
R: A Language and Environment for
Statistical Computing

Reference Index

The R Development Core Team

Version 2.8.0 (2008-10-20)

Copyright (©) 1999–2003 R Foundation for Statistical Computing.
Permission is granted to make and distribute verbatim copies of this manual provided the copyright
notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the conditions for
verbatim copying, provided that the entire resulting derived work is distributed under the terms of a
permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language, under the
above conditions for modified versions, except that this permission notice may be stated in a translation
approved by the R Development Core Team.

R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute
it under the terms of the GNU General Public License. For more information about these matters, see
http://www.gnu.org/copyleft/gpl.html.

ISBN 3-900051-07-0

Contents

1 The base package 1
base-package . 1
.Device . 1
.Machine . 2
.Platform . 4
.Script . 5
abbreviate . 6
agrep . 7
all . 9
all.equal . 10
all.names . 11
any . 12
aperm . 13
append . 14
apply . 15
args . 16
Arithmetic . 17
array . 19
as.data.frame . 20
as.environment . 21
as.function . 22
as.POSIX* . 23
AsIs . 25
assign . 26
assignOps . 27
attach . 28
attr . 30
attributes . 31
autoload . 32
backsolve . 33
base-deprecated . 34
basename . 35
Bessel . 36
bindenv . 38
body . 39
bquote . 40
browser . 41
builtins . 42
by . 43
c . 44
call . 45

i

ii CONTENTS

callCC . 46
capabilities . 47
cat . 48
cbind . 50
char.expand . 52
character . 53
charmatch . 54
chartr . 55
chol . 57
chol2inv . 59
class . 60
col . 61
Colon . 62
colSums . 63
commandArgs . 64
comment . 65
Comparison . 66
complex . 68
conditions . 69
conflicts . 73
connections . 73
Constants . 80
contributors . 81
Control . 81
copyright . 82
crossprod . 83
Cstack_info . 84
cumsum . 84
cut . 85
cut.POSIXt . 87
data.class . 88
data.frame . 89
data.matrix . 91
date . 92
Dates . 93
DateTimeClasses . 94
dcf . 97
debug . 98
Defunct . 99
delayedAssign . 100
deparse . 101
deparseOpts . 102
Deprecated . 104
det . 104
detach . 105
diag . 107
diff . 108
difftime . 109
dim . 111
dimnames . 112
do.call . 113
double . 114

CONTENTS iii

dput . 116
drop . 117
dump . 118
duplicated . 120
dyn.load . 121
eapply . 124
eigen . 125
encodeString . 126
Encoding . 128
environment . 129
EnvVar . 131
eval . 132
exists . 135
expand.grid . 136
expression . 137
Extract . 138
Extract.data.frame . 142
Extract.factor . 145
Extremes . 146
factor . 148
file.access . 150
file.choose . 152
file.info . 152
file.path . 153
file.show . 154
files . 155
findInterval . 157
force . 158
Foreign . 159
formals . 162
format . 163
format.Date . 166
format.info . 168
format.pval . 169
formatC . 170
formatDL . 172
function . 174
funprog . 175
gc . 177
gc.time . 178
gctorture . 179
get . 180
getDLLRegisteredRoutines . 181
getLoadedDLLs . 183
getNativeSymbolInfo . 184
getNumCConverters . 186
getpid . 187
gettext . 188
getwd . 189
gl . 190
grep . 191
groupGeneric . 194

iv CONTENTS

gzcon . 196
hexmode . 198
Hyperbolic . 198
iconv . 199
icuSetCollate . 201
identical . 202
identity . 204
ifelse . 204
integer . 205
interaction . 206
interactive . 207
Internal . 208
InternalMethods . 208
invisible . 209
is.finite . 209
is.function . 211
is.language . 212
is.object . 212
is.R . 213
is.recursive . 214
is.single . 215
is.unsorted . 215
isS4 . 216
isSymmetric . 217
jitter . 218
kappa . 219
kronecker . 220
l10n_info . 222
labels . 222
lapply . 223
Last.value . 225
length . 225
levels . 226
libPaths . 228
library . 229
library.dynam . 233
license . 235
list . 235
list.files . 237
load . 238
localeconv . 240
locales . 241
log . 242
Logic . 244
logical . 246
lower.tri . 247
ls . 247
make.names . 249
make.unique . 250
manglePackageName . 251
mapply . 251
margin.table . 253

CONTENTS v

mat.or.vec . 254
match . 254
match.arg . 256
match.call . 257
match.fun . 258
Math . 259
matmult . 260
matrix . 261
maxCol . 263
mean . 264
Memory . 265
Memory-limits . 267
memory.profile . 267
merge . 268
message . 270
missing . 271
mode . 272
NA . 274
name . 275
names . 276
nargs . 278
nchar . 278
nlevels . 280
noquote . 281
NotYet . 282
nrow . 282
ns-dblcolon . 283
ns-hooks . 284
ns-load . 285
ns-topenv . 286
NULL . 287
numeric . 287
NumericConstants . 289
numeric_version . 290
octmode . 291
on.exit . 292
Ops.Date . 293
options . 294
order . 300
outer . 302
Paren . 303
parse . 304
paste . 306
path.expand . 307
pmatch . 307
polyroot . 309
pos.to.env . 310
pretty . 310
Primitive . 312
print . 312
print.data.frame . 314
print.default . 315

vi CONTENTS

prmatrix . 317
proc.time . 318
prod . 319
prop.table . 320
pushBack . 321
qr . 322
QR.Auxiliaries . 324
quit . 325
Quotes . 327
R.home . 328
R.Version . 329
Random . 330
Random.user . 334
range . 335
rank . 336
rapply . 338
raw . 339
rawConnection . 340
rawConversion . 341
RdUtils . 342
readBin . 343
readChar . 346
readline . 348
readLines . 349
real . 350
Recall . 351
reg.finalizer . 351
regex . 352
remove . 356
rep . 357
replace . 359
Reserved . 360
rev . 360
rle . 361
Round . 362
round.POSIXt . 363
row . 364
row.names . 365
row/colnames . 366
rowsum . 367
sample . 368
save . 370
scale . 372
scan . 373
search . 377
seek . 377
seq . 379
seq.Date . 381
seq.POSIXt . 382
sequence . 383
sets . 384
setTimeLimit . 385

CONTENTS vii

showConnections . 386
shQuote . 387
sign . 388
Signals . 389
sink . 389
slice.index . 391
slotOp . 392
socketSelect . 393
solve . 393
sort . 395
source . 397
Special . 399
split . 402
sprintf . 404
sQuote . 407
srcfile . 409
Startup . 410
stop . 413
stopifnot . 414
strptime . 415
strsplit . 419
strtrim . 421
structure . 422
strwrap . 423
subset . 424
substitute . 425
substr . 427
sum . 429
summary . 430
svd . 431
sweep . 432
switch . 434
Syntax . 435
Sys.getenv . 436
Sys.glob . 437
Sys.info . 438
sys.parent . 439
Sys.setenv . 441
Sys.sleep . 442
sys.source . 443
Sys.time . 444
Sys.which . 445
system . 446
system.file . 447
system.time . 448
t . 449
table . 450
tabulate . 452
tapply . 453
taskCallback . 455
taskCallbackManager . 457
taskCallbackNames . 458

viii CONTENTS

tempfile . 459
textConnection . 460
tilde . 462
timezones . 463
toString . 464
trace . 465
traceback . 469
tracemem . 470
transform . 471
Trig . 472
try . 474
typeof . 475
unique . 476
unlink . 477
unlist . 478
unname . 480
UseMethod . 480
UserHooks . 483
utf8Conversion . 484
vector . 485
warning . 486
warnings . 488
weekdays . 489
which . 490
which.min . 491
with . 492
write . 494
writeLines . 495
xtfrm . 496
zpackages . 496
zutils . 497

2 The datasets package 499
datasets-package . 499
ability.cov . 499
airmiles . 500
AirPassengers . 501
airquality . 502
anscombe . 503
attenu . 504
attitude . 505
austres . 506
beavers . 506
BJsales . 507
BOD . 508
cars . 509
ChickWeight . 510
chickwts . 511
CO2 . 512
co2 . 513
crimtab . 513
discoveries . 515
DNase . 516

CONTENTS ix

esoph . 517
euro . 518
eurodist . 519
EuStockMarkets . 519
faithful . 520
Formaldehyde . 521
freeny . 522
HairEyeColor . 523
Harman23.cor . 524
Harman74.cor . 524
Indometh . 525
infert . 526
InsectSprays . 527
iris . 527
islands . 529
JohnsonJohnson . 529
LakeHuron . 530
lh . 530
LifeCycleSavings . 531
Loblolly . 532
longley . 532
lynx . 533
morley . 534
mtcars . 535
nhtemp . 535
Nile . 536
nottem . 537
occupationalStatus . 538
Orange . 539
OrchardSprays . 540
PlantGrowth . 541
precip . 541
presidents . 542
pressure . 543
Puromycin . 543
quakes . 545
randu . 545
rivers . 546
rock . 547
sleep . 547
stackloss . 548
state . 549
sunspot.month . 550
sunspot.year . 551
sunspots . 551
swiss . 552
Theoph . 553
Titanic . 554
ToothGrowth . 555
treering . 556
trees . 557
UCBAdmissions . 558

x CONTENTS

UKDriverDeaths . 559
UKgas . 560
UKLungDeaths . 561
USAccDeaths . 561
USArrests . 562
USJudgeRatings . 562
USPersonalExpenditure . 563
uspop . 564
VADeaths . 564
volcano . 565
warpbreaks . 566
women . 567
WorldPhones . 567
WWWusage . 568

3 The grDevices package 571
grDevices-package . 571
as.graphicsAnnot . 571
boxplot.stats . 572
cairo . 574
check.options . 575
chull . 576
cm . 577
col2rgb . 578
colorRamp . 579
colors . 581
contourLines . 582
convertColor . 583
dev.interactive . 585
dev.size . 586
dev.xxx . 586
dev2 . 588
dev2bitmap . 590
devAskNewPage . 592
Devices . 592
embedFonts . 593
extendrange . 594
getGraphicsEvent . 595
gray . 597
gray.colors . 598
hcl . 599
Hershey . 601
hsv . 604
Japanese . 605
make.rgb . 606
n2mfrow . 607
nclass . 608
palette . 609
Palettes . 610
pdf . 611
pdf.options . 615
pictex . 616
plotmath . 617

CONTENTS xi

png . 621
postscript . 624
postscriptFonts . 630
ps.options . 632
quartz . 634
quartzFonts . 636
recordGraphics . 637
recordPlot . 638
rgb . 639
rgb2hsv . 640
savePlot . 642
trans3d . 643
Type1Font . 643
x11 . 645
X11Fonts . 648
xfig . 649
xy.coords . 651
xyTable . 653
xyz.coords . 654

4 The graphics package 657
graphics-package . 657
abline . 657
arrows . 659
assocplot . 660
Axis . 662
axis . 663
axis.POSIXct . 665
axTicks . 667
barplot . 668
box . 671
boxplot . 672
bxp . 675
cdplot . 678
clip . 680
contour . 681
convertXY . 683
coplot . 684
curve . 687
dotchart . 688
filled.contour . 689
fourfoldplot . 692
frame . 693
grid . 694
hist . 695
hist.POSIXt . 698
identify . 700
image . 702
layout . 704
legend . 706
lines . 710
locator . 711
matplot . 712

xii CONTENTS

mosaicplot . 715
mtext . 718
pairs . 719
panel.smooth . 722
par . 723
persp . 730
pie . 733
plot . 735
plot.data.frame . 737
plot.default . 738
plot.design . 740
plot.factor . 742
plot.formula . 742
plot.histogram . 744
plot.table . 745
plot.window . 746
plot.xy . 747
points . 748
polygon . 751
rect . 753
rug . 755
screen . 756
segments . 758
spineplot . 759
stars . 761
stem . 764
stripchart . 765
strwidth . 767
sunflowerplot . 768
symbols . 770
text . 773
title . 775
units . 776
xspline . 777

5 The grid package 781
grid-package . 781
absolute.size . 782
arrow . 783
convertNative . 783
dataViewport . 784
drawDetails . 785
editDetails . 786
gEdit . 787
getNames . 788
gpar . 788
gPath . 790
Grid . 791
Grid Viewports . 792
grid.add . 795
grid.arrows . 796
grid.circle . 799
grid.clip . 800

CONTENTS xiii

grid.collection . 801
grid.convert . 802
grid.copy . 804
grid.curve . 805
grid.display.list . 807
grid.draw . 808
grid.edit . 809
grid.frame . 810
grid.get . 811
grid.grab . 812
grid.grill . 813
grid.grob . 814
grid.layout . 816
grid.lines . 817
grid.locator . 819
grid.ls . 820
grid.move.to . 822
grid.newpage . 824
grid.null . 824
grid.pack . 825
grid.place . 827
grid.plot.and.legend . 828
grid.points . 828
grid.polygon . 829
grid.pretty . 831
grid.prompt . 831
grid.record . 832
grid.rect . 833
grid.refresh . 834
grid.remove . 834
grid.segments . 835
grid.set . 837
grid.show.layout . 838
grid.show.viewport . 839
grid.text . 840
grid.xaxis . 842
grid.xspline . 843
grid.yaxis . 846
grobName . 847
grobWidth . 847
grobX . 848
plotViewport . 849
pop.viewport . 849
push.viewport . 850
Querying the Viewport Tree . 851
stringWidth . 852
unit . 852
unit.c . 854
unit.length . 855
unit.pmin . 856
unit.rep . 856
validDetails . 857

xiv CONTENTS

vpPath . 858
widthDetails . 859
Working with Viewports . 859
xDetails . 862

6 The methods package 863
methods-package . 863
.BasicFunsList . 864
as . 864
BasicClasses . 868
callGeneric . 869
callNextMethod . 871
canCoerce . 873
cbind2 . 873
Classes . 875
classRepresentation-class . 878
Documentation . 879
dotsMethods . 881
environment-class . 883
findClass . 884
findMethods . 886
fixPre1.8 . 887
genericFunction-class . 888
GenericFunctions . 889
getClass . 893
getMethod . 894
getPackageName . 896
hasArg . 897
implicitGeneric . 898
initialize-methods . 900
is . 901
isSealedMethod . 906
language-class . 907
LinearMethodsList-class . 908
makeClassRepresentation . 909
method.skeleton . 910
MethodDefinition-class . 911
Methods . 912
MethodsList-class . 916
MethodWithNext-class . 917
new . 918
ObjectsWithPackage-class . 920
promptClass . 921
promptMethods . 922
representation . 923
S3 . 925
S4groupGeneric . 928
SClassExtension-class . 930
setClass . 931
setClassUnion . 934
setGeneric . 935
setMethod . 940
setOldClass . 944

CONTENTS xv

show . 948
showMethods . 949
signature-class . 951
slot . 952
StructureClasses . 954
TraceClasses . 955
validObject . 956

7 The stats package 959
stats-package . 959
.checkMFClasses . 959
acf . 960
acf2AR . 962
add1 . 963
addmargins . 965
aggregate . 967
AIC . 969
alias . 970
anova . 971
anova.glm . 972
anova.lm . 974
anova.mlm . 975
ansari.test . 977
aov . 980
approxfun . 981
ar . 983
ar.ols . 986
arima . 988
arima.sim . 991
arima0 . 993
ARMAacf . 996
ARMAtoMA . 997
as.hclust . 998
asOneSidedFormula . 999
ave . 999
bandwidth . 1000
bartlett.test . 1002
Beta . 1003
binom.test . 1005
Binomial . 1006
biplot . 1008
biplot.princomp . 1009
birthday . 1011
Box.test . 1012
C . 1013
cancor . 1014
case/variable.names . 1015
Cauchy . 1016
chisq.test . 1017
Chisquare . 1020
clearNames . 1022
cmdscale . 1023
coef . 1024

xvi CONTENTS

complete.cases . 1025
confint . 1026
constrOptim . 1027
contrast . 1029
contrasts . 1030
convolve . 1031
cophenetic . 1033
cor . 1034
cor.test . 1036
cov.wt . 1039
cpgram . 1040
cutree . 1041
decompose . 1042
delete.response . 1043
dendrapply . 1044
dendrogram . 1046
density . 1049
deriv . 1052
deviance . 1055
df.residual . 1056
diffinv . 1056
dist . 1057
dummy.coef . 1060
ecdf . 1061
eff.aovlist . 1064
effects . 1065
embed . 1066
expand.model.frame . 1067
Exponential . 1068
extractAIC . 1069
factanal . 1070
factor.scope . 1073
family . 1074
FDist . 1078
fft . 1079
filter . 1080
fisher.test . 1082
fitted . 1084
fivenum . 1085
fligner.test . 1086
formula . 1088
formula.nls . 1090
friedman.test . 1090
ftable . 1092
ftable.formula . 1094
GammaDist . 1095
Geometric . 1098
getInitial . 1099
glm . 1100
glm.control . 1104
glm.summaries . 1105
hclust . 1106

CONTENTS xvii

heatmap . 1109
HoltWinters . 1112
Hypergeometric . 1115
identify.hclust . 1116
influence.measures . 1117
integrate . 1120
interaction.plot . 1122
IQR . 1124
is.empty.model . 1125
isoreg . 1126
KalmanLike . 1127
kernapply . 1129
kernel . 1130
kmeans . 1131
kruskal.test . 1133
ks.test . 1135
ksmooth . 1137
lag . 1138
lag.plot . 1139
line . 1140
lm . 1141
lm.fit . 1144
lm.influence . 1146
lm.summaries . 1147
loadings . 1149
loess . 1150
loess.control . 1152
Logistic . 1153
logLik . 1154
loglin . 1155
Lognormal . 1157
lowess . 1159
ls.diag . 1160
ls.print . 1161
lsfit . 1162
mad . 1163
mahalanobis . 1164
make.link . 1165
makepredictcall . 1166
manova . 1167
mantelhaen.test . 1168
mauchly.test . 1170
mcnemar.test . 1172
median . 1173
medpolish . 1174
model.extract . 1176
model.frame . 1177
model.matrix . 1179
model.tables . 1180
monthplot . 1182
mood.test . 1184
Multinomial . 1185

xviii CONTENTS

na.action . 1186
na.contiguous . 1187
na.fail . 1188
naprint . 1189
naresid . 1189
NegBinomial . 1190
nextn . 1192
nlm . 1193
nlminb . 1195
nls . 1197
nls.control . 1202
NLSstAsymptotic . 1204
NLSstClosestX . 1204
NLSstLfAsymptote . 1205
NLSstRtAsymptote . 1206
Normal . 1207
numericDeriv . 1209
offset . 1210
oneway.test . 1210
optim . 1212
optimize . 1217
order.dendrogram . 1219
p.adjust . 1220
pairwise.prop.test . 1222
pairwise.t.test . 1222
pairwise.table . 1223
pairwise.wilcox.test . 1224
plot.acf . 1225
plot.density . 1226
plot.HoltWinters . 1227
plot.isoreg . 1228
plot.lm . 1229
plot.ppr . 1232
plot.profile.nls . 1233
plot.spec . 1234
plot.stepfun . 1235
plot.ts . 1237
Poisson . 1238
poly . 1240
power . 1241
power.anova.test . 1242
power.prop.test . 1243
power.t.test . 1245
PP.test . 1246
ppoints . 1247
ppr . 1248
prcomp . 1251
predict . 1253
predict.Arima . 1254
predict.glm . 1255
predict.HoltWinters . 1257
predict.lm . 1258

