
Lush: Reference Manual

Léon Bottou, Yann LeCun

January 7, 2003



2



Contents

1 Introduction to Lush 17
1.1 What is Lush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2 A tour of the features . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 A tour of the Lush Libraries . . . . . . . . . . . . . . . . . . . . 20
1.4 Why Lisp? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5 What does LUSH stand for? . . . . . . . . . . . . . . . . . . . . 22
1.6 History of Lush . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.7 What is Lush good for? . . . . . . . . . . . . . . . . . . . . . . . 24

2 Getting Started with Lush: a quick tutorial 27
2.1 Installing Lush on Unix . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 starting Lush . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3 Setting things up . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Reporting Bugs and Problems . . . . . . . . . . . . . . . . . . . 29
2.5 Getting Help and Browsing the Documentation . . . . . . . . . 29
2.6 Basic Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.1 Symbol Names and Special Characters . . . . . . . . . . 31
2.7 Basic Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8 defining functions . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.9 Loops, conditionals, local variables, and such . . . . . . . . . . . 33
2.10 Compiling Lush functions . . . . . . . . . . . . . . . . . . . . . . 35
2.11 Writing Lush program files . . . . . . . . . . . . . . . . . . . . . 37
2.12 On-line Documentation . . . . . . . . . . . . . . . . . . . . . . . 38
2.13 Multiple file programs and search path . . . . . . . . . . . . . . 39
2.14 Calling C functions from Lush . . . . . . . . . . . . . . . . . . . 40
2.15 Mixing Lisp and inline C code . . . . . . . . . . . . . . . . . . . 41
2.16 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.17 Strings and Regular Expressions . . . . . . . . . . . . . . . . . . 43
2.18 Scalars, Vectors, Matrices, Tensors, and Storages . . . . . . . . . 43

2.18.1 Working with Storages . . . . . . . . . . . . . . . . . . . 44
2.18.2 Manipulating Tensors and IDX . . . . . . . . . . . . . . . 45
2.18.3 tensor iterators . . . . . . . . . . . . . . . . . . . . . . . 45
2.18.4 idx manipulations . . . . . . . . . . . . . . . . . . . . . . 46
2.18.5 simple tensor operations . . . . . . . . . . . . . . . . . . 48

3



4 CONTENTS

2.18.6 operations between idx and scalars . . . . . . . . . . . . 49
2.18.7 contracting operations with scalar result . . . . . . . . . 49
2.18.8 special inner and outer products . . . . . . . . . . . . . . 49
2.18.9 Simple Linear Algebra . . . . . . . . . . . . . . . . . . . 50

2.19 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.20 Object-Oriented Lush Programming . . . . . . . . . . . . . . . . 51

2.20.1 defining a new class . . . . . . . . . . . . . . . . . . . . . 51
2.20.2 inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.21 Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.22 A quick tutorial on Lush Graphics . . . . . . . . . . . . . . . . . 54
2.23 Writing Executable ”Shell Scripts” with Lush . . . . . . . . . . 55
2.24 Writing Standalone Binary Executables with Lush . . . . . . . . 56
2.25 The Ogre GUI Toolkit . . . . . . . . . . . . . . . . . . . . . . . 56
2.26 Using the Simple Directmedia Layer interface (SDL) . . . . . . . 57

2.26.1 sdlidx-screen class: Mapping the content of an IDX to an
SDL screen . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.26.2 sdl-screen class: doubled buffered animations . . . . . . . 59
2.26.3 sdl-sprite: movable animated objects . . . . . . . . . . . 59
2.26.4 sdlgl-screen class: OpenGL 3D graphics in SDL screens . 60

2.27 Using OpenGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 Lush Basics 61
3.1 Lush Interpreter Basics. . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Lush Startup. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3 The Lush Reader. . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4 The Lush Evaluator. . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5 Errors in Lush. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6 Interruptions in Lush. . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7 Leaving Lush. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.8 Lush Memory Management. . . . . . . . . . . . . . . . . . . . . 67
3.9 Lush Libraries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.10 Lush Runtime. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Core Interpreter and Startup Library 71
4.1 Lists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.1 List Manipulation Functions . . . . . . . . . . . . . . . . 71
4.1.2 Physical List Manipulation Functions . . . . . . . . . . . 79

4.2 Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.1 Elementary Numerical Functions. . . . . . . . . . . . . . 81
4.2.2 Integer Arithmetic Functions. . . . . . . . . . . . . . . . 84
4.2.3 Mathematical Numerical Functions. . . . . . . . . . . . . 85
4.2.4 Random Numbers . . . . . . . . . . . . . . . . . . . . . . 92
4.2.5 Constant Numbers. . . . . . . . . . . . . . . . . . . . . . 93
4.2.6 Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.3 Booleans Operators. . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.3.1 Boolean Arithmetic . . . . . . . . . . . . . . . . . . . . . 93



CONTENTS 5

4.3.2 Predicates. . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.4 Symbols. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.4.1 (defvar name val) . . . . . . . . . . . . . . . . . . . . . . 101
4.4.2 (setq v1 a1 ... [vn an]) . . . . . . . . . . . . . . . . . . . 101
4.4.3 (set v a) . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.4.4 (incr v [n]) . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.4.5 (named s) . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.4.6 (nameof s) . . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.7 (namedclean s) . . . . . . . . . . . . . . . . . . . . . . . 103
4.4.8 (lock-symbol s1 ... sn) . . . . . . . . . . . . . . . . . . . 103
4.4.9 (unlock-symbol s1 ... sn) . . . . . . . . . . . . . . . . . . 103
4.4.10 (symblist) . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.4.11 (oblist) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.4.12 (macrochp s) . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.4.13 (putp anything name value) . . . . . . . . . . . . . . . . 104
4.4.14 (getp anything name) . . . . . . . . . . . . . . . . . . . . 104

4.5 Namespaces and Packages . . . . . . . . . . . . . . . . . . . . . . 105
4.5.1 (private ..symbols..) . . . . . . . . . . . . . . . . . . . 105
4.5.2 (package name ..expressions..) . . . . . . . . . . . . . 105

4.6 Control structures. . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.6.1 (eval l1...ln) . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.6.2 (apply f l) . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.6.3 (quote a) . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.6.4 ’a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.6.5 ‘expr ,a ,@a . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.6.6 (progn l1...ln) . . . . . . . . . . . . . . . . . . . . . . . . 108
4.6.7 (prog1 l1...ln) . . . . . . . . . . . . . . . . . . . . . . . . 108
4.6.8 (let ((s1 v1) ... (sn vn)) l1 ... ln) . . . . . . . . . . . . . 108
4.6.9 (let* ((s1 v1) ... (sn vn)) l1 ... ln) . . . . . . . . . . . . 109
4.6.10 (let-filter ((filter data)) l1...ln) . . . . . . . . . . . . . 110
4.6.11 (if cond yes [no1...non]) . . . . . . . . . . . . . . . . . . 110
4.6.12 (when cond yes1...yesn) . . . . . . . . . . . . . . . . . . 110
4.6.13 (while cond l1...ln) . . . . . . . . . . . . . . . . . . . . . 111
4.6.14 (do-while cond l1...ln) . . . . . . . . . . . . . . . . . . . 111
4.6.15 (repeat n l1...ln) . . . . . . . . . . . . . . . . . . . . . . 111
4.6.16 (mapwhile cond l1...ln) . . . . . . . . . . . . . . . . . . 112
4.6.17 (for (symb start end [step]) l1...ln) . . . . . . . . . . . 112
4.6.18 (mapfor (symb start end [step]) l1...ln) . . . . . . . . . 112
4.6.19 (cond l1...ln) . . . . . . . . . . . . . . . . . . . . . . . . 113
4.6.20 (selectq s l1...ln) . . . . . . . . . . . . . . . . . . . . . . 113
4.6.21 (mapc f l1...ln) . . . . . . . . . . . . . . . . . . . . . . . 114
4.6.22 (mapcar f l1...ln) . . . . . . . . . . . . . . . . . . . . . . 114
4.6.23 (rmapc f l1...ln) . . . . . . . . . . . . . . . . . . . . . . 114
4.6.24 (rmapcar f l1...ln) . . . . . . . . . . . . . . . . . . . . . 114
4.6.25 (each ((s1 v1) ... (sn vn)) l1 ... ln) . . . . . . . . . . . . 115
4.6.26 (all ((s1 v1) ... (sn vn)) l1 ... ln) . . . . . . . . . . . . . 115



6 CONTENTS

4.7 Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
4.7.1 Argument List. . . . . . . . . . . . . . . . . . . . . . . . 117
4.7.2 Defining a Function. . . . . . . . . . . . . . . . . . . . . . 118

4.8 Strings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
4.8.1 Basic String Functions . . . . . . . . . . . . . . . . . . . 125
4.8.2 Regular Expressions (regex). . . . . . . . . . . . . . . . . 130

4.9 Storages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
4.9.1 Storage Creation and Allocation . . . . . . . . . . . . . . 134
4.9.2 Storage allocation . . . . . . . . . . . . . . . . . . . . . . 136
4.9.3 Storage access . . . . . . . . . . . . . . . . . . . . . . . . 137
4.9.4 Miscellaneous storage functions . . . . . . . . . . . . . . 137

4.10 Matrices, Vectors, Tensors, Indexes and IDX . . . . . . . . . . . 138
4.10.1 IDX Structure . . . . . . . . . . . . . . . . . . . . . . . . 139
4.10.2 IDX Creation and Allocation . . . . . . . . . . . . . . . . 139
4.10.3 IDX Literals . . . . . . . . . . . . . . . . . . . . . . . . . 142
4.10.4 IDX Copying and Cloning . . . . . . . . . . . . . . . . . 143
4.10.5 IDX Iterators . . . . . . . . . . . . . . . . . . . . . . . . 143
4.10.6 IDX Information . . . . . . . . . . . . . . . . . . . . . . . 145
4.10.7 IDX Manipulations . . . . . . . . . . . . . . . . . . . . . 147
4.10.8 Loading/Saving . . . . . . . . . . . . . . . . . . . . . . . 150
4.10.9 Component-wise Unary Operations . . . . . . . . . . . . 154
4.10.10 Component-wise dyadic operations . . . . . . . . . . . . 156
4.10.11 Contracting Operations with Scalar Result. . . . . . . . . 157
4.10.12 Operations between tensors and scalars . . . . . . . . . . 158
4.10.13 Matrix/Vector and 4-Tensor/Matrix products . . . . . . 159
4.10.14 Outer Products . . . . . . . . . . . . . . . . . . . . . . . 159
4.10.15 Backward Compatibility Functions . . . . . . . . . . . . 159

4.11 Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
4.11.1 Object Terminology. . . . . . . . . . . . . . . . . . . . . . 161
4.11.2 Inheritance. . . . . . . . . . . . . . . . . . . . . . . . . . 162
4.11.3 Predefined Classes . . . . . . . . . . . . . . . . . . . . . . 162
4.11.4 Defining a Class. . . . . . . . . . . . . . . . . . . . . . . . 163
4.11.5 Creating Objects. . . . . . . . . . . . . . . . . . . . . . . 165
4.11.6 Accessing Slots. . . . . . . . . . . . . . . . . . . . . . . . 166
4.11.7 Defining Methods. . . . . . . . . . . . . . . . . . . . . . . 168
4.11.8 Sending Messages. . . . . . . . . . . . . . . . . . . . . . . 169
4.11.9 Constructors and Destructors. . . . . . . . . . . . . . . . 171
4.11.10 Predefined Methods. . . . . . . . . . . . . . . . . . . . . 173

4.12 Hash Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
4.12.1 Representing Associations with Hash Tables. . . . . . . . 174
4.12.2 Representing Sets with Hash Tables. . . . . . . . . . . . 178

4.13 Dates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
4.13.1 (date-to-day date) . . . . . . . . . . . . . . . . . . . . . . 179
4.13.2 (day-to-date daynumber) . . . . . . . . . . . . . . . . . . 180
4.13.3 (today) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4.13.4 (now) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180



CONTENTS 7

4.13.5 (split-date date) . . . . . . . . . . . . . . . . . . . . . . . 180
4.13.6 (date-type date) . . . . . . . . . . . . . . . . . . . . . . . 181
4.13.7 (date-extend date from to) . . . . . . . . . . . . . . . . 181
4.13.8 (date-to-string date [format]) . . . . . . . . . . . . . . . 182
4.13.9 (string-to-date string [from to]) . . . . . . . . . . . . . 184
4.13.10 (date-add-second date count) . . . . . . . . . . . . . . . 184
4.13.11 (date-add-minute date count) . . . . . . . . . . . . . . . 184
4.13.12 (date-add-hour date count) . . . . . . . . . . . . . . . . 184
4.13.13 (date-add-day date count) . . . . . . . . . . . . . . . . . 185
4.13.14 (date-add-month date count [opt]) . . . . . . . . . . . . 185
4.13.15 (date-add-year date count [opt]) . . . . . . . . . . . . . 185
4.13.16 (date-code date flags) . . . . . . . . . . . . . . . . . . . 186

4.14 Loading and Executing Lush Program Files. . . . . . . . . . . . 186
4.14.1 (load in [out [prompt]]) . . . . . . . . . . . . . . . . . . . 186
4.14.2 ˆL filename . . . . . . . . . . . . . . . . . . . . . . . . . 187
4.14.3 (libload libname [opt]) . . . . . . . . . . . . . . . . . . . 187
4.14.4 file-being-loaded . . . . . . . . . . . . . . . . . . . . . . . 188
4.14.5 (find-file dirlist filename extlist) . . . . . . . . . . . 188
4.14.6 (save f s1 ... sn) . . . . . . . . . . . . . . . . . . . . . . 188
4.14.7 (autoload f s1 ... sn) . . . . . . . . . . . . . . . . . . . . 188

4.15 Lisp-Style Input / Output. . . . . . . . . . . . . . . . . . . . . . 189
4.15.1 Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
4.15.2 Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
4.15.3 File Names. . . . . . . . . . . . . . . . . . . . . . . . . . 192
4.15.4 Searched Path. . . . . . . . . . . . . . . . . . . . . . . . . 193
4.15.5 Files and Directories Management. . . . . . . . . . . . . 194
4.15.6 Files and Descriptors. . . . . . . . . . . . . . . . . . . . . 196
4.15.7 Binary I/O. . . . . . . . . . . . . . . . . . . . . . . . . . 200

4.16 Miscellaneous. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
4.16.1 Debug. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
4.16.2 System. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
4.16.3 Special Numerical Values (IEEE754). . . . . . . . . . . . 217

4.17 Graphics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
4.17.1 Creating a Window . . . . . . . . . . . . . . . . . . . . . 220
4.17.2 Drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.17.3 Drawing with Colors. . . . . . . . . . . . . . . . . . . . . 225
4.17.4 Drawing Text. . . . . . . . . . . . . . . . . . . . . . . . . 228
4.17.5 The Drawing Context. . . . . . . . . . . . . . . . . . . . 229
4.17.6 Double Buffering and Synchronization. . . . . . . . . . . 231
4.17.7 Plotting (obsolete). . . . . . . . . . . . . . . . . . . . . . 231
4.17.8 Events. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
4.17.9 System Specific Graphic Functions . . . . . . . . . . . . . 239
4.17.10 Producing Encapsulated PostScript Files. . . . . . . . . . 242
4.17.11 Graphical Utilities. . . . . . . . . . . . . . . . . . . . . . 243
4.17.12 Editable Graphics with comdraw/ivtools . . . . . . . . . 244

4.18 Events and Timers . . . . . . . . . . . . . . . . . . . . . . . . . . 248



8 CONTENTS

4.18.1 Event Queue. . . . . . . . . . . . . . . . . . . . . . . . . 248
4.18.2 Timers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

4.19 Documentation and Help System . . . . . . . . . . . . . . . . . . 251
4.19.1 Using the Online Manual . . . . . . . . . . . . . . . . . . 252
4.19.2 Writing Documentation . . . . . . . . . . . . . . . . . . . 254

4.20 Obsolete functions . . . . . . . . . . . . . . . . . . . . . . . . . . 261
4.20.1 Operations on Lists of Numbers . . . . . . . . . . . . . . 261
4.20.2 Statistical Functions on Lists of Numbers. . . . . . . . . 263
4.20.3 DZ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

5 Ogre: Object Oriented GUI Toolkit 277
5.1 Introduction to Ogre. . . . . . . . . . . . . . . . . . . . . . . . . 277
5.2 Ogre Tutorial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
5.3 The Ogre Class Library. . . . . . . . . . . . . . . . . . . . . . . . 280

5.3.1 Ogre Methods. . . . . . . . . . . . . . . . . . . . . . . . . 280
5.3.2 Ogre Class Hierarchy. . . . . . . . . . . . . . . . . . . . . 282

5.4 Ogre Utility Functions. . . . . . . . . . . . . . . . . . . . . . . . 284
5.4.1 Initializing the Ogre library. . . . . . . . . . . . . . . . . 284
5.4.2 Error handling in the Ogre library. . . . . . . . . . . . . 284
5.4.3 Ogre Color Palette. . . . . . . . . . . . . . . . . . . . . . 285
5.4.4 Ogre Fonts. . . . . . . . . . . . . . . . . . . . . . . . . . . 288

5.5 Visual Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
5.5.1 (new VisualObject w h) . . . . . . . . . . . . . . . . . . . 289
5.5.2 VisualObject Request Messages. . . . . . . . . . . . . . . 290
5.5.3 VisualObject Implementation Methods. . . . . . . . . . . 291
5.5.4 Event Methods. . . . . . . . . . . . . . . . . . . . . . . . 294

5.6 Control Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
5.6.1 (new Control w h f) . . . . . . . . . . . . . . . . . . . . . 298
5.6.2 Enabling or Disabling a Control Object. . . . . . . . . . 298
5.6.3 Activation of a Control Object. . . . . . . . . . . . . . . 299
5.6.4 Appearance of a Control Object. . . . . . . . . . . . . . . 300
5.6.5 State of a Control Object. . . . . . . . . . . . . . . . . . 301
5.6.6 Ogre Callbacks. . . . . . . . . . . . . . . . . . . . . . . . 301

5.7 Container Objects. . . . . . . . . . . . . . . . . . . . . . . . . . . 303
5.7.1 (new Container x y w h ...contents...) . . . . . . . . . 303
5.7.2 Repainting. . . . . . . . . . . . . . . . . . . . . . . . . . . 303
5.7.3 Inserting an Removing Objects. . . . . . . . . . . . . . . 304
5.7.4 Geometry Management. . . . . . . . . . . . . . . . . . . . 304
5.7.5 Control Management. . . . . . . . . . . . . . . . . . . . . 307

5.8 Container Flavors. . . . . . . . . . . . . . . . . . . . . . . . . . . 308
5.8.1 Forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
5.8.2 Window Objects. . . . . . . . . . . . . . . . . . . . . . . 309
5.8.3 Structuring Containers . . . . . . . . . . . . . . . . . . . 312

5.9 Buttons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
5.9.1 Push Buttons. . . . . . . . . . . . . . . . . . . . . . . . . 315
5.9.2 Check Boxes. . . . . . . . . . . . . . . . . . . . . . . . . . 316



CONTENTS 9

5.9.3 Exclusive Buttons. . . . . . . . . . . . . . . . . . . . . . . 318
5.9.4 File Requester Button. . . . . . . . . . . . . . . . . . . . 319

5.10 Character String Objects. . . . . . . . . . . . . . . . . . . . . . . 320
5.10.1 Fixed Strings. . . . . . . . . . . . . . . . . . . . . . . . . 320
5.10.2 Editable Strings. . . . . . . . . . . . . . . . . . . . . . . . 321
5.10.3 Editable Numbers. . . . . . . . . . . . . . . . . . . . . . . 323
5.10.4 EditSecretString . . . . . . . . . . . . . . . . . . . . . . . 323
5.10.5 Multiline Text Editor. . . . . . . . . . . . . . . . . . . . . 323

5.11 Icons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
5.11.1 (new icon mat &optional [sx [sy [map]]]) . . . . . . . . . . 327

5.12 OgrImage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
5.12.1 (new OgrImage m) . . . . . . . . . . . . . . . . . . . . . . 327
5.12.2 (==> OgrImage get-selected) . . . . . . . . . . . . . . . 327

5.13 ImageViewer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
5.13.1 (new ImageViewer w h m [scroll]) . . . . . . . . . . . . . 327
5.13.2 (==> ImageViewer get-selected) . . . . . . . . . . . . . 328

5.14 Menus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
5.14.1 Standard Menus. . . . . . . . . . . . . . . . . . . . . . . 328
5.14.2 Choice Menus. . . . . . . . . . . . . . . . . . . . . . . . . 330

5.15 Popup Requesters. . . . . . . . . . . . . . . . . . . . . . . . . . . 331
5.15.1 Requester. . . . . . . . . . . . . . . . . . . . . . . . . . . 332
5.15.2 Warning Requester. . . . . . . . . . . . . . . . . . . . . . 334
5.15.3 Error Requester. . . . . . . . . . . . . . . . . . . . . . . . 334
5.15.4 Yes/No Requester. . . . . . . . . . . . . . . . . . . . . . . 335
5.15.5 Print Requester. . . . . . . . . . . . . . . . . . . . . . . . 337
5.15.6 File Requester. . . . . . . . . . . . . . . . . . . . . . . . . 338

5.16 Movable and Resizable Objects. . . . . . . . . . . . . . . . . . . 340
5.16.1 (new DragArea w h) . . . . . . . . . . . . . . . . . . . . . 340
5.16.2 (new SizeArea w h) . . . . . . . . . . . . . . . . . . . . . 340
5.16.3 (new Frame x y w h ...contents...) . . . . . . . . . . . 341
5.16.4 (new FrameSize x y w h ...contents...) . . . . . . . . 341

5.17 Sliders and Scrollbars. . . . . . . . . . . . . . . . . . . . . . . . . 341
5.17.1 Sliders. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342
5.17.2 Scrollbars. . . . . . . . . . . . . . . . . . . . . . . . . . . 343

5.18 Composite Objects. . . . . . . . . . . . . . . . . . . . . . . . . . 344
5.18.1 Viewers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
5.18.2 Selectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

5.19 A Complete Example. . . . . . . . . . . . . . . . . . . . . . . . . 347
5.19.1 The Class Browser “classtool”. . . . . . . . . . . . . . . . 347
5.19.2 The Program “classtool”. . . . . . . . . . . . . . . . . . . 348

6 Dynamic Loader/Linker 355
6.1 (mod-load filename) . . . . . . . . . . . . . . . . . . . . . . . . 356
6.2 (mod-unload filename) . . . . . . . . . . . . . . . . . . . . . . . 357
6.3 (find-shared-library name [extlist]) . . . . . . . . . . . . . . . . 357
6.4 (find-static-library name [extlist]) . . . . . . . . . . . . . . . . 357



10 CONTENTS

6.5 (find-shared-or-static-library name [extlist]) . . . . . . . . . . . 358
6.6 (mod-list) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
6.7 (mod-undefined) . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
6.8 (mod-status) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
6.9 (mod-inquire filename) . . . . . . . . . . . . . . . . . . . . . . . 358
6.10 (mod-create-reference string1 ... stringN) . . . . . . . . . . . . 359
6.11 (mod-compatibility-flag boolean) . . . . . . . . . . . . . . . . . 359
6.12 Low level module functions. . . . . . . . . . . . . . . . . . . . . 359

6.12.1 (module-list) . . . . . . . . . . . . . . . . . . . . . . . . . 359
6.12.2 (module-filename m) . . . . . . . . . . . . . . . . . . . . . 359
6.12.3 (module-executable-p m) . . . . . . . . . . . . . . . . . . 359
6.12.4 (module-unloadable-p m) . . . . . . . . . . . . . . . . . . 359
6.12.5 (module-initname m) . . . . . . . . . . . . . . . . . . . . . 360
6.12.6 (module-depends m) . . . . . . . . . . . . . . . . . . . . . 360
6.12.7 (module-never-unload m) . . . . . . . . . . . . . . . . . . 360
6.12.8 (module-defs m) . . . . . . . . . . . . . . . . . . . . . . . 360
6.12.9 (module-load filename [hookfunction]) . . . . . . . . . 360
6.12.10 (module-unload m) . . . . . . . . . . . . . . . . . . . . . . 361

6.13 Extending the Interpreter . . . . . . . . . . . . . . . . . . . . . . 361
6.14 Debugging modules with gdb. . . . . . . . . . . . . . . . . . . . 362

7 CLush: Compiled Lush 365
7.1 A Simple Example . . . . . . . . . . . . . . . . . . . . . . . . . . 365
7.2 Using libload and dhc-make. . . . . . . . . . . . . . . . . . . . . 365
7.3 Compilation Functions . . . . . . . . . . . . . . . . . . . . . . . 366

7.3.1 High-Level Compilation Functions . . . . . . . . . . . . . 366
7.3.2 Customizing the Behavior of dhc-make. . . . . . . . . . . 368
7.3.3 Querying File Dependencies . . . . . . . . . . . . . . . . 370
7.3.4 Low-Level Compilation Functions. . . . . . . . . . . . . . 370

7.4 Design Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . 371
7.5 What is Compilable, and What isn’t . . . . . . . . . . . . . . . . 372

7.5.1 (compilablep function) . . . . . . . . . . . . . . . . . . . 373
7.6 CLush-specific functions and constructs . . . . . . . . . . . . . . 373

7.6.1 Numerical Type Declarations . . . . . . . . . . . . . . . . 373
7.6.2 Class Declaration and Compilation . . . . . . . . . . . . 375
7.6.3 Type Conversions . . . . . . . . . . . . . . . . . . . . . . 376
7.6.4 inline C code . . . . . . . . . . . . . . . . . . . . . . . . . 377
7.6.5 Compiler Directives . . . . . . . . . . . . . . . . . . . . . 379
7.6.6 Dynamic Allocation in Compiled Code . . . . . . . . . . 380

7.7 Interfacing Existing C/C++/FORTRAN Libraries to Lush . . . 380
7.7.1 Symbolic constants. . . . . . . . . . . . . . . . . . . . . . 380
7.7.2 Interfacing C code . . . . . . . . . . . . . . . . . . . . . . 381
7.7.3 Interfacing C++ code . . . . . . . . . . . . . . . . . . . . 381
7.7.4 Interfacing FORTRAN code . . . . . . . . . . . . . . . . 381

7.8 More on the Lisp-C Interface . . . . . . . . . . . . . . . . . . . . 381
7.8.1 DH: the Compiled Function Class . . . . . . . . . . . . . 381



CONTENTS 11

7.8.2 Classinfo . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
7.8.3 Controling the Lisp/C interface. . . . . . . . . . . . . . . 382

7.9 Compiler Internals . . . . . . . . . . . . . . . . . . . . . . . . . . 383
7.9.1 (dhc-generate-c filename ’([func1 [funcn]])) . . . . . . . 383
7.9.2 (compilablep function) . . . . . . . . . . . . . . . . . . . 383
7.9.3 (dhc-substitute-env str [htable]) . . . . . . . . . . . . . 383
7.9.4 varlushdir . . . . . . . . . . . . . . . . . . . . . . . . . . 384
7.9.5 (dhc-make-cdir cdir [create]) . . . . . . . . . . . . . . . 384
7.9.6 (dhc-make-c-filename src) . . . . . . . . . . . . . . . . . 384
7.9.7 (dhc-make-o-filename src) . . . . . . . . . . . . . . . . . 384
7.9.8 (dhc-make-get-dependencies [snname]) . . . . . . . . . . . 384
7.9.9 dhc-make-lushflags . . . . . . . . . . . . . . . . . . . . . 384
7.9.10 dhc-make-command . . . . . . . . . . . . . . . . . . . . . 385
7.9.11 dhc-make-overrides . . . . . . . . . . . . . . . . . . . . . 385
7.9.12 dhc-make-force . . . . . . . . . . . . . . . . . . . . . . . . 385
7.9.13 dhc-make-essential-libs . . . . . . . . . . . . . . . . . . . 385
7.9.14 (dhc-make-o src-file [obj-file [lushflags]]) . . . . . 385
7.9.15 (dhc-make-o-maybe src-file [obj-file [cflags]]) . . . 385
7.9.16 (dhc-make-c fname fsymblist) . . . . . . . . . . . . . . 386
7.9.17 (dhc-make-c-maybe snname fname fsymblist) . . . . . . 386
7.9.18 (dhc-make-test fname) . . . . . . . . . . . . . . . . . . . 386
7.9.19 (dhc-make-all fname fsymblist liblist) . . . . . . . . 386
7.9.20 (dhc-make fname f1 [f2 ...[fn]]) . . . . . . . . . . . . . . 386
7.9.21 (dhc-make-with-libs fname library-list f1 [f2 ...[fn]]) 386
7.9.22 (dhc-make-with-c++ fname library-list f1 [f2 ...[fn]]) 386
7.9.23 (dhc-insert-op l op) . . . . . . . . . . . . . . . . . . . . . 387
7.9.24 (dhc-nolast l) . . . . . . . . . . . . . . . . . . . . . . . . 387
7.9.25 (dhc-remove-dup l) . . . . . . . . . . . . . . . . . . . . . 387
7.9.26 (dhc-remove-eqdup l) . . . . . . . . . . . . . . . . . . . . 387
7.9.27 (dhc-remove-nth n l) . . . . . . . . . . . . . . . . . . . . 387
7.9.28 (dhc-split-list l test) . . . . . . . . . . . . . . . . . . . . 387
7.9.29 (dhc-postincr symb) . . . . . . . . . . . . . . . . . . . . . 387
7.9.30 dhc-debug-flag . . . . . . . . . . . . . . . . . . . . . . . . 388
7.9.31 —#@— . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
7.9.32 (dhc-add-c-declarations str) . . . . . . . . . . . . . . . . 388
7.9.33 (dhc-add-c-statements str) . . . . . . . . . . . . . . . . . 388
7.9.34 (dhc-add-c-epilog str) . . . . . . . . . . . . . . . . . . . 388
7.9.35 (dhc-add-c-externs str) . . . . . . . . . . . . . . . . . . . 388
7.9.36 (dhc-add-c-metaexterns str) . . . . . . . . . . . . . . . . 388
7.9.37 (dhc-add-c-header str) . . . . . . . . . . . . . . . . . . . 388
7.9.38 (dhc-add-c-pheader str) . . . . . . . . . . . . . . . . . . 389
7.9.39 (dhc-class-to-struct-decl type) . . . . . . . . . . . . . . . 389
7.9.40 (dhc-class-to-vtable-decl type) . . . . . . . . . . . . . . . 389
7.9.41 (dhc-type-to-c-decl type) . . . . . . . . . . . . . . . . . . 389
7.9.42 (dhc-declare-var name type) . . . . . . . . . . . . . . . . 389
7.9.43 (dhc-declare-temp-var type [clue]) . . . . . . . . . . . . 389



12 CONTENTS

7.9.44 dhc-debug-stack . . . . . . . . . . . . . . . . . . . . . . . 389
7.9.45 (dhc-error string [arg]) . . . . . . . . . . . . . . . . . . 389
7.9.46 (dhc-check-symbol source) . . . . . . . . . . . . . . . . . 390
7.9.47 (dhc-internal-error str) . . . . . . . . . . . . . . . . . . . 390
7.9.48 dhc-type . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
7.9.49 (==> dhc-type print) . . . . . . . . . . . . . . . . . . . 390
7.9.50 (==> dhc-type hashcode) . . . . . . . . . . . . . . . . . 390
7.9.51 (==> dhc-type access [v]) . . . . . . . . . . . . . . . . . 390
7.9.52 (new dhc-type class [a1] [a2]) . . . . . . . . . . . . . . . 390
7.9.53 (dhc-desc-to-type desc) . . . . . . . . . . . . . . . . . . . 391
7.9.54 (new dhc-symbol name lex [fmt]) . . . . . . . . . . . . . 391
7.9.55 (dhc-search-symtable symbolname table) . . . . . . . . . 391
7.9.56 (dhc-add-to-symtable table symbolobject) . . . . . . . 391
7.9.57 (dhc-add-symbol-table symb lex) . . . . . . . . . . . . . 391
7.9.58 (dhc-add-global-table symb) . . . . . . . . . . . . . . . . 391
7.9.59 (new t-node t-node-list type [source] [symbol]) . . . 391
7.9.60 (dhc-make-t-node expr) . . . . . . . . . . . . . . . . . . . 392
7.9.61 (dhc-copy-source-tree source) . . . . . . . . . . . . . . . 392
7.9.62 (dhc-get-treetype source) . . . . . . . . . . . . . . . . . 392
7.9.63 (dhc-get-type source) . . . . . . . . . . . . . . . . . . . . 393
7.9.64 (dhm-t func (source) . body) . . . . . . . . . . . . . . . . 393
7.9.65 (dhm-t-declare model f1 ... fn ) . . . . . . . . . . . . . . 393
7.9.66 (dhm-c symb (source treetype retplace) . body) . . . . . . 393
7.9.67 (dhm-c-declare model f1 ... fn ) . . . . . . . . . . . . . . 393
7.9.68 (get-dhm-t symb) . . . . . . . . . . . . . . . . . . . . . . 393
7.9.69 (get-dhm-c symb) . . . . . . . . . . . . . . . . . . . . . . 393
7.9.70 (get-dhm-target source) . . . . . . . . . . . . . . . . . . 394
7.9.71 (dhm-p func (source) . body) . . . . . . . . . . . . . . . 394
7.9.72 (get-dhm-p symb) . . . . . . . . . . . . . . . . . . . . . . 394
7.9.73 (dhc-pp body) . . . . . . . . . . . . . . . . . . . . . . . . 394
7.9.74 (dhc-parse-replacement-source-t source newsource) . . . 394
7.9.75 (process-numerical-args-t arglist rettype) . . . . . . . 394
7.9.76 u-nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

8 Standard Libraries 397
8.1 Shell Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

8.1.1 String List Utilities . . . . . . . . . . . . . . . . . . . . . 397
8.1.2 File Information . . . . . . . . . . . . . . . . . . . . . . . 398
8.1.3 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 399
8.1.4 Directories . . . . . . . . . . . . . . . . . . . . . . . . . . 399
8.1.5 Shell Commands . . . . . . . . . . . . . . . . . . . . . . . 400

8.2 Tensor/Matrix/Vector/Scalar Libraries . . . . . . . . . . . . . . 401
8.2.1 Generic IDX Macros and Functions . . . . . . . . . . . . 401
8.2.2 IDX of Single Precision Floating Point Numbers . . . . . 405
8.2.3 IDX of Double Precision Floating Point Numbers . . . . 411
8.2.4 IDX of Integers . . . . . . . . . . . . . . . . . . . . . . . 418



CONTENTS 13

8.2.5 IDX of unsigned bytes . . . . . . . . . . . . . . . . . . . . 420
8.2.6 Arrays of vectors and matrices . . . . . . . . . . . . . . . 422
8.2.7 IDX reading and writing . . . . . . . . . . . . . . . . . . 424
8.2.8 IDX mapping from files . . . . . . . . . . . . . . . . . . . 444
8.2.9 Convolution, Subsampling, Oversampling. . . . . . . . . 447
8.2.10 IDX sorting and binary search functions . . . . . . . . . 453
8.2.11 IDX operations on squares of elements . . . . . . . . . . 455

8.3 C Interface Utilities . . . . . . . . . . . . . . . . . . . . . . . . . 456
8.3.1 Libc interface . . . . . . . . . . . . . . . . . . . . . . . . 456
8.3.2 Control Structures . . . . . . . . . . . . . . . . . . . . . . 457
8.3.3 Pointer Manipulation/Dereferencing . . . . . . . . . . . . 457

8.4 Plotting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
8.4.1 Plotter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
8.4.2 low level utility functions . . . . . . . . . . . . . . . . . . 467

8.5 C-Style Input / Output . . . . . . . . . . . . . . . . . . . . . . . 468
8.5.1 (fprintf file-pointer args...) . . . . . . . . . . . . . . 468
8.5.2 (fwrite-str file-pointer s) . . . . . . . . . . . . . . . . 469
8.5.3 (stdout) . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
8.5.4 (fopen filename type) . . . . . . . . . . . . . . . . . . . 469
8.5.5 (fclose file-pointer) . . . . . . . . . . . . . . . . . . . 470
8.5.6 (popen filename type) . . . . . . . . . . . . . . . . . . . 470
8.5.7 (pclose file-pointer) . . . . . . . . . . . . . . . . . . . 470
8.5.8 (ftell file-pointer) . . . . . . . . . . . . . . . . . . . . 470
8.5.9 (fseek file-pointer pos) . . . . . . . . . . . . . . . . . 471
8.5.10 (fseek-from-end file-pointer pos) . . . . . . . . . . . . 471
8.5.11 (fseek-from-current file-pointer pos) . . . . . . . . . . 471
8.5.12 (fgetc file-pointer) . . . . . . . . . . . . . . . . . . . . 472
8.5.13 (fputc file-pointer val) . . . . . . . . . . . . . . . . . 472
8.5.14 (fread-ubyte file-pointer) . . . . . . . . . . . . . . . . 472
8.5.15 (fwrite-ubyte file-pointer val) . . . . . . . . . . . . . 472
8.5.16 (fread-byte file-pointer) . . . . . . . . . . . . . . . . . 473
8.5.17 (fwrite-byte file-pointer val) . . . . . . . . . . . . . . 473
8.5.18 (fread-short file-pointer) . . . . . . . . . . . . . . . . 473
8.5.19 (fwrite-short file-pointer val) . . . . . . . . . . . . . . 473
8.5.20 (fread-int file-pointer) . . . . . . . . . . . . . . . . . . 474
8.5.21 (fwrite-int file-pointer val) . . . . . . . . . . . . . . . 474
8.5.22 (fread-flt file-pointer) . . . . . . . . . . . . . . . . . . 474
8.5.23 (fwrite-flt file-pointer val) . . . . . . . . . . . . . . . 475
8.5.24 (fread-real file-pointer) . . . . . . . . . . . . . . . . . 475
8.5.25 (fwrite-real file-pointer val) . . . . . . . . . . . . . . 475
8.5.26 (reverse n ptr sz n) . . . . . . . . . . . . . . . . . . . . . 475
8.5.27 (fscan-int file-pointer) . . . . . . . . . . . . . . . . . . 476
8.5.28 (fscan-flt file-pointer) . . . . . . . . . . . . . . . . . . 476
8.5.29 (fscan-str file-pointer) . . . . . . . . . . . . . . . . . . 476
8.5.30 (fgets file-pointer max-size) . . . . . . . . . . . . . . 476
8.5.31 (file-size file-name) . . . . . . . . . . . . . . . . . . . . 477



14 CONTENTS

8.5.32 (rewind f) . . . . . . . . . . . . . . . . . . . . . . . . . . 477
8.5.33 (skip-comments start f) . . . . . . . . . . . . . . . . . . 477

8.6 Graph Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
8.6.1 Building and Manipulating Grammars . . . . . . . . . . 477
8.6.2 Manipulating Graphs. . . . . . . . . . . . . . . . . . . . . 483
8.6.3 Searching and Pruning Graphs . . . . . . . . . . . . . . . 486
8.6.4 Transformation Operators on Graphs . . . . . . . . . . . 487
8.6.5 Other Graph Search Functions . . . . . . . . . . . . . . . 491

8.7 Image Processing Libraries . . . . . . . . . . . . . . . . . . . . . 491
8.7.1 Demos and examples . . . . . . . . . . . . . . . . . . . . 491
8.7.2 Reading/Writing Image Files to/from IDX. . . . . . . . . 491
8.7.3 Reading/Writing PPM/PGM/PBM Image Files . . . . . 493
8.7.4 Reading/Writing PBM Image files . . . . . . . . . . . . . 496
8.7.5 Reading/Writing Run-Length-Encoded Image Files . . . 497
8.7.6 RGBA Images of ubytes . . . . . . . . . . . . . . . . . . 498
8.7.7 RGBA Images of Floats . . . . . . . . . . . . . . . . . . . 504
8.7.8 Greyscale Images of ubytes. . . . . . . . . . . . . . . . . 508
8.7.9 Greyscale Images of shorts . . . . . . . . . . . . . . . . . 512
8.7.10 Greyscale Images of Floats . . . . . . . . . . . . . . . . . 515
8.7.11 Computing Image Warping Maps . . . . . . . . . . . . . 515
8.7.12 Connected Component Analysis . . . . . . . . . . . . . . 516
8.7.13 Morphological Operations . . . . . . . . . . . . . . . . . 520
8.7.14 Morphological Operation on Images of Shorts. . . . . . . 521
8.7.15 Miscellaneous Image Macros and Conversions . . . . . . 523
8.7.16 Constants used in run-length encoded images. . . . . . . 524
8.7.17 Converting RLE Image to greyscale pixelmap. . . . . . . 524
8.7.18 Color Clustering and Quantization . . . . . . . . . . . . . 526

9 Packages 533
9.1 GBLearn2: Machine Learning Library . . . . . . . . . . . . . . . 533

9.1.1 GBLearn2: Basic Concepts . . . . . . . . . . . . . . . . . 534
9.1.2 Examples and Demos . . . . . . . . . . . . . . . . . . . . 536
9.1.3 Learning Algorithms . . . . . . . . . . . . . . . . . . . . 536
9.1.4 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . 540
9.1.5 Meters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
9.1.6 gb-states . . . . . . . . . . . . . . . . . . . . . . . . . . . 545
9.1.7 gb-param . . . . . . . . . . . . . . . . . . . . . . . . . . . 548
9.1.8 Module Libraries . . . . . . . . . . . . . . . . . . . . . . 550

9.2 GBLearning: Gradient-Based Learning Library . . . . . . . . . . 567
9.2.1 Examples and Demos . . . . . . . . . . . . . . . . . . . . 567
9.2.2 modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
9.2.3 workbench . . . . . . . . . . . . . . . . . . . . . . . . . . 576
9.2.4 trainer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577
9.2.5 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . 580
9.2.6 param . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
9.2.7 sn-states . . . . . . . . . . . . . . . . . . . . . . . . . . . 586



CONTENTS 15

9.2.8 libnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 588
9.2.9 net-ccc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
9.2.10 net-cfe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
9.2.11 net-cff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
9.2.12 net-cf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
9.2.13 net-c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
9.2.14 net-csccf . . . . . . . . . . . . . . . . . . . . . . . . . . . 592
9.2.15 net-cscfe . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
9.2.16 net-cscf . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
9.2.17 net-cscscf . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
9.2.18 net-cscscfe . . . . . . . . . . . . . . . . . . . . . . . . . . 594
9.2.19 net-cscscscf . . . . . . . . . . . . . . . . . . . . . . . . . . 594
9.2.20 net-fff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
9.2.21 net-ff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
9.2.22 lclass-meter . . . . . . . . . . . . . . . . . . . . . . . . . 595
9.2.23 ccc-tdnn . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
9.2.24 conx . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
9.2.25 ftdnn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598
9.2.26 seq3-modules . . . . . . . . . . . . . . . . . . . . . . . . . 599

9.3 SDL: Simple DirectMedia Layer . . . . . . . . . . . . . . . . . . 600
9.3.1 Installing SDL . . . . . . . . . . . . . . . . . . . . . . . . 600
9.3.2 SDL Demos . . . . . . . . . . . . . . . . . . . . . . . . . 600
9.3.3 LibSDL: High-level Interface to SDL . . . . . . . . . . . 601
9.3.4 Low-Level Interface to SDL . . . . . . . . . . . . . . . . . 610

9.4 OpenGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656
9.5 OpenRM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656
9.6 Video4Linux: video grabbing . . . . . . . . . . . . . . . . . . . . 656

9.6.1 Requirements and Installation . . . . . . . . . . . . . . . 656
9.6.2 Video4Linux API . . . . . . . . . . . . . . . . . . . . . . 656
9.6.3 Demos . . . . . . . . . . . . . . . . . . . . . . . . . . . . 661

9.7 BLAS: Basic Linear Algebra Subroutine . . . . . . . . . . . . . . 663
9.8 LAPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 664
9.9 GSL: GNU Scientific Library . . . . . . . . . . . . . . . . . . . . 664
9.10 OpenCV: Intel Computer Vision Library . . . . . . . . . . . . . 664
9.11 ALSA: Advanced Linux Sound Architecture . . . . . . . . . . . 664

10 Applications 665
10.1 Graphic Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 665

11 Tutorials 667
11.1 Tutorial: Writing Games with Lush and SDL. . . . . . . . . . . 667

11.1.1 A Quick Reminder on Basic Lush Programming . . . . . 667
11.1.2 A Simple Lunar Lander . . . . . . . . . . . . . . . . . . . 668
11.1.3 SpaceWar: missiles and collision detection . . . . . . . . 680



16 CONTENTS

12 FAQ (Frequently Asked Questions) 681
12.1 What to do when I get this error? . . . . . . . . . . . . . . . . . 681

12.1.1 Module has undefined references . . . . . . . . . . . . . . 681
12.1.2 compiler : Unknown Type in: () . . . . . . . . . . . . . . 681

12.2 How Do I ... ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682
12.2.1 Read lines from a file into a list . . . . . . . . . . . . . . 682
12.2.2 Apply a function to all elements of a vector . . . . . . . . 682
12.2.3 Get a pointer to the raw data of an idx . . . . . . . . . . 682
12.2.4 Get a pointer to a function written in Lisp . . . . . . . . 682
12.2.5 Know if a function can be used in compiled code . . . . . 683

13 Local Packages 685
<< document file not found >>



Chapter 1

Introduction to Lush

1.1 What is Lush

Lush is an object-oriented programming language with features designed to
please researchers , experimenters , and engineers interested in large-scale nu-
merical and graphic applications. Lush is designed to be used in situations
where one would want to combine the flexibility of a high-level , loosely-typed
interpreted language , with the efficiency of a strongly-typed , natively-compiled
language , and with the easy integration of code written in C , C++ , or other
languages.

Lush can be used advantageously for projects where one would otherwise a
combination of an interpreted language like Python , Perl , Matlab , S+ , or even
(gasp!) BASIC , and a compiled language like C. Lush brings the best of both
worlds by wrapping three languages into one: (1) a loosely-typed , garbage-
collected , dynamically scoped , interpreted language with a simple Lisp-like
syntax , (2) a strongly-typed , lexically-scoped compiled language that uses the
same Lisp-like syntax , and (3) the C language , which can be freely mixed with
Lush code within a single program , even within a single function. It sounds
complicated , but it is not. In fact , Lush is designed to be very simple to learn
and easy to use.

Lush’s main features are as follows:

• A very clean , simple , and easy to learn Lisp-like syntax.

• A very efficient native compiler (through C).

• An easy way to interface C functions and libraries , and a powerful dy-
namic loader for object files of libraries ( .o , .a and .so files) written
in other compiled languages.

• The ability to freely mix Lisp and C in a single function.

• A powerful set of vector/matrix/tensor operations.

17



18 CHAPTER 1. INTRODUCTION TO LUSH

• A huge library of numerical routines , including GSL , LAPACK , and
BLAS.

• An extensive set of graphic routines (including an object-oriented GUI
toolkit , an interface to OpenGL , and an interface to SDL).

• Sound and video grabbing (using ALSA and Video4Linux).

• A library of image and signal processing routines.

• Several libraries for machine learning , neural net and statistical estima-
tion.

This combination of flexibility , efficiency , and extensive libraries makes Lush
an ideal platform for research and development in signal processing , image pro-
cessing , machine learning , computer vision , bio-informatics , data mining ,
statistics , and artificial intelligence. Its speed and extensive libraries allow such
things as real-time sound , image , and video processing. Many use Lush as a
general purpose script language , or as a general language for application devel-
opment. Some have been known to use Lush to develop 2D and 3D games. A few
have even used Lush to develop commercial software for embedded processors.

Compared to Matlab , Lush is a ”real” object-oriented programming lan-
guage with data structures , typed matrices , a simple syntax , and a native
compiler. Compared to Python , Lush has an efficient native compiler (com-
piled numerical code is as fast as C) , and the ability to practice functional
programming. The ability to easily call C libraries , and the ability to freely
mix C and Lisp is somewhat unique to Lush.

If at any time you have:

• wished you had simple interpreted language with which you could quickly
try out ideas , implement efficient numerical algorithms , or prototype
GUI-based applications.

• written a piece of software in C and wished you could control it from a
simple , interpreted script language.

• written such a script language interpreter yourself and wished it were a
full-blown programming language.

• used an interpreted script-like language , such as Perl , MatLab , Math-
ematica , Tcl , Python , or BASIC , and wished the compiler generated
efficient code , and wished it were easier to call C routines from it.

• written a program with one of the above languages and wished you could
generate a portable standalone application from it.

• wished you could combine two languages for your programming projects:
an efficient , compiled , no-frills language such as C or C++ for the low-
level , and an interpreted , weakly typed language with smart memory
management such as Lisp for the high level and the user interface.



1.2. A TOUR OF THE FEATURES 19

then , Lush is for you.
Many software projects , particularly research projects , require two lan-

guages: an efficient compiled language such as C or C++ for implementing
the low-level or computationally expensive function , and a flexible , possibly
interpreted language for high-level control , scripting , experimentation , and
tinkering. Popular research-oriented interpreters such as Matlab are somewhat
inefficient , lack support for complex data structures , lack the power of a full-
fledged object-oriented programming language , and lack simple interfacing to
C and other compiled languages.

Lush uses a very simple Lisp syntax. If the word ”Lisp” sends shivers down
your spine , be advised that the dialect of Lisp that Lush implements is ex-
tremely simple to learn , with possibly one the simplest syntax around. Most
scientists , engineers , and software developers who have learned Lush have be-
come proficient at it in a few days , even if they had no prior exposure to Lisp.
It’s very simple. Really. In fact , Lush has been used to teach programming to
kids.

The Lush compiler has several interesting properties , and a few limitations.
Its main advantage is that it generate very efficient C code which is then com-
piled with the best available C compiler for the machine considered.

Lush Currently runs on various Unix platforms including Linux/x86 , Solaris
, and SGI/Irix.

1.2 A tour of the features

Lush is built around a compact , portable , and intentionally simple Lisp inter-
preter written in C. It features all the usual functionalities and constructs found
in every decent object-oriented programming language such as conditional state-
ments , loops , local variables , functions , macros , objects , classes , methods
, and inheritance , but it also provides a large number of functions for manipu-
lating lists , strings , vectors , matrices , and tensors. String functions include
such things as regular expression matching and substitutions.

The Lush interpreter is quite similar to some lisps of the mid 80’s like
”Le Lisp” and ”UCI-Lisp”. It is significantly simpler than ”Common Lisp”
and quite different from Scheme.

An unusual feature of Lush is its compiler to C , its dynamic loader , and the
ease with which one can interface existing C functions and libraries. En even
more unusual feature is the ability to intermix Lisp and C source code within a
single function.

The vector and matrix manipulation engine is quite powerful and efficient
, making Lush ideal for heavy numerical applications and applications such
as signal and image processing. It includes functions to create , resize , and
convert vectors , matrices , and tensors with up to eight dimensions. It includes
basic matrix operations such as scalar operations on all elements of a matrix
, dot products , outer products , transposition , highly optimized 1D and 2D
convolutions. A set of iterators is also provided to access all matrix elements



20 CHAPTER 1. INTRODUCTION TO LUSH

without requiring costly bound checking.
Lush is an object-oriented language. Classes with slots and methods can be

defined and compiled. Derived classes inherit the slots and methods of their
parent class (similar to the C++ semantics).

Lush includes all the functions familiar to Lisp aficionados , such as list
functions , list iterators , physical list manipulation , macros , splicing macros
, symbol manipulation , etc , but most casual users will probably prefer to stay
away from those.

Lush provides a set of simple-to-use graphic functions to draw lines , poly-
gons , rectangles , pictures , and text in color , with automatic refresh and
double-buffering capability (for simple animations). Graphics can be drawn in
an X-windows window (on Unix) , or sent to a PostScript file. Those low-level
portable graphic functions are used to build high-level functionalities , such as
function plotting.

Lush also contains a very compact and easy-to-use object-oriented graphical
user interface generator called “Ogre”. Ogre is entirely written in Lisp on top of
the low-level graphic functions mentioned above. It contains predefined classes
for buttons , sliders , radio buttons , menus , string editors , etc... Ogre includes
an automatic mechanism for placing objects in the window , thereby greatly
simplifying the design and implementation of GUIs. Simple GUIs can be written
in extremely short times and are very compact.

Lush provides two models for Input/Output. One is a set of “Lispy” I/O
functions that allow easy input and output of ASCII data , lisp expressions , lisp
objects , and matrices. It includes such goodies as pipes and sockets. The other
model essentially provides access to the standard C I/O library , including fopen
, popen , fprintf , fscanf , fgetc , fputc fgets , and various functions for reading
and writing matrices. Large matrices can be mapped in the virtual addressing
space , instead of explicitely loaded in memory. This allows to access very large
datasets efficiently.

1.3 A tour of the Lush Libraries

Lush has a huge collection of libraries and utilities available to the user. Some
are written in Lisp , some are written in C and interfaced to Lush , others are
pre-existing libraries that have been interfaced to Lush.

For our numerically enclined friends , Lush has a full interface to the GNU
Scientific Library (GSL) , and to the LAPACK and BLAS Linear Algebra li-
braries. This gives access to an extensive set of numerical and statistical func-
tions (several thousand in fact).

Lush includes a full interface to the industry-standard OpenGL library that
allows the creation of 3D graphics and animations. This interface include an
interface to GLUT , OpenGLU , and OpenRM (scene graph rendering engine).
This makes Lush an excellent platform to write interactive VR applications and
computer games.

Another popular library interfaced to Lush is the video game API Simple



1.4. WHY LISP? 21

Directmedia Layer (SDL). It is enhanced by a high-level library that allows
the easy manipulation of sprites and movable screen objects with pixel-accurate
collision detection. This library , combined with Lush’s simple syntax , makes
it ideal for developing simple video games and for teaching programming to
children.

Lush contains a library of image processing functions to load , save , resize
and resample , warp , filter , and analyze images. Mathematical morphology
operations such as connected component analysis , distance transform , erosion
, and dilation , are also available for bitonal images. It also includes classes and
functions for easily grabbing video using the Video4Linux API.

Lush includes a graph library that allows grammar and finite state machine
construction , graph transduction and composition , and viterbi search algo-
rithm.

Lush includes an extensive library for gradient-based machine learning ,
including neural networks , radial basis functions , support vector machines ,
and many others. This library is based on an innovative object-oriented design
that allows to build large learning machines out of multiple learning modules
and to train them cooperatively. Commercially used optical recognition systems
have been built with this library.

In addition , Lush provides various interfaces to multimedia libraries , in-
cluding Video4Linux (video grabbing) and ALSA (audio recording/playing).

1.4 Why Lisp?

In some segments of the software industry , Lisp is sometimes perceived as an
oddity of essentially academic interest. Its theoretical computer science heritage
also causes common misconceptions about Lisp , such as being inefficient and
difficult to learn. So why choose Lisp? We chose Lisp because contrary to the
common prejudice , it is extremely easy to learn , in addition to being flexible
, efficient , and compact. Lisp has such a simple , clean and flexible syntax
that it is probably the easiest language to learn (at the other extreme , you
will find Perl). Our experience with teaching C developers to use Lush is that
they become proficient at it in a few days. Script language designers often make
the mistake of not only designing their own language functionalities , but also
designing their own syntax. Examples of this include MatLab , Mathematica ,
S+ , and many others. Why invent a new syntax when a good one such as Lisp
already exists? Lush is an object-oriented dialect of Lisp that puts the emphasis
on ease of use , efficiency for numerical operations (unlike many traditional Lisp
implementations) , and easy interfacing with existing code written in C.

Another unique advantage of Lisp is that it is a ”programable programing
language”. In Lisp , a program is just a data structure that can be created
and manipulated just like any other data structure. In other words , Lisp pro-
grams can create other Lisp programs. This allows users (and not just language
designers) to extend the language themselves ad infinitum. This feature also
makes it easy to write such things as syntax transformers , programs that op-



22 CHAPTER 1. INTRODUCTION TO LUSH

timize themselves , compilers , automatic differentiators , etc. Most users will
probably stay away from writing such things , but they will profit from the work
of others in these areas (the CLush compiler is an example).

1.5 What does LUSH stand for?

LUSH is supposed to stand for ”Lisp Universal SHell” or something like that.
But English dictionaries tell another tale. According to the 1914 edition of the
Century Dictionary (http://century-dictionary.com), Lush has 4 main meanings
in English:

LUSH (1)
- Adjective

1. Slack; limp; flexible.
2. Mellow; easily turned, as ground.
3. Fresh, luxuriant, and juicy; succulent, as grass or other vegetation.

- Noun
1. A twig for thatching. [Prov. Eng.]

LUSH (2)
- Verb Intransitive

1. To rush violently.
2. To splash in water.

LUSH (3)
- Noun

1. Beer; intoxicating drink. [Slang.]
- Verb

1. To drink; tipple on. [Slang.]
2. To drink intoxicating liquor. [Slang.]

LUSH (4)
- Noun

1. The Burbot (fresh water cod fish).

To some of us, Lush certainly appears fresh, luxuriant, juicy, succulent,
flexible, mellow, and intoxicating.

To a few others, it might appear slack, limp and fishy.
You be the judge.

1.6 History of Lush

Lush is the direct descendent of the SN system which was originally developed
by Leon Bottou and Yann LeCun as the front-end of a neural network simulator.
Various incarnations of SN have been developed continuously since 1987 , some
of which were sold commercially by Neuristique S.A. in France , and eventually
grew into a full-fledged prototyping and development environment.



1.6. HISTORY OF LUSH 23

The versions developed at AT&T Bell Labs , and then at AT&T Labs and
at the NEC Research Institute were used to build many succesful technologies
and products. The most notable ones are:

• a handwriting recognition system used by many banks across the world to
read checks automatically. In fact , some ATM machines made by NCR
(that can read checks) run compiled SN code on embedded DSP boards.

• the prototype of the DjVu image compression system.

• numerous machine learning algorithms developed at AT&T since 1988 ,
including the ”LeNet” family of convolutional neural networks and some
early implementations of the Support Vector Machine algorithm.

SN was primarily used internally at AT&T Bell Labs for many research
projects in machine learning , pattern recognition , and image processing. But
its various incarnations were used at AT&T Labs , Lucent , the Salk Institute
, the University of Toronto , Universite of Montreal , UC Berkeley , and many
other research institutions. The commercial versions of SN were used in several
large companies as a prototyping tool: Thomson-CSF , ONERA , ....

Contributors include: Leon Bottou , Yann LeCun , Jie Huang Fu , Patrice
Simard , Yoshua Bengio , Jean Bourrelly , Patrick Haffner , Pascal Vincent ,
Sergey Ioffe , and many others.

In 2001 , AT&T and Neuristique released their respective versions under
the GPL , allowing the development and distribution of Lush. Turning SN into
Lush was done by Yann LeCun , Leon Bottou and Jie Huang-Fu at the NEC
Research Institute.

Here is a family tree of the various incarnations of SN and Lush:

SN(1987) neural network simulator for AmigaOS (Leon Bottou, Yann LeCun)
|
SN1(1988) ported to SunOS. added shared-weight neural nets and graphics (LeCun)
| \\
| SN1.3(1989) commercial version for Unix (Neuristique)
| /
SN2(1990) new lisp interpreter and graphic functions (Bottou)

| \\
| SN2.2(1991) commercial version (Neuristique)
| |
| SN2.5(1991) ogre GUI toolkit (Neuristique)
| / \\
\\ / SN2.8(1993+) enhanced version (Neuristique)
| \\
| TL3(1993+) lisp interpreter for Unix and Win32 (Neuristique)
| [GPL]
| \\_______________________________________________



24 CHAPTER 1. INTRODUCTION TO LUSH

| |
SN27ATT(1991) custom AT&T version |
| (LeCun, Bottou, Simard, AT&T Labs) |
| |

SN3(1992) IDX matrix engine, Lisp->C compiler/loader and |
| gradient-based learning library |
| (Bottou, LeCun, AT&T) |
| |

SN3.1(1995) redesigned compiler, added OpenGL and SGI VL |
| support (Bottou, LeCun, Simard, AT&T Labs) |
| |

SN3.2(2000) hardened/cleanup SN3.x code, |
| added SDL support (LeCun) |
| _______________________________________________________|
|/
|

ATTLUSH(2001) merging of TL3 interpreter + SN3.2 compiler
[GPL] and libraries (Bottou, LeCun, AT&T Labs).
|

LUSH(2002) rewrote the compiler/loader (Bottou, NEC Research Institute)
[GPL]
|

LUSH(2002) rewrote library, documentation, and interfaced packages
[GPL] (LeCun, Huang-Fu, NEC)
|

1.7 What is Lush good for?

Lush is a good tool for a variety of applications. It was originally developed
as an environment for experimentation and development of machine learning,
neural nets, and pattern recognition applications, but over the years, it has
grown into a full-fledged language and rapid development environment.

Here are examples of situations in which Lush (or its predecessor SN) have
been used:

• as a simulation environment for neural network and machine learning ex-
periments.

• as a Matlab-like prototyping tool for numerical computation, signal pro-
cessing, image processing, statistical estimation,...

• as a ”control/script language” for software projects.

• as a super debugger and diagnostic tool for large applications

• as a quick prototyping tool for GUI-based applications.



1.7. WHAT IS LUSH GOOD FOR? 25

• as a script language for quick hacks.

Here is a small subset of the research projects that have been done with
Lush:

• numerous projects in handrwiting recognition

• many projects in neural network, machine learning, and statistical esti-
mations

• data mining, fault detection, and database marketing projects.

• image processing research

A few full-fledged comercial applications have been built with Lush, includ-
ing:

• a complete check amount reader now integrated in NCR’s automatic teller
machines and large back-office check reading machines (Lush-generated
code runs on DSP boards). This is a huge piece of complicated code
(60,000 lines of Lush Lisp code automatically converted to C).

• Early version of the foreground/background segmentation module for the
DjVu image compression system.

• a neural network simulator and neural network training tool.

• a pen-based data entry systems with handwriting recognition



26 CHAPTER 1. INTRODUCTION TO LUSH



Chapter 2

Getting Started with Lush:
a quick tutorial

Author(s): Yann LeCun

2.1 Installing Lush on Unix

get the tarball from [ http://sourceforge.net/projects/lush ], cd to a convenient
place (say /home/your-home-directory or /usr/local) and upack the tarball.
Then cd to lush and type ./configure then make . If you want to install the
Lush executable so that all users on your machine have access to Lush , su to
root , and type make install . Otherwise , simply add lush/bin to your shell
path.

Compiling and installing lush requires that you have certain packages and
libraries available. In particular , you need libiberty.a , which is not installed by
default on certain Linux distributions (e.g. Mandrake 8.2 has it in libbinutils2-
devel-2.11.92.0.12-6mdk).

To enjoy the full capabilities of Lush , you may also want to install SDL
and its development libraries (e.g. on Mandrake 8.2 libSDL1.2-1.2.3-6mdk and
libSDL1.2-devel-1.2.3-6mdk). It is also preferrable to set up OpenGL is correctly
on your machine (including the ”development” packages that contain header files
etc).

In addition , you may optionally install:

• GSL: the GNU Scientific Library available at [http://sources.redhat.com/gsl
]

• The LAPACK and BLAS numerical libraries (which many Linux distros
have pre-packaged)

• The Intel Computer Vision Library available at [ http://www.intel.com/software/products/opensource/libraries/cvfl.htm
] [ http://opencv.sourceforge.net ]

27



28CHAPTER 2. GETTING STARTED WITH LUSH: A QUICK TUTORIAL

2.2 starting Lush

If the lush executable was installed in your path , you can start lush by sim-
ply typing lush at the Unix prompt. Otherwise you can make a symbolic link
from anywhere in your path to where the lush executable resides (most likely
/usr/local/lush/bin/lush or /wherever-you-installed-lush/bin/lush )

amiga\\% lush
LUSH Lisp Universal Shell (compiled on Oct 17 2002)

Copyright (C) 2002 Leon Bottou, Yann Le Cun, AT&T Corp, NECI.
Includes parts of TL3
Copyright (C) 1987-1999 Leon Bottou and Neuristique.

Includes selected parts of SN3.2:
Copyright (C) 1991-2001 AT&T Corp.

This program is free software; it is distributed under the terms
of the GNU Public Licence (GPL) with ABSOLUTELY NO WARRANTY.
Type ‘(helptool)’ for details.

... loading startup file "/home/yann/lush/sys/sysenv.lsh".

... loading library file "/home/yann/lush/lsh/lushenv.lsh"
[compat.lsh]
[graphenv.lsh]
[brace.lsh]
[lushrc.lsh]
?

To exit Lush , simply hit Control-D at the prompt.
If you have emacs installed on your system , it is highly recommended to run

Lush from within Emacs so as to enjoy such niceties as command-line editing
, history , and IDE-like features. See the next section ”setting things up” for
details on how to do this.

2.3 Setting things up

Lush can be run from the shell prompt. It provides command line editing ,
history , and symbol and file name completion.

Many will prefer to run Lush under Emacs. To make this convenient , the
following line should be added to the .emacs file in your home directory:

(load "your-lush-dir/etc/lush.el")

This file provides two functionalities in Emacs:

• The ability to start Lush within Emacs by typing Meta-X lush (META-
X is emacs-speak for ESC-X or ALT-X). The lush executable must be



2.4. REPORTING BUGS AND PROBLEMS 29

in your shell path for this to work. Lush will run in Emacs’s so-called
”inferior-lisp” mode. The current directory in which Lush is started is the
directory of the file in the buffer you were editing right before starting
Lush. It is convenient to split the Emacs window into two. The bottom
window will be the Lush execution buffer (called ”*inferior-lisp*”) while
the top window will contain the Lush source file being worked on.

• A Lush mode for Emacs that is automatically activated when a .lsh file is
being edited , which provides keyword highlighting , automatic indentation
, matching paren flashing , etc.

Emacs’s Lisp/Lush mode provides a set of nice command to facilitate Lisp
programming. Among them are C-M-e (Ctrl-Meta-e) to jump to the end of a
function , C-M-a to jump to the beginning , C-M-q to indent/format a function
, and C-M-x to send the function or expression in which the cursor is to the
interpreter (assuming it is running in the *inferior-lisp* buffer).

2.4 Reporting Bugs and Problems

If you encounter a bug or want to signal a problem , go to: [ http://sourceforge.net/tracker/?atid=410163&group id=34223&func=browse
] , click ”Submit New” , and enter a bug report

If you want to request a new feature , go to [ http://sourceforge.net/tracker/?atid=410166&group id=34223&func=browse
] , and click ”Submit New”.

2.5 Getting Help and Browsing the Documen-
tation

Lush has an on-line documentation system. It can be invoked by typing (helptool)
at the Lush prompt , which will popup a graphic browser window with the
manual. A non-graphic version of the on-line help can be invoked by typing
^Atopic for help on functions or concepts whose name include topic (the ˆA
can be typed either as Caret and A or as Control-A , but the latter form is
inconvenient when running Lush within Emacs). Here is an example:

? ^Aregex
Search Results for: regex
1. Regular Expressions (regex).
2. (regex-match <r> <s>)
3. (regex-extract <r> <s>)
4. (regex-seek <r> <s> [<start>])
5. (regex-subst <r> <s> <str>)
6. (regex-rseek <r> <s> [<n> [<gr>]])
7. (regex-split <r> <s> [<n> [<gr> [<neg>]]])
8. (regex-skip <r> <s> [<n> [<gr> [<neg>]]])



30CHAPTER 2. GETTING STARTED WITH LUSH: A QUICK TUTORIAL

9. (regex-count <r> <s>)
10. (regex-tail <r> <s> [<n> [<gr> [<neg>]]])
11. (regex-member <rl> <s>)
12. (glob <regex> <l>)
choice? 2
------------------------------------------------------------------------
(regex-match <r> <s>) [DX]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Returns <t> if regular expression <r> exactly matches the entire string
<s>. Returns the empty list otherwise.
Example:
? (regex_match "(+|-)?[0-9]+(\\\\.[0-9]*)?" "-56")
= t

= ()
?

The list of symbols whose name contains a particular string can be listed
using ”ˆSsymbolstring”.

? ^Sregex
cleanup-regex regex regex-count regex-member
regex-rseek regex-skip regex-split regex-tail
regex_extract regex_match regex_seek regex_subst

= ()

2.6 Basic Syntax

The Lush syntax is probably one of the simplest you will find in any program-
ming languages. It is based on Lisp. Don’t be scared away by the word ”Lisp”!
Lush is probably one of the easiest-to-learn language you will ever encounter.
The big idea is that every expression is a list enclosed in parentheses which,
when ”evaluated”, returns a result. The first element of the list is the function
being called, and the remaining elements are its arguments. So instead of typing
sqrt(4) to call the square root function like in C, you type (sqrt 4) .

Here is an example of how an expression typed at the Lush prompt is eval-
uated and its result printed:

? (sqrt 4)
= 2

The list notation is also used for what we generally think of as infix operators,
which in Lush (and other Lisps) are just functions like any other. Instead of
writing 3+4 , we write (+ 3 4) :



2.6. BASIC SYNTAX 31

? (+ 3 4)
= 7

Arguments of most functions are evaluated before the function is called,
which allows nested expression:

? (sqrt (+ 3 4))
= 2.6458

Words like sqrt or + in the previous example are called symbols. Symbols
can be assigned a value. The value of the symbol sqrt in the above example is
a function that returns the square root of its argument. The value of a symbol
can be assigned to any lisp object, and therefore is used as the basic mechanism
for variables. Assigning a value to a symbol is generally performed with the
function setq :

? (setq x 5)
= 5
? (* x x)
= 25
? (setq x "cou")
= "cou"
? (setq x (concat x x))
= "coucou"

When not assigned to a value, symbols contain nil , which is printed as (and
equivalent to) the empty list ” () ”. The empty list nil is used to represent
the value ”FALSE” returned by a boolean expression like

(> (- 2 4) 1)
= ()

Variables can be set to any type of Lush object. In interpreted mode, the
types of the variables need not be declared, but they must be declared if the
code is to be compiled (more on that later). Variables can be assigned numbers,
matrices and vectors, strings, lists, functions, macros, classes, hash table, and
several other predefined objects types (such as windows and files), as well as
user-defined objects (instances of user-defined classes).

2.6.1 Symbol Names and Special Characters

Symbol names in Lush are case-insensitive (i.e. SQRT and sqrt are the same
variable). Lush makes no difference between underscores and dashes (hyphens)
in symbol names. So idx-sum is the same as idx sum . Symbol names cannot
contain certain characters: parentheses , spaces , forward and backward quotes



32CHAPTER 2. GETTING STARTED WITH LUSH: A QUICK TUTORIAL

, commas , curly braces , square brackets , hash , caret , tilde , and control
characters. Those characters play special roles in the Lush reader.

By convention , sub-words of a symbol name are often delimited by hyphens
and occasionally by dots:

gsl-my-new-pointer brace.read

2.7 Basic Types

Lush has a small number of basic types, a number of not-so-basic built-in types,
and a mechanism for creating new types (classes). The basic types include num-
bers (stored as 8-byte double-precision floating point numbers), generic pointers,
and list cells. The not-so-basic types include strings, symbols, seven major types
of functions (called DE, DF, DM, DX, DY, DH, and DZ), nine types of vector
storage structures (for storing bytes, unsigned bytes, shorts, ints, floats, dou-
bles, generic pointers, and lisp objects), one type of vector/matrix/tensor access
structure, two types of file descriptors, hash tables, graphic windows, classes,
and dates. New types with slots and methods (a la C++) can also be defined
by deriving from the base class object .

Some of the types can be entered as literals:

• numbers: (setq x -3.4e6)

• strings: (setq x "coucou")

• symbols: (setq x ’coucou)

• lists: (setq x ’(1 2 3))

Numbers and strings have the interesting property that they evaluate to
themselves, i.e. they return themselves when typed on the line or in an expres-
sion. On the other hand, symbols evaluate to their assigned value, and lists
evaluate to the result of applying their first element (interpreted as a function)
to the rest of the elements (the arguments). That’s why the symbol and the list
in the above example are preceded by a quote. The quote prevents what follows
from being evaluated. Without the quote coucou would return its value (or
the empty list () if it has no value), while (1 2 3) would produce an error
because 1 is not a function.

2.8 defining functions

Functions can be defined in many ways, but the most common one is to use
the de construct (similar to the defun construct in most other Lisps). The
general form is:

(de <name> (<arg1>....<argn>) <body1>....<bodym>)



2.9. LOOPS, CONDITIONALS, LOCAL VARIABLES, AND SUCH 33

Here is a specific example:

? (de square (x) (* x x))
= square
? (square 4)
= 16

This definition should be interpreted as follows. de means ”define function”,
it is followed by the function name ” square ”, a list of formal arguments (x)
, and the body of the function (* x x) , which means multiply x by itself and
return the result. The return value of the function is the value returned by the
last evaluation in the body bodym .

The definition of a particualr function can be displayed by typing ^Pfunctionname
:

? ^Psquare
(de square (x)
(* x x) )

= t

The directive ”ˆP”, like ”ˆA” introduced earlier is a so-called macro-character.
Macro-characters are special combinations of characters that are translated into
function calls by the interpreter. Lush has several predefined macro-characters
to reduce typing for several commonly used interactive functionalities. A par-
ticularly useful one is ”ˆLfilename” which loads a Lisp source file (more on this
later).

2.9 Loops, conditionals, local variables, and such

Lush provides traditional loop constructs such as for , while , repeat , an so
on. Here is an example of how to compute the sum of the inverses of the first
10 integers (i.e. the 10th term of the harmonic series).

? (setq z 0)
= 0
? (setq i 0)
= 0
? (while (< i 10) (incr i) (incr z (/ i)))
= 2.929

the function incr increments its first argument by the value of its second
argument , or by 1 if the second argument is not present , and returns the result.
The function / called with one argument returns its inverse.

The above example is quite awful because it leaves two global variables i
and z laying around for no reason. A cleaner way of doing things consists in



34CHAPTER 2. GETTING STARTED WITH LUSH: A QUICK TUTORIAL

using temporary variables that are automatically destroyed when they are no
longer needed. This is done with the let* construct:

(let* ((z 0) (i 0))
(while (< i 10) (incr i) (incr z (/ i))))

In its most general form , the let* construct is used as follows:

(let* ((<var1> <value1>) ... (<varN> <valueN>))
<body1> ... <bodyP>)

It creates temporary local variable var1 ... varN , sets them to the values
value1 ... valueN respectively , evaluates body1 ... bodyP and returns the
result of the evaluation of bodyP . The values of the variables are destroyed
upon exiting the let* . In fact , if a temporary variable created in a let* has
the same name as a preexisting variable , the preexisting value will be temporary
”masked” during the life of the temporary variable. The preexisting value will
be restored upon exit:

(setq z 345)
= 345
? (let* ((z 0) (i 0)) (while (< i 10) (incr i) (incr z (/ i))))
= 2.929
? z
= 345

For the interested reader , Lush uses ”dynamic variable binding” , in contrast
with many other languages (particularly compiled ones) that use lexical scoping.

The code above can be encapsulated in a function using the de construct:

? ;; compute the n-th term of the harmonic series
? (de harmonic (n)

(let* ((z 0) (i 0)) (while (< i n) (incr i) (incr z (/ i)))))
= harmonic
? (harmonic 10)
= 2.929
? (printf "\\%18.14f\\n" (harmonic 10))
2.92896825396825

= ()

In Lush , the text that follows one or several semi-colons on a line is taken
as comments and ignored by the interpreter.

Conditional constructs include if , when , cond , and selectq . The basic
form of the if construct is as follows:



2.10. COMPILING LUSH FUNCTIONS 35

(if <conditional-expression>
<evaluate-if-non-nil>

<evaluates-if-nil-1>
<evaluates-if-nil-2>
.....
<evaluates-if-nil-n>)

If the conditional expression returns a non-nil result , the expression evaluate-if-non-nil
is evaluated and its result returned. If it returns nil , the remaining expressions
are evaluated , and the result of the last one is returned. Multiple expressions
can be grouped in the evaluate-if-non-nil part by grouping them in a progn
construct: (progn expr1 ... exprN ) . To illustrate the use of if , here is
a particularly stupid but didactic implementation of a function that compute
the n-th Fibonacci number:

(de fibo (n)
(if (= n 0) ; test if n equals 0

0 ; if yes, return 0
(if (= n 1) ; else test if n equals 1

1 ; if yes return 1
(+ (fibo (- n 1)) (fibo (- n 2))))))

This is an example of recursive function (a function that calls itself) , a con-
cept dear to the heart of many Lisp aficionados , but whose usage is somewhat
discouraged in Lush (the Lush interpreter likes recursive functions , but the
Lush compiler doesn’t like them at all).

2.10 Compiling Lush functions

To improve the execution speed , Lush functions can be compiled. The Lush
compiler has certain features and limitations that conspire to make Compiled
Lush (CLush) a distinct language , different from interpreted Lush is several
ways. For starters , to avoid inefficient run-time type-checking in compiled code
, one must define the type of all the variables before a function can be compiled.
The compilable version of harmonic is:

? ;; define the function
? (de harmonic (n)

((-double-) n)
(let* ((z 0) (i 0))
((-double-) z i)
(while (< i n) (incr i) (incr z (/ i)))))

= harmonic



36CHAPTER 2. GETTING STARTED WITH LUSH: A QUICK TUTORIAL

The lines ((-double-) n) and ((-double-) z i) declare the type of the
argument n and the local variables z , and i as double precision floating point
numbers. Before we compile the function , let’s measure the number of CPU sec-
onds required to compute the sum of the million-th harmonic sum in interpreted
mode (this is on a 800MHz Pentium running Linux):

? (time (harmonic 1000000))
= 2.05

We can compile the function by simply typing (dhc-make "junk" harmonic)
. Lush will translate the Lisp code into C and write the C source into the file
”C/junk.c”. The C compiler will then compile the code and generate the object
file ”C/ architecture /file.o” , where architecture is the name of the archi-
tecture on which Lush is currently running (e.g. i686-pc-linux-gnu). This allows
to maintain object files for different architectures in a single source directory
tree. Then , Lush’s dynamic loader will automagically load the object code back
into the interpreter.

(dhc-make "junk" harmonic)
Preprocessing and parsing harmonic ...
Generating C for harmonic ...
gcc -DHAVE_CONFIG_H -I/home/yann/lush/include -DNO_DEBUG -Wall -O3 -funroll-loops -mcpu=i686 -pthread -c /tmp/C/junk.c -o /tmp/C/i686-pc-linux-gnu/junk.o
= "/tmp/C/i686-pc-linux-gnu/junk.o"

Now let’s see how many CPU seconds it takes to execute the compiled version
of the code. We need to repeat the code a few times to get a meaningful figure:

? (time (repeat 50 (harmonic 1000000)))
= 2.37

The speedup over the interpreted version is around 45. An important point
to remember is that the interpreter always treats numbers as double precision
floating point , while numbers in compiled code are treated as specified by
their type declaration. Lush understands the following scalar types: -ubyte-,
-byte-, -short-, -int-, -float-, -double-, -bool-, -gptr- . they cor-
respond respectively to the C types unsigned char, signed char, short,
int, float, double, unsigned char, void* .

Just for curiosity , let’s look at the C code generated by Lush’s Lisp to C
compiler in current-dir/C/junk.c :

/*
* FUNCTION harmonic
*/
extern_c real



2.11. WRITING LUSH PROGRAM FILES 37

C_harmonic (real L1_n)
{
TRACE_PUSH ("C_harmonic");
{

real L_Tmp0;
{
real L2_1_z;
real L2_2_i;
L2_1_z = 0;
L2_2_i = 0;
L_Tmp0 = 0;

/* While loop */
goto L_1;

L_0:
{
L2_2_i = (L2_2_i + 1);
L2_1_z = (L2_1_z + (1 / (real) L2_2_i));
L_Tmp0 = L2_1_z;
}

/* While loop test*/
L_1:
{
if ((L2_2_i < L1_n))

goto L_0;
}

}
TRACE_POP ("C_harmonic");
return L_Tmp0;

}
}

It looks a bit funny with all these gotos , but it’s reasonably simple and
straightforward C code.

2.11 Writing Lush program files

The normal way to write Lush code is to open a file , say ”toto.lsh” , in your fa-
vorite editor , and to write all the necessary function definitions and compilation
instructions in it. The file can then be loaded into the interpreter with (load
"toto") . For example , a Lush file for the above function would contain:

;; a function that computes the sum of the inverses of the first n integers.
(de harmonic (n)

((-double-) n)
(let* ((z 0) (i 0))



38CHAPTER 2. GETTING STARTED WITH LUSH: A QUICK TUTORIAL

((-double-) z i)
(while (< i n) (incr i) (incr z (/ i)))))

;; compile the function to toto.c and toto.o
;; if the first arg is nil, the .c file has the same
;; base name as the file being loaded.
(dhc-make () harmonic)

When loading this file , Lush processes its content as if it were typed at the
prompt. Therefore , loading this file will define harmonic , and then compile it.
If you subsequently reload the same file , the compilation will only occur if the
source file toto.lsh was modified since the last compilatione.

The use of GNUemacs to edit Lush files is very strongly recommended as it
has a special Lisp mode that flashes matching parentheses , highlights keywords
and comments , and automatically indents Lisp expressions (using ALT-CTRL-
Q). More details on how to setup Emacs are given in the ”setting things up”
section of this tutorial.

2.12 On-line Documentation

As we said earlier , Lush possesses an on-line documentation system. This
system can be used by Lush users to document their own programs. Its use is
strongly recommended. Documenting functions or other objects can be done
with the “#?” macro-character. Here is what toto.lsh should have looked
like in the first place:

#? (harmonic <n>)
;; computes the sum of the inverses of the first <n> integers
? (de harmonic (n)

((-double-) n)
(let* ((z 0) (i 0))
((-double-) z i)
(while (< i n) (incr i) (incr z (/ i)))))

;; compile the function to toto.c and toto.o
(dhc-make () harmonic)

The string after the ”#?” is what will be searched when search feature
of (helptool) is invoked on this file. Contiguous comment lines immediately
following the ”#?” line constitute the text of the help. After this file is loaded
, the on-line help for harmonic and all the functions in the same file can be
displayed with:

(helptool "toto.lsh")



2.13. MULTIPLE FILE PROGRAMS AND SEARCH PATH 39

2.13 Multiple file programs and search path

Sometimes , a Lisp program requires other Lisp files to be loaded in order to run.
For example imagine that we have written a set of signal processing functions
in the file "/home/yann/lsh/dsp.lsh" , and now we are writing a program
"tutu.lsh" that uses some of those functions. The beginning of "tutu.lsh"
would look like the following

#? *** My Cool Signal Processing Application
;; this is my really cool dsp application.
(libload "/home/yann/lsh/dsp")
.....

(the .lsh extension is automatically added if required).
The function libload has an interesting features: it remembers which files

were already libloaded and loads them only once into the interpreter (subse-
quent calls to libload with a previously libloaded file will have no effect). There
is an exception to this behavior: libload keeps track of the tree of depen-
dencies between Lush program files , and also keeps track of the times of last
modification of each file. When a file is loaded with libload , all the files on
which this file depends are also loaded , but only if they have been modified
since last time they were libloaded. Here is a possible scenario: file A libloads
files B and C. File A is libloaded , as a result file B and C are libloaded. File B
is modified. File A is libloaded again , as a result B is re-libloaded , and A is
re-libloaded. C is not re-libloaded since it was previously libloaded and was not
modified. This behavior is recursive (it applies to all files directly or inderectly
libloaded by A).

In certain cases , the lower-level function load may be preferable. load
simply loads a file:

? (load "/home/yann/lsh/dsp")

Putting absolute path names in a program is generally a bad idea since pro-
grams have a pernicious tendency to move from time to time. The solution is to
rely on Lush’s search path mechanism. When any loading directive is executed
, Lush looks for the file in the current directory , and then in the search path.
The default search path includes lush/local, lush/packages, lush/lsh,
lush/sys and several subdirectories of lush/lsh . The search path can be
user-extended with the addpath function:

(addpath "/home/yann/lsh")

now , loading "dsp.lsh" only requires:

(libload "dsp")



40CHAPTER 2. GETTING STARTED WITH LUSH: A QUICK TUTORIAL

2.14 Calling C functions from Lush

The ability to freely mix Lisp and C code is one of the most interesting features
of Lush.

Let’s say you have written a C file called titi.c with the following content:

float sq(float x)
{
return x*x;

}

You have compiled the file and produced the object file titi.o . Calling
sq from the Lush interpreter is as simple as the following. First , dynamically
load the object file into Lush

? (mod-load "titi.o")

then , write a lisp function whose only purpose is to call sq .

? (de square (x) ((-float-) x)
(cpheader "extern float sq(float);")
(to-float #{ sq( $x ) #} ))

Here is what the above means: (de square (x) ...) means define a new
Lisp function called square with a single argument x . ((-float-) x) simply
declares x as float. (to-float ....) converts its argument to float (like a
cast in C). The sequence # .... # allows to insert C code within Lisp code.
Therefore # sq( $x ) # simply calls the C function sq and returns the result.
Lisp variables can be inserted in in-line C code by prepending a Dollar sign ,
thus $x refers to the Lisp float variable x . The cheader directive allows one
to include a string in the ”header” section of the C files generated by the Lisp to
C compiler. We use it here to specify the type of the argument and the return
value of sq .

We can now compile the above function using:

? (dhc-make () square)

Two file C/square.c and C/i686-pc-linux-gnu/square.o will be generated
with the C source and the object code for square . The object code will be
automatically loaded into Lush. Now square can be called from the Lisp in-
terpreter:

? (square 5)
= 25



2.15. MIXING LISP AND INLINE C CODE 41

In the above example , the to-float casting function was used to tell the
compiler what type the returned value has. The following ”cast” functions
are available: to-float, to-int, to-double, to-bool, to-gptr . These
functions cast their argument to the corresponding type.

2.15 Mixing Lisp and inline C code

If we do not have a ready-made C file for our function , we can use the inline
C capability to write code in C right inside the Lisp function. Here is how we
could write the familiar harmonic function this way:

(de harmonic (n)
((-double-) n)
(let ((r 0))
((-double-) r)
#{ { double i=0;

while (i<$n){ i+=1.0; $r+=1/i; };
} #} r))

(dhc-make () harmonic)
Preprocessing and parsing harmonic ...
Generating C for harmonic ...
gcc -DHAVE_CONFIG_H -I/home/yann/lush/include -DNO_DEBUG -Wall -O3 -funroll-loops -mcpu=i686 -pthread -c /tmp/C/junk.c -o /tmp/C/i686-pc-linux-gnu/junk.o
= "/tmp/C/i686-pc-linux-gnu/junk.o"
? (time (repeat 50 (harmonic 1000000)))
= 2.36

That’s about the same time as the version written in compiled Lisp. In
this case , writing directly in inline C was not particularly advantageous , but
there are cases where writing in Lisp is inefficient , awkward , or even outright
impractical. In these cases one can resort to inline C implementations.

2.16 Lists

Lush belongs to the Lisp family , and therefore has lots of functions to manip-
ulate lists. In fact , Lush programs themselves are lists. Lists are sequences
of Lush objects enclosed in parentheses. Things like (+ 1 2) is a list. How-
ever , when the list (+ 1 2) is entered at the Lush prompt , it is immediately
evaluated and discarded right away:

? (+ 1 2)
= 3

To create a list , we must prevent the evaluation from happening. This is
done with the quote function or the ”’” (quote) macro-character:



42CHAPTER 2. GETTING STARTED WITH LUSH: A QUICK TUTORIAL

(quote (+ 1 2))
= (+ 1 2)
? ’(+ 1 2)
= (+ 1 2)

Lists can be put into variables like any other Lisp object:

(setq x ’(+ 1 2))

List elements can be any lisp object , including other lists. Here is a list with
a number , a string , a list of numbers , a symbol , and a list , and a number:

(setq x ’(1 "coucou" (4 5 6) asd (7 (8 9) 10) 20))

Here is another example where the same list as above is assembled from its
members using the list function:

(setq x (list 1 "coucou" ’(4 5 6) ’asd ’(7 (8 9) 10) 20))

The first element (the head) of a list can be obtained with the car function
, and the rest of the list (tail) with the cdr function (pronounced kudder). The
cons function can be used to put a head and a tail together:

? (setq x ’(+ 1 2))
= (+ 1 2)
? (car x)
= +
? (cdr x)
= (1 2)
? (setq z (cons ’+ ’(1 2)))
= (+ 1 2)

A list can be evaluated:

(setq x ’(+ 1 2))
= (+ 1 2)
? (eval x)
= 3

Operations can be performed on all the elements of a list using the all
construct:

? (setq z ’(1 3 5 7 9))
= (1 3 5 7 9)
? (all ((x z)) (- x 1))
= (0 2 4 6 8)



2.17. STRINGS AND REGULAR EXPRESSIONS 43

This says , make a temporary variable x , and avaluate the body of the all
with x set to each element of z in sequence. Then return a list of all the results.

This section only scratched the surface of what can be done with lists. The
reader is referred to the List section in the ”Core Interpreter” chapter of the
Lush manual.

2.17 Strings and Regular Expressions

[under construction]

2.18 Scalars, Vectors, Matrices, Tensors, and
Storages

Lush’s piece de resistance is its matrix engine. Lush can operate on scalars ,
vectors , matrices , or high-dimensional tensors from 0 to 8 dimensions. creating
a tensor of float is done simply with:

? (setq m (matrix 10 8 4)) ; create 3D matrix
= ::INDEX3:<10x8x4>
? (m 3 4 2 45.6) ; set value of element (3,4,2) to 45.6
= ::INDEX3:<10x8x4>
? (m 3 4 2) ; get value of element (3,4,2).
= 45.6

Tensors of various basic types can be created with the functions listed below.
Each function has two versions , the regular version initializes all the elements
to zero , while the version with -nc at the end do not (no clear) and are a bit
faster. All of these functions take 0 to 8 integer arguments that are the sizes in
each dimension:

• double-matrix, double-matrix-nc, real-matrix, real-matrix-nc :
doubles

• float-matrix, float-matrix-nc, flt-matrix, flt-matrix-nc : floats

• int-matrix, int-matrix-nc : 32-bit ints

• short-matrix, short-matrix-nc : 16-bit shorts

• byte-matrix, byte-matrix-nc : 8-bit bytes

• ubyte-matrix, ubyte-matrix-nc : 8-bit unsigned bytes

• gptr-matrix, gptr-matrix-nc : generic pointers ( void* )



44CHAPTER 2. GETTING STARTED WITH LUSH: A QUICK TUTORIAL

A matrix with 0 dimension is called a scalar. It is different from a regular
number in that it behaves like a pointer to a number. (the value of a scalar
passed as argument to a function can be modified by that function).

Matrices of doubles can be entered literally using square brackets:

(setq m [[0 2 3 4][5 6 7 8]])

Matrices of other types can be specified by adjoining an apropriate character
after the open bracket. Here is how to create a vector of floats:

(setq m [f 0 2 3 4])

Characters f , i , s , b , u , a specify float , int , short , byte , ubyte ,
and atom respectively. Here is an example with atoms:

(setq m [a "choucroute" "garnie"])

Matrices are really composed of two separate entities:

• the storage or srg which contains the following fields: a pointer to the
actual data , an element type identifier (and the size thereof) , and flags
that indicate if the data is writable or not , if it is in RAM or memory-
mapped from a file.

• the index or idx points to a srg and contains the following fields: the
number of dimensions of the tensor , the size in each dimension , the
address increment from one element to the next in each dimension (called
modulo ) , and the offset of the first tensor element in the storage . This
structure allows multiple idx to point to the same srg thereby allowing
the data to be accessed in multiple ways without copying.

2.18.1 Working with Storages

srg and idx can be created independently of each other. So for example (setq
s (double-storage 8)) creates a new storage of doubles with 8 elements. The
call (double-storage) returns an unsized storage. Creating an idx on a par-
ticular storage s can be done with (new-index s ’(3 4)) . This resizes the
storage s to 12 elements (if it has less than that) , and creates an idx of size (3
, 4) on this storage. Creating other idxes on the same storage allows to access
the same piece of data in multiple ways.

When directly accessing storage elements , storages behave like 1D idx (vec-
tors). Storages can be created , allocated in memory , or memory-mapped to
a file. Storage creation function are provided for the following types: doubles ,
floats , ints , shorts , bytes , unsigned bytes , generic pointers , and lisp object
pointers.



2.18. SCALARS, VECTORS, MATRICES, TENSORS, AND STORAGES45

2.18.2 Manipulating Tensors and IDX

Several functions are provided to create and manipulate the ”idx” structure and
its various fields.

• (new-index s dimlist) creates a new idx on storage s . The dimen-
sions of the idx are given in dimlist . The storage is resized if needed.

• (idx-clone m) make a clone of idx m (a copy of m that points to the
same storage).

• (copy-matrix m [r]) returns a fresh copy of tensor m . if r is present
, m is copied into r with apropriate type conversion if necessary.

• (idx-ndim m) return number of dimensions.

• (idx-dim m n) return size of n-th dimension.

• (idx-modulo m n) return number of elements that separate two succes-
sive elements in the n-th dimension.

• (idx-offset m) return offset of first element of m in storage.

• (idx-size m) return size of memory are used by idx data in bytes.

• (idx-storage m) return storage pointed to by m .

• (contiguousp m) returns true if the elements of m are contiguous in
memory.

2.18.3 tensor iterators

Lush provides efficient iterators to cycle over dimensions of a tensor. It is
almost always better to use those iterators , rather than a regular loop with
regular access to array elements because the latter method causes an array
bound checking at each access , while the former doesn’t. The main idx iterator
is idx-bloop whose synopsis is as follows:

(idx-bloop ((s1 idx1) [ (s2 idx2) [...(sn idxn) ]]) body)

Each si will be an idx with one less dimension than the corresponding idxi
, and will simulataneously loop over the successive ”slices” of idxi for each
possible value of the first index. In other words , applying function myfunc to
each element of a vector v1 and putting the result in the corresponding element
in v2 can be done with:

(idx-bloop ((x1 v1) (x2 v2)) (x2 (myfunc (x1))))



46CHAPTER 2. GETTING STARTED WITH LUSH: A QUICK TUTORIAL

x1 and x2 are scalars (i.e. zero-dimensional tensors). The above function
work just as well is v1 and v2 are n -dimensional tensors and myfunc ac-
cepts n-1 -th dimensional tensors as arguments. It should not be assumed
that the multiple evaluations of the body are executed in sequence. They may
be executed in parallel on some implementations of Lush. A similar function
idx-eloop iterates on the last dimension of a tensor instead of the first dimen-
sion. For example , the matrix product operation C = A*B can be written as
follows:

(de idx-m2timesm2 (A B C)
(idx-eloop ((Bj B)(Cj C)) (idx-m2dotm1 A Bj Cj)))

where idx-m2dotm1 is the usual matrix-vector product. The idx-eloop con-
struct simultaneously iterates over all columns of B and C (naturally , the
function idx-m2timesm2 is predefined).

Another idx iterator allows to easily write the inner loop of a tensor operation
in C , while leaving all the bookkeeping to the Lisp:

(cidx-bloop (i_1 [i_2...i_n] (c_1 l_1) [(c_1 l_1)...(c_m l_m)) p_1 [p_2...])

This is somewhat equivalent to n nested idx-bloop s , which will simulta-
neously loop over the first n dimensions of idxs l 1 to l m . The arguments
i 1 to i n are strings containing names of C local variables that will be set to
the loop index in each of the n dimensions. At each iteration , the C variables
provided in strings c 1 to c m will point to the appropriate values in the idxs
l 1 to l m . For example , the following function will fill matrix a with cos(i+j).

(de foo (a)
((-idx2- (-flt-)) a)
(cidx-bloop ("i" "j" ("a" a)) #{ *a = cos(i+j); #}) a)

The return value is (like in idx-bloop) the last idx specified in the declaration
(in the example above , the return value is superfluous).

2.18.4 idx manipulations

Several functions are provided to conveniently manipulate the idx structure
itself. These functions do not manipulate the actual data (and therefore are
efficient) , they merely derive new idx from existing idx to access the data in
new ways.

(narrow m n s [o]) returns a clone of idx m where the size in the n -th
dimension is reduced to s elements , offset by o . This can be used to select
bands or rectangular areas in matrices.



2.18. SCALARS, VECTORS, MATRICES, TENSORS, AND STORAGES47

? (setq m [[0 2 3 4][5 6 7 8]])
= [[ 0.00 2.00 3.00 4.00 ]

[ 5.00 6.00 7.00 8.00 ]]
? (narrow m 1 2 1)
= [[ 2.00 3.00 ]

[ 6.00 7.00 ]]

(select m n s) return a clone of m , with the n -th dimension removed
, and which is the s -th ”slice” of m , in the n-th dimension. For example ,
the 3rd column of matrix m in the above example (which is a vector) can be
obtained with

? (select m 1 2)
= [ 3.00 7.00 ]

(unfold m n ksize step) returns an idx with an added dimension at the
end of m obtained by ”unfolding” n -th dimension. More explicitely , successive
rows in the last dimension will contain successive , possibly overlapping , subsets
of size ksize of consecutive elements in the n -th dimension. The separation
between successive subsets is step . Here is an example:

? (setq m [0 1 2 3 4 5 6 7])
= [ 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 ]
? (unfold m 0 3 1)
= [[ 0.00 1.00 2.00 ]

[ 1.00 2.00 3.00 ]
[ 2.00 3.00 4.00 ]
[ 3.00 4.00 5.00 ]
[ 4.00 5.00 6.00 ]
[ 5.00 6.00 7.00 ]]

No data is copied or replicated in the process , i.e. , the three occurences
of the number 2 in the above example actually come from a single memory
location. The size of the new dimension is ksize . If dimn is the size of the
n -th dimension of m , the size of the returned idx in the n -th dimension is
(dimn-ksize)/step + 1 . The values of dimn , ksize , and step must be
such that the new size is an integer.

The unfold function essentially allows to reduce a discrete convolution to a
matrix-vector product. Here is an example:

? (setq m [1 1 0 2 3 4 2 0])
= [ 1.00 1.00 0.00 2.00 3.00 4.00 2.00 0.00 ]
? (setq kernel [-1 2 -1])
= [-1.00 2.00 -1.00 ]
? (setq output (matrix 6))



48CHAPTER 2. GETTING STARTED WITH LUSH: A QUICK TUTORIAL

= [ 0.00 0.00 0.00 0.00 0.00 0.00 ]
? (idx-m2dotm1 (unfold m 0 3 1) kernel output)
= [ 1.00 -3.00 1.00 0.00 3.00 0.00 ]

A subsampled convolution can be implemented by unfolding with a step
larger than 1:

? (setq m [0 1 2 3 4 5 6 7 8])
= [ 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 ]
? (setq z (unfold m 0 3 2))
= [[ 0.00 1.00 2.00 ]

[ 2.00 3.00 4.00 ]
[ 4.00 5.00 6.00 ]
[ 6.00 7.00 8.00 ]]

? (setq kernel [1 2 1])
= [ 1.00 2.00 1.00 ]
? (idx-m2dotm1 z kernel output)
= [ 4.00 12.00 20.00 28.00 ]

Naturally , there is no real need for most programmers to use the unfold
construct because the standard lush library contains efficient 1D and 2D con-
volutions .

(idx-transclone m dimlist) returns a clone of idx m where the dimen-
sions have been permuted according to the list of dimension indices dimlist .
For example (idx-transclone m ’(0 2 1)) permutes the second and third
dimensions (again , no data is moved or copied by this operations).

A few functions are provided to physically hack an idx to change a di-
mension , a modulo , or the offset (repectiveley (idx-changedim m n v) ,
(idx-changemod m n v) , (idx-changeoffset m n) ).

2.18.5 simple tensor operations

Lush has lots of functions that operate on tensors of all types. These include
component-wise unary operations (applying a function to all the elements of a
tensor) , such as abs , atan , clear , copy , cos , sin , exp , log ,
minus , sqrt , .... . They all take the form

(idx-XXX m [r])

where XXX is one of the above function , m is the input matrix (from 0
to 8 dimensions) and r is an optional result matrix which must have the same
dimensions as m . If r is not present , the result is created and returned.

Also available are component-wise dyadic operations such as add , sub ,
mul , div . They take the form

(idx-XXX m1 m2 [r])



2.18. SCALARS, VECTORS, MATRICES, TENSORS, AND STORAGES49

Next come dyadic operations where the second argument is a scalar , such
as (idx-addm0 m s [r]) which adds scalar s to each element of tensor m , or
(idx-addm0acc m s r) which does the same thing but accumulates the result
in r , or (idx-dotm0 m1 s [r]) which multiplies each element of m by scalar
s .

2.18.6 operations between idx and scalars

Multiplying all the elements of an idx by a scalar can be done with:

(idx-dotm0 m s [r])>

where m is an idx of any type and any number of dimensions , s is a scalar
(i.e. an idx with zero dimension) , and r is an optional idx in which the re-
sult will be written. Turning a number into a scalar can be performed with
((double-matrix) number ) . So for example , multiplying all the elements
of a matrix by 10 is done as follows:

? (idx-dotm0 [1 2 3] ((double-matrix) 10))
= [10.00 20.00 30.00 ]

Similarly , function idx-addm0 adds a scalar to all the elements of an idx.

2.18.7 contracting operations with scalar result

A number of functions are provided that take one or two input tensors and write
the result in a scalar. Such functions include dot products , distances , sums
of terms. They ”contract” all the dimensions , i.e. the generalized dot product
of two tensors is the sum of all the products of corresponding terms in the two
tensors:

(idx-dot m1 m2 [r])>

Other such functions include idx-inf (smallest element) , idx-sqrdist
(sum of square difference between two tensor) , idx-sum (sum of all terms) ,
idx-sumsqr (sum of squares) , idx-sup (largest element)

2.18.8 special inner and outer products

There are several functions for performing matrix-vector products , outer prod-
ucts , and such. They include: (idx-m1extm1 m1 m2 [r]) (outer product of
vectors) , (idx-m2dotm1 m v [r]) (matrix-vector multiply) , (idx-m2extm2
m1 m2 [r]) (outer product of matrices which gives a 4D tensor) , (idx-m4dotm2
m v [r]) (product of a 4D-tensor by a matrix where the last 2 dimension of the
tensor are contract with the first two dimensions of the matrix). idx-m4dotm2



50CHAPTER 2. GETTING STARTED WITH LUSH: A QUICK TUTORIAL

can be conveniently combined with appropriate calls to unfold to perform 2D
convolutions , as demonstrated in the libary file lush/lsh/libidx/idx-convol.lsh
.

2.18.9 Simple Linear Algebra

Lush provides a full interface to the Gnu Scientific Library as well as to BLAS
and LAPACK , which contain all the linear algebra anyone could wish for. Using
those functions directly may be a bit complicated , so lush provides a library
with simple forms of the most common functions. This library can be loaded
with (libload "libnum/linalgebra") . It contains the following functions:

• (eigen-symm m) : eigenvalues of real symmetric matrix

• (eigen-symmv m) : eigenvalues and eigenvectors of real symmetric matrix

• (eigen-herm m) : eigenvalues of complex hermitian matrix

• (eigen-hermv m) : eigenvalues and eigenvectors of complex hermitian
matrix

• (svd a v s) : singular value decomposition of real matrix

• (solve-hh a b) : linear system solver (householder method)

• (solve-lu a b) : linear system solver (LU decomposition method)

• (solve-lu-complex a b) : complex linear system solver (LU decompo-
sition method)

• (solve-sv a b) : linear system solver/least square solution (SVD method)

• (inverse-lu a i) : matrix inverse (LU decomposition method)

• (determinant a) : determinant

• (determinant-log a) : log determinant

• (determinant-sign a) : sign of determinant

2.19 Complex Numbers

Complex numbers in Lush are represented as (and totally equivalent to) vectors
of doubles with 2 elements. Lush’s complex numbers library is not automatically
loaded at startup and should be loaded with:

(libload "libnum/libcomplex")

Creating a complex number is done just like creating a vector of 2 doubles , or
using the macro new-complex , which is equivalent to (double-matrix 2) :



2.20. OBJECT-ORIENTED LUSH PROGRAMMING 51

(setq z [3 4]) ; complex literal [real-part imaginary-part]
(setq z (new-complex)) ; allocation of complex [0 0]

Complex vectors and matrices can be created with complex-matrix :

(setq z (complex-matrix 3 3))

which is exactly equivalent to:

(setq z (double-matrix 3 3 2))

Several complex arithmetics and functions are provided. The function names
all begin with the letter c . Complex dyadic functions include c+, c-, c*,
c/, c**, clogb (addition , subtraction , multiplication , division , power ,
complex log with complex base). All commonunary operations on complex are
also provided , including conjugate , inverse , square root , exponential , log , and
trigonometric functions. More details can be obtained in the packages/libnum
section of the Lush manual ( [”libnum: Numerical Library” ]).

The meory layout of complex vectors and matrices so defined are compatible
with the LAPACK and GSL functions that take double complex vectors and
matrices as arguments.

2.20 Object-Oriented Lush Programming

Lush is an object-oriented language that allows users to define hierarchies of
classes with inheritance , slots , and methods by deriving from the root class
object .

Naturally , Lush has a number of built-in immutable classes such as numbers
, list cells , strings , symbols , etc , to which users can add methods (but not
slots). This section will concentrate on user-defined classes.

2.20.1 defining a new class

User defined classes are derived from the root class object with constructs like
this:

(defclass rectangle object width leng)

This can be interpreted as: define the class rectangle as a subclass of object
with two slots width and leng . Subclasses inherit the slots of their superclass.
(which is a moot point here since object has no slot).

A new instance of the class rectangle can be created with the function new
:



52CHAPTER 2. GETTING STARTED WITH LUSH: A QUICK TUTORIAL

(setq r (new rectangle))

By default , the slots are left unfilled (set to the empty list). Accessing slots of
an object can be done with the macro-character ” : ”

? (setq :r:width 10)
= 10
? (setq :r:leng 3)
= 3
? ^Pr
;;*** ::rectangle:819fa08, INSTANCE OF ::class:rectangle
;; FROM CLASS: rectangle
;; width=10
;; leng=3
;; FROM CLASS: object

Classes can be given methods (or virtual member functions in the C++
semantics) defined as in the following example:

(defmethod rectangle area () (* leng width))

This defines the method area for the class rectangle which takes no argument
, and returns the product of the slots leng and width . This is essentially
similar to defining a function with de , except that within the body of a
method , the slots of the object are directly accessible by name as if they were
local variables. Calling the above method can be done as follows:

? (==> r area)
= 30

which can be read as ”send to r the message area ”.
Methods can be passed arguments , and can refer to the current object

through the special variable this . Here is an example of how to compute
the volume of a box whose base is the current object and height is passed as
argument:

? (defmethod rectangle volume (height) (* height (==> this area)))
= volume
? (==> r volume 10)
= 300

2.20.2 inheritance

Lush allows to create subclasses of existing classes. Subclasses inherit the slots
and methods of their parent class. For example , we can define a box class ,



2.21. INPUT AND OUTPUT 53

derived from the rectangle class , and containing a height slot in addition
the inherited width and leng :

? (defclass box rectangle height)
= box

Setting the slots of an object directly as we did in the rectangle example is
considered bad practice. A better alternative is to fill the slots when the object
is created. This can be done by defining a constructor method. The constructor
is a method that has the same name as the class. It is called whenever the new
function is called to create an object of that class. Here is a constructor for box
:

? (defmethod box box (l w h) (setq leng l) (setq width w) (setq height h))
= box
? (setq monolith (new box 9 4 1))
= ::box:8138958
? ^Pmonolith
;;*** ::box:8138958, INSTANCE OF ::class:box
;; FROM CLASS: box
;; height=1
;; FROM CLASS: rectangle
;; width=4
;; leng=9
;; FROM CLASS: object
= ()
? (defmethod box volume () (* width leng height))
= volume
? (==> monolith volume)
= 36

An alternative way to define the volume method would have been to multi-
ply the height by whatever result the area method inherited from rectangle
returns:

(defmethod box volume () (* height (==> this area)))

Class hierarchies are nice , but beginner should be careful not to create deep
hierarchy trees with more than 3 or 4 levels of inheritance. Experience proves
that deeper trees result in hard-to-maintain code.

Unlike C++ , Lush neither support multiple inheritance , nor private slots
and methods.

2.21 Input and Output

[under construction]



54CHAPTER 2. GETTING STARTED WITH LUSH: A QUICK TUTORIAL

2.22 A quick tutorial on Lush Graphics

Lush offers several ways to output graphics. The most common one is the Lush
graphic driver , which provides a small set of graphic primitive to display data
in a window or write it to a PostScript file. Lush also provides interfaces to
the OpenGL API and to the SDL API , but these will not be described in this
section.

Opening a window is simply done with:

(new-window [<x> <y> [<w> <h> [<name>]]])

where the arguments are respectively the position , size and name of the new
window.

Drawing in a window can be done with a collection of simple primitives:

• drawing a line: (draw-line 10 10 100 200)

• setting the drawing color: (color-rgb 0.4 0.1 0.8)

• drawing a rectangle: (draw-rect 10 10 50 80)

• drawing a filled rectangle: (fill-rect 10 10 50 80)

• clearing the screen: (cls)

• displaying an image: (rgb-draw-matrix 10 10 im) where im must be
an NxM , NxMx1 , NxMx3 , or NxMx4 matrix that will be intepreted as an
NxM image with with greyscale or RGB pixels (whose individual values
must be between 0 and 255).

• changing the font and drawing a text:

(font "Helvetica-Bold-20") (gprintf 100 100 "salut les potes")

Double-buffered and flicker-free redrawing can be done with the graphics-batch
function. Used in the form (graphics-batch exp1 exp2 ... exp3) , it will
evaluate all its argument , but any graphic operation performed in that time
will be performed into an off-screen graphic buffer. This graphic buffer will be
slapped on the window as the call to graphics-batch terminates. This allows
smooth double-buffered animation:

(while not-finished
(compute-stuff)
(graphics-batch

(draw-stuff-1)
(draw-stuff-2)
(draw-stuff-3)))



2.23. WRITING EXECUTABLE ”SHELL SCRIPTS” WITH LUSH 55

Here is an example:

(libload "libimage/image-io")
(setq m
(image-read-rgb
(concat-fname lushdir "packages/video4linux/demos/jabba-320x240.jpg")))

(new-window)
(for (i 0 99) (graphics-batch (cls) (rgb-draw-matrix i i m)))

2.23 Writing Executable ”Shell Scripts” with
Lush

Lush can be used to write executable scripts that can be invoked from the Unix
prompt just like shell scripts , Perl scripts , or executable programs.

Rather than a long explanation , here is an example of a Lush script file:

#!/usr/bin/lush @@
(printf "Capitalizing the arguments:\\n")
(each ((arg (cdr argv))) (printf "\\%s \\%s\\n" arg (upcase arg)))

The @@ at the end of the first line tells Lush to run in script mode. In that
mode , Lush does not display the usual startup banner. It load sys/sysenv.lsh
. It sets the variable argv to a list of strings , where the strings are the command
line arguments (including the command itself). Finally it reads and evaluates
the content of the script file. It is important to note that lsh/lushenv.lsh
is not loaded automaticall in script mode. To have the same environment
as in regular Lush , the first line of a script should probably be (libload
(concat-fname lushdir "lsh/lushenv")) .

The library libc/shell.lsh contains several functions to facilitate the writ-
ing of shell scripts. Among other things , it contains Lisp versions of common
shell functions such as ls , cp , mv , etc.

Here is another script example: a photo slideshow program in 12 lines of
Lush. Put this in a file (say lush-slideshow ) , make it executable with chmod
a+x lush-slideshow . Then , at the shell prompt , type: lush-slideshow
photo1.jpg photo2.jpg photo3.jpg :

#!/usr/bin/lush @@
(libload (concat-fname lushdir "lsh/lushenv"))
(libload "libimage/image-io")
(libload "libimage/rgbaimage")
(setq window (x11-window 1 1 640 480 "Slide Show"))
(while t
(each ((f (cdr argv)))



56CHAPTER 2. GETTING STARTED WITH LUSH: A QUICK TUTORIAL

(rgb-draw-matrix
0 0 (rgbaim-resize (image-read-rgba f) (xsize) (ysize) 0))

(sleep 4)))

This assumes that your lush executable is in /usr/bin/lush , which should
be the case if Lush was installed with ”make install”.

2.24 Writing Standalone Binary Executables with
Lush

[under construction]
Using the function dump , it is possible to create a binary image of the lisp

structures contained in a Lush process. Such binary dump files are useful for
distributing Lush programs to users who may not have installed Lush. Details
are given in a section of this manual entitled Lush Runtime. [Lush Runtime ]

2.25 The Ogre GUI Toolkit

Lush contains a fairly complete Graphical User Interface toolkit built on top
of the standard graphic library. Ogre allows very rapid development of GUI
applications. An introduction and a tutorial are available in the Standard Li-
brary/Ogre section of this manual.

See: Introduction to Ogre.
See: Ogre Tutorial.
See: The Ogre Class Library.
Here we will just show a couple of very short examples of how simple GUIs

can be created in just a few lines. First , here is the famous one-liner button
”call a function when clicked”:

(ogre)
(de coucou (c) (printf "coucou\\n"))
(new autowindowobject 10 10 () () "ouch" (new stdbutton "click me" coucou))

The autowindowobject is an ogre object that opens a new window and
adjutst itself to fit the size of its content. In this case , the content is a single
standard button (a.k.a. stdbutton ). The stdbutton constructor takes a
string and a function with one argument which is called each time the button
is pressed. Now , here is a slightly more sophisticated example:

(ogre)
(libload "libimage/image-io")
(libload "libimage/rgbaimage")
;; load image
(defvar image



2.26. USING THE SIMPLE DIRECTMEDIA LAYER INTERFACE (SDL)57

(image-read-rgba
(concat-fname lushdir "packages/video4linux/demos/jabba-320x240.jpg")))

;; make an imageviewer object
(setq image-viewer (new imageviewer 240 220 image t))
;; define a few functions to tell the imageviewer to display rotated images
(de rot90-right (c) (==> image-viewer settext (rgbaim-rot90-right image)))
(de rot00 (c) (==> image-viewer settext image))
(de rot90-left (c) (==> image-viewer settext (rgbaim-rot90-left image)))
;; create the GUI window
(new autowindowobject 10 10 () () "ouaf"
;; insert a column
(new column
;; make a row of buttons
(setq button-row
(new row
(new stdbutton "Left" rot90-left) ; rotate left when clicked
(new stdbutton "Straight" rot00) ; straighten up when clicked
(new stdbutton "Right" rot90-right))) ; rotate right when clicked

;; insert imageviewer
image-viewer))

2.26 Using the Simple Directmedia Layer in-
terface (SDL)

Lush includes an interface to the well-known SDL library (Simple Directmedia
Layer) , which has platform-independent functions for 2D graphics , timers ,
low-level keyboard , mouse , and joystick input , sound playing , direct read
from CDROM , and many others features.

Lush provides a high-level interface to some of those functions in sdl/libsdl
. It includes higher-level classes , such as screens and sprites , with pixel-
accurate collision detection. This allows rapid development of graphic-intensive
interactive applications such as real-time 2D games.

A tutorial on writing simple games with SDL is available in the Tutorial sec-
tion of the Lush manual. A full documentation of the SDL interface is available
at [”SDL: Simple DirectMedia Layer” ]

The present section is a quick introduction to the libsdl library. Before
you start , make sure SDL and all its development libraries and header files are
installed on your system. If you are on Linux , those things are available as
packages with your distro.

Loading and initializing the libsdl library is performed with:

(libload "sdl/libsdl")
(sdl-initialize)



58CHAPTER 2. GETTING STARTED WITH LUSH: A QUICK TUTORIAL

Next , we can open an SDL screen. libsdl provides three kinds of SDL screen
classes.

• The first kind , sdl-screen is prefered if you intend to draw on the screen
using libsdl ’s sprite class , or using SDL’s low-level drawing functions.

• The second kind , sdlgl-screen is prefered if you intend draw 3D graph-
ics using OpenGL.

• The third kind , sdlidx-screen is prefered if you want to draw your
images into a regular Lush matrix , and quickly update an SDL screen
with the content of that matrix.

2.26.1 sdlidx-screen class: Mapping the content of an
IDX to an SDL screen

Let’s start by describing the sdlidx-screen class. Opening an sdlidx-screen
is done by first allocating a ubyte-matrix of size HxWx4 , and then creating
an sdlidx-screen with this matrix as argument. This will open an SDL screen
of width W and height H:

(setq depth 3)
(setq m (ubyte-matrix 480 640 depth))
(setq screen (new sdlidx-screen m "my title"))

If the depth parameter is 3 , each element of matrix m is a component of an
RGB pixel. So for example (m y x 0) is the R component of pixel (x , y)
(from the top left of the screen). If the depth parameter is 4 , each element of
m is a component of an RGBA pixel. The A component is the Alpha channel
(transparency). An alpha value of 255 is opaque , while 128 is half transparent.
The matrix m can be seen as the ”back buffer” of a double-buffered screen.
Changing values in m will not immediately change the corresponding pixel on
the screen. Once the desired RGBA image has been written in m , slapping it on
the screen can be done with (==> screen flip) . If the screen was opened
with depth =4 , the image displayed will be an alpha-blended mixture of the
previously displayed image and the content of m . Here is a complete example:

(libload "sdl/libsdl")
(libload "libimage/image-io")
(libload "libimage/rgbaimage")
(sdl-initialize)
(setq m (ubyte-matrix 480 640 3))
(setq screen (new sdlidx-screen m "my picture"))
(setq photo (rgbaim-resize (image-read-rgba "mypicture.jpg") 640 480 0))
(idx-copy (narrow photo 2 3 0) m)
(==> screen flip)



2.26. USING THE SIMPLE DIRECTMEDIA LAYER INTERFACE (SDL)59

Subsequent calls to (==> screen flip) will refresh the screen with the con-
tent of m . Note that SDL screens (unlike regular Lush graphic windows) are
not automatically refreshed when uncovered from behind other windows. That
is why SDL screens should be used only for animated graphics and games. Re-
fresh rates on SDL screens are likely to be faster than with regular Lush graphic
windows.

2.26.2 sdl-screen class: doubled buffered animations

The sdl-screen class is intended for double-buffered animations using sprites
(movable screen objects). This situation is primarily encountered when writing
video games and other interactive multimedia applications.

Opening an sdl-screen is simply done with (setq screen (new sdl-screen
800 600 "the title")) . Drawing into an sdl-screen is made very simple
by the sdl-sprite class (as explained below) , but low-level SDL drawing can
be performed by creating SDL surface objects and calling SDL BlitSurface
on the p slot of the sdl-screen .

2.26.3 sdl-sprite: movable animated objects

Interactive multimedia applications often involve drawing movable objects on
the screen. This can be performed using Lush’s sdl-sprite class , defined also
in sdl/libsdl . Creating a sprite for drawing on the sdl-screen screen , and
loading an image into it is done as follows:

(setq sprite (new sdl-sprite screen 1))
(==> sprite load-frame "mysprite.png" 0 0 0)

This creates a new sdl-sprite with id number 1 on screen screen , and loads
frame 0 of this sprite with the image in file ”mysprite.png” (the image can be
in any format accepted by the SDL-image library dstributed with SDL). The
three numerical arguments (all zeros in the example) are the frame number to
be loaded , and the coordinates of the ”handle” or ”hot-point” of the sprite
relative to the top-left corner.

Sprites can be moved around and drawn on the screen with:

(==> sprite move x y)
(==> sprite draw)
(==> screen flip)

All drawing operations occur in the back buffer (not on the visible screen) until
the call to (==> screen flip) .

The main loop of a typical application will look something like this:

(while (not stop)



60CHAPTER 2. GETTING STARTED WITH LUSH: A QUICK TUTORIAL

[get user input, update coordinates, and such]
(==> screen clear)
(==> sprite1 move x1 y1)
(==> sprite2 move x2 y2)
(==> sprite1 draw)
(==> sprite2 draw)
(==> screen flip))

Sprites can have multiple frames. Switching between frames provides a mech-
anism for animating sprites. More details on how to write such applications
(including reading keyboard events , animation and such) are given in the tu-
torial [”Tutorial: Writing Games with Lush and SDL.” ] . The code for that
tutorial is available at .

2.26.4 sdlgl-screen class: OpenGL 3D graphics in SDL
screens

The sdlgl-screen class is designed to allow OpenGL 3D graphics in an SDL
screen. OpenGL graphics can be done in such an SDL screen , or can be
done directly in GLUT windows. The sdlgl-screen should be used when
SDL functionalities are used. Opening an sdlgl-screen can be done just like
opening an sdl-screen :

(setq screen (new sdlgl-screen 640 480 "my title"))

An example of use of sdlgl-screen is available at .

2.27 Using OpenGL

Lush is also interfaced to OpenGL , and OpenRM which allows the development
of 3D graphic applications.

See: OpenGL



Chapter 3

Lush Basics

3.1 Lush Interpreter Basics.

The Lush language works on data structures referred to as Lush objects. The
main data structure is the “list”. A list is an ordered sequence of Lush objects
of any type including other lists.

All other Lush objects are collectively referred to as “atoms”. There are
in fact many kind of atoms used for implementing various Lush features. For
instance:

• A number represents a numerical value.

• A symbol is just a name used for naming other lisp objects.

• A string is a sequence of characters useful for storing text.

A Lush program is stored as a collection of “functions” which are just another
kind of Lush object. When a function is called , a predefined sequence of
operations is applied to a couple of lisp objects (the function arguments) and a
new lisp object is returned (the function result).

Once Lush is started , a loop is entered which “reads” a Lush object ,
“evaluates” it and displays the resulting Lush object. The evaluation of a list
consists in calling the function named after the head of the list with the rest of
the list as arguments.

Examples:

• Typing (+ 3 4) prints 7 which is the result of calling a function named
+ on the two numbers 3 and 4 .

• Typing (de sqr(x) (* x x)) defines a function named sqr with one
argument referred to as symbol x . This functions calls the multiplication
function * with two arguments both equal to x . The result of this call
is then returned.

61



62 CHAPTER 3. LUSH BASICS

• Typing (sqr 4) then calls function sqr on the number 4 . The number
16 is then returned.

3.2 Lush Startup.

See: (dump fname )
See: (startup ...argv... )
See: (toplevel)
At startup time , Lush locates the executable file and goes up in the directory

hierarchy until it finds a suitable initialization file.

• If there is a file named "sys/sysenv.dump" Lush loads this binary dump
file (created with function dump ) and proceed with the startup procedure.

• If there is a file named "sysenv.lshc" or "sysenv.lsh" in directory
"sys" , Lush loads this text or binary lisp file and proceed with the
startup procedure. Lush refuses to start without one of the above files.

Lush then calls the lisp function startup with the Lush command line
argument as arguments. This function is defined in the system file loaded
above. In the standard sysenv file , this procedure loads the files given as
argument to the Lush command. If no files are specified , file "lushenv.lsh"
is searched and loaded. This file loads default environment (including a file
".lush/lushrc.lsh" in the user’s home directory of Unix systems.). "lushenv.lsh"
is searched in the following directories: "local" , "packages" , and "lsh" .

Lush then calls function toplevel , which is currently defined in the Lush
language by the "sysenv.lsh" file. This function sets up some debugging code
, and waits for user commands.

The toplevel function continuously prints a question mark prompt , reads
a lisp expresion , evaluates this object and prints the result on the standard
output. This process is repeated until you enter an end of file character. The
global variable result always contains the last result printed by toplevel.

If the outermost list has not been completed when you enter a carriage return
, toplevel prompts you for rest of the list , by displaying a few spaces instead of
displaying a question mark prompt.

Example: Starting Lush

\\% lush/bin/lush
LUSH Lisp Universal Shell (compiled on Aug 14 2002)

Copyright (C) 2002 Leon Bottou, Yann Le Cun, AT&T Corp, NECI.
Includes parts of TL3

Copyright (C) 1987-1999 Leon Bottou and Neuristique.
Includes selected parts of SN3.2:

Copyright (C) 1991-2001 AT&T Corp.
This program is free software; it is distributed under the terms
of the GNU Public Licence (GPL) with ABSOLUTELY NO WARRANTY.



3.3. THE LUSH READER. 63

Type ‘(helptool)’ for details.

... loading startup file "/home/yann/lush/sys/sysenv.lsh".

... loading library file "/home/yann/lush/lsh/lushenv.lsh"
[compat.lsh]
[graphenv.lsh]
[.lushrc]

?

The startup process can be customized by specifying a magic first argument
on the command line. The magic first argument starts with character "@" ,
optionally followed by a second character "@" , or followed by a filename ,

• The optional filename indicates an alternate initialization file that will be
loaded instead of the default "sys/sysenv.lsh" . This file might be a
binary dump file ( ".dump" ) or a lisp file ( ".lshc" or ".lsh" ). This
file must define suitable startup and toplevel functions. How these
functions are defined determines the rest of the startup sequence. This
allows to take complete control of Lush’s startup sequence.

• The second character "@" indicates that Lush must start in script mode.
Lush will not display the usual banners. It will silently load the "sysenv"
initialization file , call the startup function , and exit. The default
startup function in "sysenv" detects when Lush is called in this mode.
When that happens , it stores the command line arguments in variable
argv and loads the file indicated as second command line argument. This
is suitable for writing Lush scripts just like we write shell scripts:

#!/usr/bin/lush @@
(printf "Capitalizing the arguments:\\n")
(each ((arg argv)) (printf "\\%s \\%s\\n" arg (upcase arg)))

3.3 The Lush Reader.

At this point you can type a textual representation of certain lisp object. The
reader is a program which converts this textual representation into an actual
lisp object.

Lush input is composed of words separated by blank delimiters (i.e. space
, tab or end-of-line ) by parentheses , or macro-characters. Any character
between a semicolon (;) and an end-of-line is considered as a comment and is
ignored by the interpreter.

• A numerical word is interpreted as a number.

• A word surrounded by double quotes is considered as a string.



64 CHAPTER 3. LUSH BASICS

• Any other words is interpreted as a symbol name.

• A list is read as a sequence of words enclosed within parenthesis. The
empty list is written () .

The exact syntax for lisp objects is defined later in this manual. Moreover
, the behavior of the reader can be modified by defining “macro-characters”.
Whenever the Lush reader reaches a macro-character , it executes immediately
an attached function which often calls the Lisp reader recursively. For instance
, the character quote (’) is a macro-character.

3.4 The Lush Evaluator.

The evaluator is a program which computes a new lisp object from another lisp
object using a very simple rule. Every kind of object is in fact defined by a class
(yet another Lush object). The class defines what happens when this object
is evaluated and what happens when a list starting with this object name is
evaluated.

The Lisp evaluator thus does not need to know anything about the evaluation
behavior of all the different kinds of objects. In addition , it does not even need
to test the nature of the objects. An indirect call is considerably more efficient
than series of tests. Here is the evaluation algorithm for evaluating a Lisp object
p :

eval(p) :
if (p is the empty list)

return the empty list
else if (p is a list)

q = eval(car p)
if (q is an atom)

call the class function ’listeval’ for q with args (q,p)
else

call the default ’listeval’ function with args (q,p)
else if (p is an atom)

call the class function ’selfeval’ for p with arg (p)

3.5 Errors in Lush.

See: Interruptions in Lush.
See: (on-error p l1 ... ln )
See: (errname)
See: (debug-hook)
The evaluation of the lists sometimes leads to an error. When an error occurs

, Lush then executes the debug-hook function , which has been set on startup
by function toplevel .



3.6. INTERRUPTIONS IN LUSH. 65

This function prints an error message , followed by the top elements of the
evaluation stack (i.e. the list whose evaluation has caused the error , the list
whose evaluation has caused the evaluation of the list that causes the error ,
etc... ).

You are then prompted for a “Debug toplevel”.

• If you answer n , or simply type a carriage return , Lush aborts any
current evaluation , resets the stack , and restarts the toplevel function.

• If you answer y , a prompt "[Debug] ?" is displayed , and you are able
to type Lush commands for examining the current variables , display the
current evaluation stack or perform any useful debugging tasks. You can
leave this debugging toplevel by typing Ctrl-D or using the function exit
.

3.6 Interruptions in Lush.

Lush can be interrupted at any time by typing Ctrl-C or Ctrl-Break . Inter-
ruption handling is essentially similar to error handling. First , Lush runs the
function break-hook function which typically has been set up on startup by
function toplevel .

This function prints an error message. You are then prompted for a “Break
toplevel” which is basically a special kind of debug toplevel. When you leave the
break toplevel by typing Ctrl-D or by using function exit , you get a chance
to resume the execution at the interruption point.

Example:

? (for (i 1 100)
(for (j 1 100)

(if (= i j) (print (* i j))))))
1
4
^C9

*** Break
** in: (if (= i j) (print (* i j)))
** from: (for (j 1 100) (if (= i j) (print (* i j))))
** from: (for (i 1 100) (for (j 1 100) (if (= i j) (print (* i j))))) ...
** from: (load "$stdin" "$stdout")
** from: (let ((break-hook (lambda () (beep) (if (not (ask "Break top ...
Break toplevel [y/n] ?y
[Break] ? i
= 3
[Break] ? j
= 4



66 CHAPTER 3. LUSH BASICS

[Break] ? (* i j)
= 12
[Break] ? (where)
Current eval stack:
** in: (where)
** from: (load "$stdin" "$stdout" "[Break] ? ")
** from: (if (not (ask "Break toplevel")) (error "Stopped") (load "$s ...
** from: (if (= i j) (print (* i j)))
** from: (for (j 1 100) (if (= i j) (print (* i j))))
** from: (for (i 1 100) (for (j 1 100) (if (= i j) (print (* i j))))) ...
** from: (load "$stdin" "$stdout")
** from: (let ((break-hook (lambda () (beep) (if (not (ask "Break top ...
= ()
[Break] ? ^D
Resume execution [y/n] ?y
Resuming execution
16
25
36
49
64....

Break toplevels and debug toplevels cannot be nested. If an error or an
interruption occurs when you are working in a break or debug toplevel , Lush
will clean up the evaluation stack , and restart the toplevel function.

On Unix systems , Lush is inconditionnally interrupted by typing Ctrl-\ .
This method however may leave Lush with inconsistent internal states. Use it
only when Ctrl-C does not work for some reason.

See: Errors in Lush.
See: (on-break p l1 ... ln )
See: (errname)
See: (break-hook)

3.7 Leaving Lush.

For leaving Lush , just type Ctrl-D or use the exit function. Type y and a
carriage return when the confirmation request is displayed.

Example:

? (exit)
= ()

Really quit [y/n] ?y
Bye
\\%



3.8. LUSH MEMORY MANAGEMENT. 67

3.8 Lush Memory Management.

Under normal use , Lush uses a fast reference counting garbage collector. Cells
are allocated and deallocated on the fly. Each cell has a counter which contains
the number of pointers that can access it , when the counter is equal to 0 , the
cell is free; when it is greater than 0 , the cell is left for later use. The free cells
are linked in a free list.

Careful use of these counters and of the free list allow the current Lush to be
two to three times faster than the previous versions. You will probably notice
the lack of bothersome pauses while the garbage collector takes effect.

If an error occurs , these counters are no longer right , and a classical garbage
collector rebuilds the free-list and recomputes the counter values. Cells are
allocated in the core memory by chunks. Once all allocated cells are used ,
Lush gets a new chunk from the system , and appends them in its free-list. This
allocation scheme is used by all objects in Lush.

3.9 Lush Libraries.

Lush program files and libraries customarily end with the ".lsh" extension.
Lush reads library files from three directories:

• sys : contains the system libraries without which Lush cannot run

• lsh : contains libraries that are part of the standard Lush package

• packages : contains libraries that are contributed by users , which may
not (necessarily) be supported to the same extent as the ones in lsh , and
may not (necessarily) be available to all installation/versions of Lush.

• local : is meant to contain libraries that are specific to you local instal-
lation of Lush.

Loading a program or a library is done with the load or the libload func-
tions , as in (libload "cmacro") . This will search the above three directories
for a file named "cmacro.lsh" . In other words , the above three directories
constitute the default search path for finding programs and libraries. The search
order is local, packages, lsh, sys .

The core libraries (in the sys directory) contains "sysenv.lsh" , which
includes functions , macros , and macrocharacters that define the core language.

Some files in the library directories have the extension ”.lshc” instead of
”.lsh”. These are ”tokenized” version of the corresponding ”.lsh” file. Tokenized
files are binary files that load faster than the equivalent ”.lsh”.

The standard library directory tree (lsh directory and its subdirectories)
contains many libraries and utilities without which Lush would not be nearly as
much fun. These libraries can be relied on to be present with all distributions
of Lush on all platforms.



68 CHAPTER 3. LUSH BASICS

When Lush is started , it looks for a file named "lushenv.dump,lshc,lsh"
in the following directories: current directory , "local" , "packages" , and
"lsh" . If it is found , it is loaded. There is a default "lushenv.lsh" in the
"lsh" directory. This default "lushenv.lsh" sets the search path to , defines
a few autoload functions , and reads the ".lushrc" file in the home directory
of the user.

The standard library contains many niceties including numerous numerical
and graphic functions and objects.

A notable example is "ogre" , an object-oriented GUI toolkit which makes
it very easy to build mouse driven graphical user interfaces. A couple lines of
code are enough to setup a window with a button that calls a lush function
when clicked upon:

;; start ogre
(ogre)
;; define function that will be called when button is clicked
(de print-coucou (c) (printf "coucou\\n"))
;; open ogre window and insert a button in it
(new windowobject 0 0 100 40 "hello"

(new stdbutton "coucou" print-coucou))

3.10 Lush Runtime.

Using function dump , it is possible to create a binary image of the lisp structures
contained in a Lush process. Such binary dump files are useful for distributing
Lush based programs without providing an extensive list of Lush library files.

Lush indeeds undumps file "sysenv.dump" before even searching for the
regular startup library "sysenv.lsh" . You can also request Lush to load a
specific dump file by typing "@<filename ”> as the first command line argu-
ment to the Lush program.

It is then useful to redefine functions startup and toplevel in order to
redefine the startup sequence and the interactive loop. The following function
dumps a binary file for a typical Ogre application:

(de dump-cold(s)
;; save functions <toplevel> and <startup>.
(unlock-symbol toplevel)
(unlock-symbol startup)
(setq old-toplevel toplevel)
(setq old-startup startup)

;; Redefining <startup> gives you a chance
;; to initalize your application and parse the
;; command line arguments



3.10. LUSH RUNTIME. 69

(de startup argv
;; Disable <CTRL-C>
(unlock-symbol break-hook)
(setq break-hook (lambda() t))
;; Initialize the OGRE library
(ogre)
;; Parse arguments and create the main window.
(init-my-application argv) )

;; Redefining <toplevel> gives you a chance to
;; alter the user interaction loop. This function
;; is reentered whenever an error occurs.
;; The default <toplevel> waits for lisp commands.
;; The following function just accepts OGRE events.
(de toplevel()

(process-pending-events)
(while my-application-mainwindow
(waitevent)
(process-pending-events) )

(exit 0) )

;; We can then dump a binary file.
(dump s)

;; And restore the previous status.
(setq toplevel old-toplevel)
(setq startup old-startup)
(lock-symbol toplevel)
(lock-symbol startup) )

Redefining function toplevel prevents the user to enter Lush commands and
gives total control to your program. The above example , for instance , restricts
user interaction to graphics interfaces. The user cannot enter lisp expressions.

See: Lush Startup.
See: (dump fname [ exec ])
See: (startup ...argv... )
See: (toplevel)



70 CHAPTER 3. LUSH BASICS



Chapter 4

Core Interpreter and
Startup Library

This section includes all the function available at startup with the default en-
vironment lsh/lushenv.lsh . Included are the core interpreter functions and
the library functions defined in sys/sysenv.lsh , all the files in lsh/libstd
(that are loaded at startup).

4.1 Lists.

List are the elementary data structure in Lush. Several functions are designed
for handling lists. Lists are stored as pairs (car . cdr). The first element of the
pair (car) is a pointer to the first element of the list. The second element of the
pair (cdr) is a pointer to the list of the remaining elements.

The textual representation of a list is composed of an opening parenthesis,
a sequence of Lush objects separated by blanks and closing parenthesis. The
empty list is thus written as () .

The second element (cdr) of a pair is not necessary a list. A special dotted
pair notation is used for representing such a pair. This notation is composed
of an opening parenthesis, the first Lush objects, a blank separated dot, the
second Lush object and a closing parenthesis.

Examples:

(1 2 3) ; car=2 and cdr=(2 3)
((q w) 2) ; car=(q w) and cdr=2
(1 2 (e r)) ; car=1 and cdr=(2 (e r))
(a . b) ; car=a and cdr=b

4.1.1 List Manipulation Functions

The following functions are useful for accessing or building lists.

71



72 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(car l)

Type: DX
Returns the first element of a list or dotted pair l .
Example:

? (car ’(a b c d))
= a

(cdr l)

Type: DX
Returns the next elements of a list or dotted pair l .
Example:

? (cdr ’(a b c d))
= (b c d)

(c...r l)

Letters “...” stands for any combination of two or three letters a or d . All the
combinations of two car or cdr functions are written in C. The combination of
three are written in Lisp in "sysenv.lsh" .

