from here { contributing
to Biopython

8.1 Maintaining a distribution for a platform

http://www.rpm.org

Macintosh { We would love to �nd someone who wants to maintain a Macintosh distribution, and make
it available in a Macintosh friendly format like bin-hex. This would basically include �nding a way
to compile everything on the Mac, making sure all of the code written by us UNIX-based developers
works well on the Mac, and providing any Mac-friendly hints for us.

http://bugzilla.open-bio.org/
http://bugzilla.open-bio.org/
http://biopython.org/wiki/Contributing
http://biopython.org/wiki/Scriptcentral

Chapter 9

Appendix: Useful stu� about Python

If you haven’t spent a lot of time programming in python, many questions and problems that come up in

file:examples/m_cold.fasta
http://biopython.org/DIST/docs/tutorial/examples/m_cold.fasta

	Introduction
	What is Biopython?
	What can I find in the Biopython package

	Installing Biopython
	FAQ

	Quick Start -- What can you do with Biopython?
	General overview of what Biopython provides
	Working with sequences
	A usage example
	Parsing sequence file formats
	Simple FASTA parsing example
	Simple GenBank parsing example
	I love parsing -- please don't stop talking about it!

	Connecting with biological databases
	What to do next

	Sequence objects
	Sequences and Alphabets
	Sequences act like strings
	Slicing a sequence
	Turning Seq objects into strings
	Nucleotide sequences and (reverse) complements

	Concatenating or adding sequences
	MutableSeq objects
	Transcribing and Translation

	Sequence Input/Output
	Parsing or Reading Sequences
	Reading Sequence Files
	Reading GenBank Sequences from the net
	Reading SwissProt Sequences from the net
	Iterating over the records in a sequence file
	Getting a list of the records in a sequence file
	Extracting data

	Sequence files as Dictionaries
	Specifying the dictionary keys
	Indexing a dictionary using the SEGUID checksum

	Writing Sequence Files
	Converting between sequence file formats
	Converting a file of sequences to their reverse complements

	BLAST
	Running BLAST locally
	Running BLAST over the Internet
	Saving BLAST output
	Parsing BLAST output
	The BLAST record class
	Deprecated BLAST parsers
	Parsing plain-text BLAST output
	Parsing a file full of BLAST runs
	Finding a bad record somewhere in a huge file

	Dealing with PSIBlast

	Cookbook -- Cool things to do with it
	SWISS-PROT
	Retrieving a SWISS-PROT record

	PubMed
	Sending a query to PubMed
	Retrieving a PubMed record

	GenBank
	Retrieving GenBank entries from NCBI
	Parsing GenBank records
	Iterating over GenBank records
	Making your very own GenBank database

	Dealing with alignments
	Clustalw
	Calculating summary information
	Calculating a quick consensus sequence
	Position Specific Score Matrices
	Information Content
	Translating between Alignment formats

	Substitution Matrices
	Using common substitution matrices
	Creating your own substitution matrix from an alignment

	More Advanced Sequence Classes -- Sequence IDs and Features
	Sequence ids and Descriptions -- dealing with SeqRecords
	Features and Annotations -- SeqFeatures

	BioRegistry -- automatically finding sequence sources
	Finding resources using a configuration file
	Finding resources through a biopython specific interface

	BioSQL -- storing sequences in a relational database
	BioCorba
	Going 3D: The PDB module
	Structure representation
	Disorder
	Hetero residues
	Some random usage examples
	Common problems in PDB files
	Other features

	Bio.PopGen: Population genetics
	GenePop
	Other applications
	Future Developments

	Miscellaneous
	Translating a DNA sequence to Protein

	Advanced
	Sequence Class
	Regression Testing Framework
	Writing a Regression Test

	Parser Design
	Design Overview
	Events
	`noevent' EVENT
	Scanners
	Consumers
	BLAST
	Enzyme
	KEGG
	Fasta
	Medline
	Prosite
	SWISS-PROT
	NBRF
	Ndb
	MetaTool

	Substitution Matrices
	SubsMat
	FreqTable

	Where to go from here -- contributing to Biopython
	Maintaining a distribution for a platform
	Bug Reports + Feature Requests
	Contributing Code

	Appendix: Useful stuff about Python
	What the heck is a handle?
	Creating a handle from a string