CONTENTS xix

predict.loess . 1260
predict.nls . 1262
predict.smooth.spline . 1263
preplot . 1265
princomp . 1265
print.power.htest . 1268
print.ts . 1268
printCoefmat . 1269
profile . 1271
profile.nls . 1271
proj . 1272
prop.test . 1274
prop.trend.test . 1276
qqnorm . 1277
quade.test . 1278
quantile . 1280
r2dtable . 1282
read.ftable . 1283
rect.hclust . 1285
relevel . 1286
reorder.dendrogram . 1286
reorder.factor . 1287
replications . 1289
reshape . 1290
residuals . 1292
runmed . 1293
scatter.smooth . 1295
screeplot . 1297
sd . 1298
se.contrast . 1298
selfStart . 1300
setNames . 1302
shapiro.test . 1303
SignRank . 1304
simulate . 1305
smooth . 1306
smooth.spline . 1308
smoothEnds . 1311
sortedXyData . 1313
spec.ar . 1313
spec.pgram . 1315
spec.taper . 1317
spectrum . 1318
splinefun . 1319
SSasymp . 1322
SSasympOff . 1323
SSasympOrig . 1324
SSbiexp . 1325
SSD . 1326
SSfol . 1327
SSfpl . 1328
SSgompertz . 1329

xx CONTENTS

SSlogis . 1330
SSmicmen . 1331
SSweibull . 1332
start . 1333
stat.anova . 1334
stats-deprecated . 1335
step . 1335
stepfun . 1337
stl . 1339
stlmethods . 1341
StructTS . 1342
summary.aov . 1344
summary.glm . 1346
summary.lm . 1348
summary.manova . 1350
summary.nls . 1351
summary.princomp . 1353
supsmu . 1354
symnum . 1355
t.test . 1357
TDist . 1359
termplot . 1361
terms . 1363
terms.formula . 1364
terms.object . 1365
time . 1366
toeplitz . 1367
ts . 1368
ts-methods . 1369
ts.plot . 1370
ts.union . 1371
tsdiag . 1372
tsp . 1373
tsSmooth . 1373
Tukey . 1374
TukeyHSD . 1375
Uniform . 1377
uniroot . 1378
update . 1379
update.formula . 1380
var.test . 1381
varimax . 1383
vcov . 1384
Weibull . 1384
weighted.mean . 1386
weighted.residuals . 1386
wilcox.test . 1387
Wilcoxon . 1390
window . 1392
xtabs . 1394

CONTENTS xxi

8 The tools package 1397
tools-package . 1397
buildVignettes . 1397
charsets . 1398
checkFF . 1399
checkMD5sums . 1400
checkTnF . 1401
checkVignettes . 1402
codoc . 1403
delimMatch . 1404
encoded_text_to_latex . 1405
fileutils . 1406
getDepList . 1408
installFoundDepends . 1409
makeLazyLoading . 1410
md5sum . 1411
package.dependencies . 1411
QC . 1412
Rdindex . 1413
Rdutils . 1414
read.00Index . 1415
readNEWS . 1416
showNonASCII . 1417
texi2dvi . 1418
tools-deprecated . 1418
undoc . 1419
vignetteDepends . 1420
write_PACKAGES . 1421
xgettext . 1422

9 The utils package 1425
utils-package . 1425
alarm . 1425
apropos . 1426
BATCH . 1427
browseEnv . 1428
browseURL . 1430
browseVignettes . 1431
bug.report . 1432
capture.output . 1434
chooseCRANmirror . 1435
citation . 1436
citEntry . 1437
close.socket . 1439
combn . 1439
compareVersion . 1441
COMPILE . 1441
count.fields . 1442
data . 1443
dataentry . 1445
debugger . 1447
demo . 1449
download.file . 1450

xxii CONTENTS

edit . 1452
edit.data.frame . 1453
example . 1455
file.edit . 1457
file_test . 1457
fix . 1458
flush.console . 1459
format . 1459
getAnywhere . 1460
getFromNamespace . 1461
getS3method . 1463
glob2rx . 1463
head . 1464
help . 1466
help.request . 1469
help.search . 1471
help.start . 1473
index.search . 1474
INSTALL . 1475
installed.packages . 1476
LINK . 1477
localeToCharset . 1478
ls.str . 1479
make.packages.html . 1480
make.socket . 1481
memory.size . 1482
menu . 1483
methods . 1484
mirrorAdmin . 1485
modifyList . 1486
normalizePath . 1486
nsl . 1487
object.size . 1488
package.skeleton . 1489
packageDescription . 1490
packageStatus . 1491
page . 1493
person . 1493
PkgUtils . 1494
prompt . 1495
promptData . 1497
promptPackage . 1498
rcompgen . 1499
read.DIF . 1504
read.fortran . 1506
read.fwf . 1507
read.socket . 1508
read.table . 1509
recover . 1513
relist . 1515
REMOVE . 1517
remove.packages . 1518

CONTENTS xxiii

RHOME . 1518
roman . 1519
Rprof . 1519
Rprofmem . 1521
Rscript . 1522
RShowDoc . 1523
RSiteSearch . 1524
Rtangle . 1525
RweaveLatex . 1526
savehistory . 1528
select.list . 1530
sessionInfo . 1531
setRepositories . 1531
SHLIB . 1532
stack . 1533
str . 1534
summaryRprof . 1537
Sweave . 1538
SweaveSyntConv . 1540
toLatex . 1541
txtProgressBar . 1542
type.convert . 1543
update.packages . 1544
url.show . 1548
URLencode . 1549
utils-deprecated . 1550
View . 1550
vignette . 1551
withVisible . 1552
write.table . 1553
zip.file.extract . 1556

Index 1557

xxiv CONTENTS

Chapter 1

The base package

base-package The R Base Package

Description

Base R functions

Details

This package contains the basic functions which let R function as a language: arithmetic, in-
put/output, basic programming support, etc. Its contents are available through inheritance from
any environment.

For a complete list of functions, use library(help="base").

.Device Lists of Open/Active Graphics Devices

Description

A pairlist of the names of open graphics devices is stored in .Devices. The name of the active
device (see dev.cur) is stored in .Device. Both are symbols and so appear in the base name
space.

Value

.Device is a length-one character vector.

.Devices is a pairlist of length-one character vectors. The first entry is always "null
device", and there are as many entries as the maximal number of graphics devices which have
been simultaneously active. If a device has been removed, its entry will be "" until the device
number is reused.

1

2 .Machine

.Machine Numerical Characteristics of the Machine

Description

.Machine is a variable holding information on the numerical characteristics of the machine R is
running on, such as the largest double or integer and the machine’s precision.

Usage

.Machine

Details

The algorithm is based on Cody’s (1988) subroutine MACHAR. As almost all current inplements
of R use 32-bit integers and IEC 60059 floating-point (double precision) arithmetic, most of these
values are the same for almost all R builds.

Note that on most platforms smaller positive values than .Machine$double.xmin can occur.
On a typical R platform the smallest positive double is about 5e-324.

Value

A list with components (for simplicity, the prefix ‘double’ is omitted in the explanations)

double.eps the smallest positive floating-point number x such that 1 + x != 1. It equals
base^ulp.digits if either base is 2 or rounding is 0; otherwise, it is
(base^ulp.digits) / 2. Normally 2.220446e-16.

double.neg.eps
a small positive floating-point number x such that 1 - x != 1. It equals
base^neg.ulp.digits if base is 2 or round is 0; otherwise, it
is (base^neg.ulp.digits) / 2. Normally 1.110223e-16. As
neg.ulp.digits is bounded below by -(digits + 3), neg.eps may
not be the smallest number that can alter 1 by subtraction.

double.xmin the smallest non-vanishing normalized floating-point power of the radix, i.e.,
base^min.exp. Normally 2.225074e-308.

double.xmax the largest finite floating-point number. Typically, it is equal to (1 -
neg.eps) * base^max.exp, but on some machines it is only the second,
or perhaps third, largest number, being too small by 1 or 2 units in the last digit
of the significand. Normally 1.797693e+308.

double.base the radix for the floating-point representation: normally 2.
double.digits

the number of base digits in the floating-point significand: normally 53.
double.rounding

the rounding action.
0 if floating-point addition chops;
1 if floating-point addition rounds, but not in the IEEE style;
2 if floating-point addition rounds in the IEEE style;
3 if floating-point addition chops, and there is partial underflow;
4 if floating-point addition rounds, but not in the IEEE style, and there is partial
underflow;

.Machine 3

5 if floating-point addition rounds in the IEEE style, and there is partial under-
flow. Normally 5.

double.guard the number of guard digits for multiplication with truncating arithmetic. It is 1
if floating-point arithmetic truncates and more than digits base base digits
participate in the post-normalization shift of the floating-point significand in
multiplication, and 0 otherwise.

double.ulp.digits
the largest negative integer i such that 1 + base^i != 1, except that it is
bounded below by -(digits + 3). Normally -52.

double.neg.ulp.digits
the largest negative integer i such that 1 - base^i != 1, except that it is
bounded below by -(digits + 3). Normally -53.

double.exponent
the number of bits (decimal places if base is 10) reserved for the representation
of the exponent (including the bias or sign) of a floating-point number. Normally
11.

double.min.exp
the largest in magnitude negative integer i such that base ^ i is positive and
normalized. Normally -1022.

double.max.exp
the smallest positive power of base that overflows. Normally 1024.

integer.max the largest integer which can be represented. Always 2147483647.

sizeof.long the number of bytes in a C long type: 4 or 8 (most 64-bit systems, but not
Windows).

sizeof.longlong
the number of bytes in a C long long type. Will be zero if there is no such
type, otherwise usually 8.

sizeof.longdouble
the number of bytes in a C long double type. Will be zero if there is no
such type, otherwise possibly 12 (Windows, 32-bit Linux/Solaris) or 16 (64-bit
Linux/Solaris, Intel Mac OS X).

sizeof.pointer
the number of bytes in a C SEXP type. Will be 4 on 32-bit builds and 8 on
64-bit builds of R.

References

Cody, W. J. (1988) MACHAR: A subroutine to dynamically determine machine parameters. Trans-
actions on Mathematical Software, 14, 4, 303–311.

See Also

.Platform for details of the platform.

Examples

.Machine
or for a neat printout
noquote(unlist(format(.Machine)))

4 .Platform

.Platform Platform Specific Variables

Description

.Platform is a list with some details of the platform under which R was built. This provides
means to write OS-portable R code.

Usage

.Platform

Value

A list with at least the following components:

OS.type character string, giving the Operating System (family) of the computer. One of
"unix" or "windows".

file.sep character string, giving the file separator used on your platform: "/" on both
Unix-alikes and on Windows (but not on the now abandoned port to Classic
MacOS).

dynlib.ext character string, giving the file name extension of dynamically loadable
libraries, e.g., ".dll" on Windows and ".so" or ".sl" on Unix-alikes.
(Note for Mac OS X users: these are shared objects as loaded by dyn.load
and not dylibs: see dyn.load.)

GUI character string, giving the type of GUI in use, or "unknown" if no GUI
can be assumed. Possible values are for Unix-alikes the values given via the
‘-g’ command-line flag ("X11", "Tk", "GNOME"), "AQUA" (running under
R.app on MacOS X), "Rgui" and "RTerm" (Windows) and perhaps others
under alternative front-ends or embedded R.

endian character string, "big" or "little", giving the endianness of the processor
in use. This is relevant when it is necessary to know the order to read/write bytes
of e.g. an integer or double from/to a connection: see readBin.

pkgType character string, the preferred setting for options("pkgType"). Values
"source", "mac.binary" and "win.binary" are currently in use.

path.sep character string, giving the path separator, used on your platform, e.g., ":" on
Unix-alikes and ";" on Windows. Used to separate paths in variables such as
PATH and TEXINPUTS.

r_arch character string, possibly "". The name of the architecture-specific directories
used in this build of R.

See Also

R.version and Sys.info give more details about the OS. In particular,
R.version$platform is the canonical name of the platform under which R was com-
piled.

.Machine for details of the arithmetic used, and system for invoking platform-specific system
commands.

.Script 5

Examples

Note: this can be done in a system-independent way
by file.info()$isdir
if(.Platform$OS.type == "unix") {

system.test <- function(...) { system(paste("test", ...)) == 0 }
dir.exists <- function(dir)

sapply(dir, function(d)system.test("-d", d))
dir.exists(c(R.home(), "/tmp", "~", "/NO"))# > T T T F

}

.Script Scripting Language Interface

Description

Run a script through its interpreter with given arguments.

Usage

.Script(interpreter, script, args, ...)

Arguments

interpreter a character string naming the interpreter for the script.

script a character string with the base file name of the script, which must be lo-
cated in the ‘interpreter’ subdirectory of ‘R_SHARE_DIR ’ (normally
‘R_HOME/share’).

args a character string giving the arguments to pass to the script.

... further arguments to be passed to system when invoking the interpreter on the
script.

Note

This function is for R internal use only.

Examples

not useful on Windows, where the help is zipped.
.Script("perl", "massage-Examples.pl",

paste("tools", system.file("R-ex", package = "tools")))

6 abbreviate

abbreviate Abbreviate Strings

Description

Abbreviate strings to at least minlength characters, such that they remain unique (if they were),
unless strict=TRUE.

Usage

abbreviate(names.arg, minlength = 4, use.classes = TRUE,
dot = FALSE, strict = FALSE, method = c("left.kept", "both.sides"))

Arguments

names.arg a character vector of names to be abbreviated, or an object to be coerced to a
character vector by as.character.

minlength the minimum length of the abbreviations.
use.classes logical (currently ignored by R).
dot logical: should a dot (".") be appended?
strict logical: should minlength be observed strictly? Note that setting

strict=TRUE may return non-unique strings.
method a string specifying the method used with default "left.kept", see ‘Details’

below.

Details

The algorithm (method = "left.kept") used is similar to that of S. For a single string it
works as follows. First all spaces at the beginning of the string are stripped. Then (if necessary)
any other spaces are stripped. Next, lower case vowels are removed (starting at the right) followed
by lower case consonants. Finally if the abbreviation is still longer than minlength upper case
letters are stripped.

Characters are always stripped from the end of the word first. If an element of names.arg contains
more than one word (words are separated by space) then at least one letter from each word will be
retained.

Missing (NA) values are unaltered.

If use.classes is FALSE then the only distinction is to be between letters and space. This has
NOT been implemented.

Value

A character vector containing abbreviations for the strings in its first argument. Duplicates in
the original names.arg will be given identical abbreviations. If any non-duplicated elements
have the same minlength abbreviations then, if method = "both.sides" the basic inter-
nal abbreviate() algorithm is applied to the characterwise reversed strings; if there are still
duplicated abbreviations and if strict=FALSE as by default, minlength is incremented by
one and new abbreviations are found for those elements only. This process is repeated until all
unique elements of names.arg have unique abbreviations.

The character version of names.arg is attached to the returned value as a names argument: no
other attributes are retained.

agrep 7

Warning

This is really only suitable for English, and does not work correctly with non-ASCII characters in
multibyte locales. It will warn if used with non-ASCII characters.

See Also

substr.

Examples

x <- c("abcd", "efgh", "abce")
abbreviate(x, 2)
abbreviate(x, 2, strict=TRUE)# >> 1st and 3rd are == "ab"

(st.abb <- abbreviate(state.name, 2))
table(nchar(st.abb))# out of 50, 3 need 4 letters :
as <- abbreviate(state.name, 3, strict=TRUE)
as[which(as == "Mss")]

method="both.sides" helps: no 4-letters, and only 4 3-letters:
st.ab2 <- abbreviate(state.name, 2, method="both")
table(nchar(st.ab2))
Compare the two methods:
cbind(st.abb, st.ab2)

agrep Approximate String Matching (Fuzzy Matching)

Description

Searches for approximate matches to pattern (the first argument) within the string x (the second
argument) using the Levenshtein edit distance.

Usage

agrep(pattern, x, ignore.case = FALSE, value = FALSE,
max.distance = 0.1, useBytes = FALSE)

Arguments

pattern a non-empty character string to be matched (not a regular expression!). Coerced
by as.character to a string if possible.

x character vector where matches are sought. Coerced by as.character to a
character vector if possible.

ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

value if FALSE, a vector containing the (integer) indices of the matches determined is
returned and if TRUE, a vector containing the matching elements themselves is
returned.

8 agrep

max.distance Maximum distance allowed for a match. Expressed either as integer, or as a
fraction of the pattern length (will be replaced by the smallest integer not less
than the corresponding fraction of the pattern length), or a list with possible
components

all: maximal (overall) distance

insertions: maximum number/fraction of insertions

deletions: maximum number/fraction of deletions

substitutions: maximum number/fraction of substitutions

If all is missing, it is set to 10%, the other components default to all. The
component names can be abbreviated.

useBytes logical. in a multibyte locale, should the comparison be character-by-chracter
(the default) or byte-by-byte.

Details

The Levenshtein edit distance is used as measure of approximateness: it is the total number of
insertions, deletions and substitutions required to transform one string into another.

The function is a simple interface to the apse library developed by Jarkko Hietaniemi (also used
in the Perl String::Approx module), modified to work with multibyte character sets. To save space
it only supports the first 65536 characters of UTF-8 (where all the characters for human languages
lie). Note that it can be quite slow in UTF-8, and useBytes = TRUE will be much faster.

Value

Either a vector giving the indices of the elements that yielded a match, or, if value is TRUE, the
matched elements (after coercion, preserving names but no other attributes).

Author(s)

Original version by David Meyer, based on C code by Jarkko Hietaniemi.

See Also

grep

Examples

agrep("lasy", "1 lazy 2")
agrep("lasy", c(" 1 lazy 2", "1 lasy 2"), max = list(sub = 0))
agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2)
agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, value = TRUE)
agrep("laysy", c("1 lazy", "1", "1 LAZY"), max = 2, ignore.case = TRUE)

all 9

all Are All Values True?

Description

Given a set of logical vectors, are all of the values true?

Usage

all(..., na.rm = FALSE)

Arguments

... zero or more logical vectors. Other objects of zero length are ignored, and the
rest are coerced to logical ignoring any class.

na.rm logical. If true NA values are removed before the result is computed.

Details

This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments ... should be unnamed, and dispatch is on the first
argument.

Coercion of types other than integer (raw, double, complex, character, list) gives a warning as from
R 2.7.0, as this was often unintentional.

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors in ... (after coercion), after removing
NAs if requested by na.rm = TRUE.

The value returned is TRUE if all of the values in x are TRUE (including if there are no values), and
FALSE if at least one of the values in x is FALSE. Otherwise the value is NA (which can only occur
if na.rm = FALSE and ... contains no FALSE values and at least one NA value).

S4 methods

This is part of the S4 Summary group generic. Methods for it must use the signature x, ...,
na.rm.

Note

That all(logical(0)) is true is a useful convention: it ensures that

all(all(x), all(y)) == all(x,y)

even if x has length zero.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

10 all.equal

See Also

any, the ‘complement’ of all, and stopifnot(*) which is an all(*) ‘insurance’.

Examples

range(x <- sort(round(stats::rnorm(10) - 1.2, 1)))
if(all(x < 0)) cat("all x values are negative\n")

all(logical(0)) # true, as all zero of the elements are true.

all.equal Test if Two Objects are (Nearly) Equal

Description

all.equal(x,y) is a utility to compare R objects x and y testing ‘near equality’. If they
are different, comparison is still made to some extent, and a report of the differences is returned.
Don’t use all.equal directly in if expressions—either use isTRUE(all.equal(....))
or identical if appropriate.

Usage

all.equal(target, current, ...)

S3 method for class 'numeric':
all.equal(target, current,

tolerance = .Machine$double.eps ^ 0.5,
scale = NULL, check.attributes = TRUE, ...)

attr.all.equal(target, current,
check.attributes = TRUE, check.names = TRUE, ...)

Arguments

target R object.

current other R object, to be compared with target.

... Further arguments for different methods, notably the following two, for numer-
ical comparison:

tolerance numeric ≥ 0. Differences smaller than tolerance are not considered.

scale numeric scalar > 0 (or NULL). See ‘Details’.
check.attributes

logical indicating if the attributes(.) of target and current should
be compared as well.

check.names logical indicating if the names(.) of target and current should be com-
pared as well (and separately from the attributes).

all.names 11

Details

There are several methods available, most of which are dispatched by the default method, see
methods("all.equal"). all.equal.list and all.equal.language provide com-
parison of recursive objects.

Numerical comparisons for scale = NULL (the default) are done by first computing the mean
absolute difference of the two numerical vectors. If this is smaller than tolerance or not finite,
absolute differences are used, otherwise relative differences scaled by the mean absolute difference.

If scale is positive, absolute comparisons are made after scaling (dividing) by scale.

For complex arguments, the modulus Mod of the difference is used: all.equal.numeric is
called so arguments tolerance and scale are available.

attr.all.equal is used for comparing attributes, returning NULL or a character vec-
tor.

Value

Either TRUE or a vector of mode "character" describing the differences between target and
current.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for =).

See Also

identical, isTRUE, ==, and all for exact equality testing.