Example:

? (cadr ’(a b c d))
= b

(cons a1 a2)

Type: DX
Builds a list whose car is a1 and cdr a2 .
Example:

? (cons ’+ ’(2 3))
= (+ 2 3)

? (cons ’a ’b)
= (a . b)



4.1. LISTS. 73

(list a1 ... an)

Type: DY
Builds a list with its arguments a1 to an .
Example:

? (list ’a ’(b c) ’d)
= (a (b c) d)

(makelist n v)

Type: DX
Returns a list containing n times element v .
Example:

? (makelist 4 ’e)
= (e e e e)

(range [n1] n2 [delta])

Type: DX
Returns a list of all the numbers between n1 and n2 , stepping by delta .

The default value for both arguments n1 and delta is 1 .
Example:

? (range 2 5)
= (2 3 4 5)

(length l)

Type: DX
Returns the length of the list l .
Example:

? (length ’(a b c d e))
= 5

This function is able to detect that list l is circular. The value -1 is re-
turned when such a condition occurs.



74 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(append l1 ... ln)

Type: DX
Concatenates lists l1 to ln . The idiom (append l ()) may be used to

get a fresh copy of the list l .
Example:

? (append ’(1 2 3) ’(4 5 6))
= (1 2 3 4 5 6)

(reverse l)

Type: DX
Returns a list l in reverse order.
Example:

? (reverse ’(1 2 3))
= (3 2 1)

(nth n l)

Type: DX
Returns the n th elements of the list l . The first element is numbered 0 .

For compatibility with the previous versions of Lush, the syntax (nth l n) is
allowed. In this case, the first element is numbered 1 .

Example:

? (nth 3 ’(a b c d e))
= d

(nthcdr n l)

Type: DX
Returns the n th pair of the list l . The first pair is numbered 0. This

function is equivalent to n calls of the cdr functions.
Example:

? (nthcdr 3 ’(a b c 3 e f))
= (3 e f)



4.1. LISTS. 75

(nth% i l)

Type: DE(miscenv.lsh)
This function is similar to function nth , except it considers l as a virtualy

circular list. In other words, it reduces i to the rest of its division by the length
of list l . Since it calls function length, no effecive circular list should be given
as argument.

(last l)

Type: DX
Returns the last element of the list l .
Example:

? (last ’(a b c 3 e f))
= f

(lastcdr l)

Type: DX
Returns the last pair of the list l .
Example:

? (lastcdr ’(a b c 3 e f))
= (f)

(nfirst n l)

Type: DX
When n is 0 , the empty list is returned.
When n is greater than 0 , this function returns the n first elements of l .

When the length of the list is lower than n , a copy of the list is returned.
When n is lower than 0 , this function returns all elements but the n last.

When the length of the list is lower than the absolute value of n , the empty
list is returned. If l is a circular list , an error occurs.

(member e l)

Type: DX
Searches list l for element e . If element e is not found, function member

returns the empty list () . Otherwise function member returns the first sublist
of l whose first element is equal to e .

There is a single equality test in Lush that is able to recursively compare
lists and strings.

Example:



76 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

? (member ’e (range 1 4))
= ()

? (member ’e ’(a b c d e f g h i j))
= (e f g h i j)

(flatten x)

Type: DX
Returns all the atoms in x , linked in a single list.
Example:

? (flatten ’2)
= (2)

? (flatten ’(1 2 (3 (6 7)) 4))
= (1 2 3 6 7 4)

(filter f x)

Type: DE
Returns a list of those elements of x for which the application of function f

to the element returns a non-nil result.

(assoc key alist)

Type: DX
See: (alist-add key value alist )
See: (alist-get key alist )
See: Hash Tables.
Function assoc is useful for searching an “alist”. An alist is a list of pairs

(key . value) representing associations between a search key key and a
value value .

Function assoc returns the first pair of alist whose first element is equal
to key . The empty list is returned when no matching pair is found. Once the
pair is located, you can acess the value associated with the key using function
cdr . You can also change the value using function rplacd .

Remark: Alists should be only used for small numbers of key-value pairs. We
suggest using hash tables as soon as the association involves more that twelve
key-value pairs. Hash tables indeed require more memory but are much faster
and much more convenient.



4.1. LISTS. 77

(alist-add key value alist)

Type: DE(miscenv.lsh)
See: (assoc key alist )
This function (based on function assoc ) adds or changes a pair ( key value

), in a alist alist and returns the new alist.
This function is defined as follows:

(de alist-add(key value alist)
(let ((pair (assoc key alist)))

(if pair
(rplacd pair value)

(setq alist (cons (cons key value) alist)) )
alist ) )

(alist-get key alist)

Type: DE(miscenv.lsh)
See: (assoc key alist )
This function (based on function assoc ) returns the value associated to a

key key in alist alist .
This function is defined as follows:

(de alist-get(key alist)
(let ((pair (assoc key alist)))

(when pair
(cdr pair) ) ) )

(sort-list l comp)

Type: DE(sysenv.lsh)
Returns a sorted copy of list l according the order relation achieved by the

diadic function comp .

? (sort-list ’(12 3 1 2 3 4 5 6) >)
= (1 2 3 3 4 5 6 12)

(sort-index l)

Type: DE(miscenv.lsh)
The function sort ranks the component of its argument. Argument l may

be a list or a vector.
This function returns a list wich elements of are indices of l such that its

components are ranked from the biggest to the lowest.



78 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(lbound1 l)

Type: DE(miscenv.lsh)
The function lbound1 returns the dimensions of a list l .
The list l is assumed to be homogeneous, which means that the length of

its member sublists have all the same length, and this in a recursive way. In
other word, list l is the list counterpart of a multidimensional array.

? (lbound1 ’(1 2 (3 4) 5))
= (4)

(lboundn l)

Type: DE(miscenv.lsh)
The function lboundn returns the dimensions of the list l .
All lists, even unhomogeneous, are supported.

? (lboundn ’(1 2 (3 4) 5))
= (4 2)

(sublist l n s1...sn)

Type: DE(miscenv.lsh)
This function extracts sublists from a flat list l . The procedure follows

three steps.

• 1 List l may be splitted into several sublists of equal size. When n is ()
, list l is used as it is (without being splitted). Otherwise argument n
defines a format for splitting list l which is then considered as a flat list.

When n is an integer, l is splitted into sublists of length n .

When n is a list, it describes the dimensions of the splitted list following
the semantic of msplit-dim .

• 2 From the shaped list is extracted a rectangular sublist. Arguments s1
... sn define the selected subscripts. They follow the same subscripts
semantic as submatrix .

• 3 The sublist is returned in a flat format.

The following example takes a list of numbers from 0 to 99, considered as an
array 5 * 20, and extracts the items in the intersection of lines 1, 2 and columns
4, 5, 6, 7.

? (sublist (range 100) ’(5 ()) ’(1 2) ’(4 7))))
= (25 26 27 28 45 46 47 48)



4.1. LISTS. 79

? (sublist (range 0 29) 5 () ’(2 3))))
= (2 3 7 8 12 13 17 18 22 23 27 28)

See: (submatrix mat s1 ...[ sn ])
See: (msplit-dim m targetdim newdims )

4.1.2 Physical List Manipulation Functions

Instead of building new pairs, a few fast functions directly change the pointers
stored in the pairs given as argument. This is safe if the programmer knows
that the function’s arguments are not used elsewhere.

Side effects should be expected when another lisp object points to the ar-
gument of such a physical list modification function. The modification then
appears in both places.

Physical list manipulation functions can be used to construct lists that ref-
erence themselves. Some Lush functions are able to test this condition (e.g.
length ) and avoid an infinite loop. Some Lush functions however (e.g. print
, flatten ) will loop forever when processing such a list. You can interrupt
these loops by typing Ctrl-C or Break .

See: (length l )
See: (== n1 n2 )

(rplaca l e)

Type: DX
Physically replaces the "car" of list l by e .
Example:

? (setq a ’(1 2 3))
= (1 2 3)
? (setq b (cdr a))
= (2 3)
? (rplaca b ’e) ; this is fast
= (e 3)
? a ; but causes side effects
= (1 e 3)

(rplacd l e)

Type: DX
Physically replaces the cdr of list l by e .



80 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(displace l1 l2)

Type: DX
Replaces both the car and cdr of l1 by the car and cdr of l2 . The main

purpose of this function is the implementation of DMD functions.

(nconc l1 ... ln)

Type: DE(sysenv.lsh)
Function nconc returns the concatenation of the lists l1 to ln . It uses

physical replacement and therefore causes side effects.

(nconc1 l e)

Type: DE(sysenv.lsh)
Function nconc returns a list formed by appending element e to the end of

list l . It uses physical replacement and therefore causes side effects.
Example:

? (setq a ’(a b c d e))
= (a b c d e)
? (nconc1 a ’f)
= (a b c d e f)

(list-insert l pos x)

Type: DE(miscenv.lsh)
Function list-insert returns a list formed by inserting element x at po-

sition pos of list l . It uses physical replacement and therefore causes side
effects.

(list-delete l pos)

Type: DE(miscenv.lsh)
Function list-insert returns a list formed by deleting the element located

at position pos from list l . It uses physical replacement and therefore causes
side effects.

(list-merge l l2)

Type: DE(miscenv.lsh)
Function list-merge returns a list formed by appending to list l the ele-

ments of l2 that are not already in l . This function uses physical replacement
and therefore causes side effects.



4.2. NUMBERS. 81

4.2 Numbers.

See: Special Numerical Values (IEEE754).
Numbers are the simplest kind of atoms. They are stored as double precision

floating point numbers.
Numerical computations in Lush are usually performed in double precision.

Single precision however is used by some number crunching functions, like the
matrix calculus operations.

You can type in decimal number using the traditional exponential notation
or using hexadimal numbers preceded by characters "0x" . Here are a few
examples of legal numbers:

23
3.14
12e6 ;; equivalent to 12000000
1.2E6 ;; equivalent to 1200000
0x1A ;; equivalent to 26

4.2.1 Elementary Numerical Functions.

The following elementary functions operate on numbers:

(+ n1 ... nm)

Type: DX
Computes the sum of numbers n1 to nm .
Example:

? (+ 1 2 3 4)
= 10

(1+ n)

Type: DX
Adds 1 to n .
Example:

? (1+ 4)
= 5

(- [n1] n2)

Type: DX
Subtracts n2 from n1 . If one argument only is provided, returns the oppo-

site of n2 .
Example:



82 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

? (- 2 5)
= -3

(1- n)

Type: DX
Subtracts 1 from n .
Example:

? (1- (+ 4 5))
= 8

(* n1 ... nm)

Type: DX
Computes the product of n1 to nm .
Here is a memory intensive way of computing a factorial:

? (apply ’* (range 1 5))
= 120

(2* n)

Type: DX
Multiplies n by 2.
Example:

? (2* (+ 4 5))
= 18

(/ [n1] n2)

Type: DX
Divides n1 by n2 . If one argument only is provided, Function / returns

the inverse of n2 .
Example:

? (/ 3)
= 0.3333



4.2. NUMBERS. 83

(2/ n)

Type: DX
Divides n by 2.
Example:

? (2/ 5)
= 2.5

(** n m)

Type: DX
Returns n raised to the m th power.
Example:

? (** 2 5)
= 32

(next**2 n)

(miscenv.lsh)
This function returns the first power of 2 equal or greater than n .

(max l1 ... ln)

Type: DX
Return the maximum element within l1 ... ln . Arguments li may be

numbers or strings.
Example:

? (max 2 3 (* 3 3) (+ 4 3))
= 9

(min l1 ... ln)

Type: DX
Return the minimum element within l1 ... ln . Arguments li may be

numbers or strings.
Example:

? (min 2 3 (* 3 3) (+ 4 3))
= 2



84 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(round x [n]))

(miscenv.lsh)
This functions rounds the number x respecting the desired number of sig-

nificant digits. When the number of significant digit is 0 or lower, it returns the
first power of 10 smaller than or equal to x .

The number x is expected to be greater than or equal to 0.

? pi
= 3.1416
? (round pi 3)
= 3.14
? (round (* 1000 pi) 3)))
= 3140
? ;; for most numbers, (round x 0) is not equal to (round x 1)
? (round pi 1)
= 3
? (round pi 0)
= 1
? ;; for powers of ten, (round x 0) is equal to (round x 1)
? (round 1000 1)
= 1000
? (round 1000 0)
= 1000

4.2.2 Integer Arithmetic Functions.

Besides the ordinary number operation functions , a few functions deal with
integer numbers only. For that purpose we consider only the first 32 bits of the
integer part of the number.

(div n1 n2)

Type: DX
Returns the quotient of the Euclidian division of n1 by n2 .
Example:

? (div 5 2)
= 2

(mod n1 n2)

Type: DX
Returns the remainder of the Euclidian division of n1 by n2 .
Example:



4.2. NUMBERS. 85

? (mod 5 2)
= 1

(bitand n1 n2)

Type: DX
Returns the bitwise AND of integer numbers n1 and n2 .

(bitor n1 n2)

Type: DX
Returns the bitwise OR of integer numbers n1 and n2 .

(bitxor n1 n2)

Type: DX
Returns the bitwise exclusive or (XOR) of integer numbers n1 and n2 .

(bitshl n1 n2)

Type: DX
Shifts the bits of integer n1 by n2 positions to the left and returns the result.

This is similar to the C operator >> .

(bitshr n1 n2)

Type: DX
Shifts the bits of integer n1 by n2 positions to the right and returns the

result. This is similar to the C operator >> .

4.2.3 Mathematical Numerical Functions.

Most mathematical functions are implemented as DZ functions. DZs are a
remnant of a now obsolete compiler for numerical expressions. For more details
about DZ functions the corresponding section.

(sgn n)

Type: DZ
Returns +1 if n is equal or greater than 0 , -1 otherwise.

? (sgn -2)
= -1

? (sgn 1.2)
= 1



86 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(abs n)

Type: DZ
Returns the absolute value of n .

? (abs 123.3)
= 123.3

? (abs -23.3)
= 23.3

(int n)

Type: DZ
Returns the integral part of n .

? (int -4.5)
= -5

? (int 4.5)
= 4

(sqrt n)

Type: DZ
Returns the square root of n

? (sqrt 15)
= 3.873

(0-x-1 n)

Type: DZ
This function implements a piecewise saturated linear function. It returns 0

if n is smaller than -1. It returns 1 if n is larger than +1. It returns n if n is
in the -1 to +1 range.

? (0-x-1 -2)
= -1

? (0-x-1 0.7)
= 0.7



4.2. NUMBERS. 87

? (0-x-1 1.3)
= 1

(0-1-0 n)

Type: DZ
This function implements the indicator function of the -1 to +1 range. It

returns 1 if n is in the -1 to +1 range. It returns 0 otherwise.

? (0-1-0 -2)
= 0

? (0-1-0 0.7)
= 1

(sin n)

Type: DZ
Returns the sine of n radians.

? (sin (/ 3.1415 3))
= 0.866

(cos n)

Type: DZ
Returns the cosine of n radians.

? (cos (/ 3.1415 3))
= 0.5

(tan n)

Type: DZ
Returns the tangent of n radians.

? (tan (/ 3.1415 3))
= 1.7319



88 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(atan n)

Type: DZ
Returns the arc tangent of n , in radians.

? (* 4 (atan 1))
= 3.1416

(exp n)

Type: DZ
Returns the exponential of n .

? (exp 1)
= 2.7183

(exp-1 n)

Type: DZ
Returns the exponential of n minus 1. This function gives an accurate value

of exp(n)-1 even for small values of n .

? (exp-1 0.5)
= 0.6487

(log n)

Type: DZ
Returns the natural logarithm of n .

? (log 2)
= 0.6931

(log1+ n)

Type: DZ
Returns the natural logarithm of n plus 1. This function gives an accurate

value of log(1+n) even for small values of n .

? (log1+ 1)
= 0.6931



4.2. NUMBERS. 89

(sinh n)

Type: DZ
Returns the hyperbolic sine of n .

? (sinh 1)
= 1.1752

(cosh n)

Type: DZ
Returns the hyperbolic cosine of n .

? (cosh 1)
= 1.5431

(tanh n)

Type: DZ
See: (qtanh n )
Returns the hyperbolic tangent of n .

? (tanh 1)
= 0.7616

(qtanh n)

Type: DZ
See: (tanh n )
Returns a rational approximation of the hyperbolic tangent of n . This

function is orders of magnitude faster than tanh . Its acuracy however is quite
low (about 0.00001.)

? (qtanh 1)
= 0.7616

The formula of the approximation is: \[ \tanh(x) \approx \frac P(x)ˆ16-1
P(x)ˆ16+1 \] where \[ P(x) = 1 + 0.125 x + 0.0078125 xˆ2 + 0.00032552083
xˆ3 \]



90 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(qdtanh n)

Type: DZ
Returns a rational approximation of the derivative of the hyperbolic tan-

gent of n . The accuracy of this function is quite low (about 0.00001), but its
computation time is very small.

? (qdtanh 1)
= 0.42

The formula of the approximation is: \[ \frac d dx ( 1 - \tanh (x)ˆ2 ) \approx
1 - \left( \frac P(x)ˆ16-1 P(x)ˆ16+1 \right) ˆ2 \] where \[ P(x) = 1 + 0.125
x + 0.0078125 xˆ2 + 0.00032552083 xˆ3 \]

(qstdsigmoid n)

Type: DZ
See: (qtanh n )
Returns the value of standard sigmoid at point n , computed with a rational

approximation to the hyperbolic tangent. The standard sigmoid is defined as \[
1.7159 \rm tanh ( \frac 2 3 x ) \]

(qdstdsigmoid n)

Type: DZ
See: (qdtanh n )
Returns the value of the derivative of standard sigmoid at point n , com-

puted with a rational approximation to the hyperbolic tangent. The standard
sigmoid is defined as \[ 1.7159 \rm tanh ( \frac 2 3 x ) \]

(qexpmx n)

Type: DZ
Returns a rational approximation of the exponential of minus the absolute

value of n . The accuracy of this function is quite low (about 0.00001), but its
computation time may be smaller on certain computers.

? (qexpmx 1)
= 0.3679

The formula of the approximation is: \[ eˆ -—x— \approx \frac 1 P(—x—)ˆ8
\] where \[ P(x) = 1 + 0.125 x + 0.0078125 xˆ2 + 0.00032552083 xˆ3 +
0.000010172526 xˆ4 \]



4.2. NUMBERS. 91

(qdexpmx n)

Type: DZ
Returns a rational approximation of the derivative of the exponential of

minus the absolute value of n . The accuracy of this function is quite low (about
0.00001), but its computation time may be smaller on certain computers.

? (qdexpmx 1)
= 0.3679

The formula of the approximation is: \[ \frac d dx eˆ -—x— \approx - \rm
sgn(x) \frac 1 P(—x—)ˆ8 \] where \[ P(x) = 1 + 0.125 x + 0.0078125 xˆ2
+ 0.00032552083 xˆ3 + 0.000010172526 xˆ4 \]

(qexpmx2 n)

Type: DZ
Returns a rational approximation of the exponential of minus the square of n

. The accuracy of this function is quite low (about 0.00001), but its computation
time may be smaller on certain computers.

? (qexpmx 1)
= 0.3679

The formula of the approximation is: \[ eˆ -xˆ2 \approx \frac 1 P(xˆ2)ˆ8
\] where \[ P(x) = 1 + 0.125 x + 0.0078125 xˆ2 + 0.00032552083 xˆ3 +
0.000010172526 xˆ4 \]

(qdexpmx2 n)

Type: DZ
Returns a rational approximation of the exponential of minus the square of n

. The accuracy of this function is quite low (about 0.00001), but its computation
time may be smaller on certain computers.

? (qdexpmx 1)
= 0.3679

The formula of the approximation is: \[ \frac d dx eˆ -nˆ2 \approx - 2 x \frac
1 P(nˆ2)ˆ8 \] where \[ P(x) = 1 + 0.125 x + 0.0078125 xˆ2 + 0.00032552083
xˆ3 + 0.000010172526 xˆ4 \]



92 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(solve min max f)

Type: DX
Simple dichotomical root finder. f is a function with one argument only.

solve will return a numerical approximation of the solution of f(x)=0 between
min and max . To ensure the existence of this solution, f(min) and f(max)
must have different signs.

Example:

? (solve 1 2 (lambda (x)
(- 2 (* x x)) ))

= 1.4142

4.2.4 Random Numbers

Statistical functions are provided for computing random numbers , computing
various statistics on list of numbers or performing simple linear regressions.

(seed n)

Type: DX
Sets the random number generator seed. The random generator is replicable.

The same seed will produce the same sequence of random numbers. Argument
n must be a legal integer number.

(rand [[a] b])

Type: DX
Returns a uniform random number:

• If no arguments are provided, function rand returns a random number
between 0 and 1.

• If argument b only is given, function rand returns a random number be-
tween -b and b .

• If both arguments a and b , function rand returns a random number
between a and b .

Example:

? (rand)
= 0.1861



4.3. BOOLEANS OPERATORS. 93

(gauss [[m] s])

Type: DX
Returns a gaussian number with mean m and standard deviation s . The

default value for argument m is 0 . The default value for argument s is 1 .
Example

? (gauss 2)
= 3.3327

4.2.5 Constant Numbers.

PI

Type: CONST(miscenv.lsh)
The well-known transcendental trigonometric number.

? pi
= ()

4.2.6 Hashing

(hashcode expr)

Type: DX
Returns a string containing a hash code for the lisp expression expr . Hash

codes are guaranteed to be equal when two expressions are logically equal , that
is to say , equal as defined by function = .

4.3 Booleans Operators.

Expression in Lush are considered “false” when their evaluation returns the
empty list. All other expression are considered “true”. The symbol t however
is preferred for this meaning.

4.3.1 Boolean Arithmetic

A few functions are useful for programming tests and returning boolean values

(= n1 n2)

Type: DX
Test if n1 is equal to n2 . Two objects are equal if they have the same type

and if they convey the same information. The criterion for deciding equality
therefore depends on the type of the object.

This function supports any Lush object.



94 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

• It is able to compare the value of numbers, strings, dates, lists, matrices,
arrays, hash tables and high level objects (those created by new and
belonging to classes created by defclass ).

• The comparison of other low-level objects (i.e. from user defined classes
written in C language following the Open protocole) usually rely on the
physical equality. However it is possible to put other comparison functions
into the C structures defining the classes.

Example:

? (= ’(1 2 (3)) (cons 1 ’(2 (3))))
= t

? (= [ 1.00 2.00 ] [ 1.00 2.00 ])
= t

Testing the equality between special numerical values may be tricky. For ex-
ample, the IEEE754 specification (supported by most of the industry) defines
special bit patterns named NaN (Not a Number). Comparing two NaNs should
always return false. Major operating systems and compilers however do not
respect this.

Lush expressly specifies that the result returned by the equality test is *al-
ways* true when objects n1 and n2 share the same memory location. In other
words, if the function == returns t then the function = returns t as well.

See: Special Numerical Values (IEEE754).
See: (== n1 n2 )
See: Comparison of User Defined Objects.

(<> n1 n2)

Type: DX
Tests if n1 is different from n2 . This function is equivalent to

(de <> (n1 n2) (not (= n1 n2)))

Example:

? (<> 2 "abcd")
= t

? (<> 2 2)
= ()

See: (= n1 n2 )



4.3. BOOLEANS OPERATORS. 95

(== n1 n2)

Type: DX
See: (= n1 n2 )
Test if n1 and n2 are physically equal.
This function does not even look at the information conveyed by the lisp

objects n1 or n2 . It just tests that the pointers returned by the expression n1
and n2 are equals.

Pointer equality not only means that objects referred to by expression n1
and n2 are equal, but also means that they are located at the same memory
addresses.

This information is meaningful as soon as you use functions that modify
objects (as opposed to functions returning a modified copy of the object and
leave the initial object unchanged). These functions include the following:

• Physically changing list component using rplaca or rplacd .

• Setting the contents of an array or a matrix.

• Setting the value of a slot of an object

Function == may be used in conjunction with these functions. Modifying
indeed the object referred to as n1 will therefore also modify the object referred
to as n2 . Function == may also be used as a fast way to compare objects and
matrix when you know that the only possibility of equality is physical equality.

Example:

? (setq a 3)
= 3
? (== a 3)
= ()
? (= a 3)
= t
? (== a a)
= t
? (setq a [1 2])
= [1 2]
? (setq b [1 2])
= [1 2]
? (= a b)
= t
? (== a b)
= ()
? (a 0)
= [0 2]
? (= a b)
= ()



96 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

? b
= [1 2]

(0= n)

Type: DX
Test if n is equal to 0.
See: Special Numerical Values (IEEE754).

(0<> n)

Type: DX
Test if n is different from 0.
See: Special Numerical Values (IEEE754).

(<= n1 n2)

Type: DX
Test if n1 is less or equal than n2 . Arguments n1 or n2 may be dates,

strings or numbers. User defined objects may be supported as well.
See: Special Numerical Values (IEEE754).
See: Comparison of User Defined Objects.

(< n1 n2)

Type: DX
Test if n1 is less than n2 . Arguments n1 or n2 may be dates, strings or

numbers. User defined objects may be supported as well.
See: Special Numerical Values (IEEE754).
See: Comparison of User Defined Objects.

(>= n1 n2)

Type: DX
Test if n1 is greater or equal than n2 . Arguments n1 or n2 may be dates,

strings or numbers. User defined objects may be supported as well.
See: Special Numerical Values (IEEE754).
See: Comparison of User Defined Objects.

(> n1 n2)

Type: DX
Test if n1 is greater equal than n2 . Arguments n1 or n2 may be dates,

strings or numbers. User defined objects may be supported as well.
See: Special Numerical Values (IEEE754).
See: Comparison of User Defined Objects.



4.3. BOOLEANS OPERATORS. 97

(and l1 ... ln)

Type: DX
Evaluates sequentially l1 .. ln . If a result is the empty list, function

and immediately returns () . The result of the evaluation of ln is returned
otherwise.

Example:

? (and (= 2 2) (= 2 3) (print (= 2 2)))
= ()

(or l1 ... ln)

Type: DX
Evaluates sequentially l1 .. ln . If a result is not the empty list, this result

is immediately returned. The empty list is returned otherwise.
Example:

? (or (= 2 2) (= 2 3))
= t

(null l)

Type: DX
Returns t if the result of evaluating l is the empty list. Returns the empty

list otherwise. The macro character | | may be used for that purpose.
Example:

? (null t)
= ()

(not l)

Type: DX
The null and not functions are identical.

l

Type: MCHAR(sysenv.lsh)
This macro-character expand to (null l) .

4.3.2 Predicates.

Predicates test the type of any lisp object.



98 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(listp l)

Type: DX
Returns a non-nil result when l is a list, including the case of the empty

list.
Example:

? (listp ())
= t

? (listp "abc")
= ()

? (listp ’(2 3))
= (2 3)

(consp l)

Type: DX
Returns a non-nil result when l is a non-empty list.
Example:

? (consp ())
= ()

? (consp "abc")
= ()

? (consp ’(2 3))
= (2 3)

(atomp l)

Type: DX
Returns a non-nil result when l is an atom.
Example:

? (atomp ())
= t



4.3. BOOLEANS OPERATORS. 99

(numberp l)

Type: DX
Returns a non-nil result when l is a number.
Example:

? (numberp 3.14)
= 3.14

(symbolp l)

Type: DX
Returns a non-nil when l is a symbol.
Example:

? (symbolp ’a)
= a

(externp l)

Type: DX
Returns a non-nil result item when l is a non numerical atom.
Example:

? (externp car)
= ::DX:car

(classp l)

Type: DE
Returns a non-nil item when l is a class.
Example:

? (classp object)
= t

(functionp n)

Type: DX
Returns t if n is a function.
Example:

? (functionp "abc")
= ()



100 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

? (functionp functionp)
= ::DX:functionp

(stringp s)

Type: DX
Returns a non nil result if s is a string.
Example:

? (stringp "abc")
= "abc"

4.4 Symbols.

Symbols are the only named objects. Symbol names may be up to 40 characters
long.

The evaluation of a symbol returns the “value” of the symbol. Function
setq changes the value of a symbol. The value of a new symbol is always the
empty list.

During a call to a Lush function, or during the execution of certain special
functions (e.g. function let ) predefined symbols take a temporary value. The
previous values are then restored when the function exits.

For instance, assume that we define a function (de sqr(x) (* x x)) .
Evaluating list (sqr 4) will perform the following actions:

• save the old values of symbol x which is the name of a function argument,

• set the value of symbol x to 4 ,

• execute the function body (* x x) and save the result,

• restore the previous value of symbol x ,

• and return the saved result.

This dynamical binding makes the interpreter getting faster, but somewhat
precludes the development of efficient compilers.

The textual representation of a symbol is composed by the characters of
its name. The reader usually converts symbol names to lowercase and replaces
underscores by dashes. This can be prevented by quoting the symbol name
with vertical bars. Such vertical bars are useful for defining symbols whose
name contains any character usually forbidden: parenthesis, spaces, semi-colon,
macro-characters, upper-case characters etc....

Examples :



4.4. SYMBOLS. 101

gasp GasP ; are the same symbol named "gasp"
|GasP| ; is different symbol named "GasP"
|);( ’| ; is a symbol named ");( ’"
"gasp" ; is a string
12 ; is a number
|12| ; is a symbol named "12"

Unlike several dialect of lisp, Lush does not provide other fields in a symbol
for storing a specific functional value or a property list. The value of a symbol
is the only storage provided by symbols.

4.4.1 (defvar name val)

Type: DM(sysenv.lsh)
Defines a new global variable named name (a symbol) and initialized with

value val . Traditionally function setq was used for that purpose in SN/TLisp.
There are cases however when setq refuses to create a new global variable.
Eventually we will completely disallow creating global variables with setq and
require the use of defvar for that purpose.

4.4.2 (setq v1 a1 ... [vn an])

Type: DX
Sets the value of symbols v1 ... vn to a1 ... an . It is good practice

to create the symbol being setq’ed beforehand using defvar , let , let* or
other constructs that create global or local variables.

The setq function has a special behavior when the vi are not symbols.
This behavior is documented later, with the scope function.

Example:

? (setq a 3)
= 3
? (setq b 6)
= 6
? a b
= 3
= 6
? (setq a b b a)
= 3
? a b
= 6
= 3



102 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

4.4.3 (set v a)

Type: DX
Sets the value of the symbol v to a . set is different from setq because v is

evaluated first.
Example:

? (setq s ’a)
= a
? (set s 3)
= 3
? s
= a
? a
= 3

4.4.4 (incr v [n])

Type: DX
Increments v by n (default 1). v is not evaluated, and must be a symbol

whose value is a number. Number n may be a positive or negative.
Example:

? (setq s 0)
= 0
? (incr s)
= 1
? s
= 1

4.4.5 (named s)

Type: DX
Returns a new symbol whose name is the string s .
Example:

? (named "a")
= a

? (named "A")
= |A|



4.4. SYMBOLS. 103

4.4.6 (nameof s)

Type: DX
Returns a string containing the name of symbol s . This is the converse of

named .
Example:

? (nameof ’a)
= "a"

? (nameof ’|A|)
= "A"

4.4.7 (namedclean s)

Type: DX
Returns a new symbol whose name is computed by normalizing the string s

using the same algorithm as the Lisp reader. This is the converse of function
pname .

Example:

? (namedclean "a")
= a

? (namedclean "A")
= a

? (namedclean "|A|")
= |A|

4.4.8 (lock-symbol s1 ... sn)

Type: DX
Locks symbols s1 to sn . Symbols may be locked. You can no longer change

the value of locked symbols , but you may still modify them temporarily by using
the let function. Some Lush functions and all C functions are stored in locked
symbols. This avoids the accidental loss of a C function.

4.4.9 (unlock-symbol s1 ... sn)

Type: DX
Unlocks symbols s1 to sn .



104 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

4.4.10 (symblist)

Type: DX
Returns the list of all the symbol names: i. e. a list of strings.
Example:

? (length (symblist))
= 1799

4.4.11 (oblist)

Type: DX
Returns the list of all the symbols: i. e. a list of symbols.
Example:

? (length (oblist))
= 1799

4.4.12 (macrochp s)

Type: DX
Returns t if s symbol defines a macro-character.
Example:

? (macrochp ’|’|)
= t

4.4.13 (putp anything name value)

Type: DE(sysenv.lsh)
Every Lush object (atoms, cons, etc.) may be enriched by defining properties

identified by a symbolic name. Function putp is used to define such properties.
Its first argument is an arbitrary Lush object anything . Function putp sets
the property named by symbol name to value value . Properties can be later
retrieved using getp .

4.4.14 (getp anything name)

Type: DE(sysenv.lsh)
Retrieves the property name for the Lush object anything .



4.5. NAMESPACES AND PACKAGES 105

4.5 Namespaces and Packages

4.5.1 (private ..symbols..)

Type: DM(sysenv.lsh)
This function must be used inside a package definition. It indicates that the

symbols ..symbols.. must be considered private to the package.
See: (package name ..expressions.. )

4.5.2 (package name ..expressions..)

Type: DM(sysenv.lsh)
Author(s): Leon Bottou
This construct provides a simple way to make symbols ”semi-private” to a

group of functions so as to avoid name clashes. It basically has the effect of
prepending the package name to all the symbols defined within its scope and
marked as private (using the private construct).

Example:

(package foobar
(private foo)
(de foo(x) (print x))
(de bar(x) (foo x)) )

defines a global symbol bar . Symbol foo however is renamed foobar.foo
in all expressions occuring after (private foo) . Hence the above expression
would be equivalent to:

(de bar (x)
(toto.foo x) )

(de toto.foo (x)
(print x) )

Internals: Symbol name is used to identify the group of functions. Function
package maintains a list of hidden symbols declared with function private .
Each expression is first transformed to replace all occurences of a hidden symbol
by a new symbol whose name is composed by prepending the package name name
, then evaluated as usual.

4.6 Control structures.

Control structure are lisp functions specially designed for controlling how a
program is executed. There are control structures for starting the execution
(e.g. eval ) and control structures for programming loops (e.g. while ).



106 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

4.6.1 (eval l1...ln)

Type: DX
See: The Tlisp Evaluator.
The function eval calls the evaluator on objects l1 to ln , and returns

the result of the last evaluation, i.e. (eval ln) .
Example:

? (eval (cons ’+ ’(3 4)))
= 7

4.6.2 (apply f l)

Type: DX
Function apply applies function f to the argument list l .
First of all, f is evaluated. The result can be a function, a symbol whose

value is a function or even a list whose result is a function. This function is
then applied to arguments l .

Evaluating (apply f l) is quite similar to (eval (cons f l)) . It blocks
however the evaluation of the arguments stored in list l.

Example:

? (apply ’append ’((1 2 3) (1 3 5)))
= (1 2 3 1 3 5)

? (apply append ’((list 2 3) (list 4 (+ 1 2))))
= (list 2 3 list 4 (+ 1 2))

? (eval (cons append ’((list 2 3) (list 4 (+ 1 2)))))
= (2 3 4 3)

4.6.3 (quote a)

Type: DX
See: ’ a
See: ‘ expr , a ,@ a
Function quote returns the Tlisp object a without evaluating it.
In most cases indeed, functions evaluate their arguments and operate on the

results of these evaluations. In (car (range 2 5)) for instance, function car
evaluates the arguments (range 2 5) giving (2 3 4 5) and returns the first
element of this list.



4.6. CONTROL STRUCTURES. 107

? (car (range 2 5))
= 2

Using the function quote prevents a function from evaluating a Tlisp object
passed as argument. It evaluates thhhe list (quote a) instead, returning the
object a itself.

? (car ’(range 2 5))
= range

4.6.4 ’a

Type: DMC(sysenv.lsh)
See: (quote a )
See: ‘ expr , a ,@ a
The function quote usually is called by using the quote ’ macro-character.

Writing ’a is a shorthand for (quote a) .
Example:

? (car ’(range 2 5))
= range

? ’(range 2 5)
= (quote (range 2 5))

4.6.5 ‘expr ,a ,@a

The backquote ‘ macro provides a handy syntax for producing complex lists
depending of external conditions. The backquote macro works like the quote
macro with the following additions:

• Within a backquoted expression, a comma , indicates that the next Lush
object must be evaluated.

• If the comma is followed by an AT sign ( ,@ ), the list returned by the
evaluation of the next Lush object will be merged within the current list.

Example:

? ‘(1 2 ,(+ 4 5) (+ 4 5 ,(range 1 4))))
= (1 2 9 (+ 4 5 (1 2 3 4)))
? ‘(1 2 ,(+ 4 5) (+ 4 5 ,@(range 1 4))))
= (1 2 9 (+ 4 5 1 2 3 4))



108 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

Implementation: Combinations of backquote and comma macros are ex-
panded into lisp expressions composed of calls to functions list , append and
cons , which builds the result.

Example:

;; note the quote <’> followed by a backquote <‘>
? ’ ‘(1 2 ,(+ 4 5) (+ 4 5 ,@(range 1 4)))
= (list ’1 ’2 (+ 4 5) (append ’(+ 4 5) (range 1 4)))

4.6.6 (progn l1...ln)

Type: DY
Evaluates l1 to ln and returns the result of the evaluation of ln .
Example:

? (progn
(print (+ 2 3))
(* 2 3) )

5
= 6

4.6.7 (prog1 l1...ln)

Type: DY
Evaluates l1 to ln and returns the result of the evaluation of l1 .
Example:

? (prog1
(print (+ 2 3))

(* 2 3) )
5
= 5

4.6.8 (let ((s1 v1) ... (sn vn)) l1 ... ln)

Type: DY
The function let is used to define local variables.
Function let performs the following operations:

• Expressions v1 ... vn are evaluated.

• The values of symbols s1 ... sn are saved.

• The results of the evaluations of v1 ... vn are stored into symbols s1 ...
sn .



4.6. CONTROL STRUCTURES. 109

• Expressions l1 ... ln are evaluated. If these expressions refer to symbols
s1 ... sn , they will see the values returned by expressions v1 ... vn
(unless you change these values using setq !)

• The saved values of s1 ... sn are restored.

• The result of the evaluation of ln is returned.

Example:

? (let ((s 0))
(for (i 1 10)

(setq s (+ s i)) ) )
= 55

4.6.9 (let* ((s1 v1) ... (sn vn)) l1 ... ln)

Type: DY
Function let* is also used for defining local variables. Unlike function let

however, the evaluation of the variable initial values are performed after set-
ting the previous variables. You can therefore refer to the previously defined
variabled.

Function let* performs the following operations:

• For each pair (si vi) , the value of symbol si is saved, the expression
vi is evaluated and the result is stored into symbol si .

• Expressions l1 ... ln are evaluated. If these expressions refer to symbols
s1 ... sn , they will see the values returned by expressions v1 ... vn
(unless you change these values using setq !)

• The saved values of s1 ... sn are restored.

• The result of the evaluation of ln is returned.

Example:

? (let* ((i 1)
(j (1+ i)) )

(print i j)
(* 2 j) )

1 2
= 4



110 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

4.6.10 (let-filter ((filter data)) l1...ln)

Type: DM(sysenv.lsh)
The function let-filter attempts to match the data expression data with

the filter expression filter . A filter expression is a lisp expression composed
uniquely with lists and symbols. For instance, argument filter can be a single
symbol, a list of symbols, or something more complex such as (a ((b c)) d .
e) .

• A symbol in the filter expresssion matches anything in the data expression.
When such a match occurs, the previous value of the symbol is saved and
the symbol is assigned the matching part of the data expression.

• A list in the filter expression matches a list in the data expression if all its
elements match the correspondong elements in the data expression.

If there is a match, function let-filter evaluates the lists l1 ... ln with
the new values of the symbols listed in the match expression, restores the initial
value of the symbols, and return the result of the last evaluation. Otherwise,
function let-filter simply restores the initial values of the symbol and re-
turns the empty list.

4.6.11 (if cond yes [no1...non])

Type: DY
First, expression cond is evaluated. If the result is not the empty list, ex-

pression yes is evaluated, otherwise the remaining expressions no1 ... non are
evaluated. Function if returns the result of the last evaluation.

Example:

? (if (> 3 4)
3

4 )
= 4

4.6.12 (when cond yes1...yesn)

Type: DY
First, expression cond is evaluated. If the result is not the empty list, ex-

pressions yes1 to yesn are evaluated and the result of yesn is returned.
Example:

? (when (> 3 4)
(print "error") )

= ()



4.6. CONTROL STRUCTURES. 111

4.6.13 (while cond l1...ln)

Type: DY
While the evaluation of cond gives a result different from the empty list,

expressions l1 to ln are evaluated in a loop.
If the result of the first evaluation of cond is the empty list, expressions l1

to ln are never evaluated and function while returns the empty list. Otherwise
function while returns the result of the last evaluation of ln .

Example:

? (let ((l (range 2 5)))
(while l

(print (car l) (sqrt (car l)))
(setq l (cdr l)) ) )

2 1.4142
3 1.7321
4 2
5 2.2361
= ()

4.6.14 (do-while cond l1...ln)

Type: DY
Function do-while evaluates lists l1 to ln and loops until the evaluation

of condition cond returns the empty list. The result of the last evaluation of
ln is then returned.

Expressions l1 to ln are evaluated before testing for the loop condition. If
the result of the first evaluation of cond is the empty list, expression l1 ... ln
are evaluated exactly once.

Example:

(de input(prompt regex)
(let ((answer ()))

(do-while (not (regex-match regex answer))
(printf "\\%s" prompt)
(flush)
(setq answer (read-string)) )

answer) )

4.6.15 (repeat n l1...ln)

Type: DY
Repeats n times the evaluation of l1 to ln . Function repeat returns the

result of the last evaluation of ln .
Example:



112 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

? (repeat 4
(prin 1) )

1111= 1

4.6.16 (mapwhile cond l1...ln)

Type: DM(miscenv.lsh)
See: (while cond l1 ... ln )
Function mapwhile first evaluates expression expr . If this evaluation re-

turns a non nil result, it evaluates lists l1 to ln . This process is repeated until
the evaluation of cond returns the empty list.

Unlike function while however, function mapwhile returns a list containing
all the results of the successive evaluation of ln .

? (let ((i 0))
(mapwhile (< i 5)
(incr i)
(* i i) ) )

= (1 4 9 16 25)

4.6.17 (for (symb start end [step]) l1...ln)

Type: DY
Function for implements a classical “for” loop. The value of symbol symb

is first saved. Then symb takes numeric values from start to end stepping by
step (default 1). For each value, expression l1 to ln are evaluated. The value
of symb is then restored.

Function for returns the result of last evaluation of ln .
Example:

? (for (i 2 5)
(print i (sqrt i)) )

2 1.4142
3 1.7321
4 2
5 2.2361
= 2.2361

4.6.18 (mapfor (symb start end [step]) l1...ln)

Type: DMD(sysenv.lsh)
See: (for ( symb start end [ step ]) l1 ... ln )



4.6. CONTROL STRUCTURES. 113

Function mapfor implements a loop like function for . It returns however
a list containing the results of the evaluation of ln for all values of the loop
index.

Example:

? (mapfor (i 2 5)
(sqrt i) )

= (1.4142 1.7321 2 2.2361)

4.6.19 (cond l1...ln)

Type: DY
Function cond implements the standard lisp “cond” form.
Arguments l1 ... ln are lists of the form (cond . body) . The conditions

cond are evaluated sequentially until one returns a result different from the
empty list. The function progn is applied to the corresponding body and the
result is returned.

Example:

;; a function for returning the sign of a number
(de sign(x)
(cond

((< x 0) -1)
((> x 0) +1)
(t 0) ) )

4.6.20 (selectq s l1...ln)

Type: DY
The arguments l1 to ln are lists of the form (case . body) .
The argument s is first evaluated. The lists l1 to ln are then checked

until s is equal to case , or s is a member of the list case , or case is equal
to t . The function progn is applied to the corresponding body and the result
is returned.

Example:

(selectq x
(0 (print "zero"))
((2 4 6 8) (print "even"))
((1 2 3 5 7) (print "prime"))
(t (print "nothing interesting")) )



114 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

4.6.21 (mapc f l1...ln)

Type: DX
For i=1 till (length l1) this function constructs a list containing the i-th

element of each list l1 ... ln and applies the function f to to it. Th lists l1
till ln should have the same length. This function returns the result of the last
evaluation.

Example:

? (mapc print ’(1 2 3))
1
2
3
= 3

4.6.22 (mapcar f l1...ln)

Type: DX
Like mapc but returning the list of all evaluation results rather than just the

last one.
Example:

? (mapcar ’+ ’(1 2 3) ’(4 5 6))
= (5 7 9)

4.6.23 (rmapc f l1...ln)

Type: DX
See: (mapc f l1 ... ln )
rmapc works like mapc , but is able to recursively scan sublists in l1 .. ln

.
Example:

? (rmapc ’prin ’(1 2 (3 (4)) 5))
12345= 5

4.6.24 (rmapcar f l1...ln)

Type: DX
See: (mapcar f l1 ... ln )
rmapcar works like mapcar , but is able to recursively scan sublists in l1 ..

ln .
Example:



4.7. FUNCTIONS. 115

? (rmapcar ’prin ’(1 2 (3 (4)) 5))
12345= (1 2 (3 (4)) 5)

4.6.25 (each ((s1 v1) ... (sn vn)) l1 ... ln)

Type: DY
For i=1 till (length v1) this function performs the let function

• (let (( s1 i-th element <v1 >) ... ( sn i-th element <vn >)) l1 ...
ln )

The lists v1 till vn should have the same length. This function returns the
result of the last evaluation. Example:

? (each ((i ’(1 2 3 5 7)))
(print i (sqrt i)) )

1 1
2 1.4142
3 1.7321
5 2.2361
7 2.6458
= 2.6458

4.6.26 (all ((s1 v1) ... (sn vn)) l1 ... ln)

Type: DY
Like each but returning the list of all evaluation results rather than just the

last one.
Example:

? (all ((i ’(1 2 3 5 7)))
(sqrt i) )

= (1 1.4142 1.7321 2.2361 2.6458)

4.7 Functions.

A Lush function is an unnamed object which defines how to evaluate a list
whose first element evaluates to this function. Functions are usually stored in
the value field of a symbol usually referred to as the function name.

There are thus two equivalent ways to define a function named square which
computes the square of its argument:

(setq square (lambda(x) (* x x)))



116 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

or

(de square(x) (* x x))

The evaluation of the list (lambda...) returns a function that setq stores
into symbol square . The function de is a shorthand for this manipulation.

A function behaves as any atom does. Its class however defines how to eval-
uate a list whose first element evaluation returns that function. The evaluation
of a list whose first element is a symbol, the value of which is a function, thus
simply calls that function. The evaluation of the following list then returns 25

(square 5)

But the evaluation of the following list also returns 25

((lambda(x) (* x x)) 5)

There are several kinds of functions in Lush; briefly described hereafter:

• DX functions are written in C, using the standard Lisp to C interface
package. Most of the C functions are written as DX.

• DY functions are directly written in C. These functions are usually control
structures, like cond , progn , etc...

• DE functions are written in Lisp. These functions evaluate their argu-
ments before calling their body. Most Lisp functions are DE functions.

• DF functions are also written in Lisp. They do not however evaluate their
arguments before giving control to the function body.

• DM functions are also known as “macro functions”. They are written
in Lisp. Their argument list includes the function name itself, and its
elements are not evaluated. The body of the function is supposed to
return an evaluable list, known as the macro expansion. This list is then
evaluated in the calling context, and gives the result of the function call.

• DMD functions are a refinement of DM functions. Unlike the DM func-
tions, their argument list does not include the function name. The result
of the body evaluation replaces the calling form itself in the calling con-
text. The evaluation process is then restarted. This replacement process
happens just once, because the code is physically replaced by the result
of the macro expansion during the first call.

• DMC are known as “macro characters”. These are not real function.
They are bound to a single character name and take no arguments. Once
the Lush reader reaches such a character, it calls the function body and
substitutes the result to the macro-character.



4.7. FUNCTIONS. 117

4.7.1 Argument List.

A formal argument list is associated to each each Lush function (i.e. DE, DF,
DM or DMD) This argument list defines which symbols will be bound to the
actual argument of the function, while evaluating its body.

Valid formal argument lists may be a single symbol, a list of symbols, or
something more complex like (a b (c d) . f) , or (a b &optional c d) .

If the formal argument list is a single symbol, it will be bound to the list of
arguments when the function is called.

If the formal argument list is a list, its “car” will be matched against the
“car” of the actual arguments, and its “cdr” will be matched against the “cdr”
of the actual arguments.

Example:

? (de surface((x1 y1) (x2 y2) )
(* (- x1 x1) (- y2 y2)) )

= surface
? (surface ’(4 5) ’(8 10))
= 40

Moreover, two symbols &optional and &rest in argument lists have a spe-
cial meaning, similar to the Common Lisp conventions.

Only symbols and lists composed of a symbol and a default value may follow
the &optional symbol in the formal argument list. These symbols are optional
arguments. If they are omitted, they are bound to their default value, or the
empty list.

Example:

? (de printline(s &optional (indent 0) (terminate "."))
(tab indent)
(printf "\\%s\\%s\\n" s terminate) )

= printline
? (printline "hello")
hello.
= ()
? (printline "hello" 6)

hello.
= ()
? (printline "hello" 6 "@")

hello@
= ()

Finally, the formal argument list may be terminated by &rest followed by
another symbol. The list of all remaining actual arguments will be bound to
that symbol.



118 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

4.7.2 Defining a Function.

(de symb args . body)

Type: DY
See: Argument List.
Creates a new function which evaluates its arguments (DE) and stores this

function into the value field of symbol symb .
A valid argument list args may be a single symbol, a list of symbols or

something more complex like (a b (c d) . f) . A valid function body body
is a list of Lush expressions which are evaluated whenever the function is called.

Whenever a DE function is called,

• The previous values of the argument names are saved,

• The actual arguments are evaluated and stored in the corresponding ar-
gument names,

• Each expression in the function body is evaluated and the last result is
saved,

• The previous values of the argument names are restored,

• The saved result is returned.

Example:

? (de square (x) (* x x))
= square
? (square 9)
= 81
? (de first-arg l

(car l) )
= first-arg
? (first-arg ’a ’b)
= a
? (first-arg ’prems ’deuse ’troise ’quatrz)
= prems

(df symb args . body)

Type: DY
See: Argument List.
See: (dm symb args . body )
Creates a new function which does not evaluates its arguments (DF) and

stores this function into the value field of symbol symb .
A valid argument list args may be a single symbol, a list of symbols or

something more complex like (a b (c d) . f) . A valid function body body
is a list of Lush expressions which are evaluated whenever the function is called.



4.7. FUNCTIONS. 119

Whenever a DF function is called,

• The previous values of the argument names are saved,

• The actual arguments are not evaluated but directly stored in the corre-
sponding argument names,

• Each expression in the function body is evaluated and the last result is
saved,

• The previous values of the argument names are restored,

• The saved result is returned.

Example: Defining a control structure

? (df ifn(cond no . yes)
(if (not (eval cond))

(eval no)
(apply progn yes)) )

= ifn
? (ifn (= 2 3) 1 2))
= 2

Such a definition causes problems if some subexpression depend on a the
value of a symbol named like a function argument.

? (ifn (= 2 3) cond 2)
= (= 2 3)

The previous expression should indeed return the value of symbol cond in
the current context rather than the value of symbol cond in the context of
function ifn .

This problem is alleviated by using “macro functions”.

(dm symb args . body)

Type: DY
See: Argument List.
Creates a macro-function (DM) and stores it into the value field of symbol

symb . The body of a DM function actually computes the expression which
will be evaluated in the calling context. This expression can be found with the
function macro-expand .

A valid argument list args may be a single symbol, a list of symbols or
something more complex like (a b (c d) . f) . A valid function body body
is a list of Lush expressions which are evaluated whenever the function is called.

Whenever a DM function is called,



120 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

• The previous values of the argument names are saved,

• The elements of the entire calling expression, including the function name,
are stored in the corresponding argument names,

• Each expression in the function body is evaluated and the last result
(known as the macro expansion) is saved,

• The previous values of the argument names are restored,

• The saved macro-expansion is evaluated,

• The result is returned.

Example:

? (dm ifn(fname cond . rest)
(list ’if (list ’not cond) . rest) )

= ifn
? (ifn (= 2 3) "yes" "no")
= "yes"
? (setq cond "yes")
= "yes"
? (ifn (= 2 3) cond)
= "yes"

(macro-expand macrocall)

Type: DY
See: (dm symb args . body )
Returns the “expansion” of a call to a DM function.
Example:

? (dm ifn(fname cond . rest)
(list ’if (list ’not cond) . rest) )

= ifn
? (macro-expand (ifn (= 2 3) "yes" "no"))
= (if (not (= 2 3)) "yes" "no")

(dmd symb args . body)

Type: DM(sysenv.lsh)
See: Argument List.
See: (dm symb args . body )
Creates a DMD function and stores it into symbol symb . DMD functions

display two differences with DM functions:



4.7. FUNCTIONS. 121

• Unlike the DM functions, their argument list does not include the function
name.

• The result of the body evaluation replaces the calling form itself in the
calling context.

A valid argument list args may be a single symbol, a list of symbols or
something more complex like (a b (c d) . f) . A valid function body body
is a list of Lush expressions which are evaluated whenever the function is called.

Whenever a DMD function is called,

• The previous values of the argument names are saved,

• The arguments are stored in the corresponding argument names,

• Each expression in the function body is evaluated and the last result
(known as the macro expansion) is saved,

• The previous values of the argument names are restored,

• The macro expansion is physically installed in the calling form using func-
tion displace , replacing forever the call to the DMD function in the
calling code,

• The saved macro-expansion is evaluated,

• The result is returned.

Example:

? (dmd ifn(cond . rest)
(list ’if (list ’not cond) . rest) )

= ifn
? (de if-test(n)

(ifn (= n 2) "yes" "no") )
= if-test
? (if-test 2)
= "no"
? (pretty if-test)
(de if-test(n)

(if (not (= n 2)) "yes" "no") )
= (if-test)

(dmc symb . body)

Type: DY
Defines a macro-character symb . A macro-character is not really functions,

since it interacts only with the Lisp reader.
There are three kinds of macro-characters:



122 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

• The first ones are single character macro-characters. When the Lush
reader encounters one of them, it immediately calls the associated DMC
function and returns its result.

• Caret macro-characters have a two character name, whose first charac-
ter is a caret ^ . A caret DMC behaves exactly like a single characters
DMC: When the reader encounters a caret followed by another character,
it immediately calls the associated DMC function and returns its result.

Caret macro-character may also be abbreviated by typing the correspond-
ing control character (if this control character exists and is not intercepted
by the operating system). If you are running WinLush, the fastest method
consists in typing Ctrl+Shift+Letter . It is always possible however to
type the caret followed by the character.

• Hash macro-characters are also two character macro-characters, whose
first character is a hash sign # . If their body returns (), nothing is read.
If it returns a one element list, this element is read. If it returns anything
else, an error is signaled.

Hash macro characters are useful for conditionally reading certain pieces
of code.

Since the reader performs special actions whenever it encounters a macro-
character, it is advisable to surround the name of symbol symb with vertical
bars | .

Examples:
The macro character ’ which expands into a call to function quote is de-

fined as :

(dmc |’| (list ’quote (read)))

The macro character ^P which expands into a call to function pretty is
defined as :

(dmc |^P| (list ’pretty (read)))

The following macro-character #! could be used to signal debug instruc-
tions that will be not read if variable ndebug is set.

(dmc |#!| (let ((inst (read))) (when (not ndebug) inst)))

(lambda args . body)

Type: DY
See: Argument List.
See: (de symb args . body )



4.7. FUNCTIONS. 123

Returns a function which evaluates its arguments (DE). This function oper-
ates like function de but does not store the function in a particuler symbol.

Example:

? ((lambda (x)
(* x x) ) (+ 4 5))

= 81

(flambda args . body)

Type: DY
See: Argument List.
See: (df symb args . body )
Returns a function which does not evaluates its arguments (DF). This func-

tion operates like function df but does not store the function in a particuler
symbol.

Example:

? ((flambda (x)
(print x) ) (+ 4 5))

(+ 4 5)
= (+ 4 5)

(mlambda args . body)

Type: DY
See: Argument List.
See: (dm symb args . body )
Returns a macro-function (DM). This function operates like function dm but

does not store the function in a particuler symbol.

(funcdef n)

Type: DX
Returns a list which defines the function n . This works for DEs, DFs, DMs

and other interpreted functions, but returns nil for DH, DX, DY, and other
compiled or intrinsic functions.

Example:

? (funcdef caddr)
= (lambda (l)

(car (cddr l)) )



124 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(pretty f)

Type: DM(sysenv.lsh)
Display a nicely indented definition of function f .
Actually, pretty sends a pretty message to f . Each class defines how an

instance of that class will be displayed. In particular, functions are displayed
by printing an indented version of the definition of the functions f1 to fn.

Example

? (pretty caddr)
(de caddr (l)
(car (cddr l)) )

= t

ˆP function

Type: DMC(sysenv.lsh)
See: (pretty f )
This macro character expands into a call of function pretty .
Example:

? ^Paddpath
(de addpath (dir)
(setq dir (concat_fname dir))
(let ((oldpath (path))

(newpath (list dir)) )
(while oldpath
(when (<> dir (car oldpath))
(setq newpath (nconc1 newpath (car oldpath))) )

(setq oldpath (cdr oldpath)) )
(apply path newpath) ) )

= ()

4.8 Strings.

Strings are sequence of characters.
The textual representation of a string is composed of the characters enclosed

between double-quotes. A string may contain macro-characters, parentheses,
semi-colons, as well as any other character. A line terminating backslash indi-
cates a multi-line string.

The following “C style” escape sequences are recognized inside a string:

• \\ for a single backslash,

• \" for a double quote,



4.8. STRINGS. 125

• \n , \r , \t , \b , \f respectively for a linefeed character (Ascii LF),
a carriage return (Ascii CR), a tab character (Ascii TAB), a backspace
character (Ascii BS), and a formfeed character (Ascii FF),

• \e for a end-of-file character (Stdio’s EOF),

• \^? for a control character control-? ,

• \+? for a meta character meta-? (high bit is set),

• \OOO where OOO are octal digits for any ascii character,

• \xHH where HH are hexadecimal digits for any ascii character.

4.8.1 Basic String Functions

Like most Lush functions, the basic functions operating on strings do not mod-
ify their arguments. They create instead a new string on the basis of their
arguments.

See: (> n1 n2 )
See: ( <n1 n2 )

(concat s1 ... sn)

Type: DX
Concatenates strings s1 to sn .
Example:

? (concat "hello" " my friends")
= "hello my friends"

(len s)

Type: DX
Returns the length of the string s .
Example:

? (len "abcd")
= 4

(mid s n [l])

Type: DX
Returns l characters of string s starting at the nth position. The position

n is a number between 1 and the length of the string minus 1. When argument
l is ommitted, function mid returns characters until the end of the string s .

Example:



126 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

? (mid "alphabet" 3 2)
= "ph"

? (mid "alphabet" 3)
= "phabet"

(right s n)

Type: DX
Returns the n rightmost characters of s .
Example:

? (right "alphabet" 3)
= "bet"

(left s n)

Type: DX
Returns the n leftmost characters of s .
Example:

? (left "alphabet" 3)
= "alp"

(strins s1 n s2)

Type: DX
Insert string s2 at position n into the string s1 , and returns the result.

When n is equal to 0, the strins function actually concatenates s2 and s1 .
Example:

? (strins "alphabet" 3 "***")
= "alp***habet"

(strdel s1 n l)

Type: DX
Removes l character at position n from the string s1 .
Example:

? (strdel "alphabet" 3 2)
= "alabet"



4.8. STRINGS. 127

(index s r [n])

Type: DX
Searches the first occurrence of the string s in the string r , starting at

the n th position. index returns the position of the first match. If such an
occurrence cannot be found, it returns the empty list.

Example:

? (index "pha" "alpha alphabet alphabetical" 4)
= 9

(upcase s)

Type: DX
Returns string s with all letters converted to uppercase.
Example:

? (upcase "alphabet")
= "ALPHABET"

(upcase1 s)

Type: DX
Returns string s with first letter converted to uppercase.
Example:

? (upcase1 "alphabet")
= "Alphabet"

(downcase s)

Type: DX
Returns string s with all letters converted to lowercase.
Example:

? (downcase "alPHABet")
= "alphabet"

(val s)

Type: DX
Returns the numerical value of s considered as a number. Returns the empty

list if s does not represent a decimal or hexadecimal number.
Example:



128 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

? (val "3.14")
= 3.14

? (val "abcd")
= ()

? (val "0xABCD")
= 43981

(str n)

Type: DX
Returns the decimal string representation of the number n .
Example:

? (str (2* 3.14))
= "6.28"

(strhex n)

Type: DX
Returns the hexadecimal string representation of integer number n .
Example:

? (strhex 18)
= "0x12"

(strgptr p)

Type: DX
Returns the hexadecimal string representation of pointer p preceded by an

ampersand.

(asc s)

Type: DX
Returns the numeric ASCII code of the first character of string s . This

function causes an error if s is an empty string.
Example

? (asc "abcd")
= 97



4.8. STRINGS. 129

(chr n)

Type: DX
Returns a one-character string containing the ASCII character of code n .

Integer n must be strictly positive, and smaller than 255.
Example

? (chr 48)
= "0"

(isprint s)

Type: DX
Returns t if string s contains only printable characters.
Example:

? (isprint "alpha bet")
= t

? (isprint "alpha\\^Cbet")
= ()

(pname l)

Type: DX
Returns a string representation for the lisp object l . pname is able to give

a string representation for numbers, strings, symbols, lists, etc...
Example:

? (pname (cons ’a ’(b c)))
= "(a b c)"

(sprintf format ... args ... )

Type: DX
Like the C language function sprintf , this function returns a string sim-

ilar to a format string format . The following escape sequences, however are
replaced by a representation of the corresponding arguments of sprintf :

• "%%" is replaced by a single \%.

• "%l" is replaced by a representation of a lisp object.

• "%[-][<n ]s”> is replaced by a string, right justified in a field of length
n if n is specified. When the optional minus sign is present, the string is
left justified.



130 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

• "%[-][<n ]d”> is replaced by an integer, right justified in a field of n
characters, if n is specified. When the optional minus sign is present, the
string is left justified.

• "%[-][<n [. m ]] c ”> where c is one of the characters e , f or g ,
is replaced by a floating point number in a n character field, with m
digits after the decimal point. e specifies a format with an exponent, f
specifies a format without an exponent, and g uses whichever format is
more compact. When the optional minus sign is present, the string is left
justified.

Example:

? (sprintf "\\%5s(\\%3d) is equal to \\%6.3f\\n" "sqrt" 2 (sqrt 2))
= " sqrt( 2) is equal to 1.414\\n"

(strip s)

Type: DE(miscenv.lsh)
This function deletes the leftmost and rightmost spaces in string s .

(strip " This sentences is full of spaces. ")

(stripl s)

Type: DE(miscenv.lsh)
This function deletes the leftmost spaces in string s .

(stripl " This sentences is full of spaces. ")

(stripr s)

Type: DE(miscenv.lsh)
This function deletes the rightmost spaces in string s .

(stripr " This sentences is full of spaces. ")

4.8.2 Regular Expressions (regex).

A regular expression describes a family of strings built according to the same pat-
tern. A regular expression is represented by a string which “matches” (using cer-
tain conventions) any string in the family. TL provides four regular expression
primitives ( regex-match , regex-extract , regex-seek , and regex-subst
) and several library functions.

The conventions for describing regular expressions in Lush are quite similar
to those used by the egrep unix utility:



4.8. STRINGS. 131

• An ordinary character matches itself. Some characters, ( ) \ [ ] | .
? * and \ have a special meaning, and should be quoted by prepend-
ing a backslash \ . The string "\\\\" actually is composed of two
backslashes (because backslashes in strings should be escaped!), and thus
matches a single backslash.

• A dot . matches any character.

• A caret ^ matches the beginning of the string.

• A dollar sign $ matches the end of the string.

• A range specification matches any specified character. For example, reg-
ular expression [YyNn] matches Y y N or n , regular expression [0-9]
matches any digit, regular expression [^0-9] matches any character ex-
cept a digit, regular expression []A-Za-z] matches a closing bracket, or
any uppercase or lowercase letter.

• The concatenation of two regular expressions matches the concatenation
of two strings matches regular expression. Regular expressions can be
grouped with parenthesis, and modified by the ? + and * characters.

• A regular expression followed by a question mark ? matches 0 or 1 in-
stance of the single regular expression.

• A regular expression followed by a plus sign + matches 1 or more instances
of the single regular expression.

• A regular expression followed by a star * matches 0 or more instances of
the single regular expression.

• Finally, two regular expressions separated by a bar — match any string
matching the first or the second regular expression.

Parenthesis can be used to group regular expressions. For instance, the reg-
ular expression "(+|-)?[0-9]+(\.[0-9]*)?" matches a signed number with
an optional fractional part. Furthermore, there is a “register” associated with
each parenthesized part of a regular expression. The matching routines use
these registers to keep track of the characters matched by the corresponding
part of the regular expression. This is useful with functions regex-extract
and regex-subst .

(regex-match r s)

Type: DX
Returns t if regular expression r exactly matches the entire string s . Re-

turns the empty list otherwise.
Example:

? (regex-match "(+|-)?[0-9]+(\\\\.[0-9]*)?" "-56")
= t



132 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(regex-extract r s)

Type: DX
If regular expression r matches the entire string s , this function returns

a list of strings representing the contents of each register, that is to say the
characters matched by each section of the regular expression r delimited by
parenthesis. This is useful for extracting specific segments of a string.

If the regular expression r does not match the string s , function regex-extract
returns the empty list. If the regular expression r matches the string but does
not contain parenthesis, this function retirns a list containing the initial string
s .

Example:

? (regex-extract "(+|-)?([0-9]+)(\\\\.[0-9]*)?" "-56.23")
= ("-" "56" ".23")

(regex-seek r s [start])

Type: DX
Searchs the first substring in s that matches the regular expression r , start-

ing at position start in s . If the argument start is not provided, string s
is searched from the beginning.

If such a substring is found, regex-seek returns a list (begin length) ,
where begin is the index of the first character of the substring, and length is
the length of the subscript. The instruction (mid s begin length) may be
used to extract this substring.

If no such substring exists, regex-seek returns the empty list.
Example:

? (regex-seek "(+|-)?[0-9]+(\\\\.[0-9]*)?," "a=56.2, b=57,")
= (3 5)

(regex-subst r s str)

Type: DX
Replaces all substring matching regular expression r in string str by string

s .
A “register” is associated to each piece of the regular expression r enclosed

within parenthesis. Registers are numbered from %0 to %9 . During each
match, the substring of str matching each piece of the regular expression is
stored into the corresponding register.

During the replacement process, characters %0 to %9 in the replacement
string s are substited the content of the corresponding register. (A single % is
denoted as %% ).

Example:



4.8. STRINGS. 133

? (regex-subst "([a-h])([1-8])" "\\%1\\%0" "e2-e4, d7-d5, d2-d4, d5xd4?")
= "2e-4e, 7d-5d, 2d-4d, 5dx4d?"

(regex-rseek r s [n [gr]])

Type: DE(miscenv.lsh)
This function seeks recursively the first occurence of r in s . and returns

the list made of the locations.
When argument n is provided, it seeks and returns the locations of the n

first occurences and it returns () on failure.
Optional regex gr defines the allowed garbage stuff before and between oc-

curences. When n is not provided, this function checks the garbage stuff after
the occurences too. If unallowed garbage stuff is found, the function returns ()
. By default, any garbage stuff is allowed.

Since even void garbage is checked, a caret ”ˆ” is often added to gr .

(regex-split r s [n [gr [neg]]])

Type: DE(miscenv.lsh)
This function splits a string s into occurences of r .
When integer n is provided, this function provides only the n first oc-

curences.
When regex gr is provided, garbage is checked (see function regex-rseek

).
When neg is provided and non nil, this function returns the garbage stuff

instead. When both n and neg are provided and non nil, the n garbages before
and between the n first occurences are returned.

(regex-skip r s [n [gr [neg]]])

Type: DE(miscenv.lsh)
This function skips the n first occurences of regex r in a string s .
When n is equal to 0, it returns s . When n is lower than 0, it generates

an error. When n is either nil or undefined, it is set to 1.
When neg is either nil or undefined, it returns the right residual of s just

following the n th occurence.
When neg is not nil, it returns the right residual of s begining with the n

th occurence.
When regex gr is provided, garbage is checked (see function regex-rseek

).

(regex-count r s)

Type: DE(miscenv.lsh)
This function recursively seeks the occurences of regex r in string s and

returns the number of occurences found.



134 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(regex-tail r s [n [gr [neg]]])

Type: DE(miscenv.lsh)
This function seeks recursively the occurences of regex r in string s .
When neg is either nil or undefined, it returns the right residual of s be-

gining before the n th last occurence.
When neg is non nil, it returns the right residual of s begining after the n

th last occurence (and thus begining before the n th garbage.
When n is either nil or undefined, it is set to 1.
When regex gr is provided, garbage is checked (see function regex-rseek

).

(regex-member rl s)

Type: DE(miscenv.lsh)
This function returns the first member of list rl which is a matching regex

for string s .

4.9 Storages

Storages are vectors of identical objects that are used as data storage areas for
scalars, vectors, matrices, tensors, and similar structures.

• Data in a storage is rarely accessed directly, but often accessed through
an IDX object. Several IDXs can point to the same data in a storage,
allowing access of the data in multiple ways simultaneously.

• The data in a storage can reside in memory (a memory storage) or on
disk (a memory-mapped storage). Disk files can be memory mapped into
a storage and accessed element by element or byte by byte through storage
or IDX access functions.

• Storages can be resized/reallocated without adverse effects on the IDX
that point to them.

4.9.1 Storage Creation and Allocation

Each of the following functions has several names. For example , int-storage
can also be invoked with new i32 storage as well as new-int-storage . How-
ever , the names described below are preferred.

(float-storage [n])

Type: DE(storage.c)
Creates a storage of class |FSTORAGE| whose elements are 4-byte floats. If n

is present, n elements are allocated in memory and initialized to 0 (or NIL). If n
is not present, an unsized storage is returned that can be subsequently allocated



4.9. STORAGES 135

in memory with storage malloc, storage malloc nc, or memory-mapped from a
file with storage mmap.

(double-storage [n])

Type: DE(storage.c)
Creates a storage of class |DSTORAGE| whose elements are double precision

floats (8 bytes). If n is present, n elements are allocated in memory and initial-
ized to 0 (or NIL). If n is not present, an unsized storage is returned that can
be subsequently allocated in memory with storage malloc, storage malloc nc, or
memory-mapped from a file with storage mmap.

(int-storage [n])

Type: DE(storage.c)
Creates a storage of class |I32STORAGE| whose elements are 4 byte siged

integers. If n is present, n elements are allocated in memory and initialized
to 0 (or NIL). If n is not present, an unsized storage is returned that can be
subsequently allocated in memory with storage malloc, storage malloc nc, or
memory-mapped from a file with storage mmap.

(short-storage [n])

Type: DE(storage.c)
Creates a storage of class |I16STORAGE| whose elements are 2 byte siged

integers. If n is present, n elements are allocated in memory and initialized
to 0 (or NIL). If n is not present, an unsized storage is returned that can be
subsequently allocated in memory with storage malloc, storage malloc nc, or
memory-mapped from a file with storage mmap.

(byte-storage [n])

Type: DE(storage.c)
Creates a storage of class |I8STORAGE| whose elements are single-byte singed

integers. If n is present, n elements are allocated in memory and initialized
to 0 (or NIL). If n is not present, an unsized storage is returned that can be
subsequently allocated in memory with storage malloc, storage malloc nc, or
memory-mapped from a file with storage mmap.

(ubyte-storage [n])

Type: DE(storage.c)
Creates a storage of class |U8STORAGE| whose elements are single-byte un-

singed integers. If n is present, n elements are allocated in memory and initial-
ized to 0 (or NIL). If n is not present, an unsized storage is returned that can
be subsequently allocated in memory with storage malloc, storage malloc nc, or
memory-mapped from a file with storage mmap.



136 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(gptr-storage [n])

Type: DE(storage.c)
Creates a storage of class |GPTRSTORAGE| whose elements are generic mem-

ory pointers. If n is present, n elements are allocated in memory and initialized
to 0 (or NIL). If n is not present, an unsized storage is returned that can be
subsequently allocated in memory with storage malloc, storage malloc nc, or
memory-mapped from a file with storage mmap.

(atom-storage [n])

Type: DE(storage.c)
Creates a storage of class |ATSTORAGE| whose elements are Lisp objects. If n

is present, n elements are allocated in memory and initialized to 0 (or NIL). If n
is not present, an unsized storage is returned that can be subsequently allocated
in memory with storage malloc, storage malloc nc, or memory-mapped from a
file with storage mmap.

(packed-storage [n])

Type: DE(storage.c)
Creates a storage of class |PSTORAGE| whose elements are packed fixed point

numbers (one-byte signed numbers with 4 bit integer part and 4 bit fractional
part). If n is present, n elements are allocated in memory and initialized to
0 (or NIL). If n is not present, an unsized storage is returned that can be
subsequently allocated in memory with storage malloc, storage malloc nc, or
memory-mapped from a file with storage mmap. This type of storage is some-
what obsolete, but is there for backward compatibility with SN2.x.

4.9.2 Storage allocation

(storage-malloc srg n)

Type: DE(storage.c)
Set the size of storage srg to n , allocate n elements in memory, and clear

the content (to 0 or NIL depending on the type of storage). Storage srg must
be unsized (as returned by new-xxx-storage ).

(storage-malloc-nc srg n)

Type: DE(storage.c)
Set the size of storage srg to n , allocate n elements in memory. The

elements are not cleared to save time. Storage srg must be unsized (as returned
by new-xxx-storage ).



4.9. STORAGES 137

(storage-realloc srg n)

Type: DE(storage.c)
Change the size of storage srg to n , and reallocate n elements in memory.

IDXs that points to srg are unaffected (i.e. they point to the right place and
their content data is unchanged). The newly allocated data segment is initialize
to 0 or NIL.

(storage-realloc-nc srg n)

Type: DE(storage.c)
Change the size of storage srg to n , and reallocate n elements in memory.

IDXs that points to srg are unaffected (i.e. they point to the right place and
their content data is unchanged). The newly allocated data segment is NOT
initialized.

(storage-mmap srg file offset)

Type: DE(storage.c)
maps the content of file file into memory. file can be either a file descrip-

tor or a string containing a filename. Each element of the file starting at byte
offset is made accessible through the corresponding element of the storage srg
. Storage of Lisp objects ( |ATSTORAGE| cannot be memory mapped. Mapped
storages are read-only. Whether a storage is read-only can be determined with
the function writablep .

4.9.3 Storage access

Storage elements can be read and set as if the storage were an IDX with one
dimension (a vector). In other words (s 3) returns the value of element 3 of
storage s . (s 3 5) sets it to 5.

4.9.4 Miscellaneous storage functions

(storage-save srg file)

Type: DX
save the content of storage srg into file file . file may be a string con-

taining a filename or a file descriptor. Data is written raw , without a header ,
and in the native format of the machine (multibyte elements will not be portable
between big and small-endian machines).

(storage-load srg file)

Type: DX
load storage srg with the content of file file . file may be a string

containing a filename or a file descriptor.



138 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(storagep srg)

Type: DX
return true is srg is a storage , and nil otherwise.

(writablep srg)

Type: DX
return true if srg is writable , and nile otherwise. Memory mapped storages

are generally not writable.

(storage-read-only srg)

Type: DX
marks storage srg as being read-only. No Lisp function can write into it

after this.

(storage-size srg)

Type: DX
return the number of element in storage srg . Return 0 if the storage is

unsized.

(storage-clear srg)

Type: DX
Fills up all the element of storage srg with 0 or NIL.

4.10 Matrices, Vectors, Tensors, Indexes and
IDX

Lush has a powerful mechanism for manipulating tabular data such as scalars,
vectors, matrices, and tensors from 0 to 8 dimensions.

The basic Lush type for tabular data is called an INDEX or an IDX. The
IDX is merely an access structure, the actual data is stored in a STORAGE
associated with the IDX.

The data contained in a storage, and accessed with an IDX, can be of type
double, float, int, short, byte, ubyte, gptr (generic pointer), atom (lisp object),
and packed (one-byte fixed point number).

There are many IDX-related functions in Lush. Some are described in this
section, but the vast majority is described in the Standard Libraries section.

creating a tensor of float is done simply with:

? (setq m (float-matrix 10 8 4)) ; create 3D matrix
= ::INDEX3:<10x8x4>
? (m 3 4 2 45.6) ; set value of element (3,4,2) to 45.6



4.10. MATRICES, VECTORS, TENSORS, INDEXES AND IDX 139

= ::INDEX3:<10x8x4>
? (m 3 4 2) ; get value of element (3,4,2).
= 45.6

Tensors of various basic types can be created with the functions listed below.
Each function has two versions, the regular version initializes all the elements
to zero, while the version with -nc at the end do not (no clear) and are a bit
faster. All of these functions take 0 to 8 integer arguments that are the sizes in
each dimension:

• double-matrix, double-matrix-nc, real-matrix, real-matrix-nc :
doubles

• float-matrix, float-matrix-nc, flt-matrix, flt-matrix-nc : floats

• int-matrix, int-matrix-nc : 32-bit ints

• short-matrix, short-matrix-nc : 16-bit shorts

• byte-matrix, byte-matrix-nc : 8-bit bytes

• ubyte-matrix, ubyte-matrix-nc : 8-bit unsigned bytes

• gptr-matrix, gptr-matrix-nc : generic pointers (void*)

Tables of lisp objects (atoms) are created with the array function.

4.10.1 IDX Structure

An IDX is a structure that contains a pointer to the STORAGE where the data
resides, and offset indicating where the IDX data starts in the storage, a number
of dimensions (between 0 and 8), a size for each dimension, and a modulo for
each dimension. The modulo determines by how much a pointer would have to
be incremented to go from one element of the IDX to the next element in the
given dimension.

Multiple IDXs can point to the same STORAGE and provide access to the
same data in multiple ways.

an IDX with 0 dimension is called a scalar, and can be seen as a pointer to
a number.

4.10.2 IDX Creation and Allocation

Tensors of various basic types can be created with the functions listed below.
Each function has two versions , the regular version initializes all the elements
to zero , while the version with -nc at the end do not (no clear) and are a bit
faster. All of these functions take 0 to 8 integer arguments that are the sizes in
each dimension:



140 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(double-matrix s1...sn)

Type: DX
create an n -dimensional tensor of double . The arguments are the sizes

in each dimension. The elements are initialized to 0.

(double-matrix-nc s1...sn)

Type: DX
create an n -dimensional tensor of double . The arguments are the sizes in

each dimension. The elements are not initialized and may contain non-sensical
values.

(float-matrix s1...sn)

Type: DX
create an n -dimensional tensor of float . The arguments are the sizes in

each dimension. The elements are initialized to 0.

(float-matrix-nc s1...sn)

Type: DX
create an n -dimensional tensor of float . The arguments are the sizes in

each dimension. The elements are not initialized and may contain non-sensical
values.

(int-matrix s1...sn)

Type: DX
create an n -dimensional tensor of 32-bit int . The arguments are the sizes

in each dimension. The elements are initialized to 0.

(int-matrix-nc> s1...sn)

create an n -dimensional tensor of 32-bit int . The arguments are the sizes in
each dimension. The elements are not initialized

(short-matrix s1...sn)

Type: DX
create an n -dimensional tensor of 16-bit short . The arguments are the

sizes in each dimension. The elements are initialized to 0.

(short-matrix-nc> s1...sn)

create an n -dimensional tensor of 16-bit short . The arguments are the sizes
in each dimension. The elements are not initialized



4.10. MATRICES, VECTORS, TENSORS, INDEXES AND IDX 141

(byte-matrix s1...sn)

Type: DX
create an n -dimensional tensor of signed byte . The arguments are the

sizes in each dimension. The elements are initialized to 0.

(byte-matrix-nc> s1...sn)

create an n -dimensional tensor of signed byte . The arguments are the sizes
in each dimension. The elements are not initialized

(ubyte-matrix s1...sn)

Type: DX
create an n -dimensional tensor of unsigned byte . The arguments are the

sizes in each dimension. The elements are initialized to 0.

(ubyte-matrix-nc> s1...sn)

create an n -dimensional tensor of unsigned byte . The arguments are the sizes
in each dimension. The elements are not initialized

(gptr-matrix s1...sn)

Type: DX
create an n -dimensional tensor of generic pointers (void *). The arguments

are the sizes in each dimension. The elements are initialized to NULL.

(gptr-matrix-nc> s1...sn)

create an n -dimensional tensor of generic pointers (void *). The arguments
are the sizes in each dimension. The elements are not initialized and may cause
memory faults if dereferenced carelessly.

(array m s1...sn)

Type: DX
create an n -dimensional tensor lisp objects. The arguments are the sizes

in each dimension. The elements are initialy nil.

(new-index srg slist)

Type: DX
Creates a new IDX pointing to the storage srg . slist is a list of integers

that specifies the size in each of the dimensions. The srg is allocated and
resized if necessary.



142 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

4.10.3 IDX Literals

The IDX literal syntax can be used to create an IDX and fill it up with values
in one fell swoop. Here is how to create a vector of doubles:

(setq m [3 4 5])

A two-dimensional matrix of doubles can be created as follows:

(setq m [[1 2 3] [3 4 5]])

Vectors and matrices of other types than doubles can be created by specifying
the type with a single character right after the first open bracket. Here is how
a vector of floats can be created:

(setq m [f 1 2 3])

Similarly , IDX of int , short , bytes , ubytes , and atoms can be created with
the characters i , s , b , u , a respectively. Here is another example:

(setq m [a "choucroute" "garnie"])

scalar literals

Scalars literals can be entered with the scalar macros described below. Here is
an example:

(idx-dotm0 vector (new-scalarf 34) output)

(new-scalar value)
creates a new scalar of double and fills it with value )
(new-scalarf value)
creates a new scalar of float and fills it with value )
(new-scalari value)
creates a new scalar of int and fills it with value )
(new-scalars value)
creates a new scalar of short and fills it with value )
(new-scalarb value)
creates a new scalar of byte and fills it with value )
(new-scalaru value)
creates a new scalar of ubyte and fills it with value )
(new-scalara value)
creates a new scalar of atom and fills it with value )
(new-scalarp value)
creates a new scalar of gptr and fills it with value )



4.10. MATRICES, VECTORS, TENSORS, INDEXES AND IDX 143

4.10.4 IDX Copying and Cloning

(idx-copy m1 [m2])

Type: DX
Copy m1 into m2 . If m1 and m2 are of different numerical types , appropri-

ate conversion will be performed. m1 and m2 must have the same dimensions.
If m2 is not present , a fresh copy of m1 is returned (the data is copied).

(copy-matrix m1 [m2])

Type: DX
Copy m1 into m2 . Unlike idx-copy , this function does not require that

m1 and m2 have the same structure as long as they have the same number of
elements. In other words , m1 can be a 4 by 5 matrix , and m2 a 20-dimensional
vector.

(idx-clone m)

Type: DX
Return a clone of IDX m . The returned IDX is identical to m and points to

the same storage at the same place. This does not actually copy any data.

(copy-any-matrix m1 [m2])

Type: DX
obsolete function. Works like copy-matrix (sort of). If m2 is omitted return

a new copy of m1 (a new storage is created and m1 is copied in it). If m2 is
present , the storage of m1 is copied into the storage of m2 . Return m2 .

4.10.5 IDX Iterators

(idx-bloop ((symb1 idx1) [ (symb2 idx2) [...(symbn idxn) ]]) body)

Type: DY
make each symbi be an idx that loops over the first dimension of its corre-

sponding idxi . Execute body for each value.
More precisely, each si will be an idx with one less dimension than the

corresponding idxi , and will simulataneously loop over the successive ”slices”
of idxi for each possible value of the first index. In other words, applying
function myfunc to each element of a vector v1 and putting the result in the
corresponding element in v2 can be done with:

(idx-bloop ((x1 v1) (x2 v2)) (x2 (myfunc (x1))))

x1 and x2 are scalars (i.e. zero-dimensional tensors). The above function
work just as well is v1 and v2 are n -dimensional tensors and myfunc accepts
n-1 -th dimensional tensors as arguments.



144 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(idx-pbloop ((symb1 idx1) [ (symb2> idx2) [...(symbn idxn) ]]) body)

Works just like idx-bloop , but the multiple evaluations of the body may be
executed in parallel on some implementations of Lush.

(idx-eloop ((symb1 idx1) [ (symb2> idx2) [...(symbn idxn) ]]) body)

Type: DY
Make each symbi be an idx that loops over the last dimension of its corre-

sponding idxi . Execute body for each value.
This is like idx-bloop, but it loops on the last dimension, instead of the first.

For example, the matrix product operation C = A*B can be written as follows:

(de idx-m2timesm2 (A B C)
(idx-eloop ((Bj B)(Cj C)) (idx-m2dotm1 A Bj Cj)))

where idx-m2dotm1 is the usual matrix-vector product. The idx-eloop
construct simultaneously iterates over all columns of B and C .

(idx-peloop ((symb1 idx1) [ (symb2> idx2) [...(symbn idxn) ]]) body)

Works just like idx-pbloop , but the multiple evaluations of the body may be
executed in parallel on some implementations of Lush.

(cidx-bloop (i 1 [i 2...i n] (c 1 l 1) [(c 1 l 1)...(c m l m)) p 1 [p 2...])

Type: DF
This iterator is desinged to facilitate the implementation of inner loops of

tensor functions in C, while leaving all the bookkeeping to the Lisp.
A call to cidx-bloop as shown in the synopsis is somewhat equivalent to n

nested idx-bloop s, which will loop over the first n dimensions of idxs l 1 to
l m simultaneously. The arguments i 1 to i n are strings containing names
of C local variables that will be created and set to the loop index in each of the
n dimensions. At each iteration, the C variables provided in strings c 1 to c m
will point to the appropriate values in the idxs l 1 to l m . For example, the
following function will fill matrix a with cos(i+j).

(de foo (a)
((-idx2- (-flt-)) a)
(cidx-bloop ("i" "j" ("a" a)) #{ *a = cos(i+j); #}) a)

The return value is (like in idx-bloop) the last IDX specified in the declara-
tion (in the example above, the return value is superfluous).



4.10. MATRICES, VECTORS, TENSORS, INDEXES AND IDX 145

(idx-gloop (p1...[pn]) body)

Type: DM
an enhanced version of bloop which allows to ”bloop” through a pointer

table , and to have access to the current index value of the loop. Each pi is
a list with 1 , 2 , or 3 elements. if it has 2 elements the meaning is like a in
reguler bloop. if it has 1 element , which must be a symbol , it will be used as a
local variable which contains the current index of the loop. if it has 3 elements.
It must be of the form ( symbol p m ) , where p is a 1D index and m an index
of at least one dimension. symbol will take the values (idx-select m 0 (p i)) for
all possible values of i.

4.10.6 IDX Information

(indexp m)

Type: DX
Return true if m is an IDX.

(matrixp m)

Type: DX
Return true if m is an IDX whose storage is of a numerical or generic pointer

type , as opposed to lisp objects.

(arrayp m)

Type: DX
return true if m is an IDX over a storage of lisp objects (as opposed to

numerical types). For historical reasons , this kind of IDX is also known as an
array.

(idx-storage m)

Type: DX
return the storage on which IDX m points.

(idx-size m)

Type: DX
return the memory size occupied by the elements of m in bytes.

(idx-nelements m)

Type: DX
return the number of elements of IDX m . This function is not compilable

(no reason , we just forgot to write the macros).



146 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(idx-ndim m)

Type: DX
return the number of dimensions of IDX m .

(idx-offset m)

Type: DX
return the offset of the first element of IDX m in its storage. The offset is in

number of elements , not bytes.

(idx-dim m [n])

Type: DX
With two arguments, return the size of IDX m in its n -th dimension (start-

ing at zero). With one argument, return the size of IDX m in each dimension
in the form of a list of integers.

Example:

? (idx-dim [[2 3 4][5 6 7]])
= (2 3)

(idx-bound m)

Type: DX
Return the largest index in each dimension in the form of a list. This function

is mostly here for historical reasons.

(idx-modulo m [n])

Type: DX
With two arguments: return the number of elements that separate two el-

ements that have successive indices in the n -th dimension (starting at zero).
With one argument , return a list of all the modulos in all the dimensions.

(contiguousp m)

Type: DE
returns true if the elements of m are contiguous in memory. IDX resulting

from idx-transclone or narrow are generally non-contiguous.

(idx-ptr m)

Type: DX
return a gptr that points to the first element of m . This must be used with

caution because the data pointed to by the pointer may be garbage collected
(when m is destroyed) , or even displaced (when m is resized). idx-ptr is
primarily used when calling C function that require a pointer to numerical data.



4.10. MATRICES, VECTORS, TENSORS, INDEXES AND IDX 147

4.10.7 IDX Manipulations

Cloning manipulations

These functions take an IDX as argument and return a modified clone of this
IDX pointing to the same data (or a subset of it).

(idx-transclone)
(select m n s) Type: DM
Return a clone of IDX m (on the same storage), with the n -th dimension

removed, and which is the s -th ”slice” of m , in the n -th dimension.

? (setq m [[0 1 2 3 4][10 11 12 13 14]])
= [[ 0.00 1.00 2.00 3.00 4.00 ]

[10.00 11.00 12.00 13.00 14.00 ]]
? (select m 1 2)
= [ 2.00 12.00 ]

(narrow m n s [o]) Type: DM
Make a clone of IDX m , and reduce its size in the n -th dimension to s

elements, offset by o .

? (setq m [[0 1 2 3 4][10 11 12 13 14]])
= [[ 0.00 1.00 2.00 3.00 4.00 ]

[10.00 11.00 12.00 13.00 14.00 ]]
? (narrow m 1 3 2)
= [[ 2.00 3.00 4.00 ]

[12.00 13.00 14.00 ]]

(unfold m n ksize step) Type: DM
Return an idx on the same storage as m (pointing to the same data) with

an added dimension at the end obtained by ”unfolding” the n -th dimension.
The size of the new dimension is ksize . This essentially manipulates the
modulos to make convolutions look like matrix-vector multiplies. For example,
a one-dimensional convolution between vector v and kernel k can be done as
follows:

? (setq v [0 1 2 3 4 5 6])
= [ 0.00 1.00 2.00 3.00 4.00 5.00 6.00 ]
? (setq k [1 2 1])
= [ 1.00 2.00 1.00 ]
? (setq uv (unfold v 0 3 1))
= [[ 0.00 1.00 2.00 ]

[ 1.00 2.00 3.00 ]
[ 2.00 3.00 4.00 ]
[ 3.00 4.00 5.00 ]
[ 4.00 5.00 6.00 ]]



148 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

? (setq r (matrix 5))
= [ 0.00 0.00 0.00 0.00 0.00 ]
? (idx-m2dotm1 uv k r)
= [ 4.00 8.00 12.00 16.00 20.00 ]

A subsampled convolution (where the kernel is stepped by more than one
element) can be performed by setting the step parameter to a value other than
1:

? (setq uv (unfold v 0 3 2))
= [[ 0.00 1.00 2.00 ]

[ 2.00 3.00 4.00 ]
[ 4.00 5.00 6.00 ]]

? (setq r (matrix 3))
= [ 0.00 0.00 0.00 ]
? (idx-m2dotm1 uv k r)
= [ 4.00 12.00 20.00 ]

Here are other amusing examples:

? (unfold [3 4 5 6 7] 0 5 1)
= [[ 3.00 4.00 5.00 6.00 7.00 ]]
? (unfold [3 4] 0 1 1)
= [[ 3.00 ]

[ 4.00 ]]

Naturally, there is no real need for most programmers to use the unfold
construct directly because the standard library contains efficient predefined 1D
and 2D convolutions.

(idx-transclone m dimlist) Type: DX
return a clone of idx m where the dimensions have been permuted according

to the list of dimension indices dimlist . For example:

(idx-transclone m ’(0 2 1))

permutes the second and third dimensions.
(transpose m) Type: DE
Simple transpose function for 1D vectors and 2D matrices. This does not

copy any data , but simply returns a new IDX on the same data with the
appropriate structure.

(diagonal m d) Type: DM
return a clone of m where the modulos and dimensions have been hacked so

as to grab the diagonal of the last d dimensions. Those dimensions must all
have the same size. The result has d-1 less dimensions than the original IDX.



4.10. MATRICES, VECTORS, TENSORS, INDEXES AND IDX 149

? (setq m [[[111 112 113][121 122 123][131 132 133]]
[[211 212 213][221 222 223][231 232 233]]])

= [[[111.00 112.00 113.00 ]
[121.00 122.00 123.00 ]
[131.00 132.00 133.00 ]]

[[211.00 212.00 213.00 ]
[221.00 222.00 223.00 ]
[231.00 232.00 233.00 ]]]

? (diagonal m 2)
= [[111.00 122.00 133.00 ]

[211.00 222.00 233.00 ]]

Compilable Direct IDX manipulations

(idx-changedim m n v) Type: DX
change the size of the n -th dimension of m to v . This generates an error

if the resulting IDX overflows its storage.

? (setq m (matrix 3 4))
= [[ 0.00 0.00 0.00 0.00 ]

[ 0.00 0.00 0.00 0.00 ]
[ 0.00 0.00 0.00 0.00 ]]

? (m () () (range 0 11))
= [[ 0.00 1.00 2.00 3.00 ]

[ 4.00 5.00 6.00 7.00 ]
[ 8.00 9.00 10.00 11.00 ]]

? (idx-changedim m 1 3)
= ()
? m
= [[ 0.00 1.00 2.00 ]

[ 4.00 5.00 6.00 ]
[ 8.00 9.00 10.00 ]]

(idx-changemod m n v) Type: DX
change modulo of n -th dimension of m to v .
(idx-changeoffset m n) Type: DX
change offset of m in its storage to n

Non-compilable Direct IDX manipulations

These functions directly hack into the IDX passed as argument. Because of
those bad side effects , they cannot be called in compiled code.

(idx-redim m dimlist) Type: DX
Redimensions IDX m to the list of dimensions passed as argument.
(idx-undim m) Type: DX



150 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

Turn m into an un-dimensioned IDX.
(idx-unfold m n ksize step) Type: DX
same as unfold , but hacks m directly instead of cloning it.
(idx-diagonal m d) Type: DX
same as diagonal , but hacks m directly instead of cloning it.
(idx-narrow m n s [o])>
Works like narrow , but hack m ”in place” instead of returning a hacked

clone.
(idx-select m n s) Type: DX
same as select , but hacks m directly instead of cloning it.
(idx-transpose m perm-list) Type: DX
Permute the dimensions of idx using the list of int’s perm-list as a per-

mutation matrix.
(idx-transpose2 idx d1 d2) Type: DX
permute dimesnions d1 and d2 if IDX idx .

4.10.8 Loading/Saving

There are two ways to load and save matrices and tensors in Lush which deal
with two incompatible formats. The functions listed below use the so-called
”classic” format , but cannot be used in compiled code. The other set of func-
tions , described in the standard library section uses a different format (so-called
IDX format) and are based on the C stdio library. This discrepancy exists largely
for historical reasons and will be fixed eventually.

Loading, Saving, and Mapping Matrices.

There are two types of ”classic” matrix files: ASCII files and binary files. Binary
files are a more accurate , more compact , and more efficient way of saving matrix
data. ASCII matrix files should be used only reserved to

(save-matrix mat file) Type: DX
Stores the matrix mat into the binary file file . Argument file may be

a filename string or a file descriptor created with open-write or open-append
. When file is a file name , a suffix ".mat" is added when needed. [Binary
Matrix File Format. ]

(save-ascii-matrix mat file) Type: DX
Stores the matrix mat into the text file file . Argument file may be a

filename string or a file descriptor created with open-write or open-append
. When file is a file name , a suffix ".mat" is added when needed. [Ascii
Matrix File Format. ]

(load-matrix [mat] file) Type: DX
Loads a matrix from file file and returns it. This function senses the file

format and performs the adequate actions. If a symbol mat is specified , it
stores the new matrix in symbol mat .



4.10. MATRICES, VECTORS, TENSORS, INDEXES AND IDX 151

Argument file may be a filename string or a file descriptor created with
open-read . When file is a file name , a suffix ".mat" is added when needed.
[Binary Matrix File Format. ][Ascii Matrix File Format. ]

(map-matrix [mat] filename) Type: DX
This function is available on certain systems only. It loads a binary matrix

file by mapping the file to certain memory addresses using the virtual memory
facilities provided by the operating system. This function is especially handy for
handling very large matrices. Mapped matrices however are always read-only.

Native Matrix File Formats

This section describes the ”classic” or ”native” file formats used for Lush matri-
ces. The IDX format (used by compilable matrix I/O functions) is not described
here.

Ascii Matrix File Format.
ASCII matrix files are generated with function save-ascii-matrix . These

machine independent files are handy for transferring data between different
computers. They tend however to eat a lot of disk space.

The first line of the file is a matrix header. It is composed of the letters
“.MAT”, the number of dimensions and the size of each dimension. The array
elements are written then, separated by spaces and newlines characters.

The following lines display the content of a valid ascii matrix file.

.MAT 2 3 4
1 -1 1 2 -1 1 -3
1 -1
4 0 0

The same matrix could have been written in the following, more natural
way.

.MAT 2 3 4
1 -1 1
2 -1 1
-3 1 -1
4 0 0

Binary Matrix File Format.
Binary matrix files are generated with function save-matrix . Binary ma-

trix files begin with a header which describes the type and the size of the matrix.
Then comes a binary image of the matrix.

The core header is a C structure defined as follows :

struct header {
int magic;



152 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

int ndim;
int dim[3];

};

It can be followed by further int when the matrix has more than 3 dimen-
sions.

The first member, magic , of this structure is a “magic” number, which
encodes the type of the matrix. This number must be:

• 0x1E3D4C51 for a single precision matrix

• 0x1E3D4C53 for a double precision matrix

• 0x1E3D4C54 for an integer matrix

• 0x1E3D4C56 for a short matrix

• 0x1E3D4C55 for a byte matrix

• 0x1E3D4C52 for a packed matrix

The second member of this structure, ndim , is the number of dimensions of
the matrix. Then come the dimensions themselves in the array dim . If there
are more than three dimensions, the array dim is extended to accomodate the
extra dimensions.

When the number of dimensions (specified in ndim ) is greater than 3, the
header is completed by ndim - 3 further integers.

This header is followed by a binary image of the matrix. Elements are stored
with the last index changing faster, i.e.

(0,0,0) (0,0,1) (0,0,2) ... (0,1,0) (0,1,2) etc...

• as float numbers for single precision matrix

• as double numbers for double precision matrix

• as int numbers for integer matrix

• as short numbers for short matrix

• as unsigned char numbers for byte matrix

• and as char for packed matrix.

In this latter case, each byte represents a fixed point number between -8
and +8 (+8 not included), the first 4 bits (most significant nybble) contain the
integral part and the remaining 4 bits contain the fractional part. It uses a two’s
complement format. Here are two C functions which convert a “compacted fixed
point” number into a floating point number and back.



4.10. MATRICES, VECTORS, TENSORS, INDEXES AND IDX 153

/* Converts a packed number to a float */
float unpack(b)
int b;
{

if (b & 0x80)
b |= ~0x7f;

else
b &= 0x7f;

return (float)b / 16.0;
}
/* Converts a float into a single byte packed number */
unsigned char pack(x)
float x;
{

if (x > 8.0-1.0/16.0)
return 0x7f;

else if (x < -8.0)
return 0x80;

else
return x*16;

}

Foreign Matrix Files.

Most program write their results in specific files under a specific format. These
files always have specific headers which describe the file type and size. The
matrix file formats of TLisp are just a typical example. The following functions
are for reading and writing information stored in files created by other programs.
These functions can read binary or text files into a Lush matrix.

Foreign Binary Matrices.
(import-raw-matrix mat file [offset]) Type: DX
This function just reads the contents of file file into matrix mat . Ac-

cessing the matrix then access this data as single precision numbers (float),
double precision numbers (double), integers (int), short integers (short), bytes
(unsigned char) or packed numbers according to the type of matrix mat .

Argument mat must be a matrix freshly created with functions matrix ,
dmatrix , imatrix , smatrix , bmatrix or pmatrix . Submatrices are usu-
ally rejected. Argument file might be a file name or a file descriptor created
with open-read . When argument offset is specified, a header of offset bytes
is skipped.

After executing this function, the file descriptor file points to the first byte
following the matrix data.

(export-raw-matrix mat file) Type: DX
Stores the data of the matrix mat into the binary file file . Argument

file may be a filename string or a file descriptor created with open-write or



154 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

open-append . No header is written.
Foreign Ascii Matrices.
(import-text-matrix mat file) Type: DX
This function reads numbers in the text file file and stores them in matrix

mat . Argument mat must be a freshly created matrix (submatrices are not
accepted). Argument file might be or a file descriptor created with open-read
.

After executing this function, the file descriptor file points to the first non
blank character following the matrix data.

(export-text-matrix mat file) Type: DX
Stores the data of the matrix mat into the text file file . Argument file

may be a filename string or a file descriptor created with open-write or
open-append . No header is stored.

4.10.9 Component-wise Unary Operations

All of these functions apply a unary function to each element and either write
the result in the elements of the second argument if it is present , or return a
new tensor with the result if the second argument is not present (except for idx-
clear). The two argument must have the same dimensions. If their numerical
types are different , appropriate conversions are performed.

(idx-clear src)

Type: DX
Set elements of src to 0.

(idx-minus src [dst])

Type: DX
negate all elements of src .

(idx-abs src [dst])

Type: DX
absolute value of elements of src .

(idx-sqrt src [dst])

Type: DX
square root of elements of src .

(idx-inv src [dst])

Type: DX
inverse of elements of src .



4.10. MATRICES, VECTORS, TENSORS, INDEXES AND IDX 155

(idx-sin src [dst])

Type: DX
apply sine to elements of src .

(idx-cos src [dst])

Type: DX
apply cosine to elements of src .

(idx-atan src [dst])

Type: DX
apply arctangent to elements of src .

(idx-log src [dst])

Type: DX
apply log to elements of src .

(idx-exp src [dst])

Type: DX
apply exp to elements of src .

(idx-qtanh src [dst])

Type: DX
apply rational approximation to hyperbolic tangent to elements of src .

(idx-qdtanh src [dst])

Type: DX
apply derivative of the rational approximation to hyperbolic tangent to ele-

ments of src .

(idx-stdsigmoid src [dst])

Type: DX
apply the ”standard” neural-net sigmoid function to elements of src .

(idx-dstdsigmoid src [dst])

Type: DX
apply derivative of the ”standard” neural-net sigmoid function to elements

of src .



156 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(idx-expmx src [dst])

Type: DX
apply a rational approximation of (exp -x) to elements of src .

(idx-dexpmx src [dst])

Type: DX
apply derivative of expmx to elements of src .

4.10.10 Component-wise dyadic operations

All of these functions apply a dyadic function to each pair of corresponding
elements in the first two arguments. They either write the result in the elements
of the third argument if it is present , or return a new tensor with the result
if the third argument is not present All the arguments must have the same
dimensions. If their numerical types are different , appropriate conversions are
performed.

(idx-add m1 m2 [r])

Type: DX
component-wise addition of m1 and m2 . Result in r if present , or returned

if not present.

(idx-sub m1 m2 [r])

Type: DX
component-wise subtraction of m1 and m2 . Result in r if present , or re-

turned if not present.

(idx-mul m1 m2 [r])

Type: DX
component-wise multiplication of m1 and m2 . Result in r if present , or

returned if not present.

(idx-div m1 m2 [r])

Type: DX
component-wise division of m1 and m2 . Result in r if present , or returned

if not present.



4.10. MATRICES, VECTORS, TENSORS, INDEXES AND IDX 157

4.10.11 Contracting Operations with Scalar Result.

The following functions include dot products , distances , sums of terms , min
, max , etc and return scalars. These operations ”contract” all the dimensions.
The dyadic ones can be seen as generalized dot product of two tensors (e.g.
the sum of all the products of corresponding terms in the two tensors). These
function have a base form and an accumulating form (which accumulates the
result in idx0 past as last argument). If the last (and optional) idx0 argument
is present , the result is written in it. If it is not present , a number (not an
idx0) is returned.

(idx-sum m [r])

Type: DX
sum of all terms of m .

(idx-sup m [r])

Type: DX
max of all terms of m .

(idx-inf m [r])

Type: DX
min of all terms of m .

(idx-sumsqr m [r])

Type: DX
sum of squares of all terms of m .

(idx-dot m1 m2 [r])

Type: DX
generalized dot product of m1 and m2 , i.e. the sum of all products of cor-

responding terms in m1 and m2 .

(idx-sqrdist m1 m2 [r])

Type: DX
generalized Uclidean distance between m1 and m2 , i.e. the sum of squares

of all the differences between corresponding terms of m1 and m2 .

(idx-sumacc m r)

Type: DX
sum of terms of m . Result accumulated in idx0 r .



158 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(idx-supacc m r)

Type: DX
max of terms of m . Result accumulated in idx0 r .

(idx-infacc m r)

Type: DX
min of terms of m . Result accumulated in idx0 r .

(idx-sumsqracc m r)

Type: DX
sum square of terms of m . Result accumulated in idx0 r .

(idx-dotacc m1 m2 r)

Type: DX
generalized dot product of m1 and m2 , i.e. the sum of all products of cor-

responding terms in m1 and m2 . Result accumulated in idx0 r .

(idx-sqrdistacc m1 m2 r)

Type: DX
generalized Uclidean distance between m1 and m2 , i.e. the sum of squares

of all the differences between corresponding terms of m1 and m2 . Result accu-
mulated in idx0 r .

4.10.12 Operations between tensors and scalars

(idx-dotm0 m s [r])

Type: DX
multiply all terms of m by scalar s (an idx0).

(idx-addm0 m s [r])

Type: DX
add scalar s (an idx0) to all terms of m .

(idx-dotm0acc m s r)

Type: DX
multiply all terms of m by scalar s (an idx0). Result accumulated in r .

(idx-addm0acc m s r)

Type: DX
add scalar s (an idx0) to all terms of m . Result accumulated in r .



4.10. MATRICES, VECTORS, TENSORS, INDEXES AND IDX 159

4.10.13 Matrix/Vector and 4-Tensor/Matrix products

(idx-m2dotm1 m1 m2 [r])

Type: DX
matrix-vector multiply.

(idx-m4dotm2 m1 m2 [r])

Type: DX
4-tensor by 2-matrix multiplication: R ij = sum kl M1 ijkl * M2 kl

(idx-m2dotm1acc m1 m2 r)

Type: DX
matrix-vector multiply. Result accumulated in r .

(idx-m4dotm2acc m1 m2 r)

Type: DX
4-tensor by 2-matrix multiplication with accumulation: R ij += sum kl

M1 ijkl M2 kl

4.10.14 Outer Products

(idx-m1extm1 m1 m2 [r])

Type: DX
outer product between vectors: R ij = M1 i * M j

(idx-m2extm2 m1 m2 [r])

Type: DX
outer product between matrices. Gives a 4-tensor: R ijkl = M1 ij * M2 kl

(idx-m1extm1acc m1 m2 r]

outer product between vectors with accumulation: R ij + = M1 i * M j

(idx-m2extm2acc m1 m2 [r])

Type: DX
outer product between matrices with accumulation. Gives a 4-tensor: R ijkl

+= M1 ij * M2 kl

4.10.15 Backward Compatibility Functions

These functions are here for historical reasons.



160 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(matrix [n0...np])

Type: DX
same as (float-matrix [ n0 ... np ]): allocate a matrix of floats.

(submatrix m ’(low0 hi0) ’(low1 hi1)...)

Type: DX
this is superseded by narrow. Return a new index that points to a subset

of the elements of m . The lists passed as arguments contain lower and upper
index of the selected elements in each dimension.

(bound m)

Type: DX
Return a list of upper bound for the index in each dimension.

(nrvectorp m)

Type: DX
Obsolete function.

(nrmatrixp m)

Type: DX
Obsolete function.

(dot-product a b)

Type: DM
return the dot product of a and b

(m*m a b [c])

Type: DE
obsolete and non-compilable matrix product function.

(m+m a b [c])

Type: DE
obsolete and non-compilable matrix addition function.

(mxm a b [c])

Type: DE
obsolete and non-compilable component-wise matrix multiply function.



4.11. OBJECTS. 161

(m-m a b [c])

Type: DE
obsolete and non-compilable matrix subtraction function.

(m*c a b [c])

Type: DE
obsolete and non-compilable multiplication of a matrix by a scalar.

(m+c a b [c])

Type: DE
obsolete and non-compilable addition of a scalar to the elements of a matrix.

4.11 Objects.

All atoms are stored as pairs (class , instance). The “class” component provides
informations about the general properties of that kind of atom. The “instance”
component contains the properties of this specific atom in particular. Classes
themselves are unnamed atoms , stored as value of certain symbols. For example
, classes are instances of the class class , i.e. of the class stored as value of the
symbol class .

4.11.1 Object Terminology.

A class defines two major kind of informations:

• An atom can contain storage for one or several lisp objects. Such storage
areas are called “slots”, and have symbolic names. A class defines the
number of slots allocated in a new atom as well as their names. This slot
information is statically defined by the defclass function during the
class definition.

• Atoms can receive messages sent with the function ==>. Messages are
identified by a symbol called the message selector. A class defines the pos-
sible message selectors and the functions to execute when it receives such
messages. These “methods” are dynamically defined with the putmethod
function.

Predefined classes associated to standard Lush objects however often have
hidden properties. A symbol, for example, has some storage for its value; this
storage is not a slot. A symbol also returns its value when it is evaluated; this
behavior is not a method.



162 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

4.11.2 Inheritance.

New classes defined with the defclass function always are subclasses of another
class. This latter superclass, may again have its own superclasses.

• “A class inherits the slots of its superclasses”. When a new object is
created, space is allocated for the slots defined by its class, and also for
the slots defined by all its superclasses.

• “A class inherits the methods of its superclasses”. When an object receives
a message with a given selector, it searches the methods defined by its
class for the selector. If no method is found that matches the selector, it
searches the methods of its superclass, the methods of the superclass of its
superclass, and so on. When it reaches a matching method, it executes the
associated function like an instance of the class that defines the matching
method.

4.11.3 Predefined Classes

Here is a compact list of the main predefined classes. Most of them are named
by uppercase symbols, which ought to be surrounded with bars for avoiding the
usual lowercase conversion.

• object : The root class of most user defined classes.

• class : Classes actually are lisp objects, instance of the class class.
Class class thus is an instance of itself !

• |NUMBER| : The class of the numbers.

• |LIST| : The class of the pairs used for building lists.

• |SYMB| : The class of the symbols.

• |STRING| : The class of the strings.

• |DE| |DF| |DM| |DX| |DY| : The classes of the functions.

• etc...

Hidden properties of complex predefined classes are also inherited. For ex-
ample, setq shall work on any instance of a subclass of class |SYMB| .

All the user defined classes must be direct or indirect subclasses of the class
object . This object class defines a vanilla lisp object with no hidden prop-
erties. Instances of subclasses of the class object are easily created with the
function new .



4.11. OBJECTS. 163

4.11.4 Defining a Class.

(defclass name superclass s1 ... sn)

Type: DM
Defines a subclass of class superclass with slots s1 ... sn . The class is

stored into symbol name , which is returned. Slot specifications s1 ... sn can
be symbols or lists (symbol default) which indicate initial values assigned to
the slots of a new object.

Example:

;;; Creates a class <rect> with two slots <width> and <height>
? (defclass rect object

width height )
= rect
;;; Creates a subclass of <rect>,
;;; with a an additional slot <name> slot with default value <"noname">
? (defclass namedrect rect

(name "noname") )
= namedrect

(makeclass classname superclass slotnamelist slotdefaultlist)

Type: DX
This a lower-level function to create a new class named classname . Most

user will prefer to use defclass . The new class inherits class superclass .
List slotnamelist contains the names of the additionalslots defined by the new
class. List slotdefaultlist contains the default values for these slots. Both
lists are in reverse order (i.e. the first slot in the list appears last when pretty-
printing the class). This function does not set the value of symbol classname
. Use the macro function defclass for that.

(classname c)

Type: DX
Returns the name of class c , that is to say the symbol whose value was set

by function defclass .
Example:

? (classname rect)
= rect

(slots c)

Type: DX
Returns the list of the slots defined for class c .
Example:



164 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

? (slots rect)
= (width height)
? (slots namedrect)
= ((name "noname"))

(methods c)

Type: DX
Returns the list of all method names defined in class c .

(super c)

Type: DX
Returns the superclass of class c , or the empty list if c has no superclass.
Example:

? (super rect)
= ::class:object
? (classname (super namedrect))
= rect

(subclasses c)

Type: DX
Returns the list of all subclasses of class c . When argument c is the empty

list, function subclasses returns the list of root classes, i.e. classes without
superclass.

Example:

? (subclasses object)
= (::class:timer ::class:eventhandler ::class:eventlock ::class:brace-renderer

::class:ldoc ::class:ltree-node ::class:help-book )

(rsubclasses c)

(miscenv.lsh)
Returns the recursive list of all subclasses of class c . When argument c is

the empty list, function subclasses returns the recursive list of all classes.
Example:

? (rsubclasses button)
((::class:stdbutton (::class:tinybutton))
(::class:checkbox (::class:radiobutton)) (::class:filereqbutton)
(::class:c-iconbutton) (::class:c-logo) )
= ()



4.11. OBJECTS. 165

4.11.5 Creating Objects.

(new class ... args ...)

Type: DY
Creates a new instance of a subclass class of the class object .
If no constructor method is defined, no arguments are allowed. If a con-

structor method is defined for class class , a construction message is sent to
the new object, with arguments args .

Example:

;; Classes <rect>, <namedrect>, are defined as examples for <defclass>
;; Creates instances of classes <rect> and <namedrect>
? (setq r (new rect))
= ::rect:06fa0
? (setq nr (new namedrect))
= ::namedrect:06fe8

This function works only for creating instances of subclass of the class object
. It is not possible to directly create instances of subclasses of other predefined
classes.

(new-empty class)

Type: DX
Creates a new instance of class class without calling the constructor.

(delete x)

Type: DX
Deletes the Lush object x .
The operation of this function is somewhat tricky because all other references

to object x must be converted to references to the empty list.
First of all , if destructor methods are defined , destruction messages are sent.

Object x is then converted to an instance of the class |ZOMBIE| . During its
normal operation , the interpreter recognizes these zombies and always replaces
a reference to a zombie by a reference to the empty list.

(classof x)

Type: DX
Returns the class of an object x .
Example:

? (classof (new object))
= ::class:object



166 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(is-of-class x class)

Type: DX
Tests if the class of object x of any of its superclass is equal to class class

.
Example:

? (is-of-class nr rect)
= t

4.11.6 Accessing Slots.

There are various ways to read or change the values stored in the slots of an
object. Changing the value stored in a slot changes the object in a way compa-
rable to rplaca and rplacd in the case of lists. This change will be reflected
through all pointers referring to this same object.

See: (== n1 n2 )

:obj:slot1...:slotn

Type: DMC(sysenv.lsh)
See: (scope obj slot1 ... slotn )
See: (scope symb )
This macro character is expanded as a call to the scope function.

(scope obj slot1 ... slotn)

Type: DY
See: : obj : slot1 ...: slotn
See: (scope symb )
The simplest method for setting or getting the slots of an object is called

the “scope macro”. The syntax :obj:slot refers to the slot slot of object obj.
Actually, the scope macro character converts expression :obj:slot into a list
(scope obj slot) .

When this list is evaluated, the scope function returns the value of slot
slot of object obj . Moreover, most functions that affect the value of a symbol
recognize such a list as a reference to slot slot of object obj .

Nested scope macros are allowed: :obj:slot 1:slot2 refers to slot slot2
of the object contained in slot slot1 of object obj .

Example:

;; Classes <rect>, <namedrect>, are defined as examples for <defclass>
;; Objects <r> and <nr> are defined as examples for <new>
? (setq :nr:name "myrectangle")
= "myrectangle"
? (setq :nr:width 8



4.11. OBJECTS. 167

:nr:height 6 )
= 6
? (print :nr:width :nr:height :nr:name)
8 6 "myrectangle"
= "myrectangle"

(scope symb)

Type: DY
See: (scope obj slot1 ... slotn )
See: : obj : slot1 ...: slotn
The scope macro has another important use, the “unary scope macro”. Ex-

pression :symb is converted into list (scope symb) which refers to the global
value of symbol symb .

Example:

? (setq x 3)
= 3
? (let ((x 8))

(print :x)
(setq :x 6)
(print x) )

3
8
= 8
? x
= 6

(letslot obj l1 ... ln)

Type: DY
See: (scope obj slot1 ... slotn )
See: this
Calls function progn on l1 ... ln within the scope of object obj , and

returns the last result. Within the object scope, each slot of the object, either
defined by its class or inherited from its superclasses, can be directly accessed
as value of its symbolic slot name.

Example:

;; Classes <rect>, <namedrect>, are defined as examples for <defclass>
;; Objects <r> and <nr> are defined as examples for <new>
? (setq width ())
= ()
? (letslot r

(setq width 4)



168 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(setq height 5) )
= 5
? width
= ()
? (letslot r (* width height))
= 20

Within an object scope, the symbol this always refers to object itself. The
behavior of the others symbols remains unaffected, with the following restriction:

The function setq causes an error if you create a new global variables from
an object scope. This feature prevents many obscure bugs in Lush programs,
that may occur if you mistype the name of a slot. However, the warning is
not issued if you explicitely address a global variable by using the unary scope
macro.

Good practice actually consists in explicitely create all global variables with
the unary scope macro before using them, as the "graphenv.lsh" does.

4.11.7 Defining Methods.

(defmethod class symb args . body)

Type: DM(sysenv.lsh)
See: Argument List.
See: (==> obj symb ... args ... )
Defines a method named symb for class class . Argument symb must be a

symbol, and is not evaluated. Argument args must be a valid argument list.
When an instance of class class receives a message whose selector is symb ,

the body body of the method is executed with a call to function progn . During
this execution, the slots defined by class and its superclasses are bound to
their symbolic names, as in letslot , and the arguments of the message are
evaluated and bound to the symbols in argument list args .

Example:

;; Classes <rect>, <namedrect>, are defined as examples for <defclass>
;; Objects <r> and <nr> are defined as examples for <new>
;;
;; This is a method for computing the surface of a rect.
? (defmethod rect surface()

(* width height) )
= surface
;; a method for printing n times the name of a namedrect
? (defmethod namedrect showname(n)

(repeat n (print name)) )
= showname



4.11. OBJECTS. 169

(demethod class symb args . body)

Type: DM(sysenv.lsh)
Identical to defmethod .

(dfmethod class symb args . body)

Type: DM(sysenv.lsh)
Defines an flambda-method named symb for class class . flambda-methods

do not evaluate their arguments, unlike regular methods defined with demethod
or defmethod.

(dmmethod class symb args . body)

Type: DM(sysenv.lsh)
Defines a mlambda-method named symb for class class . mlambda-methods

are to regular methods what macros (defined with dm or mlambda ) are to reg-
ular functions (defined with de or lambda ).

(putmethod class symb func)

Type: DX
Add method symb to class class . func must be a lambda, an flmabda,

or an mlambda.

(pretty-method class symb)

Type: DE(sysenv.lsh)
Prints a nicely indented definition of method symb of class class .

4.11.8 Sending Messages.

(==> obj symb ... args ... )

Type: MSG
Sends a message whose selector is symb to object obj , with arguments args

.
Example

;; Classes <rect>, <namedrect>, are defined as examples for <defclass>
;; Objects <r> and <nr> are defined as examples for <new>
;; Method <surface> is defined as an example for <defmethod>
;;
;; Send a surface message to rect <r>
? (==> r surface)
= 20
;; Send a showname message to namedrect <nr>



170 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

? (==> nr showname 2)
"myrectangle"
"myrectangle"
= "myrectangle"
;; Send a surface message to namedrect <nr>
;; The method is inherited from superclass <rect>
? (==> nr surface)
= 48

When an object receives a message, the method is executed in the object
scope defined by the class that owns the method: If the method is defined by a
superclass, only the slots of that superclass and of its superclasses are directly
referred by their names.

When no method symbol is defined in the class or superclasses, the kernel
searches a method named -unknown and executes this method with two argu-
ments: the initial method name symb and the list of the evaluated arguments
args . There is an error if method -unknown is not defined.

(==> obj (class . symb) ... args ... )

Type: MSG
This construction is known as a “cast-and-send”. A message with selector

symb and arguments args is sent to the object obj , considered as an instance
of class class . Methods indeed are searched in class class and its super-
classes, instead of the class of obj and its superclasses.

Argument class is evaluated and must return a superclass of the class of
obj . Argument symb is not evaluated and must be a valid method selector for
class class .

Example:

;; Classes <rect>, <namedrect>, are defined as examples for <defclass>
;; Objects <r> and <nr> are defined as examples for <new>
;; Method <surface> is defined as an example for <defmethod>
;;
;; Override surface method of class rect
? (defmethod namedrect surface()

;; prints the name by sending a showname message
(==> this showname 1)
;; returns 1+ the result of the surface method of class rect
(1+ (==> this (rect . surface))) )

= surface
? (==> nr surface)
"myrectangle"
= 49
;; Still call the surface method of class rect
? (==> nr (rect . surface))



4.11. OBJECTS. 171

= 48

this

See: (letslot obj l1 ... ln )
See: (==> obj symb ... args ... )
While Lush is executing a method, you can use symbol this to refer to the

object receiving the message.

(check==> class symb)

Type: DX
Searches class class and its superclasses for a method whose selector is

symb . If a matching method exists, this function returns the method as a DF
function.

Example:

;; Classes <rect>, <namedrect>, are defined as examples for <defclass>
;; Objects <r> and <nr> are defined as examples for <new>
;; Method <surface> is defined as an example for <defmethod>
;;
;; There is no method yoyo in rect
? (check==> rect ’yoyo)
= ()
;; there is a method surface in rect
? (check==> rect ’surface)
= DF:0604c

(apply==> obj symbol args)

Type: DX
Sends message symbol to object obj with the list args as arguments.

4.11.9 Constructors and Destructors.

See: (new class ... args ...)
See: (delete x )
Constructors are specific methods whose selector is the name of their class,

as returned by the function classname . Constructors are useful for easily
initializing an object during its creation.

Whenever a new object is created with the new function, a construction
message is sent to the new object. The optional arguments of the new function
are sent as arguments to the construction message.

Example:



172 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

;; Classes <rect>, <namedrect>, are defined as examples for <defclass>
;; Method <surface> is defined as an example for <defmethod>
;;
;; Define a constructor for class rect
? (defmethod rect rect(w h)

(setq width w)
(setq height h) )

= rect
;; creates a new rectangle
? (setq r (new rect 8 9))
= ::rect:06fb8
;; sends a surface message
? (==> r surface)
= 72

The function new only calls a constructor when it is defined by the class of
the newly created object. Constructors however can call the constructor method
of their superclass.

Example:

;; defines a constructor for class namedrect
? (defmethod namedrect namedrect(w h n)

;; explicitely calls the constructor of class rect.
(==> this rect w h)
(setq name n) )

Destructors are specific methods whose selector is -destructor . When an
object is deleted, all the destructors of its class and superclasses are successively
called. Deletion occurs when the function delete is called on an object, or
when the garbage collection mechanism proves that an object will no longer be
accessed.

Note: Only objects created with function new receive destruction messages.
Numbers, strings, symbols, usually do not receive such messages.

Example:

;; Classes <rect>, <namedrect>, are defined as examples for <defclass>
;; Objects <r> and <nr> are defined as examples for <new>
;; Method <surface> is defined as an example for <defmethod>
;;
;; Defines a destructor for the rect class
? (defmethod rect -destructor()

(printf "rect destructor on \\%l\\n" this) )
= -destructor
;; Defines a destructor for the namedrect class



4.11. OBJECTS. 173

? (defmethod namedrect -destructor()
(printf "namedrect destructor on \\%l (\\%s)\\n" this name) )

= -destructor
;; deletes objects r and nr
? (delete r)
rect destructor on ::rect:06fb8
= ()
? r
= ()
? (delete nr)
namedrect destructor on ::namedrect:06fe8 (myrectangle)
rect destructor on ::namedrect:06fe8
= ()
? nr
= ()

Destructors allow objects to perform some housekeeping before they disap-
pear.

4.11.10 Predefined Methods.

(==> obj pname)

Type: MSG
See: (pname l )
The function pname returns a string that describes a lisp object. When

executing this function, Lush searches the object for a method pname before
applying the hardcoded defaults. Overriding method pname let you redefine
how Lush prints certain objects.

Example:

;; Classes <rect>, <namedrect>, are defined as examples for <defclass>
;; Objects <r> and <nr> are defined as examples for <new>
;; Method <surface> is defined as an example for <defmethod>
;;
;; defines a pname function for the rect class
? (defmethod rect pname()

(sprintf "<rectangle \\%d by \\%d>" width height) )
= pname
? (new rect 8 6)
= <rectangle 8 by 6>

(==> obj print)

Type: MSG
See: (prin l1 ... ln )



174 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

When Lush prints an object with function prin or print , it searches a
method print before applying hardcoded defaults based on function pname .

It is a good idea to override method print instead of method pname when
large amounts of text are necessary (in the case of matrices, for example).

(==> obj pprint)

Type: MSG
See: (pprin l1 ... ln )
When Lush prints an atom with function pprin or pprint , it searches a

method pprint before applying the hardcoded defaults.

(==> obj pretty)

Type: MSG
See: (pretty f )
Function pretty displays an object by sending them a message pretty .

The default method pretty defined by class object displays the slots of the
object. Specific pretty method also are defined for functions, symbols, classes,
etc ...

4.12 Hash Tables.

Hash tables provide a powerful way to maintain associations between lisp ob-
jects. Hash tables behave like arrays except that any lisp object is an acceptable
subscript. This simplicity makes hash tables extremely convenient.

Hash tables are so convenient that you will be quickly tempted to use them
everywhere. You must remember however that a simple array requires less
memory (about five times) and less processor cycles.

4.12.1 Representing Associations with Hash Tables.

See: (= n1 n2 )
See: (== n1 n2 )
A hash table is an instance of class |HTABLE| . Like most lisp objects, hash

tables can be compared using function = and saved using function bwrite .
A hash table maintains a set of associations between two lisp objects, namely

a key and a value. This set is organized in a way that allows fast retrieval of
the value associated to a given key.

Hash table queries search an association whose key is equal to the queried
key. Since there are two ways to test equality (i.e. functions = and == ), there
are two kinds of hash tables.

•



4.12. HASH TABLES. 175

• The most useful hash tables use the logical equality, as implemented by
function = . Two objects are logically equal if they convey the same useful
information. These hash table work properly as long as you do not modify
the objects used as keys by the hash table. This can happen if you used
arrays or custom objects as keys in your hash table. See the description
of function htable-rehash for more information about this point.

• Hash tables can also rely on pointer equality, as implemented by function
== . These hash tables are useful to associate a piece of information with
a particular lisp object. Functions getp and putp , for instance, make
use of pointer-equality hash tables. The associations of a pointer-equality
hash table are automatically removed when the key object is deallocated.

(htable [nelem [flag]])

Type: DX
Function htable returns a new empty hash table. Optional arguments

nelem and flag are seldom useful:

• Argument nelem specifies an estimate of the number of elements in the
hash table. This estimate is useful for saving a few processor cycles when
filling the table.

• Argument flag is a boolean value specifying whether the hash table will
use logical equality (the default) or pointer equality (when argument flag
is not nil.)

(htable key)

This expression returns the value associated with key key in hash table htable
. Expression key can be any lisp object. If no association is defined for key key
, the empty list is returned.

(htable key value)

This expression associates value value to key key in the hash table htable .
The value can be subsequently retrieved by expression (htable key) .

This operation is performed in two logical steps: (a) any existing associa-
tion matching key key is first deleted, and (b) a new association is created if
argument value is not the empty list.

Example:

? (setq a (htable))
= ::HTABLE:6f3cac
? (a ’hello "hi")
= ::HTABLE:6f3cac
? (a ’(3 4) "ho")



176 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

= ::HTABLE:6f3cac
? (a ’hello)
= "hi"
? (a ’(3 4 5))
= ()
? (a ’(3 4))
= "ho"

(htable-size htable)

Type: DX
Function htable-size returns the number of associations managed by the

hash table.

(htable-keys htable)

Type: DX
Function htable-keys returns a list of the keys of all the associations man-

aged by the hash table. It is guaranteed that querying these keys will return a
non nil result.

? (setq a (htable))
= ::HTABLE:6f43c
? (for (i 0 10) (a i (sqrt i))
= ::HTABLE:6f43c
? (htable-keys a)
= (7 6 3 10 5 9 8 4 2 0 1)

(htable-alist htable)

Type: DX
See: (assoc key alist )
Function htable-alist returns an alist representing all associations man-

aged by the hash table. This function also provide a way to iterate over all
associations:

? (setq a (htable))
= ::HTABLE:6f43c
? (for (i 0 10) (a i (sqrt i))
= ::HTABLE:6f43c
? (each (((key . value) (htable-alist a)))

(printf "\\%4d \\%6.4f\\n" key value))))
7 2.6458
6 2.4495
3 1.7321



4.12. HASH TABLES. 177

10 3.1623
5 2.2361
9 3.0000
8 2.8284
4 2.0000
2 1.4142
0 0.0000
1 1.0000

= ()

(htable-rehash htable)

Type: DX
Each association managed by a hash table contains a pointer to the key

object and a pointer to the value object. Functions that modify the values of
these objects also modify the state of the hash table.

Hash table queries search an association whose key is logically equal to the
queried key (unless pointer equality was specified when creating the hash table).
The hash table works by storing each association in locations depending on the
information conveyed by the key objects.

Modifying the object used as a key creates a lot of problems. The corre-
sponding association is no longer stored in a location corresponding to the new
information conveyed by the key objects. The hash table state is no longer
consistent.

Function htable-rehash triggers the relocation of all associations of the
hash table htable to the location corresponding to the new values of the key
objects. You can then reliably use the hash table again.

? (setq a (htable))
= ::HTABLE:6f32c
? (setq m [1 2])
= [1 2]
? (a m 3)
= ::HTABLE:6f32c
? (a [1 2])
= 3
? (m 0 0)
= [ 0.00 2.00 ]
? (a [1 2])
= () ;; we lost it
? (a [0 2])
= () ;; result is undefined
? (htable-rehash a)
= 1
? (a [0 2])



178 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

= 3 ;; entry is no longer lost
? (a [1 2])
= () ;; this key no longer exists

The relocation of the hash table entries actually happens when you first
access the hash table after calling htable-rehash . You can call function
htable-rehash several times in a row. The cost of relocating all the hash
table entries will be only incurred once when you will access the hash table
again.

(htable-info htable)

Type: DX
Function htable-info returns a list containing statistical information about

the hash table. This list is an alist with the following form:

((size . 1294) (buckets . 3841) (hits 1132 145 14 3))

In this example, the hash table contains 1294 associations. Associations are
stored into 3841 buckets. Out of the 1294 associations, 1132 canbe retrieved
directly, 145 require one extra search iteration, 14 require two extra search
iteration, etc...

4.12.2 Representing Sets with Hash Tables.

Sets are easily represented by creating a hash table and defining associations
whose keys are the set elements and whose value is non nil.

• Expression (htable element) returns a non nil result if element element
belongs to the set represented by htable .

• Expression (htable element t) adds element element to the set repre-
sented by htable .

• Expression (htable element ()) removes element element from the set
represented by htable .

• Expression (htable-keys htable) returns a list of all the elements of
the set represented by htable .

The following functions perform additional operations on sets represented
by hash tables.

(hset eltlist)

Type: DE(sysenv.lsh)
Function hset returns a hash table representing the set of all elements of

list eltlist .



4.13. DATES. 179

(hset-and htable1 htable2)

Type: DE(sysenv.lsh)
Function hset-and returns a new hash table representing the intersection

of the sets represented by htables htable1 and htable2 .

? (htable-keys (hset-and (hset ’(1 2 3 4)) (hset ’(2 4 5 6))))
= (4 2)

(hset-or htable1 htable2)

Type: DE(sysenv.lsh)
Function hset-or returns a new hash table representing the intersection of

the sets represented by htables htable1 and htable2 .

? (htable-keys (hset-or (hset ’(1 2 3 4)) (hset ’(2 4 5 6))))
= (4 2 1 6 3 5)

4.13 Dates.

Dates are instances of a special class |DATE| . This facility is built on top of
various system functions which are themselves based on a count of seconds since
January 1st, 1970. Most systems are able to handle a date between 1910 and
2030.

Date are stored using several formats depending of their accuracy. Each
format is defined as a range over various components of a date: year , month ,
day , hour , minute , second .

• For instance, a date “ year to day ” identifies any single day between
1910 and 2030.

• Similarly, a date “ year to second ” identifies any single second in the
same interval.

• A date “ hour to minute ” identifies any single minute within a day.

Finally we have defined a standard way to numerically encode dates: The
possibly fractional number of days (daynumber) since January 1st, 1970 at zero
hour local.

4.13.1 (date-to-day date)

Type: DX
Returns the possibly fractional number of days between January 1st, 1970

and the specified date .



180 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

? (date-to-day (string-to-date "1993-12-04" ’year ’day))
= 8738

? (date-to-day (now))
= 12059.8523

4.13.2 (day-to-date daynumber)

Type: DX
Builds a date string from a possibly fractional day number.

? (day-to-date 8738)
= ::DATE:year-second:(1993-12-04 00:00:00)

? (day-to-date 8738.23)
= ::DATE:year-second:(1993-12-04 05:31:11)

4.13.3 (today)

Type: DX
Returns today’s date at zero hour as a date “ year to day ”

? (today)
= ::DATE:year-day:(2003-01-07)

4.13.4 (now)

Type: DX
Returns today’s date and now’s time as a date “ year to second ”

? (now)
= ::DATE:year-second:(2003-01-07 20:27:15)

4.13.5 (split-date date)

Type: DX
Returns an alist contaning all the components of a date date . Each com-

ponent can be accessed using function assoc . The following components are
provided:



4.13. DATES. 181

<year>: The year (minus 1900).
<month>: The month number (0..11).
<day>: The day of the month (1..31).
<hour>: The hour (0..23).
<minute>: The number of minutes (0..59).
<second>: The number of seconds.
<wday>: The day of the week (0..6).
<yday>: The day of the year (1..366).

These items are present if the resolution of the date object allows it. The
last two items require at least a date “ year to day ”

? (split-date (now))
= ((year . 103) (month . 1) (day . 7) (hour . 20) (minute . 27) (second . 15)

(wday . 2) (yday . 6) )

? (split-date (today))
= ((year . 103) (month . 1) (day . 7) (wday . 2) (yday . 6))

4.13.6 (date-type date)

Type: DX
This function returns a string describing the current resolution of a date

date as a list of two symbols chosen in year , month , day , hour , minute ,
second .

? (date-type (today))
= (year day)

? (date-type (now))
= (year second)

4.13.7 (date-extend date from to)

Type: DX
This function returns a new date equivalent to date with the resolution

specified by the two symbols from and to which may be any of year , month
, day , hour , minute , second .

Reducing the resolution of a date is achieved by truncating unneeded com-
ponents. Extending the resolution of a date towards more accuracy is achieved
by inserting zeroes. Extending the resolution of a date towards fields of larger
magnitude is achieved by inserting the current year, month, day, etc...



182 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

? (date-extend (now) ’year ’minute)
= ::DATE:year-minute:(2003-01-07 20:27)

? (date-extend (date-extend (now) ’year ’minute) ’hour ’second)
= ::DATE:hour-second:(20:27:00)

4.13.8 (date-to-string date [format])

Type: DX
Format a date date according to format .
Argument format is a format string reminiscent of printf . When argu-

ment format is omitted, a regular ANSI string is produced.

YYYY-MM-DD HH:MM:SS for <year> to <second>
YYYY-MM-DD for <year> to <day>
MM-DD HH:MM for <month> to <minute>

The format for date-to-string is a character string that consists of field
descriptors and text characters, reminiscent of printf . Each field descriptor
consists of a % character followd by another character that specifies the replace-
ment for the field descriptor. All other characters are copied from fmt into the
result. The following field descriptors are supported:

• %%: Same as %.

• %a: Day of week, using locale’s abbreviated weekday names.

• %A: Day of week, using locale’s full weekday names.

• %b,%h: Month, using locale’s abbreviated month names.

• %B: Month, using locale’s full month names.

• %c: Date and time as %x %X.

• %C: Date and time, in locale’s long-format date and time representation.

• %d: Day of month (01-31).

• %D: Date as %m/%d/%y.

• %e: Day of month (1-31; single digits are preceded by a blank).

• %H: Hour (00-23).

• %I: Hour (00-12).

• %j: Day number of year (001-366).



4.13. DATES. 183

• %k: Hour (0-23; single digits are preceded by a blank).

• %l: Hour (1-12; single digits are preceded by a blank).

• %m: Month number (01-12).

• %M: Minute (00-59).

• %n: Same as \n.

• %p: Locale’s equivalent of AM or PM.

• %r: Time as %I:%M:%S %p.

• %R: Time as %H:%M.

• %S: Seconds (00-59).

• %t: Same as \t.

• %T: Time as %H:%M:%S.

• %U: Week number of year (01-52), Sunday is the first day of the week.

• %w: Day of week; Sunday is day 0.

• %W: Week number of year (01-52), Monday is the first day of the week.

• %x: Date, using locale’s date format.

• %X: Time, using locale’s time format.

• %y: Year within century (00-99).