Examples

all.equal(pi, 355/113)
not precise enough (default tol) > relative error

d45 <- pi*(1/4 + 1:10)
stopifnot(
all.equal(tan(d45), rep(1,10))) # TRUE, but
all (tan(d45) == rep(1,10)) # FALSE, since not exactly
all.equal(tan(d45), rep(1,10), tol=0) # to see difference

all.names Find All Names in an Expression

Description

Return a character vector containing all the names which occur in an expression or call.

Usage

all.names(expr, functions = TRUE, max.names = -1L, unique = FALSE)

all.vars(expr, functions = FALSE, max.names = -1L, unique = TRUE)

12 any

Arguments

expr an expression or call from which the names are to be extracted.

functions a logical value indicating whether function names should be included in the
result.

max.names the maximum number of names to be returned. -1 indicates no limit (other than
vector size limits).

unique a logical value which indicates whether duplicate names should be removed
from the value.

Details

These functions differ only in the default values for their arguments.

Value

A character vector with the extracted names.

Examples

all.names(expression(sin(x+y)))
all.vars(expression(sin(x+y)))

any Are Some Values True?

Description

Given a set of logical vectors, is at least one of the values true?

Usage

any(..., na.rm = FALSE)

Arguments

... zero or more logical vectors. Other objects of zero length are ignored, and the
rest are coerced to logical ignoring any class.

na.rm logical. If true NA values are removed before the result is computed.

Details

This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments ... should be unnamed, and dispatch is on the first
argument.

Coercion of types other than integer (raw, double, complex, character, list) gives a warning as from
R 2.7.0, as this was often unintentional.

aperm 13

Value

The value is a logical vector of length one.

Let x denote the concatenation of all the logical vectors in ... (after coercion), after removing
NAs if requested by na.rm = TRUE.

The value returned is TRUE if at least one of the values in x is TRUE, and FALSE if all of the values
in x are FALSE (including if there are no values). Otherwise the value is NA (which can only occur
if na.rm = FALSE and ... contains no TRUE values and at least one NA value).

S4 methods

This is part of the S4 Summary group generic. Methods for it must use the signature x, ...,
na.rm.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

all, the ‘complement’ of any.

Examples

range(x <- sort(round(stats::rnorm(10) - 1.2,1)))
if(any(x < 0)) cat("x contains negative values\n")

aperm Array Transposition

Description

Transpose an array by permuting its dimensions and optionally resizing it.

Usage

aperm(a, perm, resize = TRUE)

Arguments

a the array to be transposed.

perm the subscript permutation vector, which must be a permutation of the integers
1:n, where n is the number of dimensions of a. The default is to reverse the
order of the dimensions.

resize a flag indicating whether the vector should be resized as well as having its ele-
ments reordered (default TRUE).

14 append

Value

A transposed version of array a, with subscripts permuted as indicated by the array perm. If
resize is TRUE, the array is reshaped as well as having its elements permuted, the dimnames
are also permuted; if resize = FALSE then the returned object has the same dimensions as a,
and the dimnames are dropped. In each case other attributes are copied from a.

The function t provides a faster and more convenient way of transposing matrices.

Author(s)

Jonathan Rougier, 〈J.C.Rougier@durham.ac.uk〉 did the faster C implementation.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

t, to transpose matrices.

Examples

interchange the first two subscripts on a 3-way array x
x <- array(1:24, 2:4)
xt <- aperm(x, c(2,1,3))
stopifnot(t(xt[,,2]) == x[,,2],

t(xt[,,3]) == x[,,3],
t(xt[,,4]) == x[,,4])

append Vector Merging

Description

Add elements to a vector.

Usage

append(x, values, after = length(x))

Arguments

x the vector to be modified.

values to be included in the modified vector.

after a subscript, after which the values are to be appended.

Value

A vector containing the values in x with the elements of values appended after the specified
element of x.

apply 15

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

append(1:5, 0:1, after=3)

apply Apply Functions Over Array Margins

Description

Returns a vector or array or list of values obtained by applying a function to margins of an array.

Usage

apply(X, MARGIN, FUN, ...)

Arguments

X the array to be used.
MARGIN a vector giving the subscripts which the function will be applied over. 1 indicates

rows, 2 indicates columns, c(1,2) indicates rows and columns.
FUN the function to be applied: see ‘Details’. In the case of functions like +, %*%,

etc., the function name must be backquoted or quoted.
... optional arguments to FUN.

Details

If X is not an array but has a dimension attribute, apply attempts to coerce it to an array via
as.matrix if it is two-dimensional (e.g., data frames) or via as.array.

FUN is found by a call to match.fun and typically is either a function or a symbol (e.g. a back-
quoted name) or a character string specifying a function to be searched for from the environment of
the call to apply.

Value

If each call to FUN returns a vector of length n, then apply returns an array of dimension c(n,
dim(X)[MARGIN]) if n > 1. If n equals 1, apply returns a vector if MARGIN has length 1
and an array of dimension dim(X)[MARGIN] otherwise. If n is 0, the result has length 0 but not
necessarily the ‘correct’ dimension.

If the calls to FUN return vectors of different lengths, apply returns a list of length
prod(dim(X)[MARGIN]) with dim set to MARGIN if this has length greater than one.

In all cases the result is coerced by as.vector to one of the basic vector types before the dimen-
sions are set, so that (for example) factor results will be coerced to a character array.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

16 args

See Also

lapply, tapply, and convenience functions sweep and aggregate.

Examples

Compute row and column sums for a matrix:
x <- cbind(x1 = 3, x2 = c(4:1, 2:5))
dimnames(x)[[1]] <- letters[1:8]
apply(x, 2, mean, trim = .2)
col.sums <- apply(x, 2, sum)
row.sums <- apply(x, 1, sum)
rbind(cbind(x, Rtot = row.sums), Ctot = c(col.sums, sum(col.sums)))

stopifnot(apply(x, 2, is.vector))

Sort the columns of a matrix
apply(x, 2, sort)

##- function with extra args:
cave <- function(x, c1, c2) c(mean(x[c1]), mean(x[c2]))
apply(x,1, cave, c1="x1", c2=c("x1","x2"))

ma <- matrix(c(1:4, 1, 6:8), nrow = 2)
ma
apply(ma, 1, table) #--> a list of length 2
apply(ma, 1, stats::quantile)# 5 x n matrix with rownames

stopifnot(dim(ma) == dim(apply(ma, 1:2, sum)))

Example with different lengths for each call
z <- array(1:24, dim=2:4)
zseq <- apply(z, 1:2, function(x) seq_len(max(x)))
zseq ## a 2 x 3 matrix
typeof(zseq) ## list
dim(zseq) ## 2 3
zseq[1,]
apply(z, 3, function(x) seq_len(max(x)))
a list without a dim attribute

args Argument List of a Function

Description

Displays the argument names and corresponding default values of a function or primitive.

Usage

args(name)

Arguments

name a function (a closure or a primitive). If name is a character string then the
function with that name is found and used.

Arithmetic 17

Details

This function is mainly used interactively to print the argument list of a function. For programming,
consider using formals instead.

Value

For a closure, a closure with identical formal argument list but an empty (NULL) body.

For a primitive, a closure with the documented usage and NULL body. Note that in almost all cases
primitives do not make use of named arguments and match by position rather than name. (rep and
seq.int are exceptions.)

NULL in case of a non-function.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

formals, help.

Examples

args(c)
args(graphics::plot.default)

Arithmetic Arithmetic Operators

Description

These binary operators perform arithmetic on numeric or complex vectors (or objects which can be
coerced to them).

Usage

x + y
x - y
x * y
x / y
x ^ y
x %% y
x %/% y

Arguments

x, y numeric or complex vectors or objects which can be coerced to such, or other
objects for which methods have been written.

18 Arithmetic

Details

The binary arithmetic operators are generic functions: methods can be written for them individually
or via the Ops group generic function. (See Ops for how dispatch is computed.)

If applied to arrays the result will be an array if this is sensible (for example it will not if the
recycling rule has been invoked).

Logical vectors will be coerced to integer or numeric vectors, FALSE having value zero and TRUE
having value one.

1 ^ y and y ^ 0 are 1, always. x ^ y should also give the proper limit result when either
argument is infinite (i.e., +- Inf).

Objects such as arrays or time-series can be operated on this way provided they are conformable.

For real arguments, %% can be subject to catastrophic loss of accuracy if x is much larger than y,
and a warning is given if this is detected.

Value

These operators return vectors containing the result of the element by element operations. The
elements of shorter vectors are recycled as necessary (with a warning when they are recycled
only fractionally). The operators are + for addition, - for subtraction, * for multiplication, / for
division and ^ for exponentiation.

%% indicates x mod y and %/% indicates integer division. It is guaranteed that x == (x
%% y) + y * (x %/% y) (up to rounding error) unless y == 0 where the result is
NA_integer_ or NaN (depending on the typeof of the arguments). See http://en.
wikipedia.org/wiki/Modulo_operation for the rationale.

If either argument is complex the result will be complex, and if one or both arguments are numeric,
the result will be numeric. If both arguments are integer, the result of / and ^ is numeric and of the
other operators integer (with overflow returned as NA with a warning).

The rules for determining the attributes of the result are rather complicated. Most attributes are
taken from the longer argument, the first if they are of the same length. Names will be copied from
the first if it is the same length as the answer, otherwise from the second if that is. For time series,
these operations are allowed only if the series are compatible, when the class and tsp attribute
of whichever is a time series (the same, if both are) are used. For arrays (and an array result) the
dimensions and dimnames are taken from first argument if it is an array, otherwise the second.

S4 methods

These operators are members of the S4 Arith group generic, and so methods can be written for
them individually as well as for the group generic (or the Ops group generic), with arguments
c(e1, e2).

Note

** is translated in the parser to ^, but this was undocumented for many years. It appears as an index
entry in Becker et al (1988), pointing to the help for Deprecated but is not actually mentioned
on that page. Even though it has been deprecated in S for 20 years, it is still accepted.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

http://en.wikipedia.org/wiki/Modulo_operation
http://en.wikipedia.org/wiki/Modulo_operation

array 19

See Also

sqrt for miscellaneous and Special for special mathematical functions.

Syntax for operator precedence.

%*% for matrix multiplication.

Examples

x <- -1:12
x + 1
2 * x + 3
x %% 2 #-- is periodic
x %/% 5

array Multi-way Arrays

Description

Creates or tests for arrays.

Usage

array(data = NA, dim = length(data), dimnames = NULL)
as.array(x, ...)
is.array(x)

Arguments

data a vector (including a list) giving data to fill the array.
dim the dim attribute for the array to be created, that is a vector of length one or more

giving the maximal indices in each dimension.
dimnames the names for the dimensions. This is a list with one component for each di-

mension, either NULL or a character vector of the length given by dim for that
dimension. The list can be names, and the names will be used as names for the
dimensions.

x an R object.
... additional arguments to be passed to or from methods.

Value

array returns an array with the extents specified in dim and naming information in dimnames.
The values in data are taken to be those in the array with the leftmost subscript moving fastest.
If there are too few elements in data to fill the array, then the elements in data are recycled. If
data has length zero, NA of an appropriate type is used for atomic vectors (0 for raw vectors) and
NULL for lists.

as.array is a generic function for coercing to arrays. The default method does so by attaching a
dim attribute to it. It also attaches dimnames if x has names. The sole purpose of this is to make
it possible to access the dim[names] attribute at a later time.

is.array returns TRUE or FALSE depending on whether its argument is an array (i.e., has a dim
attribute of positive length) or not. It is generic: you can write methods to handle specific classes of
objects, see InternalMethods.

20 as.data.frame

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

aperm, matrix, dim, dimnames.

Examples

dim(as.array(letters))
array(1:3, c(2,4)) # recycle 1:3 "2 2/3 times"
[,1] [,2] [,3] [,4]
#[1,] 1 3 2 1
#[2,] 2 1 3 2

as.data.frame Coerce to a Data Frame

Description

Functions to check if an object is a data frame, or coerce it if possible.

Usage

as.data.frame(x, row.names = NULL, optional = FALSE, ...)
S3 method for class 'character':
as.data.frame(x, ...,

stringsAsFactors = default.stringsAsFactors())
S3 method for class 'matrix':
as.data.frame(x, row.names = NULL, optional = FALSE, ...,

stringsAsFactors = default.stringsAsFactors())

is.data.frame(x)

Arguments

x any R object.

row.names NULL or a character vector giving the row names for the data frame. Missing
values are not allowed.

optional logical. If TRUE, setting row names and converting column names (to syntactic
names) is optional.

... additional arguments to be passed to or from methods.

stringsAsFactors
logical: should the character vector be converted to a factor?

as.environment 21

Details

as.data.frame is a generic function with many methods, and users and packages can supply
further methods.

If a list is supplied, each element is converted to a column in the data frame. Similarly, each column
of a matrix is converted separately. This can be overridden if the object has a class which has a
method for as.data.frame: two examples are matrices of class "model.matrix" (which
are included as a single column) and list objects of class "POSIXlt" which are coerced to class
"POSIXct".

Arrays can be converted to data frames. One-dimensional arrays are treated like vectors and two-
dimensional arrays like matrices. Arrays with more than two dimensions are converted to matrices
by ‘flattening’ all dimensions after the first and creating suitable column labels.

Character variables are converted to factor columns unless protected by I.

If a data frame is supplied, all classes preceding "data.frame" are stripped, and the row names
are changed if that argument is supplied.

If row.names = NULL, row names are constructed from the names or dimnames of x, otherwise
are the integer sequence starting at one. Few of the methods check for duplicated row names. Names
are removed from vector columns unless I.

Value

as.data.frame returns a data frame, normally with all row names "" if optional = TRUE.

is.data.frame returns TRUE if its argument is a data frame (that is, has "data.frame"
amongst its classes) and FALSE otherwise.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, as.data.frame.table for the table method (which has additional argu-
ments if called directly).

as.environment Coerce to an Environment Object

Description

Converts a number or a character string to the corresponding environment on the search path.

Usage

as.environment(object)

Arguments

object the object to convert. If it is already an environment, just return it. If it is a
number, return the environment corresponding to that position on the search list.
If it is a character string, match the string to the names on the search list.

22 as.function

Value

The corresponding environment object.

Author(s)

John Chambers

See Also

environment for creation and manipulation, search.

Examples

as.environment(1) ## the global environment
identical(globalenv(), as.environment(1)) ## is TRUE
try(as.environment("package:stats")) ## stats need not be loaded

as.function Convert Object to Function

Description

as.function is a generic function which is used to convert objects to functions.

as.function.default works on a list x, which should contain the concatenation of a formal
argument list and an expression or an object of mode "call" which will become the function
body. The function will be defined in a specified environment, by default that of the caller.

Usage

as.function(x, ...)

Default S3 method:
as.function(x, envir = parent.frame(), ...)

Arguments

x object to convert, a list for the default method.

... additional arguments, depending on object

envir environment in which the function should be defined

Value

The desired function.

Note

For ancient historical reasons, envir = NULL uses the global environment rather than the base
environment. Please use envir = globalenv() instead if this is what you want, as the special
handling of NULL may change in a future release.

as.POSIX* 23

Author(s)

Peter Dalgaard

See Also

function; alist which is handy for the construction of argument lists, etc.

Examples

as.function(alist(a=,b=2,a+b))
as.function(alist(a=,b=2,a+b))(3)

as.POSIX* Date-time Conversion Functions

Description

Functions to manipulate objects of classes "POSIXlt" and "POSIXct" representing calendar
dates and times.

Usage

as.POSIXct(x, tz = "", ...)
as.POSIXlt(x, tz = "", ...)

S3 method for class 'character':
as.POSIXlt(x, tz = "", format, ...)

S3 method for class 'numeric':
as.POSIXlt(x, tz = "", origin, ...)

S3 method for class 'POSIXlt':
as.double(x, ...)

Arguments

x An object to be converted.

tz A timezone specification to be used for the conversion, if one is required.
System-specific (see time zones), but "" is the current timezone, and "GMT"
is UTC (Universal Time, Coordinated).

... further arguments to be passed to or from other methods.

format character string giving a date-time format as used by strptime.

origin a date-time object, or something which can be coerced by
as.POSIXct(tz="GMT") to such an object.

24 as.POSIX*

Details

The as.POSIX* functions convert an object to one of the two classes used to represent date/times
(calendar dates plus time to the nearest second). They can convert a wide variety of objects, includ-
ing objects of the other class and of classes "Date", "date" (from package date or survival),
"chron" and "dates" (from package chron) to these classes. Dates without times are treated
as being at midnight UTC.

They can also convert character strings of the formats "2001-02-03" and "2001/02/03"
optionally followed by white space and a time in the format "14:52" or "14:52:03". (For-
mats such as "01/02/03" are ambiguous but can be converted via a format specification by
strptime.) Fractional seconds are allowed. Alternatively, format can be specified for charac-
ter vectors or factors.

Logical NAs can be converted to either of the classes, but no other logical vectors can be.

The as.double method converts "POSIXlt" objects to "POSIXct".

If you are given a numeric time as the number of seconds since an epoch, see the examples.

Value

as.POSIXct and as.POSIXlt return an object of the appropriate class. If tz was specified,
as.POSIXlt will give an appropriate "tzone" attribute.

Note

If you want to extract specific aspects of a time (such as the day of the week) just convert it to
class "POSIXlt" and extract the relevant component(s) of the list, or if you want a character
representation (such as a named day of the week) use format.POSIXlt or format.POSIXct.

If a timezone is needed and that specified is invalid on your system, what happens is system-specific
but it will probably be ignored.

See Also

DateTimeClasses for details of the classes; strptime for conversion to and from character repre-
sentations. Sys.timezone for details of the (system-specific)naming of time zones.

Examples

(z <- Sys.time()) # the current datetime, as class "POSIXct"
unclass(z) # a large integer
floor(unclass(z)/86400) # the number of days since 1970-01-01
(z <- as.POSIXlt(Sys.time())) # the current datetime, as class "POSIXlt"
unlist(unclass(z)) # a list shown as a named vector

suppose we have a time in seconds since 1960-01-01 00:00:00 GMT
z <- 1472562988
ways to convert this
as.POSIXct(z, origin="1960-01-01") # local
as.POSIXct(z, origin="1960-01-01", tz="GMT") # in UTC
as.POSIXct(z, origin=ISOdatetime(1960,1,1,0,0,0)) # local
ISOdatetime(1960,1,1,0,0,0) + z # local

SPSS dates (R-help 2006-02-17)
z <- c(10485849600, 10477641600, 10561104000, 10562745600)
as.Date(as.POSIXct(z, origin="1582-10-14", tz="GMT"))

AsIs 25

as.POSIXlt(Sys.time(), "GMT") # the current time in UTC
Not run:
These may not be correct names on your system
as.POSIXlt(Sys.time(), "America/New_York") # in New York
as.POSIXlt(Sys.time(), "EST5EDT") # alternative.
as.POSIXlt(Sys.time(), "EST") # somewhere in Eastern Canada
as.POSIXlt(Sys.time(), "HST") # in Hawaii
as.POSIXlt(Sys.time(), "Australia/Darwin")
End(Not run)

AsIs Inhibit Interpretation/Conversion of Objects

Description

Change the class of an object to indicate that it should be treated ‘as is’.

Usage

I(x)

Arguments

x an object

Details

Function I has two main uses.

• In function data.frame. Protecting an object by enclosing it in I() in a call to
data.frame inhibits the conversion of character vectors to factors and the dropping of
names, and ensures that matrices are inserted as single columns. I can also be used to
protect objects which are to be added to a data frame, or converted to a data frame via
as.data.frame.
It achieves this by prepending the class "AsIs" to the object’s classes. Class "AsIs" has a
few of its own methods, including for [, as.data.frame, print and format.

• In function formula. There it is used to inhibit the interpretation of operators such as "+",
"-", "*" and "^" as formula operators, so they are used as arithmetical operators. This is
interpreted as a symbol by terms.formula.

Value

A copy of the object with class "AsIs" prepended to the class(es).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, formula

26 assign

assign Assign a Value to a Name

Description

Assign a value to a name in an environment.