• %Y: Year, including century (for example, 1988).

The difference between %U and %W lies in which day is counted as the first
day of the week. Week number 01 is the first week with four or more January
days in it.

? (date-to-string (today))
= "2003-01-07"

? (date-to-string (now))
= "2003-01-07 20:27:15"

? (date-to-string (now) "\\%C \\%X")
= "20 20:27:15"



184 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

4.13.9 (string-to-date string [from to])

Type: DX
Function string-to-date converts the ansi date string string to a date

using the resolution specified by from and to .
Argument from and to are symbols specifying the resolution of the target

date. They may be any of the following symbols: year , month , day , hour
, minute , second . When these arguments are ommited, a date “ year to
second ” is assumed.

Abbreviated dates are handled by filling the leftmost fields with the current
date and the rightmost fields with zeroes.

? (string-to-date "1993-12-12 8:30" ’year ’minute)
= ::DATE:year-minute:(1993-12-12 08:30)

4.13.10 (date-add-second date count)

Type: DX
This function adds count seconds to date date .

? (date-add-second (now) 67)
= ::DATE:year-second:(2003-01-07 20:28:22)

4.13.11 (date-add-minute date count)

Type: DX
This function adds count minutes to date date .

? (date-add-minute (now) 67)
= ::DATE:year-second:(2003-01-07 21:34:15)

4.13.12 (date-add-hour date count)

Type: DX
This function adds count hours to date date .

? (date-add-hour (now) 67)
= ::DATE:year-second:(2003-01-10 15:27:15)



4.13. DATES. 185

4.13.13 (date-add-day date count)

Type: DX
This function adds count days to date date .

? (date-add-day (now) 67)
= ::DATE:year-second:(2003-03-15 20:27:15)

4.13.14 (date-add-month date count [opt])

Type: DX
This function adds count months to date date .
This is tricky because months have different lengths. Adding an integral

number of month to certain dates may produce an illegal day number for the
target month. (eg. (date-add-month "1996-05-31" 1) ). The behavior of
this function is therefore further specified by the value of optional argument
opt .

• When opt is nil or omitted, this function generates a Lush error whenever
the answer would be an illegal date.

• When opt is ’no-error , this function returns the empty list () when-
ever the answer would be an illegal date.

• When opt is ’end-of-month , this function always returns the last day
of the target month regardless of the specified day number.

• When opt takes any other value (eg. ’loosely or t ) this function al-
ways returns a legal date. Answers with oversized day numbers are cor-
rected by returning the last day of the target month.

? (date-add-month (now) -2 t)
= ::DATE:year-second:(2002-11-07 20:27:15)

4.13.15 (date-add-year date count [opt])

Type: DX
This function adds count months to date date .
This is tricky because adding an integral number of years to february 29th

dates may produce an illegal date. The behavior of this function is therefore
further specified by the value of optional argument opt .

• When opt is nil or omitted, this function generates a Lush error whenever
the answer would be an illegal date.

• When opt is ’no-error , this function returns the empty list () when-
ever the answer would be an illegal date.



186 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

• When opt takes any other value (eg. ’loosely or t ) this function
always returns a legal date. The day number is changed to 28 whenever
the answer would be the february 29th during a non leap year.

? (date-add-year (now) 2 t)
= ::DATE:year-second:(2005-01-07 20:27:15)

4.13.16 (date-code date flags)

Type: DX
This function returns a list of numbers encoding a date date suitably for

a statistical analysis. Argument flag is an integer composed by oring (using
bitor for instance) the following constants controlling which values to generate:

• 1: One value representing the number of days since January 1st, 1970.

• 16: Two values encoding a point moving on the unit circle once a day.

• 8: Two values encoding a point moving on the unit circle once a week.

• 4: Two values encoding a point moving on the unit circle once a month.

• 2: Two values encoding a point moving on the unit circle once a year.

These components are generated only if they make sense with the resolution
of the date date .

? (date-code (now) 24)
= (0.5992 -0.8006 -0.8357 0.5492)

? (date-code (today) 31)
= (12059 Nan Nan -0.2225 0.9749 0.3473 0.9378 0.9947 0.1031)

4.14 Loading and Executing Lush Program Files.

4.14.1 (load in [out [prompt]])

Type: DX
See: (open-write s [ suffix ])
See: (open-read s [ suffix ])
See: ˆL filename
This function is used for loading a Lush source or binary file.
This function starts a new toplevel with the file named in as input file,

and the file named out as the output file. Strings in and out represent file-
names according to the general filename conventions explained with functions
open-read and open-write .



4.14. LOADING AND EXECUTING LUSH PROGRAM FILES. 187

Function load searches its input file in along the current search path. It
also tries various suffixes usually associated with Lush program files (ie. .lsh
.lshc as well as .sn .tl .snc .tlc for backward compatibility with TL3 and
SN).

Function load then enters a loop which reads a Lush expression on the input
file, evaluates this expression, and prints the result on the output file. This loop
terminates when an end-of-file condition is detected or when function exit is
called. Function load returns the full filename of the input file.

When the output file argument is omitted out , function load does not
display the evaluation results. This is useful for silently loading a Lush program
file. This file however can produce an output because it may contain calls to
some printing function (eg. print .)

When string prompt is provided, function load uses this string as a prompt
when it is waiting for a new expression on the input file.

4.14.2 ˆL filename

See: (load in [ out [ prompt ]])
This macro-character expands into a call to function load . If a filename

filename is not provided, the last file name used with macro-character ^L is
used. This file name is saved in variable last-loaded-file .

4.14.3 (libload libname [opt])

Type: DE(sysenv.lsh)
See: file-being-loaded
See: (load in [ out [ prompt ]])
This is the primary function used to load a library or a Lush file into an-

other Lush file or library. A typical Lush program file will begin with a bunch
of libload . The difference between load and libload is that libload re-
members when a particular file was previously libloaded, and only loads it once.
Libload also keeps track of the dependencies between Lush program files (which
file libloads which other file). This is the basis of the automatic and transparent
on-demand compilation mechanism as described in detail below.

libload first searches the file libname . When libload is called from an
existing Lush file, it first searches file libname relative to the location of the
existing Lush file. If no such file exists, it uses function filepath to locate the
file along the lush search path.

libload then updates its internal database of dependencies between Lush
files. When function libload is called from an existing Lush file, it records the
fact that this Lush file depends on the Lush file filename .

libload then tests whether it is necessary to load the file. It is necessary
to load the file if

• file libname has never been loaded,

• file libname has been modified since the last time it was loaded,



188 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

• file libname has not been modified since the last time it was loaded, but
depends on a Lush file that has been modified since the last time it was
loaded.

• argument opt is non nil.

When this is the case, libload calls load to load the file, and stores a
timestamp for the file in its internal database. Function libload always returns
the full name of libname .

4.14.4 file-being-loaded

Type: VAR
See: (load in [ out [ prompt ]])
This variable is set when you load a Lush program file using function load

. It contains the full name of the file being loaded. It provides a way to know
the full filename of the Lush program file in which this variable is checked.

4.14.5 (find-file dirlist filename extlist)

Type: DE(sysenv.lsh)
Finds the first file that exists fo the form dir / file . ext where dir is

one of the directories in list dirlist and ext is one of the suffixes in extlist
.

Example:

(find-file ’("local" "lsh") "lushenv" ’(".lshc" ".lsh"))

Note: This is somewhat similar to filepath but allows searching through
any directory tree.

4.14.6 (save f s1 ... sn)

Type: DM(sysenv.lsh)
This function just saves indented definitions of the symbols s1 to sn into

the file named f . A suffix ".lsh" is automatically added to f if it has no
suffix.

4.14.7 (autoload f s1 ... sn)

Type: DM(sysenv.lsh)
Defines functions s1 to sn with a code that first loads file f , and then

restart the evaluation.
The first time one of these functions is called, its definition is loaded from file

f , and the execution continues. Such autoloading functions often are defined
by "stdenv.lsh" . They avoid loading many files while allowing the user to
call those functions at any time.



4.15. LISP-STYLE INPUT / OUTPUT. 189

4.15 Lisp-Style Input / Output.

4.15.1 Input.

(read)

Type: DX
See: The Lush Reader.
Calls the Lisp reader, and returns the next Lush object available on the

current input. Function read is able to read both text and binary Lush files.

(read-string [spec])

Type: DX
Reads a string on the current input.

• When argument spec is a number, it indicates how many character should
be read from the current input and returned as a string.

• When argument spec is a string, it specifies which characters are to be
read. For example, "0-9" matches any number, " 0-9" matches any-
thing but a number, " \t\n\r\f\e" anything but a blank character or
end of file, "yYnN" reads only one of these characters.

The default spec for function read-string is ” \n\r\f\e” and means “read
anything until the end of line”.

(skip-char [spec])

Type: DX
Skips the characters matching string spec and returns the next available

character. The default value of argument spec is "\t\n\r\f" and means
“skip any blank characters”.

Example:
This function reads the input stream and builds a list with each line, until

it reaches an end-of-file character

(de read-lines()
(let ((ans ()))
(while (<> (skip-char "\\n\\r\\f") "\\e")
(setq ans (nconc1 ans (read-string))) ) ) )

This function reads the input stream and builds a list with each word, until
it reaches an end-of-file character

(de read-words()
(let ((ans ()))
(while (<> (skip-char) "\\e")
(setq ans (nconc1 ans (read-string "~ \\t\\n\\r\\f\\e"))) ) ) )



190 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(ask s)

Type: DX
Prints the string s on the standard output and waits for a "yes" or "no"

answer on the standard input. Function ask returns t or () according to the
user’s answer. Function ask is not affected by the current input or output file.

Example:

? (ask "Your answer")
Your answer [y/n] ?

4.15.2 Output.

(prin l1 ... ln)

Type: DX
Prints the Lush objects l1 to ln separated by spaces. Unlike print , the

function prin does not terminates the line with a linefeed. Function prin
returns the result of the last evaluation.

(print l1 ... ln)

Type: DX
Prints the Lush objects l1 to ln separated by spaces and output a newline

character. Function print returns the result of the last evaluation.
Example:

? (print "hello" (+ 3 4) ’(a b c d))
"hello" 7 (a b c d)
= (a b c d)

(pprin l1 ... ln)

Type: DE(sysenv.lsh)
Prints the Lush objects l1 to ln with a nice indentation. The indentation

is defined according many heuristics suitable for printing nicely function defi-
nitions. Unlike function pprint , pprin does not terminates the line with a
linefeed.

(pprint l1 ... ln)

Type: DE(sysenv.lsh)
Prints the evaluations of l1 to ln with a nice indentation. The indenta-

tion is defined according many heuristics suitable for printing nicely function
definitions. Function pprint terminates the line with a linefeed.

Although the current implementation of pretty is a more complicated, a
simple implementation of pretty would be :



4.15. LISP-STYLE INPUT / OUTPUT. 191

(df pretty(f) (pprint (funcdef f)))

(printf format ... args ... )

Type: DX
This function is similar to the printf function in C language. String format

will be printed verbatim, except for the following escape sequences, which refer
to args .

• "%%" is replaced by a single \%.

• "%l" is replaced by a representation of a lisp object.

• "%[-][<n ]s”> is replaced by a string, right justified in a field of length
n if n is specified. When the optional minus sign is present, the string is
left justified.

• "%[-][<n ]d”> is replaced by an integer, right justified in a field of n
characters, if n is specified. When the optional minus sign is present, the
string is left justified.

• "%[-][<n [. m ]] c ”> where c is one of the characters e , f or g , is
replaced by a floating point number in a n character field, with m digits
after the decimal point. e specifies a format with an exponent, f specifies
a format without an exponent, and g uses whichever format is more com-
pact. When the optional minus sign is present, the string is left justified.

Function printf is the only way to print the real contents of a character
string, without adding surrounding double quotes or escaping the special char-
acters.

Example:

? (printf "\\%5s\\%3d is equal to \\%6.3f\\n" "sqrt" 2 (sqrt 2))
sqrt 2 is equal to 1.414
= ()

(tab [n])

Type: DX
When a numeric argument n is given, tab outputs blanks until the cursor

reaches the n -th column on the current line. The cursor position is unchanged
if the cursor is located after the n -th column. Function tab always returns the
current cursor position.

? (tab)
= 0



192 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

4.15.3 File Names.

(basename path [suffix])

Type: DX
Returns the terminal component of the pathname path by removing any

prefix ending with / . If string suffix is provided , a possible suffix suffix
is removed from the pathname.

This function makes no reference to the actual contents of the filesystem. It
just chops the filename according to the file naming conventions.

(dirname path)

Type: DX
Returns the name of the directory containing the file named path .
This function makes no reference to the actual contents of the filesystem. It

just chops the filename according to the file naming conventions.

(concat-fname [filename1] filename2)

Type: DX
Returns an absolute filename equivalent to filename2 parsed from current

directory filename1 . Argument filename1 defaults to the current directory.
This function makes no reference to the actual contents of the filesystem.

It just concatenates the filenames according to the file naming conventions.
Nevertheless, if the resulting filename refers to an actual directory, a directory
separator / is appended to the returned filename.

Example:

? (concat-fname "..")
= "/home/yann"

? (concat-fname (getenv "HOME") "myfile.lsh")
= "/home/yann/myfile.lsh"

(tmpname [[dir] suffix])

Type: DX
This function creates a temporary file and returns its name. When Lush

exits, an automatic cleanup code removes these files.
The optional string dir specifies the directory where the temporary file will

be created. A value of () is interpreted as the default system directory for
temporary files.

This function generates file names using the optional suffix suffix . If you
do not specify this argument, the generated filename will have no suffix.

Examples:



4.15. LISP-STYLE INPUT / OUTPUT. 193

(tmpname) ;; creates a temporary file.
(tmpname () "sn") ;; creates a temporary file whose name ends with ".lsh".
(tmpname ".") ;; creates a temporary file in the current directory.

4.15.4 Searched Path.

See: Lush Startup.
When Lush is looking for a file, it searches for it among a list of directories.

Several functions are provided to handle this feature.

(path s1...sn)

Type: DX
The function path allows you to get and set this list. Without arguments,

path returns the current path. Otherwise, the strings s1 to sn become the
current path.

The initial path is automatically set while Lush is starting up by retrieving
the Lush executable file and scanning up the directories until it finds a suitable
library directory.

? (progn
(printf "--> The current path is:\\n")
(path) )

--> The current path is:
= ("/home/yann/lush/local" "/home/yann/lush/packages"

"/home/yann/lush/lsh/libogre" "/home/yann/lush/lsh/compiler"
"/home/yann/lush/lsh/libidx" "/home/yann/lush/lsh/libstd"
"/home/yann/lush/lsh" "/home/yann/lush/sys" )

(addpath s)

Type: DE(sysenv.lsh)
See: (path s1 ... sn )
The function addpath adds the directory s to the file search path. Directory

s is added at the head of the search path. Other occurrences of this directory in
the path are removed, in order to keep the search path small and non redundant.

Example:

? (addpath (concat (getenv "HOME") "/mysnlib"))

(filepath filename [suffixes])

Type: DX
See: (path s1 ... sn )



194 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

See: (concat-fname [ filename1 ] filename2 )
See: (load in [ out [ prompt ]])
The function filepath searches file filename along the current search path,

using the suffixes specified by argument suffixes . Function filepath returns
the absolute path name of the file. The empty list is returned if no file matches
the argument along the current search path.

Argument suffixes is a string containing a sequence of possible suffixes
(including the initial period) separated by vertical bars “—”. The sequence
represents the priority order. A suffix may have zero characters.

".dump" Try suffix <.dump>.
".lshc|.lsh|" Try suffixes <.lshc> and <.lsh>, then try without suffix.
"|.lsh" Try without suffix, then try suffix <.lsh>.
".lsh|" Try suffix <sn>, then try without suffix.

Argument suffixes may specify a single suffix without the initial period.
This is a shorthand for testing first the specified suffix and then testing without
a suffix.

"sn" Equivalent to ".lsh|"

When argument suffixes is omitted, filepath uses the same suffixes than
function load . This default provides a way to determine which file would be
loaded by a given call to function load .

? (filepath "sysenv")
= "/home/yann/lush/sys/sysenv.lsh"

4.15.5 Files and Directories Management.

(files [directory])

Type: DX
Returns the list of the files located in directory directory . If argument

directory is ommitted, the current directory is assummed.

? (files)
= ("." ".." "CVS" "config" "0-CVS-INFO" "COPYING" "COPYRIGHT" "Makefile.in"

"Makefile" "README" "aclocal.m4" "configure" "configure.ac" "debian" "etc"
"include" "lsh" "src" "sys" "config.log" "bin" "config.status" "packages"
"NOTES.~1.27.~" "local" "TODO" "TODO~" "doc" "RELEASES" "README.~1.2.~" )



4.15. LISP-STYLE INPUT / OUTPUT. 195

(fileinfo filename)

Type: DX
Returns an a-list containing lots of information about the file named filename

in the form of an association list. Information includes type, dates, permissions,
size,.... This function returns nil if the named file does not exist.

? (fileinfo ".")
= ((type . dir) (size . 4096) (mode . 16877) (dev . 775) (ino . 229389)

(nlink . 15) (uid . 501) (gid . 501)
(atime . ::DATE:year-second:(2002-08-14 05:12:36))
(mtime . ::DATE:year-second:(2003-01-06 21:26:59))
(ctime . ::DATE:year-second:(2003-01-06 21:26:59)) )

(dirp path)

Type: DX
Returns t if string path is the filename of a directory. This function also

returns t if string path is the filename of a symbolic link referring to a directory.

? (dirp "..")
= t

(filep path)

Type: DX
Returns t if string path is the filename of a regular file (not a directory).

This function also returns t if string path is the filename of a symbolic link
referring to a regular file.

? (filep "..")
= ()

(lockfile path)

Type: DX
Attemps to create file path .

• If this file already exists, function lockfile returns the empty list () .

• If this file does not exists already, function lockfile writes the current
date into the file and returns t .

This function is useful for implementing a simple locking scheme.



196 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(mkdir dirname)

Type: DX
This function creates a new directory dirname .
See: (mkdir-on-need [ s ])
See: (chdir [ s ])

(mkdir-on-need path)

Type: DE(miscenv.lsh)
This function is much like the ‘mkdir -p’ command found on many Unix

systems. It creates a directory named path . This function also creates all
required parent directories specified by string path .

This function does nothing if directory path already exists already. You can
safely call this function multiple times. It is assumed that the caller has the
appropriate rights to create the path .

The following expression checks makes sure that all directories "/tmp" ,
"/tmp/just" , /tmp/just/an" and "/tmp/just/an/example" exist:

(mkdir-on-need "/tmp/just/an/example")

(unlink path)

Type: DX
This function removes the file or directory path . It does not complain if

the file or directory path does not exist.

(rename path1 path2)

Type: DX
This function renames file path1 as path2 .

(copyfile file1 file2)

Type: DX
Copy file file1 onto file file2 . Arguments file1 and file2 may be file

descriptors or file names (as described in open-read and open-write .

4.15.6 Files and Descriptors.

(script [s])

Type: DX
Creates a file named s and records all the input/output operations on that

file. The suffix ".script" is added to the name s . This function is handy
for keeping a trace of the Lush session. If function script is called without
arguments , the current script file is closed.



4.15. LISP-STYLE INPUT / OUTPUT. 197

(open-read s [suffixes])

Type: DX
See: (sys shellcmd )
See: (filepath filename [ suffixes ])
This function returns a read file descriptor of the file named s . The empty

list is returned when an error occurs while opening the file. The file descriptor
is closed when the garbage collector detects that the file is no longer necessary.
File descriptors however can be manually closed with the function delete .

Filenames have the following form:

• A legal operating system filename will be searched along the current path.

• "$stdin" stands for the Lush standard input.

• On some systems, "| shell command" may be used to open a pipe to
another process. See the description of function sys to have comments
about the implementation of this feature.

When string suffixes is specified, the suffixes specified by this string are
tried while searching the file along the search path. The possible values of the
string suffix are documented with function filepath .

(open-write s [suffix])

Type: DX
See: (sys shellcmd )
This function returns a write file descriptor of the file named s . The empty

list is returned when an error occurs while opening the file. The file descriptor
is closed when the garbage collector detects that the file is no longer necessary.
File descriptors however can be manually closed with the delete function.

Filenames have the following form:

• A legal operating system filename.

• "$stdout" stands for the Lush standard output stream.

• "$stderr" stands for the Lush standard error stream.

• On some systems, "| shell command" may be used to open a pipe to
another process. See the description of function sys to have comments
about the implementation of this feature.

An optional suffix can be specified as argument suffix . This suffix is
appended to the filename unless the filename already contains a suffix.



198 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(open-append s [suffix])

Type: DX
This function returns a “append” file descriptor of the file named s . All

output on this file descriptor shall be appended to the file. The empty list is
returned when an error occurs while opening the file. The file descriptor is
closed when the garbage collector detects that the file is no longer necessary.
File descriptors however can be manually closed with the delete function.

An optional suffix can be specified as argument suffix . This suffix is
appended to the filename unless the filename already contains a suffix.

(filteropen cmd fin fout)

Type: DX
This command is available under Unix. Check function winsys under Win-

dows.
This function runs the shell command cmd in the background , stores into

symbol fin a file descriptor for reading its standard output , and stores into
symbol fout a file descriptor for writing into its standard input.

This commands allows for launching another program , sending commands
and receiving the results. Arguments fin and fout are evaluated and must
probably be quoted symbols.

(socketopen host port fin fout)

Type: DX
This command is available under Unix.
This function connects a server process listening on port number port on

the remote computer named host . It stores into symbol fin a file descriptor
for reading from the server , and stores into symbol fout a file descriptor for
writing to the server.

Arguments fin and fout are evaluated and must probably be quoted sym-
bols.

(writing f l1 ... ln)

Type: DY
See: (open-write s [ suffix ])
See: (open-append s [ suffix ])
Calls progn on l1 to ln , while redirecting the current output to f . Ar-

gument f may be a filename or a file descriptor obtained by open-write or
open-append .

(reading f l1... ln)

Type: DY
See: (open-read s [ suffix ])



4.15. LISP-STYLE INPUT / OUTPUT. 199

Calls progn on l1 to ln , while redirecting the current input to f . Ar-
gument f may be a filename or a read file descriptor obtained by open-read
.

Example: This function returns the list of the files in directory s

(de directory(s)
(let ((ans ()))

(reading (concat "|/bin/ls " s)
(while (<> (skip-char) "\\e")

(setq ans (nconc1 ans (read-string))) ) )
ans ) )

(read8 f)

Type: DX
Reads a byte on file descriptor f . This function returns a number in the

range 0 to 255.

(write8 f b)

Type: DX
Writes a byte b on file descriptor f . Argument b must be a number in the

range 0 to 255. This function does not flush the file f . The function flush
must be used in order to write out all remaining data.

(fsize f)

Type: DX
Returns the number of bytes remaining in the file. When the file is not

exhaustable or not rewindable (such as pipes and terminals) it causes an error.

(flush [f])

Type: DX
Flushes the file descriptor f .
When no arguments are provided, both the current input and current output

are flushed: All characters pending on the current input are removed until a
newline is encountered, all characters buffered on the current output are printed
out.

Example:

;;; This function ask a question and returns a string.
(de input(question)

(printf "\\%s" question)
(flush)
(read-string) )



200 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

4.15.7 Binary I/O.

(bwrite l1 ... ln)

Type: DX
See: (bread)
Function bwrite writes the lisp objects l1 to ln on the current output

stream as a sequence of binary tokens. This function is able to write correctly
lisp objects with circular references. It cannot however write lisp objects useful
for their side effects like open file descriptors or windows.

(bwrite-exact l1 ... ln)

Type: DX
See: (bwrite l1 ... ln )
See: (bread)
Function bwrite-exact is similar to bwrite with a few twists that makes

it more accurate but less frequently useful.

• Function bwrite writes objects by first specifying the class name. This
implies the class must be defined and have the same name when reading
the object. Function bwrite-exact instead writes a complete definition
of the class. This implies that bread will create a new unnamed class
regardless of the existing classes.

• Function bwrite writes indexes by saving their content regardless of how
the index is laid out in the corresponding storages. This implies that
bread will create a new storage for each of them. Function bwrite-exact
instead writes the storage and the index layout. But this is wasteful if the
storage is much larger than the index.

(bread)

Type: DX
See: (read)
Function bread reads on the current input stream a binary sequence of

tokens and builds the corresponding lisp object. Functions read and load are
also able to recognize binary tokens in the middle of a text file. This allows
for reading a file containing a mixture of lisp objects representing as binary
sequence of tokens or as text.

(bread-exact)

Type: DX
See: (bread)
Function bread-exact is similar to bwrite with one twists that makes it

more accurate but less frequently useful.



4.16. MISCELLANEOUS. 201

• Saving an instance of a user defined class with bwrite saves only the slots
of the instance and a reference to the class name. Function bread will
be able to read this binary file if the class has already been defined in the
interpreter. This class must define the same slots with the same order
as the class of the actual object stored in the file. Additional slots will
just be skipped and left with their default value. Function bread-exact
instead causes an error when there are additional slots.

Note that both bread and bread-exact can read files produced by ei-
ther bwrite or bwrite-exact . There is no difference between bread and
bread-exact when reading a file produced by bwrite-exact .

(tokenize fin fout)

Type: DE(sysenv.lsh)
Function tokenize reads all lisp expressions from file fin and writes their

binary equivalent into file fout .
This function is useful for converting Lush program files (SN files) into

preparsed binary file (SNC files). Loading a preparsed file is much faster than
loading a text file. Preparsed copies of certain system libraries are located in
directory "<lushdir /lib”>.

(dump fname [exec])

Type: DX
See: Startup.
See: Runtime.
Writes the status of the lisp interpreter into file fname . If fname has no

suffix, suffix ".dump" is assummed. This function works by creating a binary
file containing a binary description of the state of the current Lush session.

Binary dump files are more useful for lauching Lush with preloaded libraries
and application. During startup indeed, Tlisp can load a binary dump file speci-
fied by the command line arguments. Moreover, if Tlisp does not find the system
library "sysenv.lsh" , it attempts to undump a file names "sysenv.dump" .

When specified, the optional argument exec specifies a lisp expression which
will be evaluated immediatly before loading the dump file. Variable file-being-loaded
is set to the name of the dump file. This feature is useful for loading, using func-
tion mod-load , all TL/Open extensions required by the dump file.

4.16 Miscellaneous.

4.16.1 Debug.

A few functions provides debugging support and statistical informations about
the resources used by Lush.



202 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(symbols str)

Type: DE(sysenv.lsh)
See: ˆS str
Prints all the symbols whose name contains the string str . This is espe-

cially useful if you don’t remember the exact spelling of a function or variable.

ˆS str

Type: DMC(sysenv.lsh)
See: (symbols str )
Macro-character for function symbols

(sizeof c type)

Type: DX
Returns the number of bytes needed to implement a C item of C type named

c type . Supported types are signed numerical types and pointer type "gptr"
.

? (sizeof "double")
= 8

? (sizeof "gptr")
= 4

? (sizeof "short")
= 2

This function is mainly used for formated I/O.

(used)

Type: DX
Returns the number of currently used Lush cells. This function is especially

useful to track underlocks and overlocks when debugging a new Lush primitive
written in C.

(error [symb] string [l])

Type: DX
Causes an error whose text is given by symb , string and l . When symb

is provided, error rewinds the evaluation stack until it reaches a call to a
function named symb . The error message then displays the stack relative to
that function call. When symb is omitted, the stack is not displayed.

Example:



4.16. MISCELLANEOUS. 203

? (error ’myfunc "bad number" 4)
*** myfunc : Bad number : 4
Debug toplevel [y/n] ?

(pause string)

Type: DE
print string and start a toplevel prompt. Inserting a (pause <string )>

expression in a function allows to stop the execution and get a prompt in the
context of the pause . This allows to examine and/or modify variable values
etc.

(debug l1 ... ln)

Type: DY
See: (trace-hook level line expr info )
Evaluates l1 to ln , in debug mode. When in debug mode, Lush calls func-

tion trace-hook before and after each evaluation. The default trace-hook
function just prints an indented trace of each evaluator call, as well as each
value.

Example:

? (debug (* (+ 3 4) a)))
-> (* (+ 3 4) a)
-> (+ 3 4)
-> 3
<- 3
-> 4
<- 4

<- 7
-> a
<- 8
<- 56
= 56

(nodebug l1 ... ln)

Type: DY
Calls function progn on expression l1 to ln without displaying a trace ,

even if this function is called inside a call to function debug . Functions like
pretty and save use this function to produce clean output in debug mode.

(where)

Type: DX



204 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

See: Interruptions in Lush.
See: Errors in Lush.
This function prints the entire evaluation stack. Called from a debug toplevel,

function where gives useful hints for undertsanding what happened and when.

(trace-hook level line expr info)

Type: DE
See: (debug l1 ... ln )
This function is called before and after each evaluation when the Lush kernel

runs in debug mode (see function debug ). Redefining this function allows
interactive Lush debugger to execute programs step by step.

• When trace-hook is called before an evaluation, argument level is a
positive number indicating the number of recursive calls to the evaluator
since Lush entered the debug mode. Argument line is a string displaying
the first line of the expression being evaluated. Argument expr is the
expression being evaluated. Argument info is the list of the expressions
whose recursive evaluation led to the evaluation of expr .
If function trace-hook returns () , the evaluation will continue without
calling trace-hook for recursive evaluations. The next call to trace-hook
will occur after the current evaluation returns. If function trace-hook
returns t , the recursive calls to the evaluator (calls performed while eval-
uating the current expression) will be traced.

• When trace-hook is called after an evaluation, argument level is a neg-
ative number representing the opposite of the number of recursive calls to
the evaluator since Lush entered the debug mode. Argument line is a
string representing the first line of the returned value. Argument expr is
the expression being evaluated. Argument info is the value returned by
the evaluation.
If function trace-hook returns () , the remaining evaluations will con-
tinue without calling trace-hook until an evaluation with a smaller recur-
sion level returns. If function trace-hook returns t , the next evaluations
will be traced normally.

result

Type: VAR
The last result produced by the toplevel is always stored in the variable

result.
Example:

? (sqrt 81)
= 9
? (* result result)
= 81



4.16. MISCELLANEOUS. 205

version

Type: VAR
This symbol contains a string, whose contents is the full name of the Lush

based program you are running.

lushdir

Type: VAR
This variable contains the filename of the root of the Lush tree.

(exit [n])

Type: DX
See: Lush Startup.
This functions exits the current toplevel, as if a Ctrl-D had been typed.

When the optional argument n is given, function exit quits the Lush process
with return code n .

(discard l1 ... ln)

Type: DY
Evaluates l1 to ln like progn , but prevents the entire result to be printed

by the toplevel. It will print its first line instead. This function is useful for
working quietly on very long lists.

(startup ...argv...)

Type: DE(sysenv.lsh)
See: Lush Startup.
Lush calls this function once during the startup procedure as soon as the sys-

tem library "sysenv.lsh" or "sysenv.dump" has been loaded. The behavior
of the default startup procedure is explained in section ”Lush Startup.”.

The arguments argv are the command line arguments. Neither the exe-
cutable name nor the magic first command line argument are passed to startup
. However, a fake argument "@@" is prepended when Lush runs in script mode.

(toplevel)

Type: DE(sysenv.lsh)
See: Lush Startup.
This function usually is defined by "sysenv.lsh" and is called after function

startup during the startup process. This function is restarted whenever an
error occurs.



206 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(on-error p l1 ... ln)

Type: DM
See: Interruptions in Lush.
This function evaluates lists l1 to ln and returns the last result like function

progn . If however an errors occur during these evaluations, the expression p
is evaluated before the usual error processing.

The function on-error does not stop the error processing, but allows for
performing cleanup tasks, or for printing a custom error message.

(on-break p l1 ... ln)

Type: DM
See: Errors in Lush.
This function evaluates lists l1 to ln and returns the last result like function

progn . If however the user interrupts the evaluation by depressing Ctrl-C ,
the expression p is evaluated before the usual interruption processing.

The function on-break does not stop the interruption processing, but allows
for performing cleanup tasks, or for printing a custom error message.

(on-error-macro pm l1 ... ln)

Type: DM
See: Errors in Lush.
See: (on-error p l1 ... ln )
This function first evaluates list pm and stores the result which is usually

an expression to be evaluated if an error occurs. It evaluates then lists l1 to
ln and returns the last result like function progn . If however an errors occur
during these evaluations, the result of the initial evaluation of pm is evaluated
before the usual error processing.

Actually, this function works like on-error , except the expression which
will be executed in case of error is the result of the evaluation of pm in the call
context of on-error-macro i.e. before l1 ... ln are evaluated.

This allows a safer behaviour than on-error , since the evaluation of pm is
made in the call context instead of being made in the error context. Indeed,
the error context may have values pushed on the stacks by functions called in
l1 ... ln , therefore hiding the expected values.

(let* ((my-window (new windowobject 100 100 200 100 "Handler"
(new string "processing...")))

(errq (new errorrequester my-window)))
(on-error-macro
‘(==> ,errq popup (errname))
(let* ((errq ()))
(error "this is is a programmed error\\nused as test."))))



4.16. MISCELLANEOUS. 207

(on-break-macro pm l1 ... ln)

Type: DM
See: Errors in Lush.
See: (on-break p l1 ... ln )
This function first evaluates list pm and stores the result which is usually

an expression to be evaluated in case the user interrupts the execution with the
Ctrl-C or Ctrl-Break key. It evaluates then the lists l1 to ln and returns
the last result like function progn . If however the user interrupts the evaluation
by depressing Ctrl-C or Ctrl-Break , the result of the evaluation of pm stored
previously is evaluated before the usual interruption processing.

Actually, this function works like on-break , except the expression which
will be executed in case of interuption is the result of the evaluation of pm in
the call context of on-break-macro i.e. before l1 ... ln are evaluated.

This allows a safer behaviour than on-break , since the evaluation of pm
is made in the call context instead of being made in the interruption context.
Indeed, the interruption context may have values pushed on the stacks by func-
tions called in l1 ... ln , therefore hiding the expected values.

(errname)

Type: DX
This function returns the last error message as a string. This function is

usually called by the break-hook or debug-hook functions , whenever an error
or an interruption occurs.

(debug-hook)

Type: DE(sysenv.lsh)
See: Errors in Lush.
This function is defined by "sysenv.lsh" and is called whenever an error

occurs. Use care when modifying this function, since an incorrect debug-hook
function may result into a deadly infinite loop!.

(break-hook)

Type: DE(sysenv.lsh)
See: Interruptions in Lush.
These functions is defined by "sysenv.lsh" and is called whenever the user

causes an interruption by depressing Ctrl-C .

4.16.2 System.

A few functions are strongly related to the operating system. The quality of
the implementation however depends on the quality of the underlying operating
system.

Some functions are not available under all operating systems:



208 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

• The function bground is only available on Unix system.

• The function xdmc is only available on Apollo Domain/OS computers.

• The functions winlushp , winsys and winedit are only available under
Windows/95 and Windows/NT.

(beep)

Type: DX
Function beep is self explanatory.

(sleep n)

Type: DX
Function sleep waits n seconds and returns.

(sys shellcmd)

Type: DX
See: #$ shellcmd
See: (open-write s [ suffix ])
See: (open-read s [ suffix ])
Executes the shell command defined in string shellcmd .
Example (Unix):

? (sys "pwd")
/home/toto/bip
= 0

The implementation of function sys and of the pipe convention in filenames
(see open-read and open-write ) is highly system dependent.

• This implementation is extremely reliable on Unix systems. Using pipes
and forking background processes has been the tradition of Unix since the
origins.

Function sys will always wait until the spawned process exits and return
the process exit code.

• This implementation is much less reliable under Windows 95 or NT. You
can indeed run very different kinds of programs, including legacy MS-
DOS and WIN16 programs. A number of programs running under Win-
dows have been written with the assumption that they would run using
a MSDOS style console. Running them as background processes or with
standard handles redirected to pipes will cause problems.

If you are running the Console based version of Lush, function sys repli-
cates as well as possible the behavior of the Unix version. The spawned



4.16. MISCELLANEOUS. 209

process inherits the Lush console and may be controlled by the user. If
you are running a MSDOS or WIN32 Console application, function sys
returns when the application exits. If you are running a Windows 3.1 or
WIN32 GUI application, function sys returns immediately.

If you are running the GUI based version of Lush, the spawned processed
no longer inherit a MSDOS console. We have chosen to handle MSDOS
and WIN32 Console application like a GUI application. Function sys will
create a new console for the process and return immediately regardless of
the application type.

Using pipes is reasonably reliable under the Console based version of Lush.
It becomes very adventurous under the GUI version of Lush because we
do not want to create a console and let the user interact with the program.
Bugs in Windows 95 make pipes so dangerous that we just forbid them.

Please investigate function winsys to start a new process with a collec-
tion of refined options (redirecting standard handles, using the command
interpreter, detaching the process, waiting until the process exits). You
should nevertheless remember that these options do not work welle with
all application types.

#$ shellcmd

Type: DMC(sysenv.lsh)
See: (sys shellcmd )
Macro-character for function sys .

? #$pwd
/home/toto/bip
= 0

(chdir [s])

Type: DX
See: (path s1 ... sn )
See: (sys shellcmd )
If the string s is provided, this function sets the current working directory

to directory s . This function returns the current working directory name.
The current directory specified with chdir is used by all shell commands

launched with function sys . When accessing a file, Lush also searches the
current directory before the directories specified by function path .

Example:

? (chdir)
= "/home/yann/lush"



210 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(getpid)

Type: DX
Returns the process ID of this process.
Example:

? (getpid)
= 15623

(getuid)

Type: DX
Returns the user ID of this process.
Example:

? (getuid)
= 501

(getusername)

Type: DX
Returns the user name for this process.
Example:

? (getusername)
= "yann"

(edit file)

Type: DE(sysenv.lsh)
See: ˆE file
Calls the standard editor on file file . The editor name is stored in the

symbol edit-call , and is initialized by looking at the environment variable
EDITOR or VISUAL .

ˆE file

Type: DMC(sysenv.lsh)
See: (edit file )
Macro-character for function edit .

edit-call

Type: VAR(sysenv.lsh)
This variable contains the name of the editor command.



4.16. MISCELLANEOUS. 211

(fedit func)

Type: DE(sysenv.lsh)
See: ˆF func
Copies an indented definition version of func in a temporary file and calls

the function edit on this file. When the editor returns, the edited definition of
func is loaded.

ˆF func

Type: DMC(sysenv.lsh)
See: (fedit func )
Macro-character for function fedit .

(getconf varname)

Type: DX
Obtains the value of variables determined by the shell script configure .

String argument varname can take the following values:

• "SHELL" The shell interpretor, e.g "/bin/sh" .

• "OPTS" The optimization options for the compilers, e.g. "-DNO DEBUG
-O2" .

• "DEFS" The symbol definition options for the compilers, e.g. "-DHAVE CONFIG H"

• "LIBS" Libraries used for linking the main executable, e.g. "-lbfd -liberty
-ldl -lm" .

• "host" String describing the host computer, e.g. "i686-pc-linux-gnu"
.

• "CPP" Command for running the C preprocessor, e.g. "gcc -E" .

• "CPPFLAGS" The preprocessing options for the compilers.

• "CC" Command for running the C compiler, e.g. "gcc" .

• "CFLAGS" The C specific compiler options besides those specified in CPPFLAGS
, OPTS and DEFS .

• "CXX" Command for running the C++ compiler, e.g. "g++" .

• "CXXFLAGS" The C++ specific compiler options besides those specified in
CPPFLAGS , OPTS and DEFS .

• "F77" Command for running the Fortran compiler, e.g. "g++" .

• "FFLAGS" The Fortran specific compiler options besides those specified in
CPPFLAGS , OPTS and DEFS .



212 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

• "LDCC" Command for linking executables, e.g. "g++" .

• "LDFLAGS" Options for linking executables.

• "PTHREAD FLAGS" Flags for compiling or linking programs that use the
Posix thread library.

• "PTHREAD LIBS" Libraries for linking programs that use the Posix thread
library.

• "AR" Command for creating static libraries, e.g. "/usr/bin/ar" .

• "MV" Command for renaming and moving files, e.g. "/bin/mv" .

• "CP" Command for copying files, e.g. "/bin/cp" .

• "LN S" Command for creating symbolic links, e.g. "ln -s" .

• "TOUCH" Command for updating the modification time of a file, e.g.
"/bin/touch" .

• "INDENT" Command for running the GNU indent program.

• "RANLIB" Command for creating the table of contents of a static library
created with AR , e.g. "ranlib" .

• "X LIBS" Options for linking executables using the X11 library, e.g. "-L/usr/X11R6/lib
-lSM -lICE -lX11" .

• "X CFLAGS" Options for compiling programs using the X11 library, e.g.
"-I/usr/X11R6/include" .

• "CC PIC FLAG" Compiler flag for producing position independent code ap-
propriate for creating shared libraries, e.g. "-fPIC" .

• "CC EXP FLAG" Linker flag for linking executables that export their sym-
bol tables to resolve undefined symbols in shared libraries, e.g. "-Wl,-export-dynamic"
.

• "MAKESO" Command for creating a shared library, e.g. "gcc -shared
-o" .

• "EXEEXT" Filename extension for executable programs, e.g. "" or "exe"
.

• "OBJEXT" Filename extension for object files, e.g. "o" or "obj" .

• "SOEXT" Filename extension for shared libraries, e.g. "so" or "sl" or
"dll" .

• "LUSH MAJOR" The major version of Lush specified in loadable modules.

• "LUSH MINOR" The minor version of Lush specified in loadable modules.



4.16. MISCELLANEOUS. 213

(getenv s)

Type: DX
Returns the value of the environment variable whose name is s .
Example:

? (getenv "HOME")
= "/home/yann"

(getconf s)

Type: DX
Returns the value of the autoconf variable determined at compilation time.

These variables indicate how the lisp interpreter was compiled. See file "include/autoconf.h.in"
for a list of variables.

Example:

? (getenv "CC")
= ""

? (getenv "CFLAGS")
= ""

(time l1 ... ln)

Type: DY
Returns the CPU time in seconds spent to evaluate l1 to ln . Without

arguments, function time returns the real time spent since you started Lush.
Example:

? (time (repeat 40000
(sqrt 2) ))

= 0.04

(ctime)

Type: DX
This function is identical to the Unix ctime function. It returns date and

time as a 26 character string.
Example:

? (ctime)
= "Tue Jan 7 20:27:18 2003"



214 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(localtime)

Type: DX
This function is identical to the Unix localtime function. It returns a list

of the following form:

( tm_isdst <day light saving time>
tm_yday <day of the year (0..365)>
tm_wdat <day of the week (sunday=0)>
tm_mon <month number (0..11)>
tm_mday <day of the month (1..31)>
tm_hour <hour (0..23)>
tm_min <minutes (0..59)>
tm_sec <seconds (0..59)> )

Example:

? (localtime)
= (tm-isdst 0 tm-yday 6 tm-wday 2 tm-year 103 tm-mon 0 tm-mday 7 tm-hour 20

tm-min 27 tm-sec 18 )

(isatty filename)

Type: DX
Returns t if file filename is an interactive terminal.

(bground s l1 ... ln)

Type: DY
Creates a background process which evaluates expressions l1 to ln and

exits. The output of this process is redirected to a file named s . A suffix
".job" is concatenated to filename s when necessary.

(winlushp)

This function is only available under Windows. It returns () if you are running
the console version of Tlisp. It returns t if you are running the GUI version of
Tlisp.

Examples:

;; You can test if you are running under windows as follows.
(cond

((not winlushp)
(printf "Not running under Windows\\n") )

((winlushp)



4.16. MISCELLANEOUS. 215

(printf "Running WinLush (GUI version of Lush under WIN32)\\n") )
(t

(printf "Running Lush (Console version of Lush under WIN32)\\n") ) )

(winedit filename [as-untitled])

This function is only available when you are running the GUI version of Lush
for Windows (WinLush).

Function winedit opens a text editor window for the file named filename
. If the name filename ends with suffix ".lsh" , WinLush will allow syntax
coloring and automatic indentation.

The optional flag as-untitled tells WinLush to open the file as an untitled
window.

• If flag as-untitled is the empty list, WinLush first searches an already
open text editor window for this file. If such a window already exists,
WinLush just pops up the window. Otherwise, WinLush creates a new
window and loads the file. This mode is convenient for editing well defined
files.

• If flag as-untitled is not nil, WinLush creates a new untitled window
and transfers the contents of the file. The new editor window will not
remember the file name. This mode is convenient when you are using a
temporary text file for transfering some text into an editor.

• If you do not specify argument as-untitled , WinLush makes a decision
on the basis of the file location. If the file is located under the system tem-
porary directory, WinLush creates an untitled editor window. Otherwise,
WinLush creates a regular text editor window.

(winsys stdin stdout stderr commandp detachp waitp cmdline)

See: (sys shellcmd )
This function is available when you are running Lush under Windows 95 or

NT.
Function winsys creates a process for the program specified by command

line cmdline . The other arguments allow you to tune finely the process pa-
rameters.

The legal and reliable combinations depend on:

• whether you are running the console based (Lush) or GUI based (Win-
Lush) version of Lush,

• whether you are running Windows 95 or Windows NT,

• whether you are executing a MSDOS application, WIN16 application,
WIN32 Console based application, WIN32 GUI application, OS2 2.1 ap-
plication (under NT) or Posix application (under NT).



216 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

Arguments stdin , stdout and stderr allow you to define the standard
input, output and error handles of the program. These argulents may be () ,
t or a variable name.

• Value () represents an invalid handle. Therefore the process will not be
able to use the corresponding standard handle. This may cause Windows
to create a MSDOS console as a replacement.

• Value t represents the handle inherited from the Lush process. Under
WinLush, this value redirects the standard output or standard error to
the WinLush console.

• A variable name tells Lush to pass one end of the pipe to the process. The
other end of the pipe will stored into the specified variable as a Lush file
descriptor. If you specify the same variable name for the standard output
and error, Lush will use a single pipe for both standard handles.

Flag commandp is used to determine how the command line is processed. If
this flag is set, the command line is passed to the command interpreter. You can
thus run the internal commands implemented by CMD.EXE (Windows NT) or
COMMAND.COM (Windows 95 - an MSDOS program!!). If this flag is not set,
the command line is directly interpreted by WIN32’s CreateProcess function.

Flag detachp is used to run a process in the background. This flag should
prevent Windows to create a console or inherit the console handles. It is rather
buggy under Windows 95.

Flags waitp tells if function winsys must wait until termination of the pro-
cess and return the process exit code. If this flag is unset, the function returns
immeditely.

Examples:

;; Here is an alias for function SYS under WinLush
(winsys () () () t () () cmdline)
;; Here is an alias for function SYS under Console Lush
(winsys t t t t () t cmdline)
;; Here is a way to open a read pipe
(winsys () ’readpipe t () t () cmdline)

(win-show-workbench flag)

See: (wbm-window [[[ x y ] w h ] name ])
See: (wbm-toplevel-window [[[ x y ] w h ] name ])
This function is available when you are running Lush under Windows 95 or

NT. This function controls the visibility of the graphical interface of the GUI
version Lush for Windows (WinLush). Calling this function does nothing if you
are running the console version of Lush for Windows.

When argument flag is the empty list, WinLush switches to “hidden”
mode. The main WinLush window (containing the Lush console, the text editor



4.16. MISCELLANEOUS. 217

windows, and possibly a few graphical windows) disappears from the computer
screen.

WinLush reverts to normal mode when function win-show-workbench is
called again with a non nil argument. There is also a safety feature that auto-
matically reverts WinLush normal mode when some user input is required on
the Lush console.

When WinLush runs in “hidden” mode, function wbm-window works like
function wbm-toplevel-window . Instead of creating a child window of the
invisible main WinLush window, wbm-window creates a toplevel window which
directly appears on the Windows desktop.

It is possible to directly start WinLush in “hidden” mode by specifying
option "-hide" as the first command line argument. The remaining argument
are interpreted as usual. This command line argument allows for creating self
contained WinLush applications.

You can for instance create a file "c:/calctoolapp.lsh" containing the
following three lines:

(setq mainwnd (calctool))
(while mainwnd (waitevent) (process-pending-events))
(exit 0)

You can then start WinLush with the following command line:

winlush -hide stdenv c:/calctoolapp.lsh

This command starts WinLush in hidden mode ( "-hide" ). WinLush will
first load the standard environment ( "stdenv" ) and then load our example
file ( "c:/calctoolapp.lsh" ). This file will create a calculator window on the
Windows desktop, processes graphical events, and terminates execution when
the user closes the calculator window.

The user will only see the calculator window. The WinLush main window
never appears on the screen because WinLush remains in “hidden” mode as
long as there is no need for user input on the Lush console.

4.16.3 Special Numerical Values (IEEE754).

This section is valid on computers supporting the IEEE754 floating point rep-
resentation scheme. Most computers and compilers nowadays support this.

Numerical computations may encounter three kinds of problems:

• Problems arise when we attempt to perform a clearly forbidden operation,
such as taking the logarithm of a negative operand. This attempt causes
a low level floating exception which generates a Lush error.

• A computation may return a number too large or too small to be rep-
resented by the usual floating point data types. Too small number are



218 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

approximated by zero. Too large numbers are represented using special
bit patterns for representing infinities.

• Special bit patterns are used to represent infinities or missing data. The
special bit pattern representing missing data is called “NaN” (NaN stands
for “Not a Number”). Computations involving NaNs usually return NaNs.

The special bit patterns representing infinities or NaNs are still Lush num-
bers and numberp will always return t when applyed on a NaN. However NaNs
and Infinities do not behave like regular numbers.

Special bit patterns have no litteral representation for the Lush reader. Most
machines however print them as "Nan" or "Inf" or "-Inf" . You should not
save these bit patterns into ascii format files because the reader will not be able
to read them back. You must save them into binary files.

According to IEEE specifications, testing the equality of two special bit
patterns should always return false. Comparing two bit patterns should cause
a floating exception. Major operating systems and compilers do not abide with
this specification. For instance the Microsoft Visual C++ 4.2 compiler considers
that NaNs are equal to anything. It is unclear if this is a bug or a speed
compromise (comparisons of actual number are much more frequent).

These problems make us unable to comply fully with the standard. Portable
programs can only rely on the following garantees:

• NaNs and Infinities are different from regular numbers. The equality test
will return false (we had to hand code this with Visual C++ in the Win-
doze version of TL3!).

• The Negative Infinity is smaller than any regular number. The Positive
Infinity is greater than any regular number.

• Overflows may produce a floating point exception or return an Infinity.
This is operating system and compiler dependent.

• Illegal operations (eg. comparing NaNs) are likely to cause a floating
exception. They may however return NaNs without causing a floating
exception on certain systems.

NaNs and Infinities however can be safely manipulated and tested by the
following functions:

(nan)

Type: DX
When NaNs are supported , this function returns a NaN number. This is

the only way provided by Lush for generating a NaN.
When NaNs are not supported , this function returns (). This is the only

way provided by Lush for checking if NaNs are supported by this machine.



4.17. GRAPHICS. 219

(nanp x)

Type: DX
This function returns t when x is a NaN. It returns () otherwise.

(not-nan x)

Type: DX
This function returns () when x is a NaN. It returns x otherwise.

(infinity)

Type: DX
When Infinities is supported , this function returns the Positive Infinity. The

Negative Infinity can be safely computed as (- (infinity)) .

(infinityp x)

Type: DX
This function returns t when x is an inifinite number (wether it is positive

or negative).

(progn-without-fpe l1...ln)

Type: DY
Temporarily disables the generation of floating point exceptions, evaluates

l1 to ln and returns the result of the evaluation of ln .
Example

? (progn-without-fpe (log 0))
= -Inf

4.17 Graphics.

Lush features a collection of graphics functions for creating windows , drawing
figures , plotting curves , and handling graphical events.

A window descriptor is a lisp object of class |WINDOW| . Most graphical
commands implicitely operate on the current window defined by the window
descriptor stored in the symbol window .

Each window descriptor forwards all drawing requests to a “Graphic Driver”
which performs the system dependent calls required to display the drawings on
the corresponding device. The most common type of window (and driver) is
the x11-window , which displays on your screen under Xwindows. Another
one is the ps-window which sends all graphic command to an Encapsulated
PostScript file. A particularly useful one is the comdraw-window which sends
graphics to a comdraw graphic editor. This type of window can be used to



220 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

produce ”editable” graphics that can be modified using comdraw of one of the
other applications of the ivtools package.

4.17.1 Creating a Window

The standard function for creating a window on your screen is new-window .
This function determines which system your are running and calls the appro-
priate low level function.

Function print-window performs the same task for creating a window de-
scriptor that accesses your printer.

(new-window [[x y] w h] [name])

Type: DX
See: (x11-window [[[ x y ] w h ] name ])
See: (comdraw-window [[[ x y ] w h ] name ])
See: (ps-window [[ w h ] name ])
See: (wbm-window [[[ x y ] w h ] name ])
See: window
This is the device independent function for creating a window. It figures

out which drivers are available, and call the appropriate function for creating a
window.

Function new-window function creates a window named name . Arguments
w and h specify the size of the window. Arguments x and y specify the location
of the window.

The resulting window descriptor is then stored into variable window . This
operation makes the window current.

Windows are closed when they are no longer referenced by the lisp inter-
preter, when they are deleted with the delete function, or when the windowing
system sends a deletion request.

(print-window w h [destination])

Type: DX
See: (ps-window [[ w h ] name ])
See: (wpr-window [[ w h ] name ])
See: (wpr-printers)
See: Print Requester.
See: Producing Encapsulated PostScript Files.
See: window
This is the device independent function for printing graphics on the system

printer. This function figures out the best way to send graphics on the printer
or the file specified by string destination . Arguments w and h specify the
size of the printing area. The drawings will be scaled to fit a standard size page.

The resulting window descriptor is then stored into variable window . This
operation makes the window current.



4.17. GRAPHICS. 221

Function print-window actually calls a system dependent function (e.g.
wpr-window under Windows 95 and NT, ps-window under Unix operating sys-
tems). Argument destination is passed verbatim to these functions. There
are therefore two ways to write a portable program. The simplest way con-
sists in omitting argument destination . The best way consists in using the
PrintRequester class provided with the Ogre library.

The window descriptors returned by print-window are very similar to the
window descriptors returned by new-window . They print pages instead of
rendering graphics on your screen. A page is output when you call function cls
or when the window descriptor is closed (because it is no longer referenced by
the interpretor or because you called function delete ).

Note: Calling function cls while a clip rectangle is active (see function clip
) will not output a page. It will simply clears the clipping zone. Before using
cls , you can use function clip to make sure that no clipping rectangle is
active.

4.17.2 Drawing.

The coordinate system of a window has its origin in the upper left hand corner.
Positive x and y coordinates go to the right and downwards.

(cls)

Type: DX
Clears the current graphics window.

(draw-line x1 y1 x2 y2)

Type: DX
Draws a line from point ( x1 , y1 ) to the point ( x2 , y2 ) in the current

window , with the current color.

(draw-rect x y w h)

Type: DX
Draws a hollow rectangle in the current window , with the current color. Its

top-left corner is located at coordinates ( x , y ); its width is w , and its height
is h .

(draw-round-rect x y w h [r])

Type: DX
Draws a hollow rectangle whith rounded corners of radius r .



222 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(draw-circle x y r)

Type: DX
Draws a hollow circle in the current window , with the current color. The

center of the circle is located at position ( x , y ). The radius of the circle is
radius is r .

(draw-arc x y r fromangle toangle)

Type: DX
Draws a segment of a circle in the current window , with the current color.

The center of the circle is located at position ( x , y ). The radius of the circle
is radius is r . The segment is delimited by angle fromangle and toangle
which are values between -360 and 360 inclusive. Argument toangle must be
larger than fromangle .

(fill-rect x y w h)

Type: DX
Fills a rectangle in the current window , with the current color. Its top-left

corner is located at coordinates ( x , y ); its width is w , and its height is h .

(fill-round-rect x y w h [r])

Type: DX
Fills a rectangle whith rounded corners of radius r .

(fill-circle x y r)

Type: DX
Fills a circle in the current window , with the current color. The center of

the circle is located at position ( x , y ). The radius of the circle is radius is r
.

(fill-arc x y r fromangle toangle)

Type: DX
Fills a segment of a circle in the current window , with the current color.

The center of the circle is located at position ( x , y ). The radius of the circle
is radius is r . The segment is delimited by angle fromangle and toangle
which are values between -360 and 360 inclusive. Argument toangle must be
larger than fromangle .

(fill-polygon x1 y1 ... xn yn)

Type: DX
Fills the polygon defined by the points ( x1 , y1 ) to ( xn , yn ) , in the

current window , with the current color.



4.17. GRAPHICS. 223

(rgb-draw-matrix x y mat [sx sy])

Type: DX
This is the main function to draw an RGB or greyscale image.
This function displays the pixels contained in idx mat at location ( x , y ) in

the current window. The optional arguments sx and sy specify the horizontal
and vertical zoom factors.

The matrix mat can be an idx2 or idx3. If it is an idx2 , each value is
interpreted as a greyscale value where 0 is black and 255 is white. If it is an
idx3 , the last dimension must be 1 , 3 , or more. If the last dimension is 1
, the values are interpreted as greayscale values. If the last dimension is 3 or
more , the first 3 values in the last dimension are interpreted as RGB intensities
(between 0 and 255).

(draw-value x y val maxv maxs)

Type: DX
This function displays a real value as a white or black square.
Arguments x and y are the coordinates of the center of the square. Ar-

gument val is the value to be displayed. Argument maxv is the maximum
absolute value for val . Argument maxs is the maximum size of the square.
When val is larger than maxv , a square of size maxs is drawn.

Note: The square will not be visible if it is drawn in the same color as the
background.

(draw-list x y l ncol maxv apart maxs)

Type: DX
High level drawing function to graphically represent a list of real numbers.

A list of real numbers l will be represented as a series of black or white squares
on a grey background (actual colors depend on the implementation).

Arguments x and y are the coordinates of the top left edge of the back-
ground area. The squares are arranged in an array with ncol columns, the
number of lines is then defined by the length of the list l . The grey back-
ground is always rectangular, even if ncol is not a divisor of the length of l
.

As with draw-value , argument maxv is the maximum absolute value for
the list elements. The size of the square is however bounded by maxs .

Argument apart defines the size of the space occupied by a single square,
i.e, the centers of two neighboring squares will be apart pixels apart. It is
generally suitable to choose a value for apart slightly greater than maxs so
that no squares will overlap. For best results, the difference between apart and
maxs should be an even number.

Example:

; draw 6 values on 3 columns and 2 lines, in 50 pixel squares



224 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(draw-list 50 50 ’( 4 5 -10
0 4 16 ) 3 16 52 50)

; draw the values in l on a single line
(draw-list 100 100 l (length l) 10 20 18)

(gray-draw-list x y l ncol minv maxv apart)

Type: DX
High level drawing function to graphically represent a list of real numbers. A

list of real numbers l will be represented as a series of gray squares whose gray
level is related to the represented value. This function uses a clever dithering
algorithm on black&white displays.

Arguments x and y are the coordinates of the topleft edge of the first square
(representing the first element in the list). The squares are arranged in an array
with ncol columns , the number of lines is defined by the length of the list l .

Values between minv and maxv will be displayed as gray levels. A value of
minv will be rendered as a black square. A value of maxv will be rendered as a
white square. Argument minv can be defined to be greater than maxv in order
to produce a reverse video effect. The sizes of the squares are defined by the
apart parameter.

(gray-draw-matrix x y mat minv maxv apartx aparty)

Type: DX
High level drawing function to graphically represent a 2D matrix mat as a

series of gray rectangles whose gray level is related to the represented value.
This function uses a clever dithering algorithm on black and white displays.

Arguments x and y are the coordinates of the topleft edge of the first square
(representing the first element in the list). The values between minv and maxv
will be displayed as gray levels. A value minv will be rendered as a black
rectangle. A value maxv will be rendered as a white rectangle. Value minv can
be defined to be greater than maxv in order to produce a reverse video effect.
The sizes of the rectangles are defined by the apartx and aparty parameter.

(draw-mat m [x y])

Type: DE
Function draw-mat is easy-to-use wrapper for function gray-draw-matrix

. Argument m is the matrix to draw. Optional arguments x and y define the
position of the upper left corner of the matrix display.

The function draw-mat computes statistical information about the matrix
values in order to adjust the gray scales. This function automatically creates a
window if no window is current when the function is called.

(color-draw-list x y l ncol minv maxv apart cmap)

Type: DX



4.17. GRAPHICS. 225

See: (alloccolor r g b )
This function is essentially similar to gray-draw-list . Argument cmap

however must be a one-dimensional matrix of 64 color numbers returned by
alloccolor . Values between minv and maxv are rendered using the ramp of
colors specified by this matrix.

(color-draw-matrix x y mat minv maxv apartx aparty cmap)

Type: DX
See: (alloccolor r g b )
This function is essentially similar to gray-draw-matrix . Argument cmap

however must be a one-dimensional integer matrix of 64 color numbers returned
by alloccolor . Values between minv and maxv are rendered using the ramp
of colors specified by this matrix.

4.17.3 Drawing with Colors.

Color selection is highly dependent on the capabilities of your graphics hardware
and drivers.

• There are still computers equipped with black and white screens. You can
check that your hardware can display enough colors using function colorp
.

• Many graphic devices use color palettes. The color palette defines a small
set of colors that can be displayed simultaneously on the screen. Lush
will allocate palette entries as soon as you start using a new color. Since
palette entries are rare resources, you should use colors cautiously.

Lush provides two elementary functions for dealing with colors. Function
alloccolor takes a set of three numbers (ranging from 0 to 1) representing the
red, green and blue component of the color. This function allocates a palette
entry if necessary and returns a hardware dependent color number. These color
numbers can be used with function color to set the current drawing color.

It happens sometimes that it is not possible to allocate a color because the
color palette is full. Lush will first try to create its own color palette and install
it whenever you activate a Lush window. Windows created by other programs
can display funny colors until you activate one of these windows. If the private
color palette is full, function alloccolor simply returns a default color.

The use of a limited number of colors is therefore highly encouraged. The
function color-stdmap provides several convenient sets of standard colors for
this purpose.

See: Ogre Color Palette.

(colorp)

Type: DE



226 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

The function colorp is a predicate which returns t when the display is
known to support color. This function returns () when the display does not
support color.

(color [c])

Type: DX
See: (alloccolor r g b )
If c is specified, sets the current color to color number c . Function color

always returns the current color. Color numbers are obtained with function
alloccolor . A few predefined color numbers however are defined by the file
"graphenv.lsh" :

• color-fg or -1 for the system foreground color.

• color-bg or -2 for the system background color.

• color-gray or -3 for a 50 percent dithered gray level.

(alloccolor r g b)

Type: DX
See: (color [ c ])
Ask the driver for a color number defined by its three primitive values.

Arguments r , g , b are reals between 0 and 1 that define the red, green and
blue components of the desired color.

Returns a color number suitable for using with the color function. This
function returns the constant color-gray if the system is not able to display
the requested color.

color-fg

Type: VAR(graphenv.lsh)
See: (color [ c ])
System foreground color.

color-bg

Type: VAR(graphenv.lsh)
See: (color [ c ])
System background color.

color-gray

Type: VAR(graphenv.lsh)
See: (color [ c ])
A 50 percent dithered gray level.



4.17. GRAPHICS. 227

(color-shade x)

Type: DE(graphenv.lsh)
This function calls alloccolor then color for setting a grayscale color.

Argument x is a real between 0 and 1. Function color-shade provides support
for grayscale monitors. In addition, drivers often use dithering for filling circles
or rectangles on black and white monitors .

(color-rgb r g b)

Type: DE(graphenv.lsh)
This function calls alloccolor then color for setting the current color

according to its three primitive values. Arguments r , g , b are reals between
0 and 1. Of course, this function has a poor effect without a color screen.

(color-stdmap [symb])

Type: DE
The function color-std provides a convenient way to create a set of prede-

fined matching colors. This function returns an integer matrix containing color
identifiers that you can use with function color .

Using this function maximizes the chances that several part of your Lush
programs will use the same palette entries and therefore avoid palette saturation.

The argument symb is a symbol which specifies ont of the predefined color
sets:

• Symbol rainbow defines 64 colors located on a circle linking the pure red,
green and blue hues. The first 48 colors actually represent a rainbow. The
last 16 colors directly interpolate purple to red.

• Symbol spread defines 7 colors that are easy to discriminate.

• Symbol shade defines a set of 64 gray levels going from black to white.

(color-std (x [symb])

Type: DE
The function color-std provides access to the convenient sets of colors

allocated by color-stdmap .

• Argument x is number whose decimal part selects a color in the set re-
turned by function color-stdmap . Value 0 selects the first color of the
set. Value 0.9999 selects the last color of the set.

• Optional argument symb is a symbol which specifies a color set for function
color-stdmap .

See: (color-stdmap [ symb ])



228 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

4.17.4 Drawing Text.

Text may be printed in graphic window by using the functions draw-text and
gprintf . The current font may be changed by the function font . The size
and/or rectangle of a graphic text may be scaned by the functions text-width
, text-height and rect-text .

(draw-text x y s)

Type: DX
Draws the text of the string s in the current window at position ( x , y ) ,

using the current font and the current color.

(gprintf x y fmt ... args ...)

Type: DE(graphenv.lsh)
See: (draw-text x y s )
Function gprintf behaves like function printf , but prints out the text on

the current graphic window, with the current font and color, starting at location
( x , y ).

(font [fontname])

Type: DX
See: (draw-text x y s )
Function font sets the font used for rendering characters in subsequent calls

of function draw-text . It always returns the current font name.
Font "default" is recognized by all the drivers, and sets a reasonably small

default font. Always using font "default" is the only guaranteed way to write
fully portable programs.

All drivers however recognize PostScript(tm) style font names. These font
names have the following form:

"<family>[-<style>][-<size>]"

• The recognized font family family usually depends heavily on the op-
erating system configuration. It is reasonable to assume that the basic
families "Times" , "Helvetica" and "Courier" are available (or trans-
lated) everywhere.

• The optional style is preceded by a dash. Style "Roman" lets you print
plain text. More complex style are composed by concatenating an optional
weight specification (e.g. Light , DemiBold , Bold , Black , etc...) and
an optional slant specification (i.e. Italic or Oblique ).

• The optional size is a number between 1 and 128.



4.17. GRAPHICS. 229

Not all combination of families, styles and size are supported on all systems.
A good compromise between fancy display and portable graphics consists in
using PostScript font names, but to limit yourself to the following fonts:

Courier-X, Courier-Bold-X, Courier-Italic-X, Courier-BoldItalic-X
Times-Roman-X, Times-Bold-X, Times-Italic-X, Times-BoldItalic-X,
Helvetica-X, Helvetica-Bold-X, Helvetica-Oblique-X,
Helvetica-BoldOblique-X, Symbol-X

where size X is one of 8 , 10 , 11 , 12 , 14 , 18 , 24 .
Most drivers also understand window system dependent font names (when

such font names are defined by the window system). For instance, the X11 driver
recognizes all font names listed by the utility program xlsfonts . These font
names are very long, but a star * can be used as a wildcard character. A typical
example is "-*-times-*medium-*r-*--18-*" . Function x11-fontname can
be used to translate a Postrscript(tm) style font name into a system specific
font name.

(rect-text x y s)

Type: DX
Returns a list (x y w h) describing the rectangle that would be affected

by a call to (draw-text x y s) .
A few driver , including the PS driver , do not implement this function. In

that case , rect-text returns the empty list.

(text-width s)

Type: DE(graphenv.lsh)
See: (rect-text x y s )
Returns the width of the text in string s , if it is printed with the cur-

rent font. This function uses rect-text if it is available, or uses some crude
heuristics.

(text-height s)

Type: DE(graphenv.lsh)
Returns the height of the text in string s , if it is printed with the cur-

rent font. This function uses rect-text if it is available, or uses some crude
heuristics.

4.17.5 The Drawing Context.

Several features define the drawing context. The most usefull ones are the
current driver , the current font , the current color and the clipping rectangle.



230 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(gsave l1 ...ln)

Type: DY
Function gsave saves the graphics state of the current window , evaluates

lists l1 to ln with a call to progn , and restores the saved graphics state.
Function gsave returns the result of the last evaluation.

(gdriver)

Type: DX
Returns the name of the graphic driver of the current window.

(xsize)

Type: DX
Returns the width of the current window.

(ysize)

Type: DX
Returns the height of the current window.

window

Type: VAR
This variable window defines the current window. Most graphics functions

refers implicitly to the window descriptor stored in this variable.

(clip [x y w h])

Type: DX
When a clip rectangle has been set, graphics output is restricted to the inner

part of the clip rectangle. the clip function allows for manipulating the clip
rectangle.

• (clip x y w h) sets a new clip rectangle whose top left corner is located
at position ( x , y ), whose width is w , and whose height is h .

• (clip ()) cancels clipping and unset the clipping rectangle.

• (clip) just returns the current clipping rectangle.

Function (clip) always returns the previous clip rectangle, as a list (x y
w h) , or the empty list if no previous clipping rectangle was set.



4.17. GRAPHICS. 231

(addclip rect)

Type: DX
Argument rect must be a list of the form (x y w h) , where x , y , w ,

and h are numbers.
Function addclip sets the current clip rectangle to the intersection of the

current clipping rectangle with a rectangle whose top left corner is located at
position ( x , y ) , whose width is w , and whose height is h .

If this intersection is empty , the empty list is returned. Otherwise , addclip
returns the new clip rectangle.

4.17.6 Double Buffering and Synchronization.

(graphics-batch l1 ... ln)

Type: DY
Most graphics drivers can work with an off-screen bitmap to update the

screen after several graphics commands. The graphics-batch function pro-
vides a support for this double buffering abilities.

This function evaluates the lists l1 to ln , but if a graphic instruction is
executed , the screen update is delayed until the end of these evaluations , and
is performed only once.

(graphics-sync)

Type: DX
Inside a graphics-batch construct , this function immediatly updates the

screen without waiting for the completion of the graphics-batch instruction.

4.17.7 Plotting (obsolete).

CAUTION: The functionalities described in this section are obsolete and super-
seded by the libplot/plotter library (see the plotting section in the standard
library documentation).

Functions in the present section are maintained for backward compatibility,
but their use should be avoided.

The following functions provide a way to plot curves. The basic abstraction
is the plot port data structure, a Lush list which contains:

• The position of the current point,

• A pointer to the graphics window,

• Information for mapping real coordinates to pixel positions.

The plotting functions perform their drawing action in the current plot port.
Function, setup-axes is provided for quickly initializing a plot port, making it
current and drawing the axes.



232 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

Currently, plot ports are implemented as lists rather than a user defined
class. In fact, the "graphenv.lsh" package has existed prior to the object
extensions of Lush. This silly implementation has been kept for preserving
backwards compatibility.

(new-plot-port brect rect object)

Type: DE(graphenv.lsh)
(OBSOLETE) Initializes a new plot port in the current window, and returns

it.
Argument brect is a list (bxmin bymin bxmax bymax) whose elements are

the pixel coordinates of the target rectangle in the current window.
Argument rect is a list (xmin ymin xmax ymax) whose elements are the

extremal real coordinates. No clipping is performed, except window clipping.
Argument object is a function generally called by plt-plot for drawing

a small object at the current pen location. A few predefined functions are
documented with plt-plot .

(copy-plot-port p [object])

Type: DE(graphenv.lsh)
(OBSOLETE) Returns a new plot port, with the same real to pixel coordi-

nates and window data as the plot-port p , but with a different current point
and a different object. This function allows the user to plot a second curve
simultaneously, using the same axis system.

(draw-axes brect xl yl name [x2l] [y2l])

Type: DE(graphenv.lsh)
(OBSOLETE) Draws axes on the leftmost and bottommost side of rectangle

brect .
Argument brect is a list (bxmin bymin bxmax bymax) whose elements are

the pixel coordinates of the target rectangle in the current window.
Arguments xl and yl are lists of label values for the x and y axis. These

labels are numbers expressed with the same scale than the axes. The optional
functions x2l and y2l are used to convert these numbers into strings to display
at the proper positions along the axes. Both functions default to str which just
prints the textual representation of the number.

Finally, argument name is a string that will be printed at the top of the
brect using a 18 points font.

plot-port

Type: VAR(graphenv.lsh)
(OBSOLETE) The current plot port is stored in this global variable. Most

of the plotting functions refers implicitly to the plot port stored in plot-port
.



4.17. GRAPHICS. 233

(setup-axes x1 y1 x2 y2 [xst yst [s [object]]])

Type: DE(graphenv.lsh)
See: (new-plot-port brect rect object )
See: (draw-axes brect xl yl name [ x2l ] [ y2l ])
(OBSOLETE) Calls both new-plot-port and draw-axes , for drawing a

curve in the current window. Makes the resulting plot-port current. The
curve will occupy the entire window. Function setup-axes is the simplest way
to initialize the plotting package.

Arguments x1 and y1 are the lower bounds of the actual coordinates; ar-
guments x2 and y2 are the upper bounds of the actual coordinates. The axes
will be labeled every xst units horizontally and every yst units vertically. Ar-
gument s is a string that will be printed at the top of the window. object is
the default plot object used by plt-plot .

When arguments xst or yst are not provided (or are the empty list), func-
tion setup-axes computes a reasonable value using the extrema.

(plot-lists lx ly)

Type: DE(graphenv.lsh)
(OBSOLETE) Plots a curve taking using in list lx as abscissas and values

in ly as ordinates in the current plot port. This function uses uses plt-draw
and plt-plot to draw a symbol at each data point.

(graph-xy lx ly name)

Type: DE(graphenv.lsh)
(OBSOLETE) Creates a convenient plot port in the current window, draws

the axes, and calls the function plot-lists .

(plot-lists-sd lx ly lsd)

Type: DE(graphenv.lsh)
(OBSOLETE) Plots a curve taking values in list lx as abscissas and values

in ly as ordinates. Argument lsd is a list of values that will be displayed as
uncertainty bars around each data point.

This function uses uses plt-draw , plt-sd and plt-plot to draw a symbol
and an uncertainity bar at each data point.

(graph-xyv lx ly lsd name)

Type: DE(graphenv.lsh)
(OBSOLETE) Creates a convenient plot port in the current window, draws

the axes, and calls the function plot-lists-sd .



234 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(plt-clear)

Type: DE(graphenv.lsh)
(OBSOLETE) Clears the current point. The the next plt-draw will thus

not draw a line.

(plt-move x y)

Type: DE(graphenv.lsh)
(OBSOLETE) Sets the current point to real coordinates x and y .

(plt-draw <x y)

Type: DE(graphenv.lsh)
(OBSOLETE) Draws a line from current point to actual coordinates x and

y . Sets the current point to coordinates x and y . Nothing is drawn if no
current point was set.

(plt-plot x y)

Type: DE(graphenv.lsh)
See: current-object
See: object-size
(OBSOLETE) Moves the current point to the actual coordinates x and y

, and draws a small symbol like those used for showing the data points on a
curve.

The shape of this symbol is defined by the argument object of new-plot-port
or setup-axes . this argument must be a function that draws the object at the
specified position. The following functions are predefined:

• object-nil does nothing. It is useful if you want cancel the effect of
plt-plot .

• open-square , closed-square , open-circle , and closed-circle re-
spectively draw a small hollow square, a small filled square, a small hollow
circle or a small filled circle.

• open-up-triangle , closed-up-triangle , open-down-triangle , closed-down-triangle
, draw various kind of small triangles.

• straight-cross and oblique-cross draw small crosses.

All these predefined object functions use the global variable object-size
for defining the size of the object drawn by plt-plot . The default object may
be overridden by setting the variable current-object to a new object function.



4.17. GRAPHICS. 235

(plt-sd x y sd)

Type: DE(graphenv.lsh)
Draws a standard deviation bar given by sd around point ( x , y ). The

horizontal size of the bar is defined by the global variable object-size .

(in-plot-port l1 ... ln)

Type: DMD(graphenv.lsh)
(OBSOLETE) Function in-plot-port unpacks the current plot port info

and stores it in local variables while executing l1 ... ln . You may then call
the (plt-rbx x) and (plt-rby y) functions to compute the pixel coordinates
of a real point ( x , y ).

current-object

Type: VAR(graphenv.lsh)
See: (plt-plot x y )
(OBSOLETE) If current-object is equal to the empty list, the function

plt-plot will draw the default object defined in the current port. However you
can store a new object definition function in current-object . This function
will then be called instead of the default one.

object-size

Type: VAR(graphenv.lsh)
See: (plt-plot x y )
See: (plt-sd x y sd )
(OBSOLETE) This global variable controls the size of the drawings per-

formed by plt-plot and plt-sd .

4.17.8 Events.

See: Ogre.
Several functions are provided for handling mouse and keyboard events oc-

curring on graphic windows. Lush has a centralized event queue (see a full de-
scription in the Events and Timers section). It is possible to obtain the events
occuring on a window by creating an EventLock object. Messages read-event
and check-event allow for testing and waiting for events.

This mechanism is used by a few handy functions get-click , get-vector
and get-rect , as demonstrated by the incredibly shrinking paint program
lushpaint below:

(de lushpaint()
(let ((window ()))

(new-window)



236 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(draw-line 2 5 18 5)
(draw-rect 22 2 18 8)
(fill-rect 42 2 18 9)
(gprintf 102 10 "Quit")
(clip 0 12 1000 1000)
(let ((ok t)

(mode draw-line)
(echo get-vector))

(while ok
(let (((x y) (get-click)))
(cond
((> y 10)
(apply mode (echo)) )
((point-in-rect x y ’(0 0 20 10))
(setq mode draw-line echo get-vector) )
((point-in-rect x y ’(20 0 20 10))
(setq mode draw-rect echo get-rect) )
((point-in-rect x y ’(40 0 20 10))
(setq mode fill-rect echo get-rect) )
((point-in-rect x y ’(100 0 20 10))
(setq ok ()) )) ) ) )

(delete window) ) )

(NOTE: more serious paint programs should probably be written with Ogre).

Graphic Event Functions.

(new EventLock window) Type: CLASS(graphenv.lsh)
Creating an EventLock object sets up window window to record graphic

events in the event-queue. Events can be retrieved with messages read-event
and check-event .

The initial state of the window is restored when the EventLock object is
destroyed.

(==> EventLock read-event) Type: MSG(graphenv.lsh)
See: Event Lists.
See: (eventinfo)
This function returns the first available event on the window associated to

the EventLock object. Each event is represented by a list whose first element
broadly describes the event type. Additional information can be obtained using
function eventinfo .

If the event queue is empty, this function blocks until an event occurs.
(==> EventLock check-event) Type: MSG(graphenv.lsh)
See: Event Lists.
See: (eventinfo)
This function returns the first available event on the window associated to

the EventLock object. Each event is represented by a list whose first element



4.17. GRAPHICS. 237

broadly describes the event type. Additional information can be obtained using
function eventinfo .

This function returns the empty list when no events are available.
(hilite mode x1 y1 x2 y2) Type: DX
The hilite function is used for displaying transient drawings when the

mouse button is depressed. As soon as the mouse button is released, these
transient drawings are cleared, and the window is refreshed.

Four kinds of drawings are supported, whose names are defined by "graphenv.lsh"
:

• When mode is hilite-invert , the rectangle defined by the points ( x1
, y1 ) and ( x2 , y2 ) is inverted. The result however is poor on color
displays.

• When mode is hilite-rect , the rectangle defined by the points ( x1 ,
y1 ) and ( x2 , y2 ) is outlined with a dashed line.

• When mode is hilite-line , a dashed line is drawn from point ( x1 , y1
) to point ( x2 , y2 ).

• When mode is hilite-none , any transient graphics are cleared, and the
window is refreshed.

Transient drawings created with hilite are very efficient, and totally dis-
appear when the mouse button is released. This function is useful for providing
an echo to the user during a mouse drag operation. For example, function
hilite can display a rectangular outline while the user is dragging the mouse
for selecting a part of an image.

(get-click [rect]) Type: DE(graphenv.lsh)
Waits for a mouse click on the current window. Returns a list (x y) giving

the coordinates of the mouse during the mouse click. Mouse clisks will be
ignored outside the rectangle specified by the optional argument rect .

(get-vector [rect]) Type: DE(graphenv.lsh)
Waits for a mouse down on the current window. Tracks the mouse moves

with a dashed line, until the mouse button is released. Returns a list (x1 y1
x2 y2) telling where the mouse button has been depressed and where it has
been released.

The optional argument rect indicates a bouding rectangle which must en-
tirely contain the resulting vector. The echoed dashed line reflects then this
limitation.

(get-rect [rect]) Type: DE(graphenv.lsh)
Waits for a mouse down on the current window. Tracks the mouse moves

with a dashed rectangle, until the mouse button is released. Returns a list (x y
w h) telling the location of the top left corner of the rectangle, its width and
its height.

The optional argument rect indicates a bouding rectangle which must en-
tirely contain the resulting rectangle. The echoed dashed rectangle reflects then
this limitation.



238 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

Event Lists.

See: (eventinfo)
Events returned by methods read-event and check-event are encoded as

lists, according to the following templates:

• (mouse-down x y) : The mouse button has been depressed at position
( x , y ). You may use function eventinfo to query the identity of the
button and the status of the shift and control keys.

• (mouse-drag x 1 y 1 x 2 y 2) : The mouse button has been depressed
at position ( x1 , y1 ).The mouse has then been moved to position (
x2 , y2 ). The mouse button still is depressed. You may use function
eventinfo to query the identity of the button and the status of the shift
and control keys.

• (mouse-up x 1 y 1 x 2 y 2) : The mouse button has been depressed at
position (x 1,y-1). The mouse has then been moved to position (x 2,y 2),
where the button has been released. You may use function eventinfo to
query the identity of the button and the status of the shift and control
keys.

• ("c" x y) : The key associated to the single character string "c" has
been hit, while the mouse pointer was located at position ( x , y ). These
events often are referred as keypress events.

• (arrow-left x y) , (arrow-right x y) , (arrow-up x y) or (arrow-down
x y) : The left (respectively right, up and down) arrow has been hit, while
the mouse pointer was located at position ( x , y ). You may use function
eventinfo to query the exact identity of the depressed key and the status
of the shift and control keys.

• (help x y) : The keyboard dependent help key has been hit, while the
mouse pointer was located at position ( x , y ). You may use function
eventinfo to query the exact name of the depressed key and the status
of the shift and control keys.

• (fkey x y) : A function key has been depressed. You must use function
eventinfo to get more information about the identity of the function
key and of the status of the shift and control keys.

• (resize w h) The window has been resized by the user, and is now w x
h pixels large.

• (delete) : Windowing systems often provides a mean to delete a window.
For example, X11 ICCM compliant window managers are able to send a
WM DELETE message to a client. If an event handler is attached to the
window, a delete event is added to the event queue, and the window is not
destroyed. A program thus gets a chance to display a confirmation dialog
before deleting the window.



4.17. GRAPHICS. 239

• (sendevent x y) : These event is generated by function sendevent .
Integer values x and y are arbitrary.

These few events give enough information for building graphics interfaces.
The class library "libogre/ogre.lsh" is designed for that purpose.

4.17.9 System Specific Graphic Functions

Lush provides also system specific functions. The name of these functions always
begin with the name of the supported graphic system. For example , ”x11” is
the prefix for X-Windows specific functions and ”win” is the prefix for Windows
(95 and NT) specific functions.

Specific graphic functions for X11

The following functions are only implemented on Unix systems implementing
the X Windows standard. This includes “Motif” and “OpenWindows” based
systems.

(x11-window [[[x y] w h] name]) Type: DX
See: (new-window [[ x y ] w h ] [ name ])
This is the low level function called by new-window on X Windows systems.
This function creates a window of size w and h at position x and y named

name on the default X Windows screen. During the first call of function x11-window
, Lush searches the variable display and the environment variable DISPLAY
for the name of the X Windows server and display to use.

Unlike new-window , this function does not store the newly created window
in the variable window , and thus does not make this window current.

(x11-fontname s) Type: DX
See: (font [ fontname ])
This function comes with the X11 driver. It converts a legal PostScript(TM)

font name, into a X11 font name.
String s must be a legal PostScript font name, composed of a font fam-

ily, an optional font style, and a font size, possibly separated by dashes, like
"Helvetica-18" , "Times-Roman24" , "Courier-Bold-12" . This function
returns the corresponding font name under the X11. conventions.

Example:

? (when x11-fontname
(x11-fontname "Times-Roman18") )

= "-*-times-medium-r-normal-*-18-*"

(x11-depth) Type: DX
Returns the depth of the current screen.
(x11-lookup-color name) Type: DX
Lookup the (R , G , B) components of a color named name .
(x11-configure [raise x y w h]) Type: DX



240 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

Changes the window location ( x , y ) and size ( w , h ). Giving the empty
list as argument leaves the corresponding characteristic unchanged. When ar-
gument raise is true , the window is deiconified and raised.

This function works only with X11R4 or greater. When effective , it returns
a list (visible w h) whose elements indicate the window visibility and size.

(x11-text-to-clip text) Type: DX
This function stores string text into the X11 copy/paste mechanism. This

function will some day recognize the copy/paste protocol used and behave ac-
cordingly.

It implements today a cut buffer based mechanism suitable for exchanging
text with emacs and xterm. We plan to support selection as soon as possible.

(x11-clip-to-text) Type: DX
This function retrieves a string from the X11 copy/paste mechanism. It

returns the empty list () if no string is available. This function will some day
recognize the copy/paste protocol used and behave accordingly.

It implements today a cut buffer based mechanism suitable for exchanging
text with emacs and xterm. We plan to support selection as soon as possible.

Specific graphic functions for Windows

[note: this function is not available in the current version of Lush]
The following functions are only implemented on Windows
(wbm-window [[[x y] w h] name])
See: (new-window [[ x y ] w h ] [ name ])
See: (wbm-toplevel-window [[[ x y ] w h ] name ])
This is the low level function called by new-window on Windows 95 and NT

systems. This function is available under WinLush only.
Function wbm-window creates a window of size w and h at position x and y

named name in the WinLush environment. The command line version of Lush
cannot create graphic windows yet.

Unlike new-window , this function does not store the newly created window
in the variable window , and thus does not make this window current.

(wbm-toplevel-window [[[x y] w h] name])
See: (new-window [[ x y ] w h ] [ name ])
See: (wbm-window [[[ x y ] w h ] name ])
This function is very similar to function wbm-window described above. In-

stead of creating a child window of the main WinLush window (according to
the Windows MDI scheme), function wbm-toplevel-window creates a toplevel
window that is not attached to the main WinLush window.

(wpr-window [[w h] name])
See: (print-window w h [ destination ])
See: (wpr-printers)
This is the low level function called by print-window on Windows 95 and

NT systems.
Function wpr-window creates a window descriptor which actually accesses

the printer named name . The default printer is used if argument name is not



4.17. GRAPHICS. 241

specified. Function wpr-printers should be used to obtain the list of valid
printer names.

Unlike new-window or print-window , this function does not store the
newly created window in the variable window , and thus does not make this
window current.

Arguments w and h specify the width and height of the coordinate system.
The drawings will be scaled to fit the size of the page returned by your printer.

(wpr-printers)
See: (wpr-window [[ w h ] name ])
This function returns a list of printers names suitable for function wpr-window

. The default printer name comes first.
(win-depth)
Returns the depth of the default display of your computer. This is the

number of bits specified in the Display Properties dialog box.
(win-configure [raise x y w h])
Changes the window location ( x , y ) and size ( w , h ). Giving the empty

list as argument leaves the corresponding characteristic unchanged. When ar-
gument raise is true , the window is deiconified and raised.

This function returns a list (visible w h) whose elements indicate the
window visibility and size.

(win-text-to-clip text)
This function stores string text into the clipboard.
(win-clip-to-text)
This function retrieves a string from the clipboard. It returns () if the

clipboard does not currently contain a string.

Knowing how a system dependent feature is supported.

The function gdriver-feature implements a small database about the features
supported by the common graphic drivers. We suggest you use this function to
implement portable programs.

(gdriver-feature feat opt) Type: DE
This function provides a portable mean to scan the current graphic system

for a feature. It returns the function implementing the feature specified by
symbol feat on the given window. The result depends on the parameter opt
.

• When opt is symbol loose , this function always returns a function. It
returns the feature function as soon as a partial implementation exists. It
returns function progn if the feature is not implemented.

This option is usefull for calling minor services (e.g. puting text into the
clipboard) for which failure has little consequence.

• When opt is symbol strict , this function returns a function if and only
if the feature is fully implemented. It returns the empty list otherwise.

Features are the following.



242 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

• depth : This feature is a generalization of x11-depth .

• text-to-clip : This feature is a generalization of x11-text-to-clip .

• clip-to-text : This feature is a generalization of x11-clip-to-text .

• configure : This feature is a generalization of x11-configure .

• fontname : This feature is a generalization of x11-fontname .

• lookup-color : This feature is a generalization of x11-lookup-color .

Here is an example of the use which can be made of gdriver-feature .

? (new-window 400 400 400 400 "test")
= ::WINDOW:X11:8c440
? ((gdriver-feature ’configure ’loose) () 300 300 400 400)
= (t 400 400)

4.17.10 Producing Encapsulated PostScript Files.

Lush can output graphics commands into an Encapsulated PostScript File
(EPS). You can then send these files to a PostScript printer or use adequate
software packages to modify these files and integrate them into your documents.
There is even a Lush command that tranlates these files into a sequence of Lush
drawing commands.

Note: Many computers use incompatible conventions for marking the end
of lines (Unix machines use the character NL , Macs use the character CR and
PC use a sequence CR NL.) Several popular software exhibit a strange behavior
when they attempt to read a sequence of characters which appears to them as
a very long line. You must probably use a text filter like dos2unix to convert
your EPS files.

(ps-window [[w h] name])

Type: DX
See: (print-window w h [ destination ])
Function ps-window is the low level function called by print-window on

systems that provide no other alternative. All versions of Lush however support
Encapsulated PostScript files.

Function ps-window returns a window descriptor which actually writes PostScript
commands into a file named name . When argument name is omitted, the
PostScript commands are written to file "tloutput.ps" .

Unlike new-window or print-window , this function does not store the
newly created window in the variable window , and thus does not make this
window current.

Arguments w and h specify the width and height of the coordinate system.
The target rectangle will be scaled to fit a standard A4 or Letter format page.



4.17. GRAPHICS. 243

(gspecial string)

Type: DX
This function sends a system specific command represented by string string

. This function is ignored if the graphics driver does not recognize the string
string . In the case of a window descriptor created with ps-window , the
string string is inserted verbatim into the Encapsulated PostScript file.

(ps-play filename [function])

Type: DE
See: (ps-window [[[ x y ] w h ] name ])
This function interprets PostScript files created with ps-window . Function

ps-play parses the PostScript file filename , converts it into a sequence of
SN calls, and applies function function to these calls. The default value for
the optional argument function is eval . Function ps-play thus plays the
contents of the PostScript file in the current window.

Exemples:
To play a EPS file into a window, type:

? (let ((window (new-window)))
(ps-play "your_file.ps") )

To see the contents of a EPS file, type:

? (ps-play "your_file.ps" pprint)

Note: This function only interprets PostScript files created by the Lush
PostScript driver. It is by no means a complete PostScript interpreter.

(ps-plot filename x y w h [bb-overrule])

See: (ps-play filename [ function ])
This function plots EPS-files created with SN or Lush in the window re-

ferred to by the symbol window in the region determined by x y w and h .
x y correspond to the coordinates of the region’s upper-left corner, w to its
width and h to its height. The plot is scaled to fill exactly this region using
the EPS "%%BoundingBox" directive which can be overruled by the optional
bb-overrule parameter. If w or h are 0 or nil, scaling in their respective di-
rections are choosen as to preserve proportions. If both w and h are 0 or nil,
no scaling is performed.

4.17.11 Graphical Utilities.

A family of Lush functions are provided to perform elementary computations on
rectangles. A rectangle is stored as a list (x y w h) . The first two elements x
and y are the coordinates of its top left corner; w is its width , h its height.



244 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(rect-2-ppbrect r)

Type: DE(graphenv.lsh)
Returns rectangle r under a format suitable for using with new-plot-port

.

(window-rect)

Type: DE(graphenv.lsh)
Returns the boundaries of the current window as a rectangle.

(point-in-rect x y r)

Type: DX
The point-in-rect function returns t if point ( x , y ) is located inside rect-

angle r .

(rect-in-rect r1 r2)

Type: DX
The rect-in-rect function returns t if rectangle r2 encloses rectangle r1

.

(collide-rect r1 r2)

Type: DX
Returns the intersection of r1 and r2 . If rectangle r1 and r2 do not

intersect , collide-rect returns the empty list.

(bounding-rect r1 r2)

Type: DX
Returns the smallest rectangle that encloses both rectangles r1 and r2 .

4.17.12 Editable Graphics with comdraw/ivtools

Author(s): Secil Ugurel
A very useful tool for scientists (an many other people) is the ability to

produce editable graphics. Lush provides this feature through the ”comdraw”
graphic driver. The editability allows one to manually change colors , add text
, change line styles , and do all kinds of other things to Lush graphics generated
this way.

Opening a comdraw window is done simply with:

(comdraw-window 10 10 500 500 "My Comdraw Window")



4.17. GRAPHICS. 245

where the first four parameters are the desired positions and dimensions of the
window. Any Lush graphic command executed while such a window is the
current window will be drawn in this window and will be instantly editable.
The graphics-batch construct has the effect of grouping the objects drawn
within its scope.

Installing ivtools and comdraw

comdraw is part of the ivtools package , available at [http://www.ivtools.org/ivtools/
]. As of Nov 2002 , the version available at this site (1.0.6) needs a patch to
work well with Lush. This patch will be part of the next version of ivtools. In
the meantime , it is best to download RPMs of the patched version from the
Lush download page.

(comdraw-window [[[x y] w h] name])

Type: DX
create a comdraw window. This function pops-up a comdraw window of

size w and h at position x and y with name name on the screen. To keep
the created comdraw window in the window variable and make it the current
window the variable window should be set to the result of comdraw-window ,
as in:

(setq window (comdraw-window))

support for graphics commands

Almost all the graphics functions of Lush are supported by the comdraw driver.
However , some are not supported , or have a different behavior than with the
x11 driver.

comdraw Graphics are considerably slower than x11 graphics.
Functions clip and addclip are supported , but due to the lack of an in-

ternal clipping function in comdraw , only line clipping is performed in comdraw
windows.

graphics-batch groups the object created by the evaluation of the graphics
commands within its scope.

The graphics event functions hilite , get-click , get-vector , get-rect
and the EventLock objects , read-event and check-event functions are not
supported. The imaging functions hinton-map and get-image are not sup-
ported.

comdraw Specific Functions

Using the gspecial function in Lush , Comdraw-specific commands can be sent
directly to the Comdraw interpreter. Below is a list of Comdraw commands
(See Comdraw Manual for further information). Be aware that the origin of an



246 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

original Comdraw window is the bottom left corner. When using standard Lush
graphic functions on a comdraw-window , appropriate conversions are performed
to set the origin to the upper hand corner. However when gspecial is used
directly , no such transformation is performed.

compview=rect(x0,y0,x1,y1) -- creates a rectangle
compview=rectangle(x0,y0,x1,y1) -- creates a rectangle
compview=line(x0,y0,x1,y1) -- creates a line
compview=arrowline(x0,y0,x1,y1) -- creates an arrow line
compview=ellipse(x0,y0,r1,r2) -- creates an ellipse
compview=text(x0,y0 textstr) -- creates a text string on pixel coordinates x0, y0
compview=multiline(x0,y0[,x1,y1,...]) -- creates a multiline
compview=arrowmultiline(x0,y0[,x1,y1,...]) -- creates an multiline with arrows
compview=openspline(x0,y0[,x1,y1,...]) -- creates an open spline
compview=arrowspline(x0,y0[,x1,y1,...]) -- creates an open spline with arrows
compview=polygon(x0,y0[,x1,y1,...]) -- creates a polygon
compview=closedspline(x0,y0[,x1,y1,...]) -- creates a closed spline
compview=raster(x0,x1,y0,y1) -- creates an empty raster
xylist=center(compview :xy :yx :x :y :scrn) -- returns the center of a compview (default is :xy)
rectlist=mbr(compview :lbrt :lrbt :scrn) -- returns the minimum bounding rectangle of acompview (default is :lbrt)
ptlist=points(compview :scrn) -- returns the point list from a compview graphic
font(fontnum) -- sets the current font from the menu
brush(brushnum) -- sets the current brush from menu
pattern(patternnum) -- sets the current pattern from menu
colors(fgcolornum bgcolornum) -- sets current fore ground and background colors from menu
nfonts() -- returns the size of font menu
nbrushes() -- returns the size of brush menu
npatterns() -- returns the size of pattern menu
ncolors() -- returns the size of color menus
select([compview ...] :all :clear) -- makes the listed graphics the current selection
delete(compview [compview ...]) -- deletes the graphic(s)
move(dx dy) -- moves to the current selection
scale(xflt yflt) -- scales the current selection
rotate(degflt) -- rotates the current selection
newgroup=growgroup(groupview compview) -- adds graphic to an existing group graphic
newgroup=trimgroup(groupview compview) -- removes graphic from an existing group graphic
compview=setattr(compview [:keyword value [:keyword value [...]]]) -- sets attributes of a graphic component
attrlist(compview) -- returns attribute list of a component
compview=frame([index]) -- returns composite component for a frame, defaults to current
val=at(list|attrlist|compview n :set val) -- returns (or set) the nth item in a list.
num=size(list|attrlist|compview) -- returns size of a list.
update() -- updates the viewer
error=save([pathstr]) -- saves the document (to the pathname)
compview=import(pathstr :popen :next) -- imports graphic file from pathname or URL, or from a command if :popen
(:next imports next in numeric series)



4.17. GRAPHICS. 247

export(compview[,compview[,...compview]] [path] :host host_str :port port_int :socket :string|:str :eps :idraw)
-- exports a graphic file from pathname or URL, or from a command
compview=paste(compview [xscale yscale xoff yoff | a00,a01,a10,a11,a20,a21]) -- pastes a graphic into the viewer
val=pastemode([val] :get) -- toggles or set paste mode, default is 0, always pastes new graphics
compview=addtool(pathname) -- adds button to toolbar based on zero-centered idraw drawing.
ncols() -- onscreen horizontal extent in pixels
nrows() -- onscreen vertical extent in pixels
dx,dy=stod(sx,sy) -- converts from screen to drawing coordinates
sx,sy=dtos(dx,dy) -- converts from drawing to screen coordinates
dx,dy=gtod(compview gx,gy) -- converts from graphic to drawing coordinates
gx,gy=dtog(compview dx,dy) -- converts from drawing to graphic coordinates
handles(flag) -- enable/disable current selection tic marks and/or highlighting
highlight(compview compviewgs) -- set the highlight graphic state for a graphic
zoom(zoomflt) -- zoom by factor
zoomin() -- zoom-in by 2
zoomout() -- zoom-out by 2
pan(px py) -- pan viewer
smallpanup() -- small pan up
smallpandown() -- small pan down
smallpanleft() -- small pan left
smallpanright() - small pan right
largepanup() -- large pan up
largepandown() -- large pan down
largepanleft() -- large pan left
largepanright() -- large pan right
tilefile(inpath outpath [xsize] [ysiz]) -- tiles pgm or ppm image file
poke(compview x y val) -- pokes pixel value into raster
pcols(compview) -- returns number of columns in a raster
pcols(compview) -- returns number of rows in a raster
pflush(compview) -- flushes pixels poked into a raster
pclip(compview x1,y1,x2,y2,x3,y3[,...,xn,yn]) -- clips raster with polygon
alpha(compview [alphaval]) -- sets/gets alpha transparency
-- requires plotmtv and pstoedit --
barplot([var_str value_float] [...] :title title_str :xtitle xtitle_str

:ytitle ytitle_str :valtitle valtitle_str :newview) -- displays a barplot
run(filename) -- runs commands from file
quit() -- quits this interpreter
exit() -- exits entire application
pause([msgstr]) -- pauses script execution until C/R

Internals

The interaction with the Comdraw process is performed via a pseudo-terminal.
Lush commands are converted to Comdraw commands and sent through the
terminal. Lush then waits for comdraw to write its answer. This text-based
handshake make the whole process a bit slow.



248 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

What is different in the patched version of comdraw

The following commands have been added to comdraw to support certain Lush
graphic functions (such as colors and raster images). Those functions are not
present in v1.0.6 of ivtools. They are present in the patched version of ivtools
available from the Lush download page , and (we are promised) from the next
official version of comdraw.

• colorsrgb(fgcolornum bgcolornum): sets current fore ground and back-
ground colors by RGB name. The colorname format is ”#RRBBGG” for
8 bits per component.

• fontbyname(fontname): sets the current font by X font name. Fontname
is a string.

• pokeline(compview x y w vallist): pokes pixel values of a line listed in
vallist into raster compview. w is the width of the line (length of the list).

4.18 Events and Timers

4.18.1 Event Queue.

See: Event Lists.
See: Ogre.
The Lush interpreter provides a centralized machanism for queuing and dis-

patching events. Events are represented by arbitrary non-empty lists. The event
lists discussed in section ”Event Lists” are merely the events generated by the
window system.

Function sendevent is the simplest way to generate an event. Besides the
event itself, function sendevent requires an ”event handler”, that is to say an
arbitrary non null lisp object. The event handler can be merely used as a key
to identify the target of the event. Yet it is strongly suggested that the event
handler should be a lisp object that recognizes method handle .

Besides function sendevent , events can be generated by defining a timer
using create-timer , or by associating an event handler with a graphic window
using function set-event-handler .

Although events can be polled manually using functions testevent , checkevent
, and waitevent , it is often more practical to let Lush dispatch the events auto-
matically. Lush silently polls the event queue whenever it is waiting for input on
the console. All available events are dispatched by calling the method handle
of their event handler with the event itself as a single argument. These au-
tomatic call allow the implementation of asynchronous graphic interfaces, like
those implemented by the Ogre library.

(set-event-handler w h)

Type: DX



4.18. EVENTS AND TIMERS 249

See: Ogre.
Associates the event handler h with window w . The new event handler

for window w replaces the old one. Providing the empty list as argument h
simply removes the previous event handler without defining a new one. Once
an event handler has been attached to a window, graphics events occuring on
that window, like mouse or keyboard interaction, are posted on the lush event
queue and dispatched as usual.

(create-timer handler delay [interval])

Type: DX
See: Timers
See: (new Timer [ delay [ interval ]] [ callback ])
Creates a timer that generates an event (timer <timerid )> for handler

handler every interval milliseconds after an initial delay of delay millisec-
onds. Specifying an interval of zero milliseconds creates a one shot timer that
fires only once after delay milliseconds. This function returns a timer identifier
that can be used with function kill-timer . Section ”Timers” describe a more
convenient way to define a timer.

(kill-timer timerid)

Type: DX
See: (create-timer handler delay [ interval ])
Destroys the timer timerid .

(sendevent handler event)

Type: DX
Posts and event event with event handler handler . Argument event

must be a non empty list. Argument handler must be a non null object. It is
customary (but not mandatory) to make sure that the event handler recognizes
method handle for processing automatically displatched events.

(sendevent x y)

Type: DX
This obsolete form of sendevent takes two integer arguments and posts event

(sendevent <x y )> to the event handler associated with the current window.

(testevent [h])

Type: DX
Function testevent returns the first event available for handler h without

removing the event from the queue. When argument h is omitted , function
testevent implicitely uses the event handler associated with the current win-
dow.



250 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

Function testevent works differently when argument h is the empty list.
It returns the event handler associated with the first pending event , or the
empty list if no events are pending.

When no suitable event is pending , function testevent returns the empty
list without waiting.

(checkevent [h])

Type: DX
Function checkevent returns the first event available for handler h and

removes it from the queue. When argument h is omitted , function checkevent
implicitely uses the event handler associated with the current window.

Function checkevent works differently when argument h is the empty list.
It returns the event handler associated with the first pending event , without
modifying the queue.

When no suitable event is pending , function checkevent returns the empty
list without waiting.

(waitevent)

Type: DX
Function waitevent first tests the event queue and returns the event handler

associated with the first pending event. Otherwise function waitevent waits
until an event occurs and returns the associated event handler.

(process-pending-events)

Type: DX
Function process-pending-events dispatches all pending events. While

there are pending events , function process-pending-events removes the first
event from the queue , checks whether the associated event handler recognizes
method handle , and , calls method handle of the event handler object with
the event as single argument.

Function process-pending-events returns when no events are available
on the event queue. Function process-pending-events is implicitely called
whenever events become available while Lush is waiting for user input on the
console. Long Lush programs can call this function from time to time in order
to maintain event driven graphic interface active during the execution of the
program.

(==> eventhandler handle event)

Type: MSG
See: (process-pending-events)
Method handle of event handler objects is automatically called when lush

dispatches events, either because it is waiting for user input on the console, or
because function process-pending-events has been called.



4.19. DOCUMENTATION AND HELP SYSTEM 251

4.18.2 Timers.

(new Timer [delay [interval]] [callback])

Type: CLASS
Creates a new timer that fires every interval milliseconds after an initial

delay of delay milliseconds. Specifying an interval of zero milliseconds creates
a one shot timer that fires only once after delay milliseconds.

A timer event is posted into the lush event queue when the timer fires. This
event is dispatched when lush waits for user input or when function process-pending-events
is called. Dispatching the timer event causes function callback to be called
with the timer as a single argument.

Example:

? (new timer 1000 (lambda(c) (printf "One second\\n"))))))

Timers only post events if the previously posted timer events have been
dispatched timely. This feature prevents the event queue to grow very large
when lush is not able to dispatch the events fast enough.

(==> timer set delay [interval])

Type: MSG
Sets the timer delay delay and periodicity interval expressed in millisec-

onds. Passing the empty list as argument delay cancels the timer.

(==> timer setcall callback)

Type: MSG
Sets the timer callback function to callback . This function is called when-

ever lush dispatches events generated by this timer.

4.19 Documentation and Help System

Lush has a convenient documentation system that allows users to:

• browse the Lush documentation using the GUI tool (helptool)

• quickly access the documentation of a particular function or topic from
the Lush prompt by typing ^Atopic or by calling (apropos "topic") .

• consult HTML , LaTex , PostScript , or DjVu versions the Lush manual

The documentation system allows developers to easily include the code and
its documentation in the same file. It also makes it easy to organize sections
and entries into a complete manual.



252 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

4.19.1 Using the Online Manual

ˆAtopic

Typing ^A (caret then A or control-A) followed by a topic at the Lush prompt is
the easiest and quickest way to obtain help. This command displays a numbered
list of those entries and sections of the manual that contain topic as a substring.
The user is then asked to pick one of the choices by entering the corresponding
number. Entering q or enter returns to the Lush prompt. If the list has
only one match , the corresponding manual entry is shown right away. The
first time this command is invoked , it parses and reads the manual. The ^A
macro-character calls the (apropos "<topic ”)> function described below.
Example:

? ^Aregex-match

------------------------------------------------------------------------
(regex-match <r> <s>) [DX]
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Returns t if regular expression r exactly matches the entire string s .
Returns the empty list otherwise. Example:
? (regex_match "(+|-)?[0-9]+(\\\\.[0-9]*)?" "-56")
= t

= ()

(apropos topic-string [force])

Type: DE
This command displays a numbered list of those entries and sections of the

manual that contain topic as a substring. The user is then asked to pick
one of the choices by entering the corresponding number. Entering q or enter
returns to the Lush prompt. If the list has only one match , the corresponding
manual entry is shown right away. The first time this command is invoked , it
parses and reads the manual.

If the optional boolean parameter force is non-nil , the Lush manual is
re-read.

(helptool [book [title]])

Type: DM(lsh/libogre/helptool.lsh)
Author(s): Yann LeCun Last Modified: 2002-10-17 17:51:38
Helptool is a GUI-based browser and search engine for the Lush manual. It

is invoked by simply typing (helptool) at the Lush prompt.



4.19. DOCUMENTATION AND HELP SYSTEM 253

Helptool provides an ”explorer-like” GUI to browse through the sections and
entries of the documentation. The optional argument book can be one of the
following:

• if absent or nil , the default documentation book is read from lsh/lush-manual.hlp
(if necessary) and displayed. This book is read only once in a session.

• if equal to t , the default document book is read (or re-read if it was
previsouly read) , and displayed.

• if equal to a string , a documentation book is read from the file passed
in the string (which can be a .hlp or a .lsh file). The second optional
argument is used as the title of the book. If the second argument is not
present , the first argument will be used as the title. This is a convenient
way of browsing the documentation of a Lush program that is not part
of the standard package. It is also a convenient way to use Lush as a
documentation browser for other projects.

The Helptool window is composed of an ”explorer-like” area on the left that
contains a hierarchical list of sections and entries , and a document display area
on the right that shows the body of the selected entry. Entries can be opened
and closed with a mouse click on the pink square icon. The content of an entry
can be displayed by simply clicking on it.

Entering a string or a regular expression in the search tool at the top of
the window will ”filter” entries that contain that string or match that regular
expression. Hitting the enter key or the next button (or the space key in
the explorer area) will jump from matching entry to matching entry.

Most users will prefer to use the keyboard shortcuts that provide a very fast
and convenient way to navigate the manual. The explorer area , the document
area , and the search tool have different keyboard shortcuts. It should be noted
that the various areas must be clicked on to get the keyboard focus. The most
important key in the explorer area is the space bar , which allows for continuous
sequential reading.

Here are the explorer area keyboard shortcuts:

• down-arrow or n : move to the next entry (without displaying the docu-
ment)

• up-arrow or p : move to the previous entry at the same hierarchical level
(without displaying the document)

• right-arrow : open the current entry (show the subentries) and display
the body.

• left-arrow : close the current entry (hide the subentries) , or move to
the parent entry if the current entry is already closed (or if it has no
subentries).



254 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

• space : This provides a simple way to read to manual sequentially. Hit-
ting space will display the body of the current entry in the document area
if it is not already being displayed. If it is already being displayed , the
document area will be scrolled down. If the document area is already at
the bottom , it will go to the next entry that matches the current search
string (or to the next entry if the search string is empty).

• backspace : scroll up the document area.

• enter : go to the next entry matching the search string (or the next entry
if the search string is empty) and display the corresponding body in the
document area.

• c : close all open entries (collapse the entire tree) and go to the title entry.

Examples of how to invoke Helptool:

• (helptool) : normal call.

• (helptool t) : force re-reading of lush manual

• (helptool "sdl/sdl.hlp") : read all entries in file sdl.hlp and and
display as a book entitled ”sdl/sdl.hlp”.

• (helptool "sdl/libsdl.lsh" "LibSDL") : read all entries in libsdl.lsh
and display as a book entitled ”LibSDL”.

• (helptool "/home/yann/blah.hlp" "my blah") : read all entries in /home/yann/blah.hlp
and display as book entitled ”my blah”.

At startup , helptool only loads the title lines of each section or entry , but
not the bodies. The bodies are read on demand and cached. They are re-read
if the file where they reside has been modified since last time it was read.

Known bug: Reading the entire Lush manual takes several seconds.

4.19.2 Writing Documentation

Documentation is either extracted from comments in Lush files (with ".lsh"
extension) , or extracted from Lush documentation files (with ".hlp" exten-
sion).

Help entries can contain text , and/or can contain other help entries as
subtopics. Entries can be organized hierarchically into books that can be
browsed graphically using (helptool) . Entries in a file are added to the
main documentation by inserting the file name at the desired location in one of
the .hlp files read by (helptool) .

Looking at or at any .lsh or .hlp file in , , or is a good way to learn how
to organize Lush documentation files or the comments of a Lush file in order to
provide documentation.



4.19. DOCUMENTATION AND HELP SYSTEM 255

Creating a new Section or Entry

Sections or entries are created in .lsh or .hlp files by a title line that starts
with the compound macro-character #? . Title lines can create new sections ,
describe variables , functions , classes , and methods.

Here are a few examples of typical title lines:

• #? *** All about Choucroute Garnie

: Add a Section

• #? ** << choucroute-garnie.lsh

: Include .lsh file

• #? << choucroute-garnie.hlp

: Include .hlp file

• #? choucroute-garnie

: Describe Variable

• #? (garni-la-choucroute <saucisse> <patates>)

: Describe Function

• #? * choucroute

: Describe Class

• #? * (new choucroute)

: Describe Constructor

• #? (==> <choucroute> garni <saucisse> <patates>)

: Describe Method

As shown above , the #? of each entry can optionally be followed by one
or more asterisks. The number of asterisks specifies the hierarchical level of the
entry in the manual relative to the other entries in the same file. Entries with
fewer asterisks than a previous entry in the same file will become subtopics of
that previous entry:

#? *** My Section Title.
my section text goes here
#? ** My Subsection Title 1
my subsection 1 text goes here
#? ** My Subsection Title 2
my subsection 2 text goes here

Entries that document functions , classes , methods , and variables , should
be written according to the following convention:



256 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

• Function: Function description entries indicate how to call the function.
Arguments are indicated by angle brackets. Here are a few examples:

#? (car <list>)
#? (+ <n_1> ... <n_n>)
#? (new-window [<w> <h>] <name>)

• Variable: Description of variables should simply include the variable
name on the title line. It is recommended that the text include a

{<type> VAR}

directive.

• Class: Class descriptions are usually associated with an entry for its
constructor , indicating how to create an instance. Method documentation
entries show how to call the method and should be subheadings of the
constructor entry:

#? * (new helpinfo <record>)
#? (==> <helpinfo> tty-print)

A special directive in .hlp files indicate that entries at that location should
be read from another file. The following example inserts all toplevel entries from
file "toto.hlp" as a section marked with two stars (the stars of the entries in
the file "toto.hlp" are only used to place the those entries relative to each
other).

#? ** << toto.hlp

Document Body: Introduction

The body (text) of an entry or section can be written following the title line.
In a .hlp file , the body of an entry is whatever text is found until the

end-of-file or the next entry title line (i.e. the next #? at the beginning of a
line). An empty line is interpreted as a paragraph boundary (but a line with
only spaces is not).

In a .lsh file , the body of an entry is whatever bloc of consecutive comment
lines (i.e. lines that begin with one or more semicolons) that follow the title
line. By convention , the lines should begin with two semicolons. A lines with
only semicolons is intepreted as a paragraph boundary.



4.19. DOCUMENTATION AND HELP SYSTEM 257

The body of an entry or section can be written acording to two different
syntaxes. The ”normal” syntax comprises a set of curly-brace-enclosed tags that
have the same name and more or less the same function as the corresponding
HTML tags. The ”old” syntax (present for backward compatibility) comprises
TROFF/NROFF-like tags that must be at the beginning of a line and begin
with a dot. Blank lines indicate paragraph boundaries in both syntaxes

Debugging a documentation file or a Lush file with documentation entries
can be done easily by calling (helptool "the-file-to-be-debugged") . The
entry bodies are re-read whenever the file is modified , but the entries themselves
(the title lines) are not.

Document Body: the Brace Syntax

The brace document format consists of segments of text enclosed between curly
braces with a tag immediately following the opening brace. In this syntax , the
following characters or character sequences have a special meaning:

• two carriage returns (blank line) : paragraph break

• tag... : a brace tag expression

• ,(...) : read Lush expression in paren and insert it in the document. It
will be evaluated at rendering time. If the result is a string , it will be
inserted in the text.

• \(...) : same as above

• ,$expr : read Lush object following dollar sign and insert it in the doc-
ument. Unlike with the comma/paren construct , this allows to insert
symbols and string literals. The Lush object will be evaluated at render-
ing time. If the result is a string , it will be inserted in the text.

• \$expr : same as above

• ,,expr : read and evaluate the Lush expression and substitute the result
(preferably a string) in the text. Unlike with with the single comma
constructs , the evaluation is performed at read time.

• ... : display content of bracket as bold/highlighted (mainly used for
short Lush code snippets or arguments of the function being described).

To insert text that contain the above combinations requires escaping. This can
be done with the ,$”any legal Lush string” construct.

A brace expression is an expression of the form:

{<tag1> word1 {<tag2> word21 word22} word3 .... wordn}

A brace expression is read by the Lush reader just like a regular Lush expression.
The reader translates the above example into a list like this:



258 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(<tag1> -1 1 "word1" 1
(<tag2> -1 1 "word21" 1 "word22")
1 "word3" 1 "...." 1 "wordn")

Such brace lists produce the appropriate document when evaluated in the right
context.

Here are the tags. Three dots indicate that text or other brace expression
can be inserted.

Basic text formatting tags:

• br : line break

• p : paragraph break

• li ... : list item. Preferrably (though not necessarily) appears within
a ul tag.

• ul li ... ... : unstructured list with list items

• div ... : does nothing , just groups its arguments

• pre ... /pre : preformatted text (no need to escape special characters)

• code ... /code : preformatted code displayed in blue (no need to escape
special characters)

• img ... : insert image

Text attribute tags :

• b ... : turn to bold font

• i ... : set font to italic

• c ... : highlight , and turn bold (for code and arguments)

Metatags: The content of these tags is not displayed in the main document
but is displayed in the header:

• author ... : author

• symbol ... : which Lush symbol does this entry describe.

• location ... : override the name of the file in which this function/entry
is defined. By default , this is automatically set to file being read.

• keywords ... : keywords for searching this entry

• date ... : date of creation/modification of the object being described. By
default , this is automatically set to the last modification time of the file
in which the entry is defined (if this file is known).



4.19. DOCUMENTATION AND HELP SYSTEM 259

• title ... : override for the name of the entry. By default this is set to
the entry title line.

• type ... : type of object being described. By default this is guessed from
the entry title whenever possible.

Special Tags:

• ex lush-expression : insert a demonstration of typing the lush-expression
at the Lush prompt and getting the result.

• hlink : hyperlink to URL or other entry in the document

• see : hyperlink to URL or other entry in the document

Conditional tags:

• if-html ... : insert only if rendering to HTML

• if-latex ... : insert only if rendering to LaTeX

• if-ogre ... : insert only if rendering to helptool

• if-text ... : insert only if rendering to plain text

Tags that are legal but not yet implemented: these tags are legal but
are not functional at the moment and and reserved for future implementations
(they currently act as div ):

• desc ... : short one-line description of the entry

• u ... : underlined text

• tt ... : typewriter font

• font ... : select font

• center ... : center text

• h1 ... : big title

• h2 ... : medium title

• h3 ... : small title



260 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

Document Body: the ”Dot-Tag” Legacy syntax

Predecessors to Lush (SN and TL3) used a format for documentation inspired
by TROFF/NROFF with formatting tags that begin with a dot and are placed
at the beginning of the line. Much of the Lush documentation is still in this
format , which is why we document it here.

Within the text , strings enclosed in angled brackets are displayed in boldface
and highlighted in a color different from the regular text. This should be used
for short segments of Lush code , file names , arguments of the function being
documented , and other litterals.

Tags are divided in three categories: tags with no argument , tags whose
argument is on the same line as themselves , and tags whose ”argument” (or
scope) is the text until the next tag.

Formatting tags that take no arguments:

• .P or .PP : paragraph break (blank line plays the same role) , or return
to paragraph fill mode

• .BR : line break (without paragraph skip).

Formatting tags whose argument is on the same line:

• .HLINK : hyperlink to another entry of a URL.

• .SEE : reference/hyperlink to another entry.

• .EX : example , a Lush expression that will be evaluated and whose result
is displayed in the document.

• .IMG ir .EPS : the path to an image file (in any format that ImageMag-
ick understands).

Formatting tags whose argument is whatever text is between it and the next
tag:

• .LI or .IP : list item.

• .PRE or .VP : pre-formatted text.

• .CODE : displayed code.

• .DIV : switch to paragraph mode (without a paragraph skip like .P

Conditional inclusion tags (active until the next tag):

• .IFOGRE or .IFHELP or IFHLP : include only in helptool output.

• .IFTEX : include only in LaTeX output.

• .IFTXT : include only in plain text output.

• .IFHTML : include only in HTML output



4.20. OBSOLETE FUNCTIONS 261

Metadata tags (whose argument is on the same line):

• .TYPE : type of entry (e.g. DX , DE , CLASS , MSG....)

• .DESC : short one-line description.

• .FILE : file where the definition for the entry resides.

• .AUTHOR or .AUTH : author(s)

• .DATE : date of last modification.

Directive .EX lets you run a lisp expression and display it as an example. It
is preferable that the expression carries no side effect.

Directive IMG allows to include a picture (in any format):

.IMG toto.png

4.20 Obsolete functions

Functions described in this section are largely obsolete , but are included in the
standard library for convenience , and bakward compatibility.

4.20.1 Operations on Lists of Numbers

These are functions that operate on list of numbers interpreted as vectors of real
numbers. They are provided mostly for convenience (and for historical reasons)
, but are largely obsolete. Serious vector computation should be performed
using the much more powerful matrix/tensor engine , rather than with these
list functions.

(add-lists l1 l2)

Type: DX
Return the list of the sums term by term of the elements of lists l1 and l2

. This function is equivalent to:

(mapcar ’+ l1 l2)

(diff-lists l1 l2)

Type: DX
Return the list of the differences term by term of the elements of lists l1

and l2 . This function is equivalent to:

(mapcar ’- l1 l2)



262 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(abs-dist l1 [l2])

Type: DX
Returns the absolute (L1) distance between the lists of numbers l1 and l2

. The absolute distance is the sum of the absolutes differences between the
elements of l1 and l2 .

If argument l2 is omitted, a lists of zeros is assummed.
Example:

? (abs-dist (range 1 10))
= 55

(sqr-dist l1 [l2])

Type: DX
Returns the squared (L2) distance between the lists of numbers l1 and l2

. The squared distance is the sum of the squares of the differences between the
elements of l1 and l2 .

If argument l2 is omitted , a lists of zeros is assummed.

(sup-dist l1 [l2])

Type: DX
Returns the supremum (L infinity) distance between the lists of numbers

l1 and l2 . The supremum distance is the largest absolute difference between
elements of l1 and l2 .

If argument l2 is omitted , a lists of zeros is assummed.

(mean-abs-dist l1 [l2])

Type: DE(sysenv.lsh)
See: (abs-dist l1 [ l2 ])
Returns the average absolute distance between elements of l1 and l2 . This

is defined as the absolute distance divided by the number of elements in lists l1
and l2 .

(mean-sqr-dist l1 [l2])

Type: DE(sysenv.lsh)
See: (sqr-dist l1 [ l2 ])
Returns the average squared distance between elements of l1 and l2 . This

is defined as the squared distance divided by the number of elements in lists l1
and l2 .



4.20. OBSOLETE FUNCTIONS 263

(mean-sup-dist l1 [l2])

Type: DE(sysenv.lsh)
See: (sup-dist l1 [ l2 ])
Returns the average supremum distance between elements of l1 and l2 .

This is defined as the supremum distance divided by the number of elements in
lists l1 and l2 .

(hamming-dist [margin] l1 [l2])

Type: DX
Returns the number of elements of l1 and l2 whose absolute difference is

greater than margin .
If argument l2 is omitted , a list of zeroes is assumed.
The default value for margin is 0 . In this case hamming-dist returns the

number of elements strictly different in l1 and l2 .

(quadrant-dist l1 l2)

Type: DX
Returns the number of elements of l1 and l2 whose sign is different.

(mean-hamming-dist [margin] l1 [l2])

Type: DE(sysenv.lsh)
See: (hamming-dist [ margin ] l1 [ l2 ])
Returns the averaged hamming distance between lists l1 and l2 . The

maximal result thus is 1.

(mean-quadrant-dist l1 l2)

Type: DE(sysenv.lsh)
See: (quadrant-dist l1 l2 )
Returns the averaged quadrant distance between lists l1 and l2 . The

maximal result thus is 1.

4.20.2 Statistical Functions on Lists of Numbers.

These are functions that operate on list of numbers. They are provided mostly
for convenience (and for historical reasons) and are largely obsolete. Serious
statistical computation should be performed using the much more powerful ma-
trix/tensor engine , rather than with these list functions.

(sup l)

Type: DX
Return the largest element of the list l .
Example:



264 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

? (sup (range 1 10))
= 10

(inf l)

Type: DX
Return the smallest element of the list l .
Example:

? (inf (range 1 10))
= 1

(rank list target [width])

Type: DX
Returns the list of the indices of the elements of list whose distance to

target is smaller or equal than width . If argument width is omitted, 0 is
assumed.

Example:

? (de rank-of-max(l)
(car (rank l (sup l))) )

= rank-of-max
? (rank-of-max ’(2 1 4 5 -4 -3 -2) )
= 3

(a-rank-of-min l [comp])

Type: DE(miscenv.lsh)
The function a-rank-of-min returns the first rank of the minimum value

in a list l . The optional argument comp is a boolean function which takes two
arguments and tests the strict superiority of its first argument on its second.

(a-rank-of-max l [comp])

Type: DE(miscenv.lsh)
The function a-rank-of-min returns the first rank of minimum value in list

l . Optional argument comp is a boolean function which takes two arguments
and tests the strict superiority of its first argument on its second.

(mean l)

Type: DX
Returns the average of the elements of list l .
Example:



4.20. OBSOLETE FUNCTIONS 265

? (mean (range 1 10))
= 5.5

(median l)

Type: DX
Returns the median of the elements of list l .
Example:

? (median (append (range 5 30 2) (range 1 10)))
= 9

(ksmallest l k)

Type: DX
Returns the k -th smallest elements of list l . Argument k must be an

integer between 1 and the size of the list l .
Example:

? (ksmallest (append (range 5 30 2) (range 1 10)) 10)
= 8

(quantile l f)

Type: DX
Returns the f -th quantile of the elements of list l . Argument f must be

a number between 0 and 1.
Example:

? (quantile (append (range 5 30 2) (range 1 10)) 0.9)
= 25

(sdev l)

Type: DX
Returns the standard deviation of the elements of list l .
Example:

? (sdev (range 1 100))
= 28.8661



266 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(cov ly lx)

Type: DX
Returns the covariance of the elements of list lx versus the elements of list

ly .
Example:

? (cov (range 1 10) (range 11 30 2))
= 16.5

(regression lx ly)

Type: DX
Simple monovariate linear regression.
Arguments lx and ly are two lists of numbers. Function regression re-

turns a list of the form (A B R) .

• The function y=Ax+B is then the best linear approximation of dependen-
cies between lists lx and ly .

• The correlation coefficient R measures the fit of the approximation. The
closer R is to 1, the better the approximation is.

Example:

? (regression (range 1 10) (range 11 30 2))
= (2 9 1)

(x-estimate lr y)

Type: DE(sysenv.lsh)
See: (regression lx ly )
Given the result list lr of the regression , returns a linear estimation of

x given y .

(y-estimate lr x)

Type: DE(sysenv.lsh)
See: (regression lx ly )
Given the result list lr of the regression , returns a linear estimation of

y given x .



4.20. OBSOLETE FUNCTIONS 267

(sum l)

Type: DX
Returns the sum of the elements of the list l .
Example:

? (sum (range 1 10))
= 55

4.20.3 DZ.

Lush contains a mechanism called “DZ” which allows to define very efficient
numerical functions. This mechanism is based on a small stack machine, and on
a DZ compiler. The DZ module is a remnant from an early attempt at compiling
SN numerical to make it run faster. It was eventually superseded by the DH
function (i.e functions compiled to C), but was kept around.

New DZ functions are easily defined with the functions dz , dz-compile
and zlambda . They return an object from of class DZ which can be executed
like a ’de’ but which can only contain and return numerical expressions. Except
for the overhead associated to small DZ functions, typical DZ functions execute
15 to 20 time faster than their DE equivalent.

Two important restrictions are enforced in dz function declaration:

• If the DZ refer a symbol defined outside the DZ function, it is evaluated
only once at compile time and must return either another previously cre-
ated DZ function (in which case it is ”inlined”) or a number (which is then
considered a constant). In other word, inside a DZ function only static
scoping is allowed.

• Only numerical expression can be used by the small machine, that is func-
tions that return list, string or matrix are not allowed. Other functions
like if , for , let are allowed provided they do not push a non numerical
expression onto the stack.

Predefined DZs.

A couple of useful DZ functions are predefined.
(sgn n) Type: DZ
Returns +1 if n is equal or greater than 0 , -1 otherwise.

? (sgn -2)
= -1

? (sgn 1.2)
= 1



268 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(abs n) Type: DZ
Returns the absolute value of n .

? (abs 123.3)
= 123.3

? (abs -23.3)
= 23.3

(int n) Type: DZ
Returns the integral part of n .

? (int -4.5)
= -5

? (int 4.5)
= 4

(sqrt n) Type: DZ
Returns the square root of n

? (sqrt 15)
= 3.873

(0-x-1 n) Type: DZ
This function implements a piecewise saturated linear function. It returns 0

if n is smaller than -1. It returns 1 if n is larger than +1. It returns n if n is
in the -1 to +1 range.

? (0-x-1 -2)
= -1

? (0-x-1 0.7)
= 0.7

? (0-x-1 1.3)
= 1

(0-1-0 n) Type: DZ
This function implements the indicator function of the -1 to +1 range. It

returns 1 if n is in the -1 to +1 range. It returns 0 otherwise.



4.20. OBSOLETE FUNCTIONS 269

? (0-1-0 -2)
= 0

? (0-1-0 0.7)
= 1

(sin n) Type: DZ
Returns the sine of n radians.

? (sin (/ 3.1415 3))
= 0.866

(cos n) Type: DZ
Returns the cosine of n radians.

? (cos (/ 3.1415 3))
= 0.5

(tan n) Type: DZ
Returns the tangent of n radians.

? (tan (/ 3.1415 3))
= 1.7319

(atan n) Type: DZ
Returns the arc tangent of n , in radians.

? (* 4 (atan 1))
= 3.1416

(exp n) Type: DZ
Returns the exponential of n .

? (exp 1)
= 2.7183

(exp-1 n) Type: DZ
Returns the exponential of n minus 1. This function gives an accurate value

of exp(n)-1 even for small values of n .

? (exp-1 0.5)
= 0.6487



270 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

(log n) Type: DZ
Returns the natural logarithm of n .

? (log 2)
= 0.6931

(log1+ n) Type: DZ
Returns the natural logarithm of n plus 1. This function gives an accurate

value of log(1+n) even for small values of n .

? (log1+ 1)
= 0.6931

(sinh n) Type: DZ
Returns the hyperbolic sine of n .

? (sinh 1)
= 1.1752

(cosh n) Type: DZ
Returns the hyperbolic cosine of n .

? (cosh 1)
= 1.5431

(tanh n) Type: DZ
See: (qtanh n )
Returns the hyperbolic tangent of n .

? (tanh 1)
= 0.7616

(qtanh n) Type: DZ
See: (tanh n )
Returns a rational approximation of the hyperbolic tangent of n . This

function is orders of magnitude faster than tanh . Its acuracy however is quite
low (about 0.00001.)

? (qtanh 1)
= 0.7616



4.20. OBSOLETE FUNCTIONS 271

The formula of the approximation is: \[ \tanh(x) \approx \frac P(x)ˆ16-1
P(x)ˆ16+1 \] where \[ P(x) = 1 + 0.125 x + 0.0078125 xˆ2 + 0.00032552083
xˆ3 \]

(qdtanh n) Type: DZ
Returns a rational approximation of the derivative of the hyperbolic tan-

gent of n . The accuracy of this function is quite low (about 0.00001), but its
computation time is very small.

? (qdtanh 1)
= 0.42

The formula of the approximation is: \[ \frac d dx ( 1 - \tanh (x)ˆ2 ) \approx
1 - \left( \frac P(x)ˆ16-1 P(x)ˆ16+1 \right) ˆ2 \] where \[ P(x) = 1 + 0.125
x + 0.0078125 xˆ2 + 0.00032552083 xˆ3 \]

(qstdsigmoid n) Type: DZ
See: (qtanh n )
Returns the value of standard sigmoid at point n , computed with a rational

approximation to the hyperbolic tangent. The standard sigmoid is defined as \[
1.7159 \rm tanh ( \frac 2 3 x ) \]

(qdstdsigmoid n) Type: DZ
See: (qdtanh n )
Returns the value of the derivative of standard sigmoid at point n , com-

puted with a rational approximation to the hyperbolic tangent. The standard
sigmoid is defined as \[ 1.7159 \rm tanh ( \frac 2 3 x ) \]

(qexpmx n) Type: DZ
Returns a rational approximation of the exponential of minus the absolute

value of n . The accuracy of this function is quite low (about 0.00001), but its
computation time may be smaller on certain computers.

? (qexpmx 1)
= 0.3679

The formula of the approximation is: \[ eˆ -—x— \approx \frac 1 P(—x—)ˆ8
\] where \[ P(x) = 1 + 0.125 x + 0.0078125 xˆ2 + 0.00032552083 xˆ3 +
0.000010172526 xˆ4 \]

(qdexpmx n) Type: DZ
Returns a rational approximation of the derivative of the exponential of

minus the absolute value of n . The accuracy of this function is quite low (about
0.00001), but its computation time may be smaller on certain computers.

? (qdexpmx 1)
= 0.3679



272 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

The formula of the approximation is: \[ \frac d dx eˆ -—x— \approx - \rm
sgn(x) \frac 1 P(—x—)ˆ8 \] where \[ P(x) = 1 + 0.125 x + 0.0078125 xˆ2
+ 0.00032552083 xˆ3 + 0.000010172526 xˆ4 \]

(qexpmx2 n) Type: DZ
Returns a rational approximation of the exponential of minus the square of n

. The accuracy of this function is quite low (about 0.00001), but its computation
time may be smaller on certain computers.

? (qexpmx 1)
= 0.3679

The formula of the approximation is: \[ eˆ -xˆ2 \approx \frac 1 P(xˆ2)ˆ8
\] where \[ P(x) = 1 + 0.125 x + 0.0078125 xˆ2 + 0.00032552083 xˆ3 +
0.000010172526 xˆ4 \]

(qdexpmx2 n) Type: DZ
Returns a rational approximation of the exponential of minus the square of n

. The accuracy of this function is quite low (about 0.00001), but its computation
time may be smaller on certain computers.

? (qdexpmx 1)
= 0.3679

The formula of the approximation is: \[ \frac d dx eˆ -nˆ2 \approx - 2 x \frac
1 P(nˆ2)ˆ8 \] where \[ P(x) = 1 + 0.125 x + 0.0078125 xˆ2 + 0.00032552083
xˆ3 + 0.000010172526 xˆ4 \]

Compiling DZ.

The following functions are useful to define DZ functions.
(dz name args . body) Type: DM
Create a new function which evaluate its argument and which is similar to a

de except that it works only on numerical expression and is much faster. Sets
the symbol name to this function.

args is the argument list, made of symbol names.
body is the function itself. Each list in body will be evaluated when the

function is called. The result of the last evaluation will be returned by the
function call.

Example:

? (dz fact (n)
(let ((res 1))
(for (i 2 n)

(setq res (* i res)))
res))



4.20. OBSOLETE FUNCTIONS 273

= fact
? (fact 5)
= 120
?

(zlambda args . body) Type: DF
Returns a function which evaluates its argument and is similiar to a de

except that it works only on numerical expression, and is much faster than a de
.

args is the argument list, made of symbol names.
body is the function itself. Each list in body will be evaluated when the

function is called. The result of the last evaluation will be returned by the
function call.

Example:

? ((zlambda (x)
(* x x) ) (+ 4 5))

= 81

(dz-compile de-function) Type: DE
Returns a function which evaluates its argument and is similiar to a DE

except that it works only on numerical expression, and is much faster than a
DE.

de-function is the de function to be compiled.
(dz-load n program) Type: DX
This function returns a new DZ which takes n arguments.
The list program describes which instruction will be executed by the stack

machine. Each element in this list can be a label declarations or a stack machine
instruction.

• A label declaration is a string. If this string is used as argument of a
branch opcode, the branch will jump at the label location. If this string is
used as argument of a subsequent stack relative opcode, this opcode will
refer to the current top of the stack.

• A stack machine instruction is a list composed of an opcode string and of
its arguments. A suffix in the opcode strings defines the opcode addressing
mode, and thus defines what are the arguments.

Caution must be exercised when you are programming this machine: An
incorrect program may hang SN3. Usually DZ programs are composed by the
DZ compiler, which is assumed correct.

(dz-spline index) Type: DX
See: (dz-dspline index )
Generates a DZ function that computes a cubic spline interpolations of a set

of n points specified by the n by 2 matrix index . Argument index thus must



274 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

be a n by 2 index. Its first column contains the abscissa, its second column
contains the ordinates of the points.

The function dz-spline may be used for generating the derivative of this
cubic spline interpolation.

(dz-dspline index) Type: DX
See: (dz-spline index )
Generates a DZ function that computes the derivative of a cubic spline inter-

polations of a set of n points specified by the n by 2 matrix index . Argument
index thus must be a n by 2 index. Its first column contains the abscissa, its
second column contains the ordinates of the points.

The function dz-spline may be used for generating the cubic spline itself.
(dz-def dz) Type: DX
See: (dz-load n 1 n 2 program )
See: DZ opcodes.
This function returns the definition of the DZ function dz . This definition

is a list (n . program) , where n is the number of arguments of the DZ, and
program is a list of stack machine instructions.

(dz-trace boolean) Type: DX
It function sets or reset the trace mode for the stack machine In trace mode ,

each instruction is disassembled , and the stack is displayed after the execution
of each instruction. This function is mostly useful for designing and debugging
the DZ compiler.

This function does nothing if the trace mode has not been compiled. This
is the usual setup , for efficiency reasons.

DZ opcodes.

See: (dz-load n program )
A DZ program is a list which describes which instruction will be executed

by the stack machine. Each element in this list can be a label declarations or a
stack machine instruction.

A label declaration is a string. If this string is used as argument of a branch
opcode, the branch will jump at the label location. If this string is used as
argument of a subsequent stack relative opcode, this opcode will refer to the
current top of the stack.

A stack machine instruction is a list composed of an opcode string and of
its arguments. Opcodes fall into five broad categories:

• Opcodes whose name ends with a “#” are “immediate” opcodes. They
take one numeric argument. For example ("ADD#" 2.2) adds 2.2 to the
top of the stack.

• Opcodes whose name ends with a “@” are “stack relative” opcodes. They
take one positive integer argument, which describes an element of the
stack. For example ("ADD@" 2) adds the third topmost element of the
stack to the top of the stack.



4.20. OBSOLETE FUNCTIONS 275

If a label is given as operand of a stack relative opcode, it refers to the
position of the top of the stack when the label has been defined. In
addition, labels "arg1" , "arg2" , etc... refer to the arguments of the
DZ.

• Opcodes whose name begins with “BR” are “relative branches”. If the
branching condition is true, their integer argument is added to the program
counter.

If a label is given as operant of a relative branch, it jumps immediately
after the label position in the program.

• Two special opcodes, "SPLINE" and "DSPLINE" take a 1D matrix as operand.
DZ using these opcodes usually are generated with the dz-spline and
dz-dspline function.

• The other opcodes do not have arguments. For example "ADD" adds the
two topmost elements of the stack, and replace them on top of the stack
by their sum.

Two other rules are enforced by the dz-load function:
The arguments of a DZ are pushed on the stack when the execution starts.

The execution stops when the last opcode has been executed. The result must
be the only element on the stack. The opcode ”POP@” is handy for removing
the arguments of the DZ.

It is forbidden to make loops whose iterations would add or remove elements
to the stack. The size of the stack at each position of the program thus is
determined statically.

Here are a brief description of the opcodes.

Opcode Stack Before -> Stack After Notes
NOP * -> *
STACK * -> * prints the stack.
PRINT * -> * prints the top of the stack.
ERROR * -> produces a run time error.
POP x * -> *
DUP x * -> x x *
PUSH# C * -> C *
PUSH@ R x a1..aR * -> aR x a1..aR *
POP@ R x a1..aR * -> x *
SET@ R x a1..aR * -> a1..aR-1 x *
MINUS x * -> -x *
INVERT x * -> 1/x *
ADD1 x * -> x+1 *
SUB1 x * -> x-1 *
MUL2 x * -> x*2 *
DIV2 x * -> x/2 *



276 CHAPTER 4. CORE INTERPRETER AND STARTUP LIBRARY

RAND * -> r * uniform random number in [0,1[
GAUSS * -> r * gaussian random number (m=0,s=1)
SPLINE N DATA x * -> f(x) * computes a spline interpolation
DSPLINE N DATA x * -> f’(x) * computes its derivative

ADD# C x * -> x+C *
ADD@ R x a1..aR * -> x+aR a1..aR *
ADD x y * -> x+y *
SUB# C x * -> x-C *
SUB@ R x a1..aR * -> x-aR a1..aR *
SUB x y * -> y-x *
Idem for

MUL, DIV, MIN, MAX,
DIVI (integer division),
MODI (remainder),
POWER (exponentiation)

SGN x * -> sgn(x) *
ABS x * -> abs(x) *
Idem for the following functions, equivalent to their
lowercase lisp counterpart:

INT SQRT PIECE RECT
SIN COS TAN ASIN ACOS ATAN
EXP EXPM1 LOG LOG1P TANH COSH SINH
QTANH QDTANH QSTDSIGMOID QDSTDSIGMOID
QEXPMX QDEXPMX QEXPMX2 QDEXPMX2

BR L * -> * inconditional relative branch
BREQ L x * -> * branch if x==0
BRNEQ L x * -> * branch if x!=0
BRGT L x * -> * branch if x>0
BRLT L x * -> * branch if x<0
BRGEQ L x * -> * branch if x>=0
BRLEQ L x * -> * branch if x<=0
The following opcodes are handy for programming <for> loops, where
<i> is the variable, <n> the limit and <s> the increment.
BEGFOR L i n s * -> i n s * check and branch

i n s * -> * pop 3 if it does not branch
ENDFOR L i n s * -> i+s n s * increment, check and branch

i n s * -> * pop 3 under if it does not branch



Chapter 5

Ogre: Object Oriented GUI
Toolkit

5.1 Introduction to Ogre.

See: Graphics.
See: Events.
Lush provides all the necessary graphic primitives for programming a graph-

ics interface.

• Output primitives include functions for opening windows and functions
for producing various elementary drawings. Lush supports multiple fonts,
multiple windows and even multiple window systems.

• Input functionalities are also present. Lush gathers all events in a com-
mon event queue. There are functions for inspecting this event queue (
checkevent and waitevent ). Hook functions are called when events
are occuring while Lush is waiting for user commands ( event-hook and
idle-hook ).

It is rather easy to build simple graphic interfaces using these primitives.
For instance, the function snpaint implements a simple drawing program for
drawing lines and rectangles using low level primitives.

Graphic interfaces however become quickly complex. The class browser de-
scribed in the last chapter of this document contains various features, like menus,
buttons, requesters, selectors and scrollbars. A direct program would be over-
whelmingly complex.

This is why people have developped various toolkits which handle automat-
ically a large part of this complexity. The Ogre library is such a toolkit entirely
written using the Lush object oriented language. This manual describes how to
build programs with this library.

277



278 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

In the Ogre library, each component of a graphics interface, a button for
example, is implemented as an object which is an instance of a subclass of class
VisualObject .

The class of such an object defines both the appeareance of the object and
its response to user input. Defining a new type of object (e.g. a menu) is thus
just a matter of defining a new subclass of VisualObject .

There is a wide variety of such object classes:

• Basic objects are the major components of an interface. For instance,
buttons, strings or check boxes are visible and respond to user interaction.

• Container objects are rectangular areas containing other objects and main-
taining a certain layout. For instance there is a class Column which main-
tain several objects aligned in a column.

• Window objects are special container object affected to a window on the
screen. Every object inserted in a window object appears into the window
and is eligible for receiving user events.

There are two programming levels with the Ogre library. At the simplest
level, you just use the provided classes for defining your interface. At the second
level, you define subclasses of the standard Ogre classes in order to create new
kind of graphic components.

5.2 Ogre Tutorial.

Here is the transcript of a trivial call to the ogre library. You must first initialize
the Ogre library by calling function ogre :

? (ogre)
[ogre.lsh] (autoload)
= idle-hook

Let us then open a window ww containing a message string and a button
arranged in a column named cc :

? (setq ww
(new windowobject 0 0 400 300 "Essai"
(setq cc (new column (new string "Press button to beep")

(new stdbutton "Beeper"
(lambda(c) (beep))) ) ) ) )

= ::windowobject:e3100

When you click on the button, the callback function (lambda(c) (beep))
is called and produces an audible beep. Let us add now a check box into the
column:



5.2. OGRE TUTORIAL. 279

? (==> cc insert (new checkbox "check me"
(lambda(c)

(printf "Check box state is \\%l\\n"
(==> c getdata))))))

= ()

The callback function takes one argument. This argument is the check box
object that we can query using method getdata . Let us add now an editable
string named ee into the column:

? (==> cc insert (setq ee (new editstring 18 "hello")))
;; Argument 18 is the field width.
= ()
? (==> ee setdata "hello people")
= ()
? (==> ee getdata)
= "hello people"

Again we can manipulate the state of the editable string using method
setdata and getdata . You may have noticed that the button width has
changed when we have inserted the editable string. The column indeed manage
its contents in order to keep them properly aligned. We can indeed move and
resize the column as a whole:

? (==> cc move 50 70)
= (50 20 129 84)
? (==> cc resize 250 120)
= (50 20 250 100)

We can even add into the column a small object which lets you move the
column with the mouse:

? (==> cc insert (new dragarea 50 20))
= ()

Arguments 50 and 20 are the width and height of this object. Since the
drag area is inserted into a column, its width is adjusted to the column width.

Let us add a row with two exclusive buttons:

? (==> cc insert (new row (new radiobutton "choice1")
(new radiobutton "choice2") ) )

= ()

We can get (or set) the complete state of the column with a single message
getdata (or setdata ):



280 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

? (==> cc getdata)
= (() "hello people" () t)
? (==> cc setdata ’(t "goodbye" t ()))
= ()

The Ogre library provides many more complex object, as shown in the fol-
lowing example:

? (setq h (new filerequester ww))
= ::filerequester:f3ef0
? (==> h popup)
= ::filerequester:f3ef0
? (==> h getdata)
= "/home/leon"

Let us add now a button for destoying the window.

? (==> ww insert (new stdbutton "Bye Bye."
(lambda(c) (==> thiswindowobject delete)) ) )

= ()

This button ends the tutorial.

5.3 The Ogre Class Library.

All the objects must interact in order to be drawn at the proper location and
with the proper ordering. Similarly , user events (e.g. a mouse click) must be
dispateched towards the object located below the mouse.

The kernel of the Ogre library ensures these interaction by defining how
messages are propagated between the objects in a graphic interface.

5.3.1 Ogre Methods.

Event dispatching is mostly performed by the Container class. A container
dispatches the events messages to its children according to simple rules. Key-
board events are sent to the “active” object. All other events are sent to the
object located under the mouse pointer.

Repainting is managed asynchronously. When you want to redraw an object,
you must send a message expose to this object to tell the Ogre system to
schedule a repainting operation. When the system becomes idle, the Ogre library
sends a repaint message to all objects to repaint with a proper ordering which
ensures that the topmost objects are repainted last.

Similarly, you never change the location of an object directly. You send
message move , resize or moveresize which tell the Ogre system to relocate



5.3. THE OGRE CLASS LIBRARY. 281

an object. The Ogre library then enforces all the rules of the container objects,
performs a global recomputation of the location of all objects and places the
objects by sending them a message geometry .

In general, most operation on the Ogre objects are implemented using two
messages.

• The request message (e.g. expose ) is used by a program to tell the Ogre
library that you wish to perform a certain operation.

• The implementation message (e.g. repaint ) is only called by Ogre to
perform the operation and update all the other objects accordingly.

When you want to perform a certain operation, you must call the request
message and not the implementation message. The Ogre library will call the
implementation message for you at a proper time and with the proper order.

When you define a new class of Ogre objects, you must define the implemen-
tation method only. The corresponding request message will be inherited from
the superclass.

Here is a list of the most useful message pairs: \begin center \begin tabular
—c—l—l— \hline Operation & Request & Implementation \\ \hline \hline
Drawing & \typo expose & \typo repaint \\ & & \typo repaint-bw \\ & &
\typo repaint-color \\ & & \typo backpaint \\ & & \typo backpaint-bw \\
& & \typo backpaint-color \\ \hline Moving and resizing & \typo move &
\typo geometry \\ & \typo moverel & \typo manage-geometry \\ & \typo
resize & \typo compute-geometry \\ & \typo moveresize & \\ \hline Making
an object visible & \typo insert & \typo realize \\ & \typo remove & \\
\hline \end tabular \end center

+-------------------+------------------+------------------+
| Operation | Request | Implementation |
+-------------------+------------------+------------------+
| Drawing | expose | repaint |
| | | repaint-bw |
| | | repaint-color |
| | | backpaint |
| | | backpaint-bw |
| | | backpaint-color |
+-------------------+------------------+------------------+
| Moving | move | geometry |
| and resizing | moverel | manage-geometry |
| | resize | compute-geometry |
| | moveresize | |
+-------------------+------------------+------------------+
| Making an | insert | realize |
| object visible | remove | |
+-------------------+------------------+------------------+



282 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

5.3.2 Ogre Class Hierarchy.

There are in fact two major kinds of classes:

• “User classes” define the most useful graphics components. For instance,
class StdButton defines a standard push button, class Menu manages
popup menus and class Requester manages subwindows which pop up
to request information from the user.

• “Abstract classes” are located on top of the class hierarchy. They define
slots and request methods for managing these interactions in behalf of
instances of their subclasses. Abstract classes are provided as a choice of
superclasses for defining new classes of Ogre objects.

Here is a display of the current class hierarchy in the Ogre library. Classes
displayed with a star are the abstract classes.

visualobject *
control *
editstring
editnumber
editsecretstring

button *
stdbutton
tinybutton

checkbox
radiobutton

filereqbutton
menuitem
knob *
dragarea
sizearea

slider *
hslider
vslider
scrollbar *
hscrollbar
vscrollbar

textpane
container *
form *
windowobject *
autowindowobject *

requester
warningrequester
errorrequester
yesnorequester



5.3. THE OGRE CLASS LIBRARY. 283

filerequester
printrequester

viewer
selector
edittext

column
menupopup

row
grid
frame
framesize

viewerhole
emptyspace
darkspace
string
icon
menu
choicemenu

Here is the use of the main abstract classes:

• Class VisualObject is the root of the Ogre class tree. It defines how ob-
jects are located and repainted. It also defines the default event processing
messages.

• Class Control is the subclass of the simplest interactive objects. Such
objects may be enabled or disabled. They may call a callback function
when the user requests it.

• Class Button defines common messages handled by an object responding
to a single mouse click.

• Class Knob defines common messages handled by an object which requests
a geometry change of its container. For instance, inserting a DragArea in
a container allow the user to move the container by clicking on the dragarea
object.

• Class Slider and Scrollbar define the common methods for objects al-
lowing the user enter a numerical value proportional to the location of a
visible cursor.

• Class Container is the superclass of all objects containing other objects.
It defines methods used for dispatching the events to the proper objects
as well as methods for enforcing a certain layout.

• Class Form is a special container used for defining new objects composed
of other objects. For instance, a Viewer is a Form containing two scroll-
bars and a container whose contents is moved according to the scrollbar
position.



284 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

• Class WindowObject is the most important class. It defines a container
object attached to a graphic window on the screen. Every object inserted
in a window object becomes visible and is eligible for receiving events.

5.4 Ogre Utility Functions.

5.4.1 Initializing the Ogre library.

(ogre)

Type: DE(ogre.lsh)
A single function named Ogre loads and initializes the library. You must

call this function on top of each file involved with a graphics interface. Function
Ogre is often defined as an autoload function which loads the Ogre library and
calls the actual Ogre function.

This function initializes the library and sets up the event dispatcher. In par-
ticular, it creates the object ogre-task and defines the functions event-hook
and idle-hook . If the library was already initialized, function Ogre returns
immediatly.

ogre-task

Type: VAR(ogre.lsh)
See: (event-hook)
See: (idle-hook)
See: (process-pending-events)
The object located in variable ogre-task is set up by function ogre . This

object performs three central tasks in the Ogre library:

• It records all operations requested by the user and delayed by the library.
This is the case of most repainting requests.

• It starts a repainting operation whenever function idle-hook is called.

• It sends event messages to the proper window object whenever function
event-hook is called.

When Lush is waiting for user commands on the standard input, the Ogre
library manages events asynchronously. The user can thus either type lisp com-
mands or activate graphic interfaces.

When a Lush program is running, however, the Ogre library manages events
when the function process-pending-events is called. It is a good practice to
call this function a few times during long programs.

5.4.2 Error handling in the Ogre library.

See: Errors in Lush.
See: (debug-hook)



5.4. OGRE UTILITY FUNCTIONS. 285

See: Interruptions in Lush.
See: (break-hook)
The Ogre library runs Lush functions whenever an event occurs.
An error condition occurs when these functions are incorrectly designed.

The error message is printed as usual, but you are not prompted for a debug
toplevel.

An interruption occurs if you type Ctrl-C in the Lush console. The break
message is printed as usual, but you are not prompted for a break toplevel.

If you wish to be prompted for these debugging utilities, you must redefine
functions ogre-debug-hook and ogre-break-hook . Here is a simple way to
achieve this:

(setq ogre-debug-hook nice-debug-hook)
(setq ogre-break-hook nice-break-hook)

5.4.3 Ogre Color Palette.

Rendering a graphic interface strongly depends on the capabilities of your screen.

• A black and white screen is barely able to display a few levels of gray
using special dithering patterns. Objects must be rendred using simple
and visible graphics.

• On the other hand, a color screen is able to render three dimensional
looking objects using several colors for rendering the various shadow level.

Ogre provides a way to test if you are using a black and white or a color
screen. It also provides several utility functions for displaying three dimensional
looking objects.

color-palette

Type: VAR(ogre.lsh)
See: (color [ c ])
If you are using a black and white display, this variable contains the empty

list. You can then select three colors using function color .

• Color color-fg is the foreground color (usually black),

• Color color-bg is the background color (usually white)

• Color color-gray is a 50% dithered gray shade used for rendering dis-
abled objects.

If you are using a color display, this variable contains an array containing
the color numbers used by Ogre for displaying an object. Several variables are
used to name these colors:



286 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

palette-left (for rendering light)
palette-right (for rendering shadow)
palette-up (for rendering raised objects)
palette-down (for rendering depressed objects)
palette-disabled (for rendering disabled texts)
palette-selected (for rendering selected objects)

(new-palette r g b)

Type: DE(ogre.lsh)
See: (alloccolor r g b )
See: (==> windowobject palette p )
This function creates a new palette array whose dominant color is defined

by its RGB component r , g and b .
You can then store the resulting array into variable color-palette for

redefining the default palette. You can also pass the new palette to an existing
window object using message palette .

(getcolor colname)

Type: DE(ogre.lsh)
See: (color [ c ])
This function returns the color number for the color named n in the current

palette. Although any number can be passed as argument n , we suggest using
one of the predefined symbols palette-left , palette-right , palette-up
, palette-down , palette-disabled or palette-selected for specifying a
color. The resulting color number can then be applied using function color .

This function is equivalent to:

(color-palette <colname>)

(setcolor colname)

Type: DE(ogre.lsh)
See: (color [ c ])
This function sets the current color to the color named n in the current

palette. Although any number can be passed as argument n , we suggest using
one of the predefined symbols palette-left , palette-right , palette-up
, palette-down , palette-disabled or palette-selected for specifying a
color.

This function is equivalent to:

(color (getcolor <colname>))



5.4. OGRE UTILITY FUNCTIONS. 287

(fill-background x y w h)

Type: DE(ogre.lsh)
See: (fill-rect x y w h )
This function fills a rectangle with the background color palette-up of the

current palette. The 3d rendering functions are designed for being called on
such a background.

(draw-up-rect x y w h)

Type: DE(ogre.lsh)
See: (draw-rect x y w h )
This function draws the border of a rectangle using the colors defined in the

current palette. The border only is drawn and appears as a slightly raised line.

(draw-up-round-rect x y w h)

Type: DE(ogre.lsh)
See: (draw-round-rect x y w h [ r ])
This function draws the border of a rectangle with round corners using the

colors defined in the current palette. The border only is drawn and appears as
a slightly raised line.

(fill-up-rect x y w h [c])

Type: DE(ogre.lsh)
See: (fill-rect x y w h )
This function fills a rectangle using color number c and draws a border in

order to give the illusion of a rectangle located above the background.
The default value for c is the color number indicated by palette-up .

(fill-down-rect x y w h [c])

Type: DE(ogre.lsh)
See: (fill-rect x y w h )
This function fills a rectangle with the color number c and draws a border

in order to give the illusion of a rectangle located below the background.
The default value for c is the color number indicated by palette-down .

(fill-up-round-rect x y w h [c])

Type: DE(ogre.lsh)
See: (fill-round-rect x y w h [ r ])
This function fills a rectangle with round corners using color number c and

draws a border in order to give the illusion of a rectangle located above the
background.

The default value for c is the color number indicated by palette-up .



288 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

(fill-down-round-rect x y w h [c])

Type: DE(ogre.lsh)
See: (fill-round-rect x y w h [ r ])
This function fills a rectangle with round corners using the color number c

and draws a border in order to give the illusion of a rectangle located below the
background.

The default value for c is the color number indicated by palette-down .

(fill-up-circle x y r [c])

Type: DE(ogre.lsh)
See: (fill-circle x y r )
This function fills a circle using color number c and draws a border in order

to give the illusion of a circle located above the background.
The default value for c is the color number indicated by palette-up .

(fill-down-circle x y r [c])

Type: DE(ogre.lsh)
See: (fill-circle x y r )
This function fills a circle using color number c and draws a border in order

to give the illusion of a circle located below the background.
The default value for c is the color number indicated by palette-down .

5.4.4 Ogre Fonts.

Font names used by the font function used to be device dependent. A couple of
functions have been defined for selecting fonts in a device independent way.

(font-18)

Type: DE(ogre.lsh)
Selects a 18 points font useful for drawing titles.

(font-12b)

Type: DE(ogre.lsh)
Selects a 12 points bold font mostly used for button labels.

(font-12)

Type: DE(ogre.lsh)
Selects a all-purpose 12 points font.



5.5. VISUAL OBJECTS. 289

(font-8f)

Type: DE(ogre.lsh)
Selects a fixed width 8 points font used for text input area.

(font-8)

Type: DE(ogre.lsh)
Selects a small 8 points font.

5.5 Visual Objects.

Class VisualObject is the root of the Ogre class tree and defines the default
appearance (nothing) and the default response to user input (nothing too) of a
graphics interface component.

Class VisualObject however defines most request messages which are in-
herited by the graphic components. It also defines the default implementation
of most implementation messages.

Four slots are defined by class VisualObject :

(defclass visualobject object
(rect (0 0 0 0))
oldrect
itscontainer
window )

• Slot window is the descriptor of the window that contains the object. This
slot is set as soon as a window is associated to the object.

• Slot itscontainer is set when the object is inserted into a container. It
indicates which container (the father) manages this object.

• Slot rect is a list (x y w h) that indicates the rectangle associated to
the object in the window coordinates.

• Slot oldrect is a temporary storage used by method moveresize to store
the last acknowledged geometry of an object. This slot is non null when-
ever a geometry change has been requested.

5.5.1 (new VisualObject w h)

Type: CLASS(ogre.lsh)
Creates and return a new instance of class VisualObject . Arguments w

and h are the width and the height of the object.
This constructor is seldom used for creating new instances. Derived classes

(e.g. Control ) usually call this constructor method within their own construc-
tor method in order to initialize the VisualObject part of their instances.



290 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

5.5.2 VisualObject Request Messages.

Class VisualObject defines request messages inherited by most other objects
for performing two central tasks:

• Repainting the graphic interface components

• Changing the geometry of graphic interface components.

Unless you have a thorough knowledge of the internals of Ogre, you should
neither redefine nor override these messages when defining a subclass of VisualObject
.

(==> VisualObject expose [rect])

Type: MSG(ogre.lsh)
Message expose tells the Ogre library that a visual object needs to be re-

painted. Argument rect indicates with more accuracy which rectangle in the
current window must be repainted. When argument rect is ommited, the entire
object rectangle is considered.

Exposure messages are propagated down until they reaches the window ob-
ject. The clipped rectangle are then added to the damaged area list. Repainting
is usually performed when the event queue becomes empty.

(==> VisualObject repair-damaged)

Type: MSG(ogre.lsh)
Message repair-damaged starts the repainting operation without delay.

When this message is sent to an Ogre object, the Ogre system immediatly
repaints the damaged areas.

(==> VisualObject moveresize x y w h)

Type: MSG(ogre.lsh)
Message moveresize ask the Ogre library to redefine the rectangle associ-

ated to an Ogre object. Arguments x and y are the coordinates of the topleft
corner of the rectangle. Arguments w and h are respectively the width and the
height of the rectangle.

This request is then signaled to the object’s container which gets a chance
to redefine its own geometry and to enforce a particular layout. When these
recomputations are finished, the Ogre library effectively calls method geometry
to relocate the objects.

(==> VisualObject move x y)

Type: MSG(ogre.lsh)
Message move is used for changing the location of the topleft corner of the

object’s rectangle to coordinates x and y . It actually calls method moveresize
.



5.5. VISUAL OBJECTS. 291

(==> VisualObject moverel xr yr)

Type: MSG(ogre.lsh)
Message moverel is used for adding xr and yr to the coordinates of the

topleft corner of the object’s rectangle. It actually calls method moveresize .

(==> VisualObject resize w h)

Type: MSG(ogre.lsh)
Message resize is used for changing the width and height of the object’s

rectangle to w and h . It actually calls method moveresize .

(==> VisualObject geometry x y w h)

Type: MSG(ogre.lsh)
See: (==> Container manage-geometry)
Method geometry performs a geometry change on a given object. Unlike

method moveresize , the change takes place immediatly with all the overhead
of recomputing the global position of all objects.

Method geoemtry is normally called by the method manage-geometry de-
fined by the container objects for enforcing a particular layout. You may call
this method directly (this is a backward compatibility requirement), although
it is more efficient to use method moveresize .

(==> VisualObject front x y w h)

Type: MSG(ogre.lsh)
See: (==> Container manage-geometry)
Although the repainting process becomes inefficient, object rectangles may

overlap. Methods front performs an immediate geometry change and places
the object on top of the object stack.

(==> VisualObject back x y w h)

Type: MSG(ogre.lsh)
See: (==> Container manage-geometry)
Although the repainting process becomes inefficient, object rectangles may

overlap. Methods back performs an immediate geometry change and places the
object at the bottom of the object stack.

5.5.3 VisualObject Implementation Methods.

Implementation methods are overriden by each subclass of VisualObject in or-
der to define the behavior of each type of object. Class VisualObject provides
a default implementation for four types of implementation methods:



292 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

• Method realize is called whenever an object is associated to or dissoci-
ated from a window. Redefining a realization method allows for precom-
puting font sizes and color numbers at once.

• The geometry computation method is called whenever the geoemtry re-
quirement of an object may have changed. This method defines the min-
imum size of a graphic object.

• Repaint methods are called when the Ogre library detects that a part of
the object rectangle has been damaged, either because method expose
has been called or because the object has been moved or uncovered by
another object.

• Events methods are called whenever the user performs certain mouse of
keyboard actions. They define what actions are performed in response to
user events. Event messages are documented in the next section.

(==> VisualObject realize window)

Type: MSG(ogre.lsh)
This method is called whenever an object is associated to a window (realized)

or dissociated from a window (unrealized).

• An object is realized when it is inserted into a realized container. A win-
dow object is always realized. When an object becomes realized, method
realize is called with a valid window descriptor as argument window
. Method realize then sets the slot window , compute the geometry
requirement of the object and calls expose in order to paint the object.

• An object is unrealized when it is removed from its container. Method
realize is then called with an empty list as argument.

The default definition of method realize is given below.

(defmethod visualobject realize (w)
(when (setq window w)
(==> this compute-geometry)
(==> itscontainer change-geometry) )

(==> this expose rect) )

Subclasses of VisualObject may override this default definition. The new
definition however must call the superclass method realize in order to perform
the essential tasks described above.

Before overriding method realize , you should also consider overriding
method compute-geometry instead of method realize .



5.5. VISUAL OBJECTS. 293

(==> VisualObject compute-geometry)

Type: MSG(ogre.lsh)
Method compute-geometry is called when the object is realized and when

a change of the object state changes the geometry requirements of the object.
This method must either return an empty list or compute the minimal size

of the object’s rectangle and enforce this minimal size by sending a message
resize and return the new rectangle rect .

The default method compute-geometry just returns the empty list. Class
String for instance overrides this method to compute the size of the string text
and resizes the string object to the correct size.

(==> VisualObject backpaint)

Type: MSG(ogre.lsh)
Method backpaint is called by the Ogre library for repainting the back-

ground of an object. In the case of a container object, this method is called
before repainting the contents of the object.

The default method backpaint tests wether you have a black and white
or a color display and calls method backpaint-bw or backpaint-color re-
spectively. It is therefore advisable to override methods backpaint-bw and
backpaint-color instead of backpaint .

(==> VisualObject backpaint-bw)

Type: MSG(ogre.lsh)
Method backpaint-bw is called by the Ogre library for repainting the back-

ground of an object on a black and white display. In the case of a container
object, this method is called before repainting the contents of the object.

The default backpaint-bw method just clears the object’s rectangle with
the background color color-bg . This is suitable for most cases.

(==> VisualObject backpaint-color)

Type: MSG(ogre.lsh)
Method backpaint-bw is called by the Ogre library for repainting the back-

ground of an object on a color display. In the case of a container object, this
method is called before repainting the contents of the container object.

The default backpaint-color method just clears the object’s rectangle with
the background color defined in the current palette. This is suitable for most
cases.

(==> VisualObject repaint)

Type: MSG(ogre.lsh)



294 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

Method repaint is called by the Ogre library for repainting the foreground
of an object. In the case of a container object, this method is called after
repainting the contents of the container object.

The default method repaint tests wether you have a black and white or
a color display and calls method repaint-bw or repaint-color respectively.
It is therefore advisable to override methods repaint-bw and repaint-color
instead of repaint .

(==> VisualObject repaint-bw)

Type: MSG(ogre.lsh)
Method repaint is called by the Ogre library for repainting the foreground

of an object on a black and white display. In the case of a container object, this
method is called after repainting the contents of the container object.

The default method repaint-bw does nothing.

(==> VisualObject repaint-color)

Type: MSG(ogre.lsh)
Method repaint is called by the Ogre library for repainting the foreground

of an object on a color display. In the case of a container object, this method is
called after repainting the contents of the container object.

The default method repaint-color does nothing.

5.5.4 Event Methods.

See: (==> Control activate d )
See: Events.
Whenever the user performs certain mouse of keyboard actions, the Lush

kernel generates an event as explained in the preceding chapter.
When the Ogre library detects an event in a window, it builds an ordered list

of objects eligible for handling the event. An event message is then send to the
object with highest priority. If the event method returns the symbol ignored ,
the library proceed with the next object in the ordered list. This process stops
as soon as an object accepts the event (i.e. until an event message returns a
value different from symbol ignored .)

Starting with the highest priority, the objects eligible for receiving event
messages are:

• The toplevel container,

• The chain of embedded containers (if any) managing the topmost object,

• The topmost object located below the mouse cursor,

• The current actived control object of the window. Activation is discussed
later in section “Control”.



5.5. VISUAL OBJECTS. 295

Class VisualObject defines a default method for the event messages. These
default methods just reject the event by returning symbol ignored .

In practice, the default event rejection mechanism ensures that mouse events
are handled by the object located below the mouse cursor and keyboard events
are handled by the actived objects. It is however possible to change these
settings by overriding the event methods of objects with a higher priority.

(==> VisualObject mouse-down x1 y1)

Type: MSG(ogre.lsh)
See: (eventinfo)
Method mouse-down is called when the mouse button is depressed. Ar-

guments x1 and y1 indicate the location of the mouse cursor in the current
window when the mouse button has been depressed.

You can use function eventinfo to find the name of the mouse button and
the state of the shift and control keys. Names returned by function eventinfo
are quite machine dependent however.

(==> VisualObject mouse-drag x1 y1 x2 y2)

Type: MSG(ogre.lsh)
Method mouse-drag is called whenever the mouse is moved while the mouse

button is depressed. Arguments x1 and y1 indicate the location of the mouse
cursor in the current window when the mouse button was first depressed. Argu-
ments x2 and y2 indicate the coordinates of the mouse cursor after the move.

(==> VisualObject mouse-up x1 y1 x2 y2)

Type: MSG(ogre.lsh)
Method mouse-up is called when the mouse button is released. Arguments

x1 and y1 indicate the location of the mouse cursor in the current window
when the mouse button was first depressed. Arguments x2 and y2 indicate the
coordinates of the mouse cursor when the button was released.

(==> VisualObject keypress c x y)

Type: MSG(ogre.lsh)
Method keypress is called whenever an ASCII key is hit. Argument c is a

string which contains a single character for that key. Arguments x and y are
the location of the mouse cursor when the key was hit.

(==> VisualObject arrow-left x y)

Type: MSG(ogre.lsh)
See: (eventinfo)
Method arrow-left is called whenever the user types the left arrow key.

Arguments x and y are the location of the mouse cursor when the key was hit.



296 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

You can use function eventinfo to find the exact name of the key and the
state of the shift and control keys. Key names returned by function eventinfo
are quite machine dependent however.

(==> VisualObject arrow-right x y)

Type: MSG(ogre.lsh)
See: (eventinfo)
Method arrow-right is called whenever the user types the right arrow key.

Arguments x and y are the location of the mouse cursor when the key was hit.
You can use function eventinfo to find the exact name of the key and the

state of the shift and control keys. Key names returned by function eventinfo
are quite machine dependent however.

(==> VisualObject arrow-up x y)

Type: MSG(ogre.lsh)
See: (eventinfo)
Method arrow-up is called whenever the user types the up arrow key. Ar-

guments x and y are the location of the mouse cursor when the key was hit.
You can use function eventinfo to find the exact name of the key and the

state of the shift and control keys. Key names returned by function eventinfo
are quite machine dependent however.

(==> VisualObject arrow-down x y)

Type: MSG(ogre.lsh)
See: (eventinfo)
Method arrow-down is called whenever the user types the down arrow key.

Arguments x and y are the location of the mouse cursor when the key was hit.
You can use function eventinfo to find the exact name of the key and the

state of the shift and control keys. Key names returned by function eventinfo
are quite machine dependent however.

(==> VisualObject help x y)

Type: MSG(ogre.lsh)
See: (eventinfo)
Method help is called whenever the user types the system dependent help

key. Arguments x and y are the location of the mouse cursor when the key was
hit.

The help key under Windows is function key F1. The help key under X11
can be configured using program xmodmap .

You can use function eventinfo to find the exact name of the key and the
state of the shift and control keys. Key names returned by function eventinfo
are quite machine dependent however.



5.6. CONTROL OBJECTS. 297

(==> VisualObject fkey x y)

Type: MSG(ogre.lsh)
See: (eventinfo)
Method fkey is called whenever the user types a key which does not corre-

spond to an ASCII character and yet cannot be processed as an arrow key or a
help key. You must then use function eventinfo to analyze the keyname and
process the event.

Since key names returned by function eventinfo are quite machine depen-
dent, your event handling procedure should use this name as a hint rather than
expecting well defined values.

Remark: All operating systems define certain hot keys for various purposes.
Lush cannot override these assignments. Under Windows for instance, keys F9,
F10 and CTRL-F4 are directly processed by the operating system and never
passed to WinLush.

(==> VisualObject size w h)

Type: MSG(ogre.lsh)
Method size is called whenever the geometry of an object changes in re-

sponse to a user interaction or to a change in a related object.

5.6 Control Objects.

See: Visual Objects.
See: Event Methods.
Class Control is the abstract class for interactive graphics objects like but-

tons, check boxes, menu items, etc...
Since class Control is a subclass of class VisualObject , all the properties

and methods of class VisualObject also apply to class Control . In addi-
tion, class Control provides more support for defining the interactive graphics
objects.

• Class Control provides standard methods for enabling or disabling a con-
trol object. Slot disabled contains a non nil value when a control is
disabled.

• Class Control provides standard methods for changing the activation sta-
tus of a control object.

• Class Control defines standard methods for changing the appearance of
an object. Slot text contains whatever data represents the appearance
of an object.

• Class Control defines standard methods for storing and handling the
state resulting of user interaction. Slot data contains whatever data rep-
resent this state.



298 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

• Class Control stores a callback function in slot callback . This function
is called when the user performs certain action defined in by implementa-
tion of the specific control object.

5.6.1 (new Control w h f)

Type: CLASS(ogre.lsh)
See: Ogre Callbacks.
Creates and return a new instance of class Control . Arguments w and h

are the width and the height of the control object. Argument f is the callback
function for this control object.

This constructor is seldom used for creating new instances. Derived classes
(e.g. Button ) usually call this constructor method within their own constructor
method in order to initialize the Control part of their instances.

5.6.2 Enabling or Disabling a Control Object.

When disabled, the control object ignores all user interaction. This is signalled
by having the control rendered with a specific appearance. A disabled button
on a black and white display is rendered with a dithering pattern. The label of
disabled button on a color display is rendered with a light gray color instead of
black.

The enabled/disabled status of a control object is stored in the slot disabled
defined by class Control .

• Slot disabled contains () if the object is enabled.

• Slot disabled contains a number (the disable count) is the object is dis-
abled.

Implementation methods usually test slot disabled before performing their
task. Repainting methods must change the rendering colors according to the
enabled/disabled status of the object is disabled. Event methods must ignore
event messages when the object is disabled.

Two request methods, enable and disable , are defined by class Control
for changing the enabled/disabled status of an object:

(==> Control disable)

Type: MSG(ogre.lsh)
If message disable is sent to an enabled control object, the object is dis-

abled. If message disable is send to an already disabled control object, the
object’s disable count is increased.

(==> Control enable)

Type: MSG(ogre.lsh)



5.6. CONTROL OBJECTS. 299

When message enable is sent to a control object, the object’s disable count
is decreased by one. The object is enabled when this count reaches zero.

The disabled count feature proves useful for disabling an object either per-
manently or temporarily:

• For permanently enabling or disabling a control object whose state is
unknown, enable it first and possibly disable it.

• For temporarily disabling an object, just disable it. It will retrieve its
previous state when you will enable it again.

(new DisableLock c1...cn)

Type: CLASS(ogre.lsh)
It is often useful to disable a button during the execution of some Lush

program and to restore its initial state. This task could be achieved by sending
messages disable and enable .

If however an error occurs during the program execution, the button would
remain disabled. The best way to solve this problem consists in creating a lock
object defined by class DisableLock .

If you wish to temporarily disable object c1 to cn , proceed as follows:

(let ((lock (new DisableLock c1...cn)))
;;; call your Lush program here
(......) )

When created, the lock object sends a message disable to the objects c1
to cn . The lock is destroyed when you leave the let instruction. The lock
destructor then sends a messages enable to our objects c1 to cn .

If an error occurs during the execution of the Lush program, the lock is
destroyed by the garbage collector and the objects retrived to their initial state.

5.6.3 Activation of a Control Object.

The active control object receives all the event messages that were not processed
by the objects located below the mouse cursor. Only one object might be actived
in a given window at a given instant.

Activation is especially useful for redirecting keyboard events toward objects
containing some editable text. Having the keyboard events processed by the
object located under the mouse often seems unnatural because the keyboard
does not move physically like a mouse.

The user activates such an editable object with a mouse click in the object
rectangle. It is customary in Ogre that the editable objects ignore the keyboard
events unless they are active. Most keyboard events are then unconditionnally
directed to the active object without regard to the position of the mouse cursor.

On the other hand , it is often useful to implement accelerator keys for
performing tasks usually achieved by menu items or buttons. Accelerator key



300 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

events must be defined by the containers managing the related objects. This
definition ensures that accelerator keys events are not sent to the active object
but handled directly.

The activation status of a control object is stored in slot activated (sic)
defined by class Control . This slot contains a non nil value if the control
object is active. Implementation methods of editable objects usually test slot
activated before performing their task. Repainting methods must indicate
the activation status of an object. Event methods must ignore event messages
unless the object is actived.

Two request methods are defined by class Control for testing or changing
the activation status of an object. These methods ensure that one object only
is actived in a given window.

(==> Control activate d)

Type: MSG(ogre.lsh)
Changes the activation status of the target object to d . If argument d is

() , the target object is deactived. If argument d is t , the target object is
actived and the previous active object is desactived.

5.6.4 Appearance of a Control Object.

Class Control defines a slot named text which contains whatever data is useful
for defining the appearance of a control object. In most cases so far , this slot
contains a single string which is either a button label or a checkbox caption.

Two request methods are defined by class Control for obtaining and chang-
ing the contents of this slot:

(==> Control settext d)

Type: MSG(ogre.lsh)
This request methods changes the contents of the slot text of the target

object to the value given by argument d .
Since this change causes a general change in the object appearance, the

object is sent a message compute-geometry for redefining its geometry re-
quirements and a message expose for updating the display. Sending message
settext sometimes triggers a global relocation of all objects in the window.

(==> Control gettext)

Type: MSG(ogre.lsh)
This request method returns the contents of slot text . It is prefered to

use this method rather than accessing directly the slot text because complex
control objects may use other slots for controlling the appearance of the object.



5.6. CONTROL OBJECTS. 301

5.6.5 State of a Control Object.

Class Control defines a slot named data which contains whatever data is useful
for storing the state of a control object resulting from the user interaction. For
instance , slot data of a check box contains a boolean value. Similarly , slot
data of an editable string contains the current value of the string.

Three methods hasdata , setdata and getdata are used for obtaining and
changing the state of a control object. These methods are more implementation
method than request methods. Several subclasses of Control override these
methods in order to pre-process or post-process the state information.

These methods are mostly useful because they provide an abstract way to
save and restore the state of a collection of control objects. For instance , a
container object can save or restore the state of all its descendants with a single
message.

(==> Control setdata d)

Type: MSG(ogre.lsh)
This method changes the state of a control object to d
The default method sets the slot data of the target object to the value given

by argument d . Since this change usually changes the object appearance, the
object is sent a message expose for updating the display.

(==> Control getdata)

Type: MSG(ogre.lsh)
This method returns the state of a control object.
The default method just returns the contents of slot data . It is prefered to

use this method rather than accessing directly the slot data because complex
control objects may use other slots for controlling the state of the object.

(==> Control hasdata)

Type: MSG(ogre.lsh)
If an object contains some state information, this method returns the object

itself. If an object contains no state information, this method returns the empty
list.

Method hasdata is used to test if an object provides an adequate imple-
mentation for methods setdata and getdata . The default method hasdata
indicated that there is some state information in the control object. Certain
subclasses, like push button, override this method in order to signal that they
carry no state information.

5.6.6 Ogre Callbacks.

See: Window Objects.
See: Popup Requesters.



302 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

See: Forms.
See: Menus.
Each control object has a callback function. Callback functions are executed

when certain event messages are received. For example, a push button executes
the callback function when it is depressed.

Callbacks functions are called with one argument which is the caller object.
They are executed within the caller scope and therefore directly access the slots
of the caller object. In addition certain local variables are set:

• Variable thiswindowobject always refers to the toplevel container of
the control object. See the discussion on class WindowObject for more
information.

• Variable thisrequester possibly refers to the closest requester contain-
ing the control object. See the discussion on class Requester for more
information.

• Variable thisform possibly refers to the closest form containing the con-
trol object. See the discussion on class Form for more information.

• Variable thismenu possibly refers to the menu object containing the menu
item which has launched the callback function. See the discussion on class
Menu for more information.

Three methods are implemented by class Control for handling callback
functions.

(==> Control setcall f)

Type: MSG(ogre.lsh)
Message setcall redefines the callback function of a target object to be

function f . Trouble will surely occur if the argument f is not a function with
one argument or an empty list.

(==> Control execute)

Type: MSG(ogre.lsh)
Message execute starts the callback function with the object itself as ar-

gument. The object is disabled while the callback function is running.

(==> Control trigger)

Type: MSG(ogre.lsh)
Message trigger asks the object to simulate an user action. When a push

button receives a trigger message, for example, it is drawn as depressed, executes
the callback function and is redrawn as usual.

The default implementation defined by class Control just calls method
execute . Subclasses of Control usually override method trigger by sending
false event messages to the object.



5.7. CONTAINER OBJECTS. 303

5.7 Container Objects.

See: Visual Objects.
Class Container is the abstract class for container objects. A container

object manages several objects called its sons. Sons are only visible through the
rectangle of the container. The container dispatches event messages, propagates
repainting messages, controls the geometry of its sons and performs a couple of
other critical tasks.

Since class Container is a subclass of class VisualObject , all the proper-
ties and methods of class VisualObject also apply for class Container . Class
Container however defines new slots and new methods for handling container
objects.

• Slot contents contains a list whose elements (son x y w h) point to
the managed objects son and cache the coordinates for their rectangles.

• Class Container defines private method for implementing the core of the
Ogre library. These methods deal with the repainting process and the
geometry management.

• Class Container defines public request methods for handling several con-
trol objects as a whole. Method enable and disable allow you to disable
or enable all the control objects located in a container. Method getdata
returns a list containing the states of all control objects located in the
container. This list is built by sending messages getdata to the control
objects. Method setdata takes such a list as argument and sets the state
of all control objects located in the container.

Subclasses of Container are very frequently defined for defining structuring
container whose sons are arranged according to a certain layout. Classes Row
and Column are examples of such subclasses.

5.7.1 (new Container x y w h ...contents...)

Type: CLASS(ogre.lsh)
Creates a new container object. Arguments x , y , w and h describe the ini-

tial rectangle of the container object. The arguments denoted as ...contents...
are graphical objects initially managed by the container object.

This constructor is seldom used for creating new instances. Derived classes
(e.g. Row ) usually call this constructor method within their own constructor
method in order to initialize the Control part of their instances.

5.7.2 Repainting.

When it is time to repaint the contents of a container , the container object
receives a message backpaint for rendering its background. The objects man-
aged by the container are then rendered on top of this background. Finally the



304 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

container object receives a message repaint for drawing above the managed
objects.

During this operation , the clipping rectangle is the container object’s rect-
angle. Only the portion of the sons which overlap the container’s rectangle are
rendered.

5.7.3 Inserting an Removing Objects.

Three request method are implemented for inserting new objects into a container
or removing inserted objects from a container.

(==> Container insert what)

Type: MSG(ogre.lsh)
Inserts object what on top of the objects located in the container.
When an object is inserted into a container, the coordinates of the topleft

corner of the container’s rectangle are added to the coordinates of the object’s
rectangle. Therefore, if the initial rectangle of an object is located at cordinates
(0, 0) , the object appears on the topleft corner of the container.

If there is a policy for the layout of the container, the new layout is computed
and each object in the container is moved, resized and repainted.

(==> Container remove what)

Type: MSG(ogre.lsh)
Removes object what from the container.
When an object removed from a container, the coordinates of the topleft

corner of the container’s rectangle are subtracted from the coordinates of the
object’s rectangle. Inserting the object again thus inserts the object at the same
location with respect to the container’s topleft corner.

(==> Container removall)

Type: MSG(ogre.lsh)
Removes all objects managed by the container.

5.7.4 Geometry Management.

Class Container implements the core of the geometry management system of
the Ogre library. This system aims at providing containers with the opportunity
of enforcing certain geometry policies on their sons. For instance:

• Class Container enforces a very weak policy. If you move an instance of
class Container , the managed objects move with their container.

• Class Row aligns the objects on a row and ensures that all objects have
the same sufficient height,



5.7. CONTAINER OBJECTS. 305

• Class Column aligns the objects on a row and ensures that all objects have
the same sufficient width,

• Class Grid aligns the objects on a grid with a predefined number of
columns. Objects located in a same column have the same sufficient width
and objects located in a same row have the same sufficient height.

These structuring containers make Ogre more attractive and easier to use
than aksing the programmer to precompute the position of each object for all
the interface configurations. Yet, geometry management is the most difficult
component of the Ogre library.

Containers define the geometry policy using only two implementation meth-
ods, compute-geometry and manage-geometry . Here are the steps involved
in a geometry computation:

• 1. An object managed by a container receives a geometry change request
(i.e. moveresize , move or resize ).

• 2. The container of this object receives a message compute-geometry
in order to recompute its size requirements by looking at the slots rect
of the managed objects. It might then call method resize in order to
enforce its new minimal size.

• 3. The final rectangle of the container is stored in slot rect of the con-
tainer. The container then receives a message manage-geometry to get a
chance to assign a final rectangle to all managed objects by sending them
a message geometry .

The hidden part of the iceberg lies in the global computation of the object’s
location. If the container decides to change its geometry requirements during
step 2, the container of the container then receives a message compute-geometry
and gets a chance to participate to this geometry discussion. When this sec-
ond container sets the first container’s geometry, it calls the first container’s
method geometry which calls the first container’s method manage-geometry
and effectively performs step 3.

Important Note: The geometry management system has been significantly
revamped in Lush. It is now faster and skinnier. Old programs still work
correctly unless they redefine method geometry of class WindowObject .

(==> Container compute-geometry)

Type: MSG(ogre.lsh)
The implementation method compute-geometry is called when the con-

tainer is realized and when a change in their object state changes the geometry
requirements of the object.

This method must compute the minimal size of the container on the basis
of the information stored in the slots rect of the managed objects or cached
in the list of managed objects stored in slot contents of the container. This
method may enforce a minimal size by sending a message resize .



306 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

The default method compute-geometry just returns the empty list.
Example:
Class Row defines the following method compute-geometry which com-

putes the minimal size of a row:

(defmethod row compute-geometry ()
(when window
(let* ((height (sup (cons 0 (all (((son x y w h) contents)) h))))

(width (sum (all (((son x y w h) contents)) w))) )
(==> this resize (+ width (* hspace (length contents))) height)
rect ) ) )

(==> Container manage-geometry)

Type: MSG(ogre.lsh)
The implementation method manage-geometry is called when it is time to

locate the sons of the container on the basis of the final rectangle assigned to
the container.

This method must compute the final rectangle of all the managed objects
according to the container’s rectangle (found in slot rect of the container)
and according to the managed object initial rectangles (found in slot rect of
the managed objects and cached in the list of managed objects located in slot
contents of the container.) Method manage-geometry then sends a message
geometry to the managed objects in order to assign a final rectangle to these
objects.

The default method manage-geometry defined in class Container does
nothing. A secondary mechanism just moves the managed objects in order to
maintain their position with respect to the topleft corner of the container’s
rectangle.

Example:
Class Row defines the following method manage-geometry which arranges

the managed objects in a row starting on the left of the container’s rectangle.

(defmethod row manage-geometry ()
(let (((x y w h) rect))
(incr x (div hspace 2))
(each ((i contents))
(let ((w (nth 3 i))) ;; get the object’s width

(==> (car i) geometry x y w h)
(incr x (+ w hspace)) ) ) ) )

(new GeometryLock c)

Type: CLASS(ogre.lsh)



5.7. CONTAINER OBJECTS. 307

A significant amount of time is spent in geometry management when many
objects are inserted into a realized container. It is then advisable to postpone
the geometry until all objects have been inserted.

Such a task is accomplished by creating an object instance of class GeometryLock
as follows:

(let ((lock (new GeometryLock c)))
;;; insert your objects here into container c
(==> c insert ...) )

When created, the lock sets a flag in container c which suspend the usual
geometry management. When the lock is destroyed, the flag is cleared and the
geometry management is started once. If an error occurs during the object
insertion, the lock is destroyed by the garbage collector and the container is left
with an acceptable state.

5.7.5 Control Management.

Five request methods are defined by class Container for handling as a whole
several control objects managed by a container or by its sons.

(==> Container disable)

Type: MSG(ogre.lsh)
When a container receives a message disable , all the control objects man-

aged by the container or by its sons receive a message enable . This is useful
for controlling the enabled/disabled state of several control objects at once.

(defmethod container disable ()
(each ((i contents))
(==> (car i) disable) ) )

(==> Container enable)

Type: MSG(ogre.lsh)
When a container receives a message enable , all the control objects man-

aged by the container or by its sons receive a message enable . This is useful
for controlling the enabled/disabled state of several control objects at once.

(defmethod container enable ()
(each ((i contents))
(==> (car i) enable) ) )



308 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

(==> Container hasdata)

Type: MSG(ogre.lsh)
Method hasdata returns the list of stateful control objects managed by the

container of by any of its sons. This is achived by concatenating the result of
running method hasdata on all the objects managed by the container.

(defmethod container hasdata ()
(flatten (all ((i contents)) (==> (car i) hasdata))) )

(==> Container getdata)

Type: MSG(ogre.lsh)
Method getdata returns the list of states returned by all control objects

managed by the container of by any of its sons.

(defmethod container getdata ()
(all ((i (==> this hasdata)))
(==> i getdata) ) )

(==> Container setdata d)

Type: MSG(ogre.lsh)
Method getdata sets the states of all control objects managed by the con-

tainer of by any of its sons using list d which is usually returned by a call to
method getdata .

(defmethod container setdata (d)
(each ((i (==> this hasdata))

(j d) )
(==> i setdata j) ) )

5.8 Container Flavors.

This chapter presents various flavors of predefined containers. Class Form define
a container abstract class for implementing composite objects. Class WindowObject
defines a toplevel container associated to a window on your screen. Structuring
containers help organizing the layout of a graphic interface.

5.8.1 Forms.

See: Ogre Callbacks.
Class Form is an abstract class used to group several cooperating objects

into a single Ogre component. This component can then be inserted into a
window or a requester.



5.8. CONTAINER FLAVORS. 309

Class Form is a trivial subclass of class Container . Class Form adds three
properties to standard containers.

• Method compute-geometry makes a form object large enough to hold all
its sons while keeping their initial relative positions.

• Method manage-geometry places the sons of a form object at the center
of the form object while keeping their relative position.

• When Ogre calls the callback function of a descendant of a form object,
it sets the temporary variable thisform to the form object.

These properties are handy for designing complex graphics objects com-
posed of several components as subclasses of Form . Several classes, like class
WindowObject , class Requester and class Viewer , are implemented as sub-
classes of Form .

Moreover, a form object is sometimes considered as an extended control
object. For instance, we can gather a slider and an editable numeric field into
a form object and use this object like an usual control object.

This is achieved by defining a subclass of Form whose constructor builds the
elements of the composite object and keeps a pointer to these object in some of
its slots. This subclass then must define methods hasdata , setdata , getdata
, execute and setcall like those of a control object. Method hasdata usually
returns this . The other methods are usually forwarded to the components of
the composite object.

(new Form ...contents...)

Type: CLASS(ogre.lsh)
Creates a new form object managing objects ...contents... . There is

no need to provide a default size for a form object since the form size is derived
from the component sizes and location.

5.8.2 Window Objects.

See: Events.
Class WindowObject is a subclass of class Form which implements the link

between a physical window and its managed ogre objects.

• The constructor of class WindowObject creates a window on the screen
with the same size than the window object rectangle. It call then method
realize to tell its sons that a physical window is now attached to the
graphic interface.

• Class WindowObject define methods for handling the window events and
redirecting event messages to the proper descendant objects.



310 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

• Class WindowObject define slots and methods to manage the repainting
process. The window object remembers which portions of the window has
been damaged or exposed (using message expose ) and sends repainting
messages when appropriate.

• Class WindowObject defines methods for synchronizing the window object
rectangle and the physical window geometry.

A window object is a toplevel container. Inserting a window object into
another container is an almost certain cause of trouble.

Whole graphics interface are often defined as subclasses of WindowObject
. Such subclasses usually contain new slots for storing interface specific data.
Callback functions then send messages to thiswindowobject . These messages
then are executed within the interface scope.

(new WindowObject x y w h name ...contents...)

Type: CLASS(ogre.lsh)
Creates a window object managing objects ...contents... .
When a window object is created, the constructor creates a window on the

screen named name with width w and height h . If both arguments x and y are
0 , the position of this window is defined by the default rule of your computer.
If both arguments are positive, they define the position of the topleft corner of
the window.

Exemple:

;;; First of all, initialize Ogre !
? (ogre)
= idle-hook
;;; create a window with a button
? (setq win (new WindowObject 100 100 300 300 "Example"

(setq b (new stdbutton "Hello" ;; its name
(lambda(c) (beep)) )) )) ;; its callback

= ::WindowObject:06f00
;;; Now we remove the button b from win
? (==> win remove b)

Note: The event handler of the newly created window is the corresponding
Ogre window object. You can thus interactively obtain the Ogre window object
for a given window by typing (setq w (waitevent)) and clicking into the
corresponding window.

(new AutoWindowObject x y w h name contents)

Type: CLASS(ogre.lsh)



5.8. CONTAINER FLAVORS. 311

Lush provides an additional class named AutoWindowObject . Unlike class
WindowObject , class AutoWindowObject manages a single object contents
and dynamically resizes the window to the size of the managed object.

The constructor arguments w and h are only hints for sizing the window.
They may be empty lists instead of numbers. The size of the window is even-
tually given by the size of its contents.

WindowObject Request Methods.

(==> windowobject palette p) Type: MSG(ogre.lsh)
See: Ogre Color Palette.
Message palette redefines the color palette used by Ogre for repaining the

objects managed by the windowobject. This method sets slot color-palette
of the window object and calls expose in order to repaint the window.

Argument p can be the empty list (for black and white display) or a palette
returned by function new-palette (for color display). The color palette selec-
tion is enforced even if you do not use an adequate screen.

(==> windowobject setmodal m) Type: MSG(ogre.lsh)
Message setmodal affects the redirection of event messages by defining a

model object. When a modal object is defined, all events are redirected to this
object. This is useful for implementing requesters that prevent the user to reach
the other components of the interface.

• When argument m is the empty list, message setmodal undefines the
current modal object.

• When argument m is one of the objects managed by the window object,
message setmodal makes this object modal.

(==> windowobject getmodal) Type: MSG(ogre.lsh)
Returns the current modal object in the window object or the empty list if

no modal object is defined.
(==> windowobject read-event) Type: MSG(ogre.lsh)
See: Event Lists.
Method read-event returns the next available event in the window associ-

ated to the window object. Events are returned as standard Lush event lists. If
no events are pending, method read-event blocks.

(==> windowobject manage-event event) Type: MSG(ogre.lsh)
See: Event Lists.
Method manage-event processes a Lush event list event and sends a cor-

responding event message to the proper object in the window object.

WindowObject Implementation Methods.

When defining a graphic interface as a subclass of class WindowObject you may
override three methods:



312 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

• Method delete is called when you destroy the window using a the window
manager feature (i.e. with the mouse).

• Methods compute-geometry and manage-geometry work as usual. They
are however called in special cases allowing a dynamical change of the
window size.

(==> windowobject delete) Type: MSG(ogre.lsh)
Method delete is called when the user deletes the onscreen window using

the window manager features. In the same spirit, we suggest you to call method
delete whenever you destroy a window object.

The default method delete just deletes the window object. You may over-
ride this method, for instance, to pop up a confirmation dialog to the user.

(==> windowobject manage-geometry) Type: MSG(ogre.lsh)
Beside its normal use, method manage-geometry is also called when you

resize the window with the mouse. The mouse action is actually converted
into a size event which is processed using the usual geometry management
functions.

The default method manage-geometry does nothing. Overriding the method
manage-geometry in a window object is often useful for adjusting the size of
the window object components to the onscreen window size.

(==> windowobject compute-geometry) Type: MSG
Method compute-geometry usually computes the minimal size of the object

and enforces this geometry using method resize . In the case of a window
object , the actual size of the onscreen window is also adjusted.

The default method compute-geometry does nothing. You may override
this method to adjust automatically the size of the onscreen window to the
mimial size of its contents.

5.8.3 Structuring Containers

See: Container Objects.
Structuring containers are used for designing the layout of a graphics inter-

face. They arrange their sons according to a certain policy. Ogre provides three
class of structuring containers: class Row , class Column and class Grid .

These containers inherit all the slots and methods of an ordinary container.
They just define specific methods compute-geometry and manage-geometry
to enforce their layout policy.

In addition, two classes are provided for padding a row or a column with
some space, class EmptySpace and class DarkSpace .

(new Row ...contents...)

Type: CLASS(ogre.lsh)
See: (==> Container insert what )
See: (==> Container remove what )
See: Control Management.



5.8. CONTAINER FLAVORS. 313

Returns a new row object managing the objects specified by ...contents...
.

Class Row defines a structuring container which aligns its contents horizon-
tally from left to right. The height of a row is determined by the managed
object whose required height is largest.

An empty space is inserted between the objects. This space is defined by
slot hspace of the row object and defaults to 4 points.

(new Column ...contents...)

Type: CLASS(ogre.lsh)
See: (==> Container insert what )
See: (==> Container remove what )
See: Control Management.
Returns a new column object managing the objects specified by ...contents...

.
Class Column defines a structuring container which aligns its contents verti-

cally from top to bottom. The width of a column is determined by the managed
object whose required width is largest.

An empty space is inserted between the objects. This space is defined by
slot vspace of the column object and defaults to 4 points.

Example:

;; Creates a window with three buttons
? (setq win

(new WindowObject 100 100 300 300 "Essai"
(new Column
(new StdButton "One" (lambda(d) (print 1)))
(new StdButton "Two" (lambda(d) (print 2)))
(new StdButton "Three" (lambda(d) (print 3))))))

= ::WindowObject:06f00

(new Grid cols ...contents...)

Type: CLASS(ogre.lsh)
See: (==> Container insert what )
See: (==> Container remove what )
See: Control Management.
Returns a new grid object with cols columns and managing the objects

specified by ...contents... .
Class Grid defines a structuring container which aligns its contents in a grid

with cols columns. The grid is filled left to right. The width of each column
is determined by the object of the column whose required width is largest. The
height of each row is determined by the object of the row whose required height
is largest.



314 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

Empty spaces are inserted between rows and columns. These spaces are
defined by slot vspace and hspace of the grid object and defaults to 4 points.

(new EmptySpace w [h] )

Type: CLASS(ogre.lsh)
Extra spaces may be added into a structuring container by inserting an emp-

tyspace object. Such an object has no response to user events and is uniformly
filled with the background color.

Class EmptySpace is a class of emptyspace objects. The constructor expres-
sion above returns a new emptyspace object of minimal width w and minimal
height h . When argument h is omitted, a square minimal space is assumed.

Of course, the minimal geometry specifications interact with the geometry
management of structuring conteners. It is seldom necessary to define all the
sizes of an emptyspace object.

Exemple:

;;; Creates a window with three buttons
;;; with a 20 pixels space between button 2 and button 3
? (setq win

(new WindowObject 100 100 300 300 "Essai"
(new Column
(new StdButton "One" (lambda(d) (print 1)))
(new StdButton "Two" (lambda(d) (print 2)))
(new EmptySpace 20)
(new StdButton "Three" (lambda(d) (print 3))) )))

= ::WindowObject:06f00

(new DarkSpace w [h] )

Type: CLASS(ogre.lsh)
Similarly you can insert a darkpace object into a structuring container. On

a black and white display, a darkspace is displayed as a black area. On a color
display, a darkspace is displayed as a raised area.

Class DarkSpace is a class of emptyspace objects. The constructor expres-
sion above returns a new emptyspace object of minimal width w and minimal
height h . When argument h is omitted, a square minimal space is assumed.

Of course, the minimal geometry specifications interact with the geometry
management of structuring conteners. Specifying a single argument of 4 , for
instance, will define a minimal width and height of 4 points. If such a darkspace
object is inserted in a column, the width of object will be increased up to the
column width, effectively displaying a 4 points thick line.

Exemple:

;;; Creates a window with three buttons



5.9. BUTTONS. 315

;;; with a 3 pixels line between button 2 and button 3
? (setq win

(new WindowObject 100 100 300 300 "Essai"
(new Column
(new StdButton "One" (lambda(d) (print 1)))
(new StdButton "Two" (lambda(d) (print 2)))
(new DarkSpace 3)
(new StdButton "Three" (lambda(d) (print 3))))))

= ::WindowObject:06f00

5.9 Buttons.

Buttons are small interactive area which can be used for triggering an action or
storing boolean states. Ogre provides four class of buttons:

• Class StdButton and TinyButton for push buttons,

• Class CheckBox for boolean state buttons,

• Class RadioButton for exclusive buttons.

All these classes are subclasses of Control . Buttons thus inherit all the
slots and methods defined in class Control .

5.9.1 Push Buttons.

A push button invokes a specific action when the user clicks the mouse button
while the pointer is located above the button image. Two kinds of push buttons
are defined by the Ogre library.

(new StdButton label call)

Type: CLASS(ogre.lsh)
See: (font-12b)
See: (==> Control settext d )
See: (==> Control gettext)
See: (==> Control setcall f )
Class StdButton implements a standard push button. The label of a stan-

dard push button is displayed using the font set by the function stored in slot
textfont , which default to a 12 points bold font font-12b .

The constructor expression returns a push button whose name is given by
string label . This label may be changed by sending a message settext .
When the button is depressed, the callback function call is executed. The
button remains disabled while the callback function has not returned.

Example:



316 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

;;; A window with a 3 state label
? (setq win

(new WindowObject 100 100 300 300 "Essai"
(new StdButton "One"

(lambda(caller)
(==> caller settext

(selectq (==> caller gettext)
("One" "Two")
("Two" "Three")
(t "One") ) ) ) ) ) )

= :WindowObject:06f00

(new TinyButton label call)

Type: CLASS(ogre.lsh)
See: (font-12b)
See: (==> Control settext d )
See: (==> Control gettext)
See: (==> Control setcall f )
Class TinyButton implements a push button with a reduced size. A tiny

push button is slightly smaller than a standard push button because the label
is written using a smaller font font-12 .

The constructor expression returns a push button whose name is given by
string label . This label may be changed by sending a message settext .
When the button is depressed, the callback function call is executed. The
button remains disabled while the callback function has not returned.

5.9.2 Check Boxes.

A check box is composed of a small square button followed by a descriptive text.
When the user clicks on the square or on the text , the state of the small square
changes.

Class CheckBox implements check box buttons. Since class CheckBox is a
subclass of class Control , all the slots and methods defined for control objects
are inherited.

(new CheckBox label call)

Type: CLASS(ogre.lsh)
See: (==> Control settext d )
See: (==> Control gettext)
See: (==> Control setdata d )
See: (==> Control getdata)
See: (==> Control setcall f )



5.9. BUTTONS. 317

Returns a new check box whose descriptive text is given by string label .
When a check box is depressed, its state changes and the callback function call
is executed.

You can query or change the state of a check box ( t or () ) by sending
messages getdata and setdata . The descriptive text can be modified using
settext .

Example:

;;; A window with a check box that controls
;;; the enable/disable state of a push button
? (setq win

(new WindowObject 100 100 300 300 "Essai"
(new column

(setq thebutton
(new StdButton "beep"

(lambda(c) (beep)) ))
(new CheckBox "Disable button"

(lambda(c)
(if (==> c getdata)

(==> thebutton disable)
(==> thebutton enable) ) ) ) ) ) )

(new ImageButton up-image down-image disabled-image call)

Type: CLASS(ogre.lsh)
See: (==> Control setcall f )
Class ImageButton implements a push button whose appearance is an image

drawn with rgb-draw-matrix . Each of the first three arguments must be an
idx2 or an idx3 of ubytes containing the pixel data (greyscale if an idx2, RGB if
an idx3 with at least 3 elements in the last dimension). up-image is the image
shown when the button is up, down-image when it is pushed, disabled-image
when it is disabled. The A (alpha) component, if present, is ignored. call is
the callback function called when the button is clicked.

Here is an example that shows how to create down and disabled image of an
ImageButton from an up image.

(libload "libimage/image-io")
(libload "libimage/rgbaimage")
(ogre)
(setq up (image-read-rgba "my-button-image.png"))
(setq down (idx-copy up))
(rgbaim-contbright up down -1 0)
(setq disabled (idx-copy up))
(rgbaim-contbright up disabled 0.5 40)
(setq btn (new ImageButton up down disabled (lambda (c) (printf "coucou\\n"))))



318 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

(setq window (new windowobject 10 10 200 200 "test" btn))

(new StdButtonBg text up-image down-image disabled-image call)

Type: CLASS(ogre.lsh)
See: (==> Control setcall f )
This works just like an StdButton except that the image of the button is

an RGBA or grayscale image passed as argument (instead of the boring blueish
rounded rectangle of StdButton ). The text is displayed on top of the image.
The three images passed as argument will be used respectively as the up button
image, the clicked (down) button image, and the disabled button image. The
text is drawn in black over the background image, so the image colors should
not be too dark. The background images are automatically sized/resized to fit
the text (without necessarily preserving the aspect ratio). The images must be
idx2 (for grayscale images) or idx3 with the last dimension equal to 4 (RGBA
images). Tha A (alpha) component is ignored.

Here is an example that shows how to create an StdButtonBg from one of
the standard icons:

(libload "libimage/image-io")
(libload "libimage/rgbaimage")
(setq icondir (concat-fname lushdir "lsh/libogre/icons"))
(ogre)
(setq btn
(new StdButtonBg
"Click Me"
(image-read-rgba (concat-fname icondir "button-brushed-metal-02-up.png"))
(image-read-rgba (concat-fname icondir "button-brushed-metal-02-down.png"))
(image-read-rgba (concat-fname icondir "button-brushed-metal-02-disabled.png"))
(lambda (c) (printf "coucou\\n"))))

(setq window (new windowobject 10 10 200 200 "test" btn))
(==> btn disable)
(==> btn enable)

5.9.3 Exclusive Buttons.

Exclusive button are two-state buttons which cooperate with the other buttons
in the same container in order to ensure that at most one button is in a positive
state.

Class RadioButton implements exclusive buttons. Since class RadioButton
is a subclass of class CheckBox , all the slots and methods defined for checkbox
and control objects are inherited.

(new RadioButton label call)

Type: CLASS(ogre.lsh)



5.9. BUTTONS. 319

See: (==> Control settext d )
See: (==> Control gettext)
See: (==> Control setdata d )
See: (==> Control getdata)
See: (==> Control setcall f )
Returns a new check box whose descriptive text is given by string label

. You can query or change the state of a check box ( t or () ) by sending
messages getdata and setdata . The descriptive text can be modified using
settext .

You must insert a radiobutton in a container containing only radiobuttons.
Whenever the user clicks on a radiobutton, the state of all the other radiobuttons
in the container becomes () , while the state of the clicked radiobutton becomes
t and the callback function call is called.

Example:

;;; A window with a three radio buttons
;;; building a three state choice
? (setq win

(new WindowObject 100 100 300 300 "Essai"
;; create a common callback function
(let ((call (lambda(d)

(printf "\\%s has been selected\\n"
(==> d gettext) ) )))

(new column
(new radiobutton "choice 1" call)
(new radiobutton "choice 2" call)
(new radiobutton "choice 3" call) ) ) ) )

Remarks:

• All radiobuttons in a same container are exclusive.

• A container of radiobuttons should not contain objects which are not
instances of class RadioButton .

5.9.4 File Requester Button.

A file requester button is composed of a small square button which contains an
icon. When the button is depressed, a file requester is poped up.

A file requester button is usually associated with a string editor, which
displays the file selected in the requester.

See: File Requester.
See: Editable Strings.



320 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

(new FileReqButton areqmsg aedstring)

Type: CLASS
Returns a new file requester button. Argument areqmsg is the introductory

message of the requester associated with the button. Argument aedstring is
the string editor associated with the button.

5.10 Character String Objects.

Ogre provides several classes for handling character string:

• Class String provides a way to display fixed text.

• Class EditString provides a way to display a text string that the user
can edit using the mouse and the keyboard.

• Class EditNumber provides a way to display a numerical text string that
the user can edit using the mouse and the keyboard.

• Class EditSecretString provides a way to display a secret text string
that the user can edit using the mouse and the keyboard.

• Classes EditText and TextPane implement a multiline text editor. Class
TextPane is the basic class for the editor or viewer. Class EditText
manages a text editor and two scrollbars.

5.10.1 Fixed Strings.

Class String is used for creating a caption text which does not respond to user
interaction. Such objects are useful for displaying explanatory text or short
message. Class String is a subclass of class VisualObject . This is not a
control object because it has no user interaction capabilities.

(new String text)

Type: CLASS(ogre.lsh)
See: (==> Control settext d )
See: (==> Control gettext)
Creates a new string object displaying text text . The text displayed by a

string object may be changed using settext like the text of a control object.

• Argument text may be a string containing or not newline characters.
When text contains newline characters, a multiline text is displayed.

• Argument text may also be a list of strings, one per line.

The text is displayed using a font set by the fonction stored in slot textfont
of the string object. This font default to a standard 12 points font.



5.10. CHARACTER STRING OBJECTS. 321

5.10.2 Editable Strings.

See: Regular Expressions.
See: Activation of a Control Object.
See: (==> Control setdata d )
See: (==> Control getdata)
See: (==> Control setcall f )
An editable string is a single line text editor.
An editable string object becomes actived when the user clicks the mouse

button above its rectangle. Keypress and arrow events then are bound to editing
functions according to a keymap stored in global variable EditStringKeymap .

The text edited by an editable string is controlled by the value of the slot
regex of the editable string. This slot contains a regular expression which must
match the text at all times. If an editing action results in a non-matching text,
the action is discarded and a beep is emited.

• Class EditString implements the editable strings. Since class EditString
is a subclass of class Control , all the slots and methods defined for con-
trol objects are inherited.

• Class EditNumber implements an editable string intended for entering or
displaying numbers.

• Class EditSecretString implements an editable string intended for en-
tering secret texts by displaying any character as an ’x’.

(new EditString minsize [defaulttext])

Type: CLASS(ogre.lsh)
Creates a new editable string displaying at least minsize characters. The

initial value of the text is specified by the optional string argument defaulttext
.

Example:

;;; A window with two editable strings
? (setq win

(new WindowObject 100 100 300 300 "Essai"
(new grid 2

(new string "First string:")
(new editstring 16 "number one")
(new string "Second string:")
(new editstring 16 "number two") ) ) )

EditStringKeymap

Type: VAR(ogre.lsh)



322 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

The global variable EditStringKeymap contains the keymap for EditString
objects as a list of key bindings. Every key binding has the form (char action)
where char is a one character string and action is a symbol identifying a
specific editing action.

Every typed character is matched against the keymap.

• If a binding matches the typed character, message action with no argument
is sent to the editable string.

• If no binding matches, the character is inserted into the data string at the
current cursor location. The cursor is then advanced by one position.

The default keymap is loosely modeled after the Emacs text editor:

(setq EditStringKeymap
’( ("\\n" execute) ;; <LineFeed>

("\\r" execute) ;; <Enter> or <Return>
("\\b" backspace ;; <ctrl-H> or <Backspace>
("\\x7f" backspace) ;; <Delete>
("\\^D" delete-char) ;; <Ctrl-D>
("Delete" delete-char) ;; Key <Delete>
("\\^A" begin-of-line) ;; <Ctrl-A>
("Home" begin-of-line) ;; Key <Home>
("\\^E" end-of-line) ;; <Ctrl-E>
("End" end-of-line) ;; Key <End>
("\\^F" arrow-right) ;; <Ctrl-F> and <Right>
("\\^B" arrow-left) ;; <Ctrl-B> and <Left>
("\\^P" arrow-up) ;; <Ctrl-P> and <Up>
("\\^N" arrow-down) ;; <Ctrl-N> and <Down>
("\\^K" kill) ;; <Ctrl-K>
("\\^Y" yank) ) ) ;; <Ctrl-Y>

The binding second elements, actions, are the names of methods defined by
class EditString to perform the various editing tasks. The valid actions are:

• Action execute calls the callback function. You can install a callback
function using message setcall because an editable string is a control
object.

• Action backspace deletes the character preceding the cursor.

• Action delete-char deletes the character located right after the cursor.

• Action begin-of-line moves the to cursor the beginning of the line.

• Action end-of-line moves the cursor to the end of the line.

• Action arrow-left moves the cursor one character left.



5.10. CHARACTER STRING OBJECTS. 323

• Action arrow-right moves the cursor one character right.

• Action arrow-up recalls the previous string in the history buffer. Editable
strings maintain a buffer of the last 20 strings typed by the user.

• Action arrow-down recalls the next string in the history buffer.

• Action kill deletes the text between the cursor and the end of the string.
This text is copied into the clipboard.

• Action yank inserts text from the clipboard. The kill and yank actions im-
plement in fact a simple Copy/Paste mechanism between editable strings.

5.10.3 Editable Numbers.

See: Regular Expressions.
See: (==> Control setdata d )
See: (==> Control getdata)
See: (==> Control setcall f )

(new EditNumber minsize [defaultvalue])

Type: CLASS(ogre.lsh)
Class EditNumber is a subclass of class EditString used for editing numeric

fields. It checks that the text is a valid number using a regumar expression
stored in slot regex at construction time. In addition, the methods setdata
and getdata have been modified to handle numbers instead of strings.

Argument minsize is the minimal number of characters dislayed in the ob-
ject. The initial value of the number is specified by the optional number argu-
ment defaultvalue .

When sent to an editable numeric string, message setdata requires a nu-
merical argument. Similarly, message getdata returns a number or the empty
list when no text has been entered.

5.10.4 EditSecretString

This subclass of EditString works exactly like EditString but always display
the string character as a string of "x" .

5.10.5 Multiline Text Editor.

See: (==> Control setdata d )
See: (==> Control getdata)
See: (==> Control setcall f )
See: Forms.



324 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

(new EditText w h [default])

Type: CLASS(ogre.lsh)
Creates a new edittext object (i.e. a text editor with both a vertical and

horizontal scrollbar). Argument w is the number of visible columns. Argument
h is the number of visible lines.

Class EditText is a subclass of Forms that defines composite object con-
taining a TextPane object and two scroll bars. The text editor is actually
implemented by class TextPane described hereafter.

Class EditText forwards messages setdata , getdata , read-file and
write-file to this underlying TextPane object.

See: (new TextPane w h [ def editp vs hs ])
See: (==> TextPane getdata)
See: (==> TextPane setdata arg )
See: (==> TextPane read-file fname )
See: (==> TextPane write-file fname )

(new TextPane w h [def editp vs hs])

Type: CLASS(ogre.lsh)
Creates a new TextPane object. Class TextPane is a subclass of Control

. It implements a simple multi-line text editor.

• Argument w is the number of visible columns.

• Argument h is the number of visible lines.

• Argument def specifies a default contents as a string or a list of strings.
Single strings are searched for TAB and NL characters and splitted into
multiple strings (one per line).

• Flag editp tells if the string is editable or just viewable.

• If scrollbars are attached to the text pane, you must pass them as argu-
ments vs and hs . The text pane will then synchronize the scrollbars
with the actual contents of the text pane area.

TextPaneKeymap

Type: VAR(ogre.lsh)
This A-list contains the associations between key strokes and editing meth-

ods executed by a TextPane object. The default keymap is loosely based on
the Emacs key bindings.

(setq TextPaneKeymap
’( ("\\n" execute)

("\\r" execute)
("\\b" backspace)



5.10. CHARACTER STRING OBJECTS. 325

("\\x7f" backspace)
("\\^A" begin-of-line)
("\\^B" arrow-left)
("\\^D" delete-char)
("\\^E" end-of-line)
("\\^F" arrow-right)
("\\^K" kill)
("\\^N" arrow-down)
("\\^P" arrow-up)
("\\^V" page-down)
("\\^Y" yank)
("Delete" delete-char)
("C-Home" begin-of-text)
("C-End" end-of-text)
("Home" begin-of-line)
("End" end-of-line)
("Prior" page-up)
("Next" page-down)
("\\x1b" metakey "\\x1b")
("\\x1b<" begin-of-text)
("\\x1b>" end-of-text)
("\\x1bv" page-up)

) )

The first element of each association describes the keystroke or keystroke
combination. This string can contain an ASCII character, a string containing
a keystroke combination, or a function key name. The leading character of
keystroke combinations must be associated to method metakey . The function
key names may be preceded by "C-" and "S-" to indicate that the control or
shift key must be depressed.

The rest of the association specify which action should be called when the
corresponding keystroke is typed by the user. The following actions are sup-
ported:

• Action execute calls the callback function. You can install a callback
function using message setcall because an editable string is a control
object.

• Action backspace deletes the character preceding the cursor.

• Action delete-char deletes the character located right after the cursor.

• Action begin-of-line moves the to cursor the beginning of the line.

• Action end-of-line moves the cursor to the end of the line.

• Action begin-of-text moves the caret at the beginning of the text.

• Action end-of-text moves the caret at the end of the text.



326 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

• Action arrow-left moves the cursor one character left.

• Action arrow-right moves the cursor one character right.

• Action arrow-up moves the cursor one line up.

• Action arrow-down moves the cursor one line down.

• Action page-up moves the cursor one screen up.

• Action page-down moves the cursor one screen down.

• Action kill deletes the text between the cursor and the end of the string.
This text is copied into the clipboard.

• Action yank inserts text from the clipboard. The kill and yank actions im-
plement in fact a simple Copy/Paste mechanism between editable strings.

• Action metakey is used to declare the prefix of a keystroke combination.
The action argument will be combined with the next keystroke and the
combined string will be searched in the keymap.

(==> TextPane setdata arg)

Type: MSG(ogre.lsh)
Sets the text in a TextPane. Argument arg specifies a default contents as a

string or a list of strings. Single strings are searched for TAB and NL characters
and splitted into multiple strings (one per line).

(==> TextPane getdata)

Type: MSG(ogre.lsh)
Returns a list of strings representing all lines of the text pane.

(==> TextPane read-file fname)

Type: MSG(ogre.lsh)
Reads the contents of text file fname into the text pane.

(==> TextPane write-file fname)

Type: MSG(ogre.lsh)
Writes the contents of the text pane into file fname .

5.11 Icons.

An icon is a simple object which displays a greyscale or colormapped picture.
The Icon class is somewhat superseded by the Ogrimage class.



5.12. OGRIMAGE. 327

5.11.1 (new icon mat &optional [sx [sy [map]]])

Type: CLASS
Returns a new icon.
Argument mat is a 2D matrix containing the data to be represented as

rectangles using 64 gray levels. By default, the values lower than 0 will be black
and the values beyond 1 will be white.

Arguments sx and sy are the width and height of each rectangle.
Argument cmap may be a 1D integer matrix defining 64 colors. When it is

defined, its colors are used instead of gray levels.
See: (gray-draw-matrix x y mat minv maxv apartx aparty )
See: (color-draw-matrix x y mat minv maxv apartx aparty cmap )

5.12 OgrImage.

An OgrImage is a simple object which displays a color or greyscale picture. An
OgrImage can be used advantageously in combination with the ImageViewer
class.

5.12.1 (new OgrImage m)

Type: CLASS
return a new OgrImage that will display picture m . m must be an IDX2

(greyscale image) or IDX3 whose last dimension must be 1 (grayscale) , 3 (RGB)
, or 4 (RGBA).

5.12.2 (==> OgrImage get-selected)

Type: MSG
return the rectangle last selected by the user by clicking and dragging the

mouse on the image.

5.13 ImageViewer.

An ImageViewer is a scrollable viewing area for an OgrImage.

5.13.1 (new ImageViewer w h m [scroll])

Type: CLASS
Create a new image viewer which will display image m in a scrollable viewing

area of size w , h . If the optional scroll argument is true, the image scrolling
will follow scrollbar dragging, whereas if scroll is nil or absent, the scrolling
is only performed when the mouse button is released. Here is an example:



328 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

(libload "libimage/image-io")
(setq m (image-read-rgb (concat-fname lushdir "lsh/libimage/demos/sample.jpg")))
(ogre)
(setq w (new WindowObject 10 10 400 400 "asd" (new ImageViewer 340 340 m t)))

5.13.2 (==> ImageViewer get-selected)

Type: MSG
return the rectangle last selected by the user by clicking and dragging the

mouse on the image.

5.14 Menus.

A menu is a popup column associated to a menu button. When the mouse is
depressed on the menu button, a popup column appears and the user may drag
the mouse over an item in the column. When the mouse button is released,
the item is selected, its callback function is executed and the popup column
disappears.

Menus are implemented with three classes:

• Class Menu defines the menu button. A menu button appears as a bold
string preceded by a small upside down triangle. When the menu button
is depressed, an instance of class MenuPopup is inserted into the menu
button’s window.

• Class MenuPopup is a subclass of class Column . It arranges the menu
items and manages event messages by selecting the appropriate menu item.

• Class MenuItem is a subclass of class Control . Menu items may re-
ceive settext messages for changing their label and setdata messages
for setting slot data . When slot data is not the empty list, a check mark
appears on the left of the menu item.

The constructor of class Menu sets up all these objects in a single call.

5.14.1 Standard Menus.

(new Menu menuname label1 call1 ... labelN callN )

Type: CLASS(ogre.lsh)
Creates a menu button labelled menuname linked to a menu popup composed

of items defined by the pairs label1 , call1 to labelN , callN . Argument
labeli is the name of the i th menu item. Argument calli is the callback
associated to the i th menu item.

Example:



5.14. MENUS. 329

;;; A window with a menu composed of 3 items
? (setq win

(new WindowObject 100 100 300 300 "Essai"
(new menu "Test Menu"

;; the first item toggles its check mark
"Toggle"
(lambda(item) (==> item setdata (not (==> item getdata))))
;; the second item activates the bell
"Bell"
(lambda(item) (beep))
;; the third one destroy this interface
;; remenber that <thiswindowobject> always
;; refer to the closest window object.
"Quit"
(lambda(item) (==> thiswindowobject delete)) ) ) )

(==> Menu finditems label)

Type: MSG(ogre.lsh)
Message finditems returns the menu items matching argument label .

• If label is the empty list () , message finditems returns a list con-
taining all the menu items.

• If label is a number, message finditems returns a list containing the
label -th menu item.

• If label is a string, message finditems returns a list of menu items
whose label string is equal to label .

(==> Menu disable ...labels...)

Type: MSG(ogre.lsh)
See: (==> Menu finditems label )
When a menu receives a message disable , it sends a message disable to

all menu items identified by the arguments ...labels... . Therefore, the
corresponding menu items are disabled.

Each argument of message disable is interpreted like the argument label
of message finditems. It can be the empty list, a number or a string.

(==> Menu enable ...labels...)

Type: MSG(ogre.lsh)
See: (==> Menu finditems label )
When a menu receives a message disable , it sends a message disable to

all menu items identified by the arguments ...labels... . Therefore, the
corresponding menu items are disabled.



330 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

Each argument of message disable is interpreted like the argument label
of message finditems. It can be the empty list, a number or a string.

(new MenuItem label call)

Type: CLASS(ogre.lsh)
Creates a new menu item labelled label . Argument call indicates the

callback function for this menu item. Menu items may be inserted into a menu
popup by sending a message insert to the menu object.

(==> Menu insert menuitem)

Type: MSG(ogre.lsh)
Message insert inserts a new menu item menuitem in the menu popup.

(==> Menu remove menuitem)

Type: MSG(ogre.lsh)
Message insert removes new menu item menuitem from the menu popup.

5.14.2 Choice Menus.

This class implements a multiple choice item. This object display a menu mark
and the name of the currently selected item. When the user clicks on it , a
menu popup is displayed and the user can select another item.

Choice menus supports the methods of standard menus , in addition to their
own methods.

(new ChoiceMenu [items [callback]])

Type: CLASS
Creates a new choice menu that lets the user choose among the items spec-

ified in list of strings items . When argument items is unspecified , selection
is impossible.

(==> choicemenu setitems items)

Type: MSG
Changes the items that the user can select with the choice menu to be the

strings of list items . As a side effect , the current selection is reset to the
empty list.

(==> choicemenu setdata d)

Type: MSG
Selects string d in the choice menu.



5.15. POPUP REQUESTERS. 331

(==> choicemenu getdata)

Type: MSG
Returns the string selected in the choice menu.

(==> choicemenu setcall callback)

Type: MSG
Sets the callback function

(==> choicemenu disable)

Type: MSG
Disables a choicemenu.

(==> choicemenu enable)

Type: MSG
Enables a choicemenu.

5.15 Popup Requesters.

A requester is a prepared form containing a collection of graphical objects.
When the requester receives a message popup , the form is displayed in the
middle of the window and receives all event messages until it receives a message
popdown .

Requesters are useful for asking the user to provide additional information
about an action trigerred by a button or a menu item. The callback function
of the button or menu item then just send a message popup to the requester
which performs all the remaining tasks.

• Class Requester implements the basic mechanism of a requester.

• Class ErrorRequester and WarningRequester implement requesters spe-
cialized for displaying error messages.

• Class YesNoRequester defines a requester with a standard state and two
standard buttons for accepting or cancelling an action. These requesters
are useful for entering extra information about an action trigerred by a
button or a menu item.

• Class PrintRequester implements a standard requester for selecting a
printer.

• Class FileRequester implements a standard requester for entering a file-
name for reading or writing.



332 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

5.15.1 Requester.

Class Requester is a subclass of Form which implements the basic mechanisms
of a requester. When the requester receives a message popup , the requester is
inserted into a predefined window object until reception of a message popdown
.

Example:

;;; A window with a button that pops a requester up.
;;; The requester contains an editstring and two buttons.
;;; 1- Create the window
? (setq win

(new WindowObject 100 100 300 300 "Essai"
(setq thebutton

(new StdButton "Pop the requester up"
(lambda(d) (==> therequester popup)) ))))

= ::WindowObject:06f00
;;; 2- Create the requester
? (setq therequester

(new Requester win
(new Column

;; The first button pops the requester down
;; Variable <thisrequester> always refers to the closest
(new StdButton "Pop the requester down"

(lambda(d)
(==> thisrequester popdown)) )

;; The second button changes the label of the popup button
(new EditString 8 "Pop it up again")
(new StdButton "Change label"

(lambda(d)
(==> thebutton settext

;; Collective <getdata> on the requester!
(car (==> thisrequester getdata)))))))))

= ::Requester:0702c

(new Requester support ...contents...)

Type: CLASS(ogre.lsh)
Creates a new requester containing objects ...contents... . This re-

quester will be inserted into the window object containing object support upon
recpetion of a message popup .

(==> Requester popup)

Type: MSG(ogre.lsh)



5.15. POPUP REQUESTERS. 333

When a requester receives message popup , it is inserted in the middle of
the window object defined at requester creation time.

All event messages are then directed to the requester. Since no other com-
ponent of the interface toplevel is active, it is advisable to insert a button whose
action consists in sending message popdown to the requester itself.

(==> Requester popdown)

Type: MSG(ogre.lsh)
A popped requester is removed from its window object when it receives a

message popdown . The usual event dispatching is then restored.

(==> Requester popuplock)

Type: MSG(ogre.lsh)
Message popuplock behaves very much like message popup . Unlike mes-

sage popup , message popuplock blocks until the requester receives a message
popdown . When message popuplock returns, the window object state is nor-
mal again.

Example:

;;; Pop up the requester defined above in this section and block:
? (==> therequester popuplock)
;;; Lush only returns when you activate the ’popdown’ button
= ()

(==> Requester popuphard)

Type: MSG(ogre.lsh)
Message popuphard is an even more drastic form of popuplock . It pops

up the requester and blocks until the requester is popped down like message
popuplock .

While message popuphard is active, no other window object accepts user
events. If the user click in another Ogre window, the computer beeps and put
the window containing the requester above all other window on the screen.

Message popuphard is useful for requesting an information which requires
immediate attention from the user.

(==> Requester setsupport win)

Type: MSG(ogre.lsh)
Message setsupport changes the support window of a requester.



334 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

5.15.2 Warning Requester.

Class WarningRequester is a subclass of Requester . A warning requester
contains only a String object. The actual text of the string is defined when you
pop the warning requester up.

(new WarningRequester support)

Type: CLASS(ogre.lsh)
Creates a new warning requester for displaying text in window object support

.

(==> WarningRequester popup text)

Type: MSG(ogre.lsh)
Message popup first sets the string’s text to text and pops the requester

up. The requester may be popped down by sending the usual message popdown.
Using a warning requester with messages popup and popdown allows for

displaying messages indicating what is being computed.

(==> WarningRequester popuplock seconds text)

Type: MSG(ogre.lsh)
Message popuplock first sets the string’s text to text and pops the re-

quester up during seconds seconds. When this delay is elapsed, the requester
is popped down and method popuplock returns.

Using a warning requester with popuplock allows for displaying a temporary
warning message.

5.15.3 Error Requester.

Class ErrorRequester is a subclass of Requester . An error requester contains
a String object and a button labelled "Ok" for popping the requester down. The
actual text of the string is defined when you pop the error requester up.

Such a requester is very useful for signaling an error to the user. The user
must depress the button "Ok" to remove the requester. This button actually
sends a message popdown to the error requester.

Example:

;;; Assuming window object <win> already exists:
? (setq error-dialog (new ErrorRequester win))
= ::ErrorRequester:07120
? (==> error-dialog popup "Error message")
= ()



5.15. POPUP REQUESTERS. 335

(new ErrorRequester support)

Type: CLASS(ogre.lsh)
Creates a new error requester for displaying error messages in window object

support .

(==> WarningRequester popup text)

Type: MSG(ogre.lsh)
Message popup first sets the string’s text to text and pops the requester

up. The requester may be popped down by sending the usual message popdown.
Using a warning requester with messages popup and popdown allows for

displaying messages indicating what is being computed.

(==> WarningRequester popuplock text)

Type: MSG(ogre.lsh)
Message popuplock first sets the string’s text to text and pops the re-

quester up. The requester is popped down and method popuplock returns
when the user depresses button "Ok" .

5.15.4 Yes/No Requester.

Class YesNoRequester is a subclass of Requester for implementing yes/no re-
questers. A yes/no requester contains a user defined part, a positive button and
a negative button.

Like usual requesters, yes/no requesters are popped up when they receive a
message popup or popuplock . Both the positive and the negative button pop
the yes/no requester down.

When you create the yes/no requester however, you specify a callback func-
tion.

• When the positive button is depressed, the yes/no requester is popped
down and the callback function is executed.

• When the negative button is depressed, the yes/no requester object is
popped down and the state of the user defined part of the requester is
restored to the state recorded when the requester was popped up. The
callback function is not executed.

If you have popped up the requester using message popuplock , you can
also test which button has been depressed by looking at the value returned by
message popupdown . This value is the empty list if the negative button has
been depressed.

Slots yesbutton and nobutton of a yes/no requester contain the positive
and negative buttons. These buttons may be programmatically actived by send-
ing them a message trigger .



336 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

(new YesNoRequester support dialog yes no call)

Type: CLASS(ogre.lsh)
Creates a new yes/no requester for displaying on the window object of object

support .
Argument dialog is the user defined part of the requester. String yes is

the label of the positive button. String no is the label of the negative button.
Argument call is a callback function or the empty list.

Example:

;;; A button that pops up a yesnorequester
;;; for changing its label...
? (setq win

(new WindowObject 100 100 400 200 "Essai"
(setq thebutton

(new StdButton "Hello"
(lambda(c) (==> theyesnoreq popup)) ))))

= ::windowobject:07010
? (setq theyesnoreq

(new YesNoRequester win
;; The user defined part
(new Column

(new String "Change button label")
(new EditString 8 "new label") )

;; The yes and no labels
" Ok " "Cancel"
;; The callback
(lambda(caller)

(==> thebutton settext
(car (==> caller getdata)) ))))))))

= ::yesnorequester:07040

(==> YesNoRequester settext yes no default)

Type: MSG(ogre.lsh)
The label of the positive and negative buttons can be changed by sending

a message settext to the yes/no requester. String yes becomes the label of
the positive button. String no becomes the label of the negative button.

There is usually a default button indicated by a wider outline. This button
is triggered if the user hits the carriage return key. This default button is usu-
ally the positive one, but may be changed with argument default of message
settext .

• If default is ’yes , the positive button is the default,

• if default is ’no , the negative button becomes the default,

• if default is the empty list, no default button is set.



5.15. POPUP REQUESTERS. 337

(==> YesNoRequester setcall callback)

Type: MSG(ogre.lsh)
Sets the callback function for the requester. Argument callback can be a

function with one argument or the empty list.

(==> YesNoRequester ask yes no default)

Type: MSG(ogre.lsh)
See: (==> YesNoRequester settext yes no default )
See: (==> Requester popuphard)
This message should be used with yes/no requesters whose user defined

component is a single String object.
When such a requester receives message ask , it first sets the text of the

string object to text and the button labels to yes and no . The default button
is indicated by argument default .

The requester is then popped up using popuphard . The user can then press
either the positive or the negative button. When the requester is popped down,
message ask returns t or () according to the user answer.

Example:

;;; Creates a confirmation dialog in an exiting win <win>.
? (setq confirm-dialog

(new YesNoRequester win
(new string "msg") ; dummy message
"yes" "no" ; dummy labels
() ) ; no callback

= ::yesnorequester:070c0
? (==> confirm-dialog ask

"Should I really do that" ; the message
"Proceed" "Please don’t" ; the button labels
’no ) ; the default

;;; Waiting for your answer...
= t or ()

5.15.5 Print Requester.

See: (print-window w h [ destination ])
A print requester lets the user choose a valid destination for printing a graph-

ics. Function getdata will return a string that can be used verbatim as the
destination argument of function print-window .

(new PrintRequester w [callback])

Type: CLASS(ogre.lsh)
See: Yes/No Requester.



338 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

Creates a new print requester for displaying in the window object w . The
optional argument callback defines a callback function that will be called if
the user presses button ”Ok” (as usual with Yes/No Requesters.)

(==> PrintRequester getdata)

Type: MSG(ogre.lsh)
See: (print-window w h [ destination ])
Returns a string that can be used directly as argument destination of

function print-window .

5.15.6 File Requester.

A file requester lets the user choose a filename using a list of files existing in
various directories. The file requester contains a message string, a file selector,
an editable filename string and two buttons labelled "Ok" and "Cancel" .

Starting from the current filename, the selector displays the contents of the
directory. A first click on a selector item selects a file or directory and copies its
name in the editable filename string. Alternatively, the user can type a filename
in the filename field. The button "Ok" is disabled if the user types an invalid
filename.

This selection is validated by a second click, by pressing the enter key or by
depressing the button "Ok" .

• If the selected item is a directory, the contents of this directory is displayed
and the user can select again an item.

• If the selected item is a file, the requester is popped down and the callback
function is executed.

Class FileRequester is a subclass of class YesNoRequester which imple-
ments the standard Ogre file requester.

(new FileRequester w [message flag filter callback])

Type: CLASS(ogre.lsh)
See: Yes/No Requester.
Creates a new file requester for displaying in the window object w . The

contents of the message string is indicated by the optional argument message .
The callback function is indicated by the optional argument callback or may
be set using message setcall .

Special behavior are selected by argument flag :

• When flag is ’no-newfile , it is forbidden to enter the name of a non
existent file.

• When flag is ’ask-newfile , validating the name of a non existent file
pops up a confirmation requester. This is useful before creating a new file.



5.15. POPUP REQUESTERS. 339

• When flag is ’ask-oldfile , validating the name of an existent file pops
up a confirmation requester. This is useful before overwriting an existing
file.

Argument filter is a function with one argument for testing the file-
names. It returns a non nil value if its argument is a valid file name for
this file request. For instance, this function might test an extension or
examine the file header. Files rejected by the function filter are not
displayed in the selector. If the user types such an invalid filename in the
filename field, validation is prevented by disabling the button "Ok" .

(==> FileRequester setdata fname)

Type: MSG(ogre.lsh)
Sets the current file name of a FileRequester object to file or directory

fname .

(==> FileRequester getdata)

Type: MSG(ogre.lsh)
Gets the full current file name of a FileRequester object.

(==> FileRequester getdir)

Type: MSG(ogre.lsh)
Gets the name of the directory displayed in the selector of a FileRequester

object.

(==> FileRequester getbase)

Type: MSG(ogre.lsh)
Returns the base name of the current filename selected in a FileRequester

object. If the selected filename is a directory, this message returns the empty
list.

(==> FileRequester setparm message flag [filter])

Type: MSG(ogre.lsh)
Changes the parameters of a FileRequester object.

(==> FileRequester ask message flag [filter [fname]])

Type: MSG(ogre.lsh)
Changes the parameters of a FileRequester object, sets the current file-

name to file or directory fname , pops up the requester and waits until the
request is complete.

• If the user validates a file name, a non nil value is returned. The filename
can be accessed by sending a getdata message.



340 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

• If the user selects the Cancel button, the empty list is returned.

(ogre-ask-file winobj message flag [filter [fname]])

This function popups a default filerequester in window win .
Other arguments are the same as for method ask of class FileRequester .
See: (==> FileRequester ask message flag [ filter [ fname ]])

5.16 Movable and Resizable Objects.

Class DragArea and SizeArea define objects used for moving or resizing their
container. Special container classes Frame and FrameSize define containers
which may be moved and resized by the user.

5.16.1 (new DragArea w h)

Type: CLASS(ogre.lsh)
Creates a new dragging area with minimal width w and minimal height h .
A dragging area appears as a rectangle with a gray outline. When you

depress the mouse inside a dragging area, you can drag its container to another
place.

Two slots affect the behavior of a dragging area:

• The moved object always remains inside rectangle constraintrect . This
rectangle defaults to the empty list () which means that the object re-
mains confined within its container’s rectangle.

• Slot magnet should contain a list (mx my) . The moved object keeps
aligned on an invisible grid whose columns are mx pixels wide and whose
rows are my pixels high. It defaults to the empty list () which means
that objects may be moved at any pixel position.

5.16.2 (new SizeArea w h)

Type: CLASS(ogre.lsh)
Creates a new sizing area with minimal width w and minimal height h .
A sizing area appears as two overlapping gray squares. When you depress

the mouse inside a sizing area, you can change the size of its container. Just
drag the mouse until you touch a container boundary. This container boundary
then follows the mouse until you release the mouse button.

Two slots affect the behavior of a size area.

• The resized object always remains confined within the rectangle constraintrect
. This rectangle defaults to the empty list () which means that the object
remains confined within its container’s rectangle.



5.17. SLIDERS AND SCROLLBARS. 341

• Slot formfactor should contain a list (fx fy) . The width of resized
object remains an integer multiple of fx , the height of the resized ob-
ject remains an integer multiple of fy , and both coefficients are equal.
Slot formfactor defaults to the empty list () which means that no form
factor constraint apply.

5.16.3 (new Frame x y w h ...contents...)

Type: CLASS(ogre.lsh)
Creates a new frame at location x and y with minimal width w and minimal

height h . The frame initally manage objects contents .
Class Frame is a subclass of class Container . A frame always contains a

dragging area located in the background of the container. A frame thus is a
container that the user can move.

Example:

? (setq win (new windowobject 0 0 400 400 "Essai"
(new Frame 50 30 200 140

(new stdbutton "Beep"
(lambda(c) (beep)) ) ) ))

5.16.4 (new FrameSize x y w h ...contents...)

Type: CLASS(ogre.lsh)
Creates a new sizable frame at location x and y with minimal width w and

minimal height h . The frame initally manage objects contents .
Class FrameSize is a subclass of class Frame . A sizable frame always con-

tains a dragging area located in the background of the container. A sizable
frame also contains a small size area in its bottom right corner. A sizable frame
thus is a container that the user can move and resize.

Example:

? (setq win (new windowobject 0 0 400 400 "Essai"
(new FrameSize 50 30 200 140

(new stdbutton "Beep"
(lambda(c) (beep)) ) ) ))

5.17 Sliders and Scrollbars.

Sliders and scrollbars are graphical objects for entering numerical values.

• Sliders are rendered as symbolized potentiometers. Sliders are mostly used
as a way to enter numerical values.



342 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

• Scrollbars are rendered as a gray area with a white handle. Scrollbars are
mostly used for controlling other objects.

The user can grab and move the handle with the mouse. The user might
also maintain the mouse button depressed on either side of the handle. In this
case, the handle moves slowly towards the mouse pointer.

The standard callback function is called whenever the user releases the mouse
button. An additional callback might be set up with message setdrag . This
callback is called whenever the user moves the handle.

Sliders and scrollbars are implemented by a set of specialized subclasses of
class Control .

Control abstract class for all controls
Slider abstract class for all sliders and scrollbars
HSlider horizontal sliders
VSlider vertical sliders
Scrollbar abstract class for all sliders and scrollbars
HScrollbar horizontal scrollbars
VScrollbar vertical scrollbars

Example: Example:

? (setq win (new windowobject 100 100 400 200 "Sliders & Scrollbars"
(new row
(new grid 2
(new emptyspace 100 100)
(new vslider 0 100 ())
(new hslider 0 100 ())
(new emptyspace 10 10) )
(new grid 2
(new emptyspace 100 100)
(new vscrollbar 100 ())
(new hscrollbar 100 ())
(new emptyspace 10 10) ) ) ) )

5.17.1 Sliders.

Sliders are used for entering numerical values using an analog handle. Horizontal
sliders are implemented by class HSlider . Vertical sliders are implemented
by class VSlider . Both class HSlider and VSlider are subclasses of class
Slider which implement a number of useful methods.

(new HSlider mini maxi [callback])

Type: CLASS(ogre.lsh)



5.17. SLIDERS AND SCROLLBARS. 343

Returns a horizontal slider for entering integer values in the range mini to
maxi . The callback function callback is called whenever the user releases the
mouse button.

(new VSlider mini maxi [callback])

Type: CLASS(ogre.lsh)
Returns a vertical slider for entering integer values in the range mini to

maxi . The callback function callback is called whenever the user releases the
mouse button.

(==> Slider setrange mini maxi)

Type: MSG(ogre.lsh)
See: (==> Scrollbar setrange mini maxi [ prop ])
Message setrange redefines the minimal and maximal values allowed in a

slider or a scrollbar.

(==> Slider setstep step)

Type: MSG(ogre.lsh)
Message setstep redefines the possible increments of the values allowed in

a slider or a scrollbar.
The initial increment is always 1. This initial increment ensures that the

slider or scrollbar is limited to integer values. Specifying the empty list as an
increment means that any value in the legal range are allowed.

(==> Slider setdrag call)

Type: MSG(ogre.lsh)
Message setdrag sets up a secondary callback function which is called when-

ever the handle moves. Installing such a callback function is useful for displaying
echo to the user.

5.17.2 Scrollbars.

Scrollbars are a special kind of slider which are used for controling which infor-
mation is displayed in other objects.

Scrollbars are implemented by classes HScrollbar and VScrollbar which
are indirect subclasses of class Slider . All the methods defined by class Slider
are thus inherited by scrollbars.

(new HScrollbar maxi [callback])

Type: CLASS(ogre.lsh)
Returns a horizontal scrollbar for entering integer values in the range 0 to

maxi . The callback function callback is called whenever the user releases the
mouse button.



344 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

(new VScrollbar maxi [callback])

Type: CLASS(ogre.lsh)
Returns a vertical scrollbar for entering integer values in the range mini to

maxi . The callback function callback is called whenever the user releases the
mouse button.

(==> Scrollbar setrange mini maxi [prop])

Type: MSG(ogre.lsh)
See: (==> Slider setrange mini maxi )
Message setrange redefines the minimal and maximal values allowed in a

scrollbar. When the optional argument prop is provided, the maximal value is
reduced by prop and the value prop is used for defining the size of the knob.
This is useful for scrolling lists of texts.

5.18 Composite Objects.

This chapter describes a few standard objects composed of several elementary
objects. Although composite objects usually are subclasses of Form , they obey
the protocols defined for class Control .

5.18.1 Viewers.

A viewer object display a rectangular portion of a particular object (the viewer’s
contents). The size of the visible part of this object depends on the viewer size.
The user control which part of the object is visible by sending messages setpos
or by using the optional scrollbars provided by the viewer.

Class Viewer implements viewer objects.

(new Viewer w h contents [hp vp])

Type: CLASS(ogre.lsh)
Creates a new viewer on object contents . The viewer is w points wide

and h points high. The optional argument hp (resp. vp ) is a boolean value (
t or () ) controling whether an horizontal (resp. vertical) scrollbar is displayed
or not.

Example:

? (setq win (new WindowObject 0 0 400 200 "Essai"
(new Viewer 300 150

(new column (new stdbutton "One" ())
(new emptyspace 60 60)
(new stdbutton "Two" ())
(new stdbutton "Three" ())
(new stdbutton "Four" ()) )



5.18. COMPOSITE OBJECTS. 345

t t) ) )

(==> Viewer setpos h v)

Type: MSG(ogre.lsh)
Message setpos defines the visible portion of the contents of a viewer. This

portion is a rectangle whose top left corner is located h pixels to the right and
v pixels below the top left corner of the contents of the Viewer object.

(==> Viewer sethpos h)

Type: MSG(ogre.lsh)
Message sethpos just change the horizontal coordinate of the visible portion

of the contents of a viewer.

(==> Viewer setvpos v)

Type: MSG(ogre.lsh)
Message setvpos just change the vertical coordinate of the visible portion

of the contents of a viewer.

(==> Viewer setcontenu object)

Type: MSG(ogre.lsh)
Message setcontenu changes the object viewed through a Viewer object.

Argument object must be a valid graphic component.

5.18.2 Selectors.

A selector is an object which allow the user to select one or several strings within
a list of strings. Only a few strings are visible at a given time. A scrollbar
located along the right side of the Selector object controls which strings are
visible. Selected strings are hilighted.

Class Selector implements a selector object. The complete behavior of a
selector is controlled by three slots of the selector object: multiple , call1
and call2 .

• When slot multiple contains a non nil value, the user might select mul-
tiple items. In this case, message getdata sets and message setdata
returns the list of the selected strings.

• If slot multiple contains the empty list, one item at most can be selected
at a given time. Message getdata sets and message setdata returns the
selected string or the empty list.

Two callback functions are called when the user selects items.

• Callback call1 is called whenever the user selects an item by clicking the
mouse button over an unselected string.



346 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

• Callback call2 is called whenever the user selects an item a second time
by clicking the mouse button over a hilighted string.

(new Selector nvisible [callback [items]])

Type: CLASS(ogre.lsh)
Creates a new selector able to display nvisible strings at once.
Argument callback of the constructor controls the values of these flags.

• If argument callback is t , the user might select multiple items.

• If argument callback is a function, one item at most can be selected at
a given time. The specified callback function is called whenever the user
selects a new item.

• If argument callback is a non-nil list, one item at most can be selected
at a given time. The list is assumed to be made of two functions or nil
values. The first one is used whenever the user selects a new item. The
second one is used whenever the user selects again a selected item.

Argument items optionally gives a list of strings initially displayed in the
selector.

(==> Selector getdata)

Type: MSG(ogre.lsh)
Message getdata returns the selected strings in a selector:

• If slot multiple contains a non nil value, the user can select multiple
items. In this case, message getdata returns the list of the selected
strings.

• If slot multiple contains the empty list, the user can select at most one
item. Message getdata then returns the selected string or the empty list
if no string is selected.

(==> Selector getdatanum)

Type: MSG(ogre.lsh)
Instead of returning the strings themselves, like message getdata , message

getdatanum returns the order number of the selected strings in a selector:

• If slot multiple contains a non nil value, the user can select multiple
items. In this case, message getdatanum returns the list of the order
numbers of selected strings.

• If slot multiple contains the empty list, the user can select at most one
item. Message getdata then returns the order number of the selected
string or the empty list if no string is selected.



5.19. A COMPLETE EXAMPLE. 347

(==> Selector setdata data)

Type: MSG(ogre.lsh)
Message setdata sets which strings are selected in a selector. The selected

strings are displayed on a highlited background.

• If slot multiple contains a non nil value, argument data must be a list
of strings or a list of numbers indicating which items must be selected.

• If slot multiple contains the empty list, argument data is the empty list
(to desselect the selected item), a string or a number indicating which
string must be selected.

(==> Selector setpos pos)

Type: MSG(ogre.lsh)
Message setpos makes the pos -th string appear on top of the selector and

updates the scrollbar in accordance.

(==> Selector setitems items)

Type: MSG(ogre.lsh)
Message setitems redefines a new list of strings items displayed in a se-

lector and clears the current selection.
Since the minimal size of a selector depends on the width of the largest string

in the item list, sending message setitems can trigger a geometry negociation
and readjust the location of all interface components.

5.19 A Complete Example.

Whole graphics interface are often defined as subclasses of class WindowObject
. Such subclasses usually contain new slots for storing interface specific data.
Callback functions then send messages to thiswindowobject . These messages
then are executed within the interface scope.

5.19.1 The Class Browser “classtool”.

This section describes a complete application of the Ogre library. This appli-
cation is nothing but the standard Tlisp class browser. This class browser is
invoked by typing the command (classtool) .

(classtool [cl])

Type: DE(classtool.lsh)
Invokes the Lush class browser on class cl . The class browser displays the

subclasses, superclasses, slots and methods of a class. Class object is assumed
if no argument is specified.

The class browser interface is composed of a menu and six selectors:



348 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

• Selector “Sub-Classes” displays the names of the subclasses of class cl .
A mouse click on one of these subclasses changes the current class to the
selected class.

• Selector “Slots” displays the names of all slots defined by class cl .

• Selector “Method” displays the names of all method selectors defined for
class cl .

• Selector “Super-Classes” displays the names of the successive superclasses
of cl . A mouse click on one of these subclasses changes the current class
to the selected class.

• Selector “Inherited Slots” displays the names of all slots defined by the
successive superclasses of class cl . A mouse click on a method item
prints the definition of the selected method.

• Selector “Inherited Methods” displays the names of all methods inherited
from the successive superclasses of class cl . A mouse click on a method
item prints the definition of the selected method.

The top of the class browser contains a menu and an information string. The
information string displays the number of slots, the number of inherited slots,
the number of methods and the number of inherited methods for the current
class. The name of the menu is always the name of the current class, displayed
in large characters.

The menu itself contains four items:

• Selecting item "Show Class" prints the definition of class cl .

• Selecting item "Show Subtree" prints an indented list of the subclasses
of class cl .

• Selecting item "Refresh" reads again the information for class cl and
reflects possible changes on the display.

• Selecting item "Select" pops up a requester which lets the user enter the
name of a class. The class browser jumps to the selected class when the
user presses button "Ok" . If the typed class name is not a valid class
name, a message is displayed.

5.19.2 The Program “classtool”.

Here is a review of the main components of the “classtool” program. You can
look at the complete listing of this program in file:

<lushdir>/lib/classtool.lsh



5.19. A COMPLETE EXAMPLE. 349

\vspace 5mm \bf i) Initial definitions.
The first executable line of file "classtool.lsh" initializes the Ogre library

by calling function ogre . This is necessary to ensure that the Ogre class library
is properly loaded and initialized.

(ogre)

Then we define a subclass c-classtool of class WindowObject . This class
contains several slots for referencing the major components of the interface.

(defclass c-classtool windowobject
the-menu ;; the menu
the-string ;; the information string
the-i-classes ;; the superclass selector
the-i-slots ;; the inherited slots selector
the-i-methods ;; the inherited methods selector
the-classes ;; the subclass selector
the-slots ;; the slots selector
the-methods ;; the method selector
the-error-requester ;; a signaling requester
the-class-requester ;; the requester
cl ) ;; the current class

\vspace 5mm \bf ii) Constructor Method.
We define then the constructor of class c-classtool . This constructor first

calls the constructor of its superclass WindowObject and defines the contents
of the window object. This very long call sets up the major components of the
classtool interface.

All the interface is a single column which contains:

• A row implements the menu bar. The menu bar contains only one menu
object (stored in slot the-menu ) and an information string (stored in slot
the-string ).

The menu defines the five items documented above. The callback func-
tions of the menu items do not perform very much. They merely send an
appropriate action message to the interface itself (acceded through vari-
able thiswindowobject ) or pop up a suitable the requester.

(setq the-menu
(new Menu "object"

"Show Class"
(lambda(c) (==> thiswindowobject display-action))
"Show Subtree"
(lambda(c) (==> thiswindowobject subtree-action))
"Refresh"



350 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

(lambda(c) (==> thiswindowobject refresh-action))
"Select"
(lambda(c) (==> the-class-requester popup))
"Quit"
(lambda(c) (==> thiswindowobject delete)) ) )

• A dark space object provides a clear separation between the menu bar
and the rest of the interface. Although the minimal space allocated for
the dark space 3 points wide, the column layout policy makes this space
as wide as the column itself.

• A grid with 3 columns contains all the other objects. It includes the
selector titles (string objects) and the selector themselves which are stored
in appropriate slots of the classtool object. The callback functions of the
selector do not perform much. They just send messages classes-action
or methods-action to the classtool object itself.

The grid also include three emptyspace object which specify a minimal
size for the grid columns. This technique avoids troublesome geometry
changes because it ensures that the selectors are already wide enough for
displaying most names.

The constructor of class c-classtool then adjust the font used in the
menu title by directly poking into the object slot textfont . It calls then
method compute-geometry to ensure that the object size is adjusted for
the new font.

(setq :the-menu:textfont font-18)
(==> the-menu compute-geometry)

The constructor of class c-classtool then creates two requesters.

• The error requester the-error-requester is used later for displaying
error messages.

(setq the-error-requester
(new ErrorRequester this) )

• The class requester is popped up when you select menu item "select"
for directly entering a class name. It defines a callback function which just
sends a message select-action to the classtool object.

We poke a new regular expression in the slot regex of the editable string
in order to ensure that the text typed by the user is a valid symbol.

(setq the-class-requester
(new YesNoRequester this



5.19. A COMPLETE EXAMPLE. 351

(new column
(new String "Type a class name")
(new DarkSpace 3)
(let ((x (new EditString 20)))
(setq :x:regex "[A-Za-z]?[-_|A-Za-z0-9]*") x) )

" Ok " "Cancel"
(lambda(c) (==> thiswindowobject select-action)) ) ) )

\vspace 5mm \bf iii) Method “setclass”.
Method setclass is then defined. This method collects the class informa-

tion for the selected class and updates the information displayed in the selectors.
It first checks that its argument is a valid class and pops up the error re-

quester if this check is negative.

(defmethod c-classtool setclass(c)
(if (not (and c (classp c)))

(==> the-error-requester popup "This is not a valid class")

If the check is positive, method setclass displays a message "working"
in the message string and force an immediate display update using message
repair-damaged .

(==> the-string settext "<<working>>")
(==> this repair-damaged)

The menu title is then changed to the class name using method settext .
Since the display update is delayed until all events are processed, this change
becomes visible when all selectors are updated.

Method setclass then collects the class information into six lists: the sub-
class list ( cc ), the slot list ( cs ), the method list ( cm ), the superclass list
( ic ), the inherited slot list ( is ) and the inherited method list ( im ). We
take a particular care of separating the various inherited classes by a dummy
entry in the inherited lists.

This information is then loaded into the selectors using method setitems .
The message string is then updated to the class statistics.

(==> the-classes setitems cc)
(==> the-slots setitems cs)
(==> the-methods setitems (sort-list cm >))
(==> the-i-classes setitems ic)
(==> the-i-slots setitems is)
(==> the-i-methods setitems im)
(==> the-string settext

(sprintf " \\%l: \\%d+\\%d slots, \\%d+\\%d methods"
cn (length cs) isc (length cm) imc) ) ) ) ) )



352 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT

\vspace 5mm \bf iv) Action methods.
We define then the various action methods which are called by the menu

items, by the selectors, or by the class selection requester.
Method classes-action is called when the user selects a class in the sub-

class or superclass requester. This method just sends a message setclass to
switch to the new class.

(defmethod c-classtool classes-action(c)
(let ((cn (==> c getdata)))
(==> this setclass (apply scope (list (named cn)))) ) )

Method methods-action is called when the user selects a method in the
method selector or the inherited method selector. Method methods-action
first makes sure that the user did not select a dummy entry used for sep-
arating the classes in the inherited method selector. It uses then function
pretty-method to print the definition of the selected method.

(defmethod c-classtool methods-action(c)
(let ((m (==> c getdata))

(cl cl))
(when (<> (left m 5) "=====")

(setq m (named m))
(while (and cl ~(member m (methods cl)))
(setq cl (super cl)) )

(when cl
(==> this repair-damaged)
(==> c setdata ())
(print)
(pretty-method cl m) ) ) ) )

Method refresh-action is called by the menu item "Refresh" . It just
calls method setclass on the current class (from slot cl ) in order to reload
the class information.

(defmethod c-classtool refresh-action()
(==> this setclass cl) )

Method display-action is called by the menu item "Show Class" . It
just prints the class definition when adequate.

(defmethod c-classtool display-action()
(if (not (super cl))

(beep)
(print)
(pprint (nconc (list ’defclass (classname cl) (classname (super cl)))

(slots cl) )) ) )



5.19. A COMPLETE EXAMPLE. 353

Method subtree-action is called by the menu item "Show Subtree" . It
just prints an indented list of the subclasses of the current class.

(defmethod c-classtool subtree-action()
(let ((subtree (lambda(cl tb)

(tab tb)
(print (classname cl))
(each ((c (subclasses cl)))

(subtree c (+ tb 2)) ) ) ))
(print)
(subtree cl 2) ) )

Method select-action is called when the class selection requester pops
down. It gets the class name typed by the user (using getdata ), normalize
the name and calls method setclass again.

(defmethod c-classtool select-action()
(let ((cn (car (==> the-class-requester getdata))))
(if (regex-match "\\\\|.*\\\\|" cn)

(setq cn (regex-subst "^\\\\|(.*)\\\\|$" "\\%0" cn))
(setq cn (downcase cn)) )

(==> this setclass (apply scope (list (named cn)))) ) )

\vspace 5mm \bf v) Miscellaneous.
We override then method keypress in order to define an accelerator key.

Depressing the space bar pops up the class selection requester. All other key-
press events are handled by the default method which just ignore these events.

(defmethod c-classtool keypress(c x y)
(selectq c
(" " (==> the-class-requester popup))
(t (==> this (windowobject . keypress) c x y)) ) )

Finally the hook function classtool creates an instance of class c-classtool
and sets the initial class displayed in the browser

(de classtool( &optional (cl object) )
(when (symbolp cl)

(setq cl (eval cl)) )
(when (not (classp cl))

(error t "Not a class" cl) )
(let ((w (new c-classtool)))
(==> w setclass cl) ) )

In addition, an autoload function classtool is defined in file "stdenv.lsh"
which loads file "classtool.lsh" and calls this function classtool .



354 CHAPTER 5. OGRE: OBJECT ORIENTED GUI TOOLKIT



Chapter 6

Dynamic Loader/Linker

One of the coolest features of Lush is its dynamic loader/linker. The dynamic
loader/linker allows to load object files (.o, .so, or .a) and make their functions
easily accessible from the interpreter. Functions in dynamically loaded object
files can be written in any language (though C is preferred).

Object files can be dynamically loaded into Lush using the (mod-load "mylibrary.o")
construct.

Let’s say you have written a C file called tt titi.c /tt with the following
content:

float sq(float x)
{
return x*x;

}

You have compiled the file and produced the object file titi.o . Calling sq
from the Lush interpreter is as simple as the following. First, dynamically load
the object file into Lush

? (mod-load "titi.o")

then, write a compiled lisp function whose only purpose is to call tt sq /tt
. To be able to call C from Lush:

? (de square (x) ((-float-) x)
(cheader "extern float sq(float);")
(float #{ sq( $x ) #} )

? (dhc-make "junk" square)

The function square can now be called:

355



356 CHAPTER 6. DYNAMIC LOADER/LINKER

? (square 5)
= 25

Dynamically loaded Modules can be .o object files, but also .a files (static
libraries), or .so files (shared objects). Functions in dynamically loaded modules
can call any external function or variable defined or used by Lush as well as
external functions and variable defined in other modules. In particular, the C
library functions are accessible. A function defined in a module however is not
always executable. Indeed, its module might call an undefined function, or a
function defined by another non executable module. In fact, four situations
occur:

• Initialized and executable modules are the only accessible modules. All
functions referenced by these modules have been found, and the initializa-
tion routine (e.g. init essai ) has been succesfully executed, creating
descriptors for the new lisp functions defined in the modules. At this
point, all new lisp functions defined by such a module are accessible and
work as expected.

• Uninitialized modules reference some undefined functions, or some func-
tions defined by a non executable module. Therefore, the initialization
function has not been executed, and the descriptors for the new lisp func-
tions defined by such a module have not been created.

• Modules may be initialized but non executable. Such a situation occurs
when a module has been initialized and executable, but is no longer exe-
cutable, because it uses some function or global variable which is no longer
defined, because its module has been unloaded.

• Finally, certain modules do not define an initialization function. Such
modules just define C functions used by other modules. We say that such
a module is in a unknown state.

6.1 (mod-load filename)

Type: DE(sysenv.lsh)
This function loads a piece of binary code into LUSH. It can be used to load

various kind of files containing object code:

• Shared libraries (usually a file with extension ".so" )

• Object files (usually a file with extension ".o" )

• Library archives (usually a file with extension ".a" ) containing a collec-
tion of object files. mod-load only loads the components of a .a file that
provide definitions for currently undefined symbols. You may want to use
functions mod-create-reference to create fake undefined symbols and
selectively load parts of the library before actually using them.



6.2. (MOD-UNLOAD FILENAME) 357

6.2 (mod-unload filename)

Type: DE(sysenv.lsh)
This function removes a piece of binary code previously loaded with mod-load

. Only object files (extension ".o" ) and library archives (extension ".a" )
can be safely removed. It is currently not possible to unload a shared library
module (usually a file with extension ".so" ) because these files are dealt with
using operating system facilities that seldom provide unloading support.

This operations encompasses three steps:

• Destroying all lisp functions previously defined by the module. Calling
such functions will cause an error in the future.

• Relinquishing the memory utilized by the module.

• Checking the executability of all loaded modules, and mark the lisp func-
tions defined by a module as partially linked, if this modules is no longer
executable.

6.3 (find-shared-library name [extlist])

Type: DE(sysenv.lsh)
Returns the pathname of a shared library named name . Shared libraries are

searched in the directories specified by variable shared-include-path which
is initialized by "lushenv.lsh" .

The optional argument extlist is a list of possible filename extensions.
The default value is either null (when name already contains an extension) or
the system dependent filename extension for shared libraries.

? (find-shared-library "libm")
= "/usr/lib/libm.so"

6.4 (find-static-library name [extlist])

Type: DE(sysenv.lsh)
Returns the pathname of a static library named name . Static libraries are

searched in the directories specified by variable static-include-path which
is initialized by "lushenv.lsh" .

The optional argument extlist is a list of possible filename extensions.
The default value is either null (when name already contains an extension) or
the system dependent filename extension for static libraries.

? (find-static-library "libm")
= "/usr/lib/libm.a"



358 CHAPTER 6. DYNAMIC LOADER/LINKER

6.5 (find-shared-or-static-library name [extlist])

Type: DE(sysenv.lsh)
Returns the pathname of a library named name . A shared library is first

searched with the supplied extension list extlist . Otherwise a static library
is searched.

? (find-shared-or-static-library "libm")
= "/usr/lib/libm.so"

6.6 (mod-list)

Type: DE(sysenv.lsh)
This function returns the list of the currently loaded modules.
Example:

? (mod-list)
= ("/home/leonb/lush/src/lush" "/home/leonb/test/essai.o")

6.7 (mod-undefined)

Type: DX
This function returns a list with the names of all undefined C functions and

global variables in the current modules.
Example:

? (mod-undefined)
= ("compute_squares" "numbers_of_squares")

6.8 (mod-status)

Type: DE(sysenv.lsh)
Displays a summary of all loaded modules.

6.9 (mod-inquire filename)

Type: DE(sysenv.lsh)
This function returns a list describing the status of a loaded module defined

by the object file filename . The first element of this list is a string describing
the states of a module. When the initialization function has been called, the
names of the new lisp functions are provided in the remaining part of this list.



6.10. (MOD-CREATE-REFERENCE STRING1 ... STRINGN) 359

6.10 (mod-create-reference string1 ... stringN)

Type: DX
Creates a fake undefined symbol that will be considered when loading li-

braries (archive files like "foo.a" ). The loader indeed only loads the library
components which define symbols currently undefined. You may want to use
functions mod-create-reference to create fake undefined symbols and load
certain parts of the library before actually using them.

6.11 (mod-compatibility-flag boolean)

Type: DX
The old loaded was based on the DLD-3.2.3 library. This library had signif-

icant bugs in the code checking the executability of a module. The new loader
implements these checks properly. This righful code may prevent you to load
your old files. You can use function mod-compatibility-flag with a non nil
argument to loosen the checks until the new system is almost as buggy as the
old one.

6.12 Low level module functions.

Most of the above functions are in fact written in Lisp using a set of lower level
functions. LUSH modules are represented by lisp object of class |MODULE| .
The following functions manipulate these objects.

6.12.1 (module-list)

Type: DX
Returns the list of all currently loaded modules. Unlike mod-list this func-

tion returns the module objects instead of the module filenames.

6.12.2 (module-filename m)

Type: DX
Returns the filename associated with module object m .

6.12.3 (module-executable-p m)

Type: DX
Test if the code for module m is executable.

6.12.4 (module-unloadable-p m)

Type: DX
Test if module m can be removed from memory.



360 CHAPTER 6. DYNAMIC LOADER/LINKER

6.12.5 (module-initname m)

Type: DX
Returns the name of the C initialization function for module m .

6.12.6 (module-depends m)

Type: DX
Returns the list of all the initialized modules that depends on module m .

This function is useful to evaluate the consequences of a call to module-unload
.

6.12.7 (module-never-unload m)

Type: DX
Make sure that the module m will not be unloaded. Attemps to unload the

module will cause an error.

6.12.8 (module-defs m)

Type: DX
Returns an alist describing all the primitives defined by module m . This

alist is populated the first time the module becomes executable. It is the user’s
responsibility to make this primitives available for general use by defining con-
veniently named variables.

6.12.9 (module-load filename [hookfunction])

Type: DX
Loads the binary code file filename and returns a module object.
Function hookfunction is called with two arguments when the state of the

module changes. The first argument is a selector symbol representing the nature
of the state change. The second arguments is the module object itself.

The selector symbol can take the following values:

• init The hook function is called with selector init just after calling the
initialization function of the module. Most useful hook functions will scan
the list of definitions returned by module-defs and define global symbols
to access the newly defined primitives.

• exec The hook function is called with selector exec whenever the exe-
cutability of the module changes because of loading/unloading another
module.

• unlink The hook function is called with selector unlink just before un-
loading the module. This is a good time to revert the changes made during
the module initialization.



6.13. EXTENDING THE INTERPRETER 361

6.12.10 (module-unload m)

Type: DX
Unloads the binary module m .

6.13 Extending the Interpreter

While most users will prefer limit themselves to writing lisp functions (possibly
with inline C code) and compiling them, some adventurous users may need to
extend the interpreter more directly. This section describes how to do that by
making use of the dynamic loader/linker.

Here is an example of a file, named "essai.c" , which defines a new lisp
function written in C for computing the square of the hypotenuse of triangles.

/* ------ Beginning of File "essai.c" ------ */
#include "header.h"
/* This is the function that does the work */
double hypotenuse(x,y)
double x,y;
{

double z = x*x + y*y;
printf("hypot(\\%f,\\%f)=\\%f\\n",x,y,z);
return z;

}

/* This is the interpreter interface function */

DX(xhypotenuse) {
ARG_NUMBER(2);
ALL_ARGS_EVAL;
return NEW_NUMBER( hypotenuse(AREAL(1),AREAL(2)));

}

/* This is the initialization routine.
* Its name is formed by prepending "init_" to the file name
*/
void init_essai()
{

dx_define("hypotenuse",xhypotenuse);
}
/* These two (optional) definitions to guarantee that
* this module will only be loaded by compatible versions of LUSH.
*/
int majver_essai = 40; /* LUSH_MAJOR */



362 CHAPTER 6. DYNAMIC LOADER/LINKER

int minver_essai = 10; /* LUSH_MINOR */
/* ------ End of File "essai.c" ------ */

Integrating this function into the LUSH interpreter can be achieved in two
ways:

• Copying this file in the "src" directory of Lush, adding "essai.o" to
the list of objects in the "Makefile" , calling "init essai()" from file
"toplevel.c" and recompiling everything. This will build a new version
of Lush with the new function.

• Compiling this file separately and loading the resulting object file into
Lush at run-time. This solution is named dynamic linking of an external
module. Modules are loaded with the function mod-load , and unloaded
with the function mod-unload . These functions allocate the necessary
memory, relocate the machine code, and resolve the external references.

The compilation is performed by the command:

globina\\% gcc -c -I/home/leonb/lush/include essai.c

The resulting "essai.o" file can be loaded into LUSH with the following
command.

? (mod-load "essai.o")
= "/home/user/subdir/essai.o"
? (hypotenuse 3 4)
hypot(3.000000,4.000000)=25.000000
= 25

6.14 Debugging modules with gdb.

Although GDB is unaware of Lush’s dynamic linking capabilities, it contains
decent support to debug code contained in shared libraries (i.e. files with ex-
tension ".so" ). The best way to debug modules therefore consists in building
them as shared libraries.

Example:

globina\\% gcc -shared -o essai.so -I/home/leonb/lush/include essai.c
globina\\% gdb lush
... GDB starts
(gdb) run
... LUSH starts
? (mod-load "essai.so")
= "/home/leonb/essai.so"



6.14. DEBUGGING MODULES WITH GDB. 363

<CTRL-C>
(gdb) br xhypotenuse
Break in xhypotenuse
(gdb) cont
? (hypotenuse 3 4)
Breakpoint 1, 0x4001a8c1 in xhypotenuse () from /home/leonb/essai.so
(gdb) ....

There are two limitations:

• Shared libraries must be completely linked. They can only reference sym-
bols contained in the main lush executable and its libraries (not in other
dynamically loaded modules)

• Shared libraries cannot be unloaded and replaced by another version.



364 CHAPTER 6. DYNAMIC LOADER/LINKER



Chapter 7

CLush: Compiled Lush

Author(s): Leon Bottou , Yann LeCun
[under construction]
One of Lush’s most interesting features is its Lisp-to-C compiler and the

ability to freely intermix Lisp and C code in a single function. Unlike many
other interpreted/compiled languages , and contrary to many well established
principles of language design , the two dialects that the Lush interpreter and
the Lush compiler implement are two very different languages , though they
share the same syntax. The compiled dialect is strongly typed , lexically bound
, and has no garbage collector , while the interpreted dialect has loose typing ,
is dynamically bound , and is garbage collected.

In fact , the Lush compiler is not designed to replace the interpreter , but
rather to complement it. Lush applications are generally a combination of com-
piled and interpreted code. The compiled part is often itself a combination of
Lush and C code. The compiled code will generally contain the ”expensive” and
heavily numerical parts of an application , where performance is the main re-
quirement , while the interpreted part will contain the high-level logic , the user
interface , the memory management , etc , where flexibility is more important
than pure performance.

7.1 A Simple Example

[under construction]
Numerous examples of compiled functions with and without in-line C-code

are available in the libraries (in directories lsh and packages).

7.2 Using libload and dhc-make.

Lush contains convenient functions that implement capabilities similar to make.
Properly using these functions ensures that the Lush interpreter loads the most

365



366 CHAPTER 7. CLUSH: COMPILED LUSH

recent version of the functions as necessary , and that all functions are judi-
ciously recompiled when functions they call have been redefined.

Users should just follow the following four rules:

• Every Lush file should use the function libload to load all required files
(i.e. files defining functions or classes required by this lush file).

• The compilation of Lush function and classes should be performed by
inserting one or several calls to dhc-make at the end of the lush file that
defines those functions and classes.

• Users should identify the main Lush file of the project , that is to say
the file that directly or indirectly loads all the Lush files of your project.
This is usually the file with the higher level functions. It is sometimes
convenient to create a Lush file for the sole purpose of being the main
Lush file.

• When you want to load the most recent version of all your project files
, you just need to load the main Lush file using either libload or the
macro-character |^L| . This will load all modified files , reload all files
that depends on modified files , and recompile all functions and classes
that need recompilation , either because they have been modified , or
because they depend on modified classes or functions.

See: (libload libname [ opt ])
See: (dhc-make fname fspec1 ... fspecN )

7.3 Compilation Functions

7.3.1 High-Level Compilation Functions

(dhc-make fname fspec1...fspecN)

Type: DM(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
Function dhc-make controls the compilation of classes and functions speci-

fied by the fspecs arguments.
Although this function can be used from the command line , it mostly is used

within a Lush file to control the compilation of classes and functions defined in
this file. We will assume now that dhc-make is invoked from a Lush file.

The first argument fname is either the empty list or a string representing
filenames of the C and object files output by the Lush compiler.

• Passing the empty list instructs dhc-make to generate a suitable filename
derived from the name of the Lush file containing the dhc-make command.
Generated C files will be created in a subdirectory "C" of the directory
contaning the Lush file. Generated object files will be created in a subdi-
rectory of "C" whose platform dependent name is provided by expression
(getconf "host") .



7.3. COMPILATION FUNCTIONS 367

• Passing a string specifies a particular base name. Function dhc-make adds
the suitable suffixes for C files or object files , replacing any other suffix
possibly present in fname . Argument fname may specify a directory
for both the C and object files. Otherwise the C and object files will be
generated as explained above.

Each of the following arguments fspec is either a function name or a list com-
posed of a class name and method names. The following example , for instance
, first compiles function foo , then compiles methods rectangle and area of
class rectangle , and finally compiles function bar .

(dhc-make ()
foo
(rectangle rectangle area)
bar )

The order of the fspec arguments is important because no function , class or
method can be compiled before compiling all functions , classes , or methods
it references. This order can be different from the function and class definition
order in the Lush file.

Before starting the compilation , function dhc-make tests whether the target
files already exist and are up-to-date:

The C file will be generated if any of the following conditions is true.

• no such C file exists ,

• the Lush file is more recent than the existing C file ,

• the Lush file depends on another Lush file which is more recent than
the existing C file. These dependencies are those collected by function
libload .

The object file will be generated if any of the following conditions is true:

• no such object file exists ,

• the C file is more recent than the existing object file , as happen , for in-
stance , when the C file was regenerated during this invocation of dhc-make
.

Finally dhc-make performs a mod-load of the object file and checks that
the compiled functions are now executable. It returns the name of the object
file.

Note: Function dhc-make can also be invoked from the command line.
When this is the case , it always generates fresh C and object files , and derives
their names from the last fspec argument.



368 CHAPTER 7. CLUSH: COMPILED LUSH

(dhc-make-with-libs fname libs fspec1...fspecN)

Type: DM(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
See: (dhc-make fname fspec1 ... fspecN )
This function is similar to dhc-make but takes an additional argument libs

to handle cases where the compiled functions depend on external C libraries.
This argument can take two values:

• Argument libs may be a list of library names. Function dhc-make-with-libs
works like dhc-make but also loads all the specified libraries after load-
ing the compiled functions , and before checking whether the compiled
functions are executable.

• Argument libs may be the symbol t . Function dhc-make-with-libs
then works like dhc-make but does not cause an error if the compiled
functions are not executable because they contain unresolved references.
The caller is expected to load additional modules using mod-load in order
to satisfy these unresolved references.