Usage

assign(x, value, pos = -1, envir = as.environment(pos),
inherits = FALSE, immediate = TRUE)

Arguments

x a variable name, given as a character string. No coercion is done, and the first
element of a character vector of length greater than one will be used, with a
warning

value a value to be assigned to x.

pos where to do the assignment. By default, assigns into the current environment.
See the details for other possibilities.

envir the environment to use. See the details section.

inherits should the enclosing frames of the environment be inspected?

immediate an ignored compatibility feature.

Details

The pos argument can specify the environment in which to assign the object in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys.frame to access the currently
active function calls). The envir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

assign does not dispatch assignment methods, so it cannot be used to set elements of vectors,
names, attributes, etc.

Note that assignment to an attached list or data frame changes the attached copy and not the original
object: see attach.

Value

This function is invoked for its side effect, which is assigning value to the variable x. If no envir
is specified, then the assignment takes place in the currently active environment.

If inherits is TRUE, enclosing environments of the supplied environment are searched until the
variable x is encountered. The value is then assigned in the environment in which the variable
is encountered (provided that the binding is not locked: see lockBinding: if it is, an error is
signaled). If the symbol is not encountered then assignment takes place in the user’s workspace (the
global environment).

If inherits is FALSE, assignment takes place in the initial frame of envir, unless an existing
binding is locked or there is no existing binding and the environment is locked.

assignOps 27

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

<-, get, exists, environment.

Examples

for(i in 1:6) { #-- Create objects 'r.1', 'r.2', ... 'r.6' --
nam <- paste("r",i, sep=".")
assign(nam, 1:i)

}
ls(pattern = "^r..$")

##-- Global assignment within a function:
myf <- function(x) {
innerf <- function(x) assign("Global.res", x^2, envir = .GlobalEnv)
innerf(x+1)

}
myf(3)
Global.res # 16

a <- 1:4
assign("a[1]", 2)
a[1] == 2 #FALSE
get("a[1]") == 2 #TRUE

assignOps Assignment Operators

Description

Assign a value to a name.

Usage

x <- value
x <<- value
value -> x
value ->> x

x = value

Arguments

x a variable name (possibly quoted).

value a value to be assigned to x.

28 attach

Details

There are three different assignment operators: two of them have leftwards and rightwards forms.

The operators <- and = assign into the environment in which they are evaluated. The operator<-
can be used anywhere, whereas the operator = is only allowed at the top level (e.g., in the com-
plete expression typed at the command prompt) or as one of the subexpressions in a braced list of
expressions.

The operators <<- and ->> cause a search to made through the environment for an existing defi-
nition of the variable being assigned. If such a variable is found (and its binding is not locked) then
its value is redefined, otherwise assignment takes place in the global environment. Note that their
semantics differ from that in the S language, but are useful in conjunction with the scoping rules of
R. See ‘The R Language Definition’ manual for further details and examples.

In all the assignment operator expressions, x can be a name or an expression defining a part of an
object to be replaced (e.g., z[[1]]). A syntactic name does not need to be quoted, though it can
be (preferably by backticks).

The leftwards forms of assignment <- = <<- group right to left, the other from left to right.

Value

value. Thus one can use a <- b <- c <- 6.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chamber, J. M. (1998) Programming with Data. A Guide to the S Language. Springer (for =).

See Also

assign, environment.

attach Attach Set of R Objects to Search Path

Description

The database is attached to the R search path. This means that the database is searched by R when
evaluating a variable, so objects in the database can be accessed by simply giving their names.

Usage

attach(what, pos = 2, name = deparse(substitute(what)),
warn.conflicts = TRUE)

attach 29

Arguments

what ‘database’. This can be a data.frame or a list or a R data file created with
save or NULL or an environment. See also ‘Details’.

pos integer specifying position in search() where to attach.

name name to use for the attached database.
warn.conflicts

logical. If TRUE, warnings are printed about conflicts from attaching the
database, unless that database contains an object .conflicts.OK. A conflict
is a function masking a function, or a non-function masking a non-function.

Details

When evaluating a variable or function name R searches for that name in the databases listed by
search. The first name of the appropriate type is used.

By attaching a data frame (or list) to the search path it is possible to refer to the variables in the
data frame by their names alone, rather than as components of the data frame (e.g. in the example
below, height rather than women$height).

By default the database is attached in position 2 in the search path, immediately after the user’s
workspace and before all previously loaded packages and previously attached databases. This can
be altered to attach later in the search path with the pos option, but you cannot attach at pos=1.

The database is not actually attached. Rather, a new environment is created on the search path and
the elements of a list (including columns of a data frame) or objects in a save file or an environment
are copied into the new environment. If you use <<- or assign to assign to an attached database,
you only alter the attached copy, not the original object. (Normal assignment will place a modified
version in the user’s workspace: see the examples.) For this reason attach can lead to confusion.

One useful ‘trick’ is to use what = NULL (or equivalently a length-zero list) to create a new
environment on the search path into which objects can be assigned by assign or load or
sys.source.

Names starting "package:" are reserved for library and should not be used by end users. The
name given for the attached environment will be used by search and can be used as the argument
to as.environment.

There are hooks to attach user-defined table objects of class "UserDefinedDatabase",
supported by the Omegahat package RObjectTables. See http://www.omegahat.org/
RObjectTables/.

Value

The environment is returned invisibly with a "name" attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

library, detach, search, objects, environment, with.

http://www.omegahat.org/RObjectTables/
http://www.omegahat.org/RObjectTables/

30 attr

Examples

require(utils)

summary(women$height) # refers to variable 'height' in the data frame
attach(women)
summary(height) # The same variable now available by name
height <- height*2.54 # Don't do this. It creates a new variable

in the user's workspace
find("height")
summary(height) # The new variable in the workspace
rm(height)
summary(height) # The original variable.
height <<- height*25.4 # Change the copy in the attached environment
find("height")
summary(height) # The changed copy
detach("women")
summary(women$height) # unchanged

Not run:
create an environment on the search path and populate it
sys.source("myfuns.R", envir=attach(NULL, name="myfuns"))
End(Not run)

attr Object Attributes

Description

Get or set specific attributes of an object.

Usage

attr(x, which, exact = FALSE)
attr(x, which) <- value

Arguments

x an object whose attributes are to be accessed.

which a non-empty character string specifying which attribute is to be accessed.

exact logical: should which be matched exactly?

value an object, the new value of the attribute, or NULL to remove the attribute.

Details

These functions provide access to a single attribute of an object. The replacement form causes the
named attribute to take the value specified (or create a new attribute with the value given).

The extraction function first looks for an exact match to which amongst the at-
tributes of x, then (unless exact = TRUE) a unique partial match. (Setting
options(warnPartialMatchAttr=TRUE) causes partial matches to give warnings.)

The replacement function only uses exact matches.

attributes 31

Note that some attributes (namely class, comment, dim, dimnames, names, row.names
and tsp) are treated specially and have restrictions on the values which can be set. (Note that this
is not true of levels which should be set for factors via the levels replacement function.)

The extractor function allows (and does not match) empty and missing values of which: the re-
placement function does not.

Value

For the extractor, the value of the attribute matched, or NULL if no exact match is found and no or
more than one partial match is found.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attributes

Examples

create a 2 by 5 matrix
x <- 1:10
attr(x,"dim") <- c(2, 5)

attributes Object Attribute Lists

Description

These functions access an object’s attributes. The first form below returns the object’s attribute
list. The replacement forms uses the list on the right-hand side of the assignment as the object’s
attributes (if appropriate).

Usage

attributes(obj)
attributes(obj) <- value
mostattributes(obj) <- value

Arguments

obj an object

value an appropriate named list of attributes, or NULL.

32 autoload

Details

Unlike attr it is possible to set attributes on a NULL object: it will first be coerced to an empty
list.

Note that some attributes (namely class, comment, dim, dimnames, names, row.names
and tsp) are treated specially and have restrictions on the values which can be set. (Note that this
is not true of levels which should be set for factors via the levels replacement function.)

Attributes are not stored internally as a list and should be thought of as a set and not a vector. They
must have unique names (and NA is taken as "NA", not a missing value).

Assigning attributes first removes all attributes, then sets any dim attribute and then the remain-
ing attributes in the order given: this ensures that setting a dim attribute always precedes the
dimnames attribute.

The mostattributes assignment takes special care for the dim, names and dimnames at-
tributes, and assigns them only when valid whereas an attributes assignment would give an
error if any are not.

The names of a pairlist are not stored as attributes, but are reported as if they were (and can be set
by the replacement method for attributes).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attr.

Examples

x <- cbind(a=1:3, pi=pi) # simple matrix w/ dimnames
attributes(x)

strip an object's attributes:
attributes(x) <- NULL
x # now just a vector of length 6

mostattributes(x) <- list(mycomment = "really special", dim = 3:2,
dimnames = list(LETTERS[1:3], letters[1:5]), names = paste(1:6))

x # dim(), but not {dim}names

autoload On-demand Loading of Packages

Description

autoload creates a promise-to-evaluate autoloader and stores it with name name in
.AutoloadEnv environment. When R attempts to evaluate name, autoloader is run, the
package is loaded and name is re-evaluated in the new package’s environment. The result is that R
behaves as if file was loaded but it does not occupy memory.

.Autoloaded contains the names of the packages for which autoloading has been promised.

backsolve 33

Usage

autoload(name, package, reset = FALSE, ...)
autoloader(name, package, ...)

.AutoloadEnv

.Autoloaded

Arguments

name string giving the name of an object.

package string giving the name of a package containing the object.

reset logical: for internal use by autoloader.

... other arguments to library.

Value

This function is invoked for its side-effect. It has no return value.

See Also

delayedAssign, library

Examples

require(stats)
autoload("interpSpline", "splines")
search()
ls("Autoloads")
.Autoloaded

x <- sort(stats::rnorm(12))
y <- x^2
is <- interpSpline(x,y)
search() ## now has splines
detach("package:splines")
search()
is2 <- interpSpline(x,y+x)
search() ## and again
detach("package:splines")

backsolve Solve an Upper or Lower Triangular System

Description

Solves a system of linear equations where the coefficient matrix is upper or lower triangular.

Usage

backsolve(r, x, k=ncol(r), upper.tri=TRUE, transpose=FALSE)
forwardsolve(l, x, k=ncol(l), upper.tri=FALSE, transpose=FALSE)

34 base-deprecated

Arguments

r,l an upper (or lower) triangular matrix giving the coefficients for the system to be
solved. Values below (above) the diagonal are ignored.

x a matrix whose columns give the right-hand sides for the equations.

k The number of columns of r and rows of x to use.

upper.tri logical; if TRUE (default), the upper triangular part of r is used. Otherwise, the
lower one.

transpose logical; if TRUE, solve r′ ∗ y = x for y, i.e., t(r) %*% y == x.

Value

The solution of the triangular system. The result will be a vector if x is a vector and a matrix if x is
a matrix.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch,J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: SIAM Publications.

See Also

chol, qr, solve.

Examples

upper triangular matrix 'r':
r <- rbind(c(1,2,3),

c(0,1,1),
c(0,0,2))

(y <- backsolve(r, x <- c(8,4,2))) # -1 3 1
r %*% y # == x = (8,4,2)
backsolve(r, x, transpose = TRUE) # 8 -12 -5

base-deprecated Deprecated Functions in Base package

Description

These functions are provided for compatibility with older versions of R only, and may be defunct
as soon as the next release.

Usage

Sys.putenv(...)

Arguments

... named arguments with values coercible to a character string.

basename 35

Details

The original help page for these functions is often available at help("oldName-
deprecated") (note the quotes). Functions in packages other than the base package are listed
in help("pkg-deprecated").

Sys.putenv is a deprecated synonym for Sys.setenv.

See Also

Deprecated, base-defunct

basename Manipulate File Paths

Description

basename removes all of the path up to the last path separator (if any).

dirname returns the part of the path up to (but excluding) the last path separator, or "." if there
is no path separator.

Usage

basename(path)
dirname(path)

Arguments

path character vector, containing path names.

Details

For dirname tilde expansion is done: see the description of path.expand.

Trailing file separators are removed before dissecting the path, and for dirname any trailing file
separators are removed from the result.

If an element of path is NA, so is the result.

Value

A character vector of the same length as path. A zero-length input will give a zero-length output
with no error.

See Also

file.path, path.expand.

Examples

basename(file.path("","p1","p2","p3", c("file1", "file2")))
dirname(file.path("","p1","p2","p3","filename"))

36 Bessel

Bessel Bessel Functions

Description

Bessel Functions of integer and fractional order, of first and second kind, Jν and Yν , and Modified
Bessel functions (of first and third kind), Iν and Kν .

Usage

besselI(x, nu, expon.scaled = FALSE)
besselK(x, nu, expon.scaled = FALSE)
besselJ(x, nu)
besselY(x, nu)

Arguments

x numeric, ≥ 0.

nu numeric; The order (maybe fractional!) of the corresponding Bessel function.

expon.scaled logical; if TRUE, the results are exponentially scaled in order to avoid overflow
(Iν) or underflow (Kν), respectively.

Details

If expon.scaled = TRUE, e−xIν(x), or exKν(x) are returned.

For ν < 0, formulae 9.1.2 and 9.6.2 from Abramowitz & Stegun are applied (which is probably
suboptimal), except for besselK which is symmetric in nu.

Value

Numeric vector of the same length of x with the (scaled, if expon.scale=TRUE) values of the
corresponding Bessel function.

Author(s)

Original Fortran code: W. J. Cody, Argonne National Laboratory
Translation to C and adaption to R: Martin Maechler 〈maechler@stat.math.ethz.ch.〉

Source

The C code is a translation of Fortran routines from http://www.netlib.org/specfun/
r[ijky]besl.

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. Dover, New York;
Chapter 9: Bessel Functions of Integer Order.

See Also

Other special mathematical functions, such as gamma, Γ(x), and beta, B(x).

http://www.netlib.org/specfun/r[ijky]besl
http://www.netlib.org/specfun/r[ijky]besl

Bessel 37

Examples

require(graphics)

nus <- c(0:5, 10, 20)

x <- seq(0, 4, length.out = 501)
plot(x, x, ylim = c(0, 6), ylab = "", type = "n",

main = "Bessel Functions I_nu(x)")
for(nu in nus) lines(x, besselI(x, nu=nu), col = nu+2)
legend(0, 6, legend = paste("nu=", nus), col = nus+2, lwd = 1)

x <- seq(0, 40, length.out = 801); yl <- c(-.8, .8)
plot(x, x, ylim = yl, ylab = "", type = "n",

main = "Bessel Functions J_nu(x)")
for(nu in nus) lines(x, besselJ(x, nu=nu), col = nu+2)
legend(32,-.18, legend = paste("nu=", nus), col = nus+2, lwd = 1)

Negative nu's :
xx <- 2:7
nu <- seq(-10, 9, length.out = 2001)
op <- par(lab = c(16, 5, 7))
matplot(nu, t(outer(xx, nu, besselI)), type = "l", ylim = c(-50, 200),

main = expression(paste("Bessel ", I[nu](x), " for fixed ", x,
", as ", f(nu))),

xlab = expression(nu))
abline(v=0, col = "light gray", lty = 3)
legend(5, 200, legend = paste("x=", xx), col=seq(xx), lty=seq(xx))
par(op)

x0 <- 2^(-20:10)
plot(x0, x0^-8, log="xy", ylab="",type="n",

main = "Bessel Functions J_nu(x) near 0\n log - log scale")
for(nu in sort(c(nus, nus+.5)))

lines(x0, besselJ(x0, nu=nu), col = nu+2)
legend(3, 1e50, legend = paste("nu=", paste(nus, nus+.5, sep=",")),

col = nus + 2, lwd = 1)

plot(x0, x0^-8, log="xy", ylab="", type="n",
main = "Bessel Functions K_nu(x) near 0\n log - log scale")

for(nu in sort(c(nus, nus+.5)))
lines(x0, besselK(x0, nu=nu), col = nu+2)

legend(3, 1e50, legend = paste("nu=", paste(nus, nus+.5, sep=",")),
col = nus + 2, lwd = 1)

x <- x[x > 0]
plot(x, x, ylim=c(1e-18, 1e11), log = "y", ylab = "", type = "n",

main = "Bessel Functions K_nu(x)")
for(nu in nus) lines(x, besselK(x, nu=nu), col = nu+2)
legend(0, 1e-5, legend=paste("nu=", nus), col = nus+2, lwd = 1)

yl <- c(-1.6, .6)
plot(x, x, ylim = yl, ylab = "", type = "n",

main = "Bessel Functions Y_nu(x)")
for(nu in nus){

xx <- x[x > .6*nu]
lines(xx, besselY(xx, nu=nu), col = nu+2)

38 bindenv

}
legend(25, -.5, legend = paste("nu=", nus), col = nus+2, lwd = 1)

negative nu in bessel_Y -- was bogous for a long time
curve(besselY(x, -0.1), 0, 10, ylim = c(-3,1), ylab = '')
for(nu in c(seq(-0.2, -2, by = -0.1)))
curve(besselY(x, nu), add = TRUE)

title(expression(besselY(x, nu) * " " *
{nu == list(-0.1, -0.2, ..., -2)}))

bindenv Binding and Environment Adjustments

Description

These functions represent an experimental interface for adjustments to environments and bindings
within environments. They allow for locking environments as well as individual bindings, and for
linking a variable to a function.

Usage

lockEnvironment(env, bindings = FALSE)
environmentIsLocked(env)
lockBinding(sym, env)
unlockBinding(sym, env)
bindingIsLocked(sym, env)
makeActiveBinding(sym, fun, env)
bindingIsActive(sym, env)

Arguments

env an environment.

bindings logical specifying whether bindings should be locked.

sym a name object or character string

fun a function taking zero or one arguments

Details

The function lockEnvironment locks its environment argument, which must be a normal en-
vironment (not base). (Locking the base environment and name space may be supported later.)
Locking the environment prevents adding or removing variable bindings from the environment.
Changing the value of a variable is still possible unless the binding has been locked. The name
space environments of packages with name spaces are locked when loaded.

lockBinding locks individual bindings in the specified environment. The value of a locked
binding cannot be changed. Locked bindings may be removed from an environment unless the
environment is locked.

makeActiveBinding installs fun so that getting the value of sym calls funwith no arguments,
and assigning to sym calls fun with one argument, the value to be assigned. This allows the
implementation of things like C variables linked to R variables and variables linked to databases. It
may also be useful for making thread-safe versions of some system globals.

body 39

Value

The *isLocked funtions return a length-one logical vector. The remaining functions return NULL,
invisibly.

Author(s)

Luke Tierney

Examples

locking environments
e <- new.env()
assign("x", 1, envir = e)
get("x", envir = e)
lockEnvironment(e)
get("x", envir = e)
assign("x", 2, envir = e)
try(assign("y", 2, envir = e)) # error

locking bindings
e <- new.env()
assign("x", 1, envir = e)
get("x", envir = e)
lockBinding("x", e)
try(assign("x", 2, envir = e)) # error
unlockBinding("x", e)
assign("x", 2, envir = e)
get("x", envir = e)

active bindings
f <- local({

x <- 1
function(v) {

if (missing(v))
cat("get\n")

else {
cat("set\n")
x <<- v

}
x

}
})
makeActiveBinding("fred", f, .GlobalEnv)
bindingIsActive("fred", .GlobalEnv)
fred
fred <- 2
fred

body Access to and Manipulation of the Body of a Function

Description

Get or set the body of a function.

40 bquote

Usage

body(fun = sys.function(sys.parent()))
body(fun, envir = environment(fun)) <- value

Arguments

fun a function object, or see ‘Details’.

envir environment in which the function should be defined.

value an expression or a list of R expressions.

Details

For the first form, fun can be a character string naming the function to be manipulated, which is
searched for from the parent environment. If it is not specified, the function calling body is used.

Value

body returns the body of the function specified.

The replacement form sets the body of a function to the expression/list on the right hand side, and
(potentially) resets the environment of the function.

See Also

alist, args, function.

Examples

body(body)
f <- function(x) x^5
body(f) <- expression(5^x)
or equivalently body(f) <- list(quote(5^x))
f(3) # = 125
body(f)

bquote Partial substitution in expressions

Description

An analogue of the LISP backquote macro. bquote quotes its argument except that terms wrapped
in .() are evaluated in the specified where environment.

Usage

bquote(expr, where = parent.frame())

Arguments

expr A language object.

where An environment.

browser 41

Value

A language object.