(dhc-make-with-c++ fname libs fspec1...fspecN)

Type: DM(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
See: (dhc-make fname fspec1 ... fspecN )
See: (cinline format var1 ... varn )
This function is similar to dhc-make-with-libs but uses the C++ compiler

instead of the C compiler to generate the object file. This makes no difference
except that one can use C++ constructs when inlining C code with cinline .
This is particularly handy when interfacing external C++ libraries.

(dhc-make-all fname fspeclist libs)

Type: DE(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
See: (dhc-make fname fspec1 ... fspecN )
See: (dhc-make-with-libs fname libs fspec1 ... fspecN )
This is the elementary function called by dhc-make , dhc-make-with-libs

and dhc-make-with-c++ .
Argument fspeclist is a list containing the fspec1 ... fspecN arguments

of function dhc-make . Argument fname is similar to the fname argument of
functions dhc-make or dhc-make-with-libs . Argument libs is similar to
the libs argument of function dhc-make-with-libs .

7.3.2 Customizing the Behavior of dhc-make.

The following variables control the behavior of dhc-make .



7.3. COMPILATION FUNCTIONS 369

dhc-make-force

Type: VAR(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
Setting this variable to a non null value forces the recompilation of all files,

even when they have not been modified.
The following example, for instance, forces the compilation of functions foo

and bar .

(let ((dhc-make-force t))
(dhc-make () (foo bar)) )

dhc-make-lushflags

Type: VAR(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
This variable contains a string containing the compilation flags for invoking

the C or C++ compiler. The following example, for instance, insert additional
options "-w -DMMX" for the C compiler:

(let ((dhc-make-lushflags (concat dhc-make-lushflags " -w -DMMX")))
(dhc-make () (foo bar)) )

The initial value is derived from the Makefile variable LUSHFLAGS . It might
reference other predefined varibales prefixed with character $ . These variables
are expanded using dhc-substitute-env .

dhc-make-command

Type: VAR(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
This variable is a string containing the command for generating object files.

Variables prefixed with $ will be expanded using dhc-substitute-env . Four
additional variables are defined:

• $LUSHFLAGS Compilation flags defined by dhc-make-lushflags or by the
optional argument of dhc-make-o .

• $INCS The flag specifying the location of the Lush include files.

• $SRC The pathname of the source file.

• $OBJ The pathname of the object file.

dhc-make-overrides

Type: VAR(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
This variable contains an a-list of additional variable definitions for inter-

preting dhc-make-lushflags and dhc-make-commands . Definitions provided
in dhc-make-overrides take precedence over the defaults provided by Lush.

The following example, for instance, invokes the C++ compiler instead of
the C compiler:



370 CHAPTER 7. CLUSH: COMPILED LUSH

(let ((dhc-make-overrides
(cons (cons "CC" (dhc-substitute-env "$CXX")) dhc-make-overrides) ))

(dhc-make () (foo bar)) )

7.3.3 Querying File Dependencies

The following functions can be used to determine whether dhc-make will invoke
the compiler.

(dhc-make-get-dependencies [lushfile])

Returns the list of Lush files on which file lushfile is dependent. These are the
files directly or indirectly loaded using libload . When argument lushfile is
not provided , file-being-loaded is assumed.

(dhc-make-test fname)

Type: DM
This function tests whether a subsequent invocation of dhc-make with the

same fname argument needs to generate a new version of the C file. When there
is no need to generate a new C file , function dhc-make-test makes sure that
the object file is up-to-date and returns the name of the object file. Otherwise
it returns the empty list.

This function is useful to avoid processing long files when we are only inter-
ested in precompiled functions. See "packages/lapack/lapack-s.lsh" for an
example.

7.3.4 Low-Level Compilation Functions.

Most users will rarely use the functions described in this section , but they come
in handy in certain cases.

(dhc-make-o-filename src)

Returns a suitable filename for the object file

(dhc-generate-c filename ’([func1 [funcn]]))

Translate lisp functions and classes func1 ... funcn to C code and produces a
source file suitable for a file named filename . Argument filename should be
provided without the ”.c” suffix and must be a legal C identifier as it is used
for the initialization function in the C code.



7.4. DESIGN PHILOSOPHY 371

(dhc-substitute-env str [htable])

Returns a copy of string str after substituting all environment variables. Sub-
stitution values are searched in htable when available , then passed to functions
getconf and getenv .

(dhc-make-c fname fsymblist)

Compile functions or classes fsymblist into a new source file fname . Argu-
ment fname must be provided without the ".c" suffix.

(dhc-make-o src-file [obj-file [lushflags]])

Compile C source file src-file generated by the dh compiler into object file
obj-file . Argument lushflags is an optional string containing compiler
options.

(dhc-make-c-maybe snname fname fsymblist)

Compile functions or classes fsymblist producing the file fname . Argument
fname must be provided without the suffix ”.c”. Compilation will only occur if
the existing fname was created before the file snname or any file loaded from
snname using libload .

(dhc-make-o-maybe src-file [obj-file [cflags]])

Same as dhc-make-o but only recompiles if source file is newer than object file

7.4 Design Philosophy

The design philosophy of the Lush compiler is somewhat unusual, and, admit-
edly, in stark violation of many commonly accepted principles of good program-
ming language design. First, The Lush compiler is not designed to replace the
interpreter, but to complement it. Lush applications are often a combination
of compiled code for things where performance takes precedence over flexibil-
ity (e.g. ”expensive” and heavily numerical functions), and interpreted code for
things where flexibility takes precedence over performance (high-level logic, user
interface, memory management).

Therefore, the Lush compiler is designed to generate very efficient code (prac-
tically as good as its C equivalent), but has limitations as to what it can and
cannot compile. What that means for the programmer is that, although the
compiled and interpreted Lush dialects use the same syntax, they are really
two different languages. From now on, the compiled Lush dialect will be called
CLush, while the interpreted Lush dialect will be called simply Lush.

This deliberate difference between the two dialects allows all kinds of really
juicy hacks (with no performance penalty), that would be difficult to achieve
if the two dialects were identical by design. Within a single program you can



372 CHAPTER 7. CLUSH: COMPILED LUSH

simultaneously have in-line C code in the compiled part, run-time construction
of code in the interpreted part (including run-time self modifying expressions
like DMD splicing macros) with no hidden performance penalty.

The main differences between Lush and CLush are as follows:

• CLush is strongly typed (the type of all the variables must be declared,
and is immutable), while Lush is not typed (e.g. a single variable can be
assigned values of different types at different times in the same program).

• CLush uses lexical scoping, while Lush uses dynamic variable binding (if
you don’t know the difference, don’t worry).

• The CLush compiler refuses to compile code that dynamically allocates
objects that would require garbage collection. This allows the compiler to
allocate all temporaries, local variables, and return values on the stack.
While this provides clear performance advantages, it also puts strong lim-
itations on what can and cannot be compiled (in particular most list ma-
nipulation functions are not usable in CLush)

• Dynamic allocation can be done is CLush, but the memory management
must be done ”by hand”, and allocated objects must be deallocated ex-
plicitely, as with C. A pool class is provided in libstd/dyamic.lsh to
facilitate dynamic allocation/deallocation of objects in compiled code. A
good example of its use is the graph library in lsh/libgraph .

•

7.5 What is Compilable, and What isn’t

[under construction]
There is a simple test to determine if a particular function is compilable or

not: (compilablep func ). This may returns ’yes , ’maybe or () . The value
’maybe is returned when the argument is a macro whose compilability cannot
be determined without expansion.

Basically the kinds of things that can be compiled by the CLush compiler
are the kinds of things that you expect to be compilable in a ”conventional”
language like C. All the really ”Lispish” stuff like eval , lambda , etc is not
compilable (those things don’t exist in C).

There are three types of things that cannot be compiled:

• Things that construct functions and code at run time (e.g. lambda ,
mlambda ), or things that evaluate dynamically generated code (e.g. eval
).

• Things that allocate dynamic structures that would require garbage col-
lection

• Things that call non-compilable functions.



7.6. CLUSH-SPECIFIC FUNCTIONS AND CONSTRUCTS 373

7.5.1 (compilablep function)

Type: DM
Tests if a function is compilable. Returns t , maybe or (). The value ’maybe

is returned when the argument is a macro whose compilability cannot be deter-
mined without expansion.

7.6 CLush-specific functions and constructs

7.6.1 Numerical Type Declarations

((-double-) var1 ... varn)

declare double precision floating point variables.

((-float-) var1 ... varn)

declare single precision floating point variables.

((-int-) var1 ... varn)

declare integer variables (32 bits).

((-short-) var1 ... varn)

declare short integer variables (16 bits).

((-byte-) var1 ... varn)

declare signed byte variables (8 bits).

((-ubyte-) var1 ... varn)

declare unsigned byte variables (8 bits).

((-gptr- [spec]) var1 ... varn)

This declares the symbols var1 ... varn as C-style pointers. In the absence
of a spec the pointers will be equivalent to universal pointers ( void * ). An
optional string spec can be specified to explicitely declare the C type of the
pointer. Examples:

((-gptr- "int *") integer-pointer)
((-gptr- "FILE *") file-pointer)
(cpheader "<my_header_file.h>")
((-gptr- "MyObjectType *") myobject-pointer)



374 CHAPTER 7. CLUSH: COMPILED LUSH

Argument spec may also be a list containing a Lisp class name. This will
define the type of the variable as a pointer to the C version of that class. Ex-
ample:

((-gptr- (myclass)) myclass-pointer)

The C type of myclass-pointer will be "struct CClass myclass *" .

((-obj- (class)) var1...varN)

This syntax declares the variables var1 ... varN as being instances of the class
class .

((-idx0- (type)) var1...varN)

This syntax declares the variables var1 ... varN as idx0 (scalars) of type type
, where type is one of the Lush numerical types (-ubyte- , -double- , -float- ,
etc).

((-idx1- (type)) var1...varN)

This syntax declares the variables var1 ... varN as idx1 (vector) of type type
, where type is one of the Lush numerical types (-ubyte- , -double- , -float- ,
etc).

((-idx2- (type)) var1...varN)

This syntax declares the variables var1 ... varN as idx2 (matrix) of type type
, where type is one of the Lush numerical types (-ubyte- , -double- , -float- ,
etc).

((-idx3- (type)) var1...varN)

This syntax declares the variables var1 ... varN as idx3 (3-tensor) of type type
, where type is one of the Lush numerical types (-ubyte- , -double- , -float- ,
etc).

((-idx4- (type)) var1...varN)

This syntax declares the variables var1 ... varN as idx4 (4-tensor) of type type
, where type is one of the Lush numerical types (-ubyte- , -double- , -float- ,
etc).

((-idx5- (type)) var1...varN)

This syntax declares the variables var1 ... varN as idx5 (5-tensor) of type type
, where type is one of the Lush numerical types (-ubyte- , -double- , -float- ,
etc).



7.6. CLUSH-SPECIFIC FUNCTIONS AND CONSTRUCTS 375

((-idx6- (type)) var1...varN)

This syntax declares the variables var1 ... varN as idx6 (6-tensor) of type type
, where type is one of the Lush numerical types (-ubyte- , -double- , -float- ,
etc).

((-idx7- (type)) var1...varN)

This syntax declares the variables var1 ... varN as idx7 (7-tensor) of type type
, where type is one of the Lush numerical types (-ubyte- , -double- , -float- ,
etc).

7.6.2 Class Declaration and Compilation

Classes can be compiled with some restrictions. In short:

• The types of all the slots of a compiled class must be declared.

• It is preferrable to include the constructor in the list of methods being
compiled.

• The constructor of a compiled class must set initialize all the slots with
an object of the type declared in the class definition.

• The parent class of a compiled class must be compiled prior to the class

• Methods defined in a subclass that overload a method of the parent class
must have the same prototype as the method they overload (i.e. the
same arguments with the same type , the same return type , and the same
temporary variables).

Here is an example of compiled class declaration syntax (taken from packages/gblearning/modules.lsh
):

(defclass mle-cost sn-module
((-obj- (logadd-layer)) logadder)
((-obj- (idx1-ddstate)) logadded-dist)
((-idx1- (-int-)) label2classindex))

Essentially , the type of each slot must be declared using the same syntax as
parameters of a function.

Compiling a class with dhc-make and its variants is done by passing a list
whose first element is the class name and the remaining elements are the meth-
ods to be compiled. Here is an example:

(dhc-make ()
(sn-module)
(mle-cost mle-cost fprop bprop bbprop))

It is not required to compile all the methods of a class. A compiled class can
have a mixture of compiled and non-compiled methods.



376 CHAPTER 7. CLUSH: COMPILED LUSH

7.6.3 Type Conversions

Functions are provided to convert objects from one type to another. Their
behavior is somewhat different in interpreted and compiled mode.

Numerical Type Conversions

These functions convert one numerical or object type to another. In compiled
mode , they behave like C casts. In interpreted mode , the argument is casted
to the corresponding C type , and then converted back to double since double
is the only numerical type manipulated by the interpreter.

(to-int arg) Type: DX
Casts arg into an integer.
(to-float arg) Type: DX
Casts arg into a single precision number.
(to-double arg) Type: DX
Casts arg into a double precision number.
(to-bool arg) Type: DX
Casts arg into a boolean.
(to-flt arg) Type: DX
Casts arg into a single precision number (deprecated name for to-float).
(to-real arg) Type: DX
Casts arg into a double precision number (deprecated name for to-double).

Non-Numerical Type Conversions

(to-gptr arg) Type: DX
Casts arg into a GPTR.
In interpreted mode to-gptr simply returns a gptr containing the address

the C object associated with the object passed as argument (which can be an
index , storage , string , a compiled function , or any object).

This function may not be used to convert an integer (or other numerical
types) to a gptr , but merely to obtain the address of an object.

In compiled mode , it is useful to know that a gptr does not carry enough
information to allow the compiler to determine when the corresponding object
must be released. The following function is a sure looser:

(de never-do-this()
(gptr (new myclass)) )

The compiler cannot understand that the object created by new is returned
as a Gptr and may be used outside this function. The object is freed before
returning , making the gptr useless. To prevent this , the object should be
allocated in a pool using in-pool from lsh/libstd/dynamic.lsh .

(to-obj [class] arg) Type: DX
Casts arg into an object of class class . Argument arg must be a gptr or

an object. Argument class is mandatory in compiled mode.



7.6. CLUSH-SPECIFIC FUNCTIONS AND CONSTRUCTS 377

• When argument arg is an object , this function checks that the object
class is a subclass of class and returns the unmodified object.

• When this function is called in interpreted mode with a gptr argument ,
the lisp-to-c interface retrieves and returns the lisp object associated with
the C object pointed to by the GPTR. It also checks that the object class
is indeed a subclass of class .

• When this function is called in compiled mode with a GPTR argument ,
the compiler converts the GPTR into a pointer to an object of the specified
class. Class membership is checked at run time.

7.6.4 inline C code

CLush allows to freely intermix Lisp and C code within a single function. This
can be done in several ways , the simplest of which is the ”hash-brace” construct.

Hash-Brace Construct

The macro character pair # c-code # allows easy embedding of C code inside
a Lisp function. The embedded C code is delimited by # and # . Functions
containing hash-brace segments cannot be executed by the interpreter and must
be compiled.

Any C code can be written within a hash-brace construct. Lisp expressions
and variables can be evaluated and refered to in the Lisp code by preceding
them with a dollar sign.

• $legal-c-identifier refers to the lisp variable of the same name

• $legal-lisp-variable refers to the lisp variable (the braces are required
if the lisp variable name is not a legal C name , e.g. if it contains dashes).

• ($lisp expression) refers to the result returned be the lisp expression.

Examples:

[under construction]
[insert juicy hash-brace examples here]

The hash-brace macro calls the lower-level compiler macro cinline .
Example:

(de add-to-integer( intg arg )
((-int-) intg arg)
#{ $intg += $arg; #}
intg )

expands to:



378 CHAPTER 7. CLUSH: COMPILED LUSH

(de add-to-integer (intg arg)
((-int-) intg arg)
(cinline " \\%s += \\%s; " intg arg)
intg )

See: (cinline format [ arg1 [ arg2 ... [ argn ]]])

C Directives and Macros

(cpheader string) Type: DF
This directive can be used to insert a line in the C file generated by the

CLush compiler. This is primarily used to include header files or to define
macros. Examples:

(cpheader "#include <stdio.h>")

The lines are inserted at the beginning of the C file , before all the Lush
header files.

(cheader string) Type: DF
Same as cpheader , but inserts the lines after the Lush header files instead

of before.
(find-c-include name) Type: DE(sysenv.lsh)
Returns the pathname of a C include file named name . Include files are

searched in the directories specified by variable c-include-path which is ini-
tialized by "lushenv.lsh" .

? (find-c-include "stdio.h")
= "/usr/include/stdio.h"

Here is an example of how to use find-c-include to precompute an include
file:

(libload "libc/constants")
(defconstant qqq (sprintf "#include \\"\\%s\\"" (find-c-include "stdio.h")))
= "qqq"
? (de asd () (cpheader @qqq) #{ printf("asd\\n") #} ())
= asd
? (dhc-make "junk" asd)

(ccall string) Type: DE
call a C function. This is somewhat obsolete. Most users will prefer the

hash-brace construct.
(cinline format var1...varn) Type: DF
Insert C code in the C file generated by the Lush compiler. The format is

an printf-like format where instances of ”%s” are substituted by the C name of
the lisp variables var1 ... varn . Example:



7.6. CLUSH-SPECIFIC FUNCTIONS AND CONSTRUCTS 379

;; set element 2 of v to x.
(de choucroute (v x)
((-idx1- (-int-)) v)
((-double-) x)
(cinline "(IDX_PTR(\\%s,int))[2] = (int)(\\%s);" v x) ())

The C function generated by the Lush compiler looks like this:

extern_c char
C_choucroute (struct idx *L1_v, real L1_x)
{
TRACE_PUSH ("C_choucroute");
{
(IDX_PTR (L1_v, int))[2] = (int) (L1_x);
TRACE_POP ("C_choucroute");
return 0;

}
}

cinline is rarely used , as most users will prefer to use the hash-brace
construct.

7.6.5 Compiler Directives

(ifcompiled compiled-expr interpreted-expr)

Type: DM
This allows to execute different codes in interpreted mode and in compiled

mode.

(ifdef symb expr1 expr2)

Type: DM
[under construction]

#@expr

Type: DMC
Expressions prefixed by #@ are not evaluated unless dhc-debug-flag is set

to t . This can be used to insert debugging code.

dhc-debug-flag

Type: VAR
Turns on execution of code prefixed with —#@—



380 CHAPTER 7. CLUSH: COMPILED LUSH

7.6.6 Dynamic Allocation in Compiled Code

[under construction] This will eventually become a tutorial on how to use
the pool class defined in libstd/dynamic.lsh . The reference manual for
dynamic.lsh is available in the standard library section of this manual.

See: Dynamic Allocation with Pools.

7.7 Interfacing Existing C/C++/FORTRAN Li-
braries to Lush

[under construction]

7.7.1 Symbolic constants.

(lsh/libc/constants.lsh) Last Modified: 2002-11-18 03:28:41
header files of C libraries are often filled with large amounts of #define di-

rectives that define numerical macros, flags and other constants. Interfacing
these libraries to Lush requires to turn those constants into Lisp symbols. Lush
contains a mechanism for defining such constants without filling up the global
variable name space and risquing name clashes. Constants can be defined with
the (defconstant "constant-name" value) directive. Constants can later
be accessed using the @constant-name macro or the @@constant-name macro.
The @ macro expands into a macro that evaluates to the value, while @@ di-
rectly expands to the value at read time.

See: @ identifier
See: (defconstant identifier val )

(defconstant identifier val)

(lsh/libc/constants.lsh) Last Modified: 2002-11-18 03:28:41
Defines a symbolic constant named identifier and equal to val . Ar-

gument identifier must be a string or a symbol. Argument val must be a
number or a string. These constant values are not accessible as variables but
are accessible using the —@— macro-character.

@identifier @@identifier

(lsh/libc/constants.lsh) Last Modified: 2002-11-18 03:28:41
These macro-character expand to a expressions that retrieve the value of

the symbolic constant named identifier . The @ form causes the retrieval to
occur at macro-expansion time. while the @@ form causes the retrieval to occur
at read time. These macros are particularly useful for using symbolic constants
in compiled code.

Argument identifier must be a legal C identifier name.
Compatibility notes:



7.8. MORE ON THE LISP-C INTERFACE 381

• If identifier has not been defined using defconstant , the global value
of the symbol named identifier is used.

• If the macro-character |@| cannot read a legal C identifier name, it reads
a lisp expression and arranges for that expression to be evaluated during
the macro expansion time.

• The expansion of the @@ form depends on the execution of the previous
expressions, which may cause discrepancies when loading tokenized files.
However, the @@ is more efficient in interpreted mode since the expansion
occurs in advance of execution.

7.7.2 Interfacing C code

[under construction]

7.7.3 Interfacing C++ code

[under construction]

7.7.4 Interfacing FORTRAN code

[under construction]

7.8 More on the Lisp-C Interface

[under construction]

7.8.1 DH: the Compiled Function Class

(dhinfo-t dhfunc)

Type: DX
[under construction]

(dhinfo-c dhfunc)

Type: DX
[under construction]

7.8.2 Classinfo

(classinfo-t class)

Type: DX
[under construction]
Similar to the SN3 function but takes a class as argument instead of now

obsolete cclass objects.



382 CHAPTER 7. CLUSH: COMPILED LUSH

(classinfo-c class)

Type: DX
[under construction]
Similar to the SN3 function but takes a class as argument instead of now

obsolete cclass objects.

7.8.3 Controling the Lisp/C interface.

(lisp-c-map [arg])

Type: DX
This function displays the internal data structure of the interface between

Lisp and Compiled code. The LISP-C interface maitains a sorted avl tree of
all objects currently allocated. This table relates the address of the compiled
structure, the type of the structure, the way the object was created and possibly
the Lisp representation of this object.

• Calling this function without arguments returns the number of entries in
the table.

• Calling this function with arg equal to 0 or () prints all the table. You
better check the size of the table before doing this.

• Calling this function with arg equal to 1 prints all the table entries that
needs to be synchronized before calling a compiled function.

• Calling this function with arg equal to 2 prints all the table entries that
represent temporary objects.

• Calling this function with arg equal to an object, a storage, an index, or
a strng prints the table entry (if any) associated with this object.

You can redirect the output of this command using function writing .
Example:

? (lisp-c-map)
= 12
? (lisp-c-map ())
= L 0x1e29b0 str "A string for class c1"

< L 0x2f10a0 idx ::INDEX1:<3>
< L 0x2f12e0 obj:c2 ::c2:2f1330
= L 0x2f1370 idx ::INDEX1:<3>
= L 0x2f1c98 srg ::FSTORAGE:static@2fe820
= L 0x2f1e18 str "A second string for class c1"

= L 0x2ff050 str "A third string for class c1"
= L 0x2ff068 obj:c1 ::c1:2f1b08

= L 0x2ff080 idx ::INDEX1:<3>



7.9. COMPILER INTERNALS 383

= L 0x2ff0a8 srg ::FSTORAGE:static@2fe82c
= L 0x31cb20 obj:c1 ::c1:1e2980
= L 0x31cb38 srg ::FSTORAGE:ram@1e2968:<3>

= 12
The first character describes the position of the entry in the balanced
tree. The second character tells wether the object was created by LISP (L)
or by compiled code (C) (e.g. Pool). Each entry displays then the address
of the compiled object and the lisp representation of the object. An object
created by C code may have no lisp representation until it is referenced by
a represented object or until the proper GPTR is casted by function <obj>.

(lisp-c-dont-track-cside)

Type: DX
Restrict the synchronization of the lisp and C data structures in a way similar

to previous versions of the system (SN3.x). C objects managed by compiled code
will appear as gptrs in Lisp code instead of being translated into equivalent Lisp
objects.

(lisp-c-no-warnings ..exprs..)

Type: DY
Evaluates expressions ..exprs.. like function progn without displaying

the usual diagnostic about the synchronization of the lisp and C data structures.

7.9 Compiler Internals

7.9.1 (dhc-generate-c filename ’([func1 [funcn]]))

(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
Translate lisp functions and classes func1 ... funcn to C code and produces

a source file suitable for a file named filename . Argument filename should
be provided without the ”.c” suffix and must be a legal C identifier as it is used
for the initialization function in the C code.

7.9.2 (compilablep function)

Type: DM(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
Tests if a function is compilable. Returns t , maybe or (). The value ’maybe

is returned when the argument is a macro whose compilability cannot be deter-
mined without expansion.

7.9.3 (dhc-substitute-env str [htable])

(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09



384 CHAPTER 7. CLUSH: COMPILED LUSH

Returns a copy of string str after substituting all environment variables.
Substitution values are searched in htable when available , then passed to
functions getconf and getenv .

7.9.4 varlushdir

Type: VAR(lushenv.lsh)
This variable is defined by "lushenv.sn" when the owner of the lush direc-

tory is different from the owner of the lush process. Compiled versions of the
system lush files will be created in a shadow directory tree located under the
varlushdir directory.

7.9.5 (dhc-make-cdir cdir [create])

(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
This function returns cdir when varlushdir is the empty list. When

varlushdir is the name of an existing directory , this function checks if cdir
is a subdirectory of the Lush directory lushdir . If this is the case , it returns
the name of a subdirectory under varlushdir with the same name. When
argument create it t , function dhc-make-cdir creates all the requitred di-
rectories under varlushdir .

7.9.6 (dhc-make-c-filename src)

(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
Returns a suitable filename for the C file generated from the LSH file src

7.9.7 (dhc-make-o-filename src)

(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
Returns a suitable filename for the object file generated from the C or LSH

file src

7.9.8 (dhc-make-get-dependencies [snname])

(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
Returns a list of files that are loaded directly or indirectly when loading file

snname . This function takes advantage of the information collected by function
libload . Argument snname defaults to the currenly loaded file.

7.9.9 dhc-make-lushflags

Type: VAR(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
Compilation flags used by dhc-make-o . This is similar to the variable

LUSHFLAGS in the makefiles. Variables prefixed with $ will be expanded
using dhc-substitute-env .



7.9. COMPILER INTERNALS 385

7.9.10 dhc-make-command

Type: VAR(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
Compilation command used by dhc-make-o. Variables prefixed with $ will

be expanded using dhc-substitute-env . Four additional variables are de-
fined:

• $LUSHFLAGS Compilation flags defined by dhc-make-lushflags or by
the optional argument of dhc-make-o .

• $INCS The flag specifying the location of the Lush include files.

• $SRC The pathname of the source file.

• $OBJ The pathname of the object file.

7.9.11 dhc-make-overrides

Type: VAR(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
This variable contains an a-list of variable definitions for overriding those

usually derived from getconf and getenv .

7.9.12 dhc-make-force

Type: VAR(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
Setting this variable to a non null value forces the recompilation of all files,

even when they have not been modified.

7.9.13 dhc-make-essential-libs

Type: VAR(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
This variable contains a list of archive libraries that should be reloaded when

undefined symbols remain. This is useful on some BSD systems.

7.9.14 (dhc-make-o src-file [obj-file [lushflags]])

(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
Compile C source file src-file generated by the dh compiler into object

file obj-file . Argument lushflags is an optional string containing compiler
options.

7.9.15 (dhc-make-o-maybe src-file [obj-file [cflags]])

(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
Same as dhc-make-o but only recompiles if source file is newer than object

file



386 CHAPTER 7. CLUSH: COMPILED LUSH

7.9.16 (dhc-make-c fname fsymblist)

(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
Compile functions or classes fsymblist into a new source file fname . Ar-

gument fname must be provided without the ".c" suffix.

7.9.17 (dhc-make-c-maybe snname fname fsymblist)

(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
Compile functions or classes fsymblist producing the file fname . Argu-

ment fname must be provided without the suffix ”.c”. Compilation will only
occur if the existing fname was created before the file snname or any file loaded
from snname using libload .

7.9.18 (dhc-make-test fname)

Type: DM(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
Test if both the C file named fname and the associated object file are up-to-

date relative to the currenly loaded file and its dependencies. Returns either ()
or the name of the up-to-date object file. When argument fname is the empty
list , a suitable filename is constructed from the currenly loaded file using the
same rules as dhc-make .

7.9.19 (dhc-make-all fname fsymblist liblist)

(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
Document this.

7.9.20 (dhc-make fname f1 [f2 ...[fn]])

Type: DM(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
Document this.

7.9.21 (dhc-make-with-libs fname library-list f1 [f2 ...[fn]])

Type: DM(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
Document this.

7.9.22 (dhc-make-with-c++ fname library-list f1 [f2 ...[fn]])

Type: DM(lsh/compiler/dh-compile.lsh) Last Modified: 2002-12-23 09:57:09
Same as dhc-make-with-libs but compiles with the c++ compiler instead

of the c compiler.
Note that the dynamic loader is not currently able to execute static initial-

izers possibly present in the generated code. The lush compiler obviously does
not generate such construct. On the other hand everything can happen when
using inlined C++ code.



7.9. COMPILER INTERNALS 387

7.9.23 (dhc-insert-op l op)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Concatenate all strings in l separated with op .

? (insert-op ’("3" "4" "5") "*")
= "3*4*5"

7.9.24 (dhc-nolast l)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Remove last element of list.

7.9.25 (dhc-remove-dup l)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Remove duplicates in a list.

7.9.26 (dhc-remove-eqdup l)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Remove pointer duplicates from a list.

7.9.27 (dhc-remove-nth n l)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Remove n th element from list l

7.9.28 (dhc-split-list l test)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Returns two list containing the element of list l . The first list contains the

element of l that pass the test test , the second list the remaining elements.

? (dhc-split-list ’(1 4 2 6 4 3 2 3 2 1 3) (lambda (x) (= 3 x)))
= ((3 3 3) (1 4 2 6 4 2 2 1))

7.9.29 (dhc-postincr symb)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Increments variable symb by one and returns the value of the variable *be-

fore* incrementing.



388 CHAPTER 7. CLUSH: COMPILED LUSH

7.9.30 dhc-debug-flag

Type: VAR(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Turns on execution of code marked with —#@—

7.9.31 —#@—

Type: DMC(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Expressions prefixed by #@ are not evaluated unless dhc-debug-flag is

set to t .

7.9.32 (dhc-add-c-declarations str)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
To be used in a dhm-c macro. Adds string str into the declaration part of

the current block of C code.

7.9.33 (dhc-add-c-statements str)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
To be used in a dhm-c macro. Adds string str to the statement part of the

current block of C code.

7.9.34 (dhc-add-c-epilog str)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
To be used in a dhm-c macro. Adds string str to the epilog part of the

current block of C code.

7.9.35 (dhc-add-c-externs str)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
To be used in a dhm-c macro. Adds string str to the C code segment

declaring external symbols.

7.9.36 (dhc-add-c-metaexterns str)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
To be used in a dhm-c macro. Adds string str to the C code segment

declaring external symbols used in meta information.

7.9.37 (dhc-add-c-header str)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
To be used in a dhm-c macro. Adds string str to the C code segment

declaring files included after the standard LUSH include files.



7.9. COMPILER INTERNALS 389

7.9.38 (dhc-add-c-pheader str)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
To be used in a dhm-c macro. Adds string str to the C code segment

declaring files included *before* the standard LUSH include files.

7.9.39 (dhc-class-to-struct-decl type)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Returns a string containing the C structure declaration for objects of class

type .

7.9.40 (dhc-class-to-vtable-decl type)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Returns a string containing the C structure declaration for the virtual table

of class type .

7.9.41 (dhc-type-to-c-decl type)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Returns a short string with the C equivalent of type type .

7.9.42 (dhc-declare-var name type)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
generate C code to declare variable of name name of type type in the

current block , initialize it , and free it on exit.

7.9.43 (dhc-declare-temp-var type [clue])

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Uses tmpnames-seed to generate a unique temp variable of type type .

Returns the C string representation.

7.9.44 dhc-debug-stack

Type: VAR(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Variable containing the source causing the error

7.9.45 (dhc-error string [arg])

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Called when we get a syntax error in the source



390 CHAPTER 7. CLUSH: COMPILED LUSH

7.9.46 (dhc-check-symbol source)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Take an argument source and check if it is a symbol. If it is return the

corresponding object of class dhc-symbol.

7.9.47 (dhc-internal-error str)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Called when we detect inconsistent internal state

7.9.48 dhc-type

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
A dhc-type is a structure which contains almost all the information which

is available at compile time of an expression. Information which is not meant
to be used in the construction of the DHDOC should be kept away of dhc-type
(that info can be used in the t-node structure instead). For instance u-bump
and u-access have an impact on the DHDOC (whether a variable is writable ,
whether an argument is a temporary) but the flag ignore-return-value in a
progn is not type information and has nothing to do in the dhc-type construct.

7.9.49 (==> dhc-type print)

Type: MSG(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
A type printer , for debugging purposes

7.9.50 (==> dhc-type hashcode)

Type: MSG(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
returns a hashcode for a type. only to be called after the type is fully unified.

7.9.51 (==> dhc-type access [v])

Type: MSG(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
set or return the access type of a type. Possible values: ’read or ’write

7.9.52 (new dhc-type class [a1] [a2])

Type: CLASS(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05

• Declaration of simple types: (new dhc-type type ). Where type is a
symbol from like, ’dht-flt ’dht-bool, ’dht-nil, etc...

• Declaration of arrays: (new dhc-type ’dht-out ndim [ type ]) Where type
can be any type (default is (new dhc-type ’dht-flt)). ndim is an integer.



7.9. COMPILER INTERNALS 391

• Declaration of object: (new dhc-type ’dht-obj type-list ) where type-list
is a list of cons of the form (name . type)

• Declaration of functions: (new dhc-type ’dht-func type-list ) where
type-list is a list of valid types corresponding to the arguments

7.9.53 (dhc-desc-to-type desc)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Convert a type description to a type. Argument desc is a type description

similar to those returned by dhinfo-t and classinfo-t .

7.9.54 (new dhc-symbol name lex [fmt])

Type: CLASS(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
return an symbol object which knows the lisp name name , the C name , the

scope level (passed in lex . lex is zero if the symbol is an argument). fmt is
by default ”L%d %s” where %d refers to the scope level ( lex ) and %s to the
C name of the symbol (computed from the lisp name with dhc-lisp-to-c-name.

7.9.55 (dhc-search-symtable symbolname table)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Search a symbol table

7.9.56 (dhc-add-to-symtable table symbolobject)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Return a new symbol table with one more element

7.9.57 (dhc-add-symbol-table symb lex)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Add a symbol named symb at lexical level lex into the current symbol table.

7.9.58 (dhc-add-global-table symb)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Add a symbol to the global table

7.9.59 (new t-node t-node-list type [source] [symbol])

Type: CLASS(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Returns a t-node (type node). T-nodes contains all the type information of

a LISP expression. If source is a symbol, then the slot symbol should contain
an object of class dhc-symbol .

A t-node contains 5 slots:



392 CHAPTER 7. CLUSH: COMPILED LUSH

<tn-list> <type> <source> <symbol> <ignore>

The slot type holds the return type of the expression which is parsed. is a
t-node. If the expression is terminal, the slot tn-list should be the empty list
and the slot source should contain the corresponding source.

Examples:

Parsing the expression (+ a b)
returns the t-node <<+:(dhm)>,<a:(flt)>,<b:(flt)>:(flt)>
In this t-node the slots are:
tn-list : a list of 3 t-nodes = (<+:(dhm)> <a:(flt)> <b:(flt)>)
type : a return dhc-type node = (flt)
source : the original source = (+ a b)

For the first element of the above t-node
i.e. (car :t_node_above:tn-list)
tn-list : a list of t-nodes = ()
type : a return dhc-type node = (dhm)
source : the original source = +

7.9.60 (dhc-make-t-node expr)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Return a treetype (a t-node) for expr but leave all the types unknown.

7.9.61 (dhc-copy-source-tree source)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Utility for dhc-get-treetype. Copies a source tree list (except leaves). Re-

turns the copy.

7.9.62 (dhc-get-treetype source)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
This function returns the treetype of a expression.

? (dhc-get-treetype ’(+ 3 4))
= <<+:(dhm)>,<3:(number)>,<4:(number)>:(number)>
? (dhc-get-treetype ’(lambda (a) (-flt- a) a))
= <<lambda:(dhm)>

,<<a:(flt)>:(unk)>
,<<-flt-:(dhm)>,<a:(flt)>:(flt)>
,<a:(flt)>
:(func ((flt)) () (flt))>



7.9. COMPILER INTERNALS 393

7.9.63 (dhc-get-type source)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
This function returns the dhc-type of expression source

7.9.64 (dhm-t func (source) . body)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Installs a new DHM-T for the function named func .
The DHM-T function will be called when parsing a list expression starting

with function func . This list expression is passed as argument to the DHM-T
function. It should construct and return a t-node for the provided source code.

7.9.65 (dhm-t-declare model f1 ... fn )

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Associates the dhm-t for function model with all functions f1 to fn .

7.9.66 (dhm-c symb (source treetype retplace) . body)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Installs a new DHM-T for the function named func .
The DHM-C function will be called when generating C code for a list expres-

sion starting with function func . This list expression is passed as argument
source of the DHM-C function. Argument treetype is the t-node prepared by
the DHM-T function. The function should call the dhc-add-c-xxx functions
to compose the C code and return a string representing a C expression for the
return value. When argument retplace is non nil , it contains the name of
a variable where the return value must be stored. The dhm-c function should
then return this name.

7.9.67 (dhm-c-declare model f1 ... fn )

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Associates the dhm-c for function model with all functions f1 to fn .

7.9.68 (get-dhm-t symb)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Return the dhm-t for function symb

7.9.69 (get-dhm-c symb)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Return the dhm-c for function symb



394 CHAPTER 7. CLUSH: COMPILED LUSH

7.9.70 (get-dhm-target source)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
This function can be called within a dhm to return the function object for

which the dhm applies

7.9.71 (dhm-p func (source) . body)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Installs a new DHM-P for the function named func
The DHM-P function will be called when preprocessing a list expression

starting with function func . The list expression is passed as source . It should
construct a copy of source , using function dhc-pp on all parts of source that
can be subject to macro-expansion

There are relatively few DHM-P functions because the SN3 compiler lacked
this facilities. In the absence of a DHM-P function , all arguments of a function
call are considered for macro-expansion. This is obviously wrong for functions
like let or quote .

7.9.72 (get-dhm-p symb)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Return the dhm-p for function symb

7.9.73 (dhc-pp body)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
Macro preprocessor for the dhc compiler. return a version of lisp expression

body with all macros (both dm and dmd) expanded.

7.9.74 (dhc-parse-replacement-source-t source newsource)

(lsh/compiler/dh-util.lsh) Last Modified: 2002-11-06 20:30:05
A dangerous hack to allow source replacement from within a dhm-t. Mod-

ifies the source tree being parsed and calls the dhm-t for the ”newsource” The
”source” argument should be the input argument of the calling dhm-t. See the
dhm-t for incr for usage. No corresponding dhm-c is needed.

7.9.75 (process-numerical-args-t arglist rettype)

(lsh/compiler/dh-macro.lsh) Last Modified: 2002-10-14 03:30:40
Process the arguments of a numerical expression , and determine the type

of the returned value. The arguments are passed in arglist , and the type of
the return value in rettype .



7.9. COMPILER INTERNALS 395

7.9.76 u-nodes

[under construction]



396 CHAPTER 7. CLUSH: COMPILED LUSH



Chapter 8

Standard Libraries

This section describes all the libraries that are distributed with Lush in the lsh
directory , but are not loaded by default into the interpreter environment.

8.1 Shell Commands

(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
This set of functions is designed to facilitate the writing of ”shell scripts”

in Lush. It includes functions that are more or less equivalent to common shell
commands such as ls , cd , cp , mv , rm etc. Those commands manipulate and
return lists of strings. Other functions are provided to manipulate those lists of
strings.

8.1.1 String List Utilities

(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39

(glob regex l)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
Return a list of the elements of l that match the regular expression regex .

l must be a list of strings , and regex a string containing a valid Lush regular
expression.

(split-words s)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
split a string of words (space-separated strings) into a list or those words.

(merge-words l [c])

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39

397



398 CHAPTER 8. STANDARD LIBRARIES

turns a list of strings into a single string composed of the concatenation of
the elements of l interspesed with spaces. if a string is provided in c , it is
interspesed instead of spaces.

(read-lines f)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
read file f and return a list of strings , each of which is a line of the file.

(write-lines l)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
write each string in list l as a line.

#Pexpr

(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
equivalent to (write-lines expr )

8.1.2 File Information

(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39

(file-type f)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
return the type of file f as an atom equal to ’reg for a regular file , ’dir for

a directory , ’chr for character device , etc.

(file-size f)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
return the size of file f in bytes

(file-mode f)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
return the permissions of file f as an integer.

(file-uid f)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
return the userid of the owner of file f

(file-gid f)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
return the groupid of file f



8.1. SHELL COMMANDS 399

(file-atime f)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
return the last access time of file f as a string of the form ”YYYY MM DD

hh mm ss”. The string can be turned into a list with split-words.

(file-mtime f)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
return the last modification time of file f as a string of the form ”YYYY

MM DD hh mm ss”. The string can be turned into a list with split-words.

(file-ctime f)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
return the creation time of file f as a string of the form ”YYYY MM DD

hh mm ss”. The string can be turned into a list with split-words.

8.1.3 Variables

(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39

shell-home

(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
user home directory

shell-dirstack

(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
directory stack manipulated by pushd and popd

shell-tmpdir

(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
directory used by the function sh to store temporary files.

8.1.4 Directories

(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39

(pwd)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
return current directory (equivalent to (chdir)).



400 CHAPTER 8. STANDARD LIBRARIES

(cd [d])

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
change current directory to d , or to user home if p is not present.

(pushd d)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
Temporarily change current directory to d . Returning to the previous di-

rectory can be done with popd.

(popd)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
return to the current directory before the last pushd.

8.1.5 Shell Commands

(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
This set of functions is designed to facilitate the writing of ”shell scripts”

in Lush. It includes functions that are more or less equivalent to common shell
commands such as ls , cd , cp , mv , rm etc. Those commands manipulate and
return lists of strings. Other functions are provided to manipulate those lists of
strings.

(rm f)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
remove file f (be careful).

(cp from to)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
copy file from into file to

(mv from to)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
move file from from to to .

(ls d1 d2 ... dn)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
return a list of all the files in d1 (in case-insensitive lexicographic order) ,

followed by all the files in d2 , etc... Invisible files (”.” , ”..” , ”.xxx” , etc) are
not included.



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 401

(ls-a d1 d2 ... dn)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
return a list of all the files in d1 (in case-insensitive lexicographic order) ,

followed by all the files in d2 , etc... Invisible files (”.” , ”..” , ”.xxx” , etc) are
included.

(sh cmd [l])

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
run shell command cmd and return the standard output as a list of strings

(one string per line). The optional argument l is a list of strings that will be
written to a temporary file (one line per string) and fed to the standard input
of command cmd

(sh-find dir pattern)

Type: DE(lsh/libc/shell.lsh) Last Modified: 2002-10-09 02:43:39
calls the standard unix command find to find all the files whose name fit the

pattern pattern (this is a unix-style shell regex , not a Lush regex). Example:

(sh-find "." "*.lsh")

8.2 Tensor/Matrix/Vector/Scalar Libraries

8.2.1 Generic IDX Macros and Functions

(lsh/libidx/idx-macros.lsh) Last Modified: 2002-11-26 12:24:35

Resizing Macros and Functions

(lsh/libidx/idx-macros.lsh) Last Modified: 2002-11-26 12:24:35
A set of macros and functions to resize vectors , matrices and tensors.
(midx-m1resize m n0) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-11-

26 12:24:35
a macro redims idx1 m in-place with the new size n0 . Unlike redim, it does

not create a temporary variable. Unlike idx-changedim, this macro increases the
size of the storage if necessary. very efficient. In interpreted mode, the function
idx1-resize can be called.

See: (idx1-resize m n0 )
(midx-m2resize m n0 n1) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-

11-26 12:24:35
a macro that redims idx2 m in-place
(midx-m3resize m n0 n1 n2) (lsh/libidx/idx-macros.lsh) Last Modified:

2002-11-26 12:24:35
a macro that redims idx3 m in-place



402 CHAPTER 8. STANDARD LIBRARIES

(midx-m4resize m n0 n1 n2 n3) (lsh/libidx/idx-macros.lsh) Last Modified:
2002-11-26 12:24:35

a macro that redims idx4 m in-place
(idx-f1resize m n0) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-11-26

12:24:35
redims idx1 of float m in-place with the new size n0 . Unlike redim, it does

not create a temporary variable. Unlike idx-changedim, this macro increases
the size of the storage if necessary. very efficient. exists also in macro form.

See: (midx-m1resize m n0 )
(idx-f2resize m n0 n1) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-11-

26 12:24:35
redims idx2 of float m in-place
(idx-f3resize m n0 n1 n2) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-

11-26 12:24:35
redims idx3 of float m in-place
(idx-f4resize m n0 n1 n2 n3)) (lsh/libidx/idx-macros.lsh) Last Modified:

2002-11-26 12:24:35
redims idx4 of float m in-place
(idx-i1resize m n0) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-11-26

12:24:35
redims idx1 of int m in-place with the new size n0 . Unlike redim, it does

not create a temporary variable. Unlike idx-changedim, this macro increases
the size of the storage if necessary. very efficient. exists also in macro form.

See: (midx-m1resize m n0 )
(idx-i2resize m n0 n1) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-11-

26 12:24:35
redims idx2 of int m in-place
(idx-i3resize m n0 n1 n2) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-

11-26 12:24:35
redims idx3 of int m in-place
(idx-i4resize m n0 n1 n2 n3)) (lsh/libidx/idx-macros.lsh) Last Modified:

2002-11-26 12:24:35
redims idx4 of int m in-place
(idx-s1resize m n0) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-11-26

12:24:35
redims idx1 of short m in-place with the new size n0 . Unlike redim, it does

not create a temporary variable. Unlike idx-changedim, this macro increases
the size of the storage if necessary. very efficient. exists also in macro form.

See: (midx-m1resize m n0 )
(idx-s2resize m n0 n1) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-11-

26 12:24:35
redims idx2 of short m in-place
(idx-s3resize m n0 n1 n2) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-

11-26 12:24:35
redims idx3 of short m in-place



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 403

(idx-s4resize m n0 n1 n2 n3)) (lsh/libidx/idx-macros.lsh) Last Modified:
2002-11-26 12:24:35

redims idx4 of short m in-place
(idx-b1resize m n0) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-11-26

12:24:35
redims idx1 of byte m in-place with the new size n0 . Unlike redim, it does

not create a temporary variable. Unlike idx-changedim, this macro increases
the size of the storage if necessary. very efficient. exists also in macro form.

See: (midx-m1resize m n0 )
(idx-b2resize m n0 n1) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-

11-26 12:24:35
redims idx2 of byte m in-place
(idx-b3resize m n0 n1 n2) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-

11-26 12:24:35
redims idx3 of byte m in-place
(idx-b4resize m n0 n1 n2 n3)) (lsh/libidx/idx-macros.lsh) Last Modified:

2002-11-26 12:24:35
redims idx4 of byte m in-place
(idx-u1resize m n0) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-11-26

12:24:35
redims idx1 of ubyte m in-place with the new size n0 . Unlike redim, it does

not create a temporary variable. Unlike idx-changedim, this macro increases
the size of the storage if necessary. very efficient. exists also in macro form.

See: (midx-m1resize m n0 )
(idx-u2resize m n0 n1) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-

11-26 12:24:35
redims idx2 of ubyte m in-place
(idx-u3resize m n0 n1 n2) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-

11-26 12:24:35
redims idx3 of ubyte m in-place
(idx-u4resize m n0 n1 n2 n3)) (lsh/libidx/idx-macros.lsh) Last Modified:

2002-11-26 12:24:35
redims idx4 of ubyte m in-place
(idx-g1resize m n0) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-11-26

12:24:35
redims idx1 of gptr m in-place with the new size n0 . Unlike redim, it does

not create a temporary variable. Unlike idx-changedim, this macro increases
the size of the storage if necessary. very efficient. exists also in macro form.

See: (midx-m1resize m n0 )
(idx-g2resize m n0 n1) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-11-

26 12:24:35
redims idx2 of gptr m in-place
(idx-g3resize m n0 n1 n2) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-

11-26 12:24:35
redims idx3 of gptr m in-place



404 CHAPTER 8. STANDARD LIBRARIES

(idx-g4resize m n0 n1 n2 n3)) (lsh/libidx/idx-macros.lsh) Last Modified:
2002-11-26 12:24:35

redims idx4 of gptr m in-place
(idx-d1resize m n0) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-11-26

12:24:35
redims idx1 of double m in-place with the new size n0 . Unlike redim, it does

not create a temporary variable. Unlike idx-changedim, this macro increases the
size of the storage if necessary. very efficient. exists also in macro form.

See: (midx-m1resize m n0 )
(idx-d2resize m n0 n1) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-

11-26 12:24:35
redims idx2 of double m in-place
(idx-d3resize m n0 n1 n2) (lsh/libidx/idx-macros.lsh) Last Modified: 2002-

11-26 12:24:35
redims idx3 of double m in-place
(idx-d4resize m n0 n1 n2 n3)) (lsh/libidx/idx-macros.lsh) Last Modified:

2002-11-26 12:24:35
redims idx4 of double m in-place

Macros for common operations

(lsh/libidx/idx-macros.lsh) Last Modified: 2002-11-26 12:24:35
(midx-m2oversample input nlin ncol output) (lsh/libidx/idx-macros.lsh)

Last Modified: 2002-11-26 12:24:35
macro for 2D oversampling

Obsolete Iterators for Inline C code

(lsh/libidx/idx-macros.lsh) Last Modified: 2002-11-26 12:24:35
These function are kept for backward compatibility , but a largely superseded

by cidx-bloop described in the Core section.
(cinline-idx1loop m type c j p1 [p2...]) (lsh/libidx/idx-macros.lsh) Last

Modified: 2002-11-26 12:24:35
man, that’s a tough one to explain. don’t try this at home anyway. this

thing is like a loop for cinline. It executes the cinline instructions in p1 ...
for each element of matrix m (must be an idx1). c , and j must be strings
containing valid C variable identifiers, and type is a string that must contain
a valid C type (like ”float”). during the loop, C variable c will point to the
current element of m , and C variable j will contain the index of that element.
So a macro that fills the elements of a vector with its index plus a constant n
can be written:

(cinline-idx1loop mat "flt" "p" "i" (cinline "*p = i+\\%s;" n))

(cinline-idxloop2 m1 type1 m2 type2 c1 c2 j p1 [p2...]) (lsh/libidx/idx-
macros.lsh) Last Modified: 2002-11-26 12:24:35



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 405

same as cinline-idx1loop , but loops simultaneously on two vectors
(cinline-idxloop3 m1 type1 m2 type2 m3 type3 c1 c2 c3 j p1 [p2...])

(lsh/libidx/idx-macros.lsh) Last Modified: 2002-11-26 12:24:35
same as cinline-idx1loop , but loops simultaneously on three vectors
(cinline-idx2loop m type c i j [l1...]) (lsh/libidx/idx-macros.lsh) Last

Modified: 2002-11-26 12:24:35
same as cinline-idx1loop but loops over all elements of an idx2. i and j

are strings containing the C name of the row and column indices.
(cinline-idx2loop2 m1 type1 m2 type2 c1 c2 i j [l...]) (lsh/libidx/idx-

macros.lsh) Last Modified: 2002-11-26 12:24:35
same as cinline-idx1loop2 but loops over all elements of an idx2. i and j

are strings containing the C name of the row and column indices.
(cinline-idx2loop3 m1 type1 m2 type2 m3 type3 c1 c2 c3 i j [l...])

(lsh/libidx/idx-macros.lsh) Last Modified: 2002-11-26 12:24:35
same as cinline-idx1loop3 but loops over all elements of an idx2. i and j

are strings containing the C name of the row and column indices.

8.2.2 IDX of Single Precision Floating Point Numbers

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
Basic operations on vectors , matrices , and tensors of floats

(idx-f2timesf2 A B C)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
2d x 2d matrix multiply: C = A * B

(idx-f1reverse vector)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
Reverses in-place the order of the elements of a vector . not very efficient

, but I didn’t have time to re-write a faster one.

(idx-f1fill m f)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
multiply elements of m by float f , put result in q

(idx-f2fill m f)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
fill idx2 m with value f

(idx-f3fill m f)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
fill idx3 m with value f



406 CHAPTER 8. STANDARD LIBRARIES

(idx-f1dotc m f q)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
multiply elements of m by float f , put result in q

(idx-f2dotc m f q)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
multiply elements of m by float f , put result in q

(idx-f3dotc m f q)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
multiply elements of m by float f , put result in q

(idx-f1dotcacc m f q)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
multiply elements of m by float f , accumulate result in q

(idx-f2dotcacc m f q)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
multiply elements of m by float f , accumulate result in q

(idx-f3dotcacc m f q)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
multiply elements of m by float f , accumulate result in q

(idx-f1addc m f q)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
add elements of m to float f , put result in q

(idx-f2addc m f q)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
add elements of m by float f , put result in q

(idx-f3addc m f q)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
add elements of m by float f , put result in q



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 407

(idx-f1lincomb x cx y cy z)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
performs a linear combination of vectors x and y using coefficients cx and

cy . Put result in z .

(idx-f1tanh x1 y1)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
Computes the regular tanh of x1 element by element , result in y1 .

(idx-f1inv x1 y1)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
puts inverse of each element of x1 into corresponding elements in y1

(idx-f1sign x y)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
Elements of y are set to the sgn function of elements of x .

(idx-f1clip x y)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34

(idx-f1sup m)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
returns largest element in m

(idx-f1max m [r])

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
if r is present , put largest element of idx1 m into idx0 r otherwise returns

largest element.

(idx-f2max m [r])

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
if r is present , put largest element of idx1 m into idx0 r otherwise returns

largest element.

(idx-f1inf m)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
returns smallest element in m



408 CHAPTER 8. STANDARD LIBRARIES

(idx-f1min m [r])

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
if r is present , put smallest element of idx1 m into idx0 r otherwise returns

smallest element.

(idx-f2min m [r])

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
if r is present , put smallest element of idx1 m into idx0 r otherwise returns

smallest element.

(idx-f1indexmax m)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
returns index (int) of largest element in m

(idx-f1indexmin m)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
returns index (int) of smallest element in m

(index-of-max m)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
return index of largest element in idx1 m

(idx-f1fill-with-index m)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
fill the elements of idx1 m with their index.

(idx-f1avg vector)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
Returns the average of the numbers in the input vector .

(idx-f1prod vec)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
returns the product of the elements of the input vector vec ,

(idx-f1logsum m)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
computes a ”log-add” of the elements in m , i.e. -log( 1/n Sum i ( exp( -

m i ) )) where n is the dimension of m . This is the wrong logsum advocated by
Yann. Use idx-f1logadd instead.



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 409

(idx-f2logsum m)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
same as idx-f1logsum , but in 2 dimensions -log( 1/n Sum ij ( exp( - m ij )

)) where n is the number of elements in m This is the wrong logsum advocated
by Yann. Use idx-f2logadd instead.

(idx-f1logadd m)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
computes a ”log-add” of the elements in m , i.e. -log( Sum i ( exp( - m i ) ))

(idx-f2logadd m)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
same as idx-f1logadd , but in 2 dimensions -log( Sum ij ( exp( - m ij ) ))

(idx-f1logdotf1 m p)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
computes a ”log-add” of term-by-termt products of elements in m and p ,

i.e. -log( p i Sum i ( exp( - m i ) )) p should be a normalized probability vector
for this to be meaningful

(idx-f2logdotf2 m)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
same as idx-f1logdotf1 , but in 2 dimensions

(idx-f1blogdotf1 m p out)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
This is the ”bprop” corresponding to idx-f1logdotf1 m is the input (prefer-

ably positive costs) , p is the prior vector , and on output out is the vector of
partial derivatives of (idx1-f1logdotf1 m p ) with respect to each element of m .

(idx-f1subextf1 x y z)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
Computes the external subtraction z[i , j] = x[i] - y[j]

(idx-f1subf0 x1 y0 z1)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
Substracts ( y0 ) from elements of vector x1 . Results in vector z1 .



410 CHAPTER 8. STANDARD LIBRARIES

(idx-f1mulacc x1 y1 z1)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
z1[i] += x1[i] * y1[i]. not efficient. Could be improved a lot.

(idx-f1entropy m c)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
computes the entropy of a vector (- sum Pi log Pi ) this does a normalization

and adds a constant c to all the elements (so it does not crash of they are 0)

(idx-f1subsample-fast in nlin)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
subsamples vector (considered as a signal) by integer factor nlin the re-

turned output is a vector whose size is int(N/ nlin ) where N is the size of in .
there is a idx-f1subsample defined in libconvol.sn , it is a little slower and takes
3 parameters.

(idx-f4dotf3 x y z)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
z[i] = sum jkl x[i , j , k , l]*y[j , k , l]

(idx-f3extf1 x y z)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
External (or cross-) product of 3d x with 1d y to yield 4d z . z[i , j , k , l]

= x[i , j , k]*y[l]

(idx-f1extf3 x y z)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
External (or cross-) product of 1d x with 3d y to yield 4d z . z[i , j , k , l]

= x[i]*y[j , k , l]

(idx-f3dotf3 a b c)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
c is an idx0 which will contain the sum of all the products of elements from

a and b . (this redundant with idx-dot).

(idx-f3dotf2 x y z)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
z[i] = sum jk x[i , j , k]*y[j , k]



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 411

(idx-f4dotf1 x y z)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
z[j , k , l] = sum i x[i , j , k , l]*y[i]

(idx-f4dotf1acc x y z)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
z[j , k , l] += sum i x[i , j , k , l]*y[i]

(idx-f1extf2 x y z)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
External (or cross-) product of 1d x with 2d y to yield 3d z . z[i , j , k] =

x[i]*y[j , k]

(idx-f3dotf1 x y z)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
z[j , k] = sum i x[i , j , k]*y[i]

(idx-f3dotf1acc x y z)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
z[j , k] += sum i x[i , j , k]*y[i]

(make-f2-place-target n)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
return an n x n matrix with 1s on the diagonal and -1s everywhere else.

(idx-f1range n1 n2 delta)

(lsh/libidx/idx-float.lsh) Last Modified: 2002-11-26 12:24:34
Returns a vector of all the numbers between n1 and n2 , stepping by delta

. Not compilable under current version.

8.2.3 IDX of Double Precision Floating Point Numbers

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
Basic operations on vectors , matrices , and tensors of doubles

(idx-d2timesd2 A B C)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
2d x 2d matrix multiply: C = A * B



412 CHAPTER 8. STANDARD LIBRARIES

(idx-d1reverse vector)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
Reverses in-place the order of the elements of a vector . not very efficient

, but I didn’t have time to re-write a faster one for SN3.1

(idx-d1fill m f)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
multiply elements of m by float f , put result in q

(idx-d2fill m f)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
fill idx2 m with value f

(idx-d3fill m f)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
fill idx3 m with value f

(idx-d1dotc m f q)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
multiply elements of m by float f , put result in q

(idx-d2dotc m f q)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
multiply elements of m by float f , put result in q

(idx-d3dotc m f q)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
multiply elements of m by float f , put result in q

(idx-d1dotcacc m f q)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
multiply elements of m by float f , accumulate result in q

(idx-d2dotcacc m f q)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
multiply elements of m by float f , accumulate result in q



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 413

(idx-d3dotcacc m f q)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
multiply elements of m by float f , accumulate result in q

(idx-d1addc m f q)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
add elements of m to float f , put result in q

(idx-d2addc m f q)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
add elements of m by float f , put result in q

(idx-d3addc m f q)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
add elements of m by float f , put result in q

(idx-d1lincomb x cx y cy z)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
performs a linear combination of vectors x and y using coefficients cx and

cy . Put result in z .

(idx-d1tanh x1 y1)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
Computes the regular tanh of x1 element by element , result in y1 .

(idx-d1inv x1 y1)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
puts inverse of each element of x1 into corresponding elements in y1

(idx-d1sign x y)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
Elements of y are set to the sgn function of elements of x .

(idx-d1clip x y)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02

(idx-d1sup m)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
returns largest element in m



414 CHAPTER 8. STANDARD LIBRARIES

(idx-d1max m [r])

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
if r is present , put largest element of idx1 m into idx0 r otherwise returns

largest element.

(idx-d2max m [r])

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
if r is present , put largest element of idx1 m into idx0 r otherwise returns

largest element.

(idx-d1inf m)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
returns smallest element in m

(idx-d1min m [r])

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
if r is present , put smallest element of idx1 m into idx0 r otherwise returns

smallest element.

(idx-d2min m [r])

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
if r is present , put smallest element of idx1 m into idx0 r otherwise returns

smallest element.

(idx-d1indexmax m)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
returns index (int) of largest element in m

(idx-d1indexmin m)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
returns index (int) of smallest element in m

(index-of-max m)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
return index of largest element in idx1 m

(idx-d1fill-with-index m)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
fill the elements of idx1 m with their index.



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 415

(idx-d1avg vector)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
Returns the average of the numbers in the input vector .

(idx-d1prod vec)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
returns the product of the elements of the input vector vec ,

(idx-d1logsum m)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
computes a ”log-add” of the elements in m , i.e. -log( 1/n Sum i ( exp( -

m i ) )) where n is the dimension of m . This is the wrong logsum advocated by
Yann. Use idx-d1logadd instead.

(idx-d2logsum m)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
same as idx-d1logsum , but in 2 dimensions -log( 1/n Sum ij ( exp( - m ij )

)) where n is the number of elements in m This is the wrong logsum advocated
by Yann. Use idx-d2logadd instead.

(idx-d1logadd m)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
computes a ”log-add” of the elements in m , i.e. -log( Sum i ( exp( - m i ) ))

(idx-d2logadd m)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
same as idx-d1logadd , but in 2 dimensions -log( Sum ij ( exp( - m ij ) ))

(idx-d1logdotd1 m p)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
computes a ”log-add” of term-by-termt products of elements in m and p ,

i.e. -log( p i Sum i ( exp( - m i ) )) p should be a normalized probability vector
for this to be meaningful

(idx-d2logdotd2 m)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
same as idx-d1logdotd1 , but in 2 dimensions



416 CHAPTER 8. STANDARD LIBRARIES

(idx-d1blogdotd1 m p out)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
This is the ”bprop” corresponding to idx-d1logdotd1 m is the input (prefer-

ably positive costs) , p is the prior vector , and on output out is the vector of
partial derivatives of (idx1-d1logdotd1 m p ) with respect to each element of m
.

(idx-d1subextd1 x y z)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
Computes the external subtraction z[i , j] = x[i] - y[j]

(idx-d1subd0 x1 y0 z1)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
Substracts ( y0 ) from elements of vector x1 . Results in vector z1 .

(idx-d1mulacc x1 y1 z1)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
z1[i] += x1[i] * y1[i]. not efficient. Could be improved a lot.

(idx-d1entropy m c)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
computes the entropy of a vector (- sum Pi log Pi ) this does a normalization

and adds a constant c to all the elements (so it does not crash of they are 0)

(idx-d1subsample-fast in nlin)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
subsamples vector (considered as a signal) by integer factor nlin the re-

turned output is a vector whose size is int(N/ nlin ) where N is the size of in
. there is a idx-d1subsample defined in libconvol.sn , it is a little slower and
takes 3 parameters.

(idx-f4dotd3 x y z)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
z[i] = sum jkl x[i , j , k , l]*y[j , k , l]

(idx-d3extd1 x y z)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
External (or cross-) product of 3d x with 1d y to yield 4d z . z[i , j , k , l]

= x[i , j , k]*y[l]



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 417

(idx-d1extd3 x y z)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
External (or cross-) product of 1d x with 3d y to yield 4d z . z[i , j , k , l]

= x[i]*y[j , k , l]

(idx-d3dotd3 a b c)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
c is an idx0 which will contain the sum of all the products of elements from

a and b .

(idx-d3dotd2 x y z)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
z[i] = sum jk x[i , j , k]*y[j , k]

(idx-d4dotd1 x y z)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
z[j , k , l] = sum i x[i , j , k , l]*y[i]

(idx-d4dotd1acc x y z)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
z[j , k , l] += sum i x[i , j , k , l]*y[i]

(idx-d1extd2 x y z)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
External (or cross-) product of 1d x with 2d y to yield 3d z . z[i , j , k] =

x[i]*y[j , k]

(idx-d3dotd1 x y z)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
z[j , k] = sum i x[i , j , k]*y[i]

(idx-d3dotd1acc x y z)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
z[j , k] += sum i x[i , j , k]*y[i]

(make-d2-place-target n)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
return an n x n matrix with 1s on the diagonal and -1s everywhere else.



418 CHAPTER 8. STANDARD LIBRARIES

(idx-d1range n1 n2 delta)

(lsh/libidx/idx-double.lsh) Last Modified: 2002-11-06 18:37:02
Returns a vector of all the numbers between n1 and n2 , stepping by delta

. Not compilable under current version.

8.2.4 IDX of Integers

(lsh/libidx/idx-int.lsh) Last Modified: 2002-08-19 03:01:28
Basic operations on vectors , matrices , and tensors of integers.

(idx-i2addc m1 c m2)

(lsh/libidx/idx-int.lsh) Last Modified: 2002-08-19 03:01:28

(idx-i1concat int-vec1 int-vec2 ...)

(lsh/libidx/idx-int.lsh) Last Modified: 2002-08-19 03:01:28
Concatenate the int-vectors in argument list and return new big vector.

(random-permute perm-vector)

(lsh/libidx/idx-int.lsh) Last Modified: 2002-08-19 03:01:28
randomly permute the elements of the given permutation-vector (an in-

teger vector)

(multinomial-sample probabilities)

(lsh/libidx/idx-int.lsh) Last Modified: 2002-08-19 03:01:28
Given a vector of probabilities of length N summing to one for events 0 to

N-1 , return an integer i associated to these events with probability probabilities
[i]. The algorithm samples a uniform number between 0 and 1 and loops through
the probabilities vector , so its running time is O(N).

N.B.: if the sum S of the elements is 1, then the value N-1 will be
sampled more frequently with extra probability 1 - S. if the sum S
of the elements is 1 , then only the first M elements will be sampled ,
with M being such that it is the largest integer such that the sum of the
probabilities from 0 to M-1 is above 1.

(fast-multinomial-sample cumulative-probabilities)

(lsh/libidx/idx-int.lsh) Last Modified: 2002-08-19 03:01:28
Given a vector of cumulative-probabilities of length N, monotonically

increasing between 0 and 1, return an integer between 0 and N-1 sampled from
the corresponding distribution. The algorithm samples a uniform number be-
tween 0 and 1 and does a binary search in the cumulative probabilities, so
its running time O(log(N)) whereas the running time of (multinomial-sample
probabilities ) is O(N). For this call to be really fast, the computation of



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 419

cumulative-probabilities from probabilities must be done ahead of time
(because it takes O(N) time). It can be done with (distribution2cumulative
probabilities cumulative-probabilities ).

See: (multinomial-sample probabilities )
See: (distribution2cumulative probabilities cumulative-probabilities

)

(distribution2cumulative probabilities cumulative-probabilities)

(lsh/libidx/idx-int.lsh) Last Modified: 2002-08-19 03:01:28
Fill cumulative-probabilities by putting at the i-th position the sum

the numbers in probabilities from the beginning to the (i-1)-th position.
Therefore , cp[0]=0 and cp[N-1] may be 1. This is P(value < i).

(element-in-set int-element int-set)

(lsh/libidx/idx-int.lsh) Last Modified: 2002-08-19 03:01:28
Return true iff int-element is in the int-set vector.

(idx-i1max m)

(lsh/libidx/idx-int.lsh) Last Modified: 2002-08-19 03:01:28
returns largest element in m

(idx-i1min m)

(lsh/libidx/idx-int.lsh) Last Modified: 2002-08-19 03:01:28
same as idx-m1min for vectors of integers

(idx-i1fill-with-index m)

(lsh/libidx/idx-int.lsh) Last Modified: 2002-08-19 03:01:28
fill the elements of idx1 m with their index.

(idx-i1fill m c)

(lsh/libidx/idx-int.lsh) Last Modified: 2002-08-19 03:01:28

((-idx1- (-int-)) m):
((-int-) c):
CREATED: P.Haffner, April 97
DESCRIPTION: Fills 1D int matrix with constant <c>



420 CHAPTER 8. STANDARD LIBRARIES

(idx-i2fill m c)

(lsh/libidx/idx-int.lsh) Last Modified: 2002-08-19 03:01:28

((-idx2- (-int-)) m)):
((-int-) c):
CREATED: P.Haffner, April 97
DESCRIPTION: Fills 2D int matrix with constant <c>

8.2.5 IDX of unsigned bytes

(lsh/libidx/idx-ubyte.lsh) Last Modified: 2002-08-19 03:01:28
Utilities for matrices and tensors of unsigned bytes [partially documented]

(idx-ub1add m c)

(lsh/libidx/idx-ubyte.lsh) Last Modified: 2002-08-19 03:01:28

((-idx1- (-ubyte-)) m):
((-int-) c):
CREATED: P.Haffner, April 97
DESCRIPTION: Adds 1D ubyte matrix with constant <c>

(idx-ub2add m c)

(lsh/libidx/idx-ubyte.lsh) Last Modified: 2002-08-19 03:01:28

((-idx2- (-ubyte-)) m):
((-int-) c):
CREATED: P.Haffner, August 97
DESCRIPTION: Adds 2D ubyte matrix with constant <c>

(idx-ub2mul m c)

(lsh/libidx/idx-ubyte.lsh) Last Modified: 2002-08-19 03:01:28

((-idx2- (-ubyte-)) m):
((-int-) c):
CREATED: P.Haffner, August 97
DESCRIPTION: Multipliess 2D ubyte matrix with constant <c>



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 421

(idx-ub2-i2mul i2 u2 c)

(lsh/libidx/idx-ubyte.lsh) Last Modified: 2002-08-19 03:01:28

((-idx2- (-ubyte-)) i2):
((-idx2- (-ubyte-)) u2):
((-int-) c):
CREATED: P.Haffner, Sept 97
DESCRIPTION:

(idx-ub3mat-add m1 m2)

(lsh/libidx/idx-ubyte.lsh) Last Modified: 2002-08-19 03:01:28

((-idx3- (-ubyte-)) m1 m2):
CREATED: Oct 97
DESCRIPTION:

(idx-ub1fill m c)

(lsh/libidx/idx-ubyte.lsh) Last Modified: 2002-08-19 03:01:28

((-idx1- (-ubyte-)) m):
((-int-) c):
CREATED: P.Haffner, April 97
DESCRIPTION: Fills 1D ubyte matrix with constant <c>

(idx-ub2fill m c)

(lsh/libidx/idx-ubyte.lsh) Last Modified: 2002-08-19 03:01:28

((-idx2- (-ubyte-)) m):
((-int-) c):
CREATED: P.Haffner, April 97
DESCRIPTION: Fills 2D ubyte matrix with constant <c>

(idx-ub-to-bits ub)

(lsh/libidx/idx-ubyte.lsh) Last Modified: 2002-08-19 03:01:28

(idx-ub-from-bits ub bits)

(lsh/libidx/idx-ubyte.lsh) Last Modified: 2002-08-19 03:01:28



422 CHAPTER 8. STANDARD LIBRARIES

(idx-i1indexmax m)

(lsh/libidx/idx-ubyte.lsh) Last Modified: 2002-08-19 03:01:28

(idx-m2opp m)

(lsh/libidx/idx-ubyte.lsh) Last Modified: 2002-08-19 03:01:28

((-idx2- (-flt-)) m):
CREATED: P.Haffner, June 97
TEMPORARIES: ?
DESCRIPTION: invert sign of elements

(idx-u2sub ubim v)

(lsh/libidx/idx-ubyte.lsh) Last Modified: 2002-08-19 03:01:28

(idx-u2rev ubim)

(lsh/libidx/idx-ubyte.lsh) Last Modified: 2002-08-19 03:01:28

(idx-copy-inv u1 u2)

(lsh/libidx/idx-ubyte.lsh) Last Modified: 2002-08-19 03:01:28

((-idx2- (-ubyte-)) u1 u2):
CREATED: P.Haffner, August 97
DESCRIPTION: same as idx-copy, with byte inversion.

8.2.6 Arrays of vectors and matrices

(lsh/libidx/idx-array.lsh) Last Modified: 2002-08-19 13:44:36
arrays of idx1 of floats , and idx2 of floats. This class is convenient way of

handling sets of vectors or matrices of disparate sizes.

(to-idx1flt gptr)

(lsh/libidx/idx-array.lsh) Last Modified: 2002-08-19 13:44:36
Casts a gptr into a (-idx1- (-flt-)) No checks are performed in compiled mode.

(to-idx2flt gptr)

(lsh/libidx/idx-array.lsh) Last Modified: 2002-08-19 13:44:36
Casts a gptr into a (-idx2- (-flt-)) No checks are performed in compiled mode.



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 423

idx1-array

(lsh/libidx/idx-array.lsh) Last Modified: 2002-08-19 13:44:36
array of idx1 of floats.
(new idx1-array n) Type: CLASS(lsh/libidx/idx-array.lsh) Last Modified:

2002-08-19 13:44:36
Create an array of idx1 of float. Each entry can have a different sizes. The

methods of this object are:

(==> <idx1-array> set <i> <mat>)
<i> is an int, which must be less than <n>, <mat> is an idx1 of float.
This method set the <i>-th entry of the array to <mat>.
(==> <idx1-array> get <i>)
<i> is an int, which must be less than <n>.
This method returns the <i>-th entry of the array.
(==> <idx1-array> set-array <ar>)
Take an array of idx1 and do a set for each element (not compiled).

Example:
(setq ar {[3 4 5] [1] [1 2 3]})
(setq n (idx-dim ar 0))
(setq c-ar (new idx1-array n))
(for (i 0 (1- n)) ;; equivalent to: (==> c-ar set-array ar)

(==> c-ar set i (ar i)))
In a compiled or interpreted function
(de foo (c-ar ...)

((-obj- (idx1-array)) c-ar)
(for (i 0 (1- n))

... (==> c-ar get i)... ;; returns an idx1 of float

See: (new idx2-array n )
(==> idx1-array set i mat) Type: MSG(lsh/libidx/idx-array.lsh) Last

Modified: 2002-08-19 13:44:36
(==> idx1-array get i) Type: MSG(lsh/libidx/idx-array.lsh) Last Mod-

ified: 2002-08-19 13:44:36
(==> idx1-array set-array ar) Type: MSG(lsh/libidx/idx-array.lsh)

Last Modified: 2002-08-19 13:44:36

idx2-array

(lsh/libidx/idx-array.lsh) Last Modified: 2002-08-19 13:44:36
array of idx2 of floats
(new idx2-array n) Type: CLASS(lsh/libidx/idx-array.lsh) Last Modified:

2002-08-19 13:44:36
Create an array of idx2 of float. Each entry can have a different sizes. The

methods of this object are:



424 CHAPTER 8. STANDARD LIBRARIES

(==> <idx2-array> set <i> <mat>)
<i> is an int, which must be less than <n>, <mat> is an idx2 of float.
This method set the <i>-th entry of the array to <mat>.
(==> <idx2-array> get <i>)
<i> is an int, which must be less than <n>.
This method returns the <i>-th entry of the array.
(==> <idx2-array> set-array <ar>)
Take an array of idx2 and do a set for each element.

Example:
(setq ar {[[3 4 5][2 2 2]] [[1]] [[1] [2] [3]]})
(setq n (idx-dim ar 0))
(setq c-ar (new idx2-array n))
(for (i 0 (1- n)) ;; equivalent to: (==> c-ar set-array ar)

(==> c-ar set i (ar i)))
In a compiled or interpreted function
(de foo (c-ar ...)

((-obj- (idx1-array)) c-ar)
(for (i 0 (1- n))

... (==> c-ar get i)... ;; returns an idx1 of float

See: (new idx1-array n )
(==> idx2-array set i mat) Type: MSG(lsh/libidx/idx-array.lsh) Last

Modified: 2002-08-19 13:44:36
(==> idx2-array get i) Type: MSG(lsh/libidx/idx-array.lsh) Last Mod-

ified: 2002-08-19 13:44:36
(==> idx2-array set-array ar) Type: MSG(lsh/libidx/idx-array.lsh)

Last Modified: 2002-08-19 13:44:36

8.2.7 IDX reading and writing

(lsh/libidx/idx-io.lsh) Author(s): Pascal Vincent Last Modified: 2002-12-23
09:57:11

Compilable routines for reading/writing vector/matrix/tensors from/to an
open file.

These routines are based on the C-like Compilable file I/O routines. They use
their own matrix file format, different from the traditional Lush matrix formats.
Nevertheless, the traditional functions load-matrix and save-matrix are able
to handle this format.

IDX file format for compilable I/O

(lsh/libidx/idx-io.lsh) Author(s): Pascal Vincent Last Modified: 2002-12-23
09:57:11

the Lush interpreter has several function to read and write vectors/matrices/tensors
in various portable ways, unfortunately, these functions cannot be called in com-
piled code at the moment. To alleviate the problem, a number of compilable



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 425

functions are provided to read/write IDX. unfortunately again, the formats are
not compatible with the those of the core read/write functions. This discrepancy
exists for largely historical reasons and will eventually be fixed.

The format used by the compilable functions is as follows:

• A long word (4 bytes) coding the matrix type (see detail below)

• A long word (4 bytes) for EACH dimension of the matrix (thus for an idx2
it will be 2 long-words, the first one for the height, the second one for the
width of the matrix)

• A (possibly reversed) memory-dump of the elements of the matrix (short:
2 bytes, int: 4 bytes, flt: 4 bytes real: 8 bytes)

The matrix types are encoded in the following way (hexadecimal represen-
tation):.PRE - idx1 of ubyte: 00 00 08 01 - idx2 of ubyte: 00 00 08 02 - idx3 of
ubyte: 00 00 08 03 - idx1 of byte: 00 00 09 01 - idx2 of byte: 00 00 09 02 - idx3
of byte: 00 00 09 03 - idx1 of short: 00 00 0B 01 - idx2 of short: 00 00 0B 02 -
idx3 of short: 00 00 0B 03 - idx1 of int: 00 00 0C 01 - idx2 of int: 00 00 0C 02
- idx3 of int: 00 00 0C 03 - idx1 of flt: 00 00 0D 01 - idx2 of flt: 00 00 0D 02 -
idx3 of flt: 00 00 0D 03 - idx1 of real: 00 00 0E 01 - idx2 of real: 00 00 0E 02 -
idx3 of real: 00 00 0E 03

The long-words and the elements of the matrix MUST correspond to the
byte order and coding of the Sparc stations (classical big-endian, and IEEE
standard floating point representation) If the system is not a Sparc, then the
functions that write or load these matrixes reverse the bytes if necessary to keep
the file format consistant between systems.

(fread-idx1-ubyte file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx1- (-ubyte-)) m) ; the matrix to be read from the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: reads matrix <m> from file <file-pointer>

<m> is "resized" to fit the size of the matrix in the file

(fwrite-idx1-ubyte file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx1- (-ubyte-)) m) ; the matrix to be written to the file



426 CHAPTER 8. STANDARD LIBRARIES

RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: writes matrix <m> to file <file-pointer>

(fread-idx2-ubyte file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx2- (-ubyte-)) m) ; the matrix to be read from the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: reads matrix <m> from file <file-pointer>

<m> is "resized" to fit the size of the matrix in the file

(fwrite-idx2-ubyte file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx2- (-ubyte-)) m) ; the matrix to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: writes matrix <m> to file <file-pointer>

(fread-idx3-ubyte file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx3- (-ubyte-)) m) ; the matrix to be read from the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: reads matrix <m> from file <file-pointer>

<m> is "resized" to fit the size of the matrix in the file

(fwrite-idx3-ubyte file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 427

((-gptr-) file) ; the file pointer returned by a fopen
((-idx3- (-ubyte-)) m) ; the matrix to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: writes matrix <m> to file <file-pointer>

(fwrite-idx4-ubyte file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx4- (-ubyte-)) m) ; the matrix to be written to the file
RETURNS: ()
CREATED: Yoshua Bengio 05 Feb 98
COMPILABLE: Yes
DESCRIPTION: writes matrix <m> to file <file-pointer>

(fread-idx4-ubyte file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx4- (-ubyte-)) m) ; the matrix to be read from the file
RETURNS: ()
CREATED: Yoshua Bengio 05 Feb 98
COMPILABLE: Yes
DESCRIPTION: reads matrix <m> from file <file-pointer>

<m> is "resized" to fit the size of the matrix in the file

(fread-idx1-byte file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx1- (-byte-)) m) ; the matrix to be read from the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: reads matrix <m> from file <file-pointer>

<m> is "resized" to fit the size of the matrix in the file



428 CHAPTER 8. STANDARD LIBRARIES

(fwrite-idx1-byte file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx1- (-byte-)) m) ; the matrix to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: writes matrix <m> to file <file-pointer>

(fread-idx2-byte file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx2- (-byte-)) m) ; the matrix to be read from the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: reads matrix <m> from file <file-pointer>

<m> is "resized" to fit the size of the matrix in the file

(fwrite-idx2-byte file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx2- (-byte-)) m) ; the matrix to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: writes matrix <m> to file <file-pointer>

(fread-idx3-byte file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx3- (-byte-)) m) ; the matrix to be read from the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: reads matrix <m> from file <file-pointer>

<m> is "resized" to fit the size of the matrix in the file



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 429

(fwrite-idx3-byte file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx3- (-byte-)) m) ; the matrix to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: writes matrix <m> to file <file-pointer>

(fread-idx1-short file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx1- (-short-)) m) ; the matrix to be read from the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: reads matrix <m> from file <file-pointer>

<m> is "resized" to fit the size of the matrix in the file

(fwrite-idx1-short file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx1- (-short-)) m) ; the matrix to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: writes matrix <m> to file <file-pointer>

(fread-idx2-short file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx2- (-short-)) m) ; the matrix to be read from the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: reads matrix <m> from file <file-pointer>

<m> is "resized" to fit the size of the matrix in the file



430 CHAPTER 8. STANDARD LIBRARIES

(fwrite-idx2-short file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx2- (-short-)) m) ; the matrix to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: writes matrix <m> to file <file-pointer>

(fread-idx3-short file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx3- (-short-)) m) ; the matrix to be read from the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: reads matrix <m> from file <file-pointer>

<m> is "resized" to fit the size of the matrix in the file

(fwrite-idx3-short file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx3- (-short-)) m) ; the matrix to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: writes matrix <m> to file <file-pointer>

(fread-idx1-int file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx1- (-int-)) m) ; the matrix to be read from the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: reads matrix <m> from file <file-pointer>

<m> is "resized" to fit the size of the matrix in the file



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 431

(fwrite-idx1-int file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx1- (-int-)) m) ; the matrix to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: writes matrix <m> to file <file-pointer>

(fread-idx2-int file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx2- (-int-)) m) ; the matrix to be read from the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: reads matrix <m> from file <file-pointer>

<m> is "resized" to fit the size of the matrix in the file

(fwrite-idx2-int file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx2- (-int-)) m) ; the matrix to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: writes matrix <m> to file <file-pointer>

(fread-idx3-int file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx3- (-int-)) m) ; the matrix to be read from the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: reads matrix <m> from file <file-pointer>

<m> is "resized" to fit the size of the matrix in the file



432 CHAPTER 8. STANDARD LIBRARIES

(fwrite-idx3-int file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx3- (-int-)) m) ; the matrix to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: writes matrix <m> to file <file-pointer>

(fread-idx1-flt file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx1- (-flt-)) m) ; the matrix to be read from the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: reads matrix <m> from file <file-pointer>

<m> is "resized" to fit the size of the matrix in the file

(fwrite-idx1-flt file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx1- (-flt-)) m) ; the matrix to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: writes matrix <m> to file <file-pointer>

(fread-idx2-flt file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx2- (-flt-)) m) ; the matrix to be read from the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: reads matrix <m> from file <file-pointer>

<m> is "resized" to fit the size of the matrix in the file



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 433

(fwrite-idx2-flt file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx2- (-flt-)) m) ; the matrix to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: writes matrix <m> to file <file-pointer>

(fread-idx3-flt file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx3- (-flt-)) m) ; the matrix to be read from the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: reads matrix <m> from file <file-pointer>

<m> is "resized" to fit the size of the matrix in the file

(fwrite-idx3-flt file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx3- (-flt-)) m) ; the matrix to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: writes matrix <m> to file <file-pointer>

(fread-idx1-real file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx1- (-real-)) m) ; the matrix to be read from the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: reads matrix <m> from file <file-pointer>

<m> is "resized" to fit the size of the matrix in the file



434 CHAPTER 8. STANDARD LIBRARIES

(fwrite-idx1-real file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx1- (-real-)) m) ; the matrix to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: writes matrix <m> to file <file-pointer>

(fread-idx2-real file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx2- (-real-)) m) ; the matrix to be read from the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: reads matrix <m> from file <file-pointer>

<m> is "resized" to fit the size of the matrix in the file

(fwrite-idx2-real file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx2- (-real-)) m) ; the matrix to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: writes matrix <m> to file <file-pointer>

(fread-idx3-real file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx3- (-real-)) m) ; the matrix to be read from the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: reads matrix <m> from file <file-pointer>

<m> is "resized" to fit the size of the matrix in the file



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 435

(fwrite-idx3-real file-pointer m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-gptr-) file) ; the file pointer returned by a fopen
((-idx3- (-real-)) m) ; the matrix to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: writes matrix <m> to file <file-pointer>

(save-idx1-ubyte filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx1- (-ubyte-)) m)
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: saves matrix <m> to file <filename>

(load-idx1-ubyte filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx1- (-ubyte-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: loads matrix <m> from file <filename>

<m> is "resized" to fit the size of the matrix in the file

(save-idx2-ubyte filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx2- (-ubyte-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: saves matrix <m> to file <filename>



436 CHAPTER 8. STANDARD LIBRARIES

(load-idx2-ubyte filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx2- (-ubyte-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: loads matrix <m> from file <filename>

<m> is "resized" to fit the size of the matrix in the file

(save-idx3-ubyte filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx3- (-ubyte-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: saves matrix <m> to file <filename>

(load-idx3-ubyte filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx3- (-ubyte-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: loads matrix <m> from file <filename>

<m> is "resized" to fit the size of the matrix in the file

(save-idx4-ubyte filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx4- (-ubyte-)) m):
RETURNS: ()
CREATED: Yoshua Bengio, 5 Feb 98
COMPILABLE: Yes
DESCRIPTION: saves matrix <m> to file <filename>



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 437

(load-idx4-ubyte filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx4- (-ubyte-)) m):
RETURNS: ()
CREATED: Yoshua Bengio, 5 Feb 98
COMPILABLE: Yes
DESCRIPTION: loads matrix <m> from file <filename>

<m> is "resized" to fit the size of the matrix in the file

(save-idx1-byte filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx1- (-byte-)) m)
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: saves matrix <m> to file <filename>

(load-idx1-byte filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx1- (-byte-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: loads matrix <m> from file <filename>

<m> is "resized" to fit the size of the matrix in the file

(save-idx2-byte filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx2- (-byte-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: saves matrix <m> to file <filename>



438 CHAPTER 8. STANDARD LIBRARIES

(load-idx2-byte filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx2- (-byte-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: loads matrix <m> from file <filename>

<m> is "resized" to fit the size of the matrix in the file

(save-idx3-byte filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx3- (-byte-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: saves matrix <m> to file <filename>

(load-idx3-byte filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx3- (-byte-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: loads matrix <m> from file <filename>

<m> is "resized" to fit the size of the matrix in the file

(save-idx1-short filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx1- (-short-)) m)
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: saves matrix <m> to file <filename>



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 439

(load-idx1-short filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx1- (-short-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: loads matrix <m> from file <filename>

<m> is "resized" to fit the size of the matrix in the file

(save-idx2-short filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx2- (-short-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: saves matrix <m> to file <filename>

(load-idx2-short filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx2- (-short-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: loads matrix <m> from file <filename>

<m> is "resized" to fit the size of the matrix in the file

(save-idx3-short filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx3- (-short-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: saves matrix <m> to file <filename>



440 CHAPTER 8. STANDARD LIBRARIES

(load-idx3-short filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx3- (-short-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: loads matrix <m> from file <filename>

<m> is "resized" to fit the size of the matrix in the file

(save-idx1-int filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx1- (-int-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: saves matrix <m> to file <filename>

(load-idx1-int filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx1- (-int-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: loads matrix <m> from file <filename>

<m> is "resized" to fit the size of the matrix in the file

(save-idx2-int filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx2- (-int-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: saves matrix <m> to file <filename>



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 441

(load-idx2-int filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx2- (-int-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: loads matrix <m> from file <filename>

<m> is "resized" to fit the size of the matrix in the file

(save-idx3-int filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx3- (-int-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: saves matrix <m> to file <filename>

(load-idx3-int filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx3- (-int-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: loads matrix <m> from file <filename>

<m> is "resized" to fit the size of the matrix in the file

(save-idx1-flt filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx1- (-flt-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: saves matrix <m> to file <filename>



442 CHAPTER 8. STANDARD LIBRARIES

(load-idx1-flt filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx1- (-flt-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: loads matrix <m> from file <filename>

<m> is "resized" to fit the size of the matrix in the file

(save-idx2-flt filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx2- (-flt-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: saves matrix <m> to file <filename>

(load-idx2-flt filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx2- (-flt-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: loads matrix <m> from file <filename>

<m> is "resized" to fit the size of the matrix in the file

(save-idx3-flt filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx3- (-flt-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: saves matrix <m> to file <filename>



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 443

(load-idx3-flt filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx3- (-flt-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: loads matrix <m> from file <filename>

<m> is "resized" to fit the size of the matrix in the file

(save-idx1-real filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx1- (-real-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: saves matrix <m> to file <filename>

(load-idx1-real filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx1- (-real-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: loads matrix <m> from file <filename>

<m> is "resized" to fit the size of the matrix in the file

(save-idx2-real filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx2- (-real-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: saves matrix <m> to file <filename>



444 CHAPTER 8. STANDARD LIBRARIES

(load-idx2-real filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx2- (-real-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: loads matrix <m> from file <filename>

<m> is "resized" to fit the size of the matrix in the file

(save-idx3-real filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx3- (-real-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: saves matrix <m> to file <filename>

(load-idx3-real filename m)

(lsh/libidx/idx-io.lsh) Last Modified: 2002-12-23 09:57:11

((-str-) filename):
((-idx3- (-real-)) m):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: loads matrix <m> from file <filename>

<m> is "resized" to fit the size of the matrix in the file

8.2.8 IDX mapping from files

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
functions to map files into virtual memory and to access the data as a matrix.

(mmap-idx s stor ndim magic)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
low-level function to map a file as an IDX.



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 445

(mmap-idx1-ubyte s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx2-ubyte s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx3-ubyte s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx4-ubyte s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx1-byte s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx2-byte s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx3-byte s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx4-byte s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx1-short s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx2-short s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it



446 CHAPTER 8. STANDARD LIBRARIES

(mmap-idx3-short s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx4-short s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx1-int s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx2-int s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx3-int s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx4-int s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx1-float s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx2-float s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx3-float s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx4-float s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 447

(mmap-idx1-double s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx2-double s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx3-double s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

(mmap-idx4-double s)

(lsh/libidx/idx-map.lsh) Last Modified: 2002-08-19 03:01:28
map the IDX file s into virtual memory and returns an IDX to access it

8.2.9 Convolution, Subsampling, Oversampling.

(lsh/libidx/idx-convol.lsh) Last Modified: 2002-10-09 02:43:39
This library contains functions for performing 1D and 2D convolutions ,

backconvolutions , subsampling with local averaging , and oversampling by sam-
ple replication. Each functionality is provided as a type-independent splicing
macro (DMD) with names of the form midx-m1xxx and midx-m2xxx , as well
as type specific functions for floats , doubles , and bytes (with names of the form
idx-f1xxx , idx-d1xxx , idx-u1xxx . Two kinds of convolution functions are
provided: generic 1D and 2D convolutions for any size kernel , and optimized
1D convolutions with kernels of size 2 , 3 , 4 and 5. The optimized versions
are faster than the regular ones by about a factor of 2 through the use of loop
unrolling and circular register stacks.

Fast 1D Convolutions

(lsh/libidx/idx-convol.lsh) Last Modified: 2002-10-09 02:43:39
a library of 1D convolutions that uses automatically generated code with

unrolled loops and circular register stacks to limit memory accesses and speed
up execution.

(midx-m1fastconvolacc in kernel out ksize type) (lsh/libidx/idx-convol.lsh)
Last Modified: 2002-10-09 02:43:39

ultrafast 1D convolution with accumulation of result into the output. in
must be a CONTIGUOUS idx1 , kernel an idx1 , out a CONTIGUOUS idx1
, ksize must be the size of the kernel , and type a string containing a valid
C type , e.g. ”float” (preferably the type of the objects in the 3 vectors). This
macro is expanded at compile time into a bunch of ”cinline” instructions. It



448 CHAPTER 8. STANDARD LIBRARIES

unrolls loops with a circular register stack to minimize index calculations and
memory access. Though this code is particularly fast on processors that have
lots of floating point registers (MIPS , etc) , it manages to to beat the pedestrian
version by about a factor of 2 on pentiums (reaching approx 200MFLOPS per
GHz for kernel of size 5). THIS CODE DOES NOT DO ANY RUN-TIME
CHECK FOR ARRAY SIZE , SO BE CAREFULL.

(idx-f1fastconvol2acc input kernel output) (lsh/libidx/idx-convol.lsh)
Last Modified: 2002-10-09 02:43:39

super-fast 1D convolution with size 2 kernel (with unrolled loops and optimal
register assignment) input and output must be contiguous idx1 , kernel must
be an idx1 all containing floats.

(idx-d1fastconvol2acc input kernel output) (lsh/libidx/idx-convol.lsh)
Last Modified: 2002-10-09 02:43:39

super-fast 1D convolution with size 2 kernel (with unrolled loops and optimal
register assignment) input and output must be contiguous idx1 , kernel must
be an idx1 all containing doubles.

(idx-u1fastconvol2acc input kernel output) (lsh/libidx/idx-convol.lsh)
Last Modified: 2002-10-09 02:43:39

super-fast 1D convolution with size 2 kernel (with unrolled loops and optimal
register assignment) input and output must be contiguous idx1 , kernel must
be an idx1 all containing ubytes.

(idx-f1fastconvol3acc input kernel output) (lsh/libidx/idx-convol.lsh)
Last Modified: 2002-10-09 02:43:39

super-fast 1D convolution with size 3 kernel. result is ACCUMULATED
in the output (with unrolled loops and optimal register assignment) input and
output must be contiguous idx1 , kernel must be an idx1 all containing floats.

(idx-d1fastconvol3acc input kernel output) (lsh/libidx/idx-convol.lsh)
Last Modified: 2002-10-09 02:43:39

super-fast 1D convolution with size 3 kernel. result is ACCUMULATED in
the output (with unrolled loops and optimal register assignment) input and
output must be contiguous idx1 , kernel must be an idx1 all containing dou-
bles.

(idx-u1fastconvol3acc input kernel output) (lsh/libidx/idx-convol.lsh)
Last Modified: 2002-10-09 02:43:39

super-fast 1D convolution with size 3 kernel. result is ACCUMULATED
in the output (with unrolled loops and optimal register assignment) input
and output must be contiguous idx1 , kernel must be an idx1 all contain-
ing ubytes.

(idx-f1fastconvol4acc input kernel output) (lsh/libidx/idx-convol.lsh)
Last Modified: 2002-10-09 02:43:39

super-fast 1D convolution with size 4 kernel. result is ACCUMULATED
in the output (with unrolled loops and optimal register assignment) input and
output must be contiguous idx1 , kernel must be an idx1 all containing floats.

(idx-d1fastconvol4acc input kernel output) (lsh/libidx/idx-convol.lsh)
Last Modified: 2002-10-09 02:43:39



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 449

super-fast 1D convolution with size 4 kernel. result is ACCUMULATED in
the output (with unrolled loops and optimal register assignment) input and
output must be contiguous idx1 , kernel must be an idx1 all containing dou-
bles.

(idx-u1fastconvol4acc input kernel output) (lsh/libidx/idx-convol.lsh)
Last Modified: 2002-10-09 02:43:39

super-fast 1D convolution with size 4 kernel. result is ACCUMULATED
in the output (with unrolled loops and optimal register assignment) input
and output must be contiguous idx1 , kernel must be an idx1 all contain-
ing ubytes.

(idx-f1fastconvol5acc input kernel output) (lsh/libidx/idx-convol.lsh)
Last Modified: 2002-10-09 02:43:39

super-fast 1D convolution with size 5 kernel. result is ACCUMULATED
in the output (with unrolled loops and optimal register assignment) input and
output must be contiguous idx1 , kernel must be an idx1 all containing floats.

(idx-d1fastconvol5acc input kernel output) (lsh/libidx/idx-convol.lsh)
Last Modified: 2002-10-09 02:43:39

super-fast 1D convolution with size 5 kernel. result is ACCUMULATED in
the output (with unrolled loops and optimal register assignment) input and
output must be contiguous idx1 , kernel must be an idx1 all containing dou-
bles.

(idx-u1fastconvol5acc input kernel output) (lsh/libidx/idx-convol.lsh)
Last Modified: 2002-10-09 02:43:39

super-fast 1D convolution with size 5 kernel. result is ACCUMULATED
in the output (with unrolled loops and optimal register assignment) input
and output must be contiguous idx1 , kernel must be an idx1 all contain-
ing ubytes.

Generic Convolutions

(lsh/libidx/idx-convol.lsh) Last Modified: 2002-10-09 02:43:39
Regular 1D and 2D convolution and backconvolutions for idx of doubles ,

floats , and ubytes. Each function take 3 arguments: input , kernel , output.
The size of the output plus the size of the kernel minus 1 must equal to the size
of the input in all dimensions (to prevent annoying boundary conditions). The
backconvolution can be seen the transposed operator of the convolution.

(midx-m1convol input kernel output) (lsh/libidx/idx-convol.lsh) Last
Modified: 2002-10-09 02:43:39

macro for 1D convolution. all arguments are idx1 (of any numerical type).
(idx-f1convol input kernel output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
1D convolution on idx1 of floats
(idx-m1convol input kernel output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
1D convolution on idx1 of floats (alias of idx-f1convol)



450 CHAPTER 8. STANDARD LIBRARIES

(idx-d1convol input kernel output) (lsh/libidx/idx-convol.lsh) Last Mod-
ified: 2002-10-09 02:43:39

1D convolution on idx1 of double
(idx-u1convol input kernel output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
1D convolution on idx1 of ubytes
(midx-m1backconvol input kernel output) (lsh/libidx/idx-convol.lsh)

Last Modified: 2002-10-09 02:43:39
macro for 1D back convolution
(idx-f1backconvol input kernel output) (lsh/libidx/idx-convol.lsh) Last

Modified: 2002-10-09 02:43:39
1D back convolution on floats
(idx-m1backconvol input kernel output) (lsh/libidx/idx-convol.lsh) Last

Modified: 2002-10-09 02:43:39
1D back convolution on floats (alias of idx-f1backconvol.
(idx-d1backconvol input kernel output) (lsh/libidx/idx-convol.lsh) Last

Modified: 2002-10-09 02:43:39
1D back convolution on doubles
(idx-u1backconvol input kernel output) (lsh/libidx/idx-convol.lsh) Last

Modified: 2002-10-09 02:43:39
1D back convolution on ubytes
(midx-m2convol input kernel output) (lsh/libidx/idx-convol.lsh) Last

Modified: 2002-10-09 02:43:39
macro for 2D convolution. all arguments are idx2.
(idx-f2convol input kernel output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
2D convolution. all arguments are idx2 of floats
(idx-m2convol input kernel output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
2D convolution. all arguments are idx2 of floats. (alias for idx-f2convol)
(idx-d2convol input kernel output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
2D convolution. all arguments are idx2 of doubles.
(idx-u2convol input kernel output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
2D convolution. all arguments are idx2 of ubytes
(midx-m2convolacc input kernel output) (lsh/libidx/idx-convol.lsh) Last

Modified: 2002-10-09 02:43:39
macro for 2D convolution with accumulation . all arguments are idx2.
(idx-f2convolacc input kernel output) (lsh/libidx/idx-convol.lsh) Last

Modified: 2002-10-09 02:43:39
2D convolution with accumulation . all arguments are idx2 of floats
(idx-m2convolacc input kernel output) (lsh/libidx/idx-convol.lsh) Last

Modified: 2002-10-09 02:43:39
2D convolution with accumulation . all arguments are idx2.



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 451

(idx-d2convolacc input kernel output) (lsh/libidx/idx-convol.lsh) Last
Modified: 2002-10-09 02:43:39

2D convolution with accumulation . all arguments are idx2 of double.
(idx-u2convolacc input kernel output) (lsh/libidx/idx-convol.lsh) Last

Modified: 2002-10-09 02:43:39
2D convolution with accumulation . all arguments are idx2 of ubyte.
(midx-m2backconvol input kernel output) (lsh/libidx/idx-convol.lsh)

Last Modified: 2002-10-09 02:43:39
macro for 2D back-convolution. all arguments are idx2.
(idx-f2backconvol input kernel output) (lsh/libidx/idx-convol.lsh) Last

Modified: 2002-10-09 02:43:39
2D back-convolution. all arguments are idx2 of floats.
(idx-m2backconvol input kernel output) (lsh/libidx/idx-convol.lsh) Last

Modified: 2002-10-09 02:43:39
2D back-convolution. all arguments are idx2 of floats (alias for idx-f2baconvol)
(idx-d2backconvol input kernel output) (lsh/libidx/idx-convol.lsh) Last

Modified: 2002-10-09 02:43:39
2D back-convolution. all arguments are idx2 of floats.
(idx-u2backconvol input kernel output) (lsh/libidx/idx-convol.lsh) Last

Modified: 2002-10-09 02:43:39
2D back-convolution. all arguments are idx2 of floats.
(midx-m2backconvolacc input kernel output) (lsh/libidx/idx-convol.lsh)

Last Modified: 2002-10-09 02:43:39
macro for 2D back-convolution. all arguments are idx2.
(idx-f2backconvolacc input kernel output) (lsh/libidx/idx-convol.lsh)

Last Modified: 2002-10-09 02:43:39
2D back-convolution. all arguments are idx2 of floats.
(idx-m2backconvolacc input kernel output) (lsh/libidx/idx-convol.lsh)

Last Modified: 2002-10-09 02:43:39
2D back-convolution. all arguments are idx2 of floats.
(idx-d2backconvolacc input kernel output) (lsh/libidx/idx-convol.lsh)

Last Modified: 2002-10-09 02:43:39
2D back-convolution. all arguments are idx2 of floats.
(idx-u2backconvolacc input kernel output) (lsh/libidx/idx-convol.lsh)

Last Modified: 2002-10-09 02:43:39
2D back-convolution. all arguments are idx2 of floats.

1D and 2D Subsampling and Oversampling

(lsh/libidx/idx-convol.lsh) Last Modified: 2002-10-09 02:43:39
functions that subsample 1D and 2D idx where each output sample is the

average of n adjacent input samples (with no overlap). The oversmapling func-
tions simply replicate the samples n times.

(midx-m1subsample input n output) (lsh/libidx/idx-convol.lsh) Last
Modified: 2002-10-09 02:43:39

macro for subsampling and summing of size n



452 CHAPTER 8. STANDARD LIBRARIES

(idx-f1subsample input n output) (lsh/libidx/idx-convol.lsh) Last Mod-
ified: 2002-10-09 02:43:39

subsampling and summing of size n
(idx-m1subsample input n output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
subsampling and summing of size n
(idx-d1subsample input n output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
subsampling and summing of size n
(idx-u1subsample input n output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
subsampling and summing of size n
(midx-m1oversample input n output) (lsh/libidx/idx-convol.lsh) Last

Modified: 2002-10-09 02:43:39
macro for oversampling of size n
(idx-f1oversample input n output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
oversampling of size n
(idx-m1oversample input n output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
oversampling of size n
(idx-d1oversample input n output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
oversampling of size n
(idx-u1oversample input n output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
oversampling of size n
(midx-m2subsample input n output) (lsh/libidx/idx-convol.lsh) Last

Modified: 2002-10-09 02:43:39
macro for subsampling and summing of size n
(idx-f2subsample input n output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
subsampling and summing of size n
(idx-m2subsample input n output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
subsampling and summing of size n
(idx-d2subsample input n output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
subsampling and summing of size n
(idx-u2subsample input n output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
subsampling and summing of size n
(midx-m2oversample input n output) (lsh/libidx/idx-convol.lsh) Last

Modified: 2002-10-09 02:43:39
macro for oversampling of size n



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 453

(idx-f2oversample input n output) (lsh/libidx/idx-convol.lsh) Last Mod-
ified: 2002-10-09 02:43:39

oversampling of size n
(idx-m2oversample input n output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
oversampling of size n
(idx-d2oversample input n output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
oversampling of size n
(idx-u2oversample input n output) (lsh/libidx/idx-convol.lsh) Last Mod-

ified: 2002-10-09 02:43:39
oversampling of size n

8.2.10 IDX sorting and binary search functions

(lsh/libidx/idx-sort.lsh) Last Modified: 2002-11-06 18:37:02
sorting and bsearch functions for matrices of floats and ints

(idx-f1bsearch am v)

(lsh/libidx/idx-sort.lsh) Last Modified: 2002-11-06 18:37:02
returns index of element in idx1 of float am whose value is less than or

equal to v using a binary search. this assumes the elements in am are sorted in
ascending order.

(idx-d1bsearch am v)

(lsh/libidx/idx-sort.lsh) Last Modified: 2002-11-06 18:37:02
returns index of element in idx1 of double am whose value is less than or

equal to v using a binary search. this assumes the elements in am are sorted in
ascending order.

(idx-i1bsearch am v)

(lsh/libidx/idx-sort.lsh) Last Modified: 2002-11-06 18:37:02
returns index of element in idx1 of int am whose value is less than or equal to

v using a binary search. this assumes the elements in am are sorted in ascending
order.

(idx-f1sortup m)

(lsh/libidx/idx-sort.lsh) Last Modified: 2002-11-06 18:37:02
sorts element in float vector m in ascending order

(idx-d1sortup m)

(lsh/libidx/idx-sort.lsh) Last Modified: 2002-11-06 18:37:02
sorts element in float vector m in ascending order



454 CHAPTER 8. STANDARD LIBRARIES

(idx-f1sortdown m)

(lsh/libidx/idx-sort.lsh) Last Modified: 2002-11-06 18:37:02
sorts element in float vector m in descending order

(idx-d1sortdown m)

(lsh/libidx/idx-sort.lsh) Last Modified: 2002-11-06 18:37:02
sorts element in double vector m in descending order

(idx-i1sortup m)

(lsh/libidx/idx-sort.lsh) Last Modified: 2002-11-06 18:37:02
sorts element in integer vector m in ascending order

(idx-i1sortdown m)

(lsh/libidx/idx-sort.lsh) Last Modified: 2002-11-06 18:37:02
sorts element in integer vector m in descending order

(idx-f1i1sortup m p)

(lsh/libidx/idx-sort.lsh) Last Modified: 2002-11-06 18:37:02
m is a vector of float , p is a vector of integers (same dimension as m ).

on output , m is sorted in ascending order , and p is sorted with the same
permutation table.

(idx-f1i1sortdown m p)

(lsh/libidx/idx-sort.lsh) Last Modified: 2002-11-06 18:37:02
m is a vector of float , p is a vector of integers (same dimension as m ).

on output , m is sorted in descending order , and p is sorted with the same
permutation table.

(idx-i1i1sortup m p)

(lsh/libidx/idx-sort.lsh) Last Modified: 2002-11-06 18:37:02
m is a vector of int , p is a vector of integers (same dimension as m ). on out-

put , m is sorted in ascending order , and p is sorted with the same permutation
table.

(idx-i1i1sortdown m p)

(lsh/libidx/idx-sort.lsh) Last Modified: 2002-11-06 18:37:02
m is a vector of int , p is a vector of integers (same dimension as m ). on

output , m is sorted in descending order , and p is sorted with the same permu-
tation table.



8.2. TENSOR/MATRIX/VECTOR/SCALAR LIBRARIES 455

8.2.11 IDX operations on squares of elements

(lsh/libidx/idx-squops.lsh) Last Modified: 2002-08-19 03:01:28
matrix and tensor operations that use the squares of the elements. This is

used primarily for second derivative backpropagations in gradient-based learning
algorithms.

(idx-m1squextm1 m1 m2 m3)

(lsh/libidx/idx-squops.lsh) Last Modified: 2002-08-19 03:01:28
square outer product of m1 and m2 . M3ij = M1i * M2jˆ2

(idx-m2squextm2 m1 m2 m3)

(lsh/libidx/idx-squops.lsh) Last Modified: 2002-08-19 03:01:28
square outer product of m1 and m2 . M3ijkl = M1ij * M2klˆ2

(idx-m1squextm1acc m1 m2 m3)

(lsh/libidx/idx-squops.lsh) Last Modified: 2002-08-19 03:01:28
square outer product of m1 and m2 . M3ij += M1i * M2jˆ2

(idx-m2squextm2acc m1 m2 m3)

(lsh/libidx/idx-squops.lsh) Last Modified: 2002-08-19 03:01:28
square outer product of m1 and m2 . M3ijkl += M1ij * M2klˆ2

(idx-m2squdotm1 m1 m2 m3)

(lsh/libidx/idx-squops.lsh) Last Modified: 2002-08-19 03:01:28
multiply vector m2 by matrix m1 using square of m1 elements M3i = sum j

M1ijˆ2 * M2j

(idx-m4squdotm2 m1 m2 m3)

(lsh/libidx/idx-squops.lsh) Last Modified: 2002-08-19 03:01:28
multiply matrix m2 by tensor m1 using square of m1 elements M3ij = sum kl

M1ijklˆ2 * M2kl

(idx-m2squdotm1acc m1 m2 m3)

(lsh/libidx/idx-squops.lsh) Last Modified: 2002-08-19 03:01:28
multiply vector m2 by matrix m1 using square of m1 elements M3i += sum j

M1ijˆ2 * M2j



456 CHAPTER 8. STANDARD LIBRARIES

(idx-m4squdotm2acc m1 m2 m3)

(lsh/libidx/idx-squops.lsh) Last Modified: 2002-08-19 03:01:28
multiply matrix m2 by tensor m1 using square of m1 elements M3ij +=

sum kl M1ijklˆ2 * M2kl

(idx-m1squdotm1acc m1 m2 m3)

(lsh/libidx/idx-squops.lsh) Last Modified: 2002-08-19 03:01:28
dot product between m1 and m2 , except square of terms of m1 are used:

M3 += sum i M1iˆ2 * M2i

(idx-m2squdotm2acc m1 m2 m3)

(lsh/libidx/idx-squops.lsh) Last Modified: 2002-08-19 03:01:28
dot product between matrices m1 and m2 , except square of terms of m1 are

used: M3 += sum ij M1ijˆ2 * M2ij

8.3 C Interface Utilities

(lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54

8.3.1 Libc interface

(lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
this provides an interface to several commonly used functions from the stan-

dard C library.

(malloc n)

(lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
malloc n bytes of memory and return a gptr to it.

(free p)

(lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
free malloc’ed memory area pointed to by gptr p .

(memcpy dest src size)

(lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
free malloc’ed memory area pointed to by gptr p .

(little-endianp)

(lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
return t if the CPU is little endian (e.g. x86). and nil if it is not little endian

(like sparcs).



8.3. C INTERFACE UTILITIES 457

(testbit v b)

(lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
test if bit b of integer v is on. b must be between 0 and 31.

8.3.2 Control Structures

(lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
A few macros that can be used as control structures in compiled code.

(icfor (i begin end step) l1 [l2...])

(lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
a C-like for loop with integer loop variable. i is a lisp symbol used as a

loop variable, begin end and step must be numerical expression. They are
all converted to int. This is equivalent to the C construct:

for (int i = begin; i<end; i++) { .... }

This is macro that generates inline C, and can therefore only be called in
compiled code.

8.3.3 Pointer Manipulation/Dereferencing

(lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54

(gptr+ p n)

(lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
add n to generic pointer p . The returned pointer points n bytes higher

than p .

(gptr- p1 p2)

(lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
returns the distance between two pointers (in bytes).

(str-ptr s)

(lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
return a generic pointer to the data of string s (i.e. a pointer to a C-

style null-terminated string). This must be used with caution because the data
pointed to by the pointer may be garbage collected.



458 CHAPTER 8. STANDARD LIBRARIES

(idx-ptr idx)

Type: DX(lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
return a gptr that points to the first element of m . This must be used

with caution because the data pointed to by the pointer may be garbage col-
lected (when m is destroyed) , or even displaced (when m is resized). idx-ptr
is primarily used when calling C function that require a pointer to numerical
data.

Peek/Poke/Sizeof

(lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
A number of functions are provided to dereference pointers to various nu-

merical types and either get the value they point to, or set the value at the
address they point to. They are of the form:

(peek-TYPE <ptr>)
(poke-TYPE <ptr> <value>)

where TYPE can be any Lush numerical type (ubyte, short, int, float, dou-
ble, gptr). The first form returns the value pointed to by ptr , while the second
form sets the value. Another set of functions, (sizeof-TYPE) returns the size
of the corresponding type.

These function are useful for accessing values in a pre-existing C structure
(allocated by a C function). Creating a numerical variable from Lush is better
done by first creating an idx0 of the appropriate type, and then getting a pointer
to the data through idx-ptr . Example:

(setq z (double-matrix))
(my-c-function-that-takes-a-ptr-to-a-double (idx-ptr z))

(peek-ubyte s) (lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
(poke-ubyte s v) (lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
(sizeof-ubyte) (lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
(peek-short s) (lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
(poke-short s v) (lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
(sizeof-short) (lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
(peek-int s) (lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
(poke-int s v) (lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
(sizeof-int) (lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
(peek-float s) (lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
(poke-float s v) (lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
(sizeof-float) (lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
(peek-double s) (lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
(poke-double s v) (lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
(sizeof-double) (lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54



8.4. PLOTTING 459

(peek-gptr s) (lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
(poke-gptr s v) (lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54
(sizeof-gptr) (lsh/libc/libc.lsh) Last Modified: 2002-09-18 11:19:54

8.4 Plotting

(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
This class library allows graph plotting. It contains the Plotter and the

PlotterCurve classes providing functions for drawing multiple curves and mod-
ifying their appearance. Here is a sample code to plot various curves:

(libload "libplot/plotter")
;; create a new plotter with default size (open a window if necessary)
(setq p (new Plotter))
;; plot log function in blue from 0 to 10.
(==> p PlotFunc "log" log 0 10 0.1 (alloccolor 0 0 1))
;; show it on the screen
(==> p redisplay)

;; add a piece of a red ellipse
(==> p PlotXY "lips" sin cos 0 5 0.1 (alloccolor 1 0 0))
(==> p redisplay)

;; plot a green polygonal sinusoid
(setq x (range 0 10 0.5))
(setq y (all ((v x)) (sin v)))
(==> p plotlists "sine" x y (alloccolor 0 1 0) closed-circle)
(==> p Redisplay)

;; add a grid
(==> p SetGrid 1)
(==> p Redisplay)

;; move the plotter to 100,0 and set its size to 300,200
(==> p move 100 0)
(==> p setsize 300 200)
(cls)
(==> p redisplay)

;; plot log function in a postscript file
(let ((window (ps-window "/tmp/curve.ps")))
(setq psp (new Plotter))
(==> psp PlotFunc "log" log 0 10 0.1 (alloccolor 0 0 1))
(==> psp redisplay))



460 CHAPTER 8. STANDARD LIBRARIES

;; plot log function in an editable graphic window using comdraw
(setq window (comdraw-window))
(setq cp (new Plotter))
(==> cp PlotFunc "log" log 0 10 0.1 (alloccolor 0 0 1))
(==> cp setgrid 1)
(==> cp redisplay)

8.4.1 Plotter

(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Class Plotter This is the main class to define Plotter objects in Lush.

Plotter objects have slots to define properties of the axes such as scales , labels
, legend , title , ticks and logscale. It also stores the curves , lines and texts that
will be drawn on the Plotter. rect slot of the Plotter specifies the rectangular
area of the Plotter on the current current window. Slots of the Plotter object
can be modified by methods of the class. They are computed automatically or
set to their default values if not speicifed by the use.

(new Plotter [[x y] w h])

Type: CLASS(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
The constructor Plotter creates a new Plotter object at pixel positions (x

, y) , with width w and height h on the current window. If the window object
is empty , it pops up a new window. x , y , w and h are optional. If x and
y are omitted , they are both set to 0. If w and h are omitted , the size of the
Plotter is equal to the size of the current window. For example:

(setq myplotter (new Plotter 600 600))

(==> Plotter move x y)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
move the upper left-hand corner of the plotter to screen position x y . No

screen update is performed until the next call to redisplay.

(==> Plotter setsize w h)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
set the width and height of the plotter object to w and h . No screen update

is performed until the next call to redisplay.

(==> Plotter Set attribute value)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Sets the attribute of the Plotter object to the given value. The attribute

argument is a string and can be ”xticks” , ”yticks” , ”xscale” , ”yscale” , ”xlabel”



8.4. PLOTTING 461

, ”ylabel” , ”legend” , ”title” , ”grid” , ”xscale2” , ”yscale2” , ”xticks2” ,
”yticks2” , ”xlabel2” , ”ylabel2”. If an invalid attribute name is given error
is generated. The value argument should match the attribute’s data type.
For ”xticks” , ”yticks” , ”xticks2” and ”yticks2” the value should be a list of
numbers , for ”xscale” and ”yscale” it should be a list of two numbers , for
”legend” , ”title” , ”xlabel” , ”ylabel” , ”xlabel2” and ”ylabel2” , it should be
a string. Example:

(==> myplotter Set "xticks" (range 0 10))
(==> myplotter Set "xscale" (list 0 10))
(==> myplotter Set "xlabel "x")

Individual methods are also provided to set and change the attributes of the
Plotter object.

(==> Plotter SetRectNth i m n)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Divides the current window into m by n rectangles and sets the rectangular

area of the Plotter to the i th one. The first rectangle is the one on the upper
left corner. When the rectangle of a Plotter object is set , the graphics plot
is restricted to that rectangular area.

For example:

;;divides the current window vertically and
;;plots the first object on the left and the second object on the right.
(==> plotter1 SetRectNth 1 1 2)
(==> plotter2 SetRectNth 2 2 1)

(==> Plotter SetXScale xmin xmax)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Sets the xscale slot of the Plotter . xmin argument is the minimum axis

limit and xmax is the maximum axis limit on x. If a scale for x is not set ,
LUSH selects the axis limits based on the curve points.

(==> Plotter SetYScale ymin ymax)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Sets the yscale slot of the Plotter . ymin argument is the minimum axis

limit and ymax is the maximum axis limit on y. If a scale for y is not set , LUSH
selects the axis limits based on the curve points.



462 CHAPTER 8. STANDARD LIBRARIES

(==> Plotter SetXTicks x)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Sets the xticks slot of the Plotter . LUSH computes the ticks marks on

the x axis based on the x scale. However the tick marks on the x axis can be
specified with the SetXTicks method. Argument x is a list of numbers

(==> Plotter SetYTicks y)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Sets the yticks slot of the Plotter . LUSH computes the ticks marks on

the y axis based on the y scale. However the tick marks on the y axis can be
specified with the SetYTicks method. Argument y is a list of numbers.

(==> Plotter SetXLabel x)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Adds axis label to the x axis. Argument x is a string.

(==> Plotter SetYLabel y)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Adds axis label to the y axis. Argument y is a string.

(==> Plotter SetLegend l)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Adds a legend text to the up right corner of the Plotter rectangle. Argu-

ment l is a string.

(==> Plotter SetTitle t)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Adds a title text to the top of the Plotter rectangle. Argument t is a

string.

(==> Plotter SetGrid x)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Specifies whether to draw grid lines or not. Argument x is either 0 or 1.

When x is 1 grid lines are drawn , when x is 0 grids are not drawn.

(==> Plotter SetXScale2 xmin xmax)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Using the Plotter library it is possible to draw graphs with double x axes.

SetXScale2 method sets the scale of the second x axis. xmin argument is the
minimum axis limit and xmax is the maximum axis limit on the second x axis.
If no scale is specified for the second x axis , it is not drawn.



8.4. PLOTTING 463

(==> Plotter SetYScale2 ymin ymax)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Using the Plotter library it is possible to draw graphs with double y axes.

SetYScale2 method sets the scale of the second y axis. ymin argument is the
minimum axis limit and ymax is the maximum axis limit on the second y axis.
If no scale is specified for the second y axis , it is not drawn.

(==> Plotter SetXTicks2 x)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Using the Plotter library it is possible to draw graphs with double x axes.

SetXTicks2 method sets the tick marks of the second x axis. Argument x is a
list of numbers indicating the tick marks.

(==> Plotter SetYTicks2 x)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Using the Plotter library it is possible to draw graphs with double y axes.

SetYTicks2 method sets the tick marks of the second y axis. Argument y is a
list of numbers indicating the tick marks.

(==> Plotter SetXLabel2 x)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Using the Plotter library it is possible to draw graphs with double x axes.

SetXLabel2 method sets the label of the second x axis. Argument x is a string.

(==> Plotter SetYLabel2 y)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Using the Plotter library it is possible to draw graphs with double y axes.

SetYLabel2 method sets the label of the second y axis. Argument y is a string

(==> Plotter SetXLogScale)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Using the Plotter library it is possible to draw logplots. SetXLogScale

method converts the scale of the x axis to log.

(==> Plotter SetYLogScale)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Using the Plotter library it is possible to draw logplots. SetYLogScale

method converts the scale of the y axis to log.



464 CHAPTER 8. STANDARD LIBRARIES

(==> Plotter ResetXLogScale)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Using the Plotter library it is possible to draw logplots. ResetYLogScale

method converts the scale of the x axis from log to regular.

(==> Plotter ResetXLogScale)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Using the Plotter library it is possible to draw logplots. ResetYLogScale

method converts the scale of the x axis from log to regular.

(==> Plotter NewCurve name)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Adds a new PlotterCurve object to the Plotter . name is the name of

the curve and of type string. Curves are stored as alists in the Plotter objects.
Each PlotterCurve is associated with a name and with the NewCurve method
added to the list of curves in the Plotter .

(==> Plotter ClearCurve curvename)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Deletes the PlotterCurve object named curvename form the Plotter .

(==> Plotter AddPoint curvename x y)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Adds the data point ( x , y ) to the PlotterCurve object named curvename

to the Plotter . If a curve named curvename does not exist , error is returned.
For example:

(==> myplotter AddPoint "S" 0 10)

(==> Plotter SetCurveColor curvename c)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Sets the color of the PlotterCurve object named curvename to color c .

Argument c is a color number (as returned by alloc-color ). If a curve named
curvename does not exist , error is returned.

(==> Plotter SetCurveSymbol curvename symbolfunc)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Sets the marker symbol of the PlotterCurve object named curvename to

symbol symbolname . Argument symbolfunc must be a two-argument function
whose role is to draw a symbol at the screen coordinates passed as arguments. A
set of pre-defined such functions are provided: open-square , closed-square ,



8.4. PLOTTING 465

open-circle , closed-circle , open-up-triangle , open-down-triangle ,
closed-up-triangle , closed-down-triangle , straight-cross and oblique-cross
.

(==> Plotter SetCurveSymbolSize curvename symbolsize)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Sets the size of the marker of the PlotterCurve named curvename to symbolsize

. symbolsize is an integer normally between 1 and 5. If symbolsize is set to
0 no markers are drawn at data points. For example:

(==> myplotter SetCurveSymbolSize "s" 3)

(==> Plotter SetCurveLine curvename line)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Specifies whether to draw lines between markers of the PlotterCurve ob-

ject or not. Argument line is 0 or 1. If line is 0 only markers at data points
are drawn , if line is 1 , markers are connected. By default , line is 1.

(==> Plotter SetCurveXAxis curvename xaxis)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
In case of use of double x axes , associates the PlotterCurve object to the

x axis specified by the argument xaxis . If xaxis argument is 0 the x axis at
the bottom is used (default) , if it is 1 , x axis at the top is used to draw the
curve. The scales for the second (top) axis should be set.

(==> Plotter SetCurveYAxis curvename yaxis)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
In case of use of double y axes , associates the PlotterCurve object to the

y axis specified by the argument yaxis . If yaxis argument is 0 the y axis on
the left is used (default) , if it is 1 , x axis on the right is used to draw the curve.
The scales for the second (right) axis should be set.

(==> Plotter PlotFunc curvename func xmin xmax xstep [color] [symbol])

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Plot a scalar real function. Samples are computed for are all values between

xmin and xmax by step of xstep . color is a color identifier (as returned by
alloccolor ) , and symbol is a function of two arguments (x and y coordinates)
that is called each time a data point is to be plotted. Predefined such functions
include nil (no symbol is plotted) , open-square , closed-square , open-circle ,
closed-circle , open-up-triangle , open-down-triangle , closed-up-triangle , closed-
down-triangle , straight-cross and oblique-cross , or any user-defined functions
Example:



466 CHAPTER 8. STANDARD LIBRARIES

(libload "libplot/plotter")
(setq p (new Plotter))
(==> p PlotFunc "log" log 0 10 0.1 (alloccolor 1 0 0))
(==> p redisplay)

(==> Plotter PlotXY curvename funcx funcy tmin tmax tstep [color]
[symbol])

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Plot a parameterized curve (X(t) , Y(t)). Samples are computed for are

all values of t between tmin and tmax by step of tstep . color is a color
identifier (as returned by alloccolor ) , and symbol is a function of two argu-
ments (x and y coordinates) that is called each time a data point is to be plot-
ted. Predefined such functions include nil (no symbol is plotted) , open-square ,
closed-square , open-circle , closed-circle , open-up-triangle , open-down-triangle
, closed-up-triangle , closed-down-triangle , straight-cross and oblique-cross , or
any user-defined functions

Example:

(libload "libplot/plotter")
(setq p (new Plotter))
(==> p PlotXY "log" log 0 10 0.1 (alloccolor 1 0 0))
(==> p redisplay)

(==> Plotter PlotLists curvename xlist ylist [color] [symbol])

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Plot a list of points whose x and y coordinates are corresponding elements

in xlist and ylist . In other words xlist is the list of x coordinates of
the data ylist is the list of y coordinates of the datapoints. curvename is a
curve identifier (generally a string). If the curve curvename already exists , it
is replaces. color is a color identifier (as returned by alloc-color ) , and
symbol is a function of two arguments (x and y coordinates) that is called each
time a data point is to be plotted. Predefined such functions include open-
square , closed-square , open-circle , closed-circle , open-up-triangle , open-
down-triangle , closed-up-triangle , closed-down-triangle , straight-cross and
oblique-cross. Example:

(==> myplotter PlotLists "log" (range 1 100) (mapcar log x))

(==> Plotter AddText x y txtstring)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30



8.4. PLOTTING 467

Adds a new text to the Plotter object. Texts are stored as list of lists
in the Plotter . Each element of the text list is a list of the coordinates of
the corresponding text and its string. Arguments x and y are real coordinates
(coordinates on the plotter)

(==> Plotter AddLine x1 y1 x2 y2)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Adds a new line to the Plotter object. Lines are stored as list of lists in

the Plotter . Each element of the line list is a list of the coordinates of the
line. Arguments x1 , x2 , y1 and y2 are real coordinates (coordinates on
the Plotter).

(==> Plotter GetClick)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Returns the real coordinates of the point clicked on the Plotter . This

method is not supported in a Comdraw window

(==> Plotter GetDistance)

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Computes the the length of the vector drawn by dragging and dropping the

mouse pointer on the Plotter . The distance is in real coordinates (coordinates
of the plotter). This method is not supported in a Comdraw window.

(==> Plotter Redisplay [location])

Type: MSG(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
This is fundamental method of a Plotter object. Every curve , line , text ,

etc is stored in the Plotter object and is drawn after a Redisplay command.
To see the modifications on the window , Redisplay should be called. The
argument location is optional. It is a list of x and y pixel coordinates , width
and height of the Plotter . If specified as (list x y w h) , it displays the Plotter
in the rectangular area (x y w h).

For example:

;;locates and reprints the plotter in the rectangle
;;specified by (100,100,500,500) on current window
(==> myplotter Redisplay 100 100 500 500)

8.4.2 low level utility functions

(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30



468 CHAPTER 8. STANDARD LIBRARIES

(compute-xscale pobject)

(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Computes the scale of the x axis for a given Plotter object from the data

points in each curve.

(compute-yscale pobject)

(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Computes the scale of the y axis for a given Plotter object from the data

points in each curve.

(set-axes axes xscale yscale xticks yticks xlabel ylabel legend title
grid [xlogscale] ylogscale])

(lsh/libplot/plotter.lsh) Last Modified: 2003-01-06 23:21:30
Plots the axes given the scales of the x and y axis , axis ticks , axis labels ,

legend and the title. Labels , legend and title can be empty strings. The axes
argument is a list of xaxismin , yaxismin , xaxismax and yaxismax. xaxismin
and yaxismin are the pixel coordinates of the origin of the xaxes , and xaxismax
and yaxismax are the pixel coordinates of the top right corner of the axes. The
grid argument is either 1 or 0 , specifies whether to have grid on the plotter
or not. xlogscale and ylogscale are optional and are used if a logscale is
desired on one of the axes.

For example:

(set-axes (list 100 600 800 100)
(list 0 10) (list 0 10) (range 0 10) (range 0 10) "x" "y" "" "graph" 1)

8.5 C-Style Input / Output

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10
functions this section provide a convenient interface to the C stdio library.

Functions are provided to open and close C-style file descriptors and pipes. The
most commonly used stdio functions are also provided , including ftell , fseek
, fprintf , rewind , fputc , fgetc , and several others. C-style file descriptors
manipulated by these functions are merely generic pointers (-gptr-). As a con-
sequence , many of these function as ”unsafe” , i.e. calling them with an invalid
file pointer may cause the interpreter to crash.

8.5.1 (fprintf file-pointer args...)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a fopen



8.5. C-STYLE INPUT / OUTPUT 469

MACRO
DESCRIPTION: same as printf, but writes to a file rather than to standard output
RETURNS: ()
CREATED: Pascal Vincent 04/05/96

8.5.2 (fwrite-str file-pointer s)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ;; the file pointer returned by a fopen
((-str-) s) ;; the string to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: writes string <s> to file <file-pointer>

See: Compilable file I/O

8.5.3 (stdout)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

RETURNS: (-gptr-) the file pointer associated with the standard output
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes

See: Compilable file I/O

8.5.4 (fopen filename type)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-str-) filename) ; the name (or path) of the file to be opened:
((-str-) type) ; the opening type: "rb" for reading, "wb" for creating and writing, "a" for append, ...:
RETURNS: (-gptr-) a file pointer to the open file (the pointer is null in case of failiure)
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: same as the C function fopen

See: Compilable file I/O



470 CHAPTER 8. STANDARD LIBRARIES

8.5.5 (fclose file-pointer)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a fopen
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: same as the C function fclose

See: Compilable file I/O

8.5.6 (popen filename type)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-str-) filename) ; the name (or path) of the pipe to be opened:
((-str-) type) ; the opening type: "rb" for reading, "wb" for creating and writing, "a" for append, ...:
RETURNS: (-gptr-) a file pointer to the open pipe (the pointer is null in case of failiure)
CREATED: Yann LeCun 08/29/96
COMPILABLE: Yes
DESCRIPTION: same as the C function popen

See: Compilable file I/O

8.5.7 (pclose file-pointer)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a popen
RETURNS: ()
CREATED: Yann LeCun 08/29/96
COMPILABLE: Yes
DESCRIPTION: same as the C function pclose

See: Compilable file I/O

8.5.8 (ftell file-pointer)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a fopen
RETURNS: (-int-) the current position in the file, relative to the beginning
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: same as C function ftell



8.5. C-STYLE INPUT / OUTPUT 471

See: Compilable file I/O

8.5.9 (fseek file-pointer pos)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a fopen
((-int-) pos) ; an absolute position in the file:
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: moves to the given position in the file

See: Compilable file I/O

8.5.10 (fseek-from-end file-pointer pos)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a fopen
((-int-) pos) ; a position in the file relative to the end
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: moves to the given position in the file

See: Compilable file I/O

8.5.11 (fseek-from-current file-pointer pos)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a fopen
((-int-) pos) ; a position in the file relative to the current position:
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: moves to the given position in the file

See: Compilable file I/O



472 CHAPTER 8. STANDARD LIBRARIES

8.5.12 (fgetc file-pointer)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a fopen
RETURNS: (-int-) The next byte read from the file
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: Reads a byte (character) from the file (same as C function fgetc)

See: Compilable file I/O

8.5.13 (fputc file-pointer val)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a fopen
((-int-) val) ; contains the byte to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: Writes a byte (character) to the file (same as C function fputc)

See: Compilable file I/O

8.5.14 (fread-ubyte file-pointer)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a fopen
RETURNS: (-ubyte-) the next ubyte read from the file
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes

See: Compilable file I/O

8.5.15 (fwrite-ubyte file-pointer val)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a fopen
((-ubyte-) val) ; contains the ubyte to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: Writes a ubyte to the given file



8.5. C-STYLE INPUT / OUTPUT 473

See: Compilable file I/O

8.5.16 (fread-byte file-pointer)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a fopen
RETURNS: (-byte-) the next byte read from the file
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes

See: Compilable file I/O

8.5.17 (fwrite-byte file-pointer val)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a fopen
((-byte-) val) ; contains the byte to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: Writes an byte (4 bytes on Sun-OS or Solaris) to the given file

See: Compilable file I/O

8.5.18 (fread-short file-pointer)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a fopen
RETURNS: (-short-) the next short (2 bytes) read from the file
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes

See: Compilable file I/O

8.5.19 (fwrite-short file-pointer val)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a fopen
((-short-) val)
RETURNS: ()



474 CHAPTER 8. STANDARD LIBRARIES

CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: Writes a short (2 bytes) to the given file

See: Compilable file I/O

8.5.20 (fread-int file-pointer)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a fopen
RETURNS: (-int-) the next int (4 bytes on Sun-OS or Solaris) read from the file
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes

See: Compilable file I/O

8.5.21 (fwrite-int file-pointer val)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a fopen
((-int-) val) ; contains the int to be written to the file
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: Writes an int (4 bytes on Sun-OS or Solaris) to the given file

See: Compilable file I/O

8.5.22 (fread-flt file-pointer)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a fopen
RETURNS: (-float-) the next float (4 bytes) read from the file
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes

See: Compilable file I/O



8.5. C-STYLE INPUT / OUTPUT 475

8.5.23 (fwrite-flt file-pointer val)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a fopen
((-float-) val):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: Writes a float (4 bytes) to the given file

See: Compilable file I/O

8.5.24 (fread-real file-pointer)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a fopen
RETURNS: (-real-) the next real (8 bytes) read from the file
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes

See: Compilable file I/O

8.5.25 (fwrite-real file-pointer val)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) file) ; the file pointer returned by a fopen
((-real-) val):
RETURNS: ()
CREATED: Pascal Vincent 04/05/96
COMPILABLE: Yes
DESCRIPTION: Writes a real (8 bytes) to the given file

See: Compilable file I/O

8.5.26 (reverse n ptr sz n)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) ptr) ;; pointer to the block of memory that must be reversed
((-int-) sz) ;; size of each item to reverse
((-int-) n) ;; number of items to reverse



476 CHAPTER 8. STANDARD LIBRARIES

RETURNS: ()
CREATED: Pascal Vincent 04/17/96
COMPILABLE: Yes
DESCRIPTION: Reverses order of bytes in <n> items of size <sz>

starting at memory location <ptr>
This is a tool for writing/reading file formats that are portable
across systems with processors that represent long-words
differently in memory (Sparc vs Intel-Pentium for ex.)
It can be called from inline-C as C_reverse8(ptr,n);

8.5.27 (fscan-int file-pointer)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

(-gptr- file-pointer) ;; the file poiner returned by fopen
DESCRIPTION: Same as fscanf(file_pointer,"\\%d",&result) in C.
RETURNS: int
CREATED: Yoshua Bengio 23 August 1996

8.5.28 (fscan-flt file-pointer)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

(-gptr- file-pointer) ;; the file poiner returned by fopen
DESCRIPTION: Same as fscanf(file_pointer,"\\%d",&result) in C.
RETURNS: float
CREATED: Yoshua Bengio 23 August 1996

8.5.29 (fscan-str file-pointer)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

(-gptr- file-pointer) ;; the file poiner returned by fopen
DESCRIPTION: same as fscanf(file_pointer,"\\%s",result).

The result must hold in a string of size < 1024 bytes.
RETURNS: string
CREATED: Yoshua Bengio 23 August 1996

8.5.30 (fgets file-pointer max-size)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

(-gptr- file-pointer) ;; the file poiner returned by fopen



8.6. GRAPH LIBRARY 477

(-int- max-size) ;; maximum allowed size of line in bytes
DESCRIPTION: same as C’s fgets(result,max_size,file_pointer).
RETURNS: string
CREATED: Yoshua Bengio 23 August 1996

8.5.31 (file-size file-name)

Type: DE(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10
returns the size in byte of file file-name author: Leon Bottou.