See Also

quote, substitute

Examples

require(graphics)

a <- 2

bquote(a == a)
quote(a == a)

bquote(a == .(a))
substitute(a == A, list(A = a))

plot(1:10, a*(1:10), main = bquote(a == .(a)))

browser Environment Browser

Description

Interrupt the execution of an expression and allow the inspection of the environment where
browser was called from.

Usage

browser()

Details

A call to browser can be included in the body of a function. When reached, this causes a pause
in the execution of the current expression and allows access to the R interpreter.

At the browser prompt the user can enter commands or R expressions. The commands are

c (or just return) exit the browser and continue execution at the next statement.
cont synonym for c.
n enter the step-through debugger. This changes the meaning of c: see the documentation for

debug.
where print a stack trace of all active function calls.
Q exit the browser and the current evaluation and return to the top-level prompt.

(Leading and trailing whitespace is ignored, except for return).

Anything else entered at the browser prompt is interpreted as an R expression to be evaluated in
the calling environment: in particular typing an object name will cause the object to be printed, and
ls() lists the objects in the calling frame. (If you want to look at an object with a name such as n,
print it explicitly.)

The number of lines printed for the deparsed call can be limited by setting
options(deparse.max.lines).

42 builtins

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

debug, and traceback for the stack on error.

builtins Returns the Names of All Built-in Objects

Description

Return the names of all the built-in objects. These are fetched directly from the symbol table of the
R interpreter.

Usage

builtins(internal = FALSE)

Arguments

internal a logical indicating whether only ‘internal’ functions (which can be called via
.Internal) should be returned.

Details

builtins() returns an unsorted list of the objects in the symbol table, that is all the objects in
the base environment. These are the built-in objects plus any that have been added subsequently
when the base package was loaded. It is less confusing to use ls(baseenv(), all=TRUE).

builtins(TRUE) returns an unsorted list of the names of internal functions, that is those which
can be accessed as .Internal(foo(args ...)) for foo in the list.

Value

A character vector.

by 43

by Apply a Function to a Data Frame split by Factors

Description

Function by is an object-oriented wrapper for tapply applied to data frames.

Usage

by(data, INDICES, FUN, ..., simplify = TRUE)

Arguments

data an R object, normally a data frame, possibly a matrix.

INDICES a factor or a list of factors, each of length nrow(data).

FUN a function to be applied to data frame subsets of data.

... further arguments to FUN.

simplify logical: see tapply.

Details

A data frame is split by row into data frames subsetted by the values of one or more factors, and
function FUN is applied to each subset in turn.

Object data will be coerced to a data frame by the default method, but if this results in a 1-column
data frame, the objects passed to FUN are dropped to a subsets of that column. (This was the
long-term behaviour, but only documented since R 2.7.0.)

Value

An object of class "by", giving the results for each subset. This is always a list if simplify is
false, otherwise a list or array (see tapply).

See Also

tapply

Examples

require(stats)
attach(warpbreaks)
by(warpbreaks[, 1:2], tension, summary)
by(warpbreaks[, 1], list(wool = wool, tension = tension), summary)
by(warpbreaks, tension, function(x) lm(breaks ~ wool, data = x))

now suppose we want to extract the coefficients by group
tmp <- by(warpbreaks, tension, function(x) lm(breaks ~ wool, data = x))
sapply(tmp, coef)

detach("warpbreaks")

44 c

c Combine Values into a Vector or List

Description

This is a generic function which combines its arguments.

The default method combines its arguments to form a vector. All arguments are coerced to a com-
mon type which is the type of the returned value, and all attributes except names are removed.

Usage

c(..., recursive=FALSE)

Arguments

... objects to be concatenated.

recursive logical. If recursive = TRUE, the function recursively descends through
lists (and pairlists) combining all their elements into a vector.

Details

The output type is determined from the highest type of the components in the hierarchy NULL <
raw < logical < integer < real < complex < character < list < expression. Pairlists are treated as lists,
but non-vector components (such names and calls) are treated as one-element lists which cannot be
unlisted even if recursive = TRUE.

c is sometimes used for its side effect of removing attributes except names, for example to turn an
array into a vector. as.vector is a more intuitive way to do this, but also drops names. Note
too that methods other than the default are not required to do this (and they will almost certainly
preserve a class attribute).

Value

NULL or an expression or a vector of an appropriate mode. (With no arguments the value is NULL.)

S4 methods

This function is S4 generic, but with argument list (x, ..., recursive = FALSE).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

unlist and as.vector to produce attribute-free vectors.

call 45

Examples

c(1,7:9)
c(1:5, 10.5, "next")

uses with a single argument to drop attributes
x <- 1:4
names(x) <- letters[1:4]
x
c(x) # has names
as.vector(x) # no names
dim(x) <- c(2,2)
x
c(x)
as.vector(x)

append to a list:
ll <- list(A = 1, c="C")
do *not* use
c(ll, d = 1:3) # which is == c(ll, as.list(c(d=1:3))
but rather
c(ll, d = list(1:3))# c() combining two lists

c(list(A=c(B=1)), recursive=TRUE)

c(options(), recursive=TRUE)
c(list(A=c(B=1,C=2), B=c(E=7)), recursive=TRUE)

call Function Calls

Description

Create or test for objects of mode "call".

Usage

call(name, ...)
is.call(x)
as.call(x)

Arguments

name a non-empty character string naming the function to be called.

... arguments to be part of the call.

x an arbitrary R object.

Details

call returns an unevaluated function call, that is, an unevaluated expression which consists of
the named function applied to the given arguments (name must be a quoted string which gives the
name of a function to be called). Note that although the call is unevaluated, the arguments ... are
evaluated.

46 callCC

call is a primitive, so the first argument (named or not) is taken as name and the remaining
arguments as arguments for the constructed call: call(x="c", 1,3, name="foo") is a call
to c and not to foo.

is.call is used to determine whether x is a call (i.e., of mode "call").

Objects of mode "list" can be coerced to mode "call". The first element of the list becomes
the function part of the call, so should be a function or the name of one (as a symbol; a quoted string
will not do).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

do.call for calling a function by name and argument list; Recall for recursive calling of func-
tions; further is.language, expression, function.

Examples

is.call(call) #-> FALSE: Functions are NOT calls

set up a function call to round with argument 10.5
cl <- call("round", 10.5)
is.call(cl)# TRUE
cl
such a call can also be evaluated.
eval(cl)# [1] 10

A <- 10.5
call("round", A) # round(10.5)
call("round", quote(A)) # round(A)
f <- "round"
call(f, quote(A)) # round(A)
if we want to supply a function we need to use as.call or similar
f <- round
Not run: call(f, quote(A)) # error: first arg must be character
(g <- as.call(list(f, quote(A))))
eval(g)
alternatively but less transparently
g <- list(f, quote(A))
mode(g) <- "call"
g
eval(g)
see also the examples in the help for do.call

callCC Call With Current Continuation

Description

A downward-only version of Scheme’s call with current continuation.

capabilities 47

Usage

callCC(fun)

Arguments

fun function of one argument, the exit procedure.

Details

callCC provides a non-local exit mechanism that can be useful for early termination of a com-
putation. callCC calls fun with one argument, an exit function. The exit function takes a single
argument, the intended return value. If the body of fun calls the exit function then the call to
callCC immediately returns, with the value supplied to the exit function as the value returned by
callCC.

Author(s)

Luke Tierney

Examples

The following all return the value 1
callCC(function(k) 1)
callCC(function(k) k(1))
callCC(function(k) {k(1); 2})
callCC(function(k) repeat k(1))

capabilities Report Capabilities of this Build of R

Description

Report on the optional features which have been compiled into this build of R.

Usage

capabilities(what = NULL)

Arguments

what character vector or NULL, specifying required components. NULL implies that
all are required.

Value

A named logical vector. Current components are

jpeg Is the jpeg function operational?

png Is the png function operational?

tiff Is the tiff function operational?

tcltk Is the tcltk package operational? Note that to make use of Tk you will almost
always need to check that "X11" is also available.

48 cat

X11 Are the X11 graphics device and the X11-based data editor available? This
loads the X11 module if not already loaded, and checks that the default display
can be contacted unless a X11 device has already been used.

aqua Are the R.app GUI components and the quartz function operational? Only
on some Mac OS X builds. Note that this is distinct from .Platform$GUI
== "AQUA", which is true when using the Mac R.app console.

http/ftp Are url and the internal method for download.file available?

sockets Are make.socket and related functions available?

libxml Is there support for integrating libxml with the R event loop?

fifo are FIFO connections supported?

cledit Is command-line editing available in the current R session? This is false in non-
interactive sessions. It will be true for the command-line interface if readline
support has been compiled in and ‘--no-readline’ was not used when R
was invoked.

iconv is internationalization conversion via iconv supported?

NLS is there Natural Language Support (for message translations)?

profmem is there support for memory profiling?

cairo is there support for type="Cairo" in X11, png,jpeg, tiff and bmp, and
for the svg, cairo_pdf and cairo_ps devices?

See Also

.Platform

Examples

capabilities()

if(!capabilities("http/ftp"))
warning("internal download.file() is not available")

See also the examples for 'connections'.

cat Concatenate and Print

Description

Outputs the objects, concatenating the representations. cat performs much less conversion than
print.

Usage

cat(... , file = "", sep = " ", fill = FALSE, labels = NULL,
append = FALSE)

cat 49

Arguments

... R objects (see ‘Details’ for the types of objects allowed).

file A connection, or a character string naming the file to print to. If "" (the default),
cat prints to the standard output connection, the console unless redirected by
sink. If it is "|cmd", the output is piped to the command given by ‘cmd’, by
opening a pipe connection.

sep a character vector of strings to append after each element.

fill a logical or (positive) numeric controlling how the output is broken into suc-
cessive lines. If FALSE (default), only newlines created explicitly by ‘"\n"’
are printed. Otherwise, the output is broken into lines with print width equal to
the option width if fill is TRUE, or the value of fill if this is numeric.
Non-positive fill values are ignored, with a warning.

labels character vector of labels for the lines printed. Ignored if fill is FALSE.

append logical. Only used if the argument file is the name of file (and not a connec-
tion or "|cmd"). If TRUE output will be appended to file; otherwise, it will
overwrite the contents of file.

Details

cat is useful for producing output in user-defined functions. It converts its arguments to character
vectors, concatenates them to a single character vector, appends the given sep= string(s) to each
element and then outputs them.

No linefeeds are output unless explicitly requested by ‘"\n"’ or if generated by filling (if argument
fill is TRUE or numeric.)

If file is a connection and open for writing it is written from its current position. If it is not open,
it is opened for the duration of the call in "wt" mode and then closed again.

Currently only atomic vectors (and so not lists) and names are handled. Character strings are output
‘as is’ (unlike print.default which escapes non-printable characters and backslash — use
encodeString if you want to output encoded strings using cat). Other types of R object should
be converted (e.g. by as.character or format) before being passed to cat.

cat converts numeric/complex elements in the same way as print (and not in the same way as
as.character which is used by the S equivalent), so options "digits" and "scipen"
are relevant. However, it uses the minimum field width necessary for each element, rather than the
same field width for all elements.

Value

None (invisible NULL).

Note

Despite its name and earlier documentation, sep is a vector of terminators rather than separators,
being output after every vector element (including the last). Entries are recycled as needed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

50 cbind

See Also

print, format, and paste which concatenates into a string.

Examples

iter <- stats::rpois(1, lambda=10)
print an informative message
cat("iteration = ", iter <- iter + 1, "\n")

'fill' and label lines:
cat(paste(letters, 100* 1:26), fill = TRUE,

labels = paste("{",1:10,"}:",sep=""))

cbind Combine R Objects by Rows or Columns

Description

Take a sequence of vector, matrix or data frames arguments and combine by columns or rows,
respectively. These are generic functions with methods for other R classes.

Usage

cbind(..., deparse.level = 1)
rbind(..., deparse.level = 1)

Arguments

... vectors or matrices. These can be given as named arguments. Other R ob-
jects will be coerced as appropriate: see sections ‘Details’ and ‘Value’. (For
the "data.frame" method of cbind these can be further arguments to
data.frame such as stringsAsFactors.)

deparse.level
integer controlling the construction of labels in the case of non-matrix-like ar-
guments (for the default method):
deparse.level = 0 constructs no labels; the default, deparse.level
= 1 or 2 constructs labels from the argument names, see the ‘Value’ section
below.

Details

The functions cbind and rbind are S3 generic, with methods for data frames. The data frame
method will be used if at least one argument is a data frame and the rest are vectors or matrices.
There can be other methods; in particular, there is one for time series objects. See the section on
‘Dispatch’ for how the method to be used is selected.

In the default method, all the vectors/matrices must be atomic (see vector) or lists. Expressions
are not allowed. Language objects (such as formulae and calls) and pairlists will be coerced to lists:
other objects (such as names and external pointers) will be included as elements in a list result.
Any classes the inputs might have are discarded (in particular, factors are replaced by their internal
codes).

cbind 51

If there are several matrix arguments, they must all have the same number of columns (or rows)
and this will be the number of columns (or rows) of the result. If all the arguments are vectors,
the number of columns (rows) in the result is equal to the length of the longest vector. Values in
shorter arguments are recycled to achieve this length (with a warning if they are recycled only
fractionally).

When the arguments consist of a mix of matrices and vectors the number of columns (rows) of the
result is determined by the number of columns (rows) of the matrix arguments. Any vectors have
their values recycled or subsetted to achieve this length.

For cbind (rbind), vectors of zero length (including NULL) are ignored unless the result would
have zero rows (columns), for S compatibility. (Zero-extent matrices do not occur in S3 and are not
ignored in R.)

Value

For the default method, a matrix combining the ... arguments column-wise or row-wise. (Excep-
tion: if there are no inputs or all the inputs are NULL, the value is NULL.)

The type of a matrix result determined from the highest type of any of the inputs in the hierarchy
raw < logical < integer < real < complex < character < list .

For cbind (rbind) the column (row) names are taken from the colnames (rownames) of
the arguments if these are matrix-like. Otherwise from the names of the arguments or where
those are not supplied and deparse.level > 0, by deparsing the expressions given, for
deparse.level = 1 only if that gives a sensible name (a ‘symbol’, see is.symbol).

For cbind row names are taken from the first argument with appropriate names: rownames for a
matrix, or names for a vector of length the number of rows of the result.

For rbind column names are taken from the first argument with appropriate names: colnames for
a matrix, or names for a vector of length the number of columns of the result.

Data frame methods

The cbind data frame method is just a wrapper for data.frame(..., check.names =
FALSE). This means that it will split matrix columns in data frame arguments, and convert charac-
ter columns to factors unless stringsAsFactors = FALSE is specified.

The rbind data frame method first drops all zero-column and zero-row arguments. (If that leaves
none, it returns the first argument with columns otherwise a zero-column zero-row data frame.)
It then takes the classes of the columns from the first data frame, and matches columns by name
(rather than by position). Factors have their levels expanded as necessary (in the order of the levels
of the levelsets of the factors encountered) and the result is an ordered factor if and only if all
the components were ordered factors. (The last point differs from S-PLUS.) Old-style categories
(integer vectors with levels) are promoted to factors.

Dispatch

The method dispatching is not done via UseMethod(), but by C-internal dispatching. Therefore
there is no need for, e.g., rbind.default.

The dispatch algorithm is described in the source file (‘.../src/main/bind.c’) as

1. For each argument we get the list of possible class memberships from the class attribute.

2. We inspect each class in turn to see if there is an applicable method.

3. If we find an applicable method we make sure that it is identical to any method determined for
prior arguments. If it is identical, we proceed, otherwise we immediately drop through to the
default code.

52 char.expand

If you want to combine other objects with data frames, it may be necessary to coerce them to data
frames first. (Note that this algorithm can result in calling the data frame method if all the arguments
are either data frames or vectors, and this will result in the coercion of character vectors to factors.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

c to combine vectors (and lists) as vectors, data.frame to combine vectors and matrices as a
data frame.

Examples

m <- cbind(1, 1:7) # the '1' (= shorter vector) is recycled
m
m <- cbind(m, 8:14)[, c(1, 3, 2)] # insert a column
m
cbind(1:7, diag(3))# vector is subset -> warning

cbind(0, rbind(1, 1:3))
cbind(I=0, X=rbind(a=1, b=1:3)) # use some names
xx <- data.frame(I=rep(0,2))
cbind(xx, X=rbind(a=1, b=1:3)) # named differently

cbind(0, matrix(1, nrow=0, ncol=4))#> Warning (making sense)
dim(cbind(0, matrix(1, nrow=2, ncol=0)))#-> 2 x 1

deparse.level
dd <- 10
rbind(1:4, c=2, "a++" = 10, dd, deparse.level=0)# middle 2 rownames
rbind(1:4, c=2, "a++" = 10, dd, deparse.level=1)# 3 rownames (default)
rbind(1:4, c=2, "a++" = 10, dd, deparse.level=2)# 4 rownames

char.expand Expand a String with Respect to a Target Table

Description

Seeks a unique match of its first argument among the elements of its second. If successful, it returns
this element; otherwise, it performs an action specified by the third argument.

Usage

char.expand(input, target, nomatch = stop("no match"))

Arguments

input a character string to be expanded.

target a character vector with the values to be matched against.

nomatch an R expression to be evaluated in case expansion was not possible.

character 53

Details

This function is particularly useful when abbreviations are allowed in function arguments, and need
to be uniquely expanded with respect to a target table of possible values.

Value

A length-one character vector, one of the elements of target (unless nomatch is changed to be
a non-error, when it can be a zero-length character string).

See Also

charmatch and pmatch for performing partial string matching.

Examples

locPars <- c("mean", "median", "mode")
char.expand("me", locPars, warning("Could not expand!"))
char.expand("mo", locPars)

character Character Vectors

Description

Create or test for objects of type "character".

Usage

character(length = 0)
as.character(x, ...)
is.character(x)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Details

as.character and is.character are generic: you can write methods to handle specific
classes of objects, see InternalMethods. Further, for as.character the default method calls
as.vector, so dispatch is first on methods for as.character and then for methods for
as.vector.

as.character represents real and complex numbers to 15 significant digits (technically the
compiler’s setting of the ISO C constant DBL_DIG, which will be 15 on machines supporting
IEC60559 arithmetic according to the C99 standard). This ensures that all the digits in the result will
be reliable (and not the result of representation error), but does mean that conversion to character
and back to numeric may change the number. If you want to convert numbers to character with the
maximum possible precision, use format.

54 charmatch

Value

character creates a character vector of the specified length. The elements of the vector are all
equal to "".

as.character attempts to coerce its argument to character type; like as.vector it strips
attributes including names. For lists it deparses the elements individually, except that it extracts the
first element of length-one character vectors.

is.character returns TRUE or FALSE depending on whether its argument is of character type
or not.

Note

as.character truncates components of language objects to 500 characters (was about 70 before
1.3.1).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

paste, substr and strsplit for character concatenation and splitting, chartr for character
translation and casefolding (e.g., upper to lower case) and sub, grep etc for string matching and
substitutions. Note that help.search(keyword = "character") gives even more links.
deparse, which is normally preferable to as.character for language objects.

Examples

form <- y ~ a + b + c
as.character(form) ## length 3
deparse(form) ## like the input

a0 <- 11/999 # has a repeating decimal representation
(a1 <- as.character(a0))
format(a0, digits=16) # shows one more digit
a2 <- as.numeric(a1)
a2 - a0 # normally around -1e-17
as.character(a2) # normally different from a1
print(c(a0, a2), digits = 16)

charmatch Partial String Matching

Description

charmatch seeks matches for the elements of its first argument among those of its second.

Usage

charmatch(x, table, nomatch = NA_integer_)

chartr 55

Arguments

x the values to be matched: converted to a character vector by as.character.

table the values to be matched against: converted to a character vector.

nomatch the (integer) value to be returned at non-matching positions.

Details

Exact matches are preferred to partial matches (those where the value to be matched has an exact
match to the initial part of the target, but the target is longer).

If there is a single exact match or no exact match and a unique partial match then the index of the
matching value is returned; if multiple exact or multiple partial matches are found then 0 is returned
and if no match is found then nomatch is returned.

NA values are treated as the string constant "NA".

Value

An integer vector of the same length as x, giving the indices of the elements in table which
matched, or nomatch.

Author(s)

This function is based on a C function written by Terry Therneau.

See Also

pmatch, match.

grep or regexpr for more general (regexp) matching of strings.

Examples

charmatch("", "") # returns 1
charmatch("m", c("mean", "median", "mode")) # returns 0
charmatch("med", c("mean", "median", "mode")) # returns 2

chartr Character Translation and Casefolding

Description

Translate characters in character vectors, in particular from upper to lower case or vice versa.

Usage

chartr(old, new, x)
tolower(x)
toupper(x)
casefold(x, upper = FALSE)

56 chartr

Arguments

x a character vector, or an object that can be coerced to character by
as.character.

old a character string specifying the characters to be translated.

new a character string specifying the translations.

upper logical: translate to upper or lower case?.

Details

chartr translates each character in x that is specified in old to the corresponding character
specified in new. Ranges are supported in the specifications, but character classes and repeated
characters are not. If old contains more characters than new, an error is signaled; if it contains
fewer characters, the extra characters at the end of new are ignored.

tolower and toupper convert upper-case characters in a character vector to lower-case, or vice
versa. Non-alphabetic characters are left unchanged.

casefold is a wrapper for tolower and toupper provided for compatibility with S-PLUS.

Value

A character vector of the same length and with the same attributes as x (after possible coercion).

Elements of the result will be have the encoding declared as that of the current locale (see
Encoding if the corresponding input had a declared encoding and the current locale is either
Latin-1 or UTF-8. The result will be in the current locale’s encoding unless the corresponding input
was in UTF-8, when it will be in UTF-8 when the system has Unicode wide characters.

See Also

sub and gsub for other substitutions in strings.

Examples

x <- "MiXeD cAsE 123"
chartr("iXs", "why", x)
chartr("a-cX", "D-Fw", x)
tolower(x)
toupper(x)

"Mixed Case" Capitalizing - toupper(every first letter of a word) :

.simpleCap <- function(x) {
s <- strsplit(x, " ")[[1]]
paste(toupper(substring(s, 1,1)), substring(s, 2),

sep="", collapse=" ")
}
.simpleCap("the quick red fox jumps over the lazy brown dog")
-> [1] "The Quick Red Fox Jumps Over The Lazy Brown Dog"

and the better, more sophisticated version:
capwords <- function(s, strict = FALSE) {

cap <- function(s) paste(toupper(substring(s,1,1)),
{s <- substring(s,2); if(strict) tolower(s) else s},

sep = "", collapse = " ")
sapply(strsplit(s, split = " "), cap, USE.NAMES = !is.null(names(s)))

chol 57

}
capwords(c("using AIC for model selection"))
-> [1] "Using AIC For Model Selection"
capwords(c("using AIC", "for MODEL selection"), strict=TRUE)
-> [1] "Using Aic" "For Model Selection"
^^^ ^^^^^
'bad' 'good'

-- Very simple insecure crypto --
rot <- function(ch, k = 13) {

p0 <- function(...) paste(c(...), collapse="")
A <- c(letters, LETTERS, " '")
I <- seq_len(k); chartr(p0(A), p0(c(A[-I], A[I])), ch)

}

pw <- "my secret pass phrase"
(crypw <- rot(pw, 13)) #-> you can send this off

now ``decrypt'' :
rot(crypw, 54 - 13)# -> the original:
stopifnot(identical(pw, rot(crypw, 54 - 13)))

chol The Choleski Decomposition

Description

Compute the Choleski factorization of a real symmetric positive-definite square matrix.

Usage

chol(x, ...)

Default S3 method:
chol(x, pivot = FALSE, LINPACK = pivot, ...)

Arguments

x an object for which a method exists. The default method applies to real sym-
metric, positive-definite matrices.

... arguments to be based to or from methods.

pivot Should pivoting be used?

LINPACK logical. Should LINPACK be used in the non-pivoting case (for compatibility
with R < 1.7.0)?

Details

chol is generic: the description here applies to the default method.

This is an interface to the LAPACK routine DPOTRF and the LINPACK routines DPOFA and
DCHDC.

Note that only the upper triangular part of x is used, so that R′R = x when x is symmetric.

58 chol

If pivot = FALSE and x is not non-negative definite an error occurs. If x is positive semi-
definite (i.e., some zero eigenvalues) an error will also occur, as a numerical tolerance is used.

If pivot = TRUE, then the Choleski decomposition of a positive semi-definite x can be com-
puted. The rank of x is returned as attr(Q, "rank"), subject to numerical errors. The pivot is
returned as attr(Q, "pivot"). It is no longer the case that t(Q) %*% Q equals x. However,
setting pivot <- attr(Q, "pivot") and oo <- order(pivot), it is true that t(Q[,
oo]) %*% Q[, oo] equals x, or, alternatively, t(Q) %*% Q equals x[pivot, pivot].
See the examples.

Value

The upper triangular factor of the Choleski decomposition, i.e., the matrix R such that R′R = x
(see example).

If pivoting is used, then two additional attributes "pivot" and "rank" are also returned.

Warning

The code does not check for symmetry.

If pivot = TRUE and x is not non-negative definite then there will be a warning message but a
meaningless result will occur. So only use pivot = TRUE when x is non-negative definite by
construction.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: SIAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

See Also

chol2inv for its inverse (without pivoting), backsolve for solving linear systems with upper
triangular left sides.

qr, svd for related matrix factorizations.

Examples

(m <- matrix(c(5,1,1,3),2,2))
(cm <- chol(m))
t(cm) %*% cm #-- = 'm'
crossprod(cm) #-- = 'm'

now for something positive semi-definite
x <- matrix(c(1:5, (1:5)^2), 5, 2)
x <- cbind(x, x[, 1] + 3*x[, 2])
m <- crossprod(x)
qr(m)$rank # is 2, as it should be

chol() may fail, depending on numerical rounding:
chol() unlike qr() does not use a tolerance.
try(chol(m))

http://www.netlib.org/lapack/lug/lapack_lug.html

chol2inv 59

(Q <- chol(m, pivot = TRUE)) # NB wrong rank here - see Warning section.
we can use this by
pivot <- attr(Q, "pivot")
oo <- order(pivot)
t(Q[, oo]) %*% Q[, oo] # recover m

now for a non-positive-definite matrix
(m <- matrix(c(5,-5,-5,3),2,2))
try(chol(m)) # fails
try(chol(m, LINPACK=TRUE)) # fails
(Q <- chol(m, pivot = TRUE)) # warning
crossprod(Q) # not equal to m

chol2inv Inverse from Choleski (or QR) Decomposition

Description

Invert a symmetric, positive definite square matrix from its Choleski decomposition. Equivalently,
compute (X ′X)−1 from the (R part) of the QR decomposition of X .

Usage

chol2inv(x, size = NCOL(x), LINPACK = FALSE)

Arguments

x a matrix. The first size columns of the upper triangle contain the Choleski
decomposition of the matrix to be inverted.

size the number of columns of x containing the Choleski decomposition.

LINPACK logical. Should LINPACK be used (for compatibility with R < 1.7.0)?

Details

This is an interface to the LAPACK routine DPOTRI and the LINPACK routine DPODI.

Value

The inverse of the matrix whose Choleski decomposition was given.

References

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: SIAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM. Available on-line
at http://www.netlib.org/lapack/lug/lapack_lug.html.

See Also

chol, solve.

http://www.netlib.org/lapack/lug/lapack_lug.html

60 class

Examples

cma <- chol(ma <- cbind(1, 1:3, c(1,3,7)))
ma %*% chol2inv(cma)

class Object Classes

Description

R possesses a simple generic function mechanism which can be used for an object-oriented style of
programming. Method dispatch takes place based on the class of the first argument to the generic
function.

Usage

class(x)
class(x) <- value
unclass(x)
inherits(x, what, which = FALSE)

oldClass(x)
oldClass(x) <- value

Arguments

x a R object
what, value a character vector naming classes. value can also be NULL.
which logical affecting return value: see ‘Details’.

Details

Many R objects have a class attribute, a character vector giving the names of the classes from
which the object inherits. If the object does not have a class attribute, it has an implicit class,
"matrix", "array" or the result of mode(x) (except that integer vectors have implicit class
"integer"). (Functions oldClass and oldClass<- get and set the attribute, which can also
be done directly.)

When a generic function fun is applied to an object with class attribute c("first",
"second"), the system searches for a function called fun.first and, if it finds it, applies
it to the object. If no such function is found, a function called fun.second is tried. If no class
name produces a suitable function, the function fun.default is used (if it exists). If there is no
class attribute, the implicit class is tried, then the default method.

The function class prints the vector of names of classes an object inherits from. Correspondingly,
class<- sets the classes an object inherits from. Assigning a zero-length vector or NULL removes
the class attribute.

unclass returns (a copy of) its argument with its class attribute removed. (It is not allowed for
objects which cannot be copied, namely environments and external pointers.)

inherits indicates whether its first argument inherits from any of the classes specified in the
what argument. If which is TRUE then an integer vector of the same length as what is returned.
Each element indicates the position in the class(x) matched by the element of what; zero
indicates no match. If which is FALSE then TRUE is returned by inherits if any of the names
in what match with any class.

col 61

Formal classes

An additional mechanism of formal classes is available in packages methods which is attached by
default. For objects which have a formal class, its name is returned by class as a character vector
of length one.

The replacement version of the function sets the class to the value provided. For classes that have
a formal definition, directly replacing the class this way is strongly deprecated. The expression
as(object, value) is the way to coerce an object to a particular class.

The analogue of inherits for formal classes is is.

Note

Functions oldClass and oldClass<- behave in the same way as functions of those names
in S-PLUS 5/6, but in R UseMethod dispatches on the class as returned by class (with some
interpolated classes: see the link) rather than oldClass. However, group generics dispatch on the
oldClass for efficiency, and internal generics only dispatch on objects for which is.object is
true.

See Also

UseMethod, NextMethod, ‘group generic’, ‘internal generic’

Examples

x <- 10
class(x) # "numeric"
oldClass(x) # NULL
inherits(x, "a") #FALSE
class(x) <- c("a", "b")
inherits(x,"a") #TRUE
inherits(x, "a", TRUE) # 1
inherits(x, c("a", "b", "c"), TRUE) # 1 2 0

col Column Indexes

Description

Returns a matrix of integers indicating their column number in a matrix-like object.

Usage

col(x, as.factor = FALSE)

Arguments

x a matrix-like object, that is one with a two-dimensional dim.

as.factor a logical value indicating whether the value should be returned as a factor rather
than as numeric.

Value

An integer matrix with the same dimensions as x and whose ij-th element is equal to j.

62 Colon

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

row to get rows.

Examples

extract an off-diagonal of a matrix
ma <- matrix(1:12, 3, 4)
ma[row(ma) == col(ma) + 1]

create an identity 5-by-5 matrix
x <- matrix(0, nrow = 5, ncol = 5)
x[row(x) == col(x)] <- 1

Colon Colon Operator

Description

Generate regular sequences.

Usage

from:to
a:b

Arguments

from starting value of sequence.

to (maximal) end value of the sequence.

a, b factors of same length.

Details

The binary operator : has two meanings: for factors a:b is equivalent to interaction(a, b)
(but the levels are ordered and labelled differently).

For numeric arguments from:to is equivalent to seq(from, to), and generates a sequence
from from to to in steps of 1 or 1-. Value to will be included if it differs from from by an
integer up to a numeric fuzz of about 1e-7.

Value

For numeric arguments, a numeric vector. This will be of type integer if from and to are both
integers and representable in the integer type, otherwise of type numeric.

For factors, an unordered factor with levels labelled as la:lb and ordered lexicographically (that
is, lb varies fastest).

colSums 63

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.
(for numeric arguments: S does not have : for factors.)

See Also

seq.

As an alternative to using : for factors, interaction.

For : used in the formal representation of an interaction, see formula.

Examples

1:4
pi:6 # real
6:pi # integer

f1 <- gl(2,3); f1
f2 <- gl(3,2); f2
f1:f2 # a factor, the "cross" f1 x f2

colSums Form Row and Column Sums and Means

Description

Form row and column sums and means for numeric arrays.

Usage

colSums (x, na.rm = FALSE, dims = 1)
rowSums (x, na.rm = FALSE, dims = 1)
colMeans(x, na.rm = FALSE, dims = 1)
rowMeans(x, na.rm = FALSE, dims = 1)

Arguments

x an array of two or more dimensions, containing numeric, complex, integer or
logical values, or a numeric data frame.

na.rm logical. Should missing values (including NaN) be omitted from the calcula-
tions?

dims Which dimensions are regarded as ‘rows’ or ‘columns’ to sum over. For row*,
the sum or mean is over dimensions dims+1, ...; for col* it is over di-
mensions 1:dims.

Details

These functions are equivalent to use of applywith FUN = mean or FUN = sumwith appropri-
ate margins, but are a lot faster. As they are written for speed, they blur over some of the subtleties
of NaN and NA. If na.rm = FALSE and either NaN or NA appears in a sum, the result will be one
of NaN or NA, but which might be platform-dependent.

64 commandArgs

Value

A numeric or complex array of suitable size, or a vector if the result is one-dimensional. The
dimnames (or names for a vector result) are taken from the original array.

If there are no values in a range to be summed over (after removing missing values with na.rm =
TRUE), that component of the output is set to 0 (*Sums) or NA (*Means), consistent with sum
and mean.

See Also

apply, rowsum

Examples

Compute row and column sums for a matrix:
x <- cbind(x1 = 3, x2 = c(4:1, 2:5))
rowSums(x); colSums(x)
dimnames(x)[[1]] <- letters[1:8]
rowSums(x); colSums(x); rowMeans(x); colMeans(x)
x[] <- as.integer(x)
rowSums(x); colSums(x)
x[] <- x < 3
rowSums(x); colSums(x)
x <- cbind(x1 = 3, x2 = c(4:1, 2:5))
x[3,] <- NA; x[4, 2] <- NA
rowSums(x); colSums(x); rowMeans(x); colMeans(x)
rowSums(x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans(x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

an array
dim(UCBAdmissions)
rowSums(UCBAdmissions); rowSums(UCBAdmissions, dims = 2)
colSums(UCBAdmissions); colSums(UCBAdmissions, dims = 2)

complex case
x <- cbind(x1 = 3 + 2i, x2 = c(4:1, 2:5) - 5i)
x[3,] <- NA; x[4, 2] <- NA
rowSums(x); colSums(x); rowMeans(x); colMeans(x)
rowSums(x, na.rm = TRUE); colSums(x, na.rm = TRUE)
rowMeans(x, na.rm = TRUE); colMeans(x, na.rm = TRUE)

commandArgs Extract Command Line Arguments

Description

Provides access to a copy of the command line arguments supplied when this R session was invoked.

Usage

commandArgs(trailingOnly = FALSE)

comment 65

Arguments

trailingOnly logical. Should only arguments after --args be returned?

Details

These arguments are captured before the standard R command line processing takes place. This
means that they are the unmodified values. This is especially useful with the --args command-
line flag to R, as all of the command line after that flag is skipped.

Value

A character vector containing the name of the executable and the user-supplied command line argu-
ments. The first element is the name of the executable by which R was invoked. The exact form of
this element is platform dependent: it may be the fully qualified name, or simply the last component
(or basename) of the application, or for an embedded R it can be anything the programmer supplied.

If trailingOnly = TRUE, a character vector of those arguments (if any) supplied after --
args.

See Also

Startup BATCH

Examples

commandArgs()
Spawn a copy of this application as it was invoked,
subject to shell quoting issues
system(paste(commandArgs(), collapse=" "))

comment Query or Set a ‘Comment’ Attribute

Description

These functions set and query a comment attribute for any R objects. This is typically useful for
data.frames or model fits.

Contrary to other attributes, the comment is not printed (by print or print.default).

Assigning NULL or a zero-length character vector removes the comment.

Usage

comment(x)
comment(x) <- value

Arguments

x any R object

value a character vector, or NULL.

66 Comparison

See Also

attributes and attr for other attributes.

Examples

x <- matrix(1:12, 3,4)
comment(x) <- c("This is my very important data from experiment #0234",

"Jun 5, 1998")
x
comment(x)

Comparison Relational Operators

Description

Binary operators which allow the comparison of values in atomic vectors.

Usage

x < y
x > y
x <= y
x >= y
x == y
x != y

Arguments

x, y atomic vectors, symbols, calls, or other objects for which methods have been
written.

Details

The binary comparison operators are generic functions: methods can be written for them individu-
ally or via the Ops) group generic function. (See Ops for how dispatch is computed.)

Comparison of strings in character vectors is lexicographic within the strings using the collating
sequence of the locale in use: see locales. The collating sequence of locales such as ‘en_US’
is normally different from ‘C’ (which should use ASCII) and can be surprising. Beware of making
any assumptions about the collation order: e.g. in Estonian Z comes between S and T, and collation
is not necessarily character-by-character – in Danish aa sorts as a single letter, after z. In Welsh
ng may or may not be a single sorting unit: if it is it follows g. Some platforms may not respect
the locale and always sort in numerical order of the bytes in an 8-bit locale, or in Unicode point
order for a UTF-8 locale (and may not sort in the same order for the same language in different
character sets). Collation of non-letters (spaces, punctuation signs, hyphens, fractions and so on) is
even more problematic.

At least one of x and y must be an atomic vector, but if the other is a list R attempts to coerce it to
the type of the atomic vector: this will succeed if the list is made up of elements of length one that
can be coerced to the correct type.

If the two arguments are atomic vectors of different types, one is coerced to the type of the other,
the (decreasing) order of precedence being character, complex, numeric, integer, logical and raw.

Comparison 67

Missing values (NA) and NaN values are regarded as non-comparable even to themselves, so com-
parisons involving them will always result in NA. Missing values can also result when character
strings are compared and one is not valid in the current collation locale.

Language objects such as symbols and calls are deparsed to character strings before comparison.

Value

A logical vector indicating the result of the element by element comparison. The elements of shorter
vectors are recycled as necessary.

Objects such as arrays or time-series can be compared this way provided they are conformable.

S4 methods

These operators are members of the S4 Compare group generic, and so methods can be written
for them individually as well as for the group generic (or the Ops group generic), with arguments
c(e1, e2).

Note

Do not use == and != for tests, such as in if expressions, where you must get a single TRUE
or FALSE. Unless you are absolutely sure that nothing unusual can happen, you should use the
identical function instead.

For numerical and complex values, remember == and != do not allow for the finite representa-
tion of fractions, nor for rounding error. Using all.equal with identical is almost always
preferable. See the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Collation of character strings is a complex topic. For an introduction see http://
en.wikipedia.org/wiki/Collating_sequence. The Unicode Collation Algorithm
(http://unicode.org/reports/tr10/) is likely to be increasing influential.

See Also

factor for the behaviour with factor arguments.

Syntax for operator precedence.

Examples

x <- stats::rnorm(20)
x < 1
x[x > 0]

x1 <- 0.5 - 0.3
x2 <- 0.3 - 0.1
x1 == x2 # FALSE on most machines
identical(all.equal(x1, x2), TRUE) # TRUE everywhere

z <- c(32:126, 160:255) # range of most 8-bit charsets, Latin-1 in Unicode
x <- if(l10n_info()$MBCS) {

http://en.wikipedia.org/wiki/Collating_sequence
http://en.wikipedia.org/wiki/Collating_sequence
http://unicode.org/reports/tr10/

68 complex

intToUtf8(z, multiple = TRUE)
} else rawToChar(as.raw(z), multiple= TRUE)
by number
writeLines(strwrap(paste(x, collapse=" "), width = 60))
by locale collation
writeLines(strwrap(paste(sort(x), collapse=" "), width = 60))

complex Complex Vectors

Description

Basic functions which support complex arithmetic in R.

Usage

complex(length.out = 0, real = numeric(), imaginary = numeric(),
modulus = 1, argument = 0)

as.complex(x, ...)
is.complex(x)

Re(z)
Im(z)
Mod(z)
Arg(z)
Conj(z)

Arguments

length.out numeric. Desired length of the output vector, inputs being recycled as needed.

real numeric vector.

imaginary numeric vector.

modulus numeric vector.

argument numeric vector.

x an object, probably of mode complex.

z an object of mode complex, or one of a class for which a methods has been
defined.

... further arguments passed to or from other methods.