8.5.32 (rewind f)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-gptr-) f):
CREATED: Oct 97
DESCRIPTION:

8.5.33 (skip-comments start f)

(lsh/libc/stdio.lsh) Last Modified: 2002-12-23 09:57:10

((-char-) start):
((-gptr-) f):
CREATED: Oct 97
DESCRIPTION:
skip comments lines starting with <start>

8.6 Graph Library

8.6.1 Building and Manipulating Grammars

(lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50
functions for easily building grammars. The basic process consists in first

building a grammar graph with null transitions (transitions matching no sym-
bols) and then creating a graph without null transitions.

(NULL-PTR s)

(lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50
RETURNS: t if s is (). CREATED: P.Haffner



478 CHAPTER 8. STANDARD LIBRARIES

Macros for typing labels

(lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50
(LAB-ASCII str) (lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14

03:30:50
Label for an ASCII character
(LAB-NULL) (lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50
Label for the null transition
(LAB-MARKER string) (lsh/libgraph/grammar.lsh) Last Modified: 2002-

10-14 03:30:50
Label for marker links (e.g. field markers , junk markers , etc..) Argument

str must be a 2 character string.
(LAB-WILD) (lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50
Label for matching any data with a reasonable score This is a ”wildcard”

label used for matching meaningful punctuations.
(LAB-JUNK) (lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50
Label for matching any data with a quite poor score This is a ”junk” label

for matching meaningless subimages before or after the interesting point.
(LAB-SKIP) (lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50
Label for matching any character , without calling the recognizer The default

score will be 0

Gset: multiple sets of integers

(lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50
GMultiIntSet (lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50
This class represents efficiently a collection of sets of integers. This is used by

the new version of gram-cleanup . Extra documentation will be added later...

Grammar cleanup and optimization

(lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50
(gram-cleanup graph) (lsh/libgraph/grammar.lsh) Last Modified: 2002-

10-14 03:30:50
Returns a new graph containing no null transition and implementing the

same grammar than graph .

Functions for building grammars

(lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50
gram-or, gram-cat, gram-some, gram-many, gram-maybe (lsh/libgraph/grammar.lsh)

Last Modified: 2002-10-14 03:30:50
These functions allow for easily building grammars from regular expression

style operators.
All these function take an arbitrary number of arguments which may be

integer labels (using LAB macros), one character strings or complete grammars.



8.6. GRAPH LIBRARY 479

• gram-or returns a grammar which matches any of the alternatives repre-
sented by the labels or the grammars.

• gram-cat returns a grammar which matches the concatenation of the
strings of labels represented by the labels or the grammars.

• gram-some returns a grammar which matches one or more occurence of
the concatenation of the strings of labels represented by its arguments.

• gram-many returns a grammar which matches zero or more occurence of
the concatenation of the strings of labels represented by its arguments.

• gram-maybe returns a grammar which matches zero or one occurence of
the concatenation of the strings of labels represented by its arguments.

The resulting grammar may contain null transitions whose label is pro-
vided by macro LAB-NULL . These transitions must be removed using function
gram-cleanup .

(setq gr-digstring
(gram-some (gram-or (LAB-ASCII "0")

(LAB-ASCII "1") )))
(setq gr-number

(gram-cat gr-digstring
(gram-maybe "." gr-digstring) ) )

(setq grammar-for-numbers
(gram-cleanup gr-number) )

gram2-or, gram2-some (lsh/libgraph/grammar.lsh) Last Modified: 2002-
10-14 03:30:50

These are optimizations of gram-or and gram-some devised by Patrick. Do
not use before inquiring PH about limitations and potential headaches.

Setting the penalties/cost of edges.

(lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50
(gram-penalty cost grammar) (lsh/libgraph/grammar.lsh) Last Modified:

2002-10-14 03:30:50
Sets a cost penalty to all paths traversing a particular grammar. The cost

will be added to the costs of all links arrving on the endnode. We assume that
grammar grammar contains no null paths (i.e. paths between the startnode and
the endnode with null transitions only).

converting grammar paths to strings

(lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50
(gram-meaning meaning grammar) (lsh/libgraph/grammar.lsh) Last Mod-

ified: 2002-10-14 03:30:50



480 CHAPTER 8. STANDARD LIBRARIES

Override the meaning fields in grammar grammar . Only one link in every
path in grammar grammar will have a meaning equal to meaning . All other
links will have a null meaning.

Note: The resulting grammar may be cleaned up using gram-cleanup .

conversion from regular grammar to matrix representation

(lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50
(grammar-to-matrix mat) (lsh/libgraph/grammar.lsh) Last Modified: 2002-

10-14 03:30:50
This function encodes a grammar into a matrix.
(matrix-to-grammar mat) (lsh/libgraph/grammar.lsh) Last Modified: 2002-

10-14 03:30:50
This function decodes a grammar encoded with grammar-to-matrix .
(gram-static lispgrammar) (lsh/libgraph/grammar.lsh) Last Modified: 2002-

10-14 03:30:50
Use this macro in compiled code to refer to a grammar defined by a lisp

expression lispgrammar evaluated at compile time. This macro expand into a
call to matrix-to-grammar on a static matrix.

converting strings to label sequences

(lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50
(string-to-labels s) (lsh/libgraph/grammar.lsh) Last Modified: 2002-10-

14 03:30:50
Returns a matrix of integers containing the ascii codes of string s .
(labels-to-string im) (lsh/libgraph/grammar.lsh) Last Modified: 2002-10-

14 03:30:50
Returns a string made with characters whose ascii codes are in matrix im .

Illegal ascii codes are marked with string ”[?]”.

testing label sequences against a grammar

(lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50
(gram-match grammar labels) (lsh/libgraph/grammar.lsh) Last Modi-

fied: 2002-10-14 03:30:50
Returns t if labels in idx1 labels match grammar grammar .

handling trivgraphs

(lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50
(count-labels graphin) (lsh/libgraph/grammar.lsh) Last Modified: 2002-

10-14 03:30:50
count the number of links with labels in a trivial graph
(count-meanings graphin) (lsh/libgraph/grammar.lsh) Last Modified: 2002-

10-14 03:30:50
count the number of links with meanings in a trivial graph



8.6. GRAPH LIBRARY 481

(trivgraph-to-labels graphin) (lsh/libgraph/grammar.lsh) Last Modified:
2002-10-14 03:30:50

This function returns an integer vector containing value of slots label for
each link in the single path of trivial graph graphin . This function returns a
matrix with a single element equal to -1 when the graph contains no path.

(trivgraph-to-meanings graphin) (lsh/libgraph/grammar.lsh) Last Mod-
ified: 2002-10-14 03:30:50

This function returns an integer vector containing value of slots meaning
for each link in the single path of trivial graph graphin . Links whose slot
meaning contains (LAB-NULL) are discarded. This function returns a matrix
with a single element equal to -1 when the graph contains no meaningful path.

(trivgraph-to-data graphin) (lsh/libgraph/grammar.lsh) Last Modified:
2002-10-14 03:30:50

This function returns a gptr vector containing value of slots data for each
link in the single path of trivial graph graphin .

(trivgraph-to-costs graphin scores) (lsh/libgraph/grammar.lsh) Last
Modified: 2002-10-14 03:30:50

((-obj- (GGraph)) graphin):
((-idx1- (-flt-)) scores):
CREATED: P.Haffner
COMPILABLE: Yes
DESCRIPTION: This function just copies the scores of the meaningful links
of trivial graph <graph> into matrix <scores>. It does not apply the
squashing function applied by <trivgraph-to-scores>.

(trivgraph-to-meaningful-costs graph scores) (lsh/libgraph/grammar.lsh)
Last Modified: 2002-10-14 03:30:50

This function just copies the scores of the meaningful links of trivial graph
graph into matrix scores . It does not apply the squashing function applied
by trivgraph-to-meaningful-costs .

(trivgraph-to-scores graph scores) (lsh/libgraph/grammar.lsh) Last Mod-
ified: 2002-10-14 03:30:50

This function copies the squashed scores of the links of trivial graph graph
into matrix scores .

(trivgraph-to-meaningful-scores graph scores) (lsh/libgraph/grammar.lsh)
Last Modified: 2002-10-14 03:30:50

This function copies the squashed scores of the meaningful links of trivial
graph graph into matrix scores .

Selecting path that produce a particular label sequence

(lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50
(g-restrict-to-meanings graph meanings) (lsh/libgraph/grammar.lsh) Last

Modified: 2002-10-14 03:30:50



482 CHAPTER 8. STANDARD LIBRARIES

Creates a new graph which implements the subset of paths of graph graph
whose links with non null meanings implement the meanings given in the integer
matrix meaning . The links of the new graph have the same cost , label ,
meaning and data than the original links.

(This code is derived from g-compose )
(g-restrict-to-meanings-2 graph labels) (lsh/libgraph/grammar.lsh) Last

Modified: 2002-10-14 03:30:50
See: (g-restrict-to-meanings graph labels )
This function is similat to g-restrict-to-meanings . However the data

fields of the restricted graph point to the original link instead of to the data
pointed to by the original link.

(g-restrict-to-labels graph labels) (lsh/libgraph/grammar.lsh) Last Mod-
ified: 2002-10-14 03:30:50

Creates a new graph which implements the subset of paths of graph graph
whose links implement the labels given in the integer matrix meaning . The
links of the new graph have the same cost , label , meaning and data than the
original links.

(This code is derived from g-compose )
(g-restrict-to-labels-2 graph labels) (lsh/libgraph/grammar.lsh) Last

Modified: 2002-10-14 03:30:50
See: (g-restrict-to-labels graph labels )
This function is similat to g-restrict-to-labels . However the data fields

of the restricted graph point to the original link instead of to the data pointed
to by the original link.

additional grammar functions

(lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50
(lab-to-str lab) (lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14

03:30:50

((-int-) lab):
RETURNS: a string of 1 or 4 characters
CREATED: P.Haffner
COMPILABLE: Yes
DESCRIPTION: transcodes an integer into a string of one or 2 characters.
(2 characters are returned between brackets)

See: (str-to-lab s )
(str-to-lab s) (lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50

((-str-) s):
RETURNS: integer
CREATED: P.Haffner
COMPILABLE: Yes



8.6. GRAPH LIBRARY 483

DESCRIPTION: Transcodes a 1 or 2 character string into an integer

See: (lab-to-str lab )
(gram-match-meaning grammar meanings) (lsh/libgraph/grammar.lsh)

Last Modified: 2002-10-14 03:30:50
Returns t if meanings in idx1 meanings match grammar grammar .
(gram-match-string grammar <list of strings>) (lsh/libgraph/grammar.lsh)

Last Modified: 2002-10-14 03:30:50
for each string in the list , check it it can be generated as meanings of the

graph grammar
(string-to-labels2 s) (lsh/libgraph/grammar.lsh) Last Modified: 2002-10-

14 03:30:50
Returns a matrix of integers containing the ascii codes of string s . Unlike

straing-to-labels, brackets [xx] means double ascii codes.
See: (string-to-labels s )
(labels-to-string2 im) (lsh/libgraph/grammar.lsh) Last Modified: 2002-

10-14 03:30:50
Returns a string made with characters whose ascii codes are in matrix im .

Unlike labels-to-string, double ascii codes are quoted in brackets [xx].
See: (labels-to-string im )

Graph Analysis

(lsh/libgraph/grammar.lsh) Last Modified: 2002-10-14 03:30:50
(g-complexity graph) (lsh/libgraph/grammar.lsh) Last Modified: 2002-

10-14 03:30:50

((-obj- (GGraph)) graph):
CREATED: P.Haffner
COMPILABLE: Yes
DESCRIPTION: display useful information about a graph
- number of nodes
- number of links
- number of links for different labels
- perpexity.

8.6.2 Manipulating Graphs.

(lsh/libgraph/graph.lsh) Last Modified: 2002-08-31 00:52:56

Gbag class

(lsh/libgraph/graph.lsh) Last Modified: 2002-08-31 00:52:56
a useful Lisp class to handle dynamically allocated data structures.
(new Gbag) Type: CLASS(lsh/libgraph/graph.lsh) Last Modified: 2002-

08-31 00:52:56



484 CHAPTER 8. STANDARD LIBRARIES

Allocates a new collection of GPTRs. The housekeeping data structures will
be allocated on pool specified with method add . The following messages are
supported:

See: (==> gbag add pool gptr )
See: (==> gbag rem gptr )
See: (==> gbag test gptr )
See: (==> gbag size)
(==> gbag size) Type: MSG(lsh/libgraph/graph.lsh) Last Modified: 2002-

08-31 00:52:56
Returns the number of elements in the bag gbag .
(==> gbag add pool gptr) Type: MSG(lsh/libgraph/graph.lsh) Last

Modified: 2002-08-31 00:52:56
Adds a new element GPTR in the bag gbag . Memory will be allocated

from pool pool . It is safer to always use the same pool with a given bag. This
pool , as well as the data pointed to by gptr *must* outlive the bag.

(==> gbag test gptr) Type: MSG(lsh/libgraph/graph.lsh) Last Modified:
2002-08-31 00:52:56

Tests if element gptr belongs to bad gbag .
(==> gbag rem gptr) Type: MSG(lsh/libgraph/graph.lsh) Last Modified:

2002-08-31 00:52:56
Remove all occurences of element gptr in the bag gbag . This function also

resets the iterator.
(==> gbag empty) Type: MSG(lsh/libgraph/graph.lsh) Last Modified:

2002-08-31 00:52:56
Removes all elements in a bag
(gbagelt-peek-data gptr) (lsh/libgraph/graph.lsh) Last Modified: 2002-

08-31 00:52:56
Peek data in a gbag element.
(gbagelt-peek-next gptr) (lsh/libgraph/graph.lsh) Last Modified: 2002-

08-31 00:52:56
Peek next gbag element.
(all-bag (var bag) ...prog...) (lsh/libgraph/graph.lsh) Last Modified:

2002-08-31 00:52:56
Iterate prog with var taking all values in bag .

GGraph class

(lsh/libgraph/graph.lsh) Last Modified: 2002-08-31 00:52:56
(new GGraph) Type: CLASS(lsh/libgraph/graph.lsh) Last Modified: 2002-

08-31 00:52:56
Class GGraph defines the functions for handling graphs. Graphs are handled

via two other classes of objects.

• Class GNode represent nodes of the graph.

• Class GLink represent arcs of the graph.



8.6. GRAPH LIBRARY 485

:graph:apool (lsh/libgraph/graph.lsh) Last Modified: 2002-08-31 00:52:56
Slot apool in a graph contains the pool used for storing all objects depend-

ing on the graph. This pool is created when you create the graph object. You
may use this pool to allocate objects stored in the data slots of the nodes and
the links.

:graph:nnodes (lsh/libgraph/graph.lsh) Last Modified: 2002-08-31 00:52:56
Slot nnodes in a graph contains the number of nodes allocated in a graph.
:graph:startnode (lsh/libgraph/graph.lsh) Last Modified: 2002-08-31 00:52:56
Slot startnode in a graph contains the start node of the graph. This node

is created when the graph is created.
:graph:endnode (lsh/libgraph/graph.lsh) Last Modified: 2002-08-31 00:52:56
Slot endnode in a graph contains the final node of the graph. This node is

created when the graph is created.
:node:id (lsh/libgraph/graph.lsh) Last Modified: 2002-08-31 00:52:56
Slot id in a node contains the ordinal number of the node. This number

was allocated when you created the node. You should not change it.
:node:data (lsh/libgraph/graph.lsh) Last Modified: 2002-08-31 00:52:56
Slot data of a node contains an arbitrary GPTR. This GPTR is not used

by the graph library and is available for you. You must of course take the usual
precautions with GPTRs.

:link:upnode (lsh/libgraph/graph.lsh) Last Modified: 2002-08-31 00:52:56
Slot downnode of a link contains the upstream node of the link.
:link:downnode (lsh/libgraph/graph.lsh) Last Modified: 2002-08-31 00:52:56
Slot downnode of a link contains the downstream node of the link.
:link:cost (lsh/libgraph/graph.lsh) Last Modified: 2002-08-31 00:52:56
Slot cost of a link is a floating point number for storing the cost associated

with a link. Costs are real number (both positive and negative). The smaller
the cost the better the link. You can view these costs as -log(probability) .

:link:dcost (lsh/libgraph/graph.lsh) Last Modified: 2002-08-31 00:52:56
Slot dcost of a link is a floating point number intended for storing the

derivative of the global cost with respect to the contents of the slot cost . This
slot is set by functions g-clear-gradients and g-forward-backward .

:link:label (lsh/libgraph/graph.lsh) Last Modified: 2002-08-31 00:52:56
Slot label of a link contains an arbitrary integer. This integer is not used

by the graph library and is available for you.
:link:data (lsh/libgraph/graph.lsh) Last Modified: 2002-08-31 00:52:56
Slot data of a link contains an arbitrary GPTR. This GPTR is not used by

the graph library and is available for you. You must of course take the usual
precautions with GPTRs.

GNode class

(lsh/libgraph/graph.lsh) Last Modified: 2002-08-31 00:52:56



486 CHAPTER 8. STANDARD LIBRARIES

GLink class

(lsh/libgraph/graph.lsh) Last Modified: 2002-08-31 00:52:56
(all-nodes (var graph) ...prog...) (lsh/libgraph/graph.lsh) Last Modi-

fied: 2002-08-31 00:52:56
Iterate prog with var being all nodes in graph graph .
(all-downlink (var node) ...prog...) (lsh/libgraph/graph.lsh) Last Mod-

ified: 2002-08-31 00:52:56
Iterate prog with var being all links downstream of node .
(all-uplink (var node) ...prog...) (lsh/libgraph/graph.lsh) Last Modi-

fied: 2002-08-31 00:52:56
Iterate prog with var being all links upstream of node .
(==> graph newnode data) Type: MSG(lsh/libgraph/graph.lsh) Last

Modified: 2002-08-31 00:52:56
Creates a new node in the graph. The new node points to data GPTR data

. All data pointed to by data MUST outlive the graph. You can for instance
allocate this data on the pool :graph:apool .

(==> graph link node1 node2 cost label data) Type: MSG(lsh/libgraph/graph.lsh)
Last Modified: 2002-08-31 00:52:56

Creates a new arc in the graph between nodes node1 and node2 . The
new arc is assigned a cost cost , an integer interpretation label and the data
pointed to by the GPTR data . All data pointed to by data MUST outlive
the graph. You can for instance allocate this data on the pool :graph:apool .

(==> graph linkm node1 node2 cost label meaning data) Type: MSG(lsh/libgraph/graph.lsh)
Last Modified: 2002-08-31 00:52:56

See: (==> graph link node1 node2 cost label data )
A link creation function which also sets the meaning field. The default

creation function store the same value in both the label and meaning fields
(==> graph cut link) Type: MSG(lsh/libgraph/graph.lsh) Last Modi-

fied: 2002-08-31 00:52:56
Removes arc link from the graph. No memory is reclaimed. Links may be

cut in a frozen graph.
(==> graph freeze) Type: MSG(lsh/libgraph/graph.lsh) Last Modified:

2002-08-31 00:52:56
Forbids any further alteration of the graph.
(==> graph dump) Type: MSG(lsh/libgraph/graph.lsh) Last Modified:

2002-08-31 00:52:56
Dumps a graph on the standard output.

8.6.3 Searching and Pruning Graphs

(lsh/libgraph/gsearch.lsh) Last Modified: 2002-08-31 00:52:56
searching the shortest path in a simple graph or a composed graph using

Viterbi and such.



8.6. GRAPH LIBRARY 487

(g-viterbi graph)

(lsh/libgraph/gsearch.lsh) Last Modified: 2002-08-31 00:52:56
Applies viterbi algorithm to compute a graph whose single path is a copy of

the best path of graph graph . Graph graph should not have cycles.

(g-compose-viterbi graph1 graph2 trans)

(lsh/libgraph/gsearch.lsh) Last Modified: 2002-08-31 00:52:56
Applies viterbi algorithm to compute the cheapest path in the graph ob-

tained by composing graph1 and graph2 by transformer trans . This routine
returns a new graph containing only this path.

(g-forward graph)

(lsh/libgraph/gsearch.lsh) Last Modified: 2002-08-31 00:52:56
Returns the log-added costs of all paths in lattice graph .
REMARK: The graph should not have cycles.

(g-compose-forward agraph bgraph trans)

(lsh/libgraph/gsearch.lsh) Last Modified: 2002-08-31 00:52:56
This function returns the log-added costs of all paths in the lattice obtained

by composing agraph and bgraph with transformer gtrans .
REMARK: The composed graph should not have cycles.

(g-clear-gradients graph)

(lsh/libgraph/gsearch.lsh) Last Modified: 2002-08-31 00:52:56
This function clears the gradients dcost and dacost in all reachable nodes

and links of the graph graph .

(g-backward gradin graph)

(lsh/libgraph/gsearch.lsh) Last Modified: 2002-08-31 00:52:56
When called immediatly after g-forward , this function credits a change

gradin of the result of forward to the cost of each link. The result is added
into the slots dcost of each reachable link.

REMARK: The graph should not have cycles.

8.6.4 Transformation Operators on Graphs

(lsh/libgraph/gtransform.lsh) Last Modified: 2002-08-31 00:52:56



488 CHAPTER 8. STANDARD LIBRARIES

(new GTrans)

Type: CLASS(lsh/libgraph/gtransform.lsh) Last Modified: 2002-08-31 00:52:56
A transformer is the object which embodies the rules used for creating a

new graph from one or two graphs using g-transform or g-compose . Class
GTrans is the base class for all transformers.

• Method check is used for selecting links in the initial graph(s) for which
structures will be created between two nodes of the destination graph.

• Method vcost and fcost compute the cost of these structures without
actually building them. Method vcost (Viterbi’s cost) computes the cost
of the best path. Method fcost (Forward’s cost) computes the logadded
cost of all paths.

• Method build build a structure in the resulting graph on the basis of
the information provided by the corresponding links in the parent graphs.
This involves computing cost, label and data.

• Method bprop is used during training to update the gradient with respect
to the cost of the initial graph. The implentation of this method requires
that the transformer remembers the association between the structures
created by build and the initial links. This memory is cleaned by method
reset .

The base class GTrans accepts all links of the product graph. The cost in
the link of the product graph will be the sum of the costs of the corresponding
links in both graphs. The label and data component are copied from the second
and first graph respectively.

See: (==> gtrans check link1 link2 )
See: (==> gtrans vcost link1 link2 )
See: (==> gtrans fcost link1 link2 )
See: (==> gtrans build ngraph nnodefrom nnodeto link1 link2 )
See: (==> gtrans remember rememberp )
See: (==> gtrans reset)
See: (==> gtrans bprop)

(==> gtrans check link1 link2)

Type: MSG(lsh/libgraph/gtransform.lsh) Last Modified: 2002-08-31 00:52:56
Tells g-transform or g-compose if they must create a structure in the new

graph corresponding to the given links of the parent graphs. A structure may
be as simple as a single link or as complex as a subgraph.

• In the case of g-transform , arguments link1 and link2 are equal and
identify a link of the initial graph. This function returns t if a new struc-
ture corresponding to this link must be created in the new graph



8.6. GRAPH LIBRARY 489

• In the case of g-compose , argument link1 and link2 identify two links
in the two initial graph. This function returns t if a new structure corre-
sponding to these links must be created in the new graph

(==> gtrans vcost link1 link2)

Type: MSG(lsh/libgraph/gtransform.lsh) Last Modified: 2002-08-31 00:52:56
Given two links link1 and link2 in two graphs , this method returns a

floating point number indicating the cost of the best path in the structure
corresponding to links link1 and link2 .

The default function just adds the costs of both links.

(==> gtrans fcost link1 link2)

Type: MSG(lsh/libgraph/gtransform.lsh) Last Modified: 2002-08-31 00:52:56
Given two links link1 and link2 in two graphs , this method returns a

floating point number indicating the loadadded cost of all paths in the structure
corresponding to links link1 and link2 .

The default function just calls vcost .

(==> gtrans build ngraph nnodefrom nnodeto link1 link2)

Type: MSG(lsh/libgraph/gtransform.lsh) Last Modified: 2002-08-31 00:52:56
Given to links link1 and link2 in two graphs (for which method check

indicates that we should build something in the resulting graph) , method build
creates a new structure between nodes nnodefrom and nnodeto in graph ngraph
. This task involves computing cost , label and data for the new links.

The default function just builds a single new link whose label comes from
link2 and whose data slot comes from link1 .

(==> gtrans bprop)

Type: MSG(lsh/libgraph/gtransform.lsh) Last Modified: 2002-08-31 00:52:56
Propagates the gradients of the links of the destination graph into the the

corresponding links of the initial graph. The resulting gradients are accumulated
into the fields dcost of the corresponding links.

If running the transformer involves parametric operations (e.g. running a
network) , the gradients are also propagated along these operations and finally
accumulated into the parameter vector.

To achieve this task (optional) , the transformer must remember all struc-
tures build since its creation.

(==> gtrans remember rememberp)

Type: MSG(lsh/libgraph/gtransform.lsh) Last Modified: 2002-08-31 00:52:56



490 CHAPTER 8. STANDARD LIBRARIES

Sets or resets memoryless mode. Argument rememberp is a boolean speci-
fying if it is useful to remember the result of the next calls to the method build
of the transformer.

(==> gtrans reset)

Type: MSG(lsh/libgraph/gtransform.lsh) Last Modified: 2002-08-31 00:52:56
Resets the data remembered by the transformer for a possible call of method

bprop .

(g-copy graph ngraph nstart nend)

(lsh/libgraph/gtransform.lsh) Last Modified: 2002-08-31 00:52:56
Copies graph graph between nodes nstart and nend of a new graph ngraph

. This function only considers the nodes and links that we can reach from both
the starting node and the end node. The other nodes and link are not copied.

WARNING: This function merely copies the data pointers. The correspond-
ing data are not copied into the new pool. You can change these data pointer
within a new pass.

(g-transform graph trans)

(lsh/libgraph/gtransform.lsh) Last Modified: 2002-08-31 00:52:56
Transforms graph graph according to transformer trans . The resulting

graph is bu1ild by calling method build of the transformer for all links in the
initial graph for which method check returns true.

This function ideally should only builds the nodes and the links which are
reachable from both the startnode and the endnode. Yet function g-tranform
may build extra nodes and links if the final graph has cycle(s) or if the trans-
former method build builds unecessary nodes.

See: (new GTrans)

(g-compose graph1 graph2 trans)

(lsh/libgraph/gtransform.lsh) Last Modified: 2002-08-31 00:52:56
Composes graphs graph1 and graph2 according to transformer trans .

The resulting graph is build by calling method build of the transformer be-
tween all nodes of the product graph for which method check returns true.

This function ideally should only builds the nodes and the links which are
reachable from both the startnode and the endnode. Yet function g-compose
may build extra nodes and links if the final graph has cycle(s) or if the trans-
former method build builds unecessary nodes.

See: (new GTrans)



8.7. IMAGE PROCESSING LIBRARIES 491

8.6.5 Other Graph Search Functions

(lsh/libgraph/rsearch.lsh) Last Modified: 2002-08-31 00:52:56
algorithms for searching a graph. the difference with the g-viterbi and g-

forward is that the seqrch is carried from the initial (upper) nodes. besides , a
startnode must be specified.

(r-viterbi graph startnode)

(lsh/libgraph/rsearch.lsh) Last Modified: 2002-08-31 00:52:56
Applies viterbi algorithm to compute a graph whose single path is a copy of

the best path of graph graph . Graph graph should not have cycles. different
from g-viterbi in 2 respects - reverse order - a startnode can be specified

(r-forward graph startnode)

(lsh/libgraph/rsearch.lsh) Last Modified: 2002-08-31 00:52:56
Returns the lor-added costs of all paths in lattice graph . different from

g-forward in 2 respects - reverse order - a startnode can be specified
REMARK: The graph should not have cycles.

(r-restrict-to-meanings graph meanings startnode)

(lsh/libgraph/rsearch.lsh) Last Modified: 2002-08-31 00:52:56
Creates a new graph which implements the subset of paths of graph graph

whose links with non null meanings implement the meanings given in the integer
matrix meaning . The links of the new graph have the same cost , label and
meaning than the original links. The data field points to the original link.

(This code is derived from g-compose )

8.7 Image Processing Libraries

8.7.1 Demos and examples

demo that loads and displays a sample image

(lsh/libimage/demos/show-image.lsh) Last Modified: 2002-08-16 18:44:07

8.7.2 Reading/Writing Image Files to/from IDX.

(lsh/libimage/image-io.lsh) Last Modified: 2003-01-07 03:35:12
Functions to read/write image files into/from an IDX. Image files can be in

any format that ImageMagick’s convert command can handle. The type of the
input image is determined automatically.



492 CHAPTER 8. STANDARD LIBRARIES

(image-read-rgb f)

(lsh/libimage/image-io.lsh) Last Modified: 2003-01-07 03:35:12
read an image file (in any format), and return an rgbimage with the image in

it (IDX3 of ubytes with last dimension=3). Accepted format are whatever Im-
ageMagick’s convert command can convert to PPM. The type of the input image
is determined automatically. In case it is not, the the type can be prepended to
the filename with a colon. Command line options prepended to the argument
are passed to convert.

Example:

(setq img (image-read-rgb "myimage.png"))
(setq img (image-read-rgb "TIFF:myimage.dunno"))
(setq img (image-read-rgb "-geometry 50x50\\% myimage.jpg"))

(image-read-rgba f)

(lsh/libimage/image-io.lsh) Last Modified: 2003-01-07 03:35:12
read an image file (in any format), and return an rgbaimage with the image

in it (IDX3 of ubytes with last dimension=4). The alpha channel is filled if the
image being read has one. An alpha value of 0 means opaque and 255 means
fully transparent (this is backward to many conventions in other places in the
Lush library). Accepted format are whatever ImageMagick’s convert command
can convert to PPM. The type of the input image is determined automatically.
In case it is not, the the type can be prepended to the filename with a colon
Command line options prepended to the argument are passed to convert.

Example:

(setq img (image-read-rgba "-geometry 50x50\\% myimage.png"))
(setq img (image-read-rgba "-geometry 50x50\\% PNG:myimage"))

(image-read-ubim f)

(lsh/libimage/image-io.lsh) Last Modified: 2003-01-07 03:35:12
read an image file (in any format) , and return a ubimage with the image

in it (IDX2 of ubytes) Accepted format are whatever ImageMagick’s convert
command can convert to PPM. Conversion to gryscale is performed by Lush ,
since convert doesn’t convert to PGM.

(image-write-rgb f im)

(lsh/libimage/image-io.lsh) Last Modified: 2003-01-07 03:35:12
Writes an image stored in an IDX3 of ubytes into an image file (in any

format). The type of the output image file is determined by a string prepended
to the filename with a colon. Command line options prepended to the argument
are passed to the convert command



8.7. IMAGE PROCESSING LIBRARIES 493

Example:

(image-write-rgb "TIFF:myimage.tiff"))

8.7.3 Reading/Writing PPM/PGM/PBM Image Files

(lsh/libimage/pnm.lsh) Last Modified: 2002-12-23 09:57:12
Routines for reading and writing PBM/PGM/PPM image files into/from

idx. Another set of functions built on top of these is used to read/write image
files in other formats than PPM/PGM/PBM.

(pnm-header f)

(lsh/libimage/pnm.lsh) Last Modified: 2002-12-23 09:57:12

((-gptr- "FILE *") f):
Return the descriptive string of a PNM image file
(P6, P4, or P5), and skip the file descriptor
past the comments.

(mmap-idx3-storage f u d0 d1 d2)

(lsh/libimage/pnm.lsh) Last Modified: 2002-12-23 09:57:12

((-gptr- "FILE *") f):
((-idx3- (-ubyte-)) u):
((-int-) d0 d1 d2):
Maps file f (at the current position given by FTELL) into idx3 u
does not check that f size is OK.

(mmap-idx2-storage f u d0 d1)

(lsh/libimage/pnm.lsh) Last Modified: 2002-12-23 09:57:12

((-gptr- "FILE *") f):
((-idx2- (-ubyte-)) u):
((-int-) d0 d1):
Maps file f (at the current position given by FTELL) into idx2 u
does not check that f size is OK.



494 CHAPTER 8. STANDARD LIBRARIES

(pnm-fread-into-rgbx f out)

(lsh/libimage/pnm.lsh) Last Modified: 2002-12-23 09:57:12

((-gptr- "FILE *") f):

read an image from a PBM/PGM/PPM file into an idx3 of ubytes (RGB
or RGBA). f must be a valid file descriptor (C pointer). out is appropriately
resized if required. The last dimension is left unchanged but must be at least 3.
Appropriate conversion is performed. extra color components (beyond the first
3) are left untouched.

See: pnm

(pnm-read-into-rgbx f out)

(lsh/libimage/pnm.lsh) Last Modified: 2002-12-23 09:57:12
read a PBM/PGM/PPM file into an idx3 of ubytes. The output idx is

appropriately resized if necessary. The last dimension must be at least 3.

(pnm-fread-rgb f)

(lsh/libimage/pnm.lsh) Last Modified: 2002-12-23 09:57:12
((-gptr- ”FILE *”) f) f must be an open file descriptor. read a PBM/PGM/PPM

file and return an idx3 of ubytes with the image in it. Conversion to RGB is
performed if necessary.

(pnm-read-rgb s)

(lsh/libimage/pnm.lsh) Last Modified: 2002-12-23 09:57:12
read a PBM/PGM/PPM file and return an idx3 of ubytes with the image

in it. Conversion to RGB is performed if necessary.

(pnm-fread-rgba f)

(lsh/libimage/pnm.lsh) Last Modified: 2002-12-23 09:57:12
((-gptr- ”FILE *”) f) f must be an open file descriptor. read a PBM/PGM/PPM

file and return an idx3 of ubytes with the image in it. Conversion to RGB is
performed if necessary. The alpha channel is set to 0.

(pnm-read-rgba s)

(lsh/libimage/pnm.lsh) Last Modified: 2002-12-23 09:57:12
read a PBM/PGM/PPM file and return an idx3 of ubytes with the image

in it. Conversion to RGBA is performed if necessary. The alpha channel is set
to 0.



8.7. IMAGE PROCESSING LIBRARIES 495

(pnm-fread-into-ubim f out)

(lsh/libimage/pnm.lsh) Last Modified: 2002-12-23 09:57:12

((-gptr- "FILE *") f):
((-idx2- (-ubyte-)) out):

read an image from a PBM/PGM/PPM file into an idx2 of ubytes (one byte
per pixel). f must be a valid file descriptor (C pointer). out is appropriately
resized if required. Appropriate conversion is performed (e.g. if the file contains
an RGB image).

(pnm-read-into-ubim f out)

(lsh/libimage/pnm.lsh) Last Modified: 2002-12-23 09:57:12
read a PBM/PGM/PPM file into an idx2 of ubytes (greyscale image). The

output idx is appropriately resized if necessary. Appropriate conversions to
greyscale are performed

(pnm-fread-ubim f)

(lsh/libimage/pnm.lsh) Last Modified: 2002-12-23 09:57:12
((-gptr- ”FILE *”) f) f must be an open file descriptor. read a PBM/PGM/PPM

file and return an idx2 of ubytes with the image in it. Conversion to greyscale
is performed if necessary.

(pnm-read-ubim f)

(lsh/libimage/pnm.lsh) Last Modified: 2002-12-23 09:57:12
read a PBM/PGM/PPM file and return an idx2 of ubytes with the image

in it. Conversion to greyscale is performed if necessary.

(ppm-mmap f)

(lsh/libimage/pnm.lsh) Last Modified: 2002-12-23 09:57:12

((-gptr- "FILE *") f):
maps a ppm RGB image (file descriptor <f>)
into memory and return an idx3 of ubytes
with the data.

(pgm-mmap f)

(lsh/libimage/pnm.lsh) Last Modified: 2002-12-23 09:57:12



496 CHAPTER 8. STANDARD LIBRARIES

((-gptr- "FILE *") f):
maps a pgm image (file descriptor <f>)
into memory and return an idx2 of ubytes
with the data.

(ppm-fwrite-rgb f m)

(lsh/libimage/pnm.lsh) Last Modified: 2002-12-23 09:57:12
writes RGB image m in file descriptor f as a PPM/PPM file. m is and idx3

of ubytes. f must be a file descriptor.

(ppm-write-rgb f m)

(lsh/libimage/pnm.lsh) Last Modified: 2002-12-23 09:57:12
writes RGB image m in file f as a PPM/PPM file. m is and idx3 of ubytes.

(pgm-fwrite-ubim f m)

(lsh/libimage/pnm.lsh) Last Modified: 2002-12-23 09:57:12
writes an ubimage m in file f as a PGM file. m is and idx2 of ubytes , and

f is an open file descriptor.

(pgm-write-ubim f m)

(lsh/libimage/pnm.lsh) Last Modified: 2002-12-23 09:57:12
writes greyscale ubimage m in file f as a PGM file. m is and idx2 of ubytes.

8.7.4 Reading/Writing PBM Image files

(lsh/libimage/pbm.lsh) Last Modified: 2002-08-19 03:01:28
reading and writing PBM image files (one bit per pixel , bitonal images)

from and into lists of runs , and idx.

(pbm-write-runs f runs nlin ncol)

(lsh/libimage/pbm.lsh) Last Modified: 2002-08-19 03:01:28

((-str-) f):
((-idx2- (-int-)) runs):
((-int-) nlin ncol):
CREATED: P. Haffner, Oct 97
DESCRIPTION:
writes <runs> in file <f> as a PBM file.



8.7. IMAGE PROCESSING LIBRARIES 497

(pbm-write-ubim f m)

(lsh/libimage/pbm.lsh) Last Modified: 2002-08-19 03:01:28
writes binary image m in file f as a PBM file. m is and idx2 of ubytes.

(pbm-write-ubim-val f m v)

(lsh/libimage/pbm.lsh) Last Modified: 2002-08-19 03:01:28
writes binary image m in file f as a PBM file. m is and idx2 of ubytes. mask

(value on) all values v

(pbm-read-ubim f white black)

(lsh/libimage/pbm.lsh) Last Modified: 2002-08-19 03:01:28
read binary image m from PBM file f . code black as black and white as

white

8.7.5 Reading/Writing Run-Length-Encoded Image Files

(lsh/libimage/rle.lsh) Last Modified: 2002-09-06 18:27:25
read and write RLE images. RLE images are a compact way of representing

binary images by a list of ”runs” of black pixels.

(rle-read-ubim f white black)

(lsh/libimage/rle.lsh) Last Modified: 2002-09-06 18:27:25
read binary image m from RLE file f . code black as black and white as

white

(rle-read-runs f runs img-dim)

(lsh/libimage/rle.lsh) Last Modified: 2002-09-06 18:27:25

((-str-) f):
((-idx2- (-int-)) runs):
((-obj- (img-dim-C)) img-dim):
CREATED: P. Haffner, Feb 98
MODIFIES: <runs> and <img-dim>
RETURNS: ()
DESCRIPTION:
read runs IDX <runs> from RLE file <f>.
dimension 0 of <runs> is the number of runs
dimension 1 of <runs> must be >= 3 with
0: Y position
1: X1 position
2: X2 position
populates object img-dim with both dimensions



498 CHAPTER 8. STANDARD LIBRARIES

See: img-dim-C
EXAMPLE: (setq runs-dim (new img-dim-C 0 0)) (setq runs (int-matrix 1

4)) (a 4th optional dimension for connected componanet analysis)
(rle-read-runs filename runs runs-dim)

(rle-write-runs f runs nlin ncol)

(lsh/libimage/rle.lsh) Last Modified: 2002-09-06 18:27:25

((-str-) f):
((-idx2- (-int-)) runs):
((-int-) nlin ncol):
CREATED: P. Haffner, Oct 97
DESCRIPTION:
writes <runs> in file <f> as a RLE file.

8.7.6 RGBA Images of ubytes

(lsh/libimage/rgbaimage.lsh) Last Modified: 2002-10-14 03:30:51
basic image processing on RGBA images where each pixel component is an

unsigned byte.

rgbaimage

(lsh/libimage/rgbaimage.lsh) Last Modified: 2002-10-14 03:30:51
a rgbaimage is an idx3 of ubytes intended to store images. The last dimension

is 4 , and contains the R , G , B , and Alpha channels respectively.

Geometric Transforms

(lsh/libimage/rgbaimage.lsh) Last Modified: 2002-10-14 03:30:51
A few functions to enlarge , reduce , resize , and rotate images.
(rgbaim-resize im width height mode) (lsh/libimage/rgbaimage.lsh) Last

Modified: 2002-10-14 03:30:51
resize an rgba image to any size using bilinear interpolation Appropriate local

averaging (smoothing) is performed for scaling factors smaller than 0.5. If one
of the desired dimensions is 0, an aspect-ratio-preserving scaling is performed
on the basis of the other dimension. When both width and height are non
zero, the last parameter, mode determines how they are interpreted.

• if either width or height is zero, mode is ignored.

• mode=0: fit the image into a width by height frame while preserving
the aspect ratio

• mode=1: scale the image to width by height possibly changing the as-
pect ratio



8.7. IMAGE PROCESSING LIBRARIES 499

• mode=2: width and height are interpreted as scaling ratios

The sizes of the output image are rounded to nearest integers smaller than
the computed sizes, or to 1, whichever is largest.

(rgbaim-enlarge in nlin ncol) (lsh/libimage/rgbaimage.lsh) Last Modi-
fied: 2002-10-14 03:30:51

enlarges image in with integer ratios nlin (vertical) ncol (horizontal). the
enlarged image is returned. The horizontal (resp. vertical) size of the returned
image is equal to the integer part of the horizontal (resp vertical) size of in
divided by ncol (resp nlin ). returns (copy-matrix in ) when enlarge rate is
1

(rgbaim-enlarge-into in out nlin ncol) (lsh/libimage/rgbaimage.lsh)
Last Modified: 2002-10-14 03:30:51

enlarges image in with integer ratios nlin (vertical) ncol (horizontal) and
write result in out . The horizontal (resp. vertical) size of the output image is
equal to the integer part of the horizontal (resp vertical) size of in divided by
ncol (resp nlin ).

(rgbaim-subsample in nlin ncol) (lsh/libimage/rgbaimage.lsh) Last Mod-
ified: 2002-10-14 03:30:51

subsamples image in with integer ratios nlin (vertical) ncol (horizontal).
the subsampled image is returned. The horizontal (resp. vertical) size of the
returned image is equal to the integer part of the horizontal (resp vertical) size of
in divided by ncol (resp nlin ). returns (copy-matrix in ) when subsample
rate is 1

(rgbaim-subsample-into in out nlin ncol) (lsh/libimage/rgbaimage.lsh)
Last Modified: 2002-10-14 03:30:51

subsamples image in with integer ratios nlin (vertical) ncol (horizontal)
and write result into out . The horizontal (resp. vertical) size of the output
image is equal to the integer part of the horizontal (resp vertical) size of in
divided by ncol (resp nlin ).

(rgbaim-rot90-left inp) (lsh/libimage/rgbaimage.lsh) Last Modified: 2002-
10-14 03:30:51

rotate image inp by 90 to the left (counter-clockwise) and return the result.
(rgbaim-rot90-right inp) (lsh/libimage/rgbaimage.lsh) Last Modified: 2002-

10-14 03:30:51
rotate image inp by 90 to the right (clockwise) and return the result.
(rgbaim-rot180 inp) (lsh/libimage/rgbaimage.lsh) Last Modified: 2002-

10-14 03:30:51
rotate image inp by 180 degrees and return the result.
(rgbaim-rot180-inplace in) (lsh/libimage/rgbaimage.lsh) Last Modified:

2002-10-14 03:30:51
in-place 180 degree rotation of an image (caution: input image is destroyed).
(rgbaim-crop in x y w h) (lsh/libimage/rgbaimage.lsh) Last Modified:

2002-10-14 03:30:51
crop rectangle ( x , y , w , h ) from image in and return the result (a

copy).



500 CHAPTER 8. STANDARD LIBRARIES

(rgbaim-warp-quad in out background mode x1 y1 x2 y2 x3 y3 x4 y4
p1 q1 p3 q3) (lsh/libimage/rgbaimage.lsh) Last Modified: 2002-10-14 03:30:51

((-flt-) x1 y1 x2 y2 x3 y3 x4 y4 p1 q1 p3 q3):
((-int-) background mode):
((-idx2- (-ubyte-)) in out):
RETURNS: Null
SIDE EFFECTS: <out>
AUTHOR: Y. LeCun
COMPILABLE: Yes
DESCRIPTION:
warp rgbaimage <in> through a geometric transformation that maps
a quadrilateral into a rectangle (bilinear transform).
The quadrilateral is specified by <x1> <y1> <x2> <y2> <x3> <y3> <x4> <y4>
(points are numbered clockwise starting from upper left).
The rectangle is specified by the upper left and lower right points
which are respectively <p1><q1> and <p3><q3>.
The result is put in <out>. Clipping is automatically performed.
pixels outside of the bounds of <in> are assumed to have the value
<background> (which must be an idx1 of ubyte of size 4).
<mode>=0: no antialiasing, <mode>=1: antialiasing with
bilinear interpolation (2 times slower).

(rgbaim-warp in out background pi pj) (lsh/libimage/rgbaimage.lsh)
Last Modified: 2002-10-14 03:30:51

((-idx1- (-ubyte)) background):
((-idx3- (-ubyte-)) in out):
((-idx2- (-int-)) pi pj):
RETURNS: Null
SIDE EFFECTS: <out>
AUTHOR: Y. LeCun
COMPILABLE: Yes
DESCRIPTION:
Warps an image using <pi> and <pj> as tabulated coordinate transforms.
<in> and <out> are idx2 of ubytes. <background> is the value assumed outside
of the input image. <pi> and <pj> are integers idx whose dimensions must
be identical to the first two dimensions of <out>.
An output pixel at coordinate (x,y) takes the value of the input pixel at
coordinate <pj[x,y]>,<pi[x,y]>. If the values in <pi> and <pj> are non
integers the pixels are computed by bilinearly interpolating the input
image. The <pi> and <pj> matrices contain 32-bit integers which are
interpreted as 16 bit of integer part and 16 bits of fractinal part.
Integers values are assumed to fall in the center of each pixel,
so the upper left-hand corner of an image is at coordinate (-0.5, -0.5).



8.7. IMAGE PROCESSING LIBRARIES 501

(rgbaim-warp-fast in out background pi pj) (lsh/libimage/rgbaimage.lsh)
Last Modified: 2002-10-14 03:30:51

((-int-) background):
((-idx2- (-ubyte-)) in out):
((-idx2- (-int-)) pi pj):
RETURNS: Null
SIDE EFFECTS: <out>
AUTHOR: Y. LeCun
Warps an image using <pi> and <pj> as tabulated coordinate transforms.
<in> and <out> are idx2 of ubytes. <background> is the value assumed outside
of the input image. <pi> and <pj> are tabulated coordinates
This is essentially identical to rgbaim-warp, escept no bilinear
interpolation is performed (only a nearest neighbor rule is used).

(rgbaim-rotscale src sx sy dst dx dy angle coeff bg) (lsh/libimage/rgbaimage.lsh)
Last Modified: 2002-10-14 03:30:51

rotate, scale, and translate image src and put result in dst . point sx ,
sy in src will be mapped to point dx , dy in dst . Image will be rotated
clockwise by angle degrees and scaled by coeff . Pixels that fall off the
boundary are clipped and pixels in the destination that are not determined by a
source pixel are set to color bg (which must be an idx1 of ubytes of size 4). It is
generally preferable to call rgbaim-rotscale-rect before hand to get appropriate
values for dx , dy and for the size of dst so that no pixel is clipped. Here is
an example:

(let* ((w (idx-dim m 1))
(h (idx-dim m 0))
(wh (int-matrix 2))
(cxcy (float-matrix 2))
(bg (ubyte-matrix 4)))

(rgbaim-rotscale-rect w h hotx-src hoty-src angle coeff wh cxcy)
(let ((z (ubyte-matrix (wh 1) (wh 0) 4)))
(rgbaim-rotscale m hotx-src hoty-src z (cxcy 0) (cxcy 1) angle coeff bg)))

(rgbaim-rotscale-rect w h cx cy angle coeff wh cxcy) (lsh/libimage/rgbaimage.lsh)
Last Modified: 2002-10-14 03:30:51

Given an input image of width w , height h , with a ”hot” point at coor-
dinate cx and cy , this function computes the width , height , and hot point
coordinates of the same image rotated by angle and scaled by coeff so as to
ensure that no pixel in the rotated/scaled image will have negative coordinates
(so the image will not be clipped). wh and cxcy which must be idx1 of floats
with two elements. This function should be called before rgbaim-rotscale.

low-level geometric transform functions (lsh/libimage/rgbaimage.lsh)
Last Modified: 2002-10-14 03:30:51



502 CHAPTER 8. STANDARD LIBRARIES

These are unlikely to be used directly by most users.
(rgbaim-interpolate-bilin background pin indimi indimj inmodi inmodj

ppi ppj rez) (lsh/libimage/rgbaimage.lsh)
Author(s): Y. LeCun Last Modified: 2002-10-14 03:30:51

(-gptr- pin rez background):
(-int- indimi indimj inmodi inmodj ppi ppj):
SIDE EFFECTS: <rez>
DESCRIPTION:
returns a bilinearly interpolated RGBA pixel value for coordinate
<ppi> <ppj>. The image data is pointed to by <pin>, with
<indimi> <indimj> <inmodi> <inmodj> being the dimensions and modulos.
This function clips automatically if <ppi> <ppj> are outside of the
bounds by assuming the outside values are equal to <background>.
pixel values are ubytes, while coordinates are 32 bit fixed point
with 16 bit integer part and 16 bit fractional part.
The function does not use floating point arithmetics.

Color Processing

(lsh/libimage/rgbaimage.lsh) Last Modified: 2002-10-14 03:30:51
(rgbaim-contbright in out c b) (lsh/libimage/rgbaimage.lsh) Last Mod-

ified: 2002-10-14 03:30:51
correct contrast and brightness of image in and put result in out ( in and

out must be the same size). c and b are floats that will affect the brightness
and contrast respectively. c =1 and b =0 leave the image unchanged. Each
output pixel is computed as follows: output = (input-128)*c + b + 128 (clipped
between 0 and 255). An image can be conveniently inverted by setting c to -1
and b to 0.

(rgbaim-luminance in out) (lsh/libimage/rgbaimage.lsh) Last Modified:
2002-10-14 03:30:51

compute luminance of each pixel and put result in image out the formula
used is lum = 0.299 * R + 0.587 * G + 0.114 * B

(rgbaim-lum2rgba in out) (lsh/libimage/rgbaimage.lsh) Last Modified:
2002-10-14 03:30:51

transform a grey-level image in (idx2 of flts) into an RGBA image. in and
out must have identical sizes , though no check of that is done

(rgbaim-uvw in out) (lsh/libimage/rgbaimage.lsh) Last Modified: 2002-
10-14 03:30:51

transform an RGBA image into an UVWA image , where the V component
contains the luminance information , and the U and W components collectively
contain the chrominance information. In the UVW color coding scheme the
euclidean distance is meant to reflect the subjective ”perceptual” distance. See
Digital Image Processing by W. Pratt , page 66.



8.7. IMAGE PROCESSING LIBRARIES 503

(rgbaim-saturate in min max out) (lsh/libimage/rgbaimage.lsh) Last Mod-
ified: 2002-10-14 03:30:51

Saturate pixel component values in image in to the range [ min , max ].
Result is put in out .

Blitting

(lsh/libimage/rgbaimage.lsh) Last Modified: 2002-10-14 03:30:51
(rgbaim-blit x y in out) (lsh/libimage/rgbaimage.lsh) Last Modified:

2002-10-14 03:30:51
blit in into out at position x , y with alpha blending. an alpha value of 0

in in means opaque , 255 means totally transparent.
(rgbaim-blitcolor x y in r g b out) (lsh/libimage/rgbaimage.lsh) Last

Modified: 2002-10-14 03:30:51
blit color defined by r , g , b using idx2 in as a stencil into RGBA image

out at position x y The values in in must be between 0 and 255. if the value
is 255 , no paint is put in; if the value is 0 , the pixel takes the value specified
by r , g , b .

Histograms

(lsh/libimage/rgbaimage.lsh) Last Modified: 2002-10-14 03:30:51
(rgbaim-histo32 rgbaim ppal count) (lsh/libimage/rgbaimage.lsh) Last

Modified: 2002-10-14 03:30:51
compute histogram of image rgbaim . ppal must be a 32768 by 3 matrix of

floats which will contain the list of pixel values found. count must be a 32768
matrix which will contain the corresponding pixel counts. pixel colors are sorted
by luminance. This function really computes a 32768 color palette by assigning
each pixel to the cube it belongs to in the 32x32x32 RBG color cube. The color
prototype assigned to each cube is the mean of the pixels belonging to the cube.

low-level histogram functions (lsh/libimage/rgbaimage.lsh) Last Modi-
fied: 2002-10-14 03:30:51

(rgbaim-init-lum2rgb ) (lsh/libimage/rgbaimage.lsh) Last Modified: 2002-
10-14 03:30:51

build a table of 32x32x32 elements containing RGB cell indices in ascending
luminosity.

(rgbaim-lum2rgb n) (lsh/libimage/rgbaimage.lsh) Last Modified: 2002-
10-14 03:30:51

converts a luminosity index to a 5-bit RGB cell number.

Various unusual subsampling functions

(lsh/libimage/rgbaimage.lsh) Last Modified: 2002-10-14 03:30:51
(rgbaim-subsample+ in nlin ncol) (lsh/libimage/rgbaimage.lsh) Last

Modified: 2002-10-14 03:30:51
same as rgbaim-subsample , but adds one row and one column for lazy

pixels



504 CHAPTER 8. STANDARD LIBRARIES

(rgbaim-subsample-med3 rgbaim) (lsh/libimage/rgbaimage.lsh) Last Mod-
ified: 2002-10-14 03:30:51

subsample images by 3x3 using a median filter.
(rgbaim-med3-subopt rgbaim) (lsh/libimage/rgbaimage.lsh) Last Modi-

fied: 2002-10-14 03:30:51
3x3 subsampling using the median smart median optimised in C for 3x3

squares: 1.3 sec
(rgbaim-med3-slow rgbaim) (lsh/libimage/rgbaimage.lsh) Last Modi-

fied: 2002-10-14 03:30:51
3x3 subsampling using the median brute force median , with a 9 element

quicksort

8.7.7 RGBA Images of Floats

(lsh/libimage/rgbafimage.lsh) Last Modified: 2002-10-14 03:30:51
basic image processing on RGBA images where each pixel component is a

float.

rgbafimage

(lsh/libimage/rgbafimage.lsh) Last Modified: 2002-10-14 03:30:51
a rgbafimage is an idx3 of flts intended to store images. The last dimension

is 4 , and contains the R , G , B , and Alpha channels respectively.

(rgbafim-subsample in nlin ncol)

(lsh/libimage/rgbafimage.lsh) Last Modified: 2002-10-14 03:30:51
subsamples image in with integer ratios nlin (vertical) ncol (horizontal).

the subsampled image is returned. The horizontal (resp. vertical) size of the
returned image is equal to the integer part of the horizontal (resp vertical) size
of in divided by ncol (resp nlin ).

(rgbafim-luminance in out)

(lsh/libimage/rgbafimage.lsh) Last Modified: 2002-10-14 03:30:51
compute luminance of each pixel and put result in image out the formula

used is lum = 0.299 * R + 0.587 * G + 0.114 * B

(rgbafim-lum2rgba in out)

(lsh/libimage/rgbafimage.lsh) Last Modified: 2002-10-14 03:30:51
transform a grey-level image in (idx2 of flts) into an RGBA image. in and

out must have identical sizes , though no check of that is done



8.7. IMAGE PROCESSING LIBRARIES 505

(rgbafim-chromin-broken in z k out)

(lsh/libimage/rgbafimage.lsh) Last Modified: 2002-10-14 03:30:51
attempts to compute the chrominance info in in (normalized colors with

almost identical luminance) and put the result in out . Both in and out are
idx3 of flts. z is a multiplier for the average pixel component value. k is a fudge
factor that prevents the normalisation from blowing up if the color is black or
almost black.

(rgbafim-chrominance in z k out)

(lsh/libimage/rgbafimage.lsh) Last Modified: 2002-10-14 03:30:51
attempts to compute the chrominance info in in (normalized colors with

almost identical luminance) and put the result in out . Both in and out are
idx3 of flts. z is a multiplier for the average pixel component value. k is a fudge
factor that prevents the normalisation from blowing up if the color is black or
almost black.

(rgbafim-uvw in out)

(lsh/libimage/rgbafimage.lsh) Last Modified: 2002-10-14 03:30:51
transform an RGBA image into an UVWA image , where the V component

contains the luminance information , and the U and W components collectively
contain the chrominance information. In the UVW color coding scheme the
euclidean distance is meant to reflect the subjective ”perceptual” distance. See
Digital Image Processing by W. Pratt , page 66.

(rgbafim-fromuvw in out)

(lsh/libimage/rgbafimage.lsh) Last Modified: 2002-10-14 03:30:51
converts back from UVWA to RGBA. It is advasable to saturate the resulting

image , as numerical errors may cause the pixel values to exceed the range 0-255.

(rgbafim-saturate in min max out)

(lsh/libimage/rgbafimage.lsh) Last Modified: 2002-10-14 03:30:51
Saturate pixel component values in image in to the range [ min , max ].

Result is put in out .

(rgbafim-blit x y in out)

(lsh/libimage/rgbafimage.lsh) Last Modified: 2002-10-14 03:30:51
blit in into out at position x , y with alpha blending. an alpha value of 0

in in means opaque , 255 means totally transparent.



506 CHAPTER 8. STANDARD LIBRARIES

(rgbafim-blitcolor x y in r g b out)

(lsh/libimage/rgbafimage.lsh) Last Modified: 2002-10-14 03:30:51
blit color defined by r , g , b using idx2 in as a stencil into RGBA image

out at position x y The values in in must be between 0 and 255. if the value
is 255 , no paint is put in; if the value is 0 , the pixel takes the value specified
by r , g , b .

(rgbafim-init-lum2rgb )

(lsh/libimage/rgbafimage.lsh) Last Modified: 2002-10-14 03:30:51
build a table of 32x32x32 elements containing RGB cell indices in ascending

luminosity.

(rgbafim-lum2rgb n)

(lsh/libimage/rgbafimage.lsh) Last Modified: 2002-10-14 03:30:51
converts a luminosity index to a 5-bit RGB cell number.

(rgbafim-histo32 rgbafim ppal count)

(lsh/libimage/rgbafimage.lsh) Last Modified: 2002-10-14 03:30:51
compute histogram of image rgbafim . ppal must be a 32768 by 3 matrix

which will contain the list of pixel values found. count must be a 32768 matrix
which will contain the corresponding pixel counts. pixel colors are sorted by
luminance. This function really computes a 32768 color palette by assigning
each pixel to the cube it belongs to in the 32x32x32 RBG color cube. The color
prototype assigned to each cube is the mean of the pixels belonging to the cube.

(rgbafim-interpolate-bilin background pin indimi indimj inmodi inmodj
ppi ppj rez)

(lsh/libimage/rgbafimage.lsh) Last Modified: 2002-10-14 03:30:51

(-gptr- pin rez background):
(-int- indimi indimj inmodi inmodj ppi ppj):
SIDE EFFECTS: <rez>
AUTHOR: Y. LeCun
COMPILABLE: Yes
DESCRIPTION:
returns a bilinearly interpolated RGBA pixel value for coordinate
<ppi> <ppj>. The image data is pointed to by <pin>, with
<indimi> <indimj> <inmodi> <inmodj> being the dimensions and modulos.
This function clips automatically if <ppi> <ppj> are outside of the
bounds by assuming the outside values are equal to <background>.
pixel values are flts, while coordinates are 32 bit fixed point
with 16 bit integer part and 16 bit fractional part.



8.7. IMAGE PROCESSING LIBRARIES 507

(rgbafim-warp in out background pi pj)

(lsh/libimage/rgbafimage.lsh) Last Modified: 2002-10-14 03:30:51

((-idx1- (-flt)) background):
((-idx3- (-flt-)) in out):
((-idx2- (-int-)) pi pj):
RETURNS: Null
SIDE EFFECTS: <out>
AUTHOR: Y. LeCun
COMPILABLE: Yes
DESCRIPTION:
Warps an image using <pi> and <pj> as tabulated coordinate transforms.
<in> and <out> are idx2 of flts. <background> is the value assumed outside
of the input image. <pi> and <pj> are tabulated coordinates which can
be filled up using compute-bilin-transform or similar functions.
Pixel values are antialiased using bilinear interpolation.

(rgbafim-warp-fast in out background pi pj)

(lsh/libimage/rgbafimage.lsh) Last Modified: 2002-10-14 03:30:51

((-int-) background):
((-idx2- (-flt-)) in out):
((-idx2- (-int-)) pi pj):
RETURNS: Null
SIDE EFFECTS: <out>
AUTHOR: Y. LeCun
COMPILABLE: Yes
DESCRIPTION:
Warps an image using <pi> and <pj> as tabulated coordinate transforms.
<in> and <out> are idx2 of flts. <background> is the value assumed outside
of the input image. <pi> and <pj> are tabulated coordinates which can
be filled up using compute-bilin-transform or similar functions.
This is essentially identical to warp-rgbafimage, except no antialiasing
is performed (it goes a lot faster, but is not nearly as nice).

(rgbafim-warp-quad in out background mode x1 y1 x2 y2 x3 y3 x4 y4 p1
q1 p3 q3)

(lsh/libimage/rgbafimage.lsh) Last Modified: 2002-10-14 03:30:51

((-flt-) x1 y1 x2 y2 x3 y3 x4 y4 p1 q1 p3 q3):
((-int-) background mode):



508 CHAPTER 8. STANDARD LIBRARIES

((-idx2- (-flt-)) in out):
RETURNS: Null
SIDE EFFECTS: <out>
AUTHOR: Y. LeCun
COMPILABLE: Yes
DESCRIPTION:
transforms rgbafimage <in> (idx2 of flt) mapping quadrilateral <x1> <y1> <x2>
<y2> <x3> <y3> <x4> (points are numbered clockwise starting from upper left)
to rectangle whose upper left and lower right points are <p1><q1>, <p3><q3>.
result is put in <out> (idx2 of flt). Clipping is automatically performed.
pixels outside of the bounds of <in> are assumed to have the value
<background>. <mode>=0: no antialiasing, <mode>=1: antialiasing with
bilinear interpolation (2 times slower). execution time on sparc 10 is about
5 ms in mode 0 and 10 ms in mode 1 for a 32x32 target image.

8.7.8 Greyscale Images of ubytes.

(lsh/libimage/ubimage.lsh) Last Modified: 2002-08-30 03:50:11
linear coordinate transform using bilinear interpolation.

ubimage

(lsh/libimage/ubimage.lsh) Last Modified: 2002-08-30 03:50:11
a ubimage is an idx2 of ubytes intended to store image.

(ubimage2flt in out)

(lsh/libimage/ubimage.lsh) Last Modified: 2002-08-30 03:50:11

((-idx2- (-ubyte-)) in):
((-idx2- (-flt-)) out):
RETURNS: Null
SIDE EFFECTS: <out>
AUTHOR: Y. LeCun
COMPILABLE: Yes
DESCRIPTION:
Converts ubimage <in> into idx2 of flt <out>.
Values are scaled down by 1/255.

(flt2ubimage in out)

(lsh/libimage/ubimage.lsh) Last Modified: 2002-08-30 03:50:11

((-idx2- (-ubyte-)) out):
((-idx2- (-flt-)) in):



8.7. IMAGE PROCESSING LIBRARIES 509

RETURNS: Null
SIDE EFFECTS: None
AUTHOR: Y. LeCun
COMPILABLE: Yes
DESCRIPTION:
converts flt idx2 <in> to an ubimage <out>.
a pixel values are scaled up by 255.

(ubimage2fltimage in out bkgd ink)

(lsh/libimage/ubimage.lsh) Last Modified: 2002-08-30 03:50:11

((-idx2- (-ubyte-)) in):
((-idx2- (-flt-)) out):
((-flt-) bkgd ink):
RETURNS: Null
SIDE EFFECTS: <out>
AUTHOR: C. Burges
COMPILABLE: Yes
DESCRIPTION:
Generalization of Yann’s ubimage2flt for arbitrary ink and background.
Converts ubimage <in> into idx2 of flt <out>.

(fltimage2ubimage in out bkgd ink)

(lsh/libimage/ubimage.lsh) Last Modified: 2002-08-30 03:50:11

((-idx2- (-flt-)) in):
((-idx2- (-ubyte-)) out):
((-flt-) bkgd ink):
RETURNS: Null
SIDE EFFECTS: <out>
AUTHOR: C. Burges
COMPILABLE: Yes
DESCRIPTION:
Generalization of Yann’s flt2ubimage for arbitrary ink and background.
Converts flt idx2 <in> to a ubimage <out>.

(ubim-subsample in nlin ncol)

(lsh/libimage/ubimage.lsh) Last Modified: 2002-08-30 03:50:11
subsamples image in with integer ratios nlin (vertical) ncol (horizontal).

the subsampled image is returned. The horizontal (resp. vertical) size of the
returned image is equal to the integer part of the horizontal (resp vertical) size
of in divided by ncol (resp nlin ).

returns (copy-matrix in ) when subsample rate is 1



510 CHAPTER 8. STANDARD LIBRARIES

(ubim-zoom ubim zoomx zoomy)

(lsh/libimage/ubimage.lsh) Last Modified: 2002-08-30 03:50:11
Zoom an ubyte image ubim by the given integer zoom factors.

(ubim-invert im)

(lsh/libimage/ubimage.lsh) Last Modified: 2002-08-30 03:50:11
reverse polarity of an ubimage. each pixel is replaced by 255 minus itself

(ubim-interpolate-bilin background pin indimi indimj inmodi inmodj
ppi ppj)

(lsh/libimage/ubimage.lsh) Last Modified: 2002-08-30 03:50:11

(-gptr- pin):
(-int- background indimi indimj inmodi inmodj ppi ppj):
RETURNS: (-ubyte-)
SIDE EFFECTS: None
AUTHOR: Y. LeCun
COMPILABLE: Yes
DESCRIPTION:
returns a bilinearly interpolated pixel value for coordinate
<ppi> <ppj>. The image data is pointed to by <pin>, with
<indimi> <indimj> <inmodi> <inmodj> being the dimensions and modulos.
This function clips automatically if <ppi> <ppj> are outside of the
bounds by assuming the outside values are equal to <background>.
pixel values are ubytes, while coordinates are 32 bit fixed point
with 16 bit integer part and 16 bit fractional part.
The function does not use floating point arithmetics.

(ubim-warp in out background pi pj)

(lsh/libimage/ubimage.lsh) Last Modified: 2002-08-30 03:50:11

((-int-) background):
((-idx2- (-ubyte-)) in out):
((-idx2- (-int-)) pi pj):
RETURNS: Null
SIDE EFFECTS: <out>
AUTHOR: Y. LeCun
COMPILABLE: Yes
DESCRIPTION:
Warps an image using <pi> and <pj> as tabulated coordinate transforms.
<in> and <out> are idx2 of ubytes. <background> is the value assumed outside



8.7. IMAGE PROCESSING LIBRARIES 511

of the input image. <pi> and <pj> are tabulated coordinates which can
be filled up using compute-bilin-transform or similar functions.
Pixel values are antialiased using bilinear interpolation.

(ubim-warp-fast in out background pi pj)

(lsh/libimage/ubimage.lsh) Last Modified: 2002-08-30 03:50:11

((-int-) background):
((-idx2- (-ubyte-)) in out):
((-idx2- (-int-)) pi pj):
RETURNS: Null
SIDE EFFECTS: <out>
AUTHOR: Y. LeCun
COMPILABLE: Yes
DESCRIPTION:
Warps an image using <pi> and <pj> as tabulated coordinate transforms.
<in> and <out> are idx2 of ubytes. <background> is the value assumed outside
of the input image. <pi> and <pj> are tabulated coordinates which can
be filled up using compute-bilin-transform or similar functions.
This is essentially identical to warp-ubimage, except no antialiasing
is performed (it goes a lot faster, but is not nearly as nice).

(ubim-warp-quad in out background mode x1 y1 x2 y2 x3 y3 x4 y4 p1 q1
p3 q3)

(lsh/libimage/ubimage.lsh) Last Modified: 2002-08-30 03:50:11

((-flt-) x1 y1 x2 y2 x3 y3 x4 y4 p1 q1 p3 q3):
((-int-) background mode):
((-idx2- (-ubyte-)) in out):
RETURNS: Null
SIDE EFFECTS: <out>
AUTHOR: Y. LeCun
COMPILABLE: Yes
DESCRIPTION:
transforms ubimage <in> (idx2 of ubyte) mapping quadrilateral <x1> <y1> <x2>
<y2> <x3> <y3> <x4> (points are numbered clockwise starting from upper left)
to rectangle whose upper left and lower right points are <p1><q1>, <p3><q3>.
result is put in <out> (idx2 of ubyte). Clipping is automatically performed.
pixels outside of the bounds of <in> are assumed to have the value
<background>. <mode>=0: no antialiasing, <mode>=1: antialiasing with
bilinear interpolation (2 times slower). execution time on sparc 10 is about
5 ms in mode 0 and 10 ms in mode 1 for a 32x32 target image.



512 CHAPTER 8. STANDARD LIBRARIES

8.7.9 Greyscale Images of shorts

(lsh/libimage/shimage.lsh) Last Modified: 2002-08-30 03:50:11
functions to manipulate images where each pixel is a 16-bit short.

shimage

(lsh/libimage/shimage.lsh) Last Modified: 2002-08-30 03:50:11
a shimage is an idx2 of shorts intended to store image. the pixel values are

interpreted as fixed point integers , with the upper byte being the integer part
, and the lower byte being the fractional part.

(shimage2flt in out)

(lsh/libimage/shimage.lsh) Last Modified: 2002-08-30 03:50:11

((-idx2- (-short-)) in):
((-idx2- (-flt-)) out):
RETURNS: Null
SIDE EFFECTS: <out>
AUTHOR: Y. LeCun
COMPILABLE: Yes
DESCRIPTION:
Converts shimage <in> into idx2 of flt <out>.
Values are scaled down by 1/256.

(flt2shimage in out)

(lsh/libimage/shimage.lsh) Last Modified: 2002-08-30 03:50:11

((-idx2- (-short-)) out):
((-idx2- (-flt-)) in):
RETURNS: Null
SIDE EFFECTS: None
AUTHOR: Y. LeCun
COMPILABLE: Yes
DESCRIPTION:
converts flt idx2 <in> to an shimage <out>.
a pixel values are scaled up by 256.

(shimage2fltimage in out bkgd ink)

(lsh/libimage/shimage.lsh) Last Modified: 2002-08-30 03:50:11

((-idx2- (-short-)) in):



8.7. IMAGE PROCESSING LIBRARIES 513

((-idx2- (-flt-)) out):
((-flt-) bkgd ink):
RETURNS: Null
SIDE EFFECTS: <out>
AUTHOR: C. Burges
COMPILABLE: Yes
DESCRIPTION:
Generalization of Yann’s shimage2flt for arbitrary ink and background.
Converts shimage <in> into idx2 of flt <out>.

(fltimage2shimage in out bkgd ink)

(lsh/libimage/shimage.lsh) Last Modified: 2002-08-30 03:50:11

((-idx2- (-flt-)) in):
((-idx2- (-short-)) out):
((-flt-) bkgd ink):
RETURNS: Null
SIDE EFFECTS: <out>
AUTHOR: C. Burges
COMPILABLE: Yes
DESCRIPTION:
Generalization of Yann’s flt2shimage for arbitrary ink and background.
Converts flt idx2 <in> to a shimage <out>.

(shim-interpolate-bilin background pin indimi indimj inmodi inmodj
ppi ppj)

(lsh/libimage/shimage.lsh) Last Modified: 2002-08-30 03:50:11

(-gptr- pin):
(-int- background indimi indimj inmodi inmodj ppi ppj):
RETURNS: (-short-)
SIDE EFFECTS: None
AUTHOR: Y. LeCun
COMPILABLE: Yes
DESCRIPTION:
returns a bilinearly interpolated pixel value for coordinate
<ppi> <ppj>. The image data is pointed to by <pin>, with
<indimi> <indimj> <inmodi> <inmodj> being the dimensions and modulos.
This function clips automatically if <ppi> <ppj> are outside of the
bounds by assuming the outside values are equal to <background>.
pixel values are shorts, while coordinates are 32 bit fixed point
with 16 bit integer part and 16 bit fractional part.
The function does not use floating point arithmetics.



514 CHAPTER 8. STANDARD LIBRARIES

(shim-warp in out background pi pj)

(lsh/libimage/shimage.lsh) Last Modified: 2002-08-30 03:50:11

((-int-) background):
((-idx2- (-short-)) in out):
((-idx2- (-int-)) pi pj):
RETURNS: Null
SIDE EFFECTS: <out>
AUTHOR: Y. LeCun
COMPILABLE: Yes
DESCRIPTION:
Warps an image using <pi> and <pj> as tabulated coordinate transforms.
<in> and <out> are idx2 of shorts. <background> is the value assumed outside
of the input image. <pi> and <pj> are tabulated coordinates which can
be filled up using compute-bilin-transform or similar functions.
Pixel values are antialiased using bilinear interpolation.

(shim-warp-fast in out background pi pj)

(lsh/libimage/shimage.lsh) Last Modified: 2002-08-30 03:50:11

((-int-) background):
((-idx2- (-short-)) in out):
((-idx2- (-int-)) pi pj):
RETURNS: Null
SIDE EFFECTS: <out>
AUTHOR: Y. LeCun
COMPILABLE: Yes
DESCRIPTION:
Warps an image using <pi> and <pj> as tabulated coordinate transforms.
<in> and <out> are idx2 of shorts. <background> is the value assumed outside
of the input image. <pi> and <pj> are tabulated coordinates which can
be filled up using compute-bilin-transform or similar functions.
This is essentially identical to warp-shimage, except no antialiasing
is performed (it goes a lot faster, but is not nearly as nice).

(shim-warp-quad in out background mode x1 y1 x2 y2 x3 y3 x4 y4 p1 q1
p3 q3)

(lsh/libimage/shimage.lsh) Last Modified: 2002-08-30 03:50:11

((-flt-) x1 y1 x2 y2 x3 y3 x4 y4 p1 q1 p3 q3):
((-int-) background mode):



8.7. IMAGE PROCESSING LIBRARIES 515

((-idx2- (-short-)) in out):
RETURNS: Null
SIDE EFFECTS: <out>
AUTHOR: Y. LeCun
COMPILABLE: Yes
DESCRIPTION:
transforms shimage <in> (idx2 of short) mapping quadrilateral <x1> <y1> <x2>
<y2> <x3> <y3> <x4> (points are numbered clockwise starting from upper left)
to rectangle whose upper left and lower right points are <p1><q1>, <p3><q3>.
result is put in <out> (idx2 of short). Clipping is automatically performed.
pixels outside of the bounds of <in> are assumed to have the value
<background>. <mode>=0: no antialiasing, <mode>=1: antialiasing with
bilinear interpolation (2 times slower). execution time on sparc 10 is about
5 ms in mode 0 and 10 ms in mode 1 for a 32x32 target image.

8.7.10 Greyscale Images of Floats

(lsh/libimage/fimage.lsh) Last Modified: 2003-01-07 03:35:12
basic image processing on greyscale images where each pixel is a float.

(fim-subsample in nlin ncol)

(lsh/libimage/fimage.lsh) Last Modified: 2003-01-07 03:35:12
subsample image in by integer ratios nlin vertically and ncol horizontally

(with averaging).

8.7.11 Computing Image Warping Maps

(lsh/libimage/image-transform.lsh) Last Modified: 2002-08-19 03:01:28
compute displacement tables for 2D geometric transformations of images ,

such as bilinear warps that transform any quadrilateral into any rectangle.

(compute-bilin-transform dispi dispj x1 y1 x2 y2 x3 y3 x4 y4 p1 q1 p3
q3)

(lsh/libimage/image-transform.lsh) Last Modified: 2002-08-19 03:01:28

((-idx2- (-int-)) dispi):
((-idx2- (-int-)) dispj):
((-flt-) x1 y1 x2 y2 x3 y3 x4 y4 p1 q1 p3 q3):
RETURNS: Null
SIDE EFFECTS: <dispi> <dispj>
AUTHOR: Y. LeCun
COMPILABLE: Yes
DESCRIPTION:
Tabulates a bilinear transformation that maps the quadrilateral defined



516 CHAPTER 8. STANDARD LIBRARIES

by the <xi> <yi> to a rectangle whose upper left point is <p1> <q1> and
lower right point is <p3> <q3>.
<x1> <y1> is the upper left point on the quadrilateral, and the points
are numbered clockwise.
<dispi> and <dispj> must be idx2 of int. On output, element (i,j)
of <dispi> and <dispj> will be filled respectively with the abscissa
and ordinate of the point in the quadrilateral that maps to point (i,j).
Values in these idx2 are interpreted as 32bit fixed point numbers
with 16 bit integer part and 16 bit fractional part.
<dispi> and <dispj> can subsequently be used as input to
warp-shimage, or warp-shimage-fast.
This function makes minimal use of floating point arithmetics.

8.7.12 Connected Component Analysis

(lsh/libimage/cca.lsh) Last Modified: 2002-10-29 18:11:55
elementary routines for performing a connected component (CC) analysis on

images. The basic procedure consists in:

• Creating a new CCAnalyzer object for a given image

• Extracting the runs using method run-analysis .

• Extracting the connected components using method cc-analysis .

There are a few other methods for performing various cleanup on the runs
and on the CCs. There is also a method for reconstructing the image from the
cleaned CCs.

Another trick: There is a matrix named ubcut in the CCAnalyzer object.
Every pixel set in this matrix will force the RUN and CC code to ignore con-
nexity on certain pixels. For instance, you can force arbitrary cuts by setting
the pixels of a 4-connex line in this matrix. This has to be done before the call
to run-analysis .

– Leon Bottou 9/96

CCAnalyzer

(lsh/libimage/cca.lsh) Last Modified: 2002-10-29 18:11:55
Class for connected component analysis.

(new CCAnalyzer grayimage)

Type: CLASS(lsh/libimage/cca.lsh) Last Modified: 2002-10-29 18:11:55
Class CCanalyzer holds all the information necessary for the connected com-

ponent analysis of an image grayimage .



8.7. IMAGE PROCESSING LIBRARIES 517

(==> ccanalizer run-analysis threshold)

Type: MSG(lsh/libimage/cca.lsh) Last Modified: 2002-10-29 18:11:55
Computes a run length representation of the binary image obtained by

thresholdind the gray image ubmatrix2d at threshold thres . The run in-
formation is stored into slot runs of the CCAnalizer object.

Each line of matrix runs is a 4-vector containing the following information:

• At index (RUN-Y) : The Y coordinate of the run.

• At index (RUN-X1) : The X coordinate of the first pixel of the run.

• At index (RUN-X2) : The X coordinate of the last pixel of the run.

• At index (RUN-ID) : The ID of the blob this run belongs to. The blob
information is filled by the CA extraction code.

This function breaks runs on each non zero pixel of the image located in slot
ubcut of ccanalyzer . The default value is all zeroes.

This function returns t on success.

(==> ccanalyzer cc-analysis)

Type: MSG(lsh/libimage/cca.lsh) Last Modified: 2002-10-29 18:11:55
Perform the connected component analysis of the image represented by the

runs matrix contained in the ccanalyzer object. This algorithm usually con-
siders 8-connexity. This is altered when the cut image ubcuts contains a non
zero value indicating a forced cut.

The results are stored in the cc descriptor matrix ccdesc of the object.
Each line of this matrix represent a connected component (CC).

• At index (CC-NRUN) : The number of runs in the CC.

• At index (CC-FRUN) : The index of the first run of the CC in the CC
ordered run matrix ccruns stored in the object.

• At index (CC-NPIX) : The number of non background pixels in the CC.

• At index (CC-WPIX) : The sum of the pixel values (gray level) of the
CC. These values are initially zero. Use function cc-measure-gray to
compute these values.

• At indices (CC-LEFT) , (CC-TOP) , (CC-RIGHT) and (CC-BOTTOM) : The
boundign box of the CC.

This function returns t on success. You may postprocess the returned CC
with cc-measure-gray , cc-remove-specs , and other functions in this file.



518 CHAPTER 8. STANDARD LIBRARIES

(==> ccanalyzer remove-long-runs maxlen)

Type: MSG(lsh/libimage/cca.lsh) Last Modified: 2002-10-29 18:11:55
This function removes the runs whose length is longer than maxlen . Long

runs are sometimes good indicator for underlines. Note that nothing is changed
in the image. You must use reconstruct-from-runs or reconstruct-from-cc
for that.

(==> ccanalyzer reconstruct-from-runs)

Type: MSG(lsh/libimage/cca.lsh) Last Modified: 2002-10-29 18:11:55
Reconstruct matrix ubimg from the run representation. This code saves the

gray level information already present in ubimg . It just sets all pixels not
included in a run to zero.

(==> ccanalyzer cc-measure-gray)

Type: MSG(lsh/libimage/cca.lsh) Last Modified: 2002-10-29 18:11:55
Compute the average gray level of each CC and store it at index (CC-WPIX)

of the CC descriptor matrix ccdesc .

(==> ccanalyzer remove-small-cc minpix mingray minweight)

Type: MSG(lsh/libimage/cca.lsh) Last Modified: 2002-10-29 18:11:55
Remove small connected components

• whose size is less than minpix pixels,

• or whose average gray level is less than mingray ,

• or whose summed gray level is less than minweight .

Note that nothing is changed in the image or the run matrix. You must use
reconstruct-from-cc for that.

(==> ccanalyzer reconstruct-from-cc)

Type: MSG(lsh/libimage/cca.lsh) Last Modified: 2002-10-29 18:11:55
Reconstruct matrix ubimg from the connected components in ccdesc . This

code saves the gray level information already present in ubimg . It just sets all
pixels not included in a run to zero.

(==> ccanalyzer overlay-cc ccid ccimg originx originy)

Type: MSG(lsh/libimage/cca.lsh) Last Modified: 2002-10-29 18:11:55
Overlays connected component ccid into ubyte matrix ccimg . Matrix

ccimg is assumed to have its top left corner at position originx originy in the
intial image. Connected components that do not fit matrix ccimg are silently
clipped. Returns t when something was drawn.



8.7. IMAGE PROCESSING LIBRARIES 519

(==> ccanalyzer draw-cc x y)

Type: MSG(lsh/libimage/cca.lsh) Last Modified: 2002-10-29 18:11:55
Draws image at location x y by painting each connected component with

a random color. Unfortunately , random colors are sometimes too close. [IN-
TERPRETED ONLY]

(==> ccanalyzer pick-cc x y)

Type: MSG(lsh/libimage/cca.lsh) Last Modified: 2002-10-29 18:11:55
returns the index of the connected component that contains the point x , y

, or -1 if no component contains the point.

(==> ccanalyzer image-height)

Type: MSG(lsh/libimage/cca.lsh) Last Modified: 2002-10-29 18:11:55
returns height of image on which CCA is performed

(==> ccanalyzer image-width)

Type: MSG(lsh/libimage/cca.lsh) Last Modified: 2002-10-29 18:11:55
returns width of image on which CCA is performed

(==> ccanalyzer run-histo histo hosto offset)

Type: MSG(lsh/libimage/cca.lsh) Last Modified: 2002-10-29 18:11:55
compute histogram of runs. histo is an N by P matrix , and hosto an N

vector. this method will accumulate the histogram of run lengths for each scan
line between offset and offset +N-1. on output , elements i , j of histo will
be incremented by the number of runs on line i- offset that are of length j.
element i of hosto will incremented by the number of runs on scanline i- offset
that are larger or equal to P.

(==> ccanalyzer bbox-histo histo)

Type: MSG(lsh/libimage/cca.lsh) Last Modified: 2002-10-29 18:11:55
computes 2D histogram of bounding box heights and width and increment

2D matrix histo by it. Element i , j of histo will be incremented by the
number of CC whose bounding box is of height i and of width j.

(==> ccanalyzer ccbottoms thres)

Type: MSG(lsh/libimage/cca.lsh) Last Modified: 2002-10-29 18:11:55
return a matrix with x and y of horixontal center of bottom of each CC.

CCs whose number of black pixels are smaller than thres are ignored.



520 CHAPTER 8. STANDARD LIBRARIES

(==> CCAnalyzer get-cc-fltim cc-id cc-fltim cc-com cc-off)

Type: MSG(lsh/libimage/cca.lsh) Last Modified: 2002-10-29 18:11:55

((-int-) cc-id) : index of the cc
((-idx2- (-flt-)) cc-fltim) : image in float
((-idx1- (-flt-)) cc-com) : center of mass, in float [X,Y]
((-idx1- (-int-)) cc-off) : offset [X,Y]

ADDED: Patrick Haffner, July 97

Given the index of a CC, returns:
1) the corresponding gray level float image, dilated (WITH OFFSET)
2) the center of mass of the bitmap (WITHOUT OFFSET)
3) the offset used to align the float image to the upper right corner.
WARNING: fltim expands all the edges of the bounding box
by 1 pixel, UNLESS this cannot be done because we hit the
global image border.

8.7.13 Morphological Operations

(lsh/libimage/morpho.lsh) Author(s): Leon Bottou 09/96 Last Modified: 2002-
09-22 22:06:59

Erosion, dilation, distance transforms, thresholding, and masking on on im-
ages of ubytes.

(ubim-internal-disttrans im dist)

(lsh/libimage/morpho.lsh) Last Modified: 2002-09-22 22:06:59
Returns the internal distance transformation matrix of binary image im .

The elements of the output ubyte matrix dist contains the distance to the
closest background pixel in the image (background level is zero for this purpose).
Distances are clipped to 255. The dimensions of dist must be 2 larger than
that of im . dist will be resized to the appropriate size if necessary.

(ubim-external-disttrans im dist)

(lsh/libimage/morpho.lsh) Last Modified: 2002-09-22 22:06:59
computes the external distance transformation matrix of binary image im

. The elements of the output ubyte matrix dist contains the distance to the
closest non-background pixel in the image (background level is zero for this
purpose). Distances are clipped to 255. The dimensions of dist must be 2
larger than that of im . dist will be resized to the appropriate size if necessary.



8.7. IMAGE PROCESSING LIBRARIES 521

(ubim-positive-threshold im thres)

(lsh/libimage/morpho.lsh) Last Modified: 2002-09-22 22:06:59
Applies a threshold on ubyte image im . All values smaller than or equal to

threshold are zeroed. Other values are set to 255.

(ubim-negative-threshold im thres)

(lsh/libimage/morpho.lsh) Last Modified: 2002-09-22 22:06:59
Applies a threshold on ubyte image im . All values smaller than or equal to

threshold are set to 255. Other values are set to 0

(ubim-erosion im factor)

(lsh/libimage/morpho.lsh) Last Modified: 2002-09-22 22:06:59
Perform in place erosion of ubyte image im at distance factor .

(ubim-dilation im factor)

(lsh/libimage/morpho.lsh) Last Modified: 2002-09-22 22:06:59
Perform in place dilation of ubyte image im at distance factor .

(ubim-mask im mask)

(lsh/libimage/morpho.lsh) Last Modified: 2002-09-22 22:06:59
Sets to zero all bytes of ubyte image im whose corresponding pixel in mask

is zero. This is a AND operation.

8.7.14 Morphological Operation on Images of Shorts.

(lsh/libimage/morpho-short.lsh) Last Modified: 2002-10-14 03:30:51
Erosion/dilation morphological operations on images of shorts.
CAUTION with the so-called ”margin” parameter. a margin of 1 is suffi-

cient in most cases, however the margin pixels MUST be filled with 0 (back-
ground/white) for the functions to work properly. ( dilero does it automati-
cally).

(ubim-fillborder shim c)

(lsh/libimage/morpho-short.lsh) Last Modified: 2002-10-14 03:30:51
fill a one-pixel border of the ubimage shim with value c . This function is

useful for various morphological operations.

(shim-fillborder shim c)

(lsh/libimage/morpho-short.lsh) Last Modified: 2002-10-14 03:30:51
fill a one-pixel border of the shimage shim with value c . This function is

useful for various morphological operations.



522 CHAPTER 8. STANDARD LIBRARIES

(shim-dilation im margin)

(lsh/libimage/morpho-short.lsh) Last Modified: 2002-10-14 03:30:51

((-idx2- (-short-)) im) ;; image to be dilated:
((-int-) margin):
RETURNS:
CREATED: Y. LeCun, modified P.Haffner
COMPILABLE: Yes
DESCRIPTION:

(shim-erosion im oldim mode margin)

(lsh/libimage/morpho-short.lsh) Last Modified: 2002-10-14 03:30:51

((-idx2- (-short-)) im) ;; image to be eroded:
((-idx2- (-short-)) orig-im) ;; original image, only used in mode 2:
((-int-) mode):
((-int-) margin) ;; erosion margin, typical values are 1 or 2:
RETURNS:
CREATED: Y. LeCun, modified P.Haffner
COMPILABLE: Yes
DESCRIPTION:
erosions with hexagonal tesselation
<dist> is an idx2 of shorts with dimensions identical to <im>+ border.
It will contain the distance transform on output.
<mode> shoul be

1 ==> erosion
2 ==> erosion and hole restoration

(idx-s2xors2 m1 m2)

(lsh/libimage/morpho-short.lsh) Last Modified: 2002-10-14 03:30:51

((-idx2- (-short-)) m1 m2):
RETURNS: (-idx2- (-short-)) m1x2
CREATED: P.Haffner
COMPILABLE: Yes
DESCRIPTION: performs a logical XOR betweem m1 and m2.
m1x2 pixel is 0 when m1 and m2 pixels are equal, 0 otherwise.

(dilero runs margin)

(lsh/libimage/morpho-short.lsh) Last Modified: 2002-10-14 03:30:51



8.7. IMAGE PROCESSING LIBRARIES 523

(-idx2- runs):
(-int- margin):
RETURNS: an -idx2- matrix of runs
CREATED: P.Haffner
COMPILABLE: Yes
DESCRIPTION:
morphological closing operator.
successively applies dilation and erosion functions
<margin> represents the extend of the initial dilation
- 0 nothing happens
- 1 using an hexagonal tesselation, all pixel next to a black pixel becomes black.
- 2 distance is extended to two pixels.

8.7.15 Miscellaneous Image Macros and Conversions

(lsh/libimage/img-util.lsh) Last Modified: 2002-10-29 18:11:56
basic macros and functions to manipulate dimensions and internal formats

of images

(rgbaim2rgbafim in)

(lsh/libimage/img-util.lsh) Last Modified: 2002-10-29 18:11:56
convert RGBA image of ubytes into RGBA image of floats.

(rgbafim2rgbaim in)

(lsh/libimage/img-util.lsh) Last Modified: 2002-10-29 18:11:56
convert RGBA image of floats into RGBA image of ubytes.

img-dim-C

(lsh/libimage/img-util.lsh) Last Modified: 2002-10-29 18:11:56
class that holds the two dimensions of an image d0: height d1: width
(new img-dim-C d0 d1) Type: CLASS(lsh/libimage/img-util.lsh) Last

Modified: 2002-10-29 18:11:56
(equal-dim dimA dimB) (lsh/libimage/img-util.lsh) Last Modified: 2002-

10-29 18:11:56

((-obj- (img-dim-C)) dimA dimB):
CREATED: Oct 97
DESCRIPTION:
t if dimA and dimB are equal

(align-dimensions img-dim align-block) (lsh/libimage/img-util.lsh) Last
Modified: 2002-10-29 18:11:56



524 CHAPTER 8. STANDARD LIBRARIES

((-obj- (img-dim-C)) img-dim):
(-int- align-block):
CREATED: Oct 97
DESCRIPTION:
return new dimension object
- dimensions larger than img-dim
- multiple of align-block

8.7.16 Constants used in run-length encoded images.

(lsh/libimage/run-macros.lsh) Last Modified: 2002-09-06 18:27:25
Indexes to acces tables of runs

RUN-Y (f) 0
RUN-X1 (f) 1
RUN-X2 (f) 2
RUN-ID (f) 3
CC-NRUN (f) 0
CC-FRUN (f) 1
CC-WPIX (f) 2
CC-NPIX (f) 3
CC-LEFT (f) 4
CC-TOP (f) 5)l
CC-RIGHT (f) 6
CC-BOTTOM (f) 7

8.7.17 Converting RLE Image to greyscale pixelmap.

(lsh/libimage/runs2ubim.lsh) Last Modified: 2002-08-19 03:01:28

(nt-runs2ubim runs ubim)

(lsh/libimage/runs2ubim.lsh) Last Modified: 2002-08-19 03:01:28

((-idx2- (-int-)) runs):
((-idx2- (-ubyte-)) ubim):
CREATED: P.Haffner, August 97
TEMPORARIES: ?
DESCRIPTION:
maps runs into a ubyte image

(static-runs2ubim runs ubim white black)

(lsh/libimage/runs2ubim.lsh) Last Modified: 2002-08-19 03:01:28



8.7. IMAGE PROCESSING LIBRARIES 525

((-idx2- (-int-)) runs):
((-idx2- (-ubyte-)) ubim):
((-int-) white black):
CREATED: P.Haffner, August 97
TEMPORARIES: ?
DESCRIPTION:

(nt-runs2ubim-dil runs ubim)

(lsh/libimage/runs2ubim.lsh) Last Modified: 2002-08-19 03:01:28

((-idx2- (-int-)) runs):
((-idx2- (-int-)) ubim):
CREATED: P.Haffner, August 97
TEMPORARIES: ?
DESCRIPTION:
1-dilattion while applying <nt-run2ubim>

(static-runs2ubim-dil runs ubim)

(lsh/libimage/runs2ubim.lsh) Last Modified: 2002-08-19 03:01:28

((-idx2- (-int-)) runs):
((-idx2- (-ubyte-)) ubim):
CREATED: P.Haffner, August 97
TEMPORARIES: ?
DESCRIPTION:

(static-runs2ubim-subsample runs ubim x-sub y-sub)

(lsh/libimage/runs2ubim.lsh) Last Modified: 2002-08-19 03:01:28

((-idx2- (-int-)) runs):
((-idx2- (-ubyte-)) ubim):
((-int-) x-sub y-sub):
CREATED: P.Haffner, August 97
TEMPORARIES: ?
DESCRIPTION:
<nt-runs2ubim> with subsampling

See: (nt-runs2ubim runs ubim )



526 CHAPTER 8. STANDARD LIBRARIES

(runs2ubim runs white black)

(lsh/libimage/runs2ubim.lsh) Last Modified: 2002-08-19 03:01:28

((-idx2- (-int-)) runs):
((-int-) white black):
CREATED: P.Haffner, August 97
TEMPORARIES: ?
DESCRIPTION:

(runs2ubim-subsample runs x-sub y-sub)

(lsh/libimage/runs2ubim.lsh) Last Modified: 2002-08-19 03:01:28

((-idx2- (-int-)) runs):
((-int-) x-sub y-sub):
CREATED: P.Haffner, August 97
DESCRIPTION:
Subsample on the fly --> grey levels

8.7.18 Color Clustering and Quantization

Color Clustering

(lsh/libimage/color-quantize.lsh) Last Modified: 2002-10-29 18:11:55
Functions to find representative colors from a precomputed color histogram.

these functions just find the colors , they do not actually quantize the images.
This is done in rgbaimage , and rgbafimage.

(cqu-init-proto ppal proto) (lsh/libimage/color-quantize.lsh) Last Mod-
ified: 2002-10-29 18:11:55

initialize prototypes for K-means. assumes that ppal contains the color val-
ues sorted by luminosity (as returned by rgbaim-histo32). puts the prototypes
regularly spaced along a line between the darkest and lightest color. ppal :
Nx3 matrix of floats containing a list of RGB color cells proto : Px3 matrix of
floats , contains the initalized prototypes on output

(cqu-kmeans ppal count assign split proto label weight variance)
(lsh/libimage/color-quantize.lsh) Last Modified: 2002-10-29 18:11:55

performs a Kmeans algorithms on the color values contained in ppal .
INPUT: ppal : Nx3 matrix of floats containing a list of RGB color present in
the picture count : N matrix of floats , number of pixels with the corresponding
RGB color assign : N matrix of floats containing the label of the prototype to
which the color cell is currently assigned. split : an int: only those color cells
whose initial assigned label is equal to split will be taken into account. proto
: Px3 matrix of floats , contains initialized RGB prototypes label : P matrix of
ints , contains labels for the prototypes OUTPUT: proto : contains the updated



8.7. IMAGE PROCESSING LIBRARIES 527

prototypes on output assign : the color cells whose assigned value was split
will be assigned the value in label correspinding to their closest prototype.
weight : P matrix of float , contains the number of pixels assigned to each
prototype variance : P matrix of float , contains the variance associated with
the prototypes

Color Segmentation and Quantization on RGBA images

(lsh/libimage/rgbaim-greypage.lsh) Last Modified: 2002-10-14 03:30:51
a set of function for detecting the background and foreground colors in a

document image and for transforming them into grey-level images suitable for
recognition , segmentation , etc... essentially sets the background to 0 , the
foreground to 256 , the rest in the middle.

(rgbaim-project-greys rgbaim ubim polarity bsatur fsatur colors)
(lsh/libimage/rgbaim-greypage.lsh) Last Modified: 2002-10-14 03:30:51

transforms an rgb image into a grey image where the foreground is 256 , the
background is 0 , and the greys in between are between 256 and 0 the resulting
image can be used for segmentation and recognition. rgbaim an idx3 of ubytes
containing the input RGBA image. ubim an idx2 of ubytes that will contain the
result it should be the same size as rgbaim polarity determines the polarity
of the image: 0 means light background and dark foreground , 1 means dark
background and light forground , -1 should be passed if the polarity is unknown.
In that case , the color cluster with the most numerous pixels is assigned to the
background. pixel colors in rgbaim are projected on a straight segment between
two color prototypes computed with K-means. The output pixels are given a
grey value that depends on their position along that segment. The function
that maps positions on the line to grey-levels is piece-wise linear saturation-
type function. It is controlled by two points A and B. below A , points are
assigned the value 0 , above B they are assigned 256. in between they are
mapped linearly. the position of point A is determined by the argument bsatur
a value of 0 puts A on the background prototype , a value of 0.5 puts it half
way between the 2 prototypes. Point B is controlled similarly: 0 puts it at the
foreground prototype and 0.5 puts it halfway. colors is a 2x3 matrix of rgb
color clusters for the background and foreground respectively.

(rgbaim-project-colors rgbaim rgbaim2 polarity bsatur fsatur colors)
(lsh/libimage/rgbaim-greypage.lsh) Last Modified: 2002-10-14 03:30:51

project the colors of an image onto a line joining two center clusters. rgbaim
an idx3 of ubytes containing the input RGBA image. rgbaim2 contains the
result image on output. it should be the same size as <rgbaim polarity
determines the polarity of the image: 0 means light background and dark fore-
ground , 1 means dark background and light forground , -1 should be passed if
the polarity is unknown. In that case , the color cluster with the most numer-
ous pixels is assigned to the background. pixel colors in rgbaim are projected
on a straight segment between two color prototypes computed with K-means.
The output pixels are given a grey value that depends on their position along
that segment. The function that maps positions on the line to grey-levels is



528 CHAPTER 8. STANDARD LIBRARIES

piece-wise linear saturation-type function. It is controlled by two points A and
B. below A , points are assigned the value 0 , above B they are assigned 256. in
between they are mapped linearly. the position of point A is determined by the
argument bsatur a value of 0 puts A on the background prototype , a value of
0.5 puts it half way between the 2 prototypes. Point B is controlled similarly:
0 puts it at the foreground prototype and 0.5 puts it halfway. colors is a 2x3
matrix of rgb color clusters for the background and foreground respectively.

(rgbaim-cluster-colors rgbaim ubim polarity bsatur fsatur proto
weight variance) (lsh/libimage/rgbaim-greypage.lsh) Last Modified: 2002-10-
14 03:30:51

See rgbaim-project-greys for an explanation of the arguments. This function
performs color clustering, using the K-means algorithm. Results in ubim .

proto : n colors x 3 matrix = colors of the clusters weight : n colors
vector = weights of the Gaussian mixture for each cluster variance : n colors
vector = variance parameter of each cluster Gaussian distribution

See: (rgbaim-greypage rgbaim ubim polarity bsatur fsatur )
(rgbaim-quickquant rgbaim ubim ppal assign) (lsh/libimage/rgbaim-

greypage.lsh) Last Modified: 2002-10-14 03:30:51
quick color quantization of the pixels in rgbaim to the colors in palette ppal

. Each pixel in the output image is a short whose value is the ”label” of the
palette color that is closest to the input pixel. assign is a vector of ints with the
same first dimension as ppal which contains the ”label” for each palette color.
This function is relatively fast , but is approximate (the palette color associated
with an input color is not always the closest). In particular , this function makes
little sense if two palette colors are in the same cell in the 32x32x32 RGB cube
(which means ppal should probably have less than 2ˆ15 colors).

low-level color quantization functions. (lsh/libimage/rgbaim-greypage.lsh)
Last Modified: 2002-10-14 03:30:51

(rgbaim-greyquant rgbaim ubim proto polarity bsatur fsatur) (lsh/libimage/rgbaim-
greypage.lsh) Last Modified: 2002-10-14 03:30:51

transforms and RGB image into a grey image with uniform foreground and
background. proto is a 2x3 matrix of floats containing two color prototypes
for background and foreground colors. rgbaim an idx3 of ubytes containing the
input RGBA image. ubim an idx2 of ubytes that will contain the result it should
be the same size as rgbaim polarity determines the polarity of the image: 0
means light background and dark foreground , 1 means dark background and
light forground , -1 should be passed if the polarity is unknown. In that case ,
the color cluster with the most numerous pixels is assigned to the background.
pixel colors in rgbaim are projected on a straight segment between two color
prototypes computed with K-means. The output pixels are given a grey value
that depends on their position along that segment. The function that maps
positions on the line to grey-levels is piece-wise linear saturation-type function.
It is controlled by two points A and B. below A , points are assigned the value
0 , above B they are assigned 256. in between they are mapped linearly. the
position of point A is determined by the argument bsatur a value of 0 puts
A on the background prototype , a value of 0.5 puts it half way between the 2



8.7. IMAGE PROCESSING LIBRARIES 529

prototypes. Point B is controlled similarly: 0 puts it at the foreground prototype
and 0.5 puts it halfway. colors is a 2x3 matrix of rgb color clusters for the
background and foreground respectively.

(rgbaim-projectcolors rgbaim rgbaim2 proto polarity bsatur fsatur)
(lsh/libimage/rgbaim-greypage.lsh) Last Modified: 2002-10-14 03:30:51

Basically does the same thing as rgbaim-greyquant , but builds a color
image instead of a gey image.

See: (rgbaim-greyquant rgbaim ubim proto polarity bsatur fsatur )

Color Segmentation on RGBA float images

(lsh/libimage/rgbafim-greypage.lsh) Last Modified: 2002-10-09 22:44:26
a set of function for detecting the background and foreground colors in a

document image and for transforming them into grey-level images suitable for
recognition , segmentation , etc... essentially sets the background to 0 , the
foreground to 256 , the rest in the middle.

(rgbafim-cluster-colors rgbafim ubim polarity bsatur fsatur proto
weight variance) (lsh/libimage/rgbafim-greypage.lsh) Last Modified: 2002-
10-09 22:44:26

See arguments of grey-page. This function performs the actual color clus-
tering, using the K-means algorithm. Results in

proto : n colors x 3 matrix = colors of the clusters weight : n colors
vector = weights of the Gaussian mixture for each cluster variance : n colors
vector = variance parameter of each cluster Gaussian distribution

See: (rgbafim-greypage rgbafim ubim polarity bsatur fsatur )
(rgbafim-project-greys rgbafim ubim polarity bsatur fsatur colors)

(lsh/libimage/rgbafim-greypage.lsh) Last Modified: 2002-10-09 22:44:26
transforms an rgb image into a grey image where the foreground is 256 ,

the background is 0 , and the greys in between are between 256 and 0 the
resulting image can be used for segmentation and recognition. rgbafim an
idx3 of flts containing the input RGBA image. ubim an idx2 of flts that will
contain the result it should be the same size as rgbafim polarity determines
the polarity of the image: 0 means light background and dark foreground , 1
means dark background and light forground , -1 should be passed if the polarity
is unknown. In that case , the color cluster with the most numerous pixels is
assigned to the background. pixel colors in rgbafim are projected on a straight
segment between two color prototypes computed with K-means. The output
pixels are given a grey value that depends on their position along that segment.
The function that maps positions on the line to grey-levels is piece-wise linear
saturation-type function. It is controlled by two points A and B. below A , points
are assigned the value 0 , above B they are assigned 256. in between they are
mapped linearly. the position of point A is determined by the argument bsatur
a value of 0 puts A on the background prototype , a value of 0.5 puts it half
way between the 2 prototypes. Point B is controlled similarly: 0 puts it at the
foreground prototype and 0.5 puts it halfway. colors is a 2x3 matrix of rgb
color clusters for the background and foreground respectively.



530 CHAPTER 8. STANDARD LIBRARIES

(rgbafim-project-colors rgbafim rgbafim2 polarity bsatur fsatur
colors) (lsh/libimage/rgbafim-greypage.lsh) Last Modified: 2002-10-09 22:44:26

project the colors of an image onto a line joining two center clusters. rgbafim
an idx3 of flts containing the input RGBA image. rgbafim2 contains the
result image on output. it should be the same size as <rgbafim polarity
determines the polarity of the image: 0 means light background and dark fore-
ground , 1 means dark background and light forground , -1 should be passed if
the polarity is unknown. In that case , the color cluster with the most numer-
ous pixels is assigned to the background. pixel colors in rgbafim are projected
on a straight segment between two color prototypes computed with K-means.
The output pixels are given a grey value that depends on their position along
that segment. The function that maps positions on the line to grey-levels is
piece-wise linear saturation-type function. It is controlled by two points A and
B. below A , points are assigned the value 0 , above B they are assigned 256. in
between they are mapped linearly. the position of point A is determined by the
argument bsatur a value of 0 puts A on the background prototype , a value of
0.5 puts it half way between the 2 prototypes. Point B is controlled similarly:
0 puts it at the foreground prototype and 0.5 puts it halfway. colors is a 2x3
matrix of rgb color clusters for the background and foreground respectively.

(rgbafim-quickquant rgbafim ubim ppal assign) (lsh/libimage/rgbafim-
greypage.lsh) Last Modified: 2002-10-09 22:44:26

quick color quantization using result of cqu-kmeans rgbafim is the RGBA
image to be quantized ubim is the output image (of floats). It must be the
same size as rgbafim . ppal is the color histogram as computed by rgbafim-
histo32 assign is the vector of color labels for each color in the histogram this
is ”quick” only for fairly large images.

(rgbafim-greyquant rgbafim ubim proto polarity bsatur fsatur) (lsh/libimage/rgbafim-
greypage.lsh) Last Modified: 2002-10-09 22:44:26

transforms and RGB image into a grey image with uniform foreground and
background. proto is a 2x3 matrix of floats containing two color prototypes for
background and foreground colors. transforms an rgb image into a grey image
where the foreground is 256 , the background is 0 , and the greys in between
are between 256 and 0 the resulting image can be used for segmentation and
recognition. rgbafim an idx3 of flts containing the input RGBA image. ubim
an idx2 of flts that will contain the result it should be the same size as rgbafim
polarity determines the polarity of the image: 0 means light background and
dark foreground , 1 means dark background and light forground , -1 should
be passed if the polarity is unknown. In that case , the color cluster with the
most numerous pixels is assigned to the background. pixel colors in rgbafim
are projected on a straight segment between two color prototypes computed
with K-means. The output pixels are given a grey value that depends on their
position along that segment. The function that maps positions on the line to
grey-levels is piece-wise linear saturation-type function. It is controlled by two
points A and B. below A , points are assigned the value 0 , above B they are
assigned 256. in between they are mapped linearly. the position of point A is
determined by the argument bsatur a value of 0 puts A on the background



8.7. IMAGE PROCESSING LIBRARIES 531

prototype , a value of 0.5 puts it half way between the 2 prototypes. Point B
is controlled similarly: 0 puts it at the foreground prototype and 0.5 puts it
halfway. colors is a 2x3 matrix of rgb color clusters for the background and
foreground respectively.

(rgbafim-projectcolors rgbafim rgbafim2 proto polarity bsatur fsatur)
(lsh/libimage/rgbafim-greypage.lsh) Last Modified: 2002-10-09 22:44:26

Basically does the same thing as rgbafim-greyquant , but builds a color
image instead of a gey image.

See: (rgbafim-greyquant rgbafim ubim proto polarity bsatur fsatur
)



532 CHAPTER 8. STANDARD LIBRARIES



Chapter 9

Packages

Author(s): Yann LeCun
Packages are libraries that are not considered part of the standard library

because they may not be available on all the platforms, and they may not be
useful to everybody. Packages are generally built around popular pre-existing
C libraries that have been interfaced to Lush with a layer to facilitate their use
in Lush applications. Current packages include

• An extensive library of classes for gradient-based machine learning algo-
rithms, including neural nets, convolutional nets, and many others.

• an environment for writing simple video games (SDL)

• an interface to the popular 3D graphic API OpenGL/GLUT

• an interface to the OpenInventor 3D scene rendering engine.

• a full interface to the LAPACK/BLAS Linear algebra libraries

• an interface to the Intel Computer Vision Library

• an interface to the Video4Linux video-grabbing API

• an interface to the Advanced Linux Sound Architecture API (Alsa)

9.1 GBLearn2: Machine Learning Library

Author(s): Yann LeCun
The GBLearn2 Library is an object-oriented framework for building , train-

ing and testing machine learning systems and algorithms. The ”GB” stands for
”gradient-based” , but the library can handle learning algorithms that are not
gradient-based.

The basic concepts of GBLearn2 are: modules , states , params , trainers ,
data sources , and meters.

533



534 CHAPTER 9. PACKAGES

9.1.1 GBLearn2: Basic Concepts

Modules

Modules (subclasses of gb-module ) are components of learning machines. Mod-
ules generally accept at least the method fprop . which computes the output
of the module from its inputs. Input and outputs are generally subclasses of
idx-state . Many commonly used modules are pre-defined , including var-
ious types of neural nets layers , convolutional layers , RBFs , Softmax and
many others. Many of these modules use inputs and outputs that are of class
idx3-ddstate (more on this below).

Some modules provide two other methods: bprop and bbprop . Those
methods are defined for modules that are used in gradient-based machine learn-
ing algorithms. Method bprop back-propagates gradients through the module
, while bbprop backpropagate diagonal second derivatives.

An large collection of high-level ”macro-modules” is provided which include
various types of fully-connected neural nets , convolutional networks , time-delay
neural nets , etc.

Machine learning systems are usually built by using one of these predefined
classes , or by subclassing them. Specific machine are generally created by
defining classes whose slots are gb-modules and gb-states , with appropriate
fprop and bprop methods.

States

Modules exchange information through subclasses of gb-state .
Most predefined modules use idx3-state and its subclasses as input and

output. The class idx3-ddstate stores numbers arranged in a tensor with 3
indices. Most of those modules (e.g. as convolutional layers) interpret the first
index as a feature index , and the last two indexes as spatial dimensions. This
allows to easily replicate the modules spatially (e.g. for applications that require
scanning a classifier over all locations of an image , more on this later).

Machines and Cost Modules

Basic modules generally do not assume much about the kind of learning algo-
rithm with which they will be trained. The most common form of training is
gradient-based training. gradient-based training consists in finding the set of
parameters that minimize a particular energy function (generally computed by
averaging over a set of training examples).

Classes are provided to conveniently assemble trainable modules and cost
modules (e.g. energy functions) into a complete learning machine. An example
of such class is idx3-supervised-module . This class can be used for super-
vised training of classifiers. The idx3-supervised-module contains:

• a learning machine with one input and one output (both idx3-ddstate
).



9.1. GBLEARN2: MACHINE LEARNING LIBRARY 535

• a cost module whose first inputs is the output of the machine , whose
second input is a desired category (stored in an idx0 of int) , and whose
output is an idx0-ddstate which contains the value of the energy.

• a classifier module which takes the machine’s output and computes a
class-state which stores the label of the recognized category together
with confidence scores and runner-up categories.

Parameters

Modules may have trainable parameters that are computed or adjusted by the
various learning algorithms. Learning algorithms are designed to operate on
gb-param objects , so as to make the algorithm implementations independent
of the details of the learning machine’s architecture. Whenever a instance of
a module is created , a gb-param object is passed to the constructor. The
modules trainable parameters are added to the param object.

Trainers

Learning machines created as above are then inserted in a gb-trainer object.
The gb-trainer class (or rather , its subclasses) define the learning algorithm
being used to train the machine. The most commonly used gb-trainer is
supervised-gradient , which implements learning algorithms based on stochas-
tic gradient descent.

The supervised-gradient trainer class expects a machine whose fprop
and bprop methods take input , an output , a desired output , and an energy.
supervised-gradient is an generic interpreted class which makes no hard as-
sumptions on the type of the objects it manipulates as long as those objects
understand the required set of methods.

Training a machine in such a trainer is performed by calling one of the
training methods (e.g. train in the case of supervised-gradient ) with a
data source and a gb-meter (and possibly other specific parameters , depending
on the trainer and method considered).

Data Sources

A data source is a source of training and testing examples. Data sources are a bit
like regular modules , but they generally don’t have inputs. Most gb-trainer
subclasses expect data sources to undertand the method size , seek , tell ,
and next , which they use to sweep through the set of examples.

Since many pre-defined machine expect an idx3-state as input , and an
idx0 of int as desired output , the data source class dsource-idx3l exists for
that purpose. Subclasses of dsource-idx3l are defined for databases of exam-
ples stored as vectors of floats or ubytes , or for databases of images of variable
size.



536 CHAPTER 9. PACKAGES

Performance Meters

Meters are used by gb-trainer to measure the performance of learning ma-
chines. A commonly used one is the classifier-meter which can be used to
measure the performance of supervised classifiers.

9.1.2 Examples and Demos

Learning the proverbial XOR with backprop

(packages/gblearn2/demos/xor.lsh) Last Modified: 2002-12-18 23:27:31
the content of this file is a complete example of how to build a single hidden

layer backprop net to solve the XOR problem. Yeah , it’s a lame example. Just
have a look at the source code.

Lenet5 Convolutional Neural Network Demo

(packages/gblearn2/demos/lenet5.lsh)
Author(s): Yann LeCun , December 2002 Last Modified: 2002-12-18 23:27:31
This is an example of how to train a convolutional network on the MNIST

database (handwritten digits). The database can be obtained at http://yann.lecun.com
A paper describing an experiment similar to the one demonstrated here is de-
scribed in LeCun , Bottou , Bengio , Haffner: ”gradient-based learning applied
to document recognition” , Proceedings of the IEEE , Nov 1998. This paper
is also available at the above URL. This demo assumes that the MNIST data
files are in LUSHDIR/local/mnist. If you installed them someplace else , simply
do (setq *mnist-dir* "your-mnist-directory") before loading the present
demo. The MNIST datafiles are:

• train-images-idx3-ubyte : training set , images , 60000 samples.

• train-labels-idx1-ubyte : training set , labels , 60000 samples.

• t10k-images-idx3-ubyte : testing set , images , 10000 samples.

• t10k-labels-idx1-ubyte : testing set , labels , 10000 samples.

9.1.3 Learning Algorithms

(packages/gblearn2/gb-trainers.lsh) Author(s): Yann LeCun Last Modified: 2002-
12-20 02:32:37

Various learning algorithm classes are defined to train learning machines.
Learning machines are generally subclasses of gb-module . Learning algorithm
classes include gradient descent for supervised learning , and others.



9.1. GBLEARN2: MACHINE LEARNING LIBRARY 537

eb-trainer

(packages/gblearn2/gb-trainers.lsh) Last Modified: 2002-12-20 02:32:37
Abstract class for energy-based learning algorithms. The class contains an

input , a (trainable) parameter , and an energy. this is an abstract class from
which actual trainers can be derived.

supervised

(packages/gblearn2/gb-trainers.lsh) Last Modified: 2002-12-20 02:32:37
A an abstract trainer class for supervised training with of a feed-forward

classifier with discrete class labels. Actual supervised trainers can be derived
from this. The machine’s fprop method must have four arguments: input ,
output , energy , and desired output. A call to the machine’s fprop must look
like this:

(==> machine fprop input output desired energy)

By default , output must be a class-state , desired an idx0 of int (integer
scalar) , and energy and idx0-ddstate (or subclasses thereof). The meter
passed to the training and testing methods should be a classifier-meter , or
any meter whose update method looks like this:

(==> meter update output desired energy)

where output must be a class-state , desired an idx0 of int , and energy
and idx0-ddstate .

(new supervised m p [e in out des]) Type: CLASS(packages/gblearn2/gb-
trainers.lsh) Last Modified: 2002-12-20 02:32:37

create a new supervised trainer. Arguments are as follow:

• m : machine to be trained.

• p : trainable parameter object of the machine.

• e : energy object (by default an idx0-ddstate).

• in : input object (by default an idx3-ddstate).

• out : output object (by default a class-state).

• des : desired output (by default an idx0 of int).

(==> supervised train dsource mtr) Type: MSG(packages/gblearn2/gb-
trainers.lsh) Last Modified: 2002-12-20 02:32:37

train the machine with on the data source dsource and measure the perfor-
mance with mtr . This is a dummy method that should be defined by subclasses.

(==> supervised test dsource mtr) Type: MSG(packages/gblearn2/gb-
trainers.lsh) Last Modified: 2002-12-20 02:32:37



538 CHAPTER 9. PACKAGES

measures the performance over all the samples of data source dsource . mtr
must be an appropriate meter.

(==> supervised test-sample dsource mtr i) Type: MSG(packages/gblearn2/gb-
trainers.lsh) Last Modified: 2002-12-20 02:32:37

measures the performance over a single sample of data source dsource .
This leaves the internal state of the meter unchanged , and can be used for a
quick test of a whether a particular pattern is correctly recognized or not.

supervised-gradient

(packages/gblearn2/gb-trainers.lsh) Last Modified: 2002-12-20 02:32:37
A basic trainer object for supervised stochastic gradient training of a classi-

fier with discrete class labels. This is a subclass of supervised . The machine’s
fprop method must have four arguments: input , output , energy , and desired
output. A call to the machine’s fprop must look like this:

(==> machine fprop input output desired energy)

where output must be a class-state , desired an idx0 of int (integer scalar)
, and energy and idx0-ddstate . The meter passed to the training and testing
methods should be a classifier-meter , or any meter whose update method
looks like this:

(==> meter update output desired energy)

where output must be a class-state , desired an idx0 of int , and energy
and idx0-ddstate . The trainable parameter object must understand the fol-
lowing methods:

• (==> param clear-dx) : clear the gradients.

• (==> param update eta inertia) : update the parameters with learn-
ing rate eta , and momentum term inertia .

If the diagonal hessian estimation is to be used , the param object must also
understand:

• (==> param clear-ddx) : clear the second derivatives.

• (==> param update-ddeltas knew kold) : update average second deriva-
tives.

• (==> param compute-epsilons mu ) : set the per-parameter learning
rates to the inverse of the sum of the second derivative estimates and mu
.

(new supervised-gradient m p [e in out des]) Type: CLASS(packages/gblearn2/gb-
trainers.lsh) Last Modified: 2002-12-20 02:32:37

create a new supervised-gradient trainer. Arguments are as follow:



9.1. GBLEARN2: MACHINE LEARNING LIBRARY 539

• m : machine to be trained.

• p : trainable parameter object of the machine.

• e : energy object (by default an idx0-ddstate).

• in : input object (by default an idx3-ddstate).

• out : output object (by default a class-state).

• des : desired output (by default an idx0 of int).

(==> supervised-gradient train-online dsource mtr n eta inertia)
Type: MSG(packages/gblearn2/gb-trainers.lsh) Last Modified: 2002-12-20 02:32:37

train with stochastic (online) gradient on the next n samples of data source
dsource with global learning rate eta . and ”momentum term” inertia .
Record performance in mtr . mtr must understand the following methods:

(==> mtr update age output desired energy)
(==> mtr info)

where age is the number of calls to parameter updates so far , output is the
machine’s output (most likely a class-state ) , desired is the desired output
(most likely an idx0 of int) , and energy is an idx0-state . The info should
return a list of relevant measurements.

(==> supervised-gradient train dsource mtr eta inertia) Type:
MSG(packages/gblearn2/gb-trainers.lsh) Last Modified: 2002-12-20 02:32:37

train the machine on all the samples in data source dsource and measure
the performance with mtr .

(==> supervised-gradient compute-diaghessian dsource n mu) Type:
MSG(packages/gblearn2/gb-trainers.lsh) Last Modified: 2002-12-20 02:32:37

Compute per-parameter learning rates (epsilons) using the stochastic diagi-
nal levenberg marquardt method (as described in LeCun et al. ”efficient back-
prop” , available at [http://yann.lecun.com ]). This method computes positive
estimates the second derivative of the objective function with respect to each
parameter using the Gauss-Newton approximation. dsource is a data source ,
n is the number of patterns (starting at the current point in the data source) on
which the estimate is to be performed. Each parameter-specific learning rate ep-
silon i is computed as 1/(H ii + mu) , where H ii are the diagonal Gauss-Newton
estimates and mu is the blowup prevention fudge factor.

(==> supervised-gradient saliencies ds n) Type: MSG(packages/gblearn2/gb-
trainers.lsh) Last Modified: 2002-12-20 02:32:37

Compute the parameters saliencies as defined in the Optimal Brain Damage
algorithm of (LeCun , Denker , Solla , NIPS 1989) , available at http://yann.lecun.com.
This computes the first and second derivatives of the energy with respect to each
parameter averaged over the next n patterns of data source ds . A vector of
saliencies is returned. Component i of the vector contains Si = -Gi * Wi +
1/2 Hii * Wi^2 , this is an estimate of how much the energy would increase



540 CHAPTER 9. PACKAGES

if the parameter was eliminated (set to zero). Parameters with small saliencies
can be eliminated by setting their value and epsilon to zero.

9.1.4 Data Sources

(packages/gblearn2/data-sources.lsh) Last Modified: 2002-12-10 10:26:58
data sources are used in machine learning experiments as sources of training

and testing examples. Data sources are pretty much like regular modules. Most
data sources should implement the following methods to be compatible with
most gradient-based learning algorithms

• (==> ds fprop arg1 ... argn) : write the current item into arg1 ...
argn .

• (==> ds next) : go to the next item in the data source.

• (==> ds seek i) : go to the i-th item in the data source.

• (==> ds tell) : return the index of the current item.

• (==> ds size) : return the total number of item.

Optionally , some data sources may implement the following methods:

• (==> ds bprop arg1 ... argn) : backpropagate gradients.

• (==> ds bbprop arg1 ... argn) : backpropagate diagonal second deriva-
tives.

These methods can be used by algorithms that updates samples or preprocess-
ings internal to the data source , based on gradients coming from the learning
machine. However , since those methods are used by a very small number of
very special learning algorithms , implementing them is generally not necessary.

dsource

(packages/gblearn2/data-sources.lsh) Last Modified: 2002-12-10 10:26:58
Semi-abstract class for a data source. Various subclasses are defined for

special cases. This root class defines the methods seek , tell , next , and size.
Subclasses should define (or redefine) at least fprop and size.

(==> dsource seek i) Type: MSG(packages/gblearn2/data-sources.lsh)
Last Modified: 2002-12-10 10:26:58

set pointer to i -th item
(==> dsource tell) Type: MSG(packages/gblearn2/data-sources.lsh) Last

Modified: 2002-12-10 10:26:58
return index of current item.
(==> dsource next) Type: MSG(packages/gblearn2/data-sources.lsh) Last

Modified: 2002-12-10 10:26:58
move pointer to next item.



9.1. GBLEARN2: MACHINE LEARNING LIBRARY 541

(==> dsource size) Type: MSG(packages/gblearn2/data-sources.lsh) Last
Modified: 2002-12-10 10:26:58

reutrns the size of the data source.

dsource-idx3l

(packages/gblearn2/data-sources.lsh) Last Modified: 2002-12-10 10:26:58
An abstract data source class appropriate for most supervised learning al-

gorithms that take input data in the form of an idx3-state and a label in the
form of an idx0 of int. Most learning machines implemented in the library are
designed to be compatible with this data source and its subclasses. This class
just defines the fprop method prototypes. Subclasses actually implement the
functionalities.

(==> dsource-idx3l fprop out lbl) Type: MSG(packages/gblearn2/data-
sources.lsh) Last Modified: 2002-12-10 10:26:58

get the current item and copy the sample into out (an idx3-state) and the
corresponding label into lbl (and idx0 of int).

dsource-idx3fl

(packages/gblearn2/data-sources.lsh) Last Modified: 2002-12-10 10:26:58
a data source that stores samples as idx3 of floats. As a subclass of dsource-idx3l

, this class is compatible with most learning machines defined in the gblearn2
library.

(new dsource-idx3fl inp lbl) Type: CLASS(packages/gblearn2/data-
sources.lsh) Last Modified: 2002-12-10 10:26:58

create a dsource-idx3fl where the input samples are slices of an PxDxYxX
idx4 of floats passed as argument inp and labels are slices of an idx1 of int
passed as argument lbl . P is the number of samples , and D , Y , X the
dimensions of each sample. If your data needs less that three dimensions simply
setq Y and/or X to 1 (i.e. inp would be a PxDx1x1 matrix).

(==> dsource-idx3fl fprop out lbl) Type: MSG(packages/gblearn2/data-
sources.lsh) Last Modified: 2002-12-10 10:26:58

get the current item and copy the sample into out (an idx3-state) and the
corresponding label into lbl (and idx0 of int).

dsource-idx3ul

(packages/gblearn2/data-sources.lsh) Last Modified: 2002-12-10 10:26:58
a data source that stores samples as idx3 of ubytes. As a subclass of

dsource-idx3l , this class is compatible with most learning machines defined
in the gblearn2 library. The ubyte values (between 0 255) can be shifted and
scaled by before being written to the output idx3-state. This data source is con-
siderably more economical in term of memory than dsource-idx3fl (1 byte
per sample per variable , versus 4).

(new dsource-idx3ul inp lbl bias coeff) Type: CLASS(packages/gblearn2/data-
sources.lsh) Last Modified: 2002-12-10 10:26:58



542 CHAPTER 9. PACKAGES

create a dsource-idx3ul where the input samples are idx3 slices of an
PxDxYxX idx4 of ubytes passed as argument inp and labels are slices of an
idx1 of int passed as argument lbl . P is the number of samples , and D , Y ,
X the dimensions of each sample. If your data needs less that three dimensions
simply setq Y and/or X to 1 (i.e. inp would be a PxDx1x1 matrix). values in
the item are shifted by bias and multiplied by coeff before being copied into
the destination by fprop .

(==> dsource-idx3ul fprop out lbl) Type: MSG(packages/gblearn2/data-
sources.lsh) Last Modified: 2002-12-10 10:26:58

get the current item and copy the sample into out (an idx3-state) and the
corresponding label into lbl (and idx0 of int). Raw values are shifted by the
bias parameter and multiplied by the coeff parameter before being copied
into the x slot of out .

dsource-image

(packages/gblearn2/data-sources.lsh) Last Modified: 2002-12-10 10:26:58
A data source that stores images of variable sizes , with any number of com-

ponents per pixel , and one byte per component. As a subclass of dsource-idx3l
, this class is compatible with most learning machines defined in the gblearn2
library. The fprop method resizes the output argument to the size of the cur-
rent image. Pixel values may be shifted and scaled before being written the the
output idx3-state .

(new dsource-image bias coeff) Type: CLASS(packages/gblearn2/data-
sources.lsh) Last Modified: 2002-12-10 10:26:58

create an empty dsource-image . When accessing an item , the values are
shifted by bias and multiplied by coeff .

(==> dsource-image size) Type: MSG(packages/gblearn2/data-sources.lsh)
Last Modified: 2002-12-10 10:26:58

reutnrs the size of the database
(==> dsource-image fprop dest lbl) Type: MSG(packages/gblearn2/data-

sources.lsh) Last Modified: 2002-12-10 10:26:58
writes the current item into the x slot of dest (an idx3-state) and the cor-

responding label to lbl (and idx0 of int). dest is automatically resized to the
size of the current item.

(==> dsource-image load-ppms flist clist) Type: MSG(packages/gblearn2/data-
sources.lsh) Last Modified: 2002-12-10 10:26:58

fills up the database with images from a bunch of PPM files clist is a list
of labels (one integer for each image) or a single category , in which case all the
loaded images will be in that category.

(==> dsource-image load-pgms flist clist) Type: MSG(packages/gblearn2/data-
sources.lsh) Last Modified: 2002-12-10 10:26:58

fills up the database with images from a bunch of PGM files clist is a list
of labels (one integer for each image) or a single category , in which case all the
loaded images will be in that category.



9.1. GBLEARN2: MACHINE LEARNING LIBRARY 543

(==> dsource-image save basename) Type: MSG(packages/gblearn2/data-
sources.lsh) Last Modified: 2002-12-10 10:26:58

save database into pre-cooked IDX files. These files can be subsequently
loaded quickly using the load or map methods. The database is saved in four
files named basename images.idx , basename starts.idx , basename sizes.idx ,
and basename labels.idx

(==> dsource-image load basename) Type: MSG(packages/gblearn2/data-
sources.lsh) Last Modified: 2002-12-10 10:26:58

load database from pre-cooked IDX files produced through the save method.
The database will be loaded from four files named basename images.idx ,
basename starts.idx , basename sizes.idx , and basename labels.idx

(==> dsource-image map basename) Type: MSG(packages/gblearn2/data-
sources.lsh) Last Modified: 2002-12-10 10:26:58

memory-map database from pre-cooked IDX files produced through the save
method. This is MUCH faster than load , and consumes fewer memory/disk
bandwidth. The database will be mapped from four files named basename im-
ages.idx , basename starts.idx , basename sizes.idx , and basename labels.idx

dsource-idx3l-narrow

(packages/gblearn2/data-sources.lsh) Last Modified: 2002-12-10 10:26:58
a data source constructed by taking patterns in an existing data source whose

indices are within a given range.
(new dsource-idx3l-narrow base size offset) Type: CLASS(packages/gblearn2/data-

sources.lsh) Last Modified: 2002-12-10 10:26:58
make a new data source by taking size items from the data source passed

as argument , starting at item offset .
(==> dsource-idx3l-permute fprop out lbl) Type: MSG(packages/gblearn2/data-

sources.lsh) Last Modified: 2002-12-10 10:26:58
copy current item and label into out and lbl .

dsource-idx3l-permute

(packages/gblearn2/data-sources.lsh) Last Modified: 2002-12-10 10:26:58
a data source constructed by shuffling the items of a base data source.
(new dsource-idx3l-permute base) Type: CLASS(packages/gblearn2/data-

sources.lsh) Last Modified: 2002-12-10 10:26:58
make a new data source by taking the base data source and building a

permutation map of its items. Initially , the permutation map is equal to the
identity. It can be shuffled into a random order by calling the shuffle method.

(==> dsource-idx3l-permute fprop out lbl) Type: MSG(packages/gblearn2/data-
sources.lsh) Last Modified: 2002-12-10 10:26:58

copy current item and label into out and lbl .
(==> dsource-idx3l-permute shuffle) Type: MSG(packages/gblearn2/data-

sources.lsh) Last Modified: 2002-12-10 10:26:58
randomly shuffles the samples of the db.



544 CHAPTER 9. PACKAGES

dsource-idx3l-concat

(packages/gblearn2/data-sources.lsh) Last Modified: 2002-12-10 10:26:58
a data source constructed by concatenating two base data sources.
(new dsource-idx3l-concat base1 base2) Type: CLASS(packages/gblearn2/data-

sources.lsh) Last Modified: 2002-12-10 10:26:58
make a new data source by taking concatenating two base data sources base1

and base2 . the Two data sources must be dsource-idx3l or subclasses
thereof.

(==> dsource-idx3l-concat fprop out lbl) Type: MSG(packages/gblearn2/data-
sources.lsh) Last Modified: 2002-12-10 10:26:58

copy item and label into out and lbl .

9.1.5 Meters

(packages/gblearn2/gb-meters.lsh) Author(s): Yann LeCun Last Modified: 2002-
11-26 18:33:14

Meters are classes used to measure the performance of learning machines.
There are several types of meters for each specific situation. meters are generally
assumed to have at least the following methods:

• update: updates the meter with the objects and values passed as argu-
ment.

• clear: resets the meter , so it can be used for a new series of measurements.

• test: simply prints performance information for the data passed as argu-
ment. This does not update any internal state.

Methods are provided to compute and display the information measured by a
meter.

• display: display performance information on the terminal

• info: returns a list of the informations printed by display

(same-class? actual desired [dummies])

(packages/gblearn2/gb-meters.lsh) Last Modified: 2002-11-26 18:33:14
return 0 if actual equals -1 , otherwise , return 1 if actual and desired

are equal , -1 otherwise.

classifier-meter

(packages/gblearn2/gb-meters.lsh) Last Modified: 2002-11-26 18:33:14
a class that can be used to measure the performance of classifiers. This is a

simple version that does not record anything but simply computes performance
measures.



9.1. GBLEARN2: MACHINE LEARNING LIBRARY 545

(new classifier-meter [comparison-function]) Type: CLASS(packages/gblearn2/gb-
meters.lsh) Last Modified: 2002-11-26 18:33:14

Create a new classifier-meter using comparison-function to compare
actual and desired answers. By default the same-class? function is used for
that purpose. It takes two integer arguments , and returns 1 if they are equal ,
-1 if they are different , and 0 if the first argument is -1 (which means reject).

(==> classifier-meter clear) Type: MSG(packages/gblearn2/gb-meters.lsh)
Last Modified: 2002-11-26 18:33:14

reset the meter. This must be called before a measurement campaign is
started.

(==> classifier-meter update age actual desired energy) Type:
MSG(packages/gblearn2/gb-meters.lsh) Last Modified: 2002-11-26 18:33:14

update the meter with results from a new sample. age is the number of
training iterations so far , actual (a class-state ) the actual output of the
machine , desired (an idx0 of int) the desired category , and energy (an idx0-
state) the energy.

(==> classifier-meter info) Type: MSG(packages/gblearn2/gb-meters.lsh)
Last Modified: 2002-11-26 18:33:14

return a list with the age , the number of samples (number of calls to update
since the last clear) , the average energy , the percentage of correctly recognize
samples , the percentage of erroneously recognized samples , and the percentage
of rejected samples.

(==> classifier-meter display) Type: MSG(packages/gblearn2/gb-
meters.lsh) Last Modified: 2002-11-26 18:33:14

Display the meter’s information on the terminal. namely , the age , the
number of samples (number of calls to update since the last clear) , the aver-
age energy , the percentage of correctly recognize samples , the percentage of
erroneously recognized samples , and the percentage of rejected samples.

9.1.6 gb-states

(packages/gblearn2/gb-states.lsh) Author(s): Yann LeCun Last Modified: 2002-
12-18 23:27:25

states are the main objects used to store state variables in or between mod-
ules.

(each-idx-slots o s f1 [f2...[fn]])

(packages/gblearn2/gb-states.lsh) Last Modified: 2002-12-18 23:27:25
evaluates lists in f for all active idx slots of object o , (as returned by (==>

o idx-slots)) with s successively taking the values of the slots in question.

idx-state

(packages/gblearn2/gb-states.lsh) Last Modified: 2002-12-18 23:27:25
an idx-state is a state that contains vector or matrix variables.



546 CHAPTER 9. PACKAGES

(==> idx-state idx-slots) Type: MSG(packages/gblearn2/gb-states.lsh)
Last Modified: 2002-12-18 23:27:25

return the complete list of idx slots.
(new idx-state [params]) Type: CLASS(packages/gblearn2/gb-states.lsh)

Last Modified: 2002-12-18 23:27:25
create a new simple-state. if params is absent , the simple-state is left

unsized. Otherwise params must be a list of integer (possibly empty) , which
will be used to determine the size of the object. params has the same meaning
as the 2nd parameter of the functions new-index.

(==> idx-state resize [list-of-dims]) Type: MSG(packages/gblearn2/gb-
states.lsh) Last Modified: 2002-12-18 23:27:25

resize all the idx slots (as returned by idx-slots) list-of-dims is a list
with p numbers specifying the size of the last p dimensions of each slot. If
list-of-dim is absent, all the active slots are undimed.