Details

Complex vectors can be created with complex. The vector can be specified either by giving its
length, its real and imaginary parts, or modulus and argument. (Giving just the length generates a
vector of complex zeroes.)

as.complex attempts to coerce its argument to be of complex type: like as.vector it strips
attributes including names. All forms of NA and NaN are coerced to a complex NA, for which both
the real and imaginary parts are NA.

Note that is.complex and is.numeric are never both TRUE.

conditions 69

The functions Re, Im, Mod, Arg and Conj have their usual interpretation as returning the real
part, imaginary part, modulus, argument and complex conjugate for complex values. Modulus and
argument are also called the polar coordinates. If z = x+ iy with real x and y, for r = Mod(z) =√
x2 + y2, and φ = Arg(z), x = r ∗ cos(φ) and y = r ∗ sin(φ). They are all generic functions:

methods can be defined for them individually or via the Complex group generic.

In addition, the elementary trigonometric, logarithmic and exponential functions are available for
complex values.

S4 methods

as.complex is primitive and can have S4 methods set.

Re, Im, Mod, Arg and Conj constitute the S4 group generic Complex and so S4 methods can be
set for them individually or via the group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

require(graphics)

0i ^ (-3:3)

matrix(1i^ (-6:5), nrow=4) #- all columns are the same
0 ^ 1i # a complex NaN

create a complex normal vector
z <- complex(real = stats::rnorm(100), imaginary = stats::rnorm(100))
or also (less efficiently):
z2 <- 1:2 + 1i*(8:9)

The Arg(.) is an angle:
zz <- (rep(1:4,len=9) + 1i*(9:1))/10
zz.shift <- complex(modulus = Mod(zz), argument= Arg(zz) + pi)
plot(zz, xlim=c(-1,1), ylim=c(-1,1), col="red", asp = 1,

main = expression(paste("Rotation by "," ", pi == 180^o)))
abline(h=0,v=0, col="blue", lty=3)
points(zz.shift, col="orange")

conditions Condition Handling and Recovery

Description

These functions provide a mechanism for handling unusual conditions, including errors and warn-
ings.

70 conditions

Usage

tryCatch(expr, ..., finally)
withCallingHandlers(expr, ...)

signalCondition(cond)

simpleCondition(message, call = NULL)
simpleError (message, call = NULL)
simpleWarning (message, call = NULL)
simpleMessage (message, call = NULL)

S3 method for class 'condition':
as.character(x, ...)
S3 method for class 'error':
as.character(x, ...)
S3 method for class 'condition':
print(x, ...)
S3 method for class 'restart':
print(x, ...)

conditionCall(c)
S3 method for class 'condition':
conditionCall(c)
conditionMessage(c)
S3 method for class 'condition':
conditionMessage(c)

withRestarts(expr, ...)

computeRestarts(cond = NULL)
findRestart(name, cond = NULL)
invokeRestart(r, ...)
invokeRestartInteractively(r)

isRestart(x)
restartDescription(r)
restartFormals(r)

.signalSimpleWarning(msg, call)

.handleSimpleError(h, msg, call)

Arguments

c a condition object.

call call expression.

cond a condition object.

expr expression to be evaluated.

finally expression to be evaluated before returning or exiting.

h function.

message character string.

conditions 71

msg character string.

name character string naming a restart.

r restart object.

x object.

... additional arguments; see details below.

Details

The condition system provides a mechanism for signaling and handling unusual conditions, includ-
ing errors and warnings. Conditions are represented as objects that contain information about the
condition that occurred, such as a message and the call in which the condition occurred. Currently
conditions are S3-style objects, though this may eventually change.

Conditions are objects inheriting from the abstract class condition. Errors and warnings are
objects inheriting from the abstract subclasses error and warning. The class simpleError
is the class used by stop and all internal error signals. Similarly, simpleWarning is used
by warning, and simpleMessage is used by message. The constructors by the same
names take a string describing the condition as argument and an optional call. The functions
conditionMessage and conditionCall are generic functions that return the message and
call of a condition.

Conditions are signaled by signalCondition. In addition, the stop and warning functions
have been modified to also accept condition arguments.

The function tryCatch evaluates its expression argument in a context where the handlers pro-
vided in the ... argument are available. The finally expression is then evaluated in the context
in which tryCatch was called; that is, the handlers supplied to the current tryCatch call are
not active when the finally expression is evaluated.

Handlers provided in the ... argument to tryCatch are established for the duration of the
evaluation of expr. If no condition is signaled when evaluating expr then tryCatch returns the
value of the expression.

If a condition is signaled while evaluating expr then established handlers are checked, starting
with the most recently established ones, for one matching the class of the condition. When several
handlers are supplied in a single tryCatch then the first one is considered more recent than the
second. If a handler is found then control is transferred to the tryCatch call that established the
handler, the handler found and all more recent handlers are disestablished, the handler is called with
the condition as its argument, and the result returned by the handler is returned as the value of the
tryCatch call.

Calling handlers are established by withCallingHandlers. If a condition is signaled and the
applicable handler is a calling handler, then the handler is called by signalCondition in the
context where the condition was signaled but with the available handlers restricted to those below
the handler called in the handler stack. If the handler returns, then the next handler is tried; once
the last handler has been tried, signalCondition returns NULL.

User interrupts signal a condition of class interrupt that inherits directly from class
condition before executing the default interrupt action.

Restarts are used for establishing recovery protocols. They can be established using
withRestarts. One pre-established restart is an abort restart that represents a jump to top
level.

findRestart and computeRestarts find the available restarts. findRestart returns the
most recently established restart of the specified name. computeRestarts returns a list of all
restarts. Both can be given a condition argument and will then ignore restarts that do not apply to
the condition.

72 conditions

invokeRestart transfers control to the point where the specified restart was established
and calls the restart’s handler with the arguments, if any, given as additional arguments to
invokeRestart. The restart argument to invokeRestart can be a character string, in which
case findRestart is used to find the restart.

New restarts for withRestarts can be specified in several ways. The simplest is in
name=function form where the function is the handler to call when the restart is invoked. An-
other simple variant is as name=string where the string is stored in the description field of
the restart object returned by findRestart; in this case the handler ignores its arguments and
returns NULL. The most flexible form of a restart specification is as a list that can include several
fields, including handler, description, and test. The test field should contain a function
of one argument, a condition, that returns TRUE if the restart applies to the condition and FALSE if
it does not; the default function returns TRUE for all conditions.

One additional field that can be specified for a restart is interactive. This should
be a function of no arguments that returns a list of arguments to pass to the restart han-
dler. The list could be obtained by interacting with the user if necessary. The function
invokeRestartInteractively calls this function to obtain the arguments to use when in-
voking the restart. The default interactive method queries the user for values for the formal
arguments of the handler function.

.signalSimpleWarning and .handleSimpleError are used internally and should not be
called directly.

References

The tryCatch mechanism is similar to Java error handling. Calling handlers are based on Com-
mon Lisp and Dylan. Restarts are based on the Common Lisp restart mechanism.

See Also

stop and warning signal conditions, and try is essentially a simplified version of tryCatch.

Examples

tryCatch(1, finally=print("Hello"))
e <- simpleError("test error")
Not run:
stop(e)
tryCatch(stop(e), finally=print("Hello"))
tryCatch(stop("fred"), finally=print("Hello"))

End(Not run)
tryCatch(stop(e), error = function(e) e, finally=print("Hello"))
tryCatch(stop("fred"), error = function(e) e, finally=print("Hello"))
withCallingHandlers({ warning("A"); 1+2 }, warning = function(w) {})
Not run:
{ withRestarts(stop("A"), abort = function() {}); 1 }

End(Not run)
withRestarts(invokeRestart("foo", 1, 2), foo = function(x, y) {x + y})

conflicts 73

conflicts Search for Masked Objects on the Search Path

Description

conflicts reports on objects that exist with the same name in two or more places on the search
path, usually because an object in the user’s workspace or a package is masking a system object of
the same name. This helps discover unintentional masking.

Usage

conflicts(where = search(), detail = FALSE)

Arguments

where A subset of the search path, by default the whole search path.

detail If TRUE, give the masked or masking functions for all members of the search
path.

Value

If detail=FALSE, a character vector of masked objects. If detail=TRUE, a list of character
vectors giving the masked or masking objects in that member of the search path. Empty vectors are
omitted.

Examples

lm <- 1:3
conflicts(, TRUE)
gives something like
$.GlobalEnv
[1] "lm"
#
$package:base
[1] "lm"

Remove things from your "workspace" that mask others:
remove(list = conflicts(detail=TRUE)$.GlobalEnv)

connections Functions to Manipulate Connections

Description

Functions to create, open and close connections.

74 connections

Usage

file(description = "", open = "", blocking = TRUE,
encoding = getOption("encoding"))

url(description, open = "", blocking = TRUE,
encoding = getOption("encoding"))

gzfile(description, open = "", encoding = getOption("encoding"),
compression = 6)

bzfile(description, open = "", encoding = getOption("encoding"))

unz(description, filename, open = "",
encoding = getOption("encoding"))

pipe(description, open = "", encoding = getOption("encoding"))

fifo(description, open = "", blocking = FALSE,
encoding = getOption("encoding"))

socketConnection(host = "localhost", port, server = FALSE,
blocking = FALSE, open = "a+",
encoding = getOption("encoding"))

open(con, ...)
S3 method for class 'connection':
open(con, open = "r", blocking = TRUE, ...)

close(con, ...)
S3 method for class 'connection':
close(con, type = "rw", ...)

flush(con)

isOpen(con, rw = "")
isIncomplete(con)

Arguments

description character string. A description of the connection: see ‘Details’.

open character. A description of how to open the connection (if at all). See ‘Details’
for possible values.

blocking logical. See the ‘Blocking’ section below.

encoding The name of the encoding to be used. See the ‘Encoding’ section below.

compression integer in 0–9. The amount of compression to be applied when writing, from
none to maximal. The default is a good space/time compromise.

filename a filename within a zip file.

host character. Host name for port.

port integer. The TCP port number.

server logical. Should the socket be a client or a server?

connections 75

con a connection.

type character. Currently ignored.

rw character. Empty or "read" or "write", partial matches allowed.

... arguments passed to or from other methods.

Details

The first eight functions create connections. By default the connection is not opened (except for
socketConnection), but may be opened by setting a non-empty value of argument open.

For file the description is either a path to the file to be opened or a complete URL, or "" (the
default) or "stdin" or "clipboard" (see below).

For url the description is a complete URL, including scheme (such as http://, ftp:// or
file://).

For gzfile the description is the path to a file that is compressed by gzip: it can also opened
uncompressed files.

For bzfile the description is the path to a file that is compressed by bzip2.

unz reads (only) single files within zip files, in binary mode. The description is the full path to the
zip file, with ‘.zip’ extension if required.

For pipe the description is the command line to be piped to or from.

For fifo the description is the path of the fifo.

file allows description="stdin" to refer to the C-level stdin of the process (which need
not be connected to anything in a console or embedded version of R), provided the C99 function
fdopen is supported on the platform.

gzfile and bzfile open the actual file in binary mode and so no translations are done if the
original file was a text file. (See gzcon for a way to add compression to non-file connections such
as URLs.)

All platforms support file, gzfile, bzfile, unz and url("file://") connections. The
other types may be partially implemented or not implemented at all. (They do work on most Unix
platforms, and all but fifo on Windows.)

Proxies can be specified for url connections: see download.file.

open, close and seek are generic functions: the following applies to the methods relevant to
connections.

open opens a connection. In general functions using connections will open them if they are not
open, but then close them again, so to leave a connection open call open explicitly.

Possible values for the mode open to open a connection are

"r" or "rt" Open for reading in text mode.

"w" or "wt" Open for writing in text mode.

"a" or "at" Open for appending in text mode.

"rb" Open for reading in binary mode.

"wb" Open for writing in binary mode.

"ab" Open for appending in binary mode.

"r+", "r+b" Open for reading and writing.

"w+", "w+b" Open for reading and writing, truncating file initially.

"a+", "a+b" Open for reading and appending.

76 connections

Not all modes are applicable to all connections: for example URLs can only be opened for reading.
Only file and socket connections can be opened for reading and writing/appending. For many
connections there is little or no difference between text and binary modes, but there is for file-like
connections on Windows, and pushBack is text-oriented and is only allowed on connections open
for reading in text mode. If a file or fifo is created on a Unix-alike, its permissions will be the
maximal allowed by the current setting of umask (see Sys.umask).

gzfile connections are an exception, as the file always has to be opened in binary mode. Thus
modes such as r are binary, and rt is needed to have a text-mode connection.

close closes and destroys a connection. Note that this will happen automatically in due course if
there is no R object referring to the connection.

A maximum of 128 connections can be allocated (not necessarily open) at any one time. Three of
these are pre-allocated (see stdout). The OS will impose limits on the numbers of connections of
various types, but these are usually larger than 125.

flush flushes the output stream of a connection open for write/append (where implemented).

If for a file or fifo connection the description is "", the file/fifo is immediately opened (in
"w+" mode unless open="w+b" is specified) and unlinked from the file system. This provides a
temporary file/fifo to write to and then read from.

A note on file:// URLs. The most general form (from RFC1738) is
file://host/path/to/file, but R only accepts the form with an empty host field
referring to the local machine. This is then file:///path/to/file, where path/to/file
is relative to /. So although the third slash is strictly part of the specification not part of the path,
this can be regarded as a way to specify the file ‘/path/to/file’. It is not possible to specify a relative
path using a file URL. Also, no attempt is made to decode an encoded URL: call URLdecode if
necessary.

Note that https:// connections are not supported.

Value

file, pipe, fifo, url, gzfile, bzfile, unz and socketConnection return a connec-
tion object which inherits from class "connection" and has a first more specific class.

isOpen returns a logical value, whether the connection is currently open.

isIncomplete returns a logical value, whether last read attempt was blocked, or for an output
text connection whether there is unflushed output.

Encoding

The encoding of the input/output stream of a connection in text mode can be specified by name, in
the same way as it would be given to iconv: see that help page for how to find out what names
are recognized on your platform. Additionally, "" and "native.enc" both mean the ‘native’
encoding, that is the internal encoding of the current locale and hence no translation is done. Not
all builds of R support this, and if yours does not, specifying a non-default encoding will give an
error when the connection is opened.

Re-encoding only works for connections in text mode.

The encoding "UCS-2LE" is treated specially, as it is the appropriate value for Windows ‘Unicode’
text files. If the first two bytes are the Byte Order Mark 0xFFFE then these are removed as most
implementations of iconv do not accept BOMs. Note that some implementations will handle
BOMs using encoding "UCS-2" but many will not.

Exactly what happens when the requested translation cannot be done is in general undocumented.
Requesting a conversion that is not supported is an error, reported when the connection is opened.

connections 77

On output the result is likely to be that up to the error, with a warning. On input, it will most likely
be all or some of the input up to the error.

Blocking

The default condition for all but fifo and socket connections is to be in blocking mode. In that
mode, functions do not return to the R evaluator until they are complete. In non-blocking mode,
operations return as soon as possible, so on input they will return with whatever input is available
(possibly none) and for output they will return whether or not the write succeeded.

The function readLines behaves differently in respect of incomplete last lines in the two modes:
see its help page.

Even when a connection is in blocking mode, attempts are made to ensure that it does not block the
event loop and hence the operation of GUI parts of R. These do not always succeed, and the whole
process will be blocked during a DNS lookup on Unix, for example.

Most blocking operations on URLs and sockets are subject to the timeout set by
options("timeout"). Note that this is a timeout for no response at all, not for the whole
operation. The timeout is set at the time the connection is opened (more precisely, when the last
connection of that type – http:, ftp: or socket – was opened).

Fifos

Fifos default to non-blocking. That follows S version 4 and is probably most natural, but it does
have some implications. In particular, opening a non-blocking fifo connection for writing (only)
will fail unless some other process is reading on the fifo.

Opening a fifo for both reading and writing (in any mode: one can only append to fifos) connects
both sides of the fifo to the R process, and provides an similar facility to file().

Clipboard

file can also be used with description = "clipboard" in mode "r" only. This
reads the X11 primary selection (see http://standards.freedesktop.org/
clipboards-spec/clipboards-latest.txt), which can also be specified as
"X11_primary" and the secondary selection as "X11_secondary". On most sys-
tems the clipboard selection (that used by ‘Copy’ from an ‘Edit’ menu) can be specified as
"X11_clipboard".

When a clipboard is opened for reading, the contents are immediately copied to internal storage in
the connection.

Unix users wishing to write to one of the selections may be able to do so via xclip (http:
//people.debian.org/~kims/xclip/), for example by pipe("xclip -i", "w")
for the primary selection.

MacOS X users can use pipe("pbpaste") and pipe("pbcopy", "w") to read from and
write to that system’s clipboard.

Note

R’s connections are modelled on those in S version 4 (see Chambers, 1998). However R goes
well beyond the S model, for example in output text connections and URL, gzfile, bzfile and
socket connections.

The default mode in R is "r" except for socket connections. This differs from S, where it is the
equivalent of "r+", known as "*".

http://standards.freedesktop.org/clipboards-spec/clipboards-latest.txt
http://standards.freedesktop.org/clipboards-spec/clipboards-latest.txt
http://people.debian.org/~kims/xclip/
http://people.debian.org/~kims/xclip/

78 connections

On (rare) platforms where vsnprintf does not return the needed length of output there is a
100,000 character output limit on the length of line for fifo, gzfile and bzfile connections:
longer lines will be truncated with a warning.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

textConnection, seek, showConnections, pushBack.

Functions making direct use of connections are readLines, readBin, readChar,
writeLines, writeBin, writeChar, cat, sink, scan, parse, read.dcf, load,
save, dput and dump.

capabilities to see if url, fifo and socketConnection are supported by this build of
R.

gzcon to wrap gzip (de)compression around a connection.

Examples

zz <- file("ex.data", "w") # open an output file connection
cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
cat("One more line\n", file = zz)
close(zz)
readLines("ex.data")
unlink("ex.data")

zz <- gzfile("ex.gz", "w") # compressed file
cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)
readLines(zz <- gzfile("ex.gz"))
close(zz)
unlink("ex.gz")

zz <- bzfile("ex.bz2", "w") # bzip2-ed file
cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)
print(readLines(zz <- bzfile("ex.bz2")))
close(zz)
unlink("ex.bz2")

An example of a file open for reading and writing
Tfile <- file("test1", "w+")
c(isOpen(Tfile, "r"), isOpen(Tfile, "w")) # both TRUE
cat("abc\ndef\n", file=Tfile)
readLines(Tfile)
seek(Tfile, 0, rw="r") # reset to beginning
readLines(Tfile)
cat("ghi\n", file=Tfile)
readLines(Tfile)
close(Tfile)
unlink("test1")

We can do the same thing with an anonymous file.
Tfile <- file()

connections 79

cat("abc\ndef\n", file=Tfile)
readLines(Tfile)
close(Tfile)

fifo example -- may fail, e.g. on Cygwin, even with OS support for fifos
if(capabilities("fifo")) {
zz <- fifo("foo-fifo", "w+")
writeLines("abc", zz)
print(readLines(zz))
close(zz)
unlink("foo-fifo")

}

Unix examples of use of pipes

read listing of current directory
readLines(pipe("ls -1"))

remove trailing commas. Suppose

Not run:
% cat data2
450, 390, 467, 654, 30, 542, 334, 432, 421,
357, 497, 493, 550, 549, 467, 575, 578, 342,
446, 547, 534, 495, 979, 479
End(Not run)
Then read this by
scan(pipe("sed -e s/,$// data2_"), sep=",")

convert decimal point to comma in output: see also write.table
both R strings and (probably) the shell need \ doubled
zz <- pipe(paste("sed s/\\\\./,/ >", "outfile"), "w")
cat(format(round(stats::rnorm(48), 4)), fill=70, file = zz)
close(zz)
file.show("outfile", delete.file=TRUE)

example for a machine running a finger daemon

con <- socketConnection(port = 79, blocking = TRUE)
writeLines(paste(system("whoami", intern=TRUE), "\r", sep=""), con)
gsub(" *$", "", readLines(con))
close(con)

Not run:
two R processes communicating via non-blocking sockets
R process 1
con1 <- socketConnection(port = 6011, server=TRUE)
writeLines(LETTERS, con1)
close(con1)

R process 2
con2 <- socketConnection(Sys.info()["nodename"], port = 6011)
as non-blocking, may need to loop for input
readLines(con2)

80 Constants

while(isIncomplete(con2)) {Sys.sleep(1); readLines(con2)}
close(con2)

examples of use of encodings
cat(x, file = (con <- file("foo", "w", encoding="UTF-8"))); close(con)
read a 'Windows Unicode' file
A <- read.table(con <- file("students", encoding="UCS-2LE")); close(con)
End(Not run)

Constants Built-in Constants

Description

Constants built into R.