See: (==> idx-state idx-slots)
(==> idx-state undim) Type: MSG(packages/gblearn2/gb-states.lsh)

Last Modified: 2002-12-18 23:27:25
undim all the active idx slots of idx-state .
(==> idx-state clear) Type: MSG(packages/gblearn2/gb-states.lsh) Last

Modified: 2002-12-18 23:27:25
fill all the active idx slots with zeroes
See: (==> idx-state idx-slots)
(==> idx-state load s) Type: MSG(packages/gblearn2/gb-states.lsh)

Last Modified: 2002-12-18 23:27:25
fill slot x with content of file s
(==> idx-state save s (packages/gblearn2/gb-states.lsh) Last Modified:

2002-12-18 23:27:25
save content of slot x into file s .
(==> idx-state dump s (packages/gblearn2/gb-states.lsh) Last Modi-

fied: 2002-12-18 23:27:25
save the entire object into file s

idx0-state

(packages/gblearn2/gb-states.lsh) Last Modified: 2002-12-18 23:27:25

idx0-dstate

(packages/gblearn2/gb-states.lsh) Last Modified: 2002-12-18 23:27:25

idx0-ddstate

(packages/gblearn2/gb-states.lsh) Last Modified: 2002-12-18 23:27:25

idx1-state

(packages/gblearn2/gb-states.lsh) Last Modified: 2002-12-18 23:27:25



9.1. GBLEARN2: MACHINE LEARNING LIBRARY 547

idx1-dstate

(packages/gblearn2/gb-states.lsh) Last Modified: 2002-12-18 23:27:25

idx1-ddstate

(packages/gblearn2/gb-states.lsh) Last Modified: 2002-12-18 23:27:25

idx2-state

(packages/gblearn2/gb-states.lsh) Last Modified: 2002-12-18 23:27:25

idx2-dstate

(packages/gblearn2/gb-states.lsh) Last Modified: 2002-12-18 23:27:25

idx2-ddstate

(packages/gblearn2/gb-states.lsh) Last Modified: 2002-12-18 23:27:25

idx3-state

(packages/gblearn2/gb-states.lsh) Last Modified: 2002-12-18 23:27:25

idx3-dstate

(packages/gblearn2/gb-states.lsh) Last Modified: 2002-12-18 23:27:25

idx3-ddstate

(packages/gblearn2/gb-states.lsh) Last Modified: 2002-12-18 23:27:25

idx4-state

(packages/gblearn2/gb-states.lsh) Last Modified: 2002-12-18 23:27:25

idx4-dstate

(packages/gblearn2/gb-states.lsh) Last Modified: 2002-12-18 23:27:25

idx4-ddstate

(packages/gblearn2/gb-states.lsh) Last Modified: 2002-12-18 23:27:25

class-state

(packages/gblearn2/gb-states.lsh) Last Modified: 2002-12-18 23:27:25
a special kind of state used to store the output of a classifier. class-state are

generated by modules such as class-max , and used by meters such as classifier-
meter. No backprop is possible through a class-state.



548 CHAPTER 9. PACKAGES

lclass-state

(packages/gblearn2/gb-states.lsh) Last Modified: 2002-12-18 23:27:25
a special kind of state used to store the output of a spatial classifier such as

ledist-classer.

9.1.7 gb-param

(packages/gblearn2/gb-params.lsh) Author(s): Yann LeCun Last Modified: 2002-
12-18 23:27:25

a hierarchy of classes that implements gradient-based learning algorithms.
Various subclasses of gb-param can be used for various learning algorithms
(stochastic gradient , with separate epsilons , with second derivatives.....) The
standard gb-param type contains idx1 slots.

(new-index-offset s dlist o)

(packages/gblearn2/gb-params.lsh) Last Modified: 2002-12-18 23:27:25
like new index , but puts the index at a specific offset in the storage s is a

storage , dlist a list of dimensions , o an offset. Compilable macro.

idx1-param

(packages/gblearn2/gb-params.lsh) Last Modified: 2002-12-18 23:27:25
a gb-param whose slots are idx1. no learning algorithm is defined. Only the

x slot is present. This class is useful for fixed (non adaptive) parameters.

idx1-dparam

(packages/gblearn2/gb-params.lsh) Last Modified: 2002-12-18 23:27:25
gb-param class for regular stochastic gradient descent algorithm
(new idx1-dparam s sts) Type: CLASS(packages/gblearn2/gb-params.lsh)

Last Modified: 2002-12-18 23:27:25
s is a size (possibly zero) , and sts is the initial storage size which must be

larger than zero , and (can be larger than s to avoid unnecessary reallocs when
the size of the param is increased.

(==> idx1-dparam update-deltas knew kold) Type: MSG(packages/gblearn2/gb-
params.lsh) Last Modified: 2002-12-18 23:27:25

update the average derivatives deltas as follow: deltas = knew*dx + kold*deltas
. The update method calls this whenever it is called with a non-zero inertia
parameter.

(==> idx1-dparam update eta inertia) Type: MSG(packages/gblearn2/gb-
params.lsh) Last Modified: 2002-12-18 23:27:25

simple gradient descent update. This will use momentum if the inertia pa-
rameter is non zero. CAUTION: the deltas slot is not updated if the inertia
is zero. When inertia is non zero , the deltas are updated as follows: deltas



9.1. GBLEARN2: MACHINE LEARNING LIBRARY 549

= (1-inertia)*dx + inertia*deltas (where dx is the gradient) and the pa-
rameters are subsequently updated as follows: x = eta*deltas .

idx1-dparam-eps

(packages/gblearn2/gb-params.lsh) Last Modified: 2002-12-18 23:27:25
gb-param class for gradient descent with separate epsilons for each parameter
(new idx1-dparam-eps s sts) Type: CLASS(packages/gblearn2/gb-params.lsh)

Last Modified: 2002-12-18 23:27:25
s is a size (possibly zero) , and sts is the initial storage size which must be

larger than zero , and (can be larger than s to avoid unnecessary reallocs when
the size of the param is increased.

(==> idx1-dparam-eps update eta inertia) Type: MSG(packages/gblearn2/gb-
params.lsh) Last Modified: 2002-12-18 23:27:25

simple gradient descent update with one individual learning rate per param-
eter. eta is a global learning rate by which each individual parameter learning
rate will be multiplied. This will perform an update ”with momentum” if the
inertia parameter is non zero. CAUTION: the deltas slot is not updated if
inertia is zero. When inertia is non zero , the deltas are updated as fol-
lows: deltas = (1-inertia)*dx + inertia*deltas (where dx is the gradi-
ent) and the parameters are subsequently updated as follows: x = eta*deltas
.

(==> idx1-dparam-eps set-epsilons m) Type: MSG(packages/gblearn2/gb-
params.lsh) Last Modified: 2002-12-18 23:27:25

copy the values in vector m to epsilons
(==> idx1-dparam-eps set-epsilons m) Type: MSG(packages/gblearn2/gb-

params.lsh) Last Modified: 2002-12-18 23:27:25
copy the values in vector m to epsilons

idx1-ddparam

(packages/gblearn2/gb-params.lsh) Last Modified: 2002-12-18 23:27:25
a gb-param class for the stochastic diagonal levenberg-marquardt algorithm.

In addition to the usual update method , it has an update-bbprop method for
computing the second derivatives , and a set-epsilons method to set the epsilons
using the second derivatives.

(new idx1-ddparam s alloc) Type: CLASS(packages/gblearn2/gb-params.lsh)
Last Modified: 2002-12-18 23:27:25

s is the size (can be 0) alloc is the size of storages to be preallocated.
This will prevent memory fragmentation when the size of the gb-param is sub-
sequently increased.

(==> idx1-ddparam update-ddeltas knew kold) Type: MSG(packages/gblearn2/gb-
params.lsh) Last Modified: 2002-12-18 23:27:25

update average second derivative ddeltas as follows: ddeltas = knew*ddx
+ kold*ddletas . where ddx is the instantaneous second derivative.



550 CHAPTER 9. PACKAGES

(==> idx1-ddparam saliencies) Type: MSG(packages/gblearn2/gb-params.lsh)
Last Modified: 2002-12-18 23:27:25

Compute the parameters saliencies as defined by the Optimal Brain Damage
algorithm of (LeCun , Denker , Solla , NIPS 1989). This uses the average first
and second derivatives of the energy with respect to each parameter to compute
a saliency for each weight. The saliency is an estimate of how much the energy
would increase by if the parameter was set to zero. It is computed as: Si =
-Gi * Wi + 1/2 Hii * Wi^2 . A vector of saliencies is returned. The deltas
and ddeltas field must have relevant values before this function is called.

(==> idx1-ddparam compute-epsilons mu) Type: MSG(packages/gblearn2/gb-
params.lsh) Last Modified: 2002-12-18 23:27:25

compute and set the epsilons using the second derivative. this method should
be called after a few iteration of update-bbprop

9.1.8 Module Libraries

modules

(packages/gblearn2/gb-modules.lsh) Author(s): Yann LeCun Last Modified:
2002-12-18 23:27:25

In Lush, building and training a complex system is done by assembling basic
blocks, called modules. Modules are subclasses of the class gb-module. Though
there are several predefined module classes, you can define your own pretty
easily. modules must understand 2 basic methods, fprop and bprop, whose
arguments are the inputs and outputs of the module. Optionally most module
should understand a bbprop method for computing diagonal second derivatives.
Modules can have as many input/output ”ports” as desired. these ”ports”
are passed as arguments to the methods that require them, such as fprop and
bprop. In most cases, these arguments belong to the class idx-state, or one of its
subclasses. Some modules may have internal trainable parameters. When this
is the case, an idx3-ddparam object must be passed to the constructor. Internal
parameters will then be allocated in that param. the bprop and bbprop methods
ACCUMULATE gradients in these parameters so multiple modules can share
a single parameter and automatically compute the correct gradient. Gradients
on input ports are NOT accumulated.

A special class called trainer provides a convenient way to train and test
a module combined with pre- and post-processors. Once a module has been
created, inserting it in an instance of the trainer class is the easiest and fastest
way to train it on a database and to measure its performance. the trainer
class understands methods such as train, test etc... Most of these methods take
instances of database as argument. They also take another argument called a
meter. A meter is an object whose role is to keep track of the performance of the
machine during a training or test session. trainers, meters, and databases can
be put in an instance of workbench that handles standard learning sequences
(estimate second derivatives, train, test....)

A certain number of predefined basic modules are provided in modules.sn.



9.1. GBLEARN2: MACHINE LEARNING LIBRARY 551

This includes idx3-module, a ”root” class of moduless with one input and one
output, both of type idx3-state. Many predefined modules are subclasses of
idx3-module. Also included are idx3-squasher (sigmoid layer), logadd-layer
(transforms a idx3-state into an idx1-state by log-adding over the 2 spatial
dimensions), mle-cost (cost module for minimizing the cost of the desired out-
put).

gb-module (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-18
23:27:25

The class gb-module is the basic class for objects that can be used with the
library of training routines. Specific trainable modules and cost functions etc...
are subclasses of gb-module and can be combined to build complex adaptive
machines. gb-module are expected to accept at least the methods fprop ,
bprop , and optionally the following methods: bbprop , load , and save .
the external ”plugs” of a gb-module are passed as argument to the methods.
For example , the fprop method of a module with one input vector and one
output vector , and one parameter vector can be called with

(==> <gb-module> fprop <input> <parameter> <output>)

where input , parameter and output are instances of the gb-state or one
of its subclasses. As a convention , the methods fprop , bprop , and bbprop
take the same arguments in the same order. Results of these methods are
accumulated in the appropriate slot of the objects passed as paramters. This
allows modules to share inputs and outputs while preserving the correctness of
forward and backward propagations

a few convenient subclasses of gb-module are predefined in the gblearn2
library. This includes cost functions , classifiers , and others.

(==> gb-module fprop [args]) Type: MSG(packages/gblearn2/gb-modules.lsh)
Last Modified: 2002-12-18 23:27:25

performs a forward propagation on the gb-module . args are optional ar-
guments which represent the external ”plugs” of the module. When possible,
modules with variable size outputs resize their output ports automatically.

See: (==> gb-module bprop [ args ])
See: (==> gb-module bbprop [ args ])
(==> gb-module bprop [args]) Type: MSG(packages/gblearn2/gb-modules.lsh)

Last Modified: 2002-12-18 23:27:25
performs a backward propagation on the gb-module (propagates deriva-

tives). args are optional arguments which represent the external ”plugs” of the
module. By convention, the list of args is the same as for the fprop method.
bprop assumes fprop has been called beforehand. If the module has internal
parameters, the bprop method will ACCUMULATE the gradients in it, so that
multiple modules can share the same parameters

See: (==> gb-module fprop [ args ])
See: (==> gb-module bbprop [ args ])
(==> gb-module bbprop [args]) Type: MSG(packages/gblearn2/gb-modules.lsh)

Last Modified: 2002-12-18 23:27:25



552 CHAPTER 9. PACKAGES

performs a backward propagation of second derivatives on the gb-module
args are optional arguments which represent the external ”plugs” of the mod-
ule. By convention, the list of args is the same as for the fprop method. bbprop
assumes fprop and bprop have been run beforehand. If the module has internal
parameters, the bbprop method will ACCUMULATE second derivatives in it,
so that multiple modules can share the same parameters

See: (==> gb-module fprop [ args ])
See: (==> gb-module bprop [ args ])
noop-module (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-

12-18 23:27:25
a module that does not do anything (a place-holder). This is NOT an

identity-function module not compilable
See: id-module
See: gb-module
id-module (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-18

23:27:25
identity function module. It’s a straight pass-through forward and backward.

arguments must be idx-ddstates non compilable.
idx4-module (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-

18 23:27:25
a basic ”root” class for modules that have one single idx-state input and one

single idx4-state output. the fprop , bprop and bbprop methods of this root
class merely act as identity functions

idx3-module (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-
18 23:27:25

a basic ”root” class for modules that have one single idx-state input and one
single idx3-state output. the fprop , bprop and bbprop methods of this root
class merely act as identity functions

idx2-module (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-
18 23:27:25

a basic ”root” class for modules that have one single idx-state input and one
single idx2-state output. the fprop , bprop and bbprop methods of this root
class merely act as identity functions

idx1-module (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-
18 23:27:25

a basic ”root” class for modules that have one single idx-state input and one
single idx1-state output. the fprop , bprop and bbprop methods of this root
class merely act as identity functions

idx4-squasher (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-
12-18 23:27:25

a basic squashing function layer for idx4-state you can udefine subclasses of
this to change the squashing function

idx3-squasher (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-
12-18 23:27:25

a basic squashing function layer for idx3-state you can udefine subclasses of
this to change the squashing function



9.1. GBLEARN2: MACHINE LEARNING LIBRARY 553

idx4-halfsquare (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-
12-18 23:27:25

takes half square of each component.
idx3-halfsquare (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-

12-18 23:27:25
takes half square of each component.
logadd-layer (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-

18 23:27:25
performs a log-add over spatial dimensions of an idx3-state output is an

idx1-state
cost (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-18 23:27:25
costs are a special type of modules (although there is no definite subclass

for them) with two inputs and one output. the output is an idx0-ddstate which
stores a cost or energy. one of the inputs is meant to be the output of another
module (e.g. a network) , and the other input a desired output (or any kind of
supervisor signal like a reinforcement). the gradient slot (dx) of the output state
is generally filled with +1. That way , the bprop method of the cost module
automatically computes the gradient.

idx3-cost (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-18
23:27:25

abstract class for a cost function that takes an idx3-state as input , an int
as desired output , and an idx0-state as energy.

mle-cost (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-18
23:27:25

a cost module that propagates the output corresponding to the desired label.
If the output is interpreted as a negative log likelihood , minimizing this output
is equivalent to maximizing the likelihood. outputs are log-added over spatial
dimensions in case of spatial replication.

(new mle-cost classes si sj) Type: CLASS(packages/gblearn2/gb-modules.lsh)
Last Modified: 2002-12-18 23:27:25

make a new mle-cost. classes is an integer vector which contains the labels
associated with each output. From that vector , the reverse table is constructed
to map labels to class indices. Elements in classes must be positive or 0 ,
and not be too large , as a table as large as the maximum value is allocated.
si and sj are the expected maximum sizes in the spatial dimensions (used for
preallocation to prevent memory fragmentation).

mmi-cost (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-18
23:27:25

a cost function that maximizes the mutual information between the actual
output and the desired output. This assumes that the outputs are costs , or
negative log likelihoods. this modules accepts spatially replicated inputs.

(new mmi-cost classes priors si sj prm) Type: CLASS(packages/gblearn2/gb-
modules.lsh) Last Modified: 2002-12-18 23:27:25

make a new mmi-cost. classes is an integer vector which contains the labels
associated with each output. From that vector , the reverse table is constructed
to map labels to class indices. Elements in classes must be positive or 0 ,



554 CHAPTER 9. PACKAGES

and not be too large , as a table as large as the maximum value is allocated.
priors : an idx1 of gbtypes , whose size must be the size of classes +1. It
specifies the prior probability for each class , and for the junk class. The prior
for the junk class must be in the last element. In absence of a better guess ,
the prior vector should be filled with 1/n , where n is its size. si and sj are
the expected maximum sizes in the spatial dimensions (used for preallocation
to prevent memory fragmentation). prm is an idx1-ddparam in which the value
that determines the constant cost of the junk class will be stored. If the system
is to be trained without junk examples , this parameter can be set to a very
large value , and not be trained. The effect of setting this parameter to a fixed
value is to softly saturate the costs of all the class to the half-square of that
value (the overall energy will never be significantly larger then the half-square
of the set value) , and to softly clip the gradients , i.e. the units whose cost is
higher than the half-square of the set value will receive negligible gradients. The
parameter can be learned ONLY IF junk examples (with label -1) are present in
the training set. There is a method , called set-junk-cost that allows to directly
set the value of the junk without having to figure out the half-square business.

(==> mmi-cost set-junk-cost c) Type: MSG(packages/gblearn2/gb-modules.lsh)
Last Modified: 2002-12-18 23:27:25

set the constant cost of the junk class to c . the underlying parameter is
given the value (sqrt (* 2 c )) , so c must be positive.

edist-cost (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-18
23:27:25

a replicable Euclidean distance cost function. computes the log-sum over the
2D spatial output of the half squared error between the output and the prototype
with the desired label. this does not generate gradients on the prototypes

(new edist-cost classes si sj p) Type: CLASS(packages/gblearn2/gb-
modules.lsh) Last Modified: 2002-12-18 23:27:25

make a new edist-cost. classes is an integer vector which contains the
labels associated with each output. From that vector , the reverse table is con-
structed to map labels to class indices. Elements in classes must be positive or
0 , and not be too large , as a table as large as the maximum value is allocated.
si and sj are the expected maximum sizes in the spatial dimensions (used for
preallocation to prevent memory fragmentation). p is an idx2 containing the
prototype for each class label. The first dimension of p should be equal to the
dimension of classes . the second dimension of p should be equal to the
number of outputs of the previous module. The costs are ”log-summed” over
spatial dimensions

wedist-cost (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-
18 23:27:25

a replicable weighted Euclidean distance cost function. computes the log-
sum over the 2D spatial output of the weighted half squared error between
the output and the prototype with the desired label. this does not generate
gradients on the prototypes.

(new wedist-cost classes si sj p w) Type: CLASS(packages/gblearn2/gb-
modules.lsh) Last Modified: 2002-12-18 23:27:25



9.1. GBLEARN2: MACHINE LEARNING LIBRARY 555

make a new wedist-cost. classes is an integer vector which contains the
labels associated with each output. From that vector , the reverse table is con-
structed to map labels to class indices. Elements in classes must be positive or
0 , and not be too large , as a table as large as the maximum value is allocated.
si and sj are the expected maximum sizes in the spatial dimensions (used for
preallocation to prevent memory fragmentation). p is an idx2 containing the
prototype for each class label , and w is an idx2 with a single weight for each
of these prototype and each of its elements. The first dimension of p (and w )
should be equal to the dimension of classes . the second dimension of p (and
w ) should be equal to the number of outputs of the previous module. The costs
are ”log-summed” over spatial dimensions

weighted-mse-cost (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-
12-18 23:27:25

This is similar to wedist-cost but the weights matrix may run over patterns.
The desired output vector has size two: the first element gives the class label ,
and the second element gives the position (row) in the weights matrix to use for
the weighted euclidean distance. It is a replicable weighted Euclidean distance
cost function. computes the log-sum over the 2D spatial output of the weighted
half squared error between the output and the prototype with the desired label.
this does not generate gradients on the prototypes

(new weighted-mse-cost classes si sj p w) Type: CLASS(packages/gblearn2/gb-
modules.lsh) Last Modified: 2002-12-18 23:27:25

make a new weighted-mse-cost. classes is an integer vector which contains
the labels associated with each output. From that vector , the reverse table
is constructed to map labels to class indices. Elements in classes must be
positive or 0 , and not be too large , as a table as large as the maximum
value is allocated. si and sj are the expected maximum sizes in the spatial
dimensions (used for preallocation to prevent memory fragmentation). p is an
idx2 containing the prototype for each class label , and w is an idx2 with a
single weight for each of these prototype and each of its elements. The first
dimension of p (and w ) should be equal to the dimension of classes . the
second dimension of p (and w ) should be equal to the number of outputs of
the previous module. The costs are ”log-summed” over spatial dimensions

ledist-cost (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-18
23:27:25

a replicable Euclidean distance cost function with LOCAL TARGETS at
each position. Target prototypes are associated to classes. The cost is the
sum over the 2D output of the half squared error between the local output and
the prototype with the desired label at that position. This does not generate
gradients on the prototypes

(new ledist-cost classes p) Type: CLASS(packages/gblearn2/gb-modules.lsh)
Last Modified: 2002-12-18 23:27:25

make a new ledist-cost. classes is an integer vector which contains the
labels associated with each output. From that vector , the reverse table is con-
structed to map labels to class indices. Elements in classes must be positive or
0 , and not be too large , as a table as large as the maximum value is allocated.



556 CHAPTER 9. PACKAGES

p is an idx2 containing the prototype for each class label. The first dimension
of p should be equal to the dimension of classes . the second dimension of
p should be equal to the number of outputs of the previous module. The costs
are summed over spatial dimensions.

Classifiers

(packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-18 23:27:25
idx3-classifier (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-

12-18 23:27:25
The idx3-classifier module take an idx3-state as input and produce

a class-state on output. A class-state is used to represent the output of
classifiers with a discrete set of class labels.

min-classer (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-
18 23:27:25

a module that takes an idx3-state , finds the lowest value and output the
label associated with the index (in the first dimension of the state) of this lowest
value. It actually sorts the labels according to their score (or costs) and outputs
the sorted list.

(new min-classer classes) Type: CLASS(packages/gblearn2/gb-modules.lsh)
Last Modified: 2002-12-18 23:27:25

makes a new min-classer. classes is an integer vector which contains the
labels associated with each output.

max-classer (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-
18 23:27:25

a module that takes an idx3-state , finds the lowest value and output the
label associated with the index (in the first dimension of the state) of this lowest
value. It actually sorts the labels according to their score (or costs) and outputs
the sorted list.

(new max-classer classes) Type: CLASS(packages/gblearn2/gb-modules.lsh)
Last Modified: 2002-12-18 23:27:25

makes a new max-classer. classes is an integer vector which contains the
labels associated with each output.

edist-classer (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-
18 23:27:25

a replicable Euclidean distance pattern matcher , which finds the class proto-
type ”closest” to the output , where ”close” is based on the log-added euclidean
distances between the prototype and the output at various positions. This cor-
responds to finding the class whose a-posteriori probability is largest , when
P(c—data) = sum [position=x] P(c at x —data at x) / n positions and the
priors over classes are uniform , and the local class likelihoods P(data at x — c
at x) are Gaussian with unit variance and mean = prototype(c).

ledist-classer (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-
18 23:27:25

a replicable Euclidean distance pattern matcher , which finds the class pro-
totype closest to the output for the vectors at each position in the output image.



9.1. GBLEARN2: MACHINE LEARNING LIBRARY 557

(new ledist-classer classes p) Type: CLASS(packages/gblearn2/gb-modules.lsh)
Last Modified: 2002-12-18 23:27:25

make a new ledist-classer. classes is an integer vector which contains the
labels associated with each prototype. p is an idx2 containing the prototype for
each class label. The first dimension of p should be equal to the dimension of
classes . the second dimension of p should be equal to the number of outputs
of the previous module.

mmi-classer (packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-
18 23:27:25

a classifier that computes class scores based on an MMI type criterion (a
kind of softmax in log) It gives scores (cost) for all classes including junk. It
should be used in conjunction with mmi-cost. This assumes that the output of
the previous module are costs , or negative log likelihoods. this modules accepts
spatially replicated inputs.

(new mmi-classer classes priors si sj prm) Type: CLASS(packages/gblearn2/gb-
modules.lsh) Last Modified: 2002-12-18 23:27:25

makes a new mmi-classer. The arguments are identical to that of mmi-cost.
In fact if an mmi-classer is to used in conjunction with an mmi-cost , they should
share the prior vector and the parameter. sharing the parameter can be done
by first building the classer , then reducing the size of the parameter by one ,
then creating the cost.

(==> mmi-classer set-junk-cost c) Type: MSG(packages/gblearn2/gb-
modules.lsh) Last Modified: 2002-12-18 23:27:25

set the constant cost of the junk class to c . the underlying parameter is
given the value (sqrt (* 2 c )) , so c must be positive. BE CAREFUL that the
junk parameter of an mmi-classer is usually shared by an mmi-cost , changing
one will change the other.

(build-ascii-proto targets charset) (packages/gblearn2/gb-modules.lsh)
Last Modified: 2002-12-18 23:27:25

idx3-supervised-module

(packages/gblearn2/gb-modules.lsh) Last Modified: 2002-12-18 23:27:25
a module that takes an idx3 as input , runs it through a machine , and runs

the output of the machine through a cost function whose second output is the
desired label stored in an idx0 of int.

Basic Neural Net Modules

(packages/gblearn2/gb-modules-nn.lsh) Author(s): Yann LeCun Last Modified:
2002-12-18 23:27:25

a bunch of standard compiled modules for building neural net architectures:
sigmoids , RBF , fully connected , convolutions , subsampling layers. Each of
these classes has methods for fprop , bprop , bbprop , load , save , forget , and
setting various parameters.



558 CHAPTER 9. PACKAGES

f-layer (packages/gblearn2/gb-modules-nn.lsh) Last Modified: 2002-12-18
23:27:25

full connection between replicable 3D layers the full connection is only across
the first dimension of the input and output layer. the other two dimensions are
spatial dimensions accross which the weight matrix is shared. This is much
more efficient than using a c-layer with a 1x1 convolution and a full-table.

(new f-layer tin tout si sj sqsh) Type: CLASS(packages/gblearn2/gb-
modules-nn.lsh) Last Modified: 2002-12-18 23:27:25

makes a new replicable fully-connected layer. tin and tout are the number
of units in the input and output. si and sj are the vertical and horizontal
sizes used for pre-allocating the internal state variables (they , as well as the
output. are automatically resized , but the resizing is more efficient of it is a
downsizing).

(==> f-layer save file) Type: MSG(packages/gblearn2/gb-modules-
nn.lsh) Last Modified: 2002-12-18 23:27:25

save weights and biases
(==> f-layer load file) Type: MSG(packages/gblearn2/gb-modules-

nn.lsh) Last Modified: 2002-12-18 23:27:25
load weights and biases
(==> f-layer set-squash squash) Type: MSG(packages/gblearn2/gb-

modules-nn.lsh) Last Modified: 2002-12-18 23:27:25
sets the squashing function to squash . squash must be an instance of the

the class idx3-module .
(==> f-layer forget v p) Type: MSG(packages/gblearn2/gb-modules-

nn.lsh) Last Modified: 2002-12-18 23:27:25
initialize weights to random values uniformly distributed between -c and c ,

where c is v/(faninˆ(1/p)). reasonnable values for v and p are 2.5 and 2.
(==> f-layer fprop in out) Type: MSG(packages/gblearn2/gb-modules-

nn.lsh) Last Modified: 2002-12-18 23:27:25
forward prop with in as input and out as output. in and out must both

be idx3-state .
(==> f-layer bprop in out) Type: MSG(packages/gblearn2/gb-modules-

nn.lsh) Last Modified: 2002-12-18 23:27:25
backward prop with in as input and out as output. in and out must

both be idx3-state .
(==> f-layer bbprop in out) Type: MSG(packages/gblearn2/gb-modules-

nn.lsh) Last Modified: 2002-12-18 23:27:25
backward prop of second derivatives with in as input and out as output.

in and out must both be idx3-state .
e-layer (packages/gblearn2/gb-modules-nn.lsh) Last Modified: 2002-12-18

23:27:25
full connection with Euclidean distance between replicable 3D layers. This is

like a layer of RBF WITHOUT NON-LINEAR FUNCTIONS. the output is the
square Euclidean distance between the input and the weight the full connection
is only across the first dimension of the input and output layer. the other two
dimensions are spatial dimensions accross which the weight matrix is shared.



9.1. GBLEARN2: MACHINE LEARNING LIBRARY 559

(new e-layer tin tout prm) Type: CLASS(packages/gblearn2/gb-modules-
nn.lsh) Last Modified: 2002-12-18 23:27:25

new e-layer (Eucliden distance RBF). tin is the thickness of the input layer
, tout is the thickness of the output layer , prm is the parameter.

e-layer-sparse (packages/gblearn2/gb-modules-nn.lsh) Last Modified: 2002-
12-18 23:27:25

like e-layer , but each RBF is only connected to a subset of the inputs this
should be used for ”multiple bitmap” outputs.

(new e-layer-sparse tin off prm) Type: CLASS(packages/gblearn2/gb-
modules-nn.lsh) Last Modified: 2002-12-18 23:27:25

new e-layer (Eucliden distance RBF). tin is the thickness of the input layer
(dimension of prototypes) , off is an idx1 with as many elements as there are
output. each element contains the offset in the input for the input vector of
each output. prm is the parameter.

c-layer (packages/gblearn2/gb-modules-nn.lsh) Last Modified: 2002-12-18
23:27:25

convolutional layer module. Performs multiple convolutions between an
idx3-state input and an idx3-state output. includes bias and sigmoid.

(new c-layer ki kj ri rj tbl thick si sj sqsh) Type: CLASS(packages/gblearn2/gb-
modules-nn.lsh) Last Modified: 2002-12-18 23:27:25

Creates a new convolution layer. ki (int) vertical kernel size. kj (int) hor-
izontal kernel size. ri int) vertical stride (number of pixels by which
the kernels are stepped) <rj int) horizontal stride <tbl (idx2) N by
2 matrix containing source and destination feature maps for coresponding kernel
thick (int) thickness of output layer (number of feature maps) si (int) vertical
size for preallocation of internal state sj (int) horizontal size for preallocation
of internal state sqsh (idx3-module) a squashing function module that oper-
ates on idx3-state. prm and idx1-ddparam from which the parameters will be
allocated

s-layer (packages/gblearn2/gb-modules-nn.lsh) Last Modified: 2002-12-18
23:27:25

subsampling layer class
(new s-layer ki kj thick si sj sqsh prm) Type: CLASS(packages/gblearn2/gb-

modules-nn.lsh) Last Modified: 2002-12-18 23:27:25
Creates a new subsampling layer for convolutional nets ki (int) vertical

subsampling ratio. kj (int) horizontal subsampling ratio. thick (int) thickness
of output layer (number of feature maps) si (int) vertical size for preallocation
of internal state sj (int) horizontal size for preallocation of internal state sqsh
(idx3-module) a squashing function module that operates on idx3-state. prm
and idx1-ddparam from which the parameters will be allocated

poly2-layer (packages/gblearn2/gb-modules-nn.lsh) Last Modified: 2002-
12-18 23:27:25

output all input variables and all cross-products of two variables



560 CHAPTER 9. PACKAGES

net-ff

(packages/gblearn2/net-ff.lsh) Author(s): Yann LeCun Last Modified: 2002-12-
18 23:27:25

standard one-hidden layer, fully-connected neural net. this network is repli-
cable.

(new net-ff thickin thick0 thick1 ini inj prm) Type: CLASS(packages/gblearn2/net-
ff.lsh) Last Modified: 2002-12-18 23:27:25

create a new net-ff network.

<thickin>: number of inputs.
<thick0>: size of hidden layer
<thick1>: number of outputs
<ini> <inj>: expected max size of input over which the network

shbould be replicated.
<prm> an idx1-ddparam in which the parameters will be allocated.

net-c

(packages/gblearn2/net-c.lsh) Author(s): Yann LeCun Last Modified: 2002-12-
18 23:27:25

a neural net class with one convolutional layer and one fully connected layer.
The main purpose of this class is to make replicable fully connected networks.
Unlike with net-ff, the input spatial dimensions are treated correctly here. So
if you want to recognize characters, use this class rather than net-ff.

(new net-c ini inj ki0 kj0 inthick outthick prm) Type: CLASS(packages/gblearn2/net-
c.lsh) Last Modified: 2002-12-18 23:27:25

makes a new net-cscscf module. ini inj : expected max size of input for
preallocation of internal states ki0 kj0 : kernel size for first convolutional layer
a standard fully-connected network can be obtained when ini = ki0 and inj
= kj0 . inthick : number of input slices outthick : number of outputs. prm
an idx1-ddparam in which the parameters will be allocated.

net-cf

(packages/gblearn2/net-cf.lsh) Last Modified: 2002-12-18 23:27:25
a neural net class with one convolutional layer and one fully connected layer.

The main purpose of this class is to make replicable fully connected networks.
Unlike with net-ff , the input spatial dimensions are treated correctly here. So
if you want to recognize characters , use this class rather than net-ff.

(new net-cf ini inj ki0 kj0 tbl0 outthick prm) Type: CLASS(packages/gblearn2/net-
cf.lsh) Last Modified: 2002-12-18 23:27:25

makes a new net-cscscf module. ini inj : expected max size of input
for preallocation of internal states ki0 kj0 : kernel size for first convolutional
layer a standard fully-connected network can be obtained when ini = ki0 and
inj = kj0 . tbl0 : table of connections between input anf feature maps for



9.1. GBLEARN2: MACHINE LEARNING LIBRARY 561

first layer outthick : number of outputs. prm an idx1-ddparam in which the
parameters will be allocated.

net-cfe

(packages/gblearn2/net-cfe.lsh) Author(s): Yann LeCun Last Modified: 2002-
12-18 23:27:25

neural net with one convolutional layer, one (replicable) fully-connected
layer, and one RBF (euclidiean distance) layer.

(new net-cfe n e thick si sj) Type: CLASS(packages/gblearn2/net-
cfe.lsh) Last Modified: 2002-12-18 23:27:25

create a new net-cfe. n is a net-cf , e is a e-layer , thick is the number of
outputs , and si , sj are the number of output replications.

net-cff

(packages/gblearn2/net-cff.lsh) Author(s): Yann LeCun Last Modified: 2002-
12-18 23:27:25

a neural net class with one convolutional layer and two fully connected lay-
ers. The main purpose of this class is to make replicable 2-hidden layer fully
connected networks.

(new net-cff ini inj ki0 kj0 tbl0 f1thick outthick prm) Type: CLASS(packages/gblearn2/net-
cff.lsh) Last Modified: 2002-12-18 23:27:25

makes a new net-cff module. ini inj : expected max size of input for
preallocation of internal states ki0 kj0 : kernel size for first convolutional layer
a standard fully-connected network can be obtained when ini = ki0 and inj
= kj0 . tbl0 : table of connections between input anf feature maps for first
layer f1thickk : number of hidden units in second hidden layer. outthick
: number of outputs. prm an idx1-ddparam in which the parameters will be
allocated.

net-ccc

(packages/gblearn2/net-ccc.lsh) Author(s): Yann LeCun Last Modified: 2002-
12-18 23:27:25

convolutional net with 3 convolutional layers.
(new net-ccc ini inj ki0 kj0 tbl0 ki1 kj1 tbl1 ki2 kj2 tbl2 prm) Type:

CLASS(packages/gblearn2/net-ccc.lsh) Last Modified: 2002-12-18 23:27:25
makes a new net-ccc module. ini inj : expected max size of input for pre-

allocation of internal states ki0 kj0 : kernel size for first convolutional layer
tbl0 : table of connections between input anf feature maps for first layer ki1
kj1 tbl1 : kernel and table for next layer ki2 kj2 tbl2 : same for last con-
volution layer prm an idx1-ddparam in which the parameters will be allocated.



562 CHAPTER 9. PACKAGES

net-cscf

(packages/gblearn2/net-cscf.lsh) Author(s): Yann LeCun Last Modified: 2002-
12-18 23:27:25

convolutional net where the layers are convolution, subsampling, convolu-
tion, full connect.

(new net-cscf ini inj ki0 kj0 tbl0 si0 sj0 ki2 kj2 tbl2 outthick
prm) Type: CLASS(packages/gblearn2/net-cscf.lsh) Last Modified: 2002-12-18
23:27:25

makes a new net-cscf module. ini inj : expected max size of input for
preallocation of internal states ki0 kj0 : kernel size for first convolutional layer
tbl0 : table of connections between input anf feature maps for first layer si0
sj0 : subsampling for first layer ki2 kj2 tbl2 : same for last convolution layer
outthick : number of outputs. prm an idx1-ddparam in which the parameters
will be allocated.

net-cscfe

(packages/gblearn2/net-cscfe.lsh) Author(s): Yann LeCun Last Modified: 2002-
12-18 23:27:25

convolutional net where the layers are convolution, subsampling, convolu-
tion, full connect, and euclidean distance RBF.

(new net-cscfe n e thick si sj) Type: CLASS(packages/gblearn2/net-
cscfe.lsh) Last Modified: 2002-12-18 23:27:25

n is a net-cscf , e is an e-dist layer , thick is the number of outputs. si ,
sj are the initial replication factors.

net-csccf

(packages/gblearn2/net-csccf.lsh) Author(s): Yann LeCun Last Modified: 2002-
12-18 23:27:25

a standard LeNet2/LeNet5 architecture without the last RBF layer (look
into net-cscscfe for that).

(new net-csccf ini inj ki0 kj0 tbl0 si0 sj0 ki1 kj1 tbl1 ki2 kj2 tbl2
outthick prm) Type: CLASS(packages/gblearn2/net-csccf.lsh) Last Modified:
2002-12-18 23:27:25

makes a new net-csccf module. ini inj : expected max size of input for
preallocation of internal states ki0 kj0 : kernel size for first convolutional layer
tbl0 : table of connections between input anf feature maps for first layer si0
sj0 : subsampling for first layer ki1 kj1 tbl1 : kernel and table for next
layer ki2 kj2 tbl2 : same for last convolution layer outthick : number of
outputs. prm an idx1-ddparam in which the parameters will be allocated.

net-cscscf

(packages/gblearn2/net-cscscf.lsh) Author(s): Yann LeCun Last Modified: 2002-
12-18 23:27:25



9.1. GBLEARN2: MACHINE LEARNING LIBRARY 563

Standard LeNet5-type architecture without the final e-dist RBF layer.
(new net-cscscf ini inj ki0 kj0 tbl0 si0 sj0 ki1 kj1 tbl1 si1 sj1

ki2 kj2 tbl2 outthick prm) Type: CLASS(packages/gblearn2/net-cscscf.lsh)
Last Modified: 2002-12-18 23:27:25

makes a new net-cscscf module. ini inj : expected max size of input for
preallocation of internal states ki0 kj0 : kernel size for first convolutional layer
tbl0 : table of connections between input anf feature maps for first layer si0
sj0 : subsampling for first layer ki1 kj1 tbl1 si1 sj1 : same for next 2
layers ki2 kj2 tbl2 : same for last convolution layer outthick : number of
outputs. prm an idx1-ddparam in which the parameters will be allocated.

net-cscscfe

(packages/gblearn2/net-cscscfe.lsh) Author(s): Yann LeCun Last Modified: 2002-
12-18 23:27:25

Standard LeNet5-type architecture.
(new net-cscscfe n e thick si sj) Type: CLASS(packages/gblearn2/net-

cscscfe.lsh) Last Modified: 2002-12-18 23:27:25
n is a net-cscscf , e is an e-dist layer , thick is the number of outputs. si

, sj are the initial replication factors.

net-cscscscf

(packages/gblearn2/net-cscscscf.lsh) Author(s): Yann LeCun Last Modified:
2002-11-26 15:22:59

A deep convolutional net, with one convo/subsamp set than LeNet5.
(new net-cscscscf ini inj ki0 kj0 tbl0 si0 sj0 ki1 kj1 tbl1 si1 sj1

ki2 kj2 tbl2 si2 sj2 ki3 kj3 tbl3 outthick prm) Type: CLASS(packages/gblearn2/net-
cscscscf.lsh) Last Modified: 2002-11-26 15:22:59

makes a new net-cscscf module. ini inj : expected max size of input
for preallocation of internal states ki0 kj0 : kernel size for first convolutional
layer tbl0 : table of connections between input and feature maps for first layer
si0 sj0 : subsampling for first layer ki1 kj1 tbl1 si1 sj1 : same for next
2 layers... ki2 kj2 tbl2 si2 sj2 : ...and the next 2 ki3 kj3 tbl3 : same
yet again for last convolution layer outthick : number of outputs. prm an
idx1-ddparam in which the parameters will be allocated.

lenet5

(packages/gblearn2/net-lenet5.lsh) Last Modified: 2002-11-26 12:24:37
LeNet5 is a convolutional network architecture described in several publica-

tions , notably in [LeCun , Bottou , Bengio and Haffner 1998]: ”gradient-based
learning applied to document recognition” , Proc IEEE , Nov 1998. The paper
is also available at [http://yann.lecun.com ].

(new-lenet5 image-height image-width ki0 kj0 si0 sj0 ki1 kj1 si1
sj1 hid output-size net-param) (packages/gblearn2/net-lenet5.lsh) Last Mod-
ified: 2002-11-26 12:24:37



564 CHAPTER 9. PACKAGES

create a new instance of net-cscscf implementing a LeNet-5 type convolu-
tional neural net. This network has regular sigmoid units on the output , not
an extra RBF layer as described in the Proc. IEEE paper. The network has 6
feature maps at the first layer and 16 feature maps at the second layer with a
connection matrix between feature maps as described in the paper. Arguments:

<image-height> <image-width>: height and width of input image
<ki0> <kj0>: height and with of convolutional kernel, first layer.
<si0> <sj0>: subsampling ratio of subsampling layer, second layer.
<ki1> <kj1>: height and with of convolutional kernel, third layer.
<si1> <sj1>: subsampling ratio of subsampling layer, fourth layer.
<hid>: number of hidden units, fifth layer
<output-size>: number of output units
<net-param>: idx1-ddparam that will hold the trainable parameters

of the network

example

(setq p (new idx1-ddparam 0 0.1 0.02 0.02 80000))
(setq z (new-lenet5 32 32 5 5 2 2 5 5 2 2 120 10 p))

ccc-tdnn

(packages/gblearn2/ccc-tdnn.lsh) Author(s): Yann LeCun Last Modified: 2002-
12-17 21:36:10

Class for a Time Delay Neural Network with 3 convolutional layers (with
local connectivity). This type of network is appropriate for classifying sequences
of time/frequency represnetations such as cepstrum, MEL Scale spectrum, and
other.

(build-ccc-tdnn params freqs max-seq-len fk1 fs1 nh1 tk1 fk2 fs2
nh2 tk2 fk3 fs3 nh3 tk3) (packages/gblearn2/ccc-tdnn.lsh) Last Modified:
2002-12-17 21:36:10

Build a Time-Delay Neural Network for data such as spectral sequences in
which the features have a topology, choosing the connection tables to obtain
local connections in feature space (as specified by kernel size and stride for the
frequency axis, for each of these layers). The input to the net is assumed to
be Fx1xT where F is for example the number of frequency channels (spectral
representation) and T is the length of the sequence. Here, the network has 3
convolutional layers. The arguments are the following:

- <params> is a idx1-ddparam on which to allocate parameters for the layers.
- <freqs> is the number of input frequency channels.
- <max-seq-len> = maximum sequence length.
- <fk1>,<fk2>,<fk3> = sizes of frequency kernels (= width of local freq. windows)
- <fs1>,<fs2>,<fs3> = step sizes which separate the successive frequency windows



9.1. GBLEARN2: MACHINE LEARNING LIBRARY 565

- <nh1>,<nh2>,<nh3> = number of hidden units per frequency channel, for each layer
- <tk1>,<tk2>,<tk3> = sizes of the temporal kernels, for each layer.

(tdnn-present-pattern from to mean idev temporal-window-size) (packages/gblearn2/ccc-
tdnn.lsh) Last Modified: 2002-12-17 21:36:10

from is a Txf source matrix , to is a fx1xT’ destination state (T’ = T +
temporal-window-size - 1) , mean is a f-vector to substract from source , idev
is a f-vector to multiply by source. temporal-window-size is the length of the
input of the network yielding an output of length 1.

norm-ftdnn (packages/gblearn2/ccc-tdnn.lsh) Last Modified: 2002-12-17
21:36:10

Wrapper around ccc-tdnn which does input normalization and pads the input
according to the network architecture.

(new norm-ftdnn n-inputs nh1 nh2 n-outputs weight-file norm-file
[(-tk1 5)(-tk2 8)(-tk3 12) (-fk1 6)(-fk2 3)(-fk3 3) (-fs1 3)(-fs2 2)(-fs3
1) (max-seq-len 2000)]) Type: CLASS(packages/gblearn2/ccc-tdnn.lsh) Last
Modified: 2002-12-17 21:36:10

net-xx

(packages/gblearn2/net-xx.lsh) Last Modified: 2002-12-18 23:27:25
generic idx3-module with two sub-modules in series.
(new net-xx mod1 thick1 si1 sj1 mod2) Type: CLASS(packages/gblearn2/net-

xx.lsh) Last Modified: 2002-12-18 23:27:25
create new net-xx with mod1 as first module and mod2 as second module.

thick1 , si1 , sj1> are the initial sizes of the intermediate idx3-ddstate
which is the output of mod1 and the input of mod2 .

net-xxx

(packages/gblearn2/net-xxx.lsh) Last Modified: 2002-12-18 23:27:25
generic idx3-module with three sub-modules in series.
(new net-xx mod1 thick1 si1 sj1 mod2 thick2 si2 sj2 mod3) Type:

CLASS(packages/gblearn2/net-xxx.lsh) Last Modified: 2002-12-18 23:27:25
create new net-xx with mod1 as first module mod2 as second module , and

mod3 as the third module. thick1 , si1 , sj1> are the initial sizes of the
intermediate idx3-ddstate which is the output of mod1 and the input of mod2
. thick2 , si2 , sj2> are the initial sizes of the intermediate idx3-ddstate
which is the output of mod2 and the input of mod3 .

gb-conx

(packages/gblearn2/gb-conx.lsh) Author(s): Yann LeCun Last Modified: 2002-
12-18 23:27:25

A module architecture that connects inputs to outputs (with exactly one
input per output but maybe more than one output per input, i.e. a one to many
map). The inputs and outputs are bidimensional (i.e. sequences of vectors). It



566 CHAPTER 9. PACKAGES

has no adjustable parameters. Instead it has internal non-adjustable parameters
specifying the input/output connectivity.

(new gb-conx n-outputs n-inputs indices) Type: CLASS(packages/gblearn2/gb-
conx.lsh) Last Modified: 2002-12-18 23:27:25

Construct a gb-conx architecture. The parameters are given when construct-
ing the corresponding machine.

See: machine
See: gb-module
See: gb-conx
(==> gb-conx fprop parameters input output) Type: MSG(packages/gblearn2/gb-

conx.lsh) Last Modified: 2002-12-18 23:27:25
Fprop method for a gb-conx architecture. Just gather the inputs into the

output vectors. Both the input and output are assumed to be sequences of
vectors [i,t] (2D matrices).

See: gb-conx
(==> gb-conx bprop input output) Type: MSG(packages/gblearn2/gb-

conx.lsh) Last Modified: 2002-12-18 23:27:25
Bprop method for a gb-conx architecture. Just scatter with accumulate the

derivatives of the outputs into the derivative of the inputs. Both the input and
output are assumed to be sequences of vectors [i,t] (2D matrices).

See: gb-conx
(==> gb-conx generate input output) Type: MSG(packages/gblearn2/gb-

conx.lsh) Last Modified: 2002-12-18 23:27:25
:output:x is a matrix whose columns have zeros and a single one. According

to the permutation matrix parameters , a similar matrix :input:x is produced.
sum-arch (packages/gblearn2/gb-conx.lsh) Last Modified: 2002-12-18 23:27:25
An architecture that takes the sum of its inputs. The input is a 2D matrix

whose first index is n-inputs and second index is variable (e.g. time). The
output is zero-dimensional (an idx0). There are no parameters.

See: gb-module
See: (new sum-arch)
See: (==> sum-arch fprop parameters input output )
See: (==> sum-arch bprop parameters input output )
See: (==> sum-arch output-dim inputx )
See: (==> sum-arch generate parameters input output )
(new sum-arch) Type: CLASS(packages/gblearn2/gb-conx.lsh) Last Mod-

ified: 2002-12-18 23:27:25
Construct a sum-arch gb-module.
See: machine
See: gb-module
See: sum-arch
(==> sum-arch output-dim inputx) Type: MSG(packages/gblearn2/gb-

conx.lsh) Last Modified: 2002-12-18 23:27:25
(==> sum-arch fprop parameters input output) Type: MSG(packages/gblearn2/gb-

conx.lsh) Last Modified: 2002-12-18 23:27:25



9.2. GBLEARNING: GRADIENT-BASED LEARNING LIBRARY 567

Fprop method for a sum-arch architecture. Just add all the inputs. The
input is assumed to be any matrix (except an idx0). The output is an idx0.

See: sum-arch
(==> sum-arch bprop parameters input output) Type: MSG(packages/gblearn2/gb-

conx.lsh) Last Modified: 2002-12-18 23:27:25
Bprop method for a sum-arch architecture.
See: prod
(==> sum-arch generate parameters input output) Type: MSG(packages/gblearn2/gb-

conx.lsh) Last Modified: 2002-12-18 23:27:25
Generate a 2-d sequence of inputs. A prior distribution on sequence length

is chosen here to be uniform in [5 , 6 , ..10]. Ignore the output. For each time
step , the input vector is a vector of 0’s and a single 1 , chosen uniformly.

9.2 GBLearning: Gradient-Based Learning Li-
brary

Author(s): Yann LeCun
NOTE: this library is unsupported and obsolete. Please use the much im-

proved gblearn2 library instead.
The GBLearning Library is an object-oriented framework for building, train-

ing and testing gradient-based machine learning systems and algorithms.
It provides an extensive library of modules, such as neural net layers, convo-

lutional layers, RBFs, SoftMax and many others. Each module is implemented
as a Lush class with an ”fprop” (forward propagation), a ”bprop” (backward
propagation of gradients), and a ”bbprop” (backward propagation of diagonal
Hessian) method. Modules can be assembled into large learning machines. An
extensive collection of ”macro-modules” are provided, including various types
of convolutional networks (SDNN, TDNN, etc).

A ”trainer” class is provided to handle such things as computing a cost
function, computing gradients, and running learning procedures (parameter up-
dates).

A ”db” class is provided to handle training and test databases.
A ”workbench” class is provided to handle sequential access to training and

test databases as well a to handle performance measurements and reporting.

9.2.1 Examples and Demos

gblearning/demos/xor-example.lsh

9.2.2 modules

(packages/gblearning/modules.lsh) Author(s): Yann LeCun Last Modified: 2002-
10-14 03:30:51

In Lush, building and training a complex system is done by assembling basic
blocks, called modules. Modules are subclasses of the class sn-module. Though



568 CHAPTER 9. PACKAGES

there are several predefined module classes, you can define your own pretty
easily. modules must understand 2 basic methods, fprop and bprop, whose
arguments are the inputs and outputs of the module. Optionally most module
should understand a bbprop method for computing diagonal second derivatives.
Modules can have as many input/output ”ports” as desired. these ”ports”
are passed as arguments to the methods that require them, such as fprop and
bprop. In most cases, these arguments belong to the class idx-state, or one of its
subclasses. Some modules may have internal trainable parameters. When this
is the case, an idx3-ddparam object must be passed to the constructor. Internal
parameters will then be allocated in that param. the bprop and bbprop methods
ACCUMULATE gradients in these parameters so multiple modules can share
a single parameter and automatically compute the correct gradient. Gradients
on input ports are NOT accumulated.

A special class called trainer provides a convenient way to train and test
a module combined with pre- and post-processors. Once a module has been
created, inserting it in an instance of the trainer class is the easiest and fastest
way to train it on a database and to measure its performance. the trainer
class understands methods such as train, test etc... Most of these methods take
instances of database as argument. They also take another argument called a
meter. A meter is an object whose role is to keep track of the performance of the
machine during a training or test session. trainers, meters, and databases can
be put in an instance of workbench that handles standard learning sequences
(estimate second derivatives, train, test....)

A certain number of predefined basic modules are provided in modules.sn.
This includes idx3-module, a ”root” class of moduless with one input and one
output, both of type idx3-state. Many predefined modules are subclasses of
idx3-module. Also included are idx3-squasher (sigmoid layer), logadd-layer
(transforms a idx3-state into an idx1-state by log-adding over the 2 spatial
dimensions), mle-cost (cost module for minimizing the cost of the desired out-
put).

sn-module

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
The class sn-module is the basic class for objects that can be used with the

library of training routines. Classifiers, neural networks, HMM, cost functions
etc... are subclasses of sn-module and can be combined to build complex adap-
tive machines. sn-module are required to accept at least the following methods:
fprop, bprop and optionally the following methods: bbprop, load, save, rec-
ognize. the external ”plugs” of an sn-module are passed as argument to the
methods. For example, the fprop method of a module with one input vector
and one output vector, and one parameter vector can be called with

(==> <sn-module> fprop <input> <parameter> <output>)

where input , parameter and output are instances of the class -state. As



9.2. GBLEARNING: GRADIENT-BASED LEARNING LIBRARY 569

a convention, the methods fprop, bprop, and bbprop take the same arguments
in the same order.

a few convenient subclasses of sn-module are predefined in the library. This
includes cost functions, classifiers, trainers, and others. A convenient way of
training an sn-module is to insert it in an instance of the class trainer.

(==> sn-module fprop [args]) Type: MSG(packages/gblearning/modules.lsh)
Last Modified: 2002-10-14 03:30:51

performs a forward propagation on the sn-module . args are optional ar-
guments which represent the external ”plugs” of the module. When possible,
modules with variable size outputs resize their output ports automatically.

See: (==> sn-module bprop [ args ])
See: (==> sn-module bbprop [ args ])
(==> sn-module bprop [args]) Type: MSG(packages/gblearning/modules.lsh)

Last Modified: 2002-10-14 03:30:51
performs a backward propagation on the sn-module (propagates deriva-

tives). args are optional arguments which represent the external ”plugs” of the
module. By convention, the list of args is the same as for the fprop method.
bprop assumes fprop has been called beforehand. If the module has internal
parameters, the bprop method will ACCUMULATE the gradients in it, so that
multiple modules can share the same parameters

See: (==> sn-module fprop [ args ])
See: (==> sn-module bbprop [ args ])
(==> sn-module bbprop [args]) Type: MSG(packages/gblearning/modules.lsh)

Last Modified: 2002-10-14 03:30:51
performs a backward propagation of second derivatives on the sn-module

args are optional arguments which represent the external ”plugs” of the mod-
ule. By convention, the list of args is the same as for the fprop method. bbprop
assumes fprop and bprop have been run beforehand. If the module has internal
parameters, the bbprop method will ACCUMULATE second derivatives in it,
so that multiple modules can share the same parameters

See: (==> sn-module fprop [ args ])
See: (==> sn-module bprop [ args ])

noop-module

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
a module that does not do anything (a place-holder). This is NOT an

identity-function module not compilable
See: id-module
See: sn-module

id-module

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
identity function module. It’s a straight pass-through forward and backward.

arguments must be idx-states non compilable.



570 CHAPTER 9. PACKAGES

idx3-module

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
a basic ”root” class for modules that have one single idx-state input and one

single idx3-state output. the fprop , bprop and bbprop methods of this root
class merely act as identity functions

idx2-module

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
a basic ”root” class for modules that have one single idx-state input and one

single idx2-state output. the fprop , bprop and bbprop methods of this root
class merely act as identity functions

idx1-module

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
a basic ”root” class for modules that have one single idx-state input and one

single idx1-state output. the fprop , bprop and bbprop methods of this root
class merely act as identity functions

idx3-squasher

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
a basic squashing function layer for idx3-state you can udefine subclasses of

this to change the squashing function

idx3-halfsquare

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
takes half square of each component.

logadd-layer

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
performs a log-add over spatial dimensions of an idx3-state output is an

idx1-state
cost (packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
costs are a special type of modules (although there is no definite subclass

for them) with two inputs and one output. the output is an idx0-ddstate which
stores a cost or energy. one of the inputs is meant to be the output of another
module (e.g. a network) , and the other input a desired output (or any kind of
supervisor signal like a reinforcement). the gradient slot (dx) of the output state
is generally filled with +1. That way , the bprop method of the cost module
automatically computes the gradient.



9.2. GBLEARNING: GRADIENT-BASED LEARNING LIBRARY 571

mle-cost

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
a cost module that propagates the output corresponding to the desired label.

If the output is interpreted as a negative log likelihood , minimizing this output
is equivalent to maximizing the likelihood. outputs are log-added over spatial
dimensions in case of spatial replication.

(new mle-cost classes si sj) Type: CLASS(packages/gblearning/modules.lsh)
Last Modified: 2002-10-14 03:30:51

make a new mle-cost. classes is an integer vector which contains the labels
associated with each output. From that vector , the reverse table is constructed
to map labels to class indices. Elements in classes must be positive or 0 ,
and not be too large , as a table as large as the maximum value is allocated.
si and sj are the expected maximum sizes in the spatial dimensions (used for
preallocation to prevent memory fragmentation).

mmi-cost

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
a cost function that maximizes the mutual information between the actual

output and the desired output. This assumes that the outputs are costs , or
negative log likelihoods. this modules accepts spatially replicated inputs.

(new mmi-cost classes priors si sj prm) Type: CLASS(packages/gblearning/modules.lsh)
Last Modified: 2002-10-14 03:30:51

make a new mmi-cost. classes is an integer vector which contains the labels
associated with each output. From that vector , the reverse table is constructed
to map labels to class indices. Elements in classes must be positive or 0 ,
and not be too large , as a table as large as the maximum value is allocated.
priors : an idx1 of floats , whose size must be the size of classes +1. It
specifies the prior probability for each class , and for the junk class. The prior
for the junk class must be in the last element. In absence of a better guess ,
the prior vector should be filled with 1/n , where n is its size. si and sj are
the expected maximum sizes in the spatial dimensions (used for preallocation
to prevent memory fragmentation). prm is an idx1-ddparam in which the value
that determines the constant cost of the junk class will be stored. If the system
is to be trained without junk examples , this parameter can be set to a very
large value , and not be trained. The effect of setting this parameter to a fixed
value is to softly saturate the costs of all the class to the half-square of that
value (the overall energy will never be significantly larger then the half-square
of the set value) , and to softly clip the gradients , i.e. the units whose cost is
higher than the half-square of the set value will receive negligible gradients. The
parameter can be learned ONLY IF junk examples (with label -1) are present in
the training set. There is a method , called set-junk-cost that allows to directly
set the value of the junk without having to figure out the half-square business.

(==> mmi-cost set-junk-cost c) Type: MSG(packages/gblearning/modules.lsh)
Last Modified: 2002-10-14 03:30:51



572 CHAPTER 9. PACKAGES

set the constant cost of the junk class to c . the underlying parameter is
given the value (sqrt (* 2 c )) , so c must be positive.

edist-cost

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
a replicable Euclidean distance cost function. computes the log-sum over the

2D spatial output of the half squared error between the output and the prototype
with the desired label. this does not generate gradients on the prototypes

(new edist-cost classes si sj p) Type: CLASS(packages/gblearning/modules.lsh)
Last Modified: 2002-10-14 03:30:51

make a new edist-cost. classes is an integer vector which contains the
labels associated with each output. From that vector , the reverse table is con-
structed to map labels to class indices. Elements in classes must be positive or
0 , and not be too large , as a table as large as the maximum value is allocated.
si and sj are the expected maximum sizes in the spatial dimensions (used for
preallocation to prevent memory fragmentation). p is an idx2 containing the
prototype for each class label. The first dimension of p should be equal to the
dimension of classes . the second dimension of p should be equal to the
number of outputs of the previous module. The costs are ”log-summed” over
spatial dimensions

wedist-cost

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
a replicable weighted Euclidean distance cost function. computes the log-

sum over the 2D spatial output of the weighted half squared error between
the output and the prototype with the desired label. this does not generate
gradients on the prototypes.

(new wedist-cost classes si sj p w) Type: CLASS(packages/gblearning/modules.lsh)
Last Modified: 2002-10-14 03:30:51

make a new wedist-cost. classes is an integer vector which contains the
labels associated with each output. From that vector , the reverse table is con-
structed to map labels to class indices. Elements in classes must be positive or
0 , and not be too large , as a table as large as the maximum value is allocated.
si and sj are the expected maximum sizes in the spatial dimensions (used for
preallocation to prevent memory fragmentation). p is an idx2 containing the
prototype for each class label , and w is an idx2 with a single weight for each
of these prototype and each of its elements. The first dimension of p (and w )
should be equal to the dimension of classes . the second dimension of p (and
w ) should be equal to the number of outputs of the previous module. The costs
are ”log-summed” over spatial dimensions

weighted-mse-cost

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51



9.2. GBLEARNING: GRADIENT-BASED LEARNING LIBRARY 573

This is similar to wedist-cost but the weights matrix may run over patterns.
The desired output vector has size two: the first element gives the class label ,
and the second element gives the position (row) in the weights matrix to use for
the weighted euclidean distance. It is a replicable weighted Euclidean distance
cost function. computes the log-sum over the 2D spatial output of the weighted
half squared error between the output and the prototype with the desired label.
this does not generate gradients on the prototypes

(new weighted-mse-cost classes si sj p w) Type: CLASS(packages/gblearning/modules.lsh)
Last Modified: 2002-10-14 03:30:51

make a new weighted-mse-cost. classes is an integer vector which contains
the labels associated with each output. From that vector , the reverse table
is constructed to map labels to class indices. Elements in classes must be
positive or 0 , and not be too large , as a table as large as the maximum
value is allocated. si and sj are the expected maximum sizes in the spatial
dimensions (used for preallocation to prevent memory fragmentation). p is an
idx2 containing the prototype for each class label , and w is an idx2 with a
single weight for each of these prototype and each of its elements. The first
dimension of p (and w ) should be equal to the dimension of classes . the
second dimension of p (and w ) should be equal to the number of outputs of
the previous module. The costs are ”log-summed” over spatial dimensions

ledist-cost

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
a replicable Euclidean distance cost function with LOCAL TARGETS at

each position. Target prototypes are associated to classes. The cost is the
sum over the 2D output of the half squared error between the local output and
the prototype with the desired label at that position. This does not generate
gradients on the prototypes

(new ledist-cost classes p) Type: CLASS(packages/gblearning/modules.lsh)
Last Modified: 2002-10-14 03:30:51

make a new ledist-cost. classes is an integer vector which contains the
labels associated with each output. From that vector , the reverse table is con-
structed to map labels to class indices. Elements in classes must be positive or
0 , and not be too large , as a table as large as the maximum value is allocated.
p is an idx2 containing the prototype for each class label. The first dimension
of p should be equal to the dimension of classes . the second dimension of
p should be equal to the number of outputs of the previous module. The costs
are summed over spatial dimensions.

postproc (packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
classifier (packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
Postprocs and classifiers are modules through which no backprop are per-

formed. postprocs have an fprop method that takes the output of a learning
machine as argument and produces a ”postprocessed” output. For example a
particular subclass of postproc-module might take the output vectors from a
network and produce a sorted list class labels with confidence factors. Another



574 CHAPTER 9. PACKAGES

one might take the output of an SDNN , run multiple-constrained-viterbi with
a dictionnary and return the bast candidates. The output of a postproc is
meant to be used directly by a ”meter” in conjunction with a desired output
for performance measures.

classifiers are special postprocessors that produce a class-state object on their
output (which contain sorted class labels and confidence factors). Their outputs
can be used by classifier-meter to measure the performance of a machine.

min-classer

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
a module that takes an idx3-state , finds the lowest value and output the

label associated with the index (in the first dimension of the state) of this lowest
value. It actually sorts the labels according to their score (or costs) and outputs
the sorted list.

(new min-classer classes) Type: CLASS(packages/gblearning/modules.lsh)
Last Modified: 2002-10-14 03:30:51

makes a new min-classer. classes is an integer vector which contains the
labels associated with each output.

max-classer

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
a module that takes an idx3-state , finds the lowest value and output the

label associated with the index (in the first dimension of the state) of this lowest
value. It actually sorts the labels according to their score (or costs) and outputs
the sorted list.

(new max-classer classes) Type: CLASS(packages/gblearning/modules.lsh)
Last Modified: 2002-10-14 03:30:51

makes a new max-classer. classes is an integer vector which contains the
labels associated with each output.

edist-classer

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
a replicable Euclidean distance pattern matcher , which finds the class proto-

type ”closest” to the output , where ”close” is based on the log-added euclidean
distances between the prototype and the output at various positions. This cor-
responds to finding the class whose a-posteriori probability is largest , when
P(c—data) = sum [position=x] P(c at x —data at x) / n positions and the
priors over classes are uniform , and the local class likelihoods P(data at x — c
at x) are Gaussian with unit variance and mean = prototype(c).

ledist-classer

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51



9.2. GBLEARNING: GRADIENT-BASED LEARNING LIBRARY 575

a replicable Euclidean distance pattern matcher , which finds the class pro-
totype closest to the output for the vectors at each position in the output image.

(new ledist-classer classes p) Type: CLASS(packages/gblearning/modules.lsh)
Last Modified: 2002-10-14 03:30:51

make a new ledist-classer. classes is an integer vector which contains the
labels associated with each prototype. p is an idx2 containing the prototype for
each class label. The first dimension of p should be equal to the dimension of
classes . the second dimension of p should be equal to the number of outputs
of the previous module.

mmi-classer

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
a classifier that computes class scores based on an MMI type criterion (a

kind of softmax in log) It gives scores (cost) for all classes including junk. It
should be used in conjunction with mmi-cost. This assumes that the output of
the previous module are costs , or negative log likelihoods. this modules accepts
spatially replicated inputs.

(new mmi-classer classes priors si sj prm) Type: CLASS(packages/gblearning/modules.lsh)
Last Modified: 2002-10-14 03:30:51

makes a new mmi-classer. The arguments are identical to that of mmi-cost.
In fact if an mmi-classer is to used in conjunction with an mmi-cost , they should
share the prior vector and the parameter. sharing the parameter can be done
by first building the classer , then reducing the size of the parameter by one ,
then creating the cost.

(==> mmi-classer set-junk-cost c) Type: MSG(packages/gblearning/modules.lsh)
Last Modified: 2002-10-14 03:30:51

set the constant cost of the junk class to c . the underlying parameter is
given the value (sqrt (* 2 c )) , so c must be positive. BE CAREFUL that the
junk parameter of an mmi-classer is usually shared by an mmi-cost , changing
one will change the other.

nearest-neighbor

(packages/gblearning/modules.lsh) Last Modified: 2002-10-14 03:30:51
a 1 nearest-neighbor classifier. (old and obsolete , still here for compatibil-

ity).
(new nearest-neighbor pt proto labels [dist]) Type: CLASS(packages/gblearning/modules.lsh)

Last Modified: 2002-10-14 03:30:51
create a new nearest-neighbor classifier using the prototypes in proto , and

their associated labels in labels . labels mussst be a 1d vector of numbers
(class indices). dist is an optional function for computing the distance between
incoming patterns and prototypes. dist is an optional distance function to be
used for the comparison. It must take two input arguments and one output
argument that must be an idx0 (the distance between the first two arguments).
The default for dist is idx-sqrdist (Euclidian distance between matrices of any



576 CHAPTER 9. PACKAGES

dimension). proto must be a matrix with one more dimension than the pa-
rameter of the distance function. pt is a punting threshold (nil means never
punt).

(==> nearest-neighbor set-labels l) Type: MSG(packages/gblearning/modules.lsh)
Last Modified: 2002-10-14 03:30:51

set the label matrix to l
(==> nearest-neighbor fprop m cs) Type: MSG(packages/gblearning/modules.lsh)

Last Modified: 2002-10-14 03:30:51
m is an sn-state object , and cs a class-state object. compare slot x of m

with the stored list of prototypes , and fill the slots of cs with the result. return
a list with the class index , the confidence , the sorted list of classes and sorted
list of scores. if the top score is below the punting threshold , -1 is returned as
the class index.

(build-ascii-proto targets charset) (packages/gblearning/modules.lsh)
Last Modified: 2002-10-14 03:30:51

9.2.3 workbench

(packages/gblearning/workbench.lsh) Author(s): Yann LeCun Last Modified:
2002-08-19 03:04:06

the main class for training a machine. a workbench contains a trainer, two
databases, and two meters. It provides a convenient user interface for many
standard training. it keeps a logbook of all the operations performed on it.

(new workbench [logbook trainer traindb testdb trainmeter testmeter])

Type: CLASS(packages/gblearning/workbench.lsh) Last Modified: 2002-08-19
03:04:06

makes a new workbench for training and testing trainer trainer on databases
traindb and testdb . Measurments are performed with trainmeter and testmeter
. All operations are recorded in file logbook .

(==> workbench init)

Type: MSG(packages/gblearning/workbench.lsh) Last Modified: 2002-08-19
03:04:06

reset pointers on training and test db. reset meters. reinitialize parameters
(weights) of machine in trainer (using the forget method).

(==> workbench compute-diaghessian [n gamma mu])

Type: MSG(packages/gblearning/workbench.lsh) Last Modified: 2002-08-19
03:04:06

compute diagonal hessian and set the learning rates using the result. this
should be called every few epochs to readjust the learning rates. n is the num-
ber of patterns in the training set (starting from pattern 0) on which the second
derivatives will be calculated. gamma is the running average constant for the



9.2. GBLEARNING: GRADIENT-BASED LEARNING LIBRARY 577

second derivatives (it should be larger than 1/ n ). and mu is the failsafe con-
stant to prevent to learning rates from blowing up if the hessians are small.
default values for the 3 arguments are 200 , 0.01 , and 0.02.

(==> workbench train n [eta])

Type: MSG(packages/gblearning/workbench.lsh) Last Modified: 2002-08-19
03:04:06

perform n training iterations using learning rate eta . the meter is cleared
before starting.

(==> workbench test [n])

Type: MSG(packages/gblearning/workbench.lsh) Last Modified: 2002-08-19
03:04:06

measure performance on first n patterns of the test set. If n is not given ,
the performance is measured on the entire set.

(==> workbench test-pattern n [db])

Type: MSG(packages/gblearning/workbench.lsh) Last Modified: 2002-08-19
03:04:06

runs pattern n of database db through the machine. If db is not given , the
test database is used.

9.2.4 trainer

(packages/gblearning/trainer.lsh) Author(s): Yann LeCun Last Modified: 2002-
10-14 03:30:51

a subclass of sn-module that can be used to conveniently train and test a
learning machine with redefinable preprocessoe, cost function and postprocessor.
most trainer methods take a database as argument, or at least an object that
can understand the following three messsages:

(==> <db> get-input-current)
(==> <db> get-label-current)
(==> <db> seek <n>)
(==> <db> next)
(==> <db> tell)

slots are provided to store conversion function from what comes out of the
database to what goes into the machine. Methods are provided to test a machine
and measure its performance, as well as train it. Three different main methods
are provided: test, train, and train-bbprop. in the first method only an fprop
is performed on the preprocessor, the machine the post-processor and the cost
function. the second does an fprop, a bprop, and a parameter update, the third



578 CHAPTER 9. PACKAGES

one does an fprop, a bprop, a bbprop (for 2nd derivative) and an update-bbprop
(to update the parameter’s second derivatives).

(new trainer pre mchn prm post cst ppat pdes raw in out pout des)

Type: CLASS(packages/gblearning/trainer.lsh) Last Modified: 2002-10-14 03:30:51
create a new trainer where mchn is the learning machine. It must be an

object that understands the methods fprop, bprop and optionally bbprop each
of which must take one input and one output as arguments. prm is a param (that
can understand update and update-bbprop messages). cst is a cost module: a
module with two inputs and one output. pre is a preprocessing module, and
post is a postprocessing module (including a classifier, or something similar
not subject to updates or backprops). ppat is a present-pattern function (see
help), pdes : a present-desired function (see help), raw , in , out and des
are objects that will be used to store the raw input, the machine input (or
preprocessor output), the output and the desired states of the learning machine.
pout is an object used to store the output of the postprocessor (probably, this
is a class-state)

See: trainer
See: (present-pattern from to )
See: (present-idx from to [ dummy ])
See: (present-desired from to actual )
See: (present-classindex class-index to [ extra ])

(same-class? actual desired [dummies])

(packages/gblearning/trainer.lsh) Last Modified: 2002-10-14 03:30:51
return 0 if actual equals -1 , otherwise , return 1 if actual and desired

are equal , -1 otherwise.

(present-pattern from to)

(packages/gblearning/trainer.lsh) Last Modified: 2002-10-14 03:30:51
present pattern is a slot in the trainer class which is supposed to contain a

user-defined function with two arguments. It provides a way for the network
designer to interface a database to a particular learning machine , i.e. transform
an input from whatever comes from the database to whatever the learning ma-
chine (or rather , the preprocessing module) understands. The first argument is
an item from the database , and the secand argument is the input state of the
preprocessing module (usually an sn-state)

(present-desired from to)

(packages/gblearning/trainer.lsh) Last Modified: 2002-10-14 03:30:51
present-desired is a slot in the trainer class which is supposed to contain a

user-defined function with two arguments. It provides a way for the network
designer to interface a database to a particular learning machine , i.e. transform



9.2. GBLEARNING: GRADIENT-BASED LEARNING LIBRARY 579

a desired output from whatever comes from the database to whatever the learn-
ing machine understands. The first argument is an item from the ”desired” slot
of the database , and the second argument is the desired state of the machine
to be trained (usually an sn-state).

sn-meter

(packages/gblearning/trainer.lsh) Last Modified: 2002-10-14 03:30:51
a class that is used to measure the performance of a learning machine. sn-

meters have at least three methods: clear, fprop and update. the update method
must take six arguments (see the doc of the fprop method for more details). most
subclasses of sn-meter can be used as ”recorders” as well as meters. If they are
put in record mode, they keep a log of everything that happens.

See: (==> sn-meter fprop posto postd macho machd nrgy ptr )
(==> sn-meter fprop trainer) Type: MSG(packages/gblearning/trainer.lsh)

Last Modified: 2002-10-14 03:30:51
updates sn-meter with data extracted from the trainer trainer
(==> sn-meter clear) Type: MSG(packages/gblearning/trainer.lsh) Last

Modified: 2002-10-14 03:30:51
clears the content of sn-meter , and restart the measurement process.
(==> sn-meter sprint-info) Type: MSG(packages/gblearning/trainer.lsh)

Last Modified: 2002-10-14 03:30:51
returns a string with most interesting info in sn-meter

classifier-meter

(packages/gblearning/trainer.lsh) Last Modified: 2002-10-14 03:30:51
a special sn-meter that can be used to measure the performance of a classifier.

small-classifier-meter

(packages/gblearning/trainer.lsh) Last Modified: 2002-10-14 03:30:51
a special sn-meter that can be used to measure the performance of a classifier.

Like classifier-meter but wastes less memory.

multi-classifier-meter

(packages/gblearning/trainer.lsh) Last Modified: 2002-10-14 03:30:51
a special sn-meter that can be used to measure the performance of a classifier

along multiple axes.
See: (new multi-classifier-meter list-of-correctp-functions )
(new multi-classifier-meter list-of-correctp-functions) Type: CLASS(packages/gblearning/trainer.lsh)

Last Modified: 2002-10-14 03:30:51
Given a list-of-correctp-functions , return a new multi-classifier-meter.

Each of these functions takes two arguments (correct and desired class) and re-
turns 1 if the answer is correct , 0 if punt , -1 if wrong.



580 CHAPTER 9. PACKAGES

9.2.5 Databases

NOTE: This package is not a traditional ”database” interface package. It is a
library simply designed as a data handling mechanism for the (now obsolete)
gblearning machine learning package. That packages has been replaces by
gblearn2 which does not use the present library but uses its own mechanism
called data sources.

In the gblearning library , the workbench and trainer classes access tran-
ing and testing samples through a ”database”. Several base classes are provided
here to make it easy to build databases of training or test samples. The workb-
nech/trainer classes accept databases as long as they understand the following
methods:

• (==> db size) : number of element in database (-1 if infinite)

• (==> db seek i) : go to element i

• (==> db tell) : return index of current element

• (==> db next) : go to next element

• (==> db get-input-current [dest]) : write input component of cur-
rent element into dest , or return result if no dest .

• (==> db get-label-current [dest]) : write label component of cur-
rent element into dest , or return result if no dest .

base-db is the base class from which actual db classes can be derived (though
some db classes are created from scratch so as to be compilable). Several pre-
defined types of base-db compatible classes are provided for combining the con-
tent of existing base-db compatible objects.

base-db

(lsh/libdb/base-db.lsh) Last Modified: 2002-11-25 19:05:53
This is the base class used by the trainer classes as training and test databases.

real databases can be derived from this class. and override just the get-input,
get-label, get-info and size methods. The other methods rarely need to be over-
rided.

(new base-db inp lab) Type: CLASS(lsh/libdb/base-db.lsh) Last Modi-
fied: 2002-11-25 19:05:53

make a new base-db. inp must be a 4D tensor of floats where each 3D slice
is a sample. lab must be a 2D int-matrix where each slice is a target vector (or
something).

(==> base-db get-input n [dest]) Type: MSG(lsh/libdb/base-db.lsh)
Last Modified: 2002-11-25 19:05:53

returns n -th item
(==> base-db get-label n [dest]) Type: MSG(lsh/libdb/base-db.lsh)

Last Modified: 2002-11-25 19:05:53



9.2. GBLEARNING: GRADIENT-BASED LEARNING LIBRARY 581

returns the n -th label.
(==> base-db get-info n) Type: MSG(lsh/libdb/base-db.lsh) Last Mod-

ified: 2002-11-25 19:05:53
returns extra information about n -th item
(==> base-db size) Type: MSG(lsh/libdb/base-db.lsh) Last Modified:

2002-11-25 19:05:53
reutnrs the size of the database
(==> base-db tell i) Type: MSG(lsh/libdb/base-db.lsh) Last Modified:

2002-11-25 19:05:53
set pointer to i -th item
(==> base-db next) Type: MSG(lsh/libdb/base-db.lsh) Last Modified:

2002-11-25 19:05:53
move pointer to next item
(==> base-db seek i) Type: MSG(lsh/libdb/base-db.lsh) Last Modified:

2002-11-25 19:05:53
set pointer to i -th item
(==> base-db get-input-current [dest]) Type: MSG(lsh/libdb/base-

db.lsh) Last Modified: 2002-11-25 19:05:53
returns current item as a rawchar
(==> base-db get-label-current [dest]) Type: MSG(lsh/libdb/base-

db.lsh) Last Modified: 2002-11-25 19:05:53
returns labels (ASCII codes) of n -th item in an idx1 of ints.
(==> base-db get-info-current) Type: MSG(lsh/libdb/base-db.lsh) Last

Modified: 2002-11-25 19:05:53
returns extra information about current item
(==> db-filter db func) Type: MSG(lsh/libdb/base-db.lsh) Last Modi-

fied: 2002-11-25 19:05:53
return a matrix with the indices of all the patterns for which (func label )

returns non-nil
(==> base-db get-current what) Type: MSG(lsh/libdb/base-db.lsh)

Last Modified: 2002-11-25 19:05:53
This is an obsolete method provided for backward compatibility with ancient

code. get current item. if what is equal to ’input , the input item is returned
(most likely a rawchar) , if it is equal to ’desired , the label is returned (most
likely an ASCII code) , if it is ’info extra information on the item is returned
(format is not standardized).

idx-db

(lsh/libdb/base-db.lsh) Last Modified: 2002-11-25 19:05:53
a database where each pattern is an idx, and each label is also an idx (of

any type). All patterns must have the same size.
(new idx-db inp lab) Type: CLASS(lsh/libdb/base-db.lsh) Last Modified:

2002-11-25 19:05:53



582 CHAPTER 9. PACKAGES

make a new idx-db. inp must be a vector/matrix/tensor where each slice
is a sample. lab must be a vector/matrix/tensor where each slice is a target
vector (or something).

(==> idx-db size) Type: MSG(lsh/libdb/base-db.lsh) Last Modified:
2002-11-25 19:05:53

reutnrs the size of the database
(==> idx-db get-input n [dest]) Type: MSG(lsh/libdb/base-db.lsh)

Last Modified: 2002-11-25 19:05:53
returns n -th item , or copies it into the x slot of dest .
(==> idx-db get-label n [dest]) Type: MSG(lsh/libdb/base-db.lsh) Last

Modified: 2002-11-25 19:05:53
returns labels (ASCII codes) of n -th item in an idx1 of ints.

multi-db

(lsh/libdb/base-db.lsh) Last Modified: 2002-11-25 19:05:53
A db formed by the concatenation of multiple dbs. The dbs must understand

the methods get-input , get-label , get-info , and size.
(new multi-db base-list) Type: CLASS(lsh/libdb/base-db.lsh) Last Mod-

ified: 2002-11-25 19:05:53
make a new base-db compatible object by concatenating all the base-db

compatible objects in list base-list .

narrow-db

(lsh/libdb/base-db.lsh) Last Modified: 2002-11-25 19:05:53
a db constructed by taking patterns in an existing db whose indices are

within a given range that what is passed is a db
(new narrow-db base size offset) Type: CLASS(lsh/libdb/base-db.lsh)

Last Modified: 2002-11-25 19:05:53
make a new base-db compatible object by taking a range of items from the

db passed as argument

permute-db

(lsh/libdb/base-db.lsh) Last Modified: 2002-11-25 19:05:53
a db built by permuting the samples of an existing db no actual movement

of data is performed , the samples are simply accessed through apermutation
table.

(new permute-db base-db) Type: CLASS(lsh/libdb/base-db.lsh) Last
Modified: 2002-11-25 19:05:53

create a new permute-db. The permutation map is initially set to the inden-
tity. the shuffle method performes a random shuffling.

(==> permute-db shuffle) Type: MSG(lsh/libdb/base-db.lsh) Last Mod-
ified: 2002-11-25 19:05:53

randomly shuffles the samples of the db.



9.2. GBLEARNING: GRADIENT-BASED LEARNING LIBRARY 583

(==> permute-db set-map (m) Type: MSG(lsh/libdb/base-db.lsh) Last
Modified: 2002-11-25 19:05:53

sets the permutation map to m . m must be a vector of ints. The size of the
db will be the dimension of m , and the i-th element of the db will be the (m
i)-th element of the base db.

image-db

(lsh/libdb/image-db.lsh) Last Modified: 2002-11-25 12:49:17
This db-like class represents a data-base of examples which are pairs of

images (of any size and depth) and classes. The images may have different
dimensions, but are returned as idx3 of ubytes (the last dimension being the
depth).

This is not a subclass of base-db, but it implements the interface and can
be used as a base db for a narrow-db or perturb-db as well as fed directly to a
trainer object.

(new image-db) Type: CLASS(lsh/libdb/image-db.lsh) Last Modified:
2002-11-25 12:49:17

creates an empty image-db. The images can be subsequently loaded through
the load-ppms , load-pgms , load or map methods.

(==> <image-db load-ppms flist clist) Type: MSG(lsh/libdb/image-
db.lsh) Last Modified: 2002-11-25 12:49:17

fills up the database with images from a bunch of PPM files clist is a list
of labels (one integer for each image) or a single category , in which case all the
loaded images will be in that category.

(==> <image-db load-pgms flist clist) Type: MSG(lsh/libdb/image-
db.lsh) Last Modified: 2002-11-25 12:49:17

fills up the database with images from a bunch of PGM files clist is a list
of labels (one integer for each image) or a single category , in which case all the
loaded images will be in that category.

(==> image-db save basename) Type: MSG(lsh/libdb/image-db.lsh) Last
Modified: 2002-11-25 12:49:17

save database into pre-cooked IDX files. These files can be subsequently
loaded quickly using the load or map methods. The database is saved in four
files named basename images.idx , basename starts.idx , basename sizes.idx ,
and basename classes.idx

(==> image-db load basename) Type: MSG(lsh/libdb/image-db.lsh) Last
Modified: 2002-11-25 12:49:17

load database from pre-cooked IDX files produced through the save method.
The database will be loaded from four files named basename images.idx ,
basename starts.idx , basename sizes.idx , and basename classes.idx

(==> image-db map basename) Type: MSG(lsh/libdb/image-db.lsh) Last
Modified: 2002-11-25 12:49:17

memory-map database from pre-cooked IDX files produced through the save
method. This is MUCH faster than load , and consumes fewer memory/disk



584 CHAPTER 9. PACKAGES

bandwidth. The database will be mapped from four files named basename im-
ages.idx , basename starts.idx , basename sizes.idx , and basename classes.idx

(==> image-db size) Type: MSG(lsh/libdb/image-db.lsh) Last Modified:
2002-11-25 12:49:17

reutnrs the size of the database
(==> image-db get-input n dest) Type: MSG(lsh/libdb/image-db.lsh)

Last Modified: 2002-11-25 12:49:17
copies n -th item as a [n-rows , n-columns , 3] RBG ubyte image into the x

slot of dest . dest must be an idx3-state or a subclass thereof. It is resized
if necessary.

(==> image-db get-label n dest) Type: MSG(lsh/libdb/image-db.lsh)
Last Modified: 2002-11-25 12:49:17

returns labels of n -th example as an int.
(==> base-db seek i) Type: MSG(lsh/libdb/image-db.lsh) Last Modi-

fied: 2002-11-25 12:49:17
set pointer to i -th item
(==> image-db tell i) Type: MSG(lsh/libdb/image-db.lsh) Last Modi-

fied: 2002-11-25 12:49:17
set pointer to i -th item
(==> base-db next) Type: MSG(lsh/libdb/image-db.lsh) Last Modified:

2002-11-25 12:49:17
move pointer to next item
(==> image-db get-input-current dest) Type: MSG(lsh/libdb/image-

db.lsh) Last Modified: 2002-11-25 12:49:17
get current pattern.
(==> image-db get-label-current) Type: MSG(lsh/libdb/image-db.lsh)

Last Modified: 2002-11-25 12:49:17
get current label.
(==> image-db get-info-current) Type: MSG(lsh/libdb/image-db.lsh)

Last Modified: 2002-11-25 12:49:17
get current info.

9.2.6 param

(packages/gblearning/params.lsh) Author(s): Yann LeCun Last Modified: 2002-
10-14 03:30:51

a hierarchy of classes that implements gradient-based learning algorithms.
Various subclasses of param can be used for various learning algorithms (stochas-
tic gradient, with separate epsilons, with second derivatives.....) The standard
param type contains idx1 slots.

(new-index-offset s dlist o)

(packages/gblearning/params.lsh) Last Modified: 2002-10-14 03:30:51
like new index , but puts the index at a specific offset in the storage s is a

storage , dlist a list of dimensions , o an offset. Compilable macro.



9.2. GBLEARNING: GRADIENT-BASED LEARNING LIBRARY 585

idx1-param

(packages/gblearning/params.lsh) Last Modified: 2002-10-14 03:30:51
a param whose slots are idx1. no learning algorithm is defined. Only the x

slot is present. This class is useful for fixed (non adaptive) parameters.

idx1-dparam

(packages/gblearning/params.lsh) Last Modified: 2002-10-14 03:30:51
param class for regular stochastic gradient descent algorithm
(new idx1-dparam s e) Type: CLASS(packages/gblearning/params.lsh)

Last Modified: 2002-10-14 03:30:51
s is a size , e is a learning rate.
(==> idx1-dparam update) Type: MSG(packages/gblearning/params.lsh)

Last Modified: 2002-10-14 03:30:51
simple gradient descent update.

idx1-dparam-eps

(packages/gblearning/params.lsh) Last Modified: 2002-10-14 03:30:51
param class for gradient descent with separate epsilons for each parameter
(new idx1-dparam-eps s e) Type: CLASS(packages/gblearning/params.lsh)

Last Modified: 2002-10-14 03:30:51
s is a size , e is a learning rate. the epsilons are set to 1 by default.
(==> idx1-dparam-eps update) Type: MSG(packages/gblearning/params.lsh)

Last Modified: 2002-10-14 03:30:51
performs one step of gradient descent with separate learning rates for each

parameter.
(==> idx1-dparam-eps set-epsilons m) Type: MSG(packages/gblearning/params.lsh)

Last Modified: 2002-10-14 03:30:51
copy the values in vector m to epsilons

idx1-ddparam

(packages/gblearning/params.lsh) Last Modified: 2002-10-14 03:30:51
a param class for the stochastic diagonal levenberg-marquardt algorithm.

In addition to the usual update method , it has an update-bbprop method for
computing the second derivatives , and a set-epsilons method to set the epsilons
using the second derivatives.

(new idx1-ddparam s e g m alloc) Type: CLASS(packages/gblearning/params.lsh)
Last Modified: 2002-10-14 03:30:51

s is the size (can be 0) , e is the learning rate , g is the gamma parameter
used for the on-line update of the second derivatives , m is the mu parameters
added to the second derivatives to prevent the epsilons from blowing up. alloc
is the size of storages to be preallocated. This will prevent memory fragmenta-
tion when the size of the param is subsequently increased.



586 CHAPTER 9. PACKAGES

(==> idx1-ddparam update-bbprop) Type: MSG(packages/gblearning/params.lsh)
Last Modified: 2002-10-14 03:30:51

update second derivative estimates on-line , using current value in the in-
stantaneous second derivative field ddx

(==> idx1-ddparam compute-epsilons) Type: MSG(packages/gblearning/params.lsh)
Last Modified: 2002-10-14 03:30:51

compute and set the epsilons using the second derivative. this method should
be called after a few iteration of update-bbprop

9.2.7 sn-states

(packages/gblearning/states.lsh) Author(s): Yann LeCun Last Modified: 2002-
10-18 22:02:23

states are the main objects used to store state variables in or between mod-
ules.

(each-idx-slots o s f1 [f2...[fn]])

(packages/gblearning/states.lsh) Last Modified: 2002-10-18 22:02:23
evaluates lists in f for all active idx slots of object o , (as returned by (==>

o idx-slots)) with s successively taking the values of the slots in question.

idx-state

(packages/gblearning/states.lsh) Last Modified: 2002-10-18 22:02:23
an idx-state is a state that contains vector or matrix variables.
(==> idx-state idx-slots) Type: MSG(packages/gblearning/states.lsh)

Last Modified: 2002-10-18 22:02:23
return the complete list of idx slots.
(new idx-state [params]) Type: CLASS(packages/gblearning/states.lsh)

Last Modified: 2002-10-18 22:02:23
create a new simple-state. if params is absent, the simple-state is left un-

sized. Otherwise params must be a list of integer (possibly empty), which will
be used to determine the size of the object. params has the same meaning as
the 2nd parameter of the functions new-index.

See: simple-state
See: Index.
(==> idx-state resize [list-of-dims]) Type: MSG(packages/gblearning/states.lsh)

Last Modified: 2002-10-18 22:02:23
resize all the idx slots (as returned by idx-slots) list-of-dims is a list

with p numbers specifying the size of the last p dimensions of each slot. If
list-of-dim is absent, all the active slots are undimed.

See: (==> idx-state idx-slots)
(==> idx-state undim) Type: MSG(packages/gblearning/states.lsh) Last

Modified: 2002-10-18 22:02:23
undim all the active idx slots of idx-state .



9.2. GBLEARNING: GRADIENT-BASED LEARNING LIBRARY 587

(==> idx-state clear) Type: MSG(packages/gblearning/states.lsh) Last
Modified: 2002-10-18 22:02:23

fill all the active idx slots with zeroes
See: (==> idx-state idx-slots)
(==> idx-state load s) Type: MSG(packages/gblearning/states.lsh)

Last Modified: 2002-10-18 22:02:23
fill slot x with content of file s
(==> idx-state save s (packages/gblearning/states.lsh) Last Modified:

2002-10-18 22:02:23
save content of slot x into file s .
(==> idx-state dump s (packages/gblearning/states.lsh) Last Modified:

2002-10-18 22:02:23
save the entire object into file s

idx0-state

(packages/gblearning/states.lsh) Last Modified: 2002-10-18 22:02:23

idx0-dstate

(packages/gblearning/states.lsh) Last Modified: 2002-10-18 22:02:23

idx0-ddstate

(packages/gblearning/states.lsh) Last Modified: 2002-10-18 22:02:23

idx1-state

(packages/gblearning/states.lsh) Last Modified: 2002-10-18 22:02:23

idx1-dstate

(packages/gblearning/states.lsh) Last Modified: 2002-10-18 22:02:23

idx1-ddstate

(packages/gblearning/states.lsh) Last Modified: 2002-10-18 22:02:23

idx2-state

(packages/gblearning/states.lsh) Last Modified: 2002-10-18 22:02:23

idx2-dstate

(packages/gblearning/states.lsh) Last Modified: 2002-10-18 22:02:23

idx2-ddstate

(packages/gblearning/states.lsh) Last Modified: 2002-10-18 22:02:23



588 CHAPTER 9. PACKAGES

idx3-state

(packages/gblearning/states.lsh) Last Modified: 2002-10-18 22:02:23

idx3-dstate

(packages/gblearning/states.lsh) Last Modified: 2002-10-18 22:02:23

idx3-ddstate

(packages/gblearning/states.lsh) Last Modified: 2002-10-18 22:02:23

idx4-state

(packages/gblearning/states.lsh) Last Modified: 2002-10-18 22:02:23

idx4-dstate

(packages/gblearning/states.lsh) Last Modified: 2002-10-18 22:02:23

idx4-ddstate

(packages/gblearning/states.lsh) Last Modified: 2002-10-18 22:02:23

class-state

(packages/gblearning/states.lsh) Last Modified: 2002-10-18 22:02:23
a special kind of state used to store the output of a classifier. class-state are

generated by modules such as class-max , and used by meters such as classifier-
meter. No backprop is possible through a class-state.

lclass-state

(packages/gblearning/states.lsh) Last Modified: 2002-10-18 22:02:23
a special kind of state used to store the output of a spatial classifier such as

ledist-classer.

9.2.8 libnets

(packages/gblearning/libnets.lsh) Author(s): Yann LeCun Last Modified: 2002-
10-29 18:12:07

a bunch of standard compiled modules for building neural net architectures:
sigmoids, RBF, fully connected, convolutions, subsampling layers. Each of these
classes has methods for fprop, bprop, bbprop, load, save, forget, and setting
various parameters.



9.2. GBLEARNING: GRADIENT-BASED LEARNING LIBRARY 589

(read-matrix f x)

(packages/gblearning/libnets.lsh) Last Modified: 2002-10-29 18:12:07
read matrix file from file f and copy the content into matrix x useful for

filling up an existing matrix.

(midx-m2oversample input nlin ncol output)

(packages/gblearning/libnets.lsh) Last Modified: 2002-10-29 18:12:07
macro for 2D oversampling

f-layer

(packages/gblearning/libnets.lsh) Last Modified: 2002-10-29 18:12:07
full connection between replicable 3D layers the full connection is only across

the first dimension of the input and output layer. the other two dimensions are
spatial dimensions accross which the weight matrix is shared. This is much
more efficient than using a c-layer with a 1x1 convolution and a full-table.

(new f-layer tin tout si sj sqsh) Type: CLASS(packages/gblearning/libnets.lsh)
Last Modified: 2002-10-29 18:12:07

makes a new replicable fully-connected layer. tin and tout are the number
of units in the input and output. si and sj are the vertical and horizontal
sizes used for pre-allocating the internal state variables (they , as well as the
output. are automatically resized , but the resizing is more efficient of it is a
downsizing).

e-layer

(packages/gblearning/libnets.lsh) Last Modified: 2002-10-29 18:12:07
full connection with Euclidean distance between replicable 3D layers. This is

like a layer of RBF WITHOUT NON-LINEAR FUNCTIONS. the output is the
square Euclidean distance between the input and the weight the full connection
is only across the first dimension of the input and output layer. the other two
dimensions are spatial dimensions accross which the weight matrix is shared.

(new e-layer tin tout prm) Type: CLASS(packages/gblearning/libnets.lsh)
Last Modified: 2002-10-29 18:12:07

new e-layer (Eucliden distance RBF). tin is the thickness of the input layer
, tout is the thickness of the output layer , prm is the parameter.

e-layer-sparse

(packages/gblearning/libnets.lsh) Last Modified: 2002-10-29 18:12:07
like e-layer , but each RBF is only connected to a subset of the inputs this

should be used for ”multiple bitmap” outputs.
(new e-layer-sparse tin off prm) Type: CLASS(packages/gblearning/libnets.lsh)

Last Modified: 2002-10-29 18:12:07



590 CHAPTER 9. PACKAGES

new e-layer (Eucliden distance RBF). tin is the thickness of the input layer
(dimension of prototypes) , off is an idx1 with as many elements as there are
output. each element contains the offset in the input for the input vector of
each output. prm is the parameter.

c-layer

(packages/gblearning/libnets.lsh) Last Modified: 2002-10-29 18:12:07
convolutional layer module. Performs multiple convolutions between an

idx3-state input and an idx3-state output. includes bias and sigmoid.
(new c-layer ki kj ri rj tbl thick si sj sqsh) Type: CLASS(packages/gblearning/libnets.lsh)

Last Modified: 2002-10-29 18:12:07
Creates a new convolution layer. ki (int) vertical kernel size. kj (int) hor-

izontal kernel size. ri int) vertical stride (number of pixels by which
the kernels are stepped) <rj int) horizontal stride <tbl (idx2) N by
2 matrix containing source and destination feature maps for coresponding kernel
thick (int) thickness of output layer (number of feature maps) si (int) vertical
size for preallocation of internal state sj (int) horizontal size for preallocation
of internal state sqsh (idx3-module) a squashing function module that oper-
ates on idx3-state. prm and idx1-ddparam from which the parameters will be
allocated

s-layer

(packages/gblearning/libnets.lsh) Last Modified: 2002-10-29 18:12:07
subsampling layer class
(new s-layer ki kj thick si sj sqsh prm) Type: CLASS(packages/gblearning/libnets.lsh)

Last Modified: 2002-10-29 18:12:07
Creates a new subsampling layer for convolutional nets ki (int) vertical

subsampling ratio. kj (int) horizontal subsampling ratio. thick (int) thickness
of output layer (number of feature maps) si (int) vertical size for preallocation
of internal state sj (int) horizontal size for preallocation of internal state sqsh
(idx3-module) a squashing function module that operates on idx3-state. prm
and idx1-ddparam from which the parameters will be allocated

9.2.9 net-ccc

(packages/gblearning/net-ccc.lsh) Author(s): Yann LeCun Last Modified: 2002-
08-19 03:04:06

convolutional net with 3 convolutional layers.

(new net-ccc ini inj ki0 kj0 tbl0 ki1 kj1 tbl1 ki2 kj2 tbl2 prm)

Type: CLASS(packages/gblearning/net-ccc.lsh) Last Modified: 2002-08-19 03:04:06
makes a new net-ccc module. ini inj : expected max size of input for pre-

allocation of internal states ki0 kj0 : kernel size for first convolutional layer
tbl0 : table of connections between input anf feature maps for first layer ki1



9.2. GBLEARNING: GRADIENT-BASED LEARNING LIBRARY 591

kj1 tbl1 : kernel and table for next layer ki2 kj2 tbl2 : same for last con-
volution layer prm an idx1-ddparam in which the parameters will be allocated.

9.2.10 net-cfe

(packages/gblearning/net-cfe.lsh) Author(s): Yann LeCun Last Modified: 2002-
08-19 03:04:06

neural net with one convolutional layer, one (replicable) fully-connected
layer, and one RBF (euclidiean distance) layer.

(new net-cfe n e thick si sj)

Type: CLASS(packages/gblearning/net-cfe.lsh) Last Modified: 2002-08-19 03:04:06
create a new net-cfe. n is a net-cf , e is a e-layer , thick is the number of

outputs , and si , sj are the number of output replications.

9.2.11 net-cff

(packages/gblearning/net-cff.lsh) Author(s): Yann LeCun Last Modified: 2002-
08-19 03:04:06

a neural net class with one convolutional layer and two fully connected lay-
ers. The main purpose of this class is to make replicable 2-hidden layer fully
connected networks.

(new net-cff ini inj ki0 kj0 tbl0 f1thick outthick prm)

Type: CLASS(packages/gblearning/net-cff.lsh) Last Modified: 2002-08-19 03:04:06
makes a new net-cff module. ini inj : expected max size of input for

preallocation of internal states ki0 kj0 : kernel size for first convolutional layer
a standard fully-connected network can be obtained when ini = ki0 and inj
= kj0 . tbl0 : table of connections between input anf feature maps for first
layer f1thickk : number of hidden units in second hidden layer. outthick
: number of outputs. prm an idx1-ddparam in which the parameters will be
allocated.

9.2.12 net-cf

(packages/gblearning/net-cf.lsh) Last Modified: 2002-08-19 03:04:06
a neural net class with one convolutional layer and one fully connected layer.

The main purpose of this class is to make replicable fully connected networks.
Unlike with net-ff , the input spatial dimensions are treated correctly here. So
if you want to recognize characters , use this class rather than net-ff.

(new net-cf ini inj ki0 kj0 tbl0 outthick prm)

Type: CLASS(packages/gblearning/net-cf.lsh) Last Modified: 2002-08-19 03:04:06



592 CHAPTER 9. PACKAGES

makes a new net-cscscf module. ini inj : expected max size of input
for preallocation of internal states ki0 kj0 : kernel size for first convolutional
layer a standard fully-connected network can be obtained when ini = ki0 and
inj = kj0 . tbl0 : table of connections between input anf feature maps for
first layer outthick : number of outputs. prm an idx1-ddparam in which the
parameters will be allocated.

9.2.13 net-c

(packages/gblearning/net-c.lsh) Author(s): Yann LeCun Last Modified: 2002-
08-19 03:04:06

a neural net class with one convolutional layer and one fully connected layer.
The main purpose of this class is to make replicable fully connected networks.
Unlike with net-ff, the input spatial dimensions are treated correctly here. So
if you want to recognize characters, use this class rather than net-ff.

(new net-c ini inj ki0 kj0 inthick outthick prm)

Type: CLASS(packages/gblearning/net-c.lsh) Last Modified: 2002-08-19 03:04:06
makes a new net-cscscf module. ini inj : expected max size of input for

preallocation of internal states ki0 kj0 : kernel size for first convolutional layer
a standard fully-connected network can be obtained when ini = ki0 and inj
= kj0 . inthick : number of input slices outthick : number of outputs. prm
an idx1-ddparam in which the parameters will be allocated.

9.2.14 net-csccf

(packages/gblearning/net-csccf.lsh) Author(s): Yann LeCun Last Modified: 2002-
08-19 03:04:06

a standard LeNet2/LeNet5 architecture without the last RBF layer (look
into net-cscscfe for that).

(new net-csccf ini inj ki0 kj0 tbl0 si0 sj0 ki1 kj1 tbl1 ki2 kj2 tbl2
outthick prm)

Type: CLASS(packages/gblearning/net-csccf.lsh) Last Modified: 2002-08-19
03:04:06

makes a new net-csccf module. ini inj : expected max size of input for
preallocation of internal states ki0 kj0 : kernel size for first convolutional layer
tbl0 : table of connections between input anf feature maps for first layer si0
sj0 : subsampling for first layer ki1 kj1 tbl1 : kernel and table for next
layer ki2 kj2 tbl2 : same for last convolution layer outthick : number of
outputs. prm an idx1-ddparam in which the parameters will be allocated.



9.2. GBLEARNING: GRADIENT-BASED LEARNING LIBRARY 593

9.2.15 net-cscfe

(packages/gblearning/net-cscfe.lsh) Author(s): Yann LeCun Last Modified: 2002-
08-19 03:04:06

convolutional net where the layers are convolution, subsampling, convolu-
tion, full connect, and euclidean distance RBF.

(new net-cscfe n e thick si sj)

Type: CLASS(packages/gblearning/net-cscfe.lsh) Last Modified: 2002-08-19
03:04:06

n is a net-cscf , e is an e-dist layer , thick is the number of outputs. si ,
sj are the initial replication factors.

9.2.16 net-cscf

(packages/gblearning/net-cscf.lsh) Author(s): Yann LeCun Last Modified: 2002-
08-19 03:04:06

convolutional net where the layers are convolution, subsampling, convolu-
tion, full connect.

(new net-cscf ini inj ki0 kj0 tbl0 si0 sj0 ki2 kj2 tbl2 outthick prm)

Type: CLASS(packages/gblearning/net-cscf.lsh) Last Modified: 2002-08-19 03:04:06
makes a new net-cscf module. ini inj : expected max size of input for

preallocation of internal states ki0 kj0 : kernel size for first convolutional layer
tbl0 : table of connections between input anf feature maps for first layer si0
sj0 : subsampling for first layer ki2 kj2 tbl2 : same for last convolution layer
outthick : number of outputs. prm an idx1-ddparam in which the parameters
will be allocated.

9.2.17 net-cscscf

(packages/gblearning/net-cscscf.lsh) Author(s): Yann LeCun Last Modified:
2002-08-27 03:27:02

Standard LeNet5-type architecture without the final e-dist RBF layer.

(new net-cscscf ini inj ki0 kj0 tbl0 si0 sj0 ki1 kj1 tbl1 si1 sj1 ki2
kj2 tbl2 outthick prm)

Type: CLASS(packages/gblearning/net-cscscf.lsh) Last Modified: 2002-08-27
03:27:02

makes a new net-cscscf module. ini inj : expected max size of input for
preallocation of internal states ki0 kj0 : kernel size for first convolutional layer
tbl0 : table of connections between input anf feature maps for first layer si0
sj0 : subsampling for first layer ki1 kj1 tbl1 si1 sj1 : same for next 2



594 CHAPTER 9. PACKAGES

layers ki2 kj2 tbl2 : same for last convolution layer outthick : number of
outputs. prm an idx1-ddparam in which the parameters will be allocated.

9.2.18 net-cscscfe

(packages/gblearning/net-cscscfe.lsh) Author(s): Yann LeCun Last Modified:
2002-08-19 03:04:06

Standard LeNet5-type architecture.

(new net-cscscfe n e thick si sj)

Type: CLASS(packages/gblearning/net-cscscfe.lsh) Last Modified: 2002-08-19
03:04:06

n is a net-cscscf , e is an e-dist layer , thick is the number of outputs. si
, sj are the initial replication factors.

9.2.19 net-cscscscf

(packages/gblearning/net-cscscscf.lsh) Author(s): Yann LeCun Last Modified:
2002-08-19 03:04:06

A deep convolutional net, with one convo/subsamp set than LeNet5.

(new net-cscscscf ini inj ki0 kj0 tbl0 si0 sj0 ki1 kj1 tbl1 si1 sj1
ki2 kj2 tbl2 si2 sj2 ki3 kj3 tbl3 outthick prm)

Type: CLASS(packages/gblearning/net-cscscscf.lsh) Last Modified: 2002-08-19
03:04:06

makes a new net-cscscf module. ini inj : expected max size of input
for preallocation of internal states ki0 kj0 : kernel size for first convolutional
layer tbl0 : table of connections between input and feature maps for first layer
si0 sj0 : subsampling for first layer ki1 kj1 tbl1 si1 sj1 : same for next
2 layers... ki2 kj2 tbl2 si2 sj2 : ...and the next 2 ki3 kj3 tbl3 : same
yet again for last convolution layer outthick : number of outputs. prm an
idx1-ddparam in which the parameters will be allocated.

9.2.20 net-fff

(packages/gblearning/net-fff.lsh) Author(s): Yann LeCun Last Modified: 2002-
08-19 03:04:06

standard two-hidden layer, fully-connected neural net. this network is repli-
cable.

(new net-fff thickin thick0 thick1 thick2 ini inj prm)

Type: CLASS(packages/gblearning/net-fff.lsh) Last Modified: 2002-08-19 03:04:06
create a new net-ff network.



9.2. GBLEARNING: GRADIENT-BASED LEARNING LIBRARY 595

<thickin>: number of inputs.
<thick0>: size of hidden layer
<thick1>: size of second hidden layer
<thick2>: number of outputs
<ini> <inj>: expected max size of input over which the network

shbould be replicated.
<prm> an idx1-ddparam in which the parameters will be allocated.

9.2.21 net-ff

(packages/gblearning/net-ff.lsh) Author(s): Yann LeCun Last Modified: 2002-
08-19 03:04:06

standard one-hidden layer, fully-connected neural net. this network is repli-
cable.

(new net-ff thickin thick0 thick1 ini inj prm)

Type: CLASS(packages/gblearning/net-ff.lsh) Last Modified: 2002-08-19 03:04:06
create a new net-ff network.

<thickin>: number of inputs.
<thick0>: size of hidden layer
<thick1>: number of outputs
<ini> <inj>: expected max size of input over which the network

shbould be replicated.
<prm> an idx1-ddparam in which the parameters will be allocated.

9.2.22 lclass-meter

(packages/gblearning/lclass-meter.lsh) Last Modified: 2002-10-14 03:30:51
a special sn-meter that can be used to measure the performance of a classifier.
(needs more documentation of the methods).

(new lclass-meter sz [cp])

Type: CLASS(packages/gblearning/lclass-meter.lsh) Last Modified: 2002-10-14
03:30:51

create a new lclass-meter with a pre-allocated number of samples sz . cp
is an optional 2-argument function that returns t if the two arguments are
considered the same class.

9.2.23 ccc-tdnn

(packages/gblearning/ccc-tdnn.lsh) Author(s): Yann LeCun Last Modified: 2002-
08-18 21:42:08



596 CHAPTER 9. PACKAGES

Class for a Time Delay Neural Network with 3 convolutional layers (with
local connectivity). This type of network is appropriate for classifying sequences
of time/frequency represnetations such as cepstrum, MEL Scale spectrum, and
other.

(build-ccc-tdnn params freqs max-seq-len fk1 fs1 nh1 tk1 fk2 fs2 nh2
tk2 fk3 fs3 nh3 tk3)

(packages/gblearning/ccc-tdnn.lsh) Last Modified: 2002-08-18 21:42:08
Build a Time-Delay Neural Network for data such as spectral sequences in

which the features have a topology, choosing the connection tables to obtain
local connections in feature space (as specified by kernel size and stride for the
frequency axis, for each of these layers). The input to the net is assumed to
be Fx1xT where F is for example the number of frequency channels (spectral
representation) and T is the length of the sequence. Here, the network has 3
convolutional layers. The arguments are the following:

- <params> is a idx1-ddparam on which to allocate parameters for the layers.
- <freqs> is the number of input frequency channels.
- <max-seq-len> = maximum sequence length.
- <fk1>,<fk2>,<fk3> = sizes of frequency kernels (= width of local freq. windows)
- <fs1>,<fs2>,<fs3> = step sizes which separate the successive frequency windows
- <nh1>,<nh2>,<nh3> = number of hidden units per frequency channel, for each layer
- <tk1>,<tk2>,<tk3> = sizes of the temporal kernels, for each layer.

(tdnn-present-pattern from to mean idev temporal-window-size)

(packages/gblearning/ccc-tdnn.lsh) Last Modified: 2002-08-18 21:42:08
from is a Txf source matrix , to is a fx1xT’ destination state (T’ = T +

temporal-window-size - 1) , mean is a f-vector to substract from source , idev
is a f-vector to multiply by source. temporal-window-size is the length of the
input of the network yielding an output of length 1.

norm-ftdnn

(packages/gblearning/ccc-tdnn.lsh) Last Modified: 2002-08-18 21:42:08
Wrapper around ccc-tdnn which does input normalization and pads the input

according to the network architecture.

(new norm-ftdnn n-inputs nh1 nh2 n-outputs weight-file norm-file
[(-tk1 5)(-tk2 8)(-tk3 12) (-fk1 6)(-fk2 3)(-fk3 3) (-fs1 3)(-fs2 2)(-fs3
1) (max-seq-len 2000)])

Type: CLASS(packages/gblearning/ccc-tdnn.lsh) Last Modified: 2002-08-18
21:42:08



9.2. GBLEARNING: GRADIENT-BASED LEARNING LIBRARY 597

9.2.24 conx

(packages/gblearning/conx.lsh) Author(s): Yann LeCun Last Modified: 2002-
10-14 03:30:51

An architecture that connects inputs to outputs (with exactly one input per
output but maybe more than one output per input, i.e. a one to many map).
The inputs and outputs are bidimensional (i.e. sequences of vectors). It has
no adjustable parameters. Instead it has internal non-adjustable parameters
specifying the input/output connectivity.

(new conx n-outputs n-inputs indices)

Type: CLASS(packages/gblearning/conx.lsh) Last Modified: 2002-10-14 03:30:51
Construct a conx architecture. The parameters are given when constructing

the corresponding machine.
See: machine
See: sn-module
See: conx

(==> conx fprop parameters input output)

Type: MSG(packages/gblearning/conx.lsh) Last Modified: 2002-10-14 03:30:51
Fprop method for a conx architecture. Just gather the inputs into the output

vectors. Both the input and output are assumed to be sequences of vectors [i,t]
(2D matrices).

See: conx

(==> conx bprop input output)

Type: MSG(packages/gblearning/conx.lsh) Last Modified: 2002-10-14 03:30:51
Bprop method for a conx architecture. Just scatter with accumulate the

derivatives of the outputs into the derivative of the inputs. Both the input and
output are assumed to be sequences of vectors [i,t] (2D matrices).

See: conx

(==> conx generate input output)

Type: MSG(packages/gblearning/conx.lsh) Last Modified: 2002-10-14 03:30:51
:output:x is a matrix whose columns have zeros and a single one. According

to the permutation matrix parameters , a similar matrix :input:x is produced.

sum-arch

(packages/gblearning/conx.lsh) Last Modified: 2002-10-14 03:30:51
An architecture that takes the sum of its inputs. The input is a 2D matrix

whose first index is n-inputs and second index is variable (e.g. time). The
output is zero-dimensional (an idx0). There are no parameters.

See: sn-module



598 CHAPTER 9. PACKAGES

See: (new sum-arch)
See: (==> sum-arch fprop parameters input output )
See: (==> sum-arch bprop parameters input output )
See: (==> sum-arch output-dim inputx )
See: (==> sum-arch generate parameters input output )

(new sum-arch)

Type: CLASS(packages/gblearning/conx.lsh) Last Modified: 2002-10-14 03:30:51
Construct a sum-arch sn-module.
See: machine
See: sn-module
See: sum-arch

(==> sum-arch output-dim inputx)

Type: MSG(packages/gblearning/conx.lsh) Last Modified: 2002-10-14 03:30:51

(==> sum-arch fprop parameters input output)

Type: MSG(packages/gblearning/conx.lsh) Last Modified: 2002-10-14 03:30:51
Fprop method for a sum-arch architecture. Just add all the inputs. The

input is assumed to be any matrix (except an idx0). The output is an idx0.
See: sum-arch

(==> sum-arch bprop parameters input output)

Type: MSG(packages/gblearning/conx.lsh) Last Modified: 2002-10-14 03:30:51
Bprop method for a sum-arch architecture.
See: prod

(==> sum-arch generate parameters input output)

Type: MSG(packages/gblearning/conx.lsh) Last Modified: 2002-10-14 03:30:51
Generate a 2-d sequence of inputs. A prior distribution on sequence length

is chosen here to be uniform in [5 , 6 , ..10]. Ignore the output. For each time
step , the input vector is a vector of 0’s and a single 1 , chosen uniformly.

9.2.25 ftdnn

(packages/gblearning/ftdnn.lsh) Author(s): Yann LeCun Last Modified: 2002-
08-19 03:04:06

Time Delay Neural Net class for such things a speech recognition. Somewhat
superseded by ccc-tdnn.



9.2. GBLEARNING: GRADIENT-BASED LEARNING LIBRARY 599

(build-ftdnn apool params freqs max-seq-len layers-infos)

(packages/gblearning/ftdnn.lsh) Last Modified: 2002-08-19 03:04:06
Build a Time-Delay Neural Network for data such as spectral sequences in

which the features have a topology, choosing the connection tables to obtain
local connections in feature space (as specified by kernel size and stride for the
frequency axis, for each of these layers). The input to the net is assumed to
be Fx1xT where F is for example the number of frequency channels (spectral
representation) and T is the length of the sequence. The arguments are the
following:

- <apool> is a Pool on which to allocate dynamic memory for the internal states and layers.
- <params> is a idx1-ddparam on which to allocate parameters for the layers.
- <freqs> is the number of input frequency channels.
- <max-seq-len> = maximum sequence length.
- <layers-infos> is a list whose elements are lists with the following structure:
- <layer-type> is a symbol giving the name of an idx3-module subclass
(e.g., c-layer, f-layer, s-layer, m-layer, etc...)

For a c-layer or a f-layer, the following remaining arguments are expected in the list:
- <freqs-kernel> = size of frequency "kernels" (= width of local freq. windows)
- <freqs-stride> = step size which separates the successive frequency windows
- <n-h-per-freq> is the number of hidden units per frequency channel
- <t-kernel> = size of the temporal kernel
For a s-layer, the following remaining arguments are expected in the list:
- <t-subsampling-rate> = temporal subsampling rate
For a m-layer, the following remaining arguments are expected in the list:
- <t-window-size> = size of temporal window used for smoothing

9.2.26 seq3-modules

(packages/gblearning/seq3-modules.lsh) Last Modified: 2002-08-19 03:04:06
A set of idx3-modules executed in sequence (the output of one being the

input of the next one).

(new seq3-modules pool modules-gptr-vector sizes)

Type: CLASS(packages/gblearning/seq3-modules.lsh) Last Modified: 2002-08-
19 03:04:06

Construct a new seq3-modules module (it is itself an idx3-module) which will
sequence the idx3-modules whose pointers are given in the modules-gptr-vector
of length N. The sizes of the output idx3’s of each of the internal modules is
given in (N-1)x3 int-matrix sizes . The intermediate idx3-ddstates are allo-
cated on the given pool .



600 CHAPTER 9. PACKAGES

9.3 SDL: Simple DirectMedia Layer

Author(s): Yann LeCun
Lush’s interface to the popular SDL library provides access to every function

of the SDL API. It also provides a set of higher-level classes to make it easy to
write 2D video games and other interactive multimedia applications. The high-
level interface provides classes for double-buffered SDL screens, event grabbing,
and sprites with pixel-accurate collision detection.

The help text associated with each low-level function is from the correspond-
ing .h header file that comes with SDL. If you installed libSDL1.2-devel with
RPM, you may find the API documentation in [ file:/usr/share/doc/libSDL1.2-
devel-1.2.3/index.html ]Otherwise, the documentation is available at [http://www.libsdl.org
]

The Tutorial section of the Lush manual contains a tutorial on how to write
simple video games with Lush and SDL. [Tutorial: Writing Games with Lush
and SDL.

]

9.3.1 Installing SDL

To make the SDL interface work with Lush, you need:

• The SDL libraries (libSDL1.2)

• The SDL development libraries and include files (libSDL1.2-devel)

• The SDL image library (libSDL image1.2-devel)

• The SDL image development libraries and include files (libSDL image1.2 devel)

Those are generally available as RPMs or APTs for most Linux distributions.
Otherwise, you can download the latest version from [ http://www.libsdl.org ]

By default, Lush looks for the SDL .so libraries in ”/usr/lib”. It expects
to find ”libSDL-1.2.so.0” and ”libSDL image-1.2.so.0”. If these libraries are in-
stalled someplace else on your system, you must edit packages/sdl/sdl-config.lsh.

9.3.2 SDL Demos

(sdl-lander-simple)

(packages/sdl/demos/lander-simple.lsh) Last Modified: 2002-08-19 07:54:28
a simple lunar lander game in SDL that uses the high-level interface library

(sdl-screen , sdl-sprite , sdl-event). Use the arrows keys to activate the engines.
Hit ”q” to quit.



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 601

Simple Demos of the SDL Lush interface

(packages/sdl/demos/libsdl-demo.lsh) Last Modified: 2002-10-09 22:47:00
(sdl-showimage <filename) (packages/sdl/demos/libsdl-demo.lsh) Last

Modified: 2002-10-09 22:47:00
load an image and display it in an SDL window example:

(sdl-showimage (concat lushdir "/packages/sdl/demos/moon.png"))

(sdl-bouncy f b n) (packages/sdl/demos/libsdl-demo.lsh) Last Modified:
2002-10-09 22:47:00

bounce a bunch of objects on a background f is an image filename for the
object b is a backgroun image n is the number of objects. This uses the low-
level SDL interface. example:

(bounce (concat lushdir "/packages/sdl/demos/lem.png") (concat lushdir "/packages/sdl/demos/moon.png") 64)

9.3.3 LibSDL: High-level Interface to SDL

(packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
libsdl is a library of ”high level” functions and classes built on top of the SDL

(Simple Directmedia Layer) library to facilitate its use from Lush. It includes
objects such as screens and sprites with pixel-accurate collision detection. It also
includes access functions to keyboard and mouse events , as well as to several
common SDL data structures.

(sdl-initialize)

(packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
initializes the SDL engine with all its subsystems (timer , audio , video ,

cdrom , joystick). This function MUST BE CALLED before any other SDL
function or the interpreter will probably crash.

this function sets the global variable *sdl-initialized* to true , and only ex-
ecutes the initialization code if this variable is nil. Returns true on success.
If you want to initialize only certain subsystems , call the lower-level function
SDL Init with the appropriate flags and set *sdl-initialized* to true before open-
ing an sdl-screen.

(sdl-terminate)

(packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
This shuts down the SDL subsystem. sdl-initialize must be called be-

fore any new SDL call can be performed again. A call to sdl-terminate will
close any open SDL screen. In fact , calling sdl-terminate is the only way to
close an SDL screen.



602 CHAPTER 9. PACKAGES

sdl-screen

(packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
a class that creates and manipulates SDL Screens. This class can handle

pixel-accurate collision detection. It maintains a timer that measures the time
between screen flips. This allows to do time-accurate real-time physical simula-
tion. An SDL Screens is not closed when the corresponding sdl-screen object
is freed. Closing a screen can be done with a call to (sdl-terminate) .

(new sdl-screen w h cap) Type: CLASS(packages/sdl/libsdl.lsh) Last
Modified: 2002-12-24 14:21:48

open a new SDL Screen of size w , h with title cap . This attempts to open
a double-buffered 32 bit-per-pixel surface in the video hardware. It reverts to
24 or 16 bits (with 32 bit emulation) if a 32 bit screen cannot be allocated.
The function sdl-intialize MUST be called before opening an sdl-screen , or the
interpreter will crash!

(==> sdl-screen flip) Type: MSG(packages/sdl/libsdl.lsh) Last Modi-
fied: 2002-12-24 14:21:48

flip the buffers. The content of the visible screen is replaced by the content
of the back buffer (in which drawing operations are performed). This returns
the time since the last call to flip in seconds (as a floating point number). The
collision detection array is cleared by this call.

(==> sdl-screen toggle-fullscreen) Type: MSG(packages/sdl/libsdl.lsh)
Last Modified: 2002-12-24 14:21:48

Toggle full screen mode. Returns 1 on success , 0 on failure.
(==> sdl-screen clear) Type: MSG(packages/sdl/libsdl.lsh) Last Mod-

ified: 2002-12-24 14:21:48
fill the screen with back. Nothing actually happens on the screen until the

next call to flip.
(new sdlgl-screen w h cap) Type: CLASS(packages/sdl/libsdl.lsh) Last

Modified: 2002-12-24 14:21:48
just like sdl-screen , except that OpenGL drawing is enabled. Always opens

a 32 bit window.

sdlidx-screen

(packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
A subclass of sdl-screen that associates an SDL screen with an IDX of the

same size. Whatever is contained in the IDX can drawn on the screen by
calling the ”flip” method. Unlike sdl-screen , this class does not use SDL’s
double buffering mechanism , but uses its own back buffer in which all drawing
operations take place. sdlidx-screen can be used with sprites. Sprites drawn
into the screen will appear in the IDX. No collision detection between sprites
and the background directly drawn into the IDX can be performed (but it works
between sprites).

(new sdlidx-screen m caption) Type: CLASS(packages/sdl/libsdl.lsh)
Last Modified: 2002-12-24 14:21:48



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 603

opens a new SDL screen where IDX m (and idx3 of ubytes) is used as a back
buffer in which images can be drawn. The last dimension of m should be 3 or
4. If it is 3 , the RGB image in m will be drawn opaque , if it is 4 , the RGBA
image in m will be drawn on top of the current image using the A channel as
transparency. The screen is updated by a call to the method flip.

(==> sdlidx-screen flip) Type: MSG(packages/sdl/libsdl.lsh) Last Mod-
ified: 2002-12-24 14:21:48

Update screen with content of the IDX back buffer. return number of mil-
liseconds since the last call to flip.

sdl-event

(packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
a high-level class to manipulate SDL events.
(new sdl-event) Type: CLASS(packages/sdl/libsdl.lsh) Last Modified: 2002-

12-24 14:21:48
create a new sdl-event object.
(==> sdle type) Type: MSG(packages/sdl/libsdl.lsh) Last Modified: 2002-

12-24 14:21:48
return type of sdl-even sdle .
(==> sdle key-keysym-sym) Type: MSG(packages/sdl/libsdl.lsh) Last

Modified: 2002-12-24 14:21:48
return symbol of keyboard key symbol of an sdl-event.
(==> sdle button-x) Type: MSG(packages/sdl/libsdl.lsh) Last Modified:

2002-12-24 14:21:48
return mouse button 1 value of an sdl-event.
(==> sdle button-y) Type: MSG(packages/sdl/libsdl.lsh) Last Modified:

2002-12-24 14:21:48
return mouse button 2 value of an sdl-event.
(==> sdle motion-x) Type: MSG(packages/sdl/libsdl.lsh) Last Modi-

fied: 2002-12-24 14:21:48
return horizontal mouse motion of an sdl-event.
(==> sdle motion-y) Type: MSG(packages/sdl/libsdl.lsh) Last Modi-

fied: 2002-12-24 14:21:48
return vertical mouse motion of an sdl-event.
(==> sdle free) Type: MSG(packages/sdl/libsdl.lsh) Last Modified: 2002-

12-24 14:21:48
sdl-event destructor
(==> sdl-event get-arrows xyk) Type: MSG(packages/sdl/libsdl.lsh)

Last Modified: 2002-12-24 14:21:48
xyk is an idx1 of ints of size 3. (xyk 0) is set to +1 if right-arrow is pressed

and -1 if left-arrow is pressed (xyk 1) is set to +1 if up-arrow is pressed and -1
if down-arrow is pressed (xyk 2) is set to the keysym of any other key that’s
pressed

(==> sdl-event get-keys keymap keystate) Type: MSG(packages/sdl/libsdl.lsh)
Last Modified: 2002-12-24 14:21:48



604 CHAPTER 9. PACKAGES

keymap is an idx1 of -int- containing a list keys to be polled. The keys are
identified by their SDLK code. keystate is an -idx1- of -int- of the same size.
Upon exit , each element of keystate whose corresponding key (as specified in
keymap) is pressed down is set to 1. If the corresponding key is not pressed , it
is set to 0. This method can be used for games when simultaneous keypresses
of all the keys specified in keymap must be detected.

(libload "sdl/libsdl")
(sdl-initialize)
(setq scr (new sdl-screen 640 480 "Key Test"))
(setq ev (new sdl-event))
(setq kmap [i @@SDLK_a @@SDLK_d @@SDLK_w @@SDLK_s])
(setq ks (int-matrix 4))
(while t
(==> ev get-keys kmap ks)
(when (<> 0 ((idx-sum ks)))
(print ks)
(sleep 0.25)))

sdl-sprite

(packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
a sdl-sprite class for drawing movable objects in an SDL screen with pixel-

accurate collision detection. Sprites can contain multiple frames that can be
flipped through to make animations. or rotations. Each sprite object can be
given an ID (which is preferably between 1 and 32 , but can be larger) , which
identifies it during collision detection. For example , all background sprites can
be given ID 1 , spaceship 1 ID 2 , spaceship 2 ID 3 , and missiles , ID 4. IDs
do not need to be unique (several sprites can share the same ID) , but then the
collision detection mechanism won’t be able to distinguish them.

(==> sdl-sprite set-hotpoint hx hy) Type: MSG(packages/sdl/libsdl.lsh)
Last Modified: 2002-12-24 14:21:48

sets the ”hot point” (the handle) of the sprite to coordinates hx , hy .
(==> sdl-sprite get-hotpoint) Type: MSG(packages/sdl/libsdl.lsh)

Last Modified: 2002-12-24 14:21:48
get the ”hot point” (the handle) of the sprite as a list ( hx , hy ).
(==> sdl-sprite get-width) Type: MSG(packages/sdl/libsdl.lsh) Last

Modified: 2002-12-24 14:21:48
return width of current frame
(==> sdl-sprite get-height) Type: MSG(packages/sdl/libsdl.lsh) Last

Modified: 2002-12-24 14:21:48
return height of current frame
(new sdl-sprite screen id) Type: CLASS(packages/sdl/libsdl.lsh) Last

Modified: 2002-12-24 14:21:48
create a new sprite on screen screen with ID id .



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 605

(==> sdl-sprite alloc-frame) Type: MSG(packages/sdl/libsdl.lsh) Last
Modified: 2002-12-24 14:21:48

private method for allocating new frames in a sprite
(==> sdl-sprite make-frame img i hx hy) Type: MSG(packages/sdl/libsdl.lsh)

Last Modified: 2002-12-24 14:21:48
private method to set frame i to SDL Surface img . the screen must be

initialized before calling this.
(==> sdl-sprite load-frame file i hx hy) Type: MSG(packages/sdl/libsdl.lsh)

Last Modified: 2002-12-24 14:21:48
load image file file into frame i , and set the hot point (handle) to hx hy

. The images file can be in any format that sdlimage can handle (see img-load).
The screen must be initialized before calling this

(==> sdl-sprite rotscale-frame src dst angle coeff) Type: MSG(packages/sdl/libsdl.lsh)
Last Modified: 2002-12-24 14:21:48

take frame src , rotate it by angle degreed , and scale it by coefficient
coeff , then sets the dst -th frame to the resulting image. This function is
convenient for generating views of a sprite at all possible angles automatically.
This must be done in advance as this functions is too slow to generate frames
on-the-fly while the game is running.

(==> sdl-sprite make-frame-idx m i hx hy) Type: MSG(packages/sdl/libsdl.lsh)
Last Modified: 2002-12-24 14:21:48

set frame i to the image contained in idx m . The idx will be interpreted as
an heightxwidthx4 idx of ubytes containing an RGBA images. The screen must
be initialized before calling this

(==> sdl-sprite get-frame-idx i) Type: MSG(packages/sdl/libsdl.lsh)
Last Modified: 2002-12-24 14:21:48

Return an idx containing the image of the i -th frame.
(==> sdl-sprite set-frame i) Type: MSG(packages/sdl/libsdl.lsh) Last

Modified: 2002-12-24 14:21:48
make frame i the current frame (i.e. the one that will be drawn next).
(==> sdl-sprite get-frame) Type: MSG(packages/sdl/libsdl.lsh) Last

Modified: 2002-12-24 14:21:48
return index of current frame.
(==> sdl-sprite move lx ly) Type: MSG(packages/sdl/libsdl.lsh) Last

Modified: 2002-12-24 14:21:48
move sprite to lx , ly . This does not actually draw anything.
(==> sdl-sprite moverel dx dy) Type: MSG(packages/sdl/libsdl.lsh)

Last Modified: 2002-12-24 14:21:48
move sprite by dx , dy relative to the current position. This does not actu-

ally draw anything.
(==> sdl-sprite draw) Type: MSG(packages/sdl/libsdl.lsh) Last Mod-

ified: 2002-12-24 14:21:48
draw the sprite on the screen using the current frame and position. This

does not do any collision detection.
(==> sdl-sprite drawc) Type: MSG(packages/sdl/libsdl.lsh) Last Mod-

ified: 2002-12-24 14:21:48



606 CHAPTER 9. PACKAGES

draw the sprite on the screen using the current frame and position. This
performs all the operation necessary to do pixel-accurate collision detection.
Any pixel with a non-zero alpha value drawn on top of another previously drawn
object triggers the collision detection.

(==> sdl-sprite test-collision) Type: MSG(packages/sdl/libsdl.lsh)
Last Modified: 2002-12-24 14:21:48

Prepare to test if the sprite would collide with any sprite already drawn on
the screen. Unlike drawc , this method does not draw the sprite and does not
modify the screen’s collision map. It provides a way to test for collision and
take actions before the collisio actually happens. The function collided must
be subsequently called to actually test if the current sprite would have collided
with any other already drawn sprites.

(collided sp1 sp2) (packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
returns true any sprite with the same id as sp1 has collided with any sprite

with the same id as sp2 . For this to return a meaningful result , both sprites
must have been drawn with the drawc , or the one must have been drawn with
drawc , and the other one must have been sent the message test-collision
. This must be called before the screen flip (but after the calls to drawc or
test-collision ) since the screen flip clears the collision detection array.

mover

(packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
a class that can move sprites according to 2D Newtonian dynamics. The

simplest use consists in creating a mover, then go around a loop that:

- gets input from the keyboard, mouse or joystick.
- calls the mover methods push, and update
- calls the mover method move with a sprite as argument
- draws the sprite
- flips the screen
- sets the deltat of the mover to the value
returned by the screen flip method.

(==> mover set-mass m) Type: MSG(packages/sdl/libsdl.lsh) Last Mod-
ified: 2002-12-24 14:21:48

set the mass of the mover.
(==> mover get-mass) Type: MSG(packages/sdl/libsdl.lsh) Last Modi-

fied: 2002-12-24 14:21:48
return mass of mover
(==> mover set-deltat dt) Type: MSG(packages/sdl/libsdl.lsh) Last

Modified: 2002-12-24 14:21:48
sets the time increment between updates (in seconds) to dt .
(==> mover get-deltat) Type: MSG(packages/sdl/libsdl.lsh) Last Modi-

fied: 2002-12-24 14:21:48
gets the time increment between updates.



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 607

(==> mover set-state lx ly lvx lvy lax lay) Type: MSG(packages/sdl/libsdl.lsh)
Last Modified: 2002-12-24 14:21:48

(==> mover get-state) Type: MSG(packages/sdl/libsdl.lsh) Last Modi-
fied: 2002-12-24 14:21:48

(==> mover set-state x y vx vy ax ay mass deltat) Type: MSG(packages/sdl/libsdl.lsh)
Last Modified: 2002-12-24 14:21:48

create a new sprite mover with initial position x , y , initial velocity vx ,
vy , initial acceleration ax , ay , mass mass , and time increment deltat .

(==> mover push fx fy) Type: MSG(packages/sdl/libsdl.lsh) Last Mod-
ified: 2002-12-24 14:21:48

apply a force vector fx fy to the mover. the unit is mass untis times pixels
per second per second. In other words , a mover of mass 1 , with a force vector
of length 1 , will accelerate 1 pixel per second per second (assuming the time
increment is correct).

(==> mover update) Type: MSG(packages/sdl/libsdl.lsh) Last Modified:
2002-12-24 14:21:48

updates the positions and velocity according to 2D Newtonian mechanics.
(==> mover move-sprite sp) Type: MSG(packages/sdl/libsdl.lsh) Last

Modified: 2002-12-24 14:21:48
move sprite sp to the position of the mover.

SDL Rect function

(packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
functions to manipulate SDL Rect structures Most users will prefer to use

the higher level sdl-rect class rather than these functions
low-level functions on SDL-Rect (packages/sdl/libsdl.lsh) Last Modi-

fied: 2002-12-24 14:21:48
(new-sdl-rect x y w h) (packages/sdl/libsdl.lsh) Last Modified: 2002-12-24

14:21:48
allocate a new SDL Rect structure , fill it up with x , y , w , h (position

, width , height) , and return a gptr to it. The result must be freed with
free-sdl-rect.

(set-sdl-rect r x y w h) (packages/sdl/libsdl.lsh) Last Modified: 2002-12-24
14:21:48

sets the position width and height of SDL Rect pointed to by r to the ar-
guments.

(free-sdl-rect r) (packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
deallocate SDL Rect structure pointed to by r .
sdl-rect (packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
a high-level class to manipulate SDL Rect with automatic garbage collection

and the like.
(new sdl-rect x y w h) Type: CLASS(packages/sdl/libsdl.lsh) Last Modi-

fied: 2002-12-24 14:21:48
create a new sdl-rect.



608 CHAPTER 9. PACKAGES

SDL Surface

(packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
manipulating SDL Surface structures
low level functions on SDL Surface (packages/sdl/libsdl.lsh) Last Mod-

ified: 2002-12-24 14:21:48
(sdl-surface-w s) (packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
return width of SDL Surface pointed to by s .
(sdl-surface-h s) (packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
return height of SDL Surface pointed to by s .
(sdl-surface-pitch s) (packages/sdl/libsdl.lsh) Last Modified: 2002-12-24

14:21:48
return pitch of SDL Surface pointed to by s .
(sdl-surface-pixels s) (packages/sdl/libsdl.lsh) Last Modified: 2002-12-24

14:21:48
return a pointer to the pixel data of the SDL Surface pointed to by s .
(sdl-surface-offset s) (packages/sdl/libsdl.lsh) Last Modified: 2002-12-24

14:21:48
(sdl-surface-ptr-idx m) (packages/sdl/libsdl.lsh) Last Modified: 2002-12-

24 14:21:48
create an SDL Surface from an IDX. the pixel area of the SDL Surface points

to the data of the IDX. CAUTION: this function is a bit dangerous because the
idx can be deallocated without the sdl surface knowing about it.

(idx-to-sdl-surface m) (packages/sdl/libsdl.lsh) Last Modified: 2002-12-24
14:21:48

Return an RGB SDL Surface whose pixels are filled up with the content of
IDX m . m must be an idx3 of ubyte whose last dimension must be 4. It will be
interpreted as an RGBA image.

(sdl-surface-to-idx surface) (packages/sdl/libsdl.lsh) Last Modified: 2002-
12-24 14:21:48

returns an idx3 of ubytes filled up with the RGBA pixel values of SDL surface
surface .

SDL Drawing Functions

(packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
to draw into SDL Surfaces.
(sdl-fill-rect dst x y w h r g <b) (packages/sdl/libsdl.lsh) Last Modified:

2002-12-24 14:21:48
fills a rectangle defined by x y w h of an SDL Surface dst with RGB values

r g b).

Collision Detection (low level functions)

(packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
a set of function to manage pixel-accurate collision detection between object

drawn on an SDL Surface.



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 609

(sdl-collide id src srcrect dst dstrect coll) (packages/sdl/libsdl.lsh)
Last Modified: 2002-12-24 14:21:48

this is a low-level function for pixel-accurate collision detection. The argu-
ments src srcrect dst dstrect play the samee role as the corresponding ar-
guments of SDL BlitSurface. dst is an idx3 of ints. The vector of ints obtained
by fixing the first two indexes and varying the last is interpreted as a bitmap.
The id -th bit of the bitmap at location i , j is set when a non-transparent
pixel of an object whose ID is id has been painted at the corresponding lo-
cation. src is an RLE-encoded mask of an object (a list of runs) as returned
by rle-encode-alpha which indicates which pixels trigger collision. srcrect is
a subrectangle in src that is actually painted (must be NULL in current im-
plementation). dstrect is the clipping rectangle in dst . coll is an idx1 of
int interpreted as a bitmap , which on exit contains a set bit for every already
painted object that collided with the current object.

(sdl-test-collision id src srcrect dst dstrect coll) (packages/sdl/libsdl.lsh)
Last Modified: 2002-12-24 14:21:48

this is a low-level function for pixel-accurate collision detection. This func-
tion is essentially identical to sdl-collide , except it doesn’t modify the des-
tination bitmap dst . This function can be used to get a list of which sprites
would be collided if a sprite were drawn. On output , the i-th bit of coll (idx1
of ubyte) is set if the any pixel of src would collide with any non-transparent
pixel of dst . The arguments src srcrect dst dstrect play the samee role
as the corresponding arguments of SDL BlitSurface. dst is an idx3 of ints.
The vector of ints obtained by fixing the first two indexes and varying the last
is interpreted as a bitmap. src is an RLE-encoded mask of an object (a list
of runs) as returned by rle-encode-alpha which indicates which pixels trigger
collision. srcrect is a subrectangle in src that is actually painted (must be
NULL in current implementation). dstrect is the clipping rectangle in dst .
coll is an idx1 of int interpreted as a bitmap , which on exit contains a set bit
for every already painted object that collided with the current object.

SDL Event manipulation

(packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
functions to create and manipulate SDL Event structures for keyboard/mouse/joystick

event grabbing.
low level access to SDL event structures (packages/sdl/libsdl.lsh) Last

Modified: 2002-12-24 14:21:48
(new-sdl-event) (packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
allocate and return a pointer to a new SDL Event structure.
(sdl-event-type e) (packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
return the type field of an SDL Event pointed to by e .
(sdl-event-key-keysym-sym e) (packages/sdl/libsdl.lsh) Last Modified:

2002-12-24 14:21:48
return the field key.keysym.sym of an SDL Event pointed to by e .



610 CHAPTER 9. PACKAGES

(sdl-event-button-x e) (packages/sdl/libsdl.lsh) Last Modified: 2002-12-
24 14:21:48

return the button.x field of an SDL Event pointed to by e .
(sdl-event-button-y e) (packages/sdl/libsdl.lsh) Last Modified: 2002-12-

24 14:21:48
return the button.y field of an SDL Event pointed to by e .
(sdl-event-motion-x e) (packages/sdl/libsdl.lsh) Last Modified: 2002-12-

24 14:21:48
return the motion.x field of an SDL Event pointed to by e .
(sdl-event-motion-y e) (packages/sdl/libsdl.lsh) Last Modified: 2002-12-

24 14:21:48
return the motion.y field of an SDL Event pointed to by e .

Miscellaneous/internal functions

(packages/sdl/libsdl.lsh) Last Modified: 2002-12-24 14:21:48
these are not meant to be called directly.
(rle-encode-alpha image thres) (packages/sdl/libsdl.lsh) Last Modified:

2002-12-24 14:21:48
private returns a gptr on an RLE-encoded binary mask (used for collision

detection) where any pixel of SDL Surface image whose alpha value is less than
thres is considered transparent

9.3.4 Low-Level Interface to SDL

sdl/SDL.lsh

(SDL Init flags) (packages/sdl/SDL.lsh) Last Modified: 2002-10-22 20:11:32

/* This function loads the SDL dynamically linked library and initializes
* the subsystems specified by ’flags’ (and those satisfying dependencies)
* Unless the SDL_INIT_NOPARACHUTE flag is set, it will install cleanup
* signal handlers for some commonly ignored fatal signals (like SIGSEGV)
*/
extern DECLSPEC int SDL_Init(Uint32 flags);
Flags are:
SDL_INIT_TIMER 0x00000001
SDL_INIT_AUDIO 0x00000010
SDL_INIT_VIDEO 0x00000020
SDL_INIT_CDROM 0x00000100
SDL_INIT_JOYSTICK 0x00000200
SDL_INIT_NOPARACHUTE 0x00100000 /* don’t catch fatal signals */
SDL_INIT_EVENTTHREAD 0x01000000) /* Not supported on all OS’s */)
SDL_INIT_EVERYTHING 0x0000FFFF



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 611

(SDL InitSubSystem flags) (packages/sdl/SDL.lsh) Last Modified: 2002-
10-22 20:11:32

/* This function initializes specific SDL subsystems */
extern DECLSPEC int SDL_InitSubSystem(Uint32 flags);

(SDL QuitSubSystem flags) (packages/sdl/SDL.lsh) Last Modified: 2002-
10-22 20:11:32

/* This function cleans up specific SDL subsystems */
extern DECLSPEC void SDL_QuitSubSystem(Uint32 flags);

(SDL WasInit flags) (packages/sdl/SDL.lsh) Last Modified: 2002-10-22
20:11:32

/* This function returns mask of the specified subsystems which have
been initialized.
If ’flags’ is 0, it returns a mask of all initialized subsystems.

*/
extern DECLSPEC Uint32 SDL_WasInit(Uint32 flags);

(SDL Quit) (packages/sdl/SDL.lsh) Last Modified: 2002-10-22 20:11:32

/* This function cleans up all initialized subsystems and unloads the
* dynamically linked library. You should call it upon all exit conditions.
*/
extern DECLSPEC void SDL_Quit(void);

sdl/SDL active.lsh

(SDL GetAppState) (packages/sdl/SDL active.lsh) Last Modified: 2002-08-
19 03:04:08

/* Function prototypes */
/*
* This function returns the current state of the application, which is a
* bitwise combination of SDL_APPMOUSEFOCUS, SDL_APPINPUTFOCUS, and
* SDL_APPACTIVE. If SDL_APPACTIVE is set, then the user is able to
* see your application, otherwise it has been iconified or disabled.
*/
extern DECLSPEC Uint8 SDL_GetAppState(void);



612 CHAPTER 9. PACKAGES

sdl/SDL audio.lsh

(SDL AudioInit driver name) (packages/sdl/SDL audio.lsh) Last Modified:
2002-10-01 18:33:50

/* These functions are used internally, and should not be used unless you
* have a specific need to specify the audio driver you want to use.
* You should normally use SDL_Init() or SDL_InitSubSystem().
*/
extern DECLSPEC int SDL_AudioInit(const char *driver_name);

(SDL AudioQuit) (packages/sdl/SDL audio.lsh) Last Modified: 2002-10-
01 18:33:50

extern DECLSPEC void SDL_AudioQuit(void);

(SDL AudioDriverName namebuf maxlen) (packages/sdl/SDL audio.lsh)
Last Modified: 2002-10-01 18:33:50

/* This function fills the given character buffer with the name of the
* current audio driver, and returns a pointer to it if the audio driver has
* been initialized. It returns NULL if no driver has been initialized.
*/
extern DECLSPEC char *SDL_AudioDriverName(char *namebuf, int maxlen);

(SDL OpenAudio desired obtained) (packages/sdl/SDL audio.lsh) Last
Modified: 2002-10-01 18:33:50

/*
* This function opens the audio device with the desired parameters, and
* returns 0 if successful, placing the actual hardware parameters in the
* structure pointed to by ’obtained’. If ’obtained’ is NULL, the audio
* data passed to the callback function will be guaranteed to be in the
* requested format, and will be automatically converted to the hardware
* audio format if necessary. This function returns -1 if it failed
* to open the audio device, or couldn’t set up the audio thread.
*
* When filling in the desired audio spec structure,
* ’desired->freq’ should be the desired audio frequency in samples-per-second.
* ’desired->format’ should be the desired audio format.
* ’desired->samples’ is the desired size of the audio buffer, in samples.
* This number should be a power of two, and may be adjusted by the audio
* driver to a value more suitable for the hardware. Good values seem to
* range between 512 and 8096 inclusive, depending on the application and



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 613

* CPU speed. Smaller values yield faster response time, but can lead
* to underflow if the application is doing heavy processing and cannot
* fill the audio buffer in time. A stereo sample consists of both right
* and left channels in LR ordering.
* Note that the number of samples is directly related to time by the
* following formula: ms = (samples*1000)/freq
* ’desired->size’ is the size in bytes of the audio buffer, and is
* calculated by SDL_OpenAudio().
* ’desired->silence’ is the value used to set the buffer to silence,
* and is calculated by SDL_OpenAudio().
* ’desired->callback’ should be set to a function that will be called
* when the audio device is ready for more data. It is passed a pointer
* to the audio buffer, and the length in bytes of the audio buffer.
* This function usually runs in a separate thread, and so you should
* protect data structures that it accesses by calling SDL_LockAudio()
* and SDL_UnlockAudio() in your code.
* ’desired->userdata’ is passed as the first parameter to your callback
* function.
*
* The audio device starts out playing silence when it’s opened, and should
* be enabled for playing by calling SDL_PauseAudio(0) when you are ready
* for your audio callback function to be called. Since the audio driver
* may modify the requested size of the audio buffer, you should allocate
* any local mixing buffers after you open the audio device.
*/
extern DECLSPEC int SDL_OpenAudio(SDL_AudioSpec *desired, SDL_AudioSpec *obtained);

(SDL GetAudioStatus) (packages/sdl/SDL audio.lsh) Last Modified: 2002-
10-01 18:33:50

/*
* Get the current audio state:
*/
typedef enum {

SDL_AUDIO_STOPPED = 0,
SDL_AUDIO_PLAYING,
SDL_AUDIO_PAUSED

} SDL_audiostatus;
extern DECLSPEC SDL_audiostatus SDL_GetAudioStatus(void);

(SDL PauseAudio pause on) (packages/sdl/SDL audio.lsh) Last Modi-
fied: 2002-10-01 18:33:50

/*
* This function pauses and unpauses the audio callback processing.



614 CHAPTER 9. PACKAGES

* It should be called with a parameter of 0 after opening the audio
* device to start playing sound. This is so you can safely initialize
* data for your callback function after opening the audio device.
* Silence will be written to the audio device during the pause.
*/
extern DECLSPEC void SDL_PauseAudio(int pause_on);

(SDL LoadWAV RW src freesrc spec audio buf audio len) (pack-
ages/sdl/SDL audio.lsh) Last Modified: 2002-10-01 18:33:50

/*
* This function loads a WAVE from the data source, automatically freeing
* that source if ’freesrc’ is non-zero. For example, to load a WAVE file,
* you could do:
* SDL_LoadWAV_RW(SDL_RWFromFile("sample.wav", "rb"), 1, ...);
*
* If this function succeeds, it returns the given SDL_AudioSpec,
* filled with the audio data format of the wave data, and sets
* ’audio_buf’ to a malloc()’d buffer containing the audio data,
* and sets ’audio_len’ to the length of that audio buffer, in bytes.
* You need to free the audio buffer with SDL_FreeWAV() when you are
* done with it.
*
* This function returns NULL and sets the SDL error message if the
* wave file cannot be opened, uses an unknown data format, or is
* corrupt. Currently raw and MS-ADPCM WAVE files are supported.
*/
extern DECLSPEC SDL_AudioSpec *SDL_LoadWAV_RW(SDL_RWops *src, int freesrc,

SDL_AudioSpec *spec, Uint8 **audio_buf, Uint32 *audio_len);

(SDL LoadWAV file spec audio buf audio len) (packages/sdl/SDL audio.lsh)
Last Modified: 2002-10-01 18:33:50

/* Compatibility convenience function -- loads a WAV from a file */

(SDL FreeWAV <audio buf?) (packages/sdl/SDL audio.lsh) Last Mod-
ified: 2002-10-01 18:33:50

/*
* This function frees data previously allocated with SDL_LoadWAV_RW()
*/
extern DECLSPEC void SDL_FreeWAV(Uint8 *audio_buf);

(SDL BuildAudioCVT cvt src format src channels src rate dst format
dst channels dst rate) (packages/sdl/SDL audio.lsh) Last Modified: 2002-
10-01 18:33:50



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 615

/*
* This function takes a source format and rate and a destination format
* and rate, and initializes the ’cvt’ structure with information needed
* by SDL_ConvertAudio() to convert a buffer of audio data from one format
* to the other.
* This function returns 0, or -1 if there was an error.
*/
extern DECLSPEC int SDL_BuildAudioCVT(SDL_AudioCVT *cvt,

Uint16 src_format, Uint8 src_channels, int src_rate,
Uint16 dst_format, Uint8 dst_channels, int dst_rate);

(SDL ConvertAudio cvt) (packages/sdl/SDL audio.lsh) Last Modified:
2002-10-01 18:33:50

/* Once you have initialized the ’cvt’ structure using SDL_BuildAudioCVT(),
* created an audio buffer cvt->buf, and filled it with cvt->len bytes of
* audio data in the source format, this function will convert it in-place
* to the desired format.
* The data conversion may expand the size of the audio data, so the buffer
* cvt->buf should be allocated after the cvt structure is initialized by
* SDL_BuildAudioCVT(), and should be cvt->len*cvt->len_mult bytes long.
*/
extern DECLSPEC int SDL_ConvertAudio(SDL_AudioCVT *cvt);

(SDL MixAudio dst src len volume) (packages/sdl/SDL audio.lsh) Last
Modified: 2002-10-01 18:33:50

/*
* This takes two audio buffers of the playing audio format and mixes
* them, performing addition, volume adjustment, and overflow clipping.
* The volume ranges from 0 - 128, and should be set to SDL_MIX_MAXVOLUME
* for full audio volume. Note this does not change hardware volume.
* This is provided for convenience -- you can mix your own audio data.
*/

(SDL LockAudio) (packages/sdl/SDL audio.lsh) Last Modified: 2002-10-
01 18:33:50

/*
* The lock manipulated by these functions protects the callback function.
* During a LockAudio/UnlockAudio pair, you can be guaranteed that the
* callback function is not running. Do not call these from the callback
* function or you will cause deadlock.



616 CHAPTER 9. PACKAGES

*/
extern DECLSPEC void SDL_LockAudio(void);
extern DECLSPEC void SDL_UnlockAudio(void);

(SDL UnlockAudio) (packages/sdl/SDL audio.lsh) Last Modified: 2002-
10-01 18:33:50

unlock audio.

(SDL CloseAudio) (packages/sdl/SDL audio.lsh) Last Modified: 2002-10-
01 18:33:50

/*
* This function shuts down audio processing and closes the audio device.
*/
extern DECLSPEC void SDL_CloseAudio(void);

sdl/SDL byteorder.lsh

(SDL byteorder) (packages/sdl/SDL byteorder.lsh) Last Modified: 2002-08-
19 03:04:08

/* Pardon the mess, I’m trying to determine the endianness of this host.
I’m doing it by preprocessor defines rather than some sort of configure
script so that application code can use this too. The "right" way would
be to dynamically generate this file on install, but that’s a lot of work.

*/
#if defined(__i386__) || defined(__ia64__) || defined(WIN32) || \\

(defined(__alpha__) || defined(__alpha)) || \\
defined(__arm__) || \\

(defined(__mips__) && defined(__MIPSEL__)) || \\
defined(__LITTLE_ENDIAN__)

#define SDL_BYTEORDER SDL_LIL_ENDIAN
#else
#define SDL_BYTEORDER SDL_BIG_ENDIAN
#endif

sdl/SDL cdrom.lsh

(CD INDRIVE status) (packages/sdl/SDL cdrom.lsh) Last Modified: 2002-
08-19 03:04:08

/* The possible states which a CD-ROM drive can be in. */
typedef enum {



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 617

CD_TRAYEMPTY,
CD_STOPPED,
CD_PLAYING,
CD_PAUSED,
CD_ERROR = -1

} CDstatus;
/* Given a status, returns true if there’s a disk in the drive */

(SDL CDNumDrives) (packages/sdl/SDL cdrom.lsh) Last Modified: 2002-
08-19 03:04:08

/* Returns the number of CD-ROM drives on the system, or -1 if
SDL_Init() has not been called with the SDL_INIT_CDROM flag.

*/
extern DECLSPEC int SDL_CDNumDrives(void);

(SDL CDName drive) (packages/sdl/SDL cdrom.lsh) Last Modified: 2002-
08-19 03:04:08

/* Returns a human-readable, system-dependent identifier for the CD-ROM.
Example:

"/dev/cdrom"
"E:"
"/dev/disk/ide/1/master"

*/
extern DECLSPEC const char * SDL_CDName(int drive);

(SDL CDOpen drive) (packages/sdl/SDL cdrom.lsh) Last Modified: 2002-
08-19 03:04:08

/* Opens a CD-ROM drive for access. It returns a drive handle on success,
or NULL if the drive was invalid or busy. This newly opened CD-ROM
becomes the default CD used when other CD functions are passed a NULL
CD-ROM handle.
Drives are numbered starting with 0. Drive 0 is the system default CD-ROM.

*/
extern DECLSPEC SDL_CD * SDL_CDOpen(int drive);

(SDL CDStatus cdrom) (packages/sdl/SDL cdrom.lsh) Last Modified: 2002-
08-19 03:04:08

/* This function returns the current status of the given drive.
If the drive has a CD in it, the table of contents of the CD and current
play position of the CD will be stored in the SDL_CD structure.

*/
extern DECLSPEC CDstatus SDL_CDStatus(SDL_CD *cdrom);



618 CHAPTER 9. PACKAGES

(SDL CDPlayTracks cdrom start track start frame ntracks nframes)
(packages/sdl/SDL cdrom.lsh) Last Modified: 2002-08-19 03:04:08

/* Play the given CD starting at ’start_track’ and ’start_frame’ for ’ntracks’
tracks and ’nframes’ frames. If both ’ntrack’ and ’nframe’ are 0, play
until the end of the CD. This function will skip data tracks.
This function should only be called after calling SDL_CDStatus() to
get track information about the CD.
For example:

// Play entire CD:
if ( CD_INDRIVE(SDL_CDStatus(cdrom)) )

SDL_CDPlayTracks(cdrom, 0, 0, 0, 0);
// Play last track:
if ( CD_INDRIVE(SDL_CDStatus(cdrom)) ) {

SDL_CDPlayTracks(cdrom, cdrom->numtracks-1, 0, 0, 0);
}
// Play first and second track and 10 seconds of third track:
if ( CD_INDRIVE(SDL_CDStatus(cdrom)) )

SDL_CDPlayTracks(cdrom, 0, 0, 2, 10);
This function returns 0, or -1 if there was an error.

*/
extern DECLSPEC int SDL_CDPlayTracks(SDL_CD *cdrom,

int start_track, int start_frame, int ntracks, int nframes);

(SDL CDPlay cdrom start length) (packages/sdl/SDL cdrom.lsh) Last
Modified: 2002-08-19 03:04:08

/* Play the given CD starting at ’start’ frame for ’length’ frames.
It returns 0, or -1 if there was an error.

*/
extern DECLSPEC int SDL_CDPlay(SDL_CD *cdrom, int start, int length);

(SDL CDPause cdrom) (packages/sdl/SDL cdrom.lsh) Last Modified: 2002-
08-19 03:04:08

/* Pause play -- returns 0, or -1 on error */
extern DECLSPEC int SDL_CDPause(SDL_CD *cdrom);

(SDL CDResume cdrom) (packages/sdl/SDL cdrom.lsh) Last Modified:
2002-08-19 03:04:08

/* Resume play -- returns 0, or -1 on error */
extern DECLSPEC int SDL_CDResume(SDL_CD *cdrom);



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 619

(SDL CDStop cdrom) (packages/sdl/SDL cdrom.lsh) Last Modified: 2002-
08-19 03:04:08

/* Stop play -- returns 0, or -1 on error */
extern DECLSPEC int SDL_CDStop(SDL_CD *cdrom);

(SDL CDEject cdrom) (packages/sdl/SDL cdrom.lsh) Last Modified: 2002-
08-19 03:04:08

/* Eject CD-ROM -- returns 0, or -1 on error */
extern DECLSPEC int SDL_CDEject(SDL_CD *cdrom);

(SDL CDClose cdrom) (packages/sdl/SDL cdrom.lsh) Last Modified: 2002-
08-19 03:04:08

/* Closes the handle for the CD-ROM drive */
extern DECLSPEC void SDL_CDClose(SDL_CD *cdrom);

sdl/SDL endian.lsh

(SDL ReadLE16 src) (packages/sdl/SDL endian.lsh) Last Modified: 2002-
08-19 03:04:08

/* Read an item of the specified endianness and return in native format */
extern DECLSPEC Uint16 SDL_ReadLE16(SDL_RWops *src);

(SDL ReadBE16 src) (packages/sdl/SDL endian.lsh) Last Modified: 2002-
08-19 03:04:08

extern DECLSPEC Uint16 SDL_ReadBE16(SDL_RWops *src);

(SDL ReadLE32 src) (packages/sdl/SDL endian.lsh) Last Modified: 2002-
08-19 03:04:08

extern DECLSPEC Uint32 SDL_ReadLE32(SDL_RWops *src);

(SDL ReadBE32 src) (packages/sdl/SDL endian.lsh) Last Modified: 2002-
08-19 03:04:08

extern DECLSPEC Uint32 SDL_ReadBE32(SDL_RWops *src);

(SDL WriteLE16 dst value) (packages/sdl/SDL endian.lsh) Last Modi-
fied: 2002-08-19 03:04:08



620 CHAPTER 9. PACKAGES

/* Write an item of native format to the specified endianness */
extern DECLSPEC int SDL_WriteLE16(SDL_RWops *dst, Uint16 value);

(SDL WriteBE16 dst value) (packages/sdl/SDL endian.lsh) Last Modi-
fied: 2002-08-19 03:04:08

extern DECLSPEC int SDL_WriteBE16(SDL_RWops *dst, Uint16 value);

(SDL WriteLE32 dst value) (packages/sdl/SDL endian.lsh) Last Modi-
fied: 2002-08-19 03:04:08

extern DECLSPEC int SDL_WriteLE32(SDL_RWops *dst, Uint32 value);

(SDL WriteBE32 dst value) (packages/sdl/SDL endian.lsh) Last Modi-
fied: 2002-08-19 03:04:08

extern DECLSPEC int SDL_WriteBE32(SDL_RWops *dst, Uint32 value);

sdl/SDL error.lsh

(SDL GetError) (packages/sdl/SDL error.lsh) Last Modified: 2002-08-19 03:04:08

extern DECLSPEC char * SDL_GetError(void);

(SDL ClearError) (packages/sdl/SDL error.lsh) Last Modified: 2002-08-
19 03:04:08

extern DECLSPEC void SDL_ClearError(void);

(SDL Error code) (packages/sdl/SDL error.lsh) Last Modified: 2002-08-
19 03:04:08

/* Private error message function - used internally */
#define SDL_OutOfMemory() SDL_Error(SDL_ENOMEM)
typedef enum {

SDL_ENOMEM,
SDL_EFREAD,
SDL_EFWRITE,
SDL_EFSEEK,
SDL_LASTERROR

} SDL_errorcode;
extern void SDL_Error(SDL_errorcode code);



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 621

sdl/SDL events.lsh

(SDL PumpEvents) (packages/sdl/SDL events.lsh) Last Modified: 2002-10-
01 18:34:22

/* Pumps the event loop, gathering events from the input devices.
This function updates the event queue and internal input device state.
This should only be run in the thread that sets the video mode.

*/
extern DECLSPEC void SDL_PumpEvents(void);

(SDL PeepEvents events numevents action mask) (packages/sdl/SDL events.lsh)
Last Modified: 2002-10-01 18:34:22

/* Checks the event queue for messages and optionally returns them.
If ’action’ is SDL_ADDEVENT, up to ’numevents’ events will be added to
the back of the event queue.
If ’action’ is SDL_PEEKEVENT, up to ’numevents’ events at the front
of the event queue, matching ’mask’, will be returned and will not
be removed from the queue.
If ’action’ is SDL_GETEVENT, up to ’numevents’ events at the front
of the event queue, matching ’mask’, will be returned and will be
removed from the queue.
This function returns the number of events actually stored, or -1
if there was an error. This function is thread-safe.

*/
typedef enum {

SDL_ADDEVENT,
SDL_PEEKEVENT,
SDL_GETEVENT

} SDL_eventaction;
/* */
extern DECLSPEC int SDL_PeepEvents(SDL_Event *events, int numevents,

SDL_eventaction action, Uint32 mask);

(SDL PollEvent event) (packages/sdl/SDL events.lsh) Last Modified: 2002-
10-01 18:34:22

/* Polls for currently pending events, and returns 1 if there are any pending
events, or 0 if there are none available. If ’event’ is not NULL, the next
event is removed from the queue and stored in that area.

*/
extern DECLSPEC int SDL_PollEvent(SDL_Event *event);

(SDL WaitEvent event) (packages/sdl/SDL events.lsh) Last Modified:
2002-10-01 18:34:22



622 CHAPTER 9. PACKAGES

/* Waits indefinitely for the next available event, returning 1, or 0 if there
was an error while waiting for events. If ’event’ is not NULL, the next
event is removed from the queue and stored in that area.

*/
extern DECLSPEC int SDL_WaitEvent(SDL_Event *event);

(SDL PushEvent event) (packages/sdl/SDL events.lsh) Last Modified:
2002-10-01 18:34:22

/* Add an event to the event queue.
This function returns 0, or -1 if the event couldn’t be added to
the event queue. If the event queue is full, this function fails.

*/
extern DECLSPEC int SDL_PushEvent(SDL_Event *event);

(SDL SetEventFilter filter) (packages/sdl/SDL events.lsh) Last Mod-
ified: 2002-10-01 18:34:22

/*
This function sets up a filter to process all events before they
change internal state and are posted to the internal event queue.
The filter is protypted as:

*/
typedef int (*SDL_EventFilter)(const SDL_Event *event);
/*
If the filter returns 1, then the event will be added to the internal queue.
If it returns 0, then the event will be dropped from the queue, but the
internal state will still be updated. This allows selective filtering of
dynamically arriving events.
WARNING: Be very careful of what you do in the event filter function, as

it may run in a different thread!
There is one caveat when dealing with the SDL_QUITEVENT event type. The
event filter is only called when the window manager desires to close the
application window. If the event filter returns 1, then the window will
be closed, otherwise the window will remain open if possible.
If the quit event is generated by an interrupt signal, it will bypass the
internal queue and be delivered to the application at the next event poll.

*/

(SDL GetEventFilter) (packages/sdl/SDL events.lsh) Last Modified: 2002-
10-01 18:34:22

/*



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 623

Return the current event filter - can be used to "chain" filters.
If there is no event filter set, this function returns NULL.

*/
extern DECLSPEC SDL_EventFilter SDL_GetEventFilter(void);

(SDL EventState type state) (packages/sdl/SDL events.lsh) Last Mod-
ified: 2002-10-01 18:34:22

/*
This function allows you to set the state of processing certain events.
If ’state’ is set to SDL_IGNORE, that event will be automatically dropped
from the event queue and will not event be filtered.
If ’state’ is set to SDL_ENABLE, that event will be processed normally.
If ’state’ is set to SDL_QUERY, SDL_EventState() will return the
current processing state of the specified event.

*/

sdl/SDL getenv.lsh

(SDL putenv variable) (packages/sdl/SDL getenv.lsh) Last Modified: 2002-
08-17 23:10:33

/* Put a variable of the form "name=value" into the environment */
extern DECLSPEC int SDL_putenv(const char *variable);

(SDL getenv name) (packages/sdl/SDL getenv.lsh) Last Modified: 2002-
08-17 23:10:33

/* Retrieve a variable named "name" from the environment */
extern DECLSPEC char *SDL_getenv(const char *name);

sdl/SDL image.lsh

(IMG LoadTyped RW src freesrc type) (packages/sdl/SDL image.lsh)
Last Modified: 2002-08-17 23:10:33

/* Load an image from an SDL data source.
The ’type’ may be one of: "BMP", "GIF", "PNG", etc.
If the image format supports a transparent pixel, SDL will set the
colorkey for the surface. You can enable RLE acceleration on the
surface afterwards by calling:

SDL_SetColorKey(image, SDL_RLEACCEL, image->format->colorkey);
*/
extern DECLSPEC SDL_Surface *IMG_LoadTyped_RW(SDL_RWops *src, int freesrc,

char *type);



624 CHAPTER 9. PACKAGES

(IMG Load file) (packages/sdl/SDL image.lsh) Last Modified: 2002-08-
17 23:10:33

/* Convenience functions */
extern DECLSPEC SDL_Surface *IMG_Load(const char *file);

(IMG Load RW src freesrc) (packages/sdl/SDL image.lsh) Last Mod-
ified: 2002-08-17 23:10:33

extern DECLSPEC SDL_Surface *IMG_Load_RW(SDL_RWops *src, int freesrc);

(IMG InvertAlpha on) (packages/sdl/SDL image.lsh) Last Modified: 2002-
08-17 23:10:33

/* Invert the alpha of a surface for use with OpenGL
This function is now a no-op, and only provided for backwards compatibility.

*/
extern DECLSPEC int IMG_InvertAlpha(int on);

sdl/SDL joystick.lsh

(SDL NumJoysticks) (packages/sdl/SDL joystick.lsh) Last Modified: 2002-
08-19 03:04:08

/* Function prototypes */
/*
* Count the number of joysticks attached to the system
*/
extern DECLSPEC int SDL_NumJoysticks(void);

(SDL JoystickName device index) (packages/sdl/SDL joystick.lsh) Last
Modified: 2002-08-19 03:04:08

/*
* Get the implementation dependent name of a joystick.
* This can be called before any joysticks are opened.
* If no name can be found, this function returns NULL.
*/
extern DECLSPEC const char *SDL_JoystickName(int device_index);

(SDL JoystickOpen device index) (packages/sdl/SDL joystick.lsh) Last
Modified: 2002-08-19 03:04:08



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 625

/*
* Open a joystick for use - the index passed as an argument refers to
* the N’th joystick on the system. This index is the value which will
* identify this joystick in future joystick events.
*
* This function returns a joystick identifier, or NULL if an error occurred.
*/
extern DECLSPEC SDL_Joystick *SDL_JoystickOpen(int device_index);

(SDL JoystickOpened device index) (packages/sdl/SDL joystick.lsh) Last
Modified: 2002-08-19 03:04:08

/*
* Returns 1 if the joystick has been opened, or 0 if it has not.
*/
extern DECLSPEC int SDL_JoystickOpened(int device_index);

(SDL JoystickIndex joystick) (packages/sdl/SDL joystick.lsh) Last Mod-
ified: 2002-08-19 03:04:08

/*
* Get the device index of an opened joystick.
*/
extern DECLSPEC int SDL_JoystickIndex(SDL_Joystick *joystick);

(SDL JoystickNumAxes joystick) (packages/sdl/SDL joystick.lsh) Last
Modified: 2002-08-19 03:04:08

/*
* Get the number of general axis controls on a joystick
*/
extern DECLSPEC int SDL_JoystickNumAxes(SDL_Joystick *joystick);

(SDL JoystickNumBalls joystick) (packages/sdl/SDL joystick.lsh) Last
Modified: 2002-08-19 03:04:08

/*
* Get the number of trackballs on a joystick
* Joystick trackballs have only relative motion events associated
* with them and their state cannot be polled.
*/
extern DECLSPEC int SDL_JoystickNumBalls(SDL_Joystick *joystick);



626 CHAPTER 9. PACKAGES

(SDL JoystickNumHats joystick) (packages/sdl/SDL joystick.lsh) Last
Modified: 2002-08-19 03:04:08

/*
* Get the number of POV hats on a joystick
*/
extern DECLSPEC int SDL_JoystickNumHats(SDL_Joystick *joystick);

(SDL JoystickNumButtons joystick) (packages/sdl/SDL joystick.lsh)
Last Modified: 2002-08-19 03:04:08

/*
* Get the number of buttons on a joystick
*/
extern DECLSPEC int SDL_JoystickNumButtons(SDL_Joystick *joystick);

(SDL JoystickUpdate) (packages/sdl/SDL joystick.lsh) Last Modified: 2002-
08-19 03:04:08

/*
* Update the current state of the open joysticks.
* This is called automatically by the event loop if any joystick
* events are enabled.
*/
extern DECLSPEC void SDL_JoystickUpdate(void);

(SDL JoystickEventState state) (packages/sdl/SDL joystick.lsh) Last
Modified: 2002-08-19 03:04:08

/*
* Enable/disable joystick event polling.
* If joystick events are disabled, you must call SDL_JoystickUpdate()
* yourself and check the state of the joystick when you want joystick
* information.
* The state can be one of SDL_QUERY, SDL_ENABLE or SDL_IGNORE.
*/
extern DECLSPEC int SDL_JoystickEventState(int state);

(SDL JoystickGetAxis joystick axis) (packages/sdl/SDL joystick.lsh)
Last Modified: 2002-08-19 03:04:08

/*
* Get the current state of an axis control on a joystick



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 627

* The state is a value ranging from -32768 to 32767.
* The axis indices start at index 0.
*/
extern DECLSPEC Sint16 SDL_JoystickGetAxis(SDL_Joystick *joystick, int axis);

(SDL JoystickGetHat joystick hat) (packages/sdl/SDL joystick.lsh) Last
Modified: 2002-08-19 03:04:08

/*
* Get the current state of a POV hat on a joystick
* The return value is one of the following positions:
*/

(SDL JoystickGetBall joystick ball dx dy) (packages/sdl/SDL joystick.lsh)
Last Modified: 2002-08-19 03:04:08

/*
* Get the ball axis change since the last poll
* This returns 0, or -1 if you passed it invalid parameters.
* The ball indices start at index 0.
*/
extern DECLSPEC int SDL_JoystickGetBall(SDL_Joystick *joystick, int ball, int *dx, int *dy);

(SDL JoystickGetButton joystick button) (packages/sdl/SDL joystick.lsh)
Last Modified: 2002-08-19 03:04:08

/*
* Get the current state of a button on a joystick
* The button indices start at index 0.
*/
extern DECLSPEC Uint8 SDL_JoystickGetButton(SDL_Joystick *joystick, int button);

(SDL JoystickClose joystick) (packages/sdl/SDL joystick.lsh) Last Mod-
ified: 2002-08-19 03:04:08

/*
* Close a joystick previously opened with SDL_JoystickOpen()
*/
extern DECLSPEC void SDL_JoystickClose(SDL_Joystick *joystick);

sdl/SDL keyboard.lsh

(SDL EnableUNICODE enable) (packages/sdl/SDL keyboard.lsh) Last Mod-
ified: 2002-08-19 03:04:08



628 CHAPTER 9. PACKAGES

* Enable/Disable UNICODE translation of keyboard input.
* This translation has some overhead, so translation defaults off.
* If ’enable’ is 1, translation is enabled.
* If ’enable’ is 0, translation is disabled.
* If ’enable’ is -1, the translation state is not changed.
* It returns the previous state of keyboard translation.
*/
extern DECLSPEC int SDL_EnableUNICODE(int enable);

(SDL EnableKeyRepeat delay interval) (packages/sdl/SDL keyboard.lsh)
Last Modified: 2002-08-19 03:04:08

/*
* Enable/Disable keyboard repeat. Keyboard repeat defaults to off.
* ’delay’ is the initial delay in ms between the time when a key is
* pressed, and keyboard repeat begins.
* ’interval’ is the time in ms between keyboard repeat events.
*/
/*
* If ’delay’ is set to 0, keyboard repeat is disabled.
*/
extern DECLSPEC int SDL_EnableKeyRepeat(int delay, int interval);

(SDL GetKeyState numkeys) (packages/sdl/SDL keyboard.lsh) Last Mod-
ified: 2002-08-19 03:04:08

/*
* Get a snapshot of the current state of the keyboard.
* Returns an array of keystates, indexed by the SDLK_* syms.
* Used:
* Uint8 *keystate = SDL_GetKeyState(NULL);
* if ( keystate[SDLK_RETURN] ) ... <RETURN> is pressed.
*/
extern DECLSPEC Uint8 * SDL_GetKeyState(int *numkeys);

(SDL GetModState) (packages/sdl/SDL keyboard.lsh) Last Modified: 2002-
08-19 03:04:08

/*
* Get the current key modifier state
*/
extern DECLSPEC SDLMod SDL_GetModState(void);



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 629

(SDL SetModState modstate) (packages/sdl/SDL keyboard.lsh) Last Mod-
ified: 2002-08-19 03:04:08

/*
* Set the current key modifier state
* This does not change the keyboard state, only the key modifier flags.
*/
extern DECLSPEC void SDL_SetModState(SDLMod modstate);

(SDL GetKeyName key) (packages/sdl/SDL keyboard.lsh) Last Modi-
fied: 2002-08-19 03:04:08

/*
* Get the name of an SDL virtual keysym
*/
extern DECLSPEC char * SDL_GetKeyName(SDLKey key);

sdl/SDL keysym.lsh

SDL Keysym (packages/sdl/SDL keysym.lsh) Last Modified: 2002-08-19 03:04:08
each keyboard symbol is associated with a constant whose symbolic name

represents the key , and value represents the key code (generally the ASCII code
of the character). Key symbols are of the form SDLK 0 , SDLK A , SDLK b ,
SDLK SPACE , etc.... Look into sdl/SDL keysym.lsh for a complete list.

sdl/SDL mouse.lsh

(SDL GetMouseState x y) (packages/sdl/SDL mouse.lsh) Last Modified:
2002-08-19 03:04:08

/*
* Retrieve the current state of the mouse.
* The current button state is returned as a button bitmask, which can
* be tested using the SDL_BUTTON(X) macros, and x and y are set to the
* current mouse cursor position. You can pass NULL for either x or y.
*/
extern DECLSPEC Uint8 SDL_GetMouseState(int *x, int *y);

(SDL GetRelativeMouseState x y) (packages/sdl/SDL mouse.lsh) Last
Modified: 2002-08-19 03:04:08

/*
* Retrieve the current state of the mouse.
* The current button state is returned as a button bitmask, which can



630 CHAPTER 9. PACKAGES

* be tested using the SDL_BUTTON(X) macros, and x and y are set to the
* mouse deltas since the last call to SDL_GetRelativeMouseState().
*/
extern DECLSPEC Uint8 SDL_GetRelativeMouseState(int *x, int *y);

(SDL WarpMouse x y) (packages/sdl/SDL mouse.lsh) Last Modified: 2002-
08-19 03:04:08

/*
* Set the position of the mouse cursor (generates a mouse motion event)
*/
extern DECLSPEC void SDL_WarpMouse(Uint16 x, Uint16 y);

(SDL CreateCursor data mask w h hot x hot y) (packages/sdl/SDL mouse.lsh)
Last Modified: 2002-08-19 03:04:08

/*
* Create a cursor using the specified data and mask (in MSB format).
* The cursor width must be a multiple of 8 bits.
*
* The cursor is created in black and white according to the following:
* data mask resulting pixel on screen
* 0 1 White
* 1 1 Black
* 0 0 Transparent
* 1 0 Inverted color if possible, black if not.
*
* Cursors created with this function must be freed with SDL_FreeCursor().
*/
extern DECLSPEC SDL_Cursor *SDL_CreateCursor

(Uint8 *data, Uint8 *mask, int w, int h, int hot_x, int hot_y);

(SDL SetCursor cursor) (packages/sdl/SDL mouse.lsh) Last Modified:
2002-08-19 03:04:08

/*
* Set the currently active cursor to the specified one.
* If the cursor is currently visible, the change will be immediately
* represented on the display.
*/
extern DECLSPEC void SDL_SetCursor(SDL_Cursor *cursor);

(SDL GetCursor) (packages/sdl/SDL mouse.lsh) Last Modified: 2002-08-
19 03:04:08



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 631

/*
* Returns the currently active cursor.
*/
extern DECLSPEC SDL_Cursor * SDL_GetCursor(void);

(SDL FreeCursor cursor) (packages/sdl/SDL mouse.lsh) Last Modified:
2002-08-19 03:04:08

/*
* Deallocates a cursor created with SDL_CreateCursor().
*/
extern DECLSPEC void SDL_FreeCursor(SDL_Cursor *cursor);

(SDL ShowCursor toggle) (packages/sdl/SDL mouse.lsh) Last Modified:
2002-08-19 03:04:08

/*
* Toggle whether or not the cursor is shown on the screen.
* The cursor start off displayed, but can be turned off.
* SDL_ShowCursor() returns 1 if the cursor was being displayed
* before the call, or 0 if it was not. You can query the current
* state by passing a ’toggle’ value of -1.
*/
extern DECLSPEC int SDL_ShowCursor(int toggle);

sdl/SDL mutex.lsh

(SDL CreateMutex) (packages/sdl/SDL mutex.lsh) Last Modified: 2002-08-
19 03:04:08

/* Create a mutex, initialized unlocked */
extern DECLSPEC SDL_mutex * SDL_CreateMutex(void);

(SDL mutexP mutex) (packages/sdl/SDL mutex.lsh) Last Modified: 2002-
08-19 03:04:08

/* Lock the mutex (Returns 0, or -1 on error) */
#define SDL_LockMutex(m) SDL_mutexP(m)
extern DECLSPEC int SDL_mutexP(SDL_mutex *mutex);

(SDL mutexV mutex) (packages/sdl/SDL mutex.lsh) Last Modified: 2002-
08-19 03:04:08



632 CHAPTER 9. PACKAGES

/* Unlock the mutex (Returns 0, or -1 on error) */
#define SDL_UnlockMutex(m) SDL_mutexV(m)
extern DECLSPEC int SDL_mutexV(SDL_mutex *mutex);

(SDL DestroyMutex mutex) (packages/sdl/SDL mutex.lsh) Last Modi-
fied: 2002-08-19 03:04:08

/* Destroy a mutex */
extern DECLSPEC void SDL_DestroyMutex(SDL_mutex *mutex);

(SDL CreateSemaphore initial value) (packages/sdl/SDL mutex.lsh)
Last Modified: 2002-08-19 03:04:08

/* Create a semaphore, initialized with value, returns NULL on failure. */
extern DECLSPEC SDL_sem * SDL_CreateSemaphore(Uint32 initial_value);

(SDL DestroySemaphore sem) (packages/sdl/SDL mutex.lsh) Last Mod-
ified: 2002-08-19 03:04:08

/* Destroy a semaphore */
extern DECLSPEC void SDL_DestroySemaphore(SDL_sem *sem);

(SDL SemWait sem) (packages/sdl/SDL mutex.lsh) Last Modified: 2002-
08-19 03:04:08

/* This function suspends the calling thread until the semaphore pointed
* to by sem has a positive count. It then atomically decreases the semaphore
* count.
*/
extern DECLSPEC int SDL_SemWait(SDL_sem *sem);

(SDL SemTryWait sem) (packages/sdl/SDL mutex.lsh) Last Modified:
2002-08-19 03:04:08

/* Non-blocking variant of SDL_SemWait(), returns 0 if the wait succeeds,
SDL_MUTEX_TIMEDOUT if the wait would block, and -1 on error.

*/
extern DECLSPEC int SDL_SemTryWait(SDL_sem *sem);

(SDL SemWaitTimeout sem ms) (packages/sdl/SDL mutex.lsh) Last Mod-
ified: 2002-08-19 03:04:08



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 633

/* Variant of SDL_SemWait() with a timeout in milliseconds, returns 0 if
the wait succeeds, SDL_MUTEX_TIMEDOUT if the wait does not succeed in
the allotted time, and -1 on error.
On some platforms this function is implemented by looping with a delay
of 1 ms, and so should be avoided if possible.

*/
extern DECLSPEC int SDL_SemWaitTimeout(SDL_sem *sem, Uint32 ms);

(SDL SemPost sem) (packages/sdl/SDL mutex.lsh) Last Modified: 2002-
08-19 03:04:08

/* Atomically increases the semaphore’s count (not blocking), returns 0,
or -1 on error.

*/
extern DECLSPEC int SDL_SemPost(SDL_sem *sem);

(SDL CreateCond) (packages/sdl/SDL mutex.lsh) Last Modified: 2002-
08-19 03:04:08

/* Create a condition variable */
extern DECLSPEC SDL_cond * SDL_CreateCond(void);

(SDL DestroyCond cnd) (packages/sdl/SDL mutex.lsh) Last Modified:
2002-08-19 03:04:08

/* Destroy a condition variable */
extern DECLSPEC void SDL_DestroyCond(SDL_cond *cond);

(SDL CondSignal cnd) (packages/sdl/SDL mutex.lsh) Last Modified: 2002-
08-19 03:04:08

/* Restart one of the threads that are waiting on the condition variable,
returns 0 or -1 on error.

*/
extern DECLSPEC int SDL_CondSignal(SDL_cond *cond);

(SDL CondBroadcast cnd) (packages/sdl/SDL mutex.lsh) Last Modified:
2002-08-19 03:04:08

/* Restart all threads that are waiting on the condition variable,
returns 0 or -1 on error.

*/
extern DECLSPEC int SDL_CondBroadcast(SDL_cond *cond);



634 CHAPTER 9. PACKAGES

(SDL CondWait cnd mut) (packages/sdl/SDL mutex.lsh) Last Modified:
2002-08-19 03:04:08

/* Wait on the condition variable, unlocking the provided mutex.
The mutex must be locked before entering this function!
Returns 0 when it is signaled, or -1 on error.

*/
extern DECLSPEC int SDL_CondWait(SDL_cond *cond, SDL_mutex *mut);

(SDL CondWaitTimeout cnd mutex ms) (packages/sdl/SDL mutex.lsh)
Last Modified: 2002-08-19 03:04:08

/* Waits for at most ’ms’ milliseconds, and returns 0 if the condition
variable is signaled, SDL_MUTEX_TIMEDOUT if the condition is not
signaled in the allotted time, and -1 on error.
On some platforms this function is implemented by looping with a delay
of 1 ms, and so should be avoided if possible.

*/
extern DECLSPEC int SDL_CondWaitTimeout(SDL_cond *cond, SDL_mutex *mutex, Uint32 ms);

sdl/SDL rwops.lsh

SDL RWops (packages/sdl/SDL rwops.lsh) Last Modified: 2002-08-19 03:04:08
Functions to create SDL RWops structures from various data sources
(SDL RWFromFile file mode) (packages/sdl/SDL rwops.lsh) Last Mod-

ified: 2002-08-19 03:04:08

extern DECLSPEC SDL_RWops * SDL_RWFromFile(const char *file, const char *mode);

(SDL RWFromFP fp autoclose) (packages/sdl/SDL rwops.lsh) Last Mod-
ified: 2002-08-19 03:04:08

extern DECLSPEC SDL_RWops * SDL_RWFromFP(FILE *fp, int autoclose);

(SDL RWFromMem mem size) (packages/sdl/SDL rwops.lsh) Last Mod-
ified: 2002-08-19 03:04:08

extern DECLSPEC SDL_RWops * SDL_RWFromMem(void *mem, int size);

(SDL AllocRW) (packages/sdl/SDL rwops.lsh) Last Modified: 2002-08-19
03:04:08

extern DECLSPEC SDL_RWops * SDL_AllocRW(void);



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 635

(SDL FreeRW area) (packages/sdl/SDL rwops.lsh) Last Modified: 2002-
08-19 03:04:08

extern DECLSPEC void SDL_FreeRW(SDL_RWops *area);

sdl/SDL syswm.lsh

(SDL GetWMInfo info) (packages/sdl/SDL syswm.lsh) Last Modified: 2002-
08-19 03:04:08

/*
* This function gives you custom hooks into the window manager information.
* It fills the structure pointed to by ’info’ with custom information and
* returns 1 if the function is implemented. If it’s not implemented, or
* the version member of the ’info’ structure is invalid, it returns 0.
*/
extern DECLSPEC int SDL_GetWMInfo(SDL_SysWMinfo *info);

sdl/SDL thread.lsh

(SDL CreateThread fn data) (packages/sdl/SDL thread.lsh) Last Modified:
2002-08-19 03:04:08

/* Create a thread */
extern DECLSPEC SDL_Thread * SDL_CreateThread(int (*fn)(void *), void *data);

(SDL ThreadID) (packages/sdl/SDL thread.lsh) Last Modified: 2002-08-
19 03:04:08

/* Get the 32-bit thread identifier for the current thread */
extern DECLSPEC Uint32 SDL_ThreadID(void);

(SDL GetThreadID thread) (packages/sdl/SDL thread.lsh) Last Modi-
fied: 2002-08-19 03:04:08

/* Get the 32-bit thread identifier for the specified thread,
equivalent to SDL_ThreadID() if the specified thread is NULL.

*/
extern DECLSPEC Uint32 SDL_GetThreadID(SDL_Thread *thread);

(SDL WaitThread thread status) (packages/sdl/SDL thread.lsh) Last
Modified: 2002-08-19 03:04:08



636 CHAPTER 9. PACKAGES

/* Wait for a thread to finish.
The return code for the thread function is placed in the area
pointed to by ’status’, if ’status’ is not NULL.

*/
extern DECLSPEC void SDL_WaitThread(SDL_Thread *thread, int *status);

(SDL KillThread thread) (packages/sdl/SDL thread.lsh) Last Modified:
2002-08-19 03:04:08

/* Forcefully kill a thread without worrying about its state */
extern DECLSPEC void SDL_KillThread(SDL_Thread *thread);

sdl/SDL timer.lsh

(SDL GetTicks) (packages/sdl/SDL timer.lsh) Last Modified: 2002-08-19 03:04:08

/* Get the number of milliseconds since the SDL library initialization.
* Note that this value wraps if the program runs for more than ~49 days.
*/
extern DECLSPEC Uint32 SDL_GetTicks(void);

(SDL Delay ms) (packages/sdl/SDL timer.lsh) Last Modified: 2002-08-19
03:04:08

/* Wait a specified number of milliseconds before returning */
extern DECLSPEC void SDL_Delay(Uint32 ms);

(SDL SetTimer interval callback) (packages/sdl/SDL timer.lsh) Last
Modified: 2002-08-19 03:04:08

/* Function prototype for the timer callback function */
typedef Uint32 (*SDL_TimerCallback)(Uint32 interval);
/* Set a callback to run after the specified number of milliseconds has
* elapsed. The callback function is passed the current timer interval
* and returns the next timer interval. If the returned value is the
* same as the one passed in, the periodic alarm continues, otherwise a
* new alarm is scheduled. If the callback returns 0, the periodic alarm
* is cancelled.
*
* To cancel a currently running timer, call SDL_SetTimer(0, NULL);
*
* The timer callback function may run in a different thread than your



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 637

* main code, and so shouldn’t call any functions from within itself.
*
* The maximum resolution of this timer is 10 ms, which means that if
* you request a 16 ms timer, your callback will run approximately 20 ms
* later on an unloaded system. If you wanted to set a flag signaling
* a frame update at 30 frames per second (every 33 ms), you might set a
* timer for 30 ms:
* SDL_SetTimer((33/10)*10, flag_update);
*
* If you use this function, you need to pass SDL_INIT_TIMER to SDL_Init().
*
* Under UNIX, you should not use raise or use SIGALRM and this function
* in the same program, as it is implemented using setitimer(). You also
* should not use this function in multi-threaded applications as signals
* to multi-threaded apps have undefined behavior in some implementations.
*/
extern DECLSPEC int SDL_SetTimer(Uint32 interval, SDL_TimerCallback callback);

(SDL AddTimer interval callback param) (packages/sdl/SDL timer.lsh)
Last Modified: 2002-08-19 03:04:08

/* Add a new timer to the pool of timers already running.
Returns a timer ID, or NULL when an error occurs.

*/
extern DECLSPEC SDL_TimerID SDL_AddTimer(Uint32 interval, SDL_NewTimerCallback callback, void *param);

(SDL RemoveTimer tim) (packages/sdl/SDL timer.lsh) Last Modified:
2002-08-19 03:04:08

/* Remove one of the multiple timers knowing its ID.
* Returns a boolean value indicating success.
*/
extern DECLSPEC SDL_bool SDL_RemoveTimer(SDL_TimerID t);

sdl/SDL version.lsh

(SDL Linked Version) (packages/sdl/SDL version.lsh) Last Modified: 2002-
08-19 03:04:08

/* This function gets the version of the dynamically linked SDL library.
it should NOT be used to fill a version structure, instead you should
use the SDL_Version() macro.

*/
extern DECLSPEC const SDL_version * SDL_Linked_Version(void);



638 CHAPTER 9. PACKAGES

sdl/SDL video.lsh

(SDL MUSTLOCK surface) (packages/sdl/SDL video.lsh) Last Modified:
2002-10-28 14:55:43

/* Evaluates to true if the surface needs to be locked before access */
#define SDL_MUSTLOCK(surface) \\
(surface->offset || \\
((surface->flags & (SDL_HWSURFACE|SDL_ASYNCBLIT|SDL_RLEACCEL)) != 0))

(SDL VideoInit driver name flags) (packages/sdl/SDL video.lsh) Last
Modified: 2002-10-28 14:55:43

/* These functions are used internally, and should not be used unless you
* have a specific need to specify the video driver you want to use.
* You should normally use SDL_Init() or SDL_InitSubSystem().
*
* SDL_VideoInit() initializes the video subsystem -- sets up a connection
* to the window manager, etc, and determines the current video mode and
* pixel format, but does not initialize a window or graphics mode.
* Note that event handling is activated by this routine.
*
* If you use both sound and video in your application, you need to call
* SDL_Init() before opening the sound device, otherwise under Win32 DirectX,
* you won’t be able to set full-screen display modes.
*/
extern DECLSPEC int SDL_VideoInit(const char *driver_name, Uint32 flags);

(SDL VideoQuit) (packages/sdl/SDL video.lsh) Last Modified: 2002-10-
28 14:55:43

extern DECLSPEC void SDL_VideoQuit(void);

(SDL VideoDriverName namebuf maxlen) (packages/sdl/SDL video.lsh)
Last Modified: 2002-10-28 14:55:43

/* This function fills the given character buffer with the name of the
* video driver, and returns a pointer to it if the video driver has
* been initialized. It returns NULL if no driver has been initialized.
*/
extern DECLSPEC char *SDL_VideoDriverName(char *namebuf, int maxlen);

(SDL GetVideoSurface) (packages/sdl/SDL video.lsh) Last Modified: 2002-
10-28 14:55:43



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 639

/*
* This function returns a pointer to the current display surface.
* If SDL is doing format conversion on the display surface, this
* function returns the publicly visible surface, not the real video
* surface.
*/
extern DECLSPEC SDL_Surface * SDL_GetVideoSurface(void);

(SDL GetVideoInfo) (packages/sdl/SDL video.lsh) Last Modified: 2002-
10-28 14:55:43

/*
* This function returns a read-only pointer to information about the
* video hardware. If this is called before SDL_SetVideoMode(), the ’vfmt’
* member of the returned structure will contain the pixel format of the
* "best" video mode.
*/
extern DECLSPEC const SDL_VideoInfo * SDL_GetVideoInfo(void);

(SDL VideoModeOK width height bpp flags) (packages/sdl/SDL video.lsh)
Last Modified: 2002-10-28 14:55:43

/*
* Check to see if a particular video mode is supported.
* It returns 0 if the requested mode is not supported under any bit depth,
* or returns the bits-per-pixel of the closest available mode with the
* given width and height. If this bits-per-pixel is different from the
* one used when setting the video mode, SDL_SetVideoMode() will succeed,
* but will emulate the requested bits-per-pixel with a shadow surface.
*
* The arguments to SDL_VideoModeOK() are the same ones you would pass to
* SDL_SetVideoMode()
*/
extern DECLSPEC int SDL_VideoModeOK(int width, int height, int bpp, Uint32 flags);

(SDL ListModes format flags) (packages/sdl/SDL video.lsh) Last Mod-
ified: 2002-10-28 14:55:43

/*
* Return a pointer to an array of available screen dimensions for the
* given format and video flags, sorted largest to smallest. Returns
* NULL if there are no dimensions available for a particular format,
* or (SDL_Rect **)-1 if any dimension is okay for the given format.



640 CHAPTER 9. PACKAGES

*
* If ’format’ is NULL, the mode list will be for the format given
* by SDL_GetVideoInfo()->vfmt
*/
extern DECLSPEC SDL_Rect ** SDL_ListModes(SDL_PixelFormat *format, Uint32 flags);

(SDL SetVideoMode width height bpp flags) (packages/sdl/SDL video.lsh)
Last Modified: 2002-10-28 14:55:43

/*
* Set up a video mode with the specified width, height and bits-per-pixel.
*
* If ’bpp’ is 0, it is treated as the current display bits per pixel.
*
* If SDL_ANYFORMAT is set in ’flags’, the SDL library will try to set the
* requested bits-per-pixel, but will return whatever video pixel format is
* available. The default is to emulate the requested pixel format if it
* is not natively available.
*
* If SDL_HWSURFACE is set in ’flags’, the video surface will be placed in
* video memory, if possible, and you may have to call SDL_LockSurface()
* in order to access the raw framebuffer. Otherwise, the video surface
* will be created in system memory.
*
* If SDL_ASYNCBLIT is set in ’flags’, SDL will try to perform rectangle
* updates asynchronously, but you must always lock before accessing pixels.
* SDL will wait for updates to complete before returning from the lock.
*
* If SDL_HWPALETTE is set in ’flags’, the SDL library will guarantee
* that the colors set by SDL_SetColors() will be the colors you get.
* Otherwise, in 8-bit mode, SDL_SetColors() may not be able to set all
* of the colors exactly the way they are requested, and you should look
* at the video surface structure to determine the actual palette.
* If SDL cannot guarantee that the colors you request can be set,
* i.e. if the colormap is shared, then the video surface may be created
* under emulation in system memory, overriding the SDL_HWSURFACE flag.
*
* If SDL_FULLSCREEN is set in ’flags’, the SDL library will try to set
* a fullscreen video mode. The default is to create a windowed mode
* if the current graphics system has a window manager.
* If the SDL library is able to set a fullscreen video mode, this flag
* will be set in the surface that is returned.
*
* If SDL_DOUBLEBUF is set in ’flags’, the SDL library will try to set up
* two surfaces in video memory and swap between them when you call



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 641

* SDL_Flip(). This is usually slower than the normal single-buffering
* scheme, but prevents "tearing" artifacts caused by modifying video
* memory while the monitor is refreshing. It should only be used by
* applications that redraw the entire screen on every update.
*
* If SDL_RESIZABLE is set in ’flags’, the SDL library will allow the
* window manager, if any, to resize the window at runtime. When this
* occurs, SDL will send a SDL_VIDEORESIZE event to you application,
* and you must respond to the event by re-calling SDL_SetVideoMode()
* with the requested size (or another size that suits the application).
*
* If SDL_NOFRAME is set in ’flags’, the SDL library will create a window
* without any title bar or frame decoration. Fullscreen video modes have
* this flag set automatically.
*
* This function returns the video framebuffer surface, or NULL if it fails.
*
* If you rely on functionality provided by certain video flags, check the
* flags of the returned surface to make sure that functionality is available.
* SDL will fall back to reduced functionality if the exact flags you wanted
* are not available.
*/
extern DECLSPEC SDL_Surface *SDL_SetVideoMode(int width, int height, int bpp, Uint32 flags);

(SDL UpdateRects screen numrects rects) (packages/sdl/SDL video.lsh)
Last Modified: 2002-10-28 14:55:43

/*
* Makes sure the given list of rectangles is updated on the given screen.
* If ’x’, ’y’, ’w’ and ’h’ are all 0, SDL_UpdateRect will update the entire
* screen.
* These functions should not be called while ’screen’ is locked.
*/
extern DECLSPEC void SDL_UpdateRects(SDL_Surface *screen, int numrects, SDL_Rect *rects);

(SDL UpdateRect screen x y w h) (packages/sdl/SDL video.lsh) Last
Modified: 2002-10-28 14:55:43

extern DECLSPEC void SDL_UpdateRect(SDL_Surface *screen, Sint32 x, Sint32 y, Uint32 w, Uint32 h);

(SDL Flip screen) (packages/sdl/SDL video.lsh) Last Modified: 2002-10-
28 14:55:43

/*



642 CHAPTER 9. PACKAGES

* On hardware that supports double-buffering, this function sets up a flip
* and returns. The hardware will wait for vertical retrace, and then swap
* video buffers before the next video surface blit or lock will return.
* On hardware that doesn not support double-buffering, this is equivalent
* to calling SDL_UpdateRect(screen, 0, 0, 0, 0);
* The SDL_DOUBLEBUF flag must have been passed to SDL_SetVideoMode() when
* setting the video mode for this function to perform hardware flipping.
* This function returns 0 if successful, or -1 if there was an error.
*/
extern DECLSPEC int SDL_Flip(SDL_Surface *screen);

(SDL SetGamma red green blue) (packages/sdl/SDL video.lsh) Last
Modified: 2002-10-28 14:55:43

/*
* Set the gamma correction for each of the color channels.
* The gamma values range (approximately) between 0.1 and 10.0
*
* If this function isn’t supported directly by the hardware, it will
* be emulated using gamma ramps, if available. If successful, this
* function returns 0, otherwise it returns -1.
*/
extern DECLSPEC int SDL_SetGamma(float red, float green, float blue);

(SDL SetGammaRamp red green blue) (packages/sdl/SDL video.lsh)
Last Modified: 2002-10-28 14:55:43

/*
* Set the gamma translation table for the red, green, and blue channels
* of the video hardware. Each table is an array of 256 16-bit quantities,
* representing a mapping between the input and output for that channel.
* The input is the index into the array, and the output is the 16-bit
* gamma value at that index, scaled to the output color precision.
*
* You may pass NULL for any of the channels to leave it unchanged.
* If the call succeeds, it will return 0. If the display driver or
* hardware does not support gamma translation, or otherwise fails,
* this function will return -1.
*/
extern DECLSPEC int SDL_SetGammaRamp(Uint16 *red, Uint16 *green, Uint16 *blue);

(SDL GetGammaRamp red green blue) (packages/sdl/SDL video.lsh)
Last Modified: 2002-10-28 14:55:43



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 643

/*
* Retrieve the current values of the gamma translation tables.
*
* You must pass in valid pointers to arrays of 256 16-bit quantities.
* Any of the pointers may be NULL to ignore that channel.
* If the call succeeds, it will return 0. If the display driver or
* hardware does not support gamma translation, or otherwise fails,
* this function will return -1.
*/
extern DECLSPEC int SDL_GetGammaRamp(Uint16 *red, Uint16 *green, Uint16 *blue);

(SDL SetColors surface colors firstcolor ncolors) (packages/sdl/SDL video.lsh)
Last Modified: 2002-10-28 14:55:43

/*
* Sets a portion of the colormap for the given 8-bit surface. If ’surface’
* is not a palettized surface, this function does nothing, returning 0.
* If all of the colors were set as passed to SDL_SetColors(), it will
* return 1. If not all the color entries were set exactly as given,
* it will return 0, and you should look at the surface palette to
* determine the actual color palette.
*
* When ’surface’ is the surface associated with the current display, the
* display colormap will be updated with the requested colors. If
* SDL_HWPALETTE was set in SDL_SetVideoMode() flags, SDL_SetColors()
* will always return 1, and the palette is guaranteed to be set the way
* you desire, even if the window colormap has to be warped or run under
* emulation.
*/
extern DECLSPEC int SDL_SetColors(SDL_Surface *surface, SDL_Color *colors, int firstcolor, int ncolors);

(SDL SetPalette surface flags colors firstcolor ncolors) (pack-
ages/sdl/SDL video.lsh) Last Modified: 2002-10-28 14:55:43

/*
* Sets a portion of the colormap for a given 8-bit surface.
* ’flags’ is one or both of:
* SDL_LOGPAL -- set logical palette, which controls how blits are mapped
* to/from the surface,
* SDL_PHYSPAL -- set physical palette, which controls how pixels look on
* the screen
* Only screens have physical palettes. Separate change of physical/logical
* palettes is only possible if the screen has SDL_HWPALETTE set.
*
* The return value is 1 if all colours could be set as requested, and 0



644 CHAPTER 9. PACKAGES

* otherwise.
*
* SDL_SetColors() is equivalent to calling this function with
* flags = (SDL_LOGPAL|SDL_PHYSPAL).
*/
extern DECLSPEC int SDL_SetPalette(SDL_Surface *surface, int flags,

SDL_Color *colors, int firstcolor,
int ncolors);

(SDL MapRGB format r g b) (packages/sdl/SDL video.lsh) Last Modi-
fied: 2002-10-28 14:55:43

/*
* Maps an RGB triple to an opaque pixel value for a given pixel format
*/
extern DECLSPEC Uint32 SDL_MapRGB(SDL_PixelFormat *format, Uint8 r, Uint8 g, Uint8 b);

(SDL MapRGBA format r g b a) (packages/sdl/SDL video.lsh) Last
Modified: 2002-10-28 14:55:43

/*
* Maps an RGBA quadruple to a pixel value for a given pixel format
*/
extern DECLSPEC Uint32 SDL_MapRGBA(SDL_PixelFormat *format, Uint8 r, Uint8 g, Uint8 b, Uint8 a);

(SDL GetRGB format r g b a) (packages/sdl/SDL video.lsh) Last Mod-
ified: 2002-10-28 14:55:43

/*
* Maps a pixel value into the RGB components for a given pixel format
*/
extern DECLSPEC void SDL_GetRGB(Uint32 pixel, SDL_PixelFormat *fmt, Uint8 *r, Uint8 *g, Uint8 *b);

(SDL GetRGBA format r g b a) (packages/sdl/SDL video.lsh) Last
Modified: 2002-10-28 14:55:43

/*
* Maps a pixel value into the RGBA components for a given pixel format
*/
extern DECLSPEC void SDL_GetRGBA(Uint32 pixel, SDL_PixelFormat *fmt,Uint8 *r, Uint8 *g, Uint8 *b, Uint8 *a);

(SDL CreateRGBSurface flags width height depth rmask gmask bmask
amask) (packages/sdl/SDL video.lsh) Last Modified: 2002-10-28 14:55:43



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 645

/*
* Allocate and free an RGB surface (must be called after SDL_SetVideoMode)
* If the depth is 4 or 8 bits, an empty palette is allocated for the surface.
* If the depth is greater than 8 bits, the pixel format is set using the
* flags ’[RGB]mask’.
* If the function runs out of memory, it will return NULL.
*
* The ’flags’ tell what kind of surface to create.
* SDL_SWSURFACE means that the surface should be created in system memory.
* SDL_HWSURFACE means that the surface should be created in video memory,
* with the same format as the display surface. This is useful for surfaces
* that will not change much, to take advantage of hardware acceleration
* when being blitted to the display surface.
* SDL_ASYNCBLIT means that SDL will try to perform asynchronous blits with
* this surface, but you must always lock it before accessing the pixels.
* SDL will wait for current blits to finish before returning from the lock.
* SDL_SRCCOLORKEY indicates that the surface will be used for colorkey blits.
* If the hardware supports acceleration of colorkey blits between
* two surfaces in video memory, SDL will try to place the surface in
* video memory. If this isn’t possible or if there is no hardware
* acceleration available, the surface will be placed in system memory.
* SDL_SRCALPHA means that the surface will be used for alpha blits and
* if the hardware supports hardware acceleration of alpha blits between
* two surfaces in video memory, to place the surface in video memory
* if possible, otherwise it will be placed in system memory.
* If the surface is created in video memory, blits will be _much_ faster,
* but the surface format must be identical to the video surface format,
* and the only way to access the pixels member of the surface is to use
* the SDL_LockSurface() and SDL_UnlockSurface() calls.
* If the requested surface actually resides in video memory, SDL_HWSURFACE
* will be set in the flags member of the returned surface. If for some
* reason the surface could not be placed in video memory, it will not have
* the SDL_HWSURFACE flag set, and will be created in system memory instead.
*/
#define SDL_AllocSurface SDL_CreateRGBSurface
extern DECLSPEC SDL_Surface *SDL_CreateRGBSurface

(Uint32 flags, int width, int height, int depth,
Uint32 Rmask, Uint32 Gmask, Uint32 Bmask, Uint32 Amask);

extern DECLSPEC SDL_Surface *SDL_CreateRGBSurface(Uint32 flags, int width, int height, int depth, Uint32 Rmask, Uint32 Gmask, Uint32 Bmask, Uint32 Amask);

(SDL CreateRGBSurfaceFrom pixels width height depth pitch rmask
gmask bmask amask) (packages/sdl/SDL video.lsh) Last Modified: 2002-10-28
14:55:43



646 CHAPTER 9. PACKAGES

extern DECLSPEC SDL_Surface *SDL_CreateRGBSurfaceFrom
(void *pixels, int width, int height, int depth, int pitch,
Uint32 Rmask, Uint32 Gmask, Uint32 Bmask, Uint32 Amask);

(SDL FreeSurface surface) (packages/sdl/SDL video.lsh) Last Modified:
2002-10-28 14:55:43

extern DECLSPEC void SDL_FreeSurface(SDL_Surface *surface);

(SDL LockSurface surface) (packages/sdl/SDL video.lsh) Last Modified:
2002-10-28 14:55:43

/*
* SDL_LockSurface() sets up a surface for directly accessing the pixels.
* Between calls to SDL_LockSurface()/SDL_UnlockSurface(), you can write
* to and read from ’surface->pixels’, using the pixel format stored in
* ’surface->format’. Once you are done accessing the surface, you should
* use SDL_UnlockSurface() to release it.
*
* Not all surfaces require locking. If SDL_MUSTLOCK(surface) evaluates
* to 0, then you can read and write to the surface at any time, and the
* pixel format of the surface will not change. In particular, if the
* SDL_HWSURFACE flag is not given when calling SDL_SetVideoMode(), you
* will not need to lock the display surface before accessing it.
*
* No operating system or library calls should be made between lock/unlock
* pairs, as critical system locks may be held during this time.
*
* SDL_LockSurface() returns 0, or -1 if the surface couldn’t be locked.
*/
extern DECLSPEC int SDL_LockSurface(SDL_Surface *surface);

(SDL UnlockSurface surface) (packages/sdl/SDL video.lsh) Last Mod-
ified: 2002-10-28 14:55:43

extern DECLSPEC void SDL_UnlockSurface(SDL_Surface *surface);

(SDL LoadBMP RW src freesrc) (packages/sdl/SDL video.lsh) Last
Modified: 2002-10-28 14:55:43

/*
* Load a surface from a seekable SDL data source (memory or file.)
* If ’freesrc’ is non-zero, the source will be closed after being read.



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 647

* Returns the new surface, or NULL if there was an error.
* The new surface should be freed with SDL_FreeSurface().
*/
extern DECLSPEC SDL_Surface * SDL_LoadBMP_RW(SDL_RWops *src, int freesrc);

(SDL SaveBMP RW surface dst freedst) (packages/sdl/SDL video.lsh)
Last Modified: 2002-10-28 14:55:43

/*
* Save a surface to a seekable SDL data source (memory or file.)
* If ’freedst’ is non-zero, the source will be closed after being written.
* Returns 0 if successful or -1 if there was an error.
*/
extern DECLSPEC int SDL_SaveBMP_RW

(SDL_Surface *surface, SDL_RWops *dst, int freedst);

(SDL SetColorKey surface flag key) (packages/sdl/SDL video.lsh) Last
Modified: 2002-10-28 14:55:43

/*
* Sets the color key (transparent pixel) in a blittable surface.
* If ’flag’ is SDL_SRCCOLORKEY (optionally OR’d with SDL_RLEACCEL),
* ’key’ will be the transparent pixel in the source image of a blit.
* SDL_RLEACCEL requests RLE acceleration for the surface if present,
* and removes RLE acceleration if absent.
* If ’flag’ is 0, this function clears any current color key.
* This function returns 0, or -1 if there was an error.
*/
extern DECLSPEC int SDL_SetColorKey

(SDL_Surface *surface, Uint32 flag, Uint32 key);
extern DECLSPEC int SDL_SetColorKey(SDL_Surface *surface, Uint32 flag, Uint32 key);

(SDL SetAlpha surface flag alpha) (packages/sdl/SDL video.lsh) Last
Modified: 2002-10-28 14:55:43

/*
* This function sets the alpha value for the entire surface, as opposed to
* using the alpha component of each pixel. This value measures the range
* of transparency of the surface, 0 being completely transparent to 255
* being completely opaque. An ’alpha’ value of 255 causes blits to be
* opaque, the source pixels copied to the destination (the default). Note
* that per-surface alpha can be combined with colorkey transparency.
*
* If ’flag’ is 0, alpha blending is disabled for the surface.



648 CHAPTER 9. PACKAGES

* If ’flag’ is SDL_SRCALPHA, alpha blending is enabled for the surface.
* OR:ing the flag with SDL_RLEACCEL requests RLE acceleration for the
* surface; if SDL_RLEACCEL is not specified, the RLE accel will be removed.
*/
extern DECLSPEC int SDL_SetAlpha(SDL_Surface *surface, Uint32 flag, Uint8 alpha);

(SDL SetClipRect surface rect) (packages/sdl/SDL video.lsh) Last Mod-
ified: 2002-10-28 14:55:43

/*
* Sets the clipping rectangle for the destination surface in a blit.
*
* If the clip rectangle is NULL, clipping will be disabled.
* If the clip rectangle doesn’t intersect the surface, the function will
* return SDL_FALSE and blits will be completely clipped. Otherwise the
* function returns SDL_TRUE and blits to the surface will be clipped to
* the intersection of the surface area and the clipping rectangle.
*
* Note that blits are automatically clipped to the edges of the source
* and destination surfaces.
*/
extern DECLSPEC SDL_bool SDL_SetClipRect(SDL_Surface *surface, SDL_Rect *rect);

(SDL GetClipRect surface rect) (packages/sdl/SDL video.lsh) Last Mod-
ified: 2002-10-28 14:55:43

/*
* Gets the clipping rectangle for the destination surface in a blit.
* ’rect’ must be a pointer to a valid rectangle which will be filled
* with the correct values.
*/
extern DECLSPEC void SDL_GetClipRect(SDL_Surface *surface, SDL_Rect *rect);

(SDL ConvertSurface src fmt flags) (packages/sdl/SDL video.lsh) Last
Modified: 2002-10-28 14:55:43

/*
* Creates a new surface of the specified format, and then copies and maps
* the given surface to it so the blit of the converted surface will be as
* fast as possible. If this function fails, it returns NULL.
*
* The ’flags’ parameter is passed to SDL_CreateRGBSurface() and has those
* semantics. You can also pass SDL_RLEACCEL in the flags parameter and
* SDL will try to RLE accelerate colorkey and alpha blits in the resulting



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 649

* surface.
*
* This function is used internally by SDL_DisplayFormat().
*/
extern DECLSPEC SDL_Surface *SDL_ConvertSurface

(SDL_Surface *src, SDL_PixelFormat *fmt, Uint32 flags);

(SDL BlitSurface src srcrect dst dstrect) (packages/sdl/SDL video.lsh)
Last Modified: 2002-10-28 14:55:43

/*
* This performs a fast blit from the source surface to the destination
* surface. It assumes that the source and destination rectangles are
* the same size. If either ’srcrect’ or ’dstrect’ are NULL, the entire
* surface (src or dst) is copied. The final blit rectangles are saved
* in ’srcrect’ and ’dstrect’ after all clipping is performed.
* If the blit is successful, it returns 0, otherwise it returns -1.
*
* The blit function should not be called on a locked surface.
*
* The blit semantics for surfaces with and without alpha and colorkey
* are defined as follows:
*
* RGBA->RGB:
* SDL_SRCALPHA set:
* alpha-blend (using alpha-channel).
* SDL_SRCCOLORKEY ignored.
* SDL_SRCALPHA not set:
* copy RGB.
* if SDL_SRCCOLORKEY set, only copy the pixels matching the
* RGB values of the source colour key, ignoring alpha in the
* comparison.
*
* RGB->RGBA:
* SDL_SRCALPHA set:
* alpha-blend (using the source per-surface alpha value);
* set destination alpha to opaque.
* SDL_SRCALPHA not set:
* copy RGB, set destination alpha to opaque.
* both:
* if SDL_SRCCOLORKEY set, only copy the pixels matching the
* source colour key.
*
* RGBA->RGBA:
* SDL_SRCALPHA set:



650 CHAPTER 9. PACKAGES

* alpha-blend (using the source alpha channel) the RGB values;
* leave destination alpha untouched. [Note: is this correct?]
* SDL_SRCCOLORKEY ignored.
* SDL_SRCALPHA not set:
* copy all of RGBA to the destination.
* if SDL_SRCCOLORKEY set, only copy the pixels matching the
* RGB values of the source colour key, ignoring alpha in the
* comparison.
*
* RGB->RGB:
* SDL_SRCALPHA set:
* alpha-blend (using the source per-surface alpha value).
* SDL_SRCALPHA not set:
* copy RGB.
* both:
* if SDL_SRCCOLORKEY set, only copy the pixels matching the
* source colour key.
*
* If either of the surfaces were in video memory, and the blit returns -2,
* the video memory was lost, so it should be reloaded with artwork and
* re-blitted:

while ( SDL_BlitSurface(image, imgrect, screen, dstrect) == -2 ) {
while ( SDL_LockSurface(image) < 0 )

Sleep(10);
-- Write image pixels to image->pixels --
SDL_UnlockSurface(image);

}
* This happens under DirectX 5.0 when the system switches away from your
* fullscreen application. The lock will also fail until you have access
* to the video memory again.
*/
/* You should call SDL_BlitSurface() unless you know exactly how SDL

blitting works internally and how to use the other blit functions.
*/
#define SDL_BlitSurface SDL_UpperBlit

(SDL UpperBlit src srcrect dst dstrect) (packages/sdl/SDL video.lsh)
Last Modified: 2002-10-28 14:55:43

/* This is the public blit function, SDL_BlitSurface(), and it performs
rectangle validation and clipping before passing it to SDL_LowerBlit()

*/
extern DECLSPEC int SDL_UpperBlit

(SDL_Surface *src, SDL_Rect *srcrect,
SDL_Surface *dst, SDL_Rect *dstrect);



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 651

(SDL LowerBlit src srcrect dst dstrect) (packages/sdl/SDL video.lsh)
Last Modified: 2002-10-28 14:55:43

/* This is a semi-private blit function and it performs low-level surface
blitting only.

*/
extern DECLSPEC int SDL_LowerBlit

(SDL_Surface *src, SDL_Rect *srcrect,
SDL_Surface *dst, SDL_Rect *dstrect);

(SDL FillRect dst dstrect color) (packages/sdl/SDL video.lsh) Last
Modified: 2002-10-28 14:55:43

/*
* This function performs a fast fill of the given rectangle with ’color’
* The given rectangle is clipped to the destination surface clip area
* and the final fill rectangle is saved in the passed in pointer.
* If ’dstrect’ is NULL, the whole surface will be filled with ’color’
* The color should be a pixel of the format used by the surface, and
* can be generated by the SDL_MapRGB() function.
* This function returns 0 on success, or -1 on error.
*/
extern DECLSPEC int SDL_FillRect

(SDL_Surface *dst, SDL_Rect *dstrect, Uint32 color);

(SDL DisplayFormat surface) (packages/sdl/SDL video.lsh) Last Mod-
ified: 2002-10-28 14:55:43

/*
* This function takes a surface and copies it to a new surface of the
* pixel format and colors of the video framebuffer, suitable for fast
* blitting onto the display surface. It calls SDL_ConvertSurface()
*
* If you want to take advantage of hardware colorkey or alpha blit
* acceleration, you should set the colorkey and alpha value before
* calling this function.
*
* If the conversion fails or runs out of memory, it returns NULL
*/
extern DECLSPEC SDL_Surface * SDL_DisplayFormat(SDL_Surface *surface);

(SDL DisplayFormatAlpha surface) (packages/sdl/SDL video.lsh) Last
Modified: 2002-10-28 14:55:43



652 CHAPTER 9. PACKAGES

/*
* This function takes a surface and copies it to a new surface of the
* pixel format and colors of the video framebuffer (if possible),
* suitable for fast alpha blitting onto the display surface.
* The new surface will always have an alpha channel.
*
* If you want to take advantage of hardware colorkey or alpha blit
* acceleration, you should set the colorkey and alpha value before
* calling this function.
*
* If the conversion fails or runs out of memory, it returns NULL
*/
extern DECLSPEC SDL_Surface * SDL_DisplayFormatAlpha(SDL_Surface *surface);

(SDL CreateYUVOverlay width height format display) (packages/sdl/SDL video.lsh)
Last Modified: 2002-10-28 14:55:43

/* This function creates a video output overlay
Calling the returned surface an overlay is something of a misnomer because
the contents of the display surface underneath the area where the overlay
is shown is undefined - it may be overwritten with the converted YUV data.

*/
extern DECLSPEC SDL_Overlay *SDL_CreateYUVOverlay(int width, int height,

Uint32 format, SDL_Surface *display);

(SDL LockYUVOverlay overlay) (packages/sdl/SDL video.lsh) Last Mod-
ified: 2002-10-28 14:55:43

/* Lock an overlay for direct access, and unlock it when you are done */
extern DECLSPEC int SDL_LockYUVOverlay(SDL_Overlay *overlay);

(SDL UnlockYUVOverlay overlay) (packages/sdl/SDL video.lsh) Last
Modified: 2002-10-28 14:55:43

extern DECLSPEC void SDL_UnlockYUVOverlay(SDL_Overlay *overlay);

(SDL DisplayYUVOverlay overlay dstrect) (packages/sdl/SDL video.lsh)
Last Modified: 2002-10-28 14:55:43

/* Blit a video overlay to the display surface.
The contents of the video surface underneath the blit destination are
not defined.



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 653

The width and height of the destination rectangle may be different from
that of the overlay, but currently only 2x scaling is supported.

*/
extern DECLSPEC int SDL_DisplayYUVOverlay(SDL_Overlay *overlay, SDL_Rect *dstrect);

(SDL FreeYUVOverlay overlay) (packages/sdl/SDL video.lsh) Last Mod-
ified: 2002-10-28 14:55:43

/* Free a video overlay */
extern DECLSPEC void SDL_FreeYUVOverlay(SDL_Overlay *overlay);

(SDL GL LoadLibrary path) (packages/sdl/SDL video.lsh) Last Modi-
fied: 2002-10-28 14:55:43

/*
* Dynamically load a GL driver, if SDL is built with dynamic GL.
*
* SDL links normally with the OpenGL library on your system by default,
* but you can compile it to dynamically load the GL driver at runtime.
* If you do this, you need to retrieve all of the GL functions used in
* your program from the dynamic library using SDL_GL_GetProcAddress().
*
* This is disabled in default builds of SDL.
*/
extern DECLSPEC int SDL_GL_LoadLibrary(const char *path);

(SDL GL GetProcAddress proc) (packages/sdl/SDL video.lsh) Last Mod-
ified: 2002-10-28 14:55:43

/*
* Get the address of a GL function (for extension functions)
*/
extern DECLSPEC void *SDL_GL_GetProcAddress(const char* proc);

(SDL GL SetAttribute attr value) (packages/sdl/SDL video.lsh) Last
Modified: 2002-10-28 14:55:43

/*
* Set an attribute of the OpenGL subsystem before intialization.
*/
extern DECLSPEC int SDL_GL_SetAttribute(SDL_GLattr attr, int value);

(SDL GL GetAttribute attr value) (packages/sdl/SDL video.lsh) Last
Modified: 2002-10-28 14:55:43



654 CHAPTER 9. PACKAGES

/*
* Get an attribute of the OpenGL subsystem from the windowing
* interface, such as glX. This is of course different from getting
* the values from SDL’s internal OpenGL subsystem, which only
* stores the values you request before initialization.
*
* Developers should track the values they pass into SDL_GL_SetAttribute
* themselves if they want to retrieve these values.
*/
extern DECLSPEC int SDL_GL_GetAttribute(SDL_GLattr attr, int* value);

(SDL GL SwapBuffers) (packages/sdl/SDL video.lsh) Last Modified: 2002-
10-28 14:55:43

/*
* Swap the OpenGL buffers, if double-buffering is supported.
*/
extern DECLSPEC void SDL_GL_SwapBuffers(void);

(SDL WM SetCaption title icon) (packages/sdl/SDL video.lsh) Last
Modified: 2002-10-28 14:55:43

/*
* Sets/Gets the title and icon text of the display window
*/
extern DECLSPEC void SDL_WM_SetCaption(const char *title, const char *icon);

(SDL WM GetCaption title icon) (packages/sdl/SDL video.lsh) Last
Modified: 2002-10-28 14:55:43

extern DECLSPEC void SDL_WM_GetCaption(char **title, char **icon);

(SDL WM SetIcon icon mask) (packages/sdl/SDL video.lsh) Last Mod-
ified: 2002-10-28 14:55:43

/*
* Sets the icon for the display window.
* This function must be called before the first call to SDL_SetVideoMode().
* It takes an icon surface, and a mask in MSB format.
* If ’mask’ is NULL, the entire icon surface will be used as the icon.
*/
extern DECLSPEC void SDL_WM_SetIcon(SDL_Surface *icon, Uint8 *mask);



9.3. SDL: SIMPLE DIRECTMEDIA LAYER 655

(SDL WM IconifyWindow) (packages/sdl/SDL video.lsh) Last Modified:
2002-10-28 14:55:43

/*
* This function iconifies the window, and returns 1 if it succeeded.
* If the function succeeds, it generates an SDL_APPACTIVE loss event.
* This function is a noop and returns 0 in non-windowed environments.
*/
extern DECLSPEC int SDL_WM_IconifyWindow(void);

(SDL WM ToggleFullScreen surface) (packages/sdl/SDL video.lsh) Last
Modified: 2002-10-28 14:55:43

/*
* Toggle fullscreen mode without changing the contents of the screen.
* If the display surface does not require locking before accessing
* the pixel information, then the memory pointers will not change.
*
* If this function was able to toggle fullscreen mode (change from
* running in a window to fullscreen, or vice-versa), it will return 1.
* If it is not implemented, or fails, it returns 0.
*
* The next call to SDL_SetVideoMode() will set the mode fullscreen
* attribute based on the flags parameter - if SDL_FULLSCREEN is not
* set, then the display will be windowed by default where supported.
*
* This is currently only implemented in the X11 video driver.
*/
extern DECLSPEC int SDL_WM_ToggleFullScreen(SDL_Surface *surface);

(SDL WM GrabInput mode) (packages/sdl/SDL video.lsh) Last Modi-
fied: 2002-10-28 14:55:43

/*
* This function allows you to set and query the input grab state of
* the application. It returns the new input grab state.
*/
typedef enum {

SDL_GRAB_QUERY = -1,
SDL_GRAB_OFF = 0,
SDL_GRAB_ON = 1,
SDL_GRAB_FULLSCREEN /* Used internally */

} SDL_GrabMode;



656 CHAPTER 9. PACKAGES

9.4 OpenGL

Lush has a full interface to OpenGL , OpenGLU , and GLUT. Please refer to
the Lush on-line documentation tool (helptool) for more details.

9.5 OpenRM

Lush has a full interface to the OpenRM scene graph rendering engine. Please
refer to the Lush on-line documentation tool tool (helptool) for more details.

9.6 Video4Linux: video grabbing

Author(s): Yann LeCun
The video4linux package allows video frame grabbing under Linux using the

video4linux API of the Linux kernel. This interface is compatible with most
video grabbing hardware supported by video4linux. Notable examples include
(among many others) TV/Tuner cards based on the BrookTree BT8x8 chips
(such as the WinTV cards from Hauppaugge) , and v4l-supported webcams
such the Logitech Quickam Pro 3000 and other USB webcams based on the
Philips chipset (see list at [”http://www.smcc.demon.nl/webcam” ]. NOTE:
these Philips-based webcams requires a non-opensource driver called ”pwcx”
to handle resolutions higher than 160x120. This driver can downloaded from
[”http://www.smcc.demon.nl/webcam/release.html” ].

9.6.1 Requirements and Installation

video4linux and appropriate device drivers are usually provided with most recent
Linux distributions (as of september 2002 , RedHat 7.3 and Mandrake 8.2). No
special installation is required.

9.6.2 Video4Linux API

The Video4Linux interface to Lush is implemented through the class v4ldevice
. Creating a new v4ldevice will open and initialize one of the Linux video
devices. A number of methods are provided to set the parameters (channel ,
image size , video mode , etc...) and to grab video frames.

Video Mode Constants

(packages/video4linux/v4l.lsh) Last Modified: 2003-01-06 23:43:51

VIDEO_MODE_PAL 0
VIDEO_MODE_NTSC 1
VIDEO_MODE_SECAM 2
VIDEO_MODE_AUTO 3



9.6. VIDEO4LINUX: VIDEO GRABBING 657

Video Palette Constants

(packages/video4linux/v4l.lsh) Last Modified: 2003-01-06 23:43:51

VIDEO_PALETTE_GREY 1
VIDEO_PALETTE_HI240 2
VIDEO_PALETTE_RGB565 3
VIDEO_PALETTE_RGB24 4
VIDEO_PALETTE_RGB32 5
VIDEO_PALETTE_RGB555 6
VIDEO_PALETTE_YUV422 7
VIDEO_PALETTE_YUYV 8
VIDEO_PALETTE_UYVY 9
VIDEO_PALETTE_YUV420 10
VIDEO_PALETTE_YUV411 11
VIDEO_PALETTE_RAW 12
VIDEO_PALETTE_YUV422P 13
VIDEO_PALETTE_YUV411P 14
VIDEO_PALETTE_YUV420P 15
VIDEO_PALETTE_YUV410P 16
VIDEO_PALETTE_PLANAR 13
VIDEO_PALETTE_COMPONENT 7

v4ldevice

(packages/video4linux/v4l.lsh) Last Modified: 2003-01-06 23:43:51
the v4l device is the main class through which video frames can be grabbed

using the Video4Linux device. This requires a v4l compatible video grabbing
card or webcam.

Here is an example of code that repeatedly grabs an image from the com-
posite video input and displays it on the screen:

(de v4l-demo (swidth sheight)
(let* ((bg (ubyte-matrix sheight swidth 3)) ; make image buffer

;; open video device NTSC standard, composite input (channel 1).
(vdev (new v4ldevice "/dev/video0" "NTSC" 1 swidth sheight)))

;; open window
(setq screen (new-window))
(while t

;; grab frame
(==> vdev grab-into-rgbx bg)
;; display frame
(rgb-draw-matrix 10 10 bg))))

(==> v4ldevice cleanup) Type: MSG(packages/video4linux/v4l.lsh) Last
Modified: 2003-01-06 23:43:51



658 CHAPTER 9. PACKAGES

deallocate all malloced slots and close device. This is a private method called
by the destructor and various error handlers , but rarely called directly.

(==> v4ldevice set-format f w h) Type: MSG(packages/video4linux/v4l.lsh)
Last Modified: 2003-01-06 23:43:51

set the video format/palette (@@VIDEO PALETTE RGB24 , @@VIDEO PALETTE RGB32
, @@VIDEO PALETTE YUV422 etc...) , and the width and the height of the
image to be grabbed (see [”Video Palette Constants” ]for a list of formats). Re-
turns 0 on success and -1 if the format requested is not supported by the device.
This method rarely called directly , unless the low-level grab method is to be
used. The various grab-into-rgb and grab-into-rgba methods determine
the appropriate format automatically , and all the grab-xxx-into-xxx meth-
ods set the desired format before grabbing , therefore a prior call to set-format
is unnecessary if these high-level methods are used.

(new v4ldevice devname n c w h) Type: CLASS(packages/video4linux/v4l.lsh)
Last Modified: 2003-01-06 23:43:51

opens a new v4ldevice for video grabbing. Arguments are: device name (e.g.
”/dev/video0”) , norm , channel , width , and height. norm can be ”NTSC”
, ”PAL” , ”SECAM” , ”AUTO”. The ”channel” c determines which video
source the card will listen to. On most bttv cards , 0 means TV tuner , 1 means
composite video input , and 2 means S-video input (if present). Tuning to a
particular broadcast or cable channel is done with the ”tune” method.

example: open device to grab 320x240 NTSC video from S-video on BTTV/avermedia
card (channel 2):

(setq a (new v4ldevice "/dev/video0" "NTSC" 2 320 240))

(==> v4ldevice tune freq) Type: MSG(packages/video4linux/v4l.lsh)
Last Modified: 2003-01-06 23:43:51

tune the tuner to frequency n , expressed in 1/16th of a MHz. Tables that
map channels to frequencies are available in file freq-table.lsh . Tuning to
a channel can only be done is the device was opened to listen to the TV tuner
(as opposed to the composite video or S-video).

(==> v4ldevice grab-into-rgb img) Type: MSG(packages/video4linux/v4l.lsh)
Last Modified: 2003-01-06 23:43:51

grab an image from the v4l device into a preexisting image (a ubyte-matrix
of size heightxwidthxdepth , where depth must be at least 3). Consecutive
elements in the last dimension are interpreted as RGB values. Only those el-
ements are modified. If the video image format has not been previously set ,
this method automatically determines which format is supported by the cur-
rent device (among RGB24 , RGB32 and YUV420P). This allows to support
videocards and webcams transparently without having to worry about which
formats are supported. Some webcams (like the Logitech Quickcam 3000 pro)
only support YUV420 and YUV420P.

(==> v4ldevice grab-into-rgbx img) Type: MSG(packages/video4linux/v4l.lsh)
Last Modified: 2003-01-06 23:43:51

same as grab-into-rgb .



9.6. VIDEO4LINUX: VIDEO GRABBING 659

(==> v4ldevice grab-into-rgba img alpha) Type: MSG(packages/video4linux/v4l.lsh)
Last Modified: 2003-01-06 23:43:51

grab an image from the v4l device into a preexisting image (a ubyte-matrix
of size heightxwidthxdepth , where depth must be at least 3). Consecutive el-
ements in the last dimension are interpreted as RGBA values. Only those 4
elements are modified. The A components are filled with alpha . If the video
image format has not been previously set , this method automatically determines
which format is supported by the current device (among RGB24 , RGB32 and
YUV420P). This allows to support videocards and webcams transparently with-
out having to worry about which formats are supported. Some webcams (like
the Logitech Quickcam 3000 pro) only support YUV420 and YUV420P.

(==> v4ldevice grab-rgb24-into-rgbx img) Type: MSG(packages/video4linux/v4l.lsh)
Last Modified: 2003-01-06 23:43:51

grab an image from the v4l device in RGB24 format into a preexisting image
(a ubyte-matrix of size heightxwidthxdepth , where depth must be at least 3).
Consecutive elements in the last dimension are interpreted as RGB values. Only
those elements are modified.

(==> v4ldevice grab-rgb32-into-rgbx img) Type: MSG(packages/video4linux/v4l.lsh)
Last Modified: 2003-01-06 23:43:51

grab an image from the v4l device in RGB32 format into a preexisting image
(a ubyte-matrix of size heightxwidthxdepth , where depth must be at least 3).
Consecutive elements in the last dimension are interpreted as RGB values. Only
those elements are modified.

(==> v4ldevice grab-rgb24-into-rgba img alpha) Type: MSG(packages/video4linux/v4l.lsh)
Last Modified: 2003-01-06 23:43:51

grab an image from the v4l device in RGB32 format into a preexisting image
(a ubyte-matrix of size heightxwidthxdepth with depth equal to at least 4) ,
Consecutive elements in the last dimension are interpreted as RGBA values.
The A values are filled with alpha .

(==> v4ldevice grab-rgb32-into-rgba img alpha) Type: MSG(packages/video4linux/v4l.lsh)
Last Modified: 2003-01-06 23:43:51

grab an image from the v4l device in RGB32 format into a preexisting image
(a ubyte-matrix of size heightxwidthxdepth with depth equal to at least 4) ,
Consecutive elements in the last dimension are interpreted as RGBA values.
The A values are filled with alpha .

(==> v4ldevice grab-yuv422-into-yuv422 img) Type: MSG(packages/video4linux/v4l.lsh)
Last Modified: 2003-01-06 23:43:51

grab an image from the v4l device in YUV422 format into a preexisting image
(a ubyte-matrix of size heightxwidthx2. Consecutive elements are interpreted
as YUYVYUYV..... according to the YUV422 definition. so (img y x 0) is
the luminance component of pixel (x , y).

(==> v4ldevice grab-yuv420p-into-rgbx img) Type: MSG(packages/video4linux/v4l.lsh)
Last Modified: 2003-01-06 23:43:51

grab an image from the v4l device in YUV420P (planar) format into a pre-
existing image (a ubyte-matrix of size heightxwidthxdepth with depth at least
equal to 3). Consecutive elements are interpreted as RGB components. This



660 CHAPTER 9. PACKAGES

mode is useful for certain webcam that do not support RGB grabbing (e.g.
Logitech Quickam 3000 Pro).

(==> v4ldevice grab-yuv420p-into-rgba img alpha) Type: MSG(packages/video4linux/v4l.lsh)
Last Modified: 2003-01-06 23:43:51

grab an image from the v4l device in YUV420P (planar) format into a pre-
existing image (a ubyte-matrix of size heightxwidthxdepth with depth at least
equal to 4). Consecutive elements are interpreted as RGBA components. the
A components are filled with alpha . This mode is useful for certain webcam
that do not support RGB grabbing (e.g. Logitech Quickam 3000 Pro).

(==> v4ldevice grab-grey-into-y img) Type: MSG(packages/video4linux/v4l.lsh)
Last Modified: 2003-01-06 23:43:51

grab an image from the v4l device in GREY (monocrhome) format into a
preexisting image (a ubyte-matrix of size heightxwidth.

(==> v4ldevice record-into-rgb movie s) Type: MSG(packages/video4linux/v4l.lsh)
Last Modified: 2003-01-06 23:43:51

record successive frames from the v4l device into a preexisting movie (a
4-dimensional ubyte-matrix of size nframesxheightxwidthx3). Consecutive el-
ements in the last dimension are interpreted as RGBA values. Consecutive
slices in the first dimension are individual frames. The s parameter controls
the temporal subsampling: every s video frame is saved in movie .

(==> v4ldevice monitor x y z n w h) Type: MSG(packages/video4linux/v4l.lsh)
Last Modified: 2003-01-06 23:43:51

grab video frames and display them in the current Lush window at position
x , y , with zoom factor z . The number of frames grabbed is n , and their
widht/height is w / h . return the last grabbed frame.

(==> v4ldevice grab-rgb24-acc-rgbx img) Type: MSG(packages/video4linux/v4l.lsh)
Last Modified: 2003-01-06 23:43:51

grab an image from the v4l device in RGB24 format and accumulate the
result into a preexisting image (an int-matrix of size height x width x depth
where height and width are the dimensions of the v4ldevice ) and depth
must be at least 3. Consecutive elements in the last dimension are interpreted
as RGB values.

(==> v4ldevice grab-rgb24-acc-rgba img alpha) Type: MSG(packages/video4linux/v4l.lsh)
Last Modified: 2003-01-06 23:43:51

grab an image from the v4l device and accumulate the result into a preexist-
ing image (an int-matrix of size height x width x depth where height and
width are the dimensions of the v4ldevice , and with depth equal to at least
4). Consecutive elements in the last dimension are interpreted as RGBA values.
The alpha channel is filled with value alpha .

(==> v4ldevice grab) Type: MSG(packages/video4linux/v4l.lsh) Last
Modified: 2003-01-06 23:43:51

low-level grab of an image from the v4l device. This is a low-level function
that simply performs a frame grab in the video format and image size (as set with
set-format) with no format conversion. Most users will prefer to use the other
grab methods which perform appropriate conversions and write their result into
an idx. The present function simply provides a pointer to the frame buffer. The



9.6. VIDEO4LINUX: VIDEO GRABBING 661

grabbed data can be accessed through the framebuffer slot of the v4ldevice
(a gptr). The number of bytes in the grab frame is given by the product of the
width , height , and depth slots. The format depends on what parameter
was passed to set-format prior to calling grab . Please note that the RGB24
and RGB32 formats of video4linux are really BGR formats from Lush’s point
of view.

(libload "video4linux/v4l")
(libload "libc/libc")
(new-window)
;; these parameters are for Quickcam 3000 pro webcam
(setq v (new v4ldevice "/dev/video" "AUTO" 0 320 240))
(setq m (ubyte-matrix 240 320))
;; set format to YUV420P (planar).
(==> v set-format @@VIDEO_PALETTE_YUV420P 320 240)
(==> v grab)
;; copy the Y component into the matrix m
(memcpy (idx-ptr m) :v:framebuffer (* 240 320))
(rgb-draw-matrix 0 0 m)

TV Frequency tables

(packages/video4linux/freq-tables.lsh) Last Modified: 2002-08-19 20:44:14
these tables contain the frequencies (in 1/16th of a MHz) that can be passed

to the ”tune” method of a v4l-device to set the channel of the tuner.
freqtable-us-bcast Type: variable(packages/video4linux/freq-tables.lsh) Last

Modified: 2002-08-19 20:44:14
frequency table vector for US broadcast TV. The i-th element is the fre-

quency of the channel i. When the frequency is 0, the channel does not exist.
freqtable-us-cable Type: variable(packages/video4linux/freq-tables.lsh) Last

Modified: 2002-08-19 20:44:14
frequency table vector for US cable TV. The i-th element is the frequency

of the channel i. When the frequency is 0, the channel does not exist.

9.6.3 Demos

Simple Video Capture Demos

(packages/video4linux/demos/v4l-demo.lsh) Last Modified: 2002-11-19 23:32:14
(v4l-demo-rgb in width height) (packages/video4linux/demos/v4l-demo.lsh)

Last Modified: 2002-11-19 23:32:14
monitors NTSC video captured from /dev/video on on a Lush graphic screen.

in is the card’s input from which the video will be captured (=1 for composite
input, =2 for S-video input on some bttv cards).

(v4l-demo-rgb 1 320 240)



662 CHAPTER 9. PACKAGES

bug: the function must be interrupted with CTRL-C.
feature: the function is 6 lines of lush.
(v4l-demo2 in1 in2 width height) (packages/video4linux/demos/v4l-

demo.lsh) Last Modified: 2002-11-19 23:32:14
play captured videos on a Lush graphic screen from two video source si-

multaneously. This assumes that two video capture devices are present in the
computer. in1 and in2 are the card’s inputs from which the videos will be
captured (=2 for S-video input on some bttv cards).

(v4l-demo2 2 2 320 240)

bug: the function must be interrupted with CTRL-C.

(effect-sdl-demo eff)

(packages/video4linux/demos/effect-sdl-demo.lsh) Last Modified: 2002-10-10 20:33:03
This starts a real-time video effect demo that uses video4linux for grabbing

video and SDL for displaying. The eff parameter must be an instance of a
subclass of effect . Several subclasses are provided including edge detection,
laplacian, image difference, etc...

This function uses three global variables to configure the video grabbing.
Their names are: *video-device* *video-standard* and *video-input* ,
and their default values are respectively ”/dev/video”, ”NTSC”, 1 (1 is the
composite input on most TV cards). The default values can be changed by
defvar ing those variables to the desired value before loading the present file.
Example:

(effect-sdl-demo (new effect-trail 320 240 20))
(effect-sdl-demo (new effect-edge 320 240))

Video Effects (packages/video4linux/demos/effect-sdl-demo.lsh) Last Mod-
ified: 2002-10-10 20:33:03

Video effect classes are subclasses of the effect class. Video effects are
used by calling the fprop method which takes one input (RGBA image) and
one output (RGBA image). The effect is applied to the input image and written
into the output image. The input and output must be height x width x4 idx3
of ubytes. If used with effect-sdl-demo The alpha channel of the output image
will determine the blending of the output image with the previously displayed
image. Set all the alphas to 255 for full opacity. Effect subclasses must have
a constructor that takes at least a width and height parameter (and possibly
other initialization parameters). They must have width and height methods
that return the width and height.

(new effect width height) Type: CLASS(packages/video4linux/demos/effect-
sdl-demo.lsh) Last Modified: 2002-10-10 20:33:03

noop effect: simply copies the input to the output unaffected



9.7. BLAS: BASIC LINEAR ALGEBRA SUBROUTINE 663

(new effect-edge width height) Type: CLASS(packages/video4linux/demos/effect-
sdl-demo.lsh) Last Modified: 2002-10-10 20:33:03

performs a simple edge detection by applying an on-center/off-surround con-
volution filter and rectifying , amplifying and saturating the result.

(new effect-trail width height hl) Type: CLASS(packages/video4linux/demos/effect-
sdl-demo.lsh) Last Modified: 2002-10-10 20:33:03

simply change the transparency to create a ”trail” effect. hl is the ”half
life” of the trail: 0 leaves no trail, 1 leaves a trail that decays by half at each
frame, and 20 looks funny. Example:

(new effect-diff 320 240 20)

(new effect-laplace width height gain) Type: CLASS(packages/video4linux/demos/effect-
sdl-demo.lsh) Last Modified: 2002-10-10 20:33:03

this applies a sort-of laplacian filter (really a set-of-your-pant on-center/off-
surround filter) to each RGB component of the image. The gain paramter
determines the gain of the output. Values around 1 are reasonable.

(new effect-diff width height alpha) Type: CLASS(packages/video4linux/demos/effect-
sdl-demo.lsh) Last Modified: 2002-10-10 20:33:03

computes a simple difference between consecutive images. alpha is the
transparency with which the difference image is painted. Setting it to 255 will
make it opaque , setting it to 128 will leave a short trail.

(new effect-bgsubst width height imagefile erosion dilation thres)
Type: CLASS(packages/video4linux/demos/effect-sdl-demo.lsh) Last Modified:
2002-10-10 20:33:03

performs background substitution. This compares the current grabbed im-
age with an image computed as the average of the first 10 frames. If the Eu-
clidean distance in RGB space of a pixel to the average is larger than thres
, the corresponding pixel of the currently grabbed image is drawn , otherwise
the corresponding pixel in the image imagefile is drawn. thres should be
between 500 and 5000 for normal lighting conditions. erosion and dilation
are used to erode and dilate the mask so as to eliminate rogue foreground pixels.
Suggested values are 3 and 2 respectively.

realtime video effects

(packages/video4linux/demos/effect-demo.lsh) Last Modified: 2002-10-10 20:33:32
a simple GUI application that shows several real-time video effects , in-

cluding: color manipulation , image difference , background substitution , edge
detection , and image warping.

9.7 BLAS: Basic Linear Algebra Subroutine

Lush has a full interface to the Basic Linear Algebra Subroutines library (BLAS).
Please refer to the Lush on-line documentation tool tool (helptool) for more
details.



664 CHAPTER 9. PACKAGES

9.8 LAPACK

Lush has a full interface to the Linear Algebra Package library (LAPACK).
Please refer to the Lush on-line documentation tool tool (helptool) for more
details.

9.9 GSL: GNU Scientific Library

Lush has a full interface to the GNU Scientific Library (GSL). Please refer to
the Lush on-line documentation tool tool (helptool) for more details.

9.10 OpenCV: Intel Computer Vision Library

Lush has a full interface to the Intel Open Computer Vision Library (OpenCV).
Please refer to the Lush on-line documentation tool tool (helptool) for more
details.

9.11 ALSA: Advanced Linux Sound Architec-
ture

Lush has a full interface to the Advanced Linux Sound Architecture (ALSA).
Please refer to the Lush on-line documentation tool tool (helptool) for more
details.



Chapter 10

Applications

Applications are Lush programs (generally with a graphical user interface) that
are useful by themselves without without requiring any programming.

10.1 Graphic Tools

665



666 CHAPTER 10. APPLICATIONS



Chapter 11

Tutorials

11.1 Tutorial: Writing Games with Lush and
SDL.

Author(s): Yann LeCun
Lush provides a simple way to write 2D real-time games using the SDL

library (Simple Directmedia Layer). What follows is a gentle tutorial on how to
do that.

This tutorial was written to be understandable by motivated high school
students with some basic familiarity with Lush but with little programing expe-
rience. Seasoned programmers will probably want to skip certain paragraphs.

The code for this tutorial is available at .

11.1.1 A Quick Reminder on Basic Lush Programming

In this tutorial , we make use of some simple object oriented concepts. Creating
a new instance of a class is performed with a call to new :

(setq an-instance (new a-class arg1 arg2 ...))

For example , creating a new sprite (a movable object on a graphic screen) is
done with:

(setq a-new-sprite (new sdl-sprite scr 0))

Objects have slots and methods. Slots are variables that are attached to the
object , while methods are functions that are attached to the class of the object.
Calling a method on an object is like telling it to carry out a particular action.
This is done with the function ==> . Here is an example:

667



668 CHAPTER 11. TUTORIALS

(==> a-new-sprite move 300 400)
(==> a-new-sprite draw)

This can be interpreted as ”tell a-new-sprite to move to position 300 , 400”
, then ”tell a-new-sprite to draw itself on the screen”.

11.1.2 A Simple Lunar Lander

As a case study , we will describe how to write the core of a simple Lunar Lander
game. The amazing thing is that the whole game will fit in less than a page of
Lush code.

The code described in this section is available in /home/yann/lush/packages/sdl/demos/tutorial.lsh

First , make a working directory , say game and cd to it.

Creating the Ship and Background Images

Before we start writing code , we need to create images for the ship and the
background. This can be done with The Gimp. Start The Gimp , and open a
new drawing with a transparent background. Paint your object (or modify an
existing digital picture) , and save the image as a PNG file. The advantage of
using the PNG format is that it is relatively compact , uses lossless compression
, and supports an alpha channel for transparency.

For the time being , instead of creating your own art , you can simply copy
the files lem.png and moon.png from the directory /home/yann/lush/packages/sdl/demos
into your working directory.

First Implementation of Lander

Getting started
Start your favorite text editor (say emacs) , and open a new program file ,

say lander.lsh.
At the top of the file , we put the following line:

(libload "sdl/libsdl")

which will load the SDL library.
Next we need to define a function that will run our game:

(de lander1 ()

initializing SDL
The first line of our function MUST be this:

(sdl-initialize)



11.1. TUTORIAL: WRITING GAMES WITH LUSH AND SDL. 669

This will initialize the SDL subsystem. It’s OK to call this function multiple
times (it only initialize SDL once).

opening the SDL screen
Opening an SDL screen is done as follows:

(setq scr (new sdl-screen 640 480 "Lander"))

now the variable scr contains the screen object.
creating the background and ship sprites
First , we create a new sprite on the screen scr and give it the ID 0. Sprites

are composed of one of several frames that can be loaded with images. We can
load the image file moon.png into frame 0 , and set the hot-point at coordinates
0 0 , (which is the upper-left corner). The hot point is the ”handle” by which
the sprite is ”held”. When we move the sprite to coordinate (x , y) , we move
its handle to (x , y). Here , we will move this sprite to (0 , 0).

;; create background sprite
(setq bgd (new sdl-sprite scr 0))
;; load moon image into frame 0 of bgd sprite
(==> bgd load-frame "moon.png" 0 0 0)
;; move sprite to 0 0
(==> bgd move 0 0)

The move method does not actually draw anything on the screen , it merely
sets the internal coordinate variables of the sprite to (0 , 0).

Now let’s create the ship sprite and create two variables to hold its position:

;; create ship sprite
(setq ship (new sdl-sprite scr 1))
;; load lem image into frame 0 of ship sprite
(==> ship load-frame "lem.png" 0 40 35)
;; set position of ship
(setq x 10) (setq y 20)

The handle of the ship sprite is a coordinate 40 , 35 (i.e. 40 pixel to the right
, and 35 pxiels down from the upper left corner of the ship image) , which is
roughly at the center of the ship.

creating the event handler
We are going to need to grab inputs from the keyboard. To do so , we create

an sdl-event object , and create an integer vector with 3 elements to hold the
result of grabbing the events:

(setq event (new sdl-event))
(setq xyk (int-matrix 3))



670 CHAPTER 11. TUTORIALS

the main loop
The main loop of our game will look something like this:

- clear the screen
- draw the background sprite
- read the keyboard
- move the ship sprite according to the keys pressed
- draw the ship sprite at its new location
- flip the screens (see below)
- repeat the above step until the user quits

The SDL screen opened through the sdl-screen object is double buffered
. What that means is that all the drawing commands do not directly happen
on the visible screen , but happen in a ”hidden” screen (often called a back
buffer).When all the objects have been drawn , we swap the visible screen and
the invisible screen: the screen we just drew into is now visible , and the pre-
viously visible screen is now available for drawing into without affecting what’s
shown on the screen. This technique allows us to take our time drawing all
the object without the user seeing a mess of partially drawn things. In other
words , the ”double buffer” technique avoids the ”flickering” that happens on
the screen when objects are drawn one by one in sequence. Flipping the screens
is performed by calling the flip method of the sdl-screen . Here the code of
our main loop:

(while (not stop)
(==> scr clear) ; fill image with black
(==> bgd draw) ; draw moon ground
(==> event get-arrows xyk) ; read keyboard
(when (= (xyk 2) @@SDLK_q) (setq stop t)) ; stop when q is pressed
(setq x (+ x (* 10 (xyk 0)))) ; compute new X coordinate
(setq y (+ y (* 10 (xyk 1)))) ; compute new Y coordinate
(==> ship move x y) ; move ship sprite to new position
(==> ship draw) ; draw ship in back buffer
(==> scr flip) ; flip screen buffers
) ; loop

The ”get-arrow” method fills the three elements of the ”xyk” vector as follows:

• (xyk 0): -1 if left arrow pressed , +1 if right arrow pressed , 0 otherwise

• (xyk 1): -1 if up arrow pressed , +1 if down arrow pressed , 0 otherwise

• (xyk 2): key symbol of any other key that is pressed simultaneously.

So , the expression (setq x (+ x (* 10 (xyk 0)))) will move the ship by 10
pixels to the left or right when the left or right arrow keys are pressed.



11.1. TUTORIAL: WRITING GAMES WITH LUSH AND SDL. 671

The expression (when (= (xyk 2) @@SDLK q) (setq stop t)) tests if the
”q” key was pressed , and sets the ”stop” variable to true if it was pressed.
SDLK q is a constant. The value of a constant is accessed by prepending one or
two ”@” characters to the name. The while loop tests the stop variable and
exits if it is true (i.e. if the ”q” key has been pressed).

Putting it all together
Here is the complete code:

(de lander01 ()
;; initialize the SDL subsystem. DONT FORGET THIS!!!
(sdl-initialize)
(setq scr (new sdl-screen 640 480 "Lander")) ; open screen
;; create background sprite
(setq bgd (new sdl-sprite scr 0))
(==> bgd load-frame "moon.png" 0 0 0)
(==> bgd move 0 0)
;; create lem sprite
(setq ship (new sdl-sprite scr 1))
(==> ship load-frame "lem.png" 0 40 35)
;; set position of ship
(setq x 200) (setq y 100)
;; create event object
(setq event (new sdl-event))
(setq xyk (int-matrix 3))

(while (not stop)
(==> scr clear) ; fill image with black
(==> bgd draw) ; draw moon ground
(==> event get-arrows xyk) ; read keyboard
(when (= (xyk 2) @@SDLK_q) (setq stop t)) ; stop when q is pressed
(setq x (+ x (* 10 (xyk 0))))
(setq y (+ y (* 10 (xyk 1))))
(==> ship move x y) ; move ship sprite to position
(==> ship draw) ; draw ship
(==> scr flip) ; flip screens
))

This code has three major problems:

• It’s not a real Lunar Lander game , since the ship does not obey Newtonian
mechanics.

• It’s written in a terribly un-clean style: the code uses lots of global vari-
ables , which is universally recognized as bad practice.

• nothing prevents the ship from getting off the screen.



672 CHAPTER 11. TUTORIALS

Second Lander: Gravity and Newtonian mechanics

The new implementation replaces all the global variables by local variables cre-
ated using the let* construct. Local variables created with let* (or let )
disappear after the let* evaluation completes.

The new implementation also obeys Newtonian mechanics with (gravity ,
inertia an such). This is done very simply with the following sequence of oper-
ations inside the main loop:

1 - read the keyboard arrows and determine the engines thrusts
2 - compute accelerations from thrust and gravity (apply accel=force/mass):

- set X-acceleration = X-thrust / ship’s mass
- set Y-acceleration = Y-thrust / ship’s mass + gravity

3 - compute new velocity from acceleration (time integration):
- set new X-velocity = old X-velocity + X-acceleration * deltat
- set new Y-velocity = old Y-velocity + Y-acceleration * deltat

4 - compute new position from velocity (time integration):
- set X-position = X-position + X-velocity * deltat
- set Y-position = Y-position + Y-velocity * deltat

The deltat variable is the expected time it takes to go around the main loop of
the game (more on this below). Here is how the above equations work. Step 2
computes the accelerations using Newton’s law acceleration equals force divided
by mass . We must add the acceleration of gravity (which is independent from
the mass , as Galileo showed by dropping things from the tower of Pisa) to
the Y component of the acceleration. Our objects will be positioned on the
screen , where the unit of distance is the pixel. Therefore , our unit of speed
will be the pixel per second , and our unit of acceleration the pixel per second
per second (i.e. by how many pixels per second does our speed change every
second). Rather than divide the forces by the mass , we precompute the inverse
of the mass mass-inv , and multiply the force by this value. We do this because
mutliplication is a lot faster than division. The Lush code segment is:

(setq ax (* mass-inv side-thrust (xyk 0)))
(setq ay (+ grav (* mass-inv main-thrust (xyk 1))))

Step 3 computes the velocities from the accelerations. The idea is the following
, if horizontal acceleration is X-acceleration , and we maintain that acceler-
ation for deltat seconds , our velocity will have increased by X-acceleration
times deltat . If we assume that the acceleration was constant while our pro-
gram went around the loop , and that it took deltat seconds to go around
that loop , then we must increase the velocity by (* ax deltat) . Here is the
appropriate Lush code:

(setq vx (+ vx (* ax deltat))) ; update X-velocity
(setq vy (+ vy (* ay deltat))) ; update Y-velocity



11.1. TUTORIAL: WRITING GAMES WITH LUSH AND SDL. 673

Step 4 computes the position from the velocities. The idea is similar: During
the time deltat that it takes our program to go around its main loop , we
assume that the velocity is constant. The position of the ship during that time
has changed by the velocity times deltat . This is true for the horizontal
velocity and position as well as the vertical velocity and position:

(setq x (+ x (* vx deltat))) ; update X-position
(setq y (+ y (* vy deltat))) ; update Y-position

So , if going around the loop takes 0.05 seconds (20 frames per second) ,
deltat should be 0.05. For example , if the X-velocity is 40 pixels per second
and going around the loop takes 0.05 seconds , then the X-position should be
incremented by 40*0.05 = 2 pixels each time we go around the loop , hence
the formula above. How do we know how long it takes to go around the loop?
Fortunately , the flip method of sdl-screen object sets the the deltat slot
of the sdl-screen object to the number of seconds since the last call to flip
(most likely , and hopefully a number much smaller than 1). So as long as we
do one screen flip per cycle around the loop , we can simply set our deltat
to the screen’s deltat which we can access with :scr:deltat . The complete
update code for our main loop is now:

[...get keyboard input into xyk here...]
(setq ax (* mass-inv side-thrust (xyk 0))) ; update X-acceleration
(setq ay (+ grav (* mass-inv main-thrust (xyk 1)))) ; update Y-accel
(setq vx (+ vx (* ax deltat))) ; update X-velocity
(setq vy (+ vy (* ay deltat))) ; update Y-velocity
(setq x (+ x (* vx deltat))) ; update X-position
(setq y (+ y (* vy deltat))) ; update Y-position
[...draw all the objects here...]
(==> scr flip) ; flip screens
(setq deltat :scr:deltat) ; get time between screen flips

Next , we need some code to bounce the ship around or have it wrap around
the screen when it goes off the boundaries. Here is the code below. We are
assuming that the variable ”ground” contains the value 360 or so (near the
bottom of the screen):

(when (< x -40) (setq x (+ 640 (- x -40)))) ; wrap around left side
(when (> x 680) (setq x (+ -40 (- x 640)))) ; wrap around right side
(when (> y ground) ; bounce on ground
(setq vy (* -0.5 vy)) ; divide vertical speed by 2
(setq vx (* 0.25 vx)) ; divide horiz speed by 4
(setq y ground)) ; set vert position to ground altitude

Here is the new complete code:



674 CHAPTER 11. TUTORIALS

(de lander02 ()
;; initialize the SDL subsystem. DONT FORGET THIS!!!
(sdl-initialize)
(let* ((scr (new sdl-screen 640 480 "Lander")) ; open screen

(bgd (new sdl-sprite scr 0)) ; create background sprite
(ship (new sdl-sprite scr 1)) ; create lem sprite
;; set position, velocity, acceleration of ship
(x 200) (y 100) (vx 4) (vy 0) (ax 0) (ay 0)
;; set mass, inverse mass, and deltat of ship
(mass 1) (mass-inv (/ 1 mass)) (deltat 0.01)
(side-thrust 200) ; set side engine thrust
(main-thrust 400) ; set main engine thrust
(grav 200) ; set gravity coefficient in pixels/s/s
(stop ())
(event (new sdl-event))
(xyk (int-matrix 3))
(ground 360))

(==> bgd load-frame "moon.png" 0 0 0)
(==> bgd move 0 0)
(==> ship load-frame "lem.png" 0 40 35)
(while (not stop)
(==> scr clear) ; fill image with black
(==> bgd draw) ; draw moon ground
(==> event get-arrows xyk) ; read keyboard
(when (= (xyk 2) @@SDLK_q) (setq stop t)) ; stop when q is pressed
(setq ax (* mass-inv side-thrust (xyk 0))) ; update acceleration
(setq ay (+ grav (* mass-inv main-thrust (xyk 1)))) ; update acceleration
(setq vx (+ vx (* ax deltat))) ; update velocity
(setq vy (+ vy (* ay deltat))) ; update velocity
(setq x (+ x (* vx deltat))) ; update position
(setq y (+ y (* vy deltat))) ; update position
(when (< x -40) (setq x (+ 640 (- x -40)))) ; wrap around left side
(when (> x 680) (setq x (+ -40 (- x 640)))) ; wrap around right side
(when (> y ground) ; bounce on ground
(setq vy (* -0.5 vy)) ; divide vertical speed by 2
(setq vx (* 0.25 vx)) ; divide horiz speed by 4
(setq y ground)) ; set vert position to ground altitude
(==> ship move x y) ; move ship sprite to position
(==> ship draw) ; draw ship
(==> scr flip) ; flip screens
(setq deltat :scr:deltat) ; update deltat to time between screen flips
)))



11.1. TUTORIAL: WRITING GAMES WITH LUSH AND SDL. 675

Third Lander: a flame and a shadow

Let’s add a little coolness and realism. We will add a flame when the engine
is on , and shadow of the ship projected on the ground. We will create two
additional sprites , one for the flame , one for the shadow. The flame will be
drawn at the same location as the ship , whenever the motor is on. The shadow
will drawn at the same horizontal position as the ship , but at the same vertical
position as the ground. Here are the relevant lines:

(let* ([... allocate screen and bg sprite ...]
(ship (new sdl-sprite scr 1)) ; create lem sprite
(flame (new sdl-sprite scr 1)) ; create flame sprite
(shadow (new sdl-sprite scr 3)) ; create shadow sprite
[... more initializations...]
)

[... load background image ...]
;; load image and put the handle at the center of the sprite (40,35)
(==> ship load-frame "lem.png" 0 40 35)
;; the flame is designed to have the handle at the same place
(==> flame load-frame "lem-flame.png" 0 40 35)
;; here is the shadow
(==> shadow load-frame "lem-shadow.png" 0 40 -6)
(while (not stop) ; main loop
[... compute all the coordinates...]
(==> shadow move x 360) ; move shadow sprite to position
(==> flame move x y) ; move flame sprite to position
(==> ship move x y) ; move ship sprite to position
(==> shadow draw) ; draw shadow
(when (<> 0 (xyk 1)) (==> flame draw)) ; draw flame if engine is on
(==> ship draw) ; draw ship
(==> scr flip) ; flip screens
(setq deltat :scr:deltat) ; update deltat to time between screen flips
))

Here is the complete code (which can be found in /home/yann/lush/packages/sdl/demos/tutorial.lsh
. )

(de lander03 ()
;; initialize the SDL subsystem. DONT FORGET THIS!!!
(sdl-initialize)
(let* ((scr (new sdl-screen 640 480 "Lander")) ; open screen

(bgd (new sdl-sprite scr 0)) ; create background sprite
(ship (new sdl-sprite scr 1)) ; create lem sprite
(flame (new sdl-sprite scr 1)) ; create flame sprite
(shadow (new sdl-sprite scr 3)) ; create shadow sprite



676 CHAPTER 11. TUTORIALS

;; set position, velocity, acceleration of ship
(x 200) (y 100) (vx 4) (vy 0) (ax 0) (ay 0)
;; set mass, inverse mass, and deltat of ship
(mass 1) (mass-inv (/ 1 mass)) (deltat 0.01)
(side-thrust 200) ; set side engine thrust
(main-thrust 400) ; set main engine thrust
(grav 200) ; set gravity coefficient in pixels/s/s
(stop ())
(event (new sdl-event))
(xyk (int-matrix 3))
(ground 360))

(==> bgd load-frame "moon.png" 0 0 0)
(==> bgd move 0 0)
;; put the handle at the center of the sprite (40,35)
(==> ship load-frame "lem.png" 0 40 35)
(==> flame load-frame "lem-flame.png" 0 40 35)
(==> shadow load-frame "lem-shadow.png" 0 40 -6)
(while (not stop)

(==> scr clear) ; fill image with black
(==> bgd draw) ; draw moon ground
(==> event get-arrows xyk) ; read keyboard
(when (= (xyk 2) @@SDLK_q) (setq stop t)) ; stop when q is pressed
(setq ax (* mass-inv side-thrust (xyk 0))) ; update acceleration
(setq ay (+ grav (* mass-inv main-thrust (xyk 1)))) ; update acceleration
(setq vx (+ vx (* ax deltat))) ; update velocity
(setq vy (+ vy (* ay deltat))) ; update velocity
(setq x (+ x (* vx deltat))) ; update position
(setq y (+ y (* vy deltat))) ; update position
(when (< x -40) (setq x (+ 640 (- x -40)))) ; wrap around left side
(when (> x 680) (setq x (+ -40 (- x 640)))) ; wrap around right side
(when (> y ground) ; bounce on ground
(setq vy (* -0.5 vy))
(setq vx (* 0.25 vx))
(setq y ground))
(==> shadow move x 360) ; move ship sprite to position
(==> flame move x y) ; move ship sprite to position
(==> ship move x y) ; move ship sprite to position
(==> shadow draw)
(when (<> 0 (xyk 1)) (==> flame draw)) ; draw flame if engine is on
(==> ship draw)
(==> scr flip) ; flip screens
(setq deltat :scr:deltat) ; update deltat to time between screen flips
)))



11.1. TUTORIAL: WRITING GAMES WITH LUSH AND SDL. 677

Fourth Lander: the ship rotates

More realistic lunar landers have no side thruster , but rotate around to direct
their main thruster. We will now explain how to create rotated images of the
ship. To do so , the sdl-sprite has a method called rotscale-frame . This
method is called as follows:

(==> ship rotscale-frame src-frame dst-frame angle scale)

This takes the image of a source frame , identified by its number src-frame
, rotates it by angle degrees (clockwise) , scale it by scale , and write the
resulting image in the frame with index dst-frame . The handle (or hotpoint)
is left unchanged in the process , i.e. , the handle in the transformed frame is
at the same location within the object as in the source frame.

In the code segment below , we take the 0-th frame and create rotated version
of it every 10 degrees:

(==> ship load-frame "lem.png" 0 40 35)
(let ((i 1))

;; make an image every 10 degrees from 10 to 350
(for (angle 10 350 10)
;; take frame 0, rotate by angle, scale by 1,
;; and copy into frame i
(==> ship rotscale-frame 0 i angle 1)
(incr i)))

Within the main loop , we must read the keyboard , and use the result from
the left and right arrow keys to rotate the ship. We will use a variable theta
to store the current angle of the ship. This variable is an integer between 0 and
35 which , when multiplied by 10 gives the ship’s angle with the vertical. theta
is used as the index of the frame for the ship sprite:

(while (not stop)
[... stuff deleted...]
(==> event get-arrows xyk) ; read keyboard
;; update the angle from the left-right arrow keys
(setq theta (+ theta (xyk 0)))
;; bring the angle back to the 0-360 interval
(while (>= theta 36) (setq theta (- theta 36)))
(while (< theta 0) (setq theta (+ theta 36)))
;; set frame of ship and flame to one matching the angle
(==> ship set-frame (int theta))
[... stuff deleted...]
)



678 CHAPTER 11. TUTORIALS

Next , we must modify the computation of the X and Y accelerations to take
into account the fact that the thrust of the main engine is at an angle. When
the angle of the ship with the vertical is theta times 10 degrees , the horizon-
tal component of the thrust is main-thrust * sin( -pi/180 * 10 * theta)
, which in lush is written (* main-thrust (sin (* pi/180 -10 theta))) .
We must multiply the angle in degree by pi/180 because the sin functions
takes angles in radians. Rather than computing pi/180 every time , we pre-
compute the value and put the result in a global variable called pi/180 :

(defvar pi/180 (/ 3.1415927 180))

The horizontal acceleration is the horizontal thrust divided by the ship’s mass
(or multiplied by the inverse of the mass)

(setq ax (* mass-inv main-thrust (xyk 1) (sin (* pi/180 -10 theta))))

The vertical component of the acceleration is derived similarly , except the sin
is now a cos , and the gravity component is added:

;; compute x acceleration
(setq ax (* mass-inv main-thrust (xyk 1) (sin (* pi/180 -10 theta))))
;; compute y acceleration
(setq ay (+ grav (* mass-inv main-thrust

(xyk 1) (cos (* pi/180 10 theta)))))

The rest of the code is identical to the previous version.
Here is the complete code , which can be found in /home/yann/lush/packages/sdl/demos/tutorial.lsh

. ):

(setq pi/180 (/ 3.1415927 180))
(de lander04 ()
;; initialize the SDL subsystem. DONT FORGET THIS!!!
(sdl-initialize)
(let* ((scr (new sdl-screen 640 480 "Lander")) ; open screen

(bgd (new sdl-sprite scr 0)) ; create background sprite
(ship (new sdl-sprite scr 1)) ; create lem sprite
(flame (new sdl-sprite scr 1)) ; create flame sprite
(shadow (new sdl-sprite scr 3)) ; create shadow sprite
;; set position, velocity, acceleration of ship
(x 200) (y 100) (vx 4) (vy 0) (ax 0) (ay 0)
;; angle of ship
(theta 0)
;; set mass, inverse mass, and deltat of ship
(mass 1) (mass-inv (/ 1 mass)) (deltat 0.01)



11.1. TUTORIAL: WRITING GAMES WITH LUSH AND SDL. 679

(side-thrust 200) ; set side engine thrust
(main-thrust 400) ; set main engine thrust
(grav 200) ; set gravity coefficient in pixels/s/s
(stop ())
(event (new sdl-event))
(xyk (int-matrix 3))
(ground 360))

(==> bgd load-frame "moon.png" 0 0 0)
(==> bgd move 0 0)
;; put the handle at the center of the sprite (40,35)
(==> ship load-frame "lem.png" 0 40 35)
(==> flame load-frame "lem-flame.png" 0 40 35)
(==> shadow load-frame "lem-shadow.png" 0 40 -6)
;; fill up frames with rotated lems
(let ((i 1))
;; make an image every 10 degrees from 10 to 350
(for (angle 10 350 10)

;; take frame 0, rotate by angle, scale by 1,
;; and copy into frame i
(==> ship rotscale-frame 0 i angle 1)
;; same for flame
(==> flame rotscale-frame 0 i angle 1)
(incr i)))

(while (not stop)
(==> scr clear) ; fill image with black
(==> bgd draw) ; draw moon ground
(==> event get-arrows xyk) ; read keyboard
(when (= (xyk 2) @@SDLK_q) (setq stop t)) ; stop when q is pressed
;; update the angle from the left-right arrow keys
(setq theta (+ theta (xyk 0)))
;; bring the angle back to the 0-360 interval
(while (>= theta 36) (setq theta (- theta 36)))
(while (< theta 0) (setq theta (+ theta 36)))
;; set frame of ship and flame to one matching the angle
(==> ship set-frame (int theta))
(==> flame set-frame (int theta))
;; compute x acceleration
(setq ax (* mass-inv main-thrust (xyk 1) (sin (* pi/180 -10 theta))))
;; compute y acceleration
(setq ay (+ grav (* mass-inv main-thrust

(xyk 1) (cos (* pi/180 10 theta)))))
(setq vx (+ vx (* ax deltat))) ; update velocity
(setq vy (+ vy (* ay deltat))) ; update velocity
(setq x (+ x (* vx deltat))) ; update position
(setq y (+ y (* vy deltat))) ; update position
(when (< x -40) (setq x (+ 640 (- x -40)))) ; wrap around left side



680 CHAPTER 11. TUTORIALS

(when (> x 680) (setq x (+ -40 (- x 640)))) ; wrap around right side
(when (> y ground) ; bounce on ground
(setq vy (* -0.5 vy))
(setq vx (* 0.25 vx))
(setq theta 0)
(setq y ground))
(==> shadow move x 360) ; move shadow sprite to position
(==> flame move x y) ; move flame sprite to position
(==> ship move x y) ; move ship sprite to position
;; now draw sprites in the right order, bottom sprite first
(==> shadow draw) ; draw shadow
(when (<> 0 (xyk 1)) (==> flame draw)) ; draw flame if engine is on
(==> ship draw) ; draw ship
(==> scr flip) ; flip screens
(setq deltat :scr:deltat) ; update deltat to time between screen flips
)))

11.1.3 SpaceWar: missiles and collision detection

Two ships

[under construction]

Shooting missiles

[under construction]

Collision Detection

[under construction]



Chapter 12

FAQ (Frequently Asked
Questions)

12.1 What to do when I get this error?

12.1.1 Module has undefined references

when you load a partially linked object file , or when a function you compiled
calls a C function that is not defined in any previously loaded library or module
you get the above error. To find out which functions are not defined , type
(mod-undefined) .

12.1.2 compiler : Unknown Type in: ()

This message may occur for a variety of reasons , but the most common one is
that the compiler can’t figure out the type of the return value of an expression.
A frequent cause is an hash-brace construct (inline C code segment) that is the
last expression of a function (and therefore its return value). Lush cannot know
the type of the value returned by a hash-brace unless you cast it.

Example 1:

;; this causes an error
(de foo1-broken (x) ((-double-) x) #{ $x*$x #})
;; this is correct
(de foo1-correk (x) ((-double-) x) (to-double #{ $x*$x #}))

Example 2:

;; this causes an error (dunno the return type).
(de foo2-broken (x) ((-idx1- (-int-)) x) #{ *(IDX_PTR($x,int)) = 34 #})
;; this is correct (return value is nil).

681



682 CHAPTER 12. FAQ (FREQUENTLY ASKED QUESTIONS)

(de foo2-correk (x) ((-idx1- (-int-)) x) #{ *(IDX_PTR($x,int)) = 34 #} ())

12.2 How Do I ... ?

12.2.1 Read lines from a file into a list

(de read-lines(f)
(reading f
(let ((ans ()))
(while (<> (skip-char "\\n\\r\\f") "\\e")
(setq ans (cons (read-string) ans)))

(reverse ans))))

12.2.2 Apply a function to all elements of a vector

interpreted lisp way:

(idx-bloop ((x v)) (func x))

efficient compiled C code way:

(cidx-bloop ("i" ("v" v)) #{ *v = my_c_fun(*v); #}) ())

12.2.3 Get a pointer to the raw data of an idx

just use the idx-ptr function.

(idx-ptr m}

12.2.4 Get a pointer to a function written in Lisp

Some functions in popular libraries take function pointers as argument (a typical
example is the GSL function minimization routines). To obtain a pointer to the
compiled version is a function written in Lisp , simply use the function to-gptr
:

(de myfunc (x) ((-double-) x) (- (* x x) 2))
(dhc-make () myfunc)
(some-root-finding-function-in-C (to-gptr myfunc))



12.2. HOW DO I ... ? 683

12.2.5 Know if a function can be used in compiled code

Just use compilablep :

? (compilablep +)
= t



684 CHAPTER 12. FAQ (FREQUENTLY ASKED QUESTIONS)



Chapter 13

Local Packages

This section contains the documentation of packages that are special to your
local installation of Lush. Those packages can be found in the local in the
Lush directory.

685