Usage

LETTERS
letters
month.abb
month.name
pi

Details

R has a small number of built-in constants (there is also a rather larger library of data sets which
can be loaded with the function data).

The following constants are available:

• LETTERS: the 26 upper-case letters of the Roman alphabet;

• letters: the 26 lower-case letters of the Roman alphabet;

• month.abb: the three-letter abbreviations for the English month names;

• month.name: the English names for the months of the year;

• pi: the ratio of the circumference of a circle to its diameter.

These are implemented as variables in the base name space taking appropriate values.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

data, DateTimeClasses.

Quotes for the parsing of character constants, NumericConstants for numeric constants.

contributors 81

Examples

John Machin (ca 1706) computed pi to over 100 decimal places
using the Taylor series expansion of the second term of
pi - 4*(4*atan(1/5) - atan(1/239))

months in English
month.name
months in your current locale
format(ISOdate(2000, 1:12, 1), "%B")
format(ISOdate(2000, 1:12, 1), "%b")

contributors R Project Contributors

Description

The R Who-is-who, describing who made significant contributions to the development of R.

Usage

contributors()

Control Control Flow

Description

These are the basic control-flow constructs of the R language. They function in much the same way
as control statements in any Algol-like language. They are all reserved words.

Usage

if(cond) expr
if(cond) cons.expr else alt.expr

for(var in seq) expr
while(cond) expr
repeat expr
break
next

Arguments

cond A length-one logical vector that is not NA. Conditions of length greater than one
are accepted with a warning, but only the first element is used. Other types are
coerced to logical if possible, ignoring any class.

var A syntactical name for a variable.
seq An expression evaluating to a vector (including a list and an expression) or to a

pairlist or NULL.
expr, cons.expr, alt.expr

An expression in a formal sense. This is either a simple expression or a so called
compound expression, usually of the form { expr1 ; expr2 }.

82 copyright

Details

break breaks out of a for, while or repeat loop; control is transferred to the first statement
outside the inner-most loop. next halts the processing of the current iteration and advances the
looping index. Both break and next apply only to the innermost of nested loops.

Note that it is a common mistake to forget to put braces ({ .. }) around your statements, e.g.,
after if(..) or for(....). In particular, you should not have a newline between } and else
to avoid a syntax error in entering a if ... else construct at the keyboard or via source.
For that reason, one (somewhat extreme) attitude of defensive programming is to always use braces,
e.g., for if clauses.

The index seq in a for loop is evaluated at the start of the loop; changing it subsequently does not
affect the loop. The variable var has the same type as seq, and is read-only: assigning to it does
not alter seq. If seq is a factor (which is not strictly allowed) then its internal codes are used: the
effect is that of as.integer not as.vector.

Value

if returns the value of the expression evaluated, or NULL if none was (which may happen if there
is no else).

for, while and repeat return the value of the last expression evaluated (or NULL if none was),
invisibly. for sets var to the last used element of seq, or to NULL if it was of length zero.

break and next have value NULL, although it would be strange to look for a return value.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Syntax for the basic R syntax and operators, Paren for parentheses and braces; further, ifelse,
switch.

Examples

for(i in 1:5) print(1:i)
for(n in c(2,5,10,20,50)) {

x <- stats::rnorm(n)
cat(n,":", sum(x^2),"\n")

}

copyright Copyrights of Files Used to Build R

Description

R is released under the ‘GNU Public License’: see license for details. The license describes
your right to use R. Copyright is concerned with ownership of intellectual rights, and some of the
software used has conditions that the copyright must be explicitly stated: see the ‘Details’ section.
We are grateful to these people and other contributors (see contributors) for the ability to use
their work.

crossprod 83

Details

The file ‘R_HOME/COPYRIGHTS’ lists the copyrights in full detail.

crossprod Matrix Crossproduct

Description

Given matrices x and y as arguments, return a matrix cross-product. This is formally equiva-
lent to (but usually slightly faster than) the call t(x) %*% y (crossprod) or x %*% t(y)
(tcrossprod).

Usage

crossprod(x, y = NULL)

tcrossprod(x, y = NULL)

Arguments

x, y numeric or complex matrices: y = NULL is taken to be the same matrix as x.
Vectors are promoted to single-column matrices.

Value

A double or complex matrix, with appropriate dimnames taken from x and y.

Note

When x or y are not matrices, they are treated as column or row matrices, but their names are
usually not promoted to dimnames. Hence, currently, the last example has empty dimnames.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

%*% and outer product %o%.

Examples

(z <- crossprod(1:4)) # = sum(1 + 2^2 + 3^2 + 4^2)
drop(z) # scalar
x <- 1:4; names(x) <- letters[1:4]; x
tcrossprod(as.matrix(x)) # is
identical(tcrossprod(as.matrix(x)),

crossprod(t(x)))
tcrossprod(x) # no dimnames

84 cumsum

Cstack_info Report Information on C Stack Size and Usage

Description

Report information on the C stack size and usage (if available).

Usage

Cstack_info()

Details

On most platforms, C stack information is recorded when R is initialized and used for stack-
checking. If this information is unavailable, the size will be returned as NA, and stack-checking
is not performed.

The information on the stack base address is thought to be accurate on Windows, Linux and
FreeBSD (including MacOS X), but a heuristic is used on other platforms. Because this might
be slightly inaccurate, the current usage could be estimated as negative. (The heuristic is not used
on embedded uses of R on platforms where the stack base is not thought to be accurate.)

Value

An integer vector. This has named elements

size The size of the stack (in bytes), or NA if unknown.

current The estimated current usage (in bytes), possibly NA.

direction 1 (stack grows down, the usual case) or -1 (stack grows up).

eval_depth The current evaluation depth (including two calls for the call to
Cstack_info).

Examples

Cstack_info()

cumsum Cumulative Sums, Products, and Extremes

Description

Returns a vector whose elements are the cumulative sums, products, minima or maxima of the
elements of the argument.

Usage

cumsum(x)
cumprod(x)
cummax(x)
cummin(x)

cut 85

Arguments

x a numeric or complex (not cummin or cummax) object, or an object that can
be coerced to one of these.

Details

These are generic functions: methods can be defined for them individually or via the Math group
generic.

Value

A vector of the same length and type as x (after coercion), except that cumprod returns a numeric
vector for integer input (for consistency with *). Names are preserved.

An NA value in x causes the corresponding and following elements of the return value to be NA, as
does integer overflow in cumsum (with a warning).

S4 methods

cumsum and cumprod are S4 generic functions: methods can be defined for them individually or
via the Math group generic. cummax and cummin are individually S4 generic functions.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (cumsum only.)

Examples

cumsum(1:10)
cumprod(1:10)
cummin(c(3:1, 2:0, 4:2))
cummax(c(3:1, 2:0, 4:2))

cut Convert Numeric to Factor

Description

cut divides the range of x into intervals and codes the values in x according to which interval they
fall. The leftmost interval corresponds to level one, the next leftmost to level two and so on.

Usage

cut(x, ...)

Default S3 method:
cut(x, breaks, labels = NULL,

include.lowest = FALSE, right = TRUE, dig.lab = 3,
ordered_result = FALSE, ...)

86 cut

Arguments

x a numeric vector which is to be converted to a factor by cutting.
breaks either a numeric vector of two or more cut points or a single number (greater

than or equal to 2) giving the number of intervals into which x is to be cut.
labels labels for the levels of the resulting category. By default, labels are constructed

using "(a,b]" interval notation. If labels = FALSE, simple integer codes
are returned instead of a factor.

include.lowest
logical, indicating if an ‘x[i]’ equal to the lowest (or highest, for right =
FALSE) ‘breaks’ value should be included.

right logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa.

dig.lab integer which is used when labels are not given. It determines the number of
digits used in formatting the break numbers.

ordered_result
logical: should the result be an ordered factor?

... further arguments passed to or from other methods.

Details

When breaks is specified as a single number, the range of the data is divided into breaks pieces
of equal length, and then the outer limits are moved away by 0.1% of the range to ensure that the
extreme values both fall within the break intervals. (If x is a constant vector, equal-length intervals
are created that cover the single value.)

If a labels parameter is specified, its values are used to name the factor levels. If none is specified,
the factor level labels are constructed as "(b1, b2]", "(b2, b3]" etc. for right = TRUE
and as "[b1, b2)", . . . if right = FALSE. In this case, dig.lab indicates the minimum
number of digits should be used in formatting the numbers b1, b2, A larger value (up to
12) will be used if needed to distinguish between any pair of endpoints: if this fails labels such as
"Range3" will be used.

Value

A factor is returned, unless labels = FALSE which results in the mere integer level codes.

Note

Instead of table(cut(x, br)), hist(x, br, plot = FALSE) is more efficient and
less memory hungry. Instead of cut(*, labels = FALSE), findInterval() is more
efficient.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

split for splitting a variable according to a group factor; factor, tabulate, table,
findInterval().

quantile for ways of choosing breaks of roughly equal content (rather than length), cut2 in
package Hmisc for a canned way to form quantile groups.

cut.POSIXt 87

Examples

Z <- stats::rnorm(10000)
table(cut(Z, breaks = -6:6))
sum(table(cut(Z, breaks = -6:6, labels=FALSE)))
sum(graphics::hist(Z, breaks = -6:6, plot=FALSE)$counts)

cut(rep(1,5),4)#-- dummy
tx0 <- c(9, 4, 6, 5, 3, 10, 5, 3, 5)
x <- rep(0:8, tx0)
stopifnot(table(x) == tx0)

table(cut(x, b = 8))
table(cut(x, breaks = 3*(-2:5)))
table(cut(x, breaks = 3*(-2:5), right = FALSE))

##--- some values OUTSIDE the breaks :
table(cx <- cut(x, breaks = 2*(0:4)))
table(cxl <- cut(x, breaks = 2*(0:4), right = FALSE))
which(is.na(cx)); x[is.na(cx)] #-- the first 9 values 0
which(is.na(cxl)); x[is.na(cxl)] #-- the last 5 values 8

Label construction:
y <- stats::rnorm(100)
table(cut(y, breaks = pi/3*(-3:3)))
table(cut(y, breaks = pi/3*(-3:3), dig.lab=4))

table(cut(y, breaks = 1*(-3:3), dig.lab=4))
extra digits don't "harm" here
table(cut(y, breaks = 1*(-3:3), right = FALSE))
#- the same, since no exact INT!

sometimes the default dig.lab is not enough to be avoid confusion:
aaa <- c(1,2,3,4,5,2,3,4,5,6,7)
cut(aaa, 3)
cut(aaa, 3, dig.lab=4, ordered = TRUE)

one way to extract the breakpoints
labs <- levels(cut(aaa, 3))
cbind(lower = as.numeric(sub("\\((.+),.*", "\\1", labs)),

upper = as.numeric(sub("[^,]*,([^]]*)\\]", "\\1", labs)))

cut.POSIXt Convert a Date or Date-Time Object to a Factor

Description

Method for cut applied to date-time objects.

Usage

S3 method for class 'POSIXt':
cut(x, breaks, labels = NULL, start.on.monday = TRUE,

right = FALSE, ...)

88 data.class

S3 method for class 'Date':
cut(x, breaks, labels = NULL, start.on.monday = TRUE,

right = FALSE, ...)

Arguments

x an object inheriting from class "POSIXt" or "Date".

breaks a vector of cut points or number giving the number of intervals which x is to be
cut into or an interval specification, one of "sec", "min", "hour", "day",
"DSTday", "week", "month", "quarter" or "year", optionally pre-
ceded by an integer and a space, or followed by "s". For "Date" objects only
"day", "week", "month", "quarter" and "year" are allowed.

labels labels for the levels of the resulting category. By default, labels are constructed
from the left-hand end of the intervals (which are include for the default value
of right). If labels = FALSE, simple integer codes are returned instead
of a factor.

start.on.monday
logical. If breaks = "weeks", should the week start on Mondays or Sun-
days?

right, ... arguments to be passed to or from other methods.

Details

Using both right = TRUE and include.lowest = TRUE will include both ends of the
range of dates.

Using breaks = "quarter" will create intervals of 3 calendar months, with the intervals be-
ginning on January 1, April 1, July 1 or October 1, based upon min(x) as appropriate.

Value

A factor is returned, unless labels = FALSE which returns the integer level codes.

See Also

seq.POSIXt, seq.Date, cut

Examples

random dates in a 10-week period
cut(ISOdate(2001, 1, 1) + 70*86400*stats::runif(100), "weeks")
cut(as.Date("2001/1/1") + 70*stats::runif(100), "weeks")

data.class Object Classes

Description

Determine the class of an arbitrary R object.

Usage

data.class(x)

data.frame 89

Arguments

x an R object.

Value

character string giving the class of x.

The class is the (first element) of the class attribute if this is non-NULL, or inferred from the
object’s dim attribute if this is non-NULL, or mode(x).

Simply speaking, data.class(x) returns what is typically useful for method dispatching. (Or,
what the basic creator functions already and maybe eventually all will attach as a class attribute.)

Note

For compatibility reasons, there is one exception to the rule above: When x is integer, the result
of data.class(x) is "numeric" even when x is classed.

See Also

class

Examples

x <- LETTERS
data.class(factor(x)) # has a class attribute
data.class(matrix(x, ncol = 13)) # has a dim attribute
data.class(list(x)) # the same as mode(x)
data.class(x) # the same as mode(x)

stopifnot(data.class(1:2) == "numeric")# compatibility "rule"

data.frame Data Frames

Description

This function creates data frames, tightly coupled collections of variables which share many of the
properties of matrices and of lists, used as the fundamental data structure by most of R’s modeling
software.

Usage

data.frame(..., row.names = NULL, check.rows = FALSE,
check.names = TRUE,
stringsAsFactors = default.stringsAsFactors())

default.stringsAsFactors()

90 data.frame

Arguments

... these arguments are of either the form value or tag = value. Component
names are created based on the tag (if present) or the deparsed argument itself.

row.names NULL or a single integer or character string specifying a column to be used as
row names, or a character or integer vector giving the row names for the data
frame.

check.rows if TRUE then the rows are checked for consistency of length and names.

check.names logical. If TRUE then the names of the variables in the data frame are checked
to ensure that they are syntactically valid variable names and are not duplicated.
If necessary they are adjusted (by make.names) so that they are.

stringsAsFactors
logical: should character vectors be converted to factors? The
‘factory-fresh’ default is TRUE, but this can be changed by setting
options(stringsAsFactors = FALSE).

Details

A data frame is a list of variables of the same length with unique row names, given class
"data.frame". If there are zero variables, the row names determine the number of rows.

Duplicate column names are allowed, but you need to use check.names=FALSE for
data.frame to generate such a data frame. However, not all operations on data frames will
preserve duplicated column names: for example matrix-like subsetting will force column names in
the result to be unique.

data.frame converts each of its arguments to a data frame by calling
as.data.frame(optional=TRUE). As that is a generic function, methods can be written to
change the behaviour of arguments according to their classes: R comes with many such methods.
Character variables passed to data.frame are converted to factor columns unless protected by
I. If a list or data frame or matrix is passed to data.frame it is as if each component or column
had been passed as a separate argument (except for matrices of class "model.matrix" and
those protected by I).

Objects passed to data.frame should have the same number of rows, but atomic vectors, factors
and character vectors protected by I will be recycled a whole number of times if necessary.

If row names are not supplied in the call to data.frame, the row names are taken from the first
component that has suitable names, for example a named vector or a matrix with rownames or a
data frame. (If that component is subsequently recycled, the names are discarded with a warning.)
If row.names was supplied as NULL or no suitable component was found the row names are the
integer sequence starting at one (and such row names are considered to be ‘automatic’, and not
preserved by as.matrix).

If row names are supplied of length one and the data frame has a single row, the row.names is
taken to specify the row names and not a column (by name or number).

Names are removed from vector inputs not protected by I.

default.stringsAsFactors is a utility that takes getOption("stringsAsFactors")
and ensures the result is TRUE or FALSE (or throws an error if the value is not NULL).

Value

A data frame, a matrix-like structure whose columns may be of differing types (numeric, logical,
factor and character and so on).

data.matrix 91

Note

In versions of R prior to 2.4.0 row.names had to be character: to ensure compatibility with earlier
versions of R, supply a character vector as the row.names argument.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

I, plot.data.frame, print.data.frame, row.names, names (for the column names),
[.data.frame for subsetting methods, Math.data.frame etc, about Group methods for
data.frames; read.table, make.names.

Examples

L3 <- LETTERS[1:3]
(d <- data.frame(cbind(x=1, y=1:10), fac=sample(L3, 10, replace=TRUE)))

The same with automatic column names:
data.frame(cbind(1, 1:10), sample(L3, 10, replace=TRUE))

is.data.frame(d)

do not convert to factor, using I() :
(dd <- cbind(d, char = I(letters[1:10])))
rbind(class=sapply(dd, class), mode=sapply(dd, mode))

stopifnot(1:10 == row.names(d))# {coercion}

(d0 <- d[, FALSE]) # NULL data frame with 10 rows
(d.0 <- d[FALSE,]) # <0 rows> data frame (3 cols)
(d00 <- d0[FALSE,]) # NULL data frame with 0 rows

data.matrix Convert a Data Frame to a Numeric Matrix

Description

Return the matrix obtained by converting all the variables in a data frame to numeric mode and then
binding them together as the columns of a matrix. Factors and ordered factors are replaced by their
internal codes.

Usage

data.matrix(frame, rownames.force = NA)

92 date

Arguments

frame a data frame whose components are logical vectors, factors or numeric vectors.
rownames.force

logical indicating if the resulting matrix should have character (rather than
NULL) rownames. The default, NA, uses NULL rownames if the data frame
has ‘automatic’ row.names or for a zero-row data frame.

Details

Logical and factor columns are converted to integers. Any other column which is not numeric (ac-
cording to is.numeric) is converted by as.numeric or, for S4 objects, as(, "numeric").
If all columns are integer (after conversion) the result is an integer natrix, otherwise a numeric (dou-
ble) matrix.

Value

If frame inherits from class "data.frame", an integer or numeric matrix of the same di-
mensions as frame, with dimnames taken from the row.names (or NULL, depending on
rownames.force) and names.

Otherwise, the result of as.matrix.

Note

The default behaviour for data frames differs from R < 2.5.0 which always gave the result character
rownames.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

as.matrix, data.frame, matrix.

Examples

DF <- data.frame(a=1:3, b=letters[10:12],
c=seq(as.Date("2004-01-01"), by = "week", len = 3),
stringsAsFactors = TRUE)

data.matrix(DF[1:2])
data.matrix(DF)

date System Date and Time

Description

Returns a character string of the current system date and time.

Dates 93

Usage

date()

Value

The string has the form "Fri Aug 20 11:11:00 1999", i.e., length 24, since it relies on
POSIX’s ctime ensuring the above fixed format. Timezone and Daylight Saving Time are taken
account of, but not indicated in the result.

The day and month abbreviations are always in English, irrespective of locale.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Sys.Date and Sys.time; Date and DateTimeClasses for objects representing date and
time.

Examples

(d <- date())
nchar(d) == 24

something similar in the current locale
format(Sys.time(), "%a %b %d %H:%M:%S %Y")

Dates Date Class

Description

Description of the class "Date" representing calendar dates.

Usage

S3 method for class 'Date':
summary(object, digits = 12, ...)

Arguments

object An object summarized.

digits Number of significant digits for the computations.

... Further arguments to be passed from or to other methods.

94 DateTimeClasses

Details

Dates are represented as the number of days since 1970-01-01, with negative values for earlier
dates. They are always printed following the rules of the current Gregorian calendar, even though
that calendar was not in use long ago (it was adopted in 1752 in Great Britain and its colonies).

It is intended that the date should be an integer, but this is not enforced in the internal representation.
Fractional days will be ignored when printing. It is possible to produce fractional days via the mean
method or by adding or subtracting (see Ops.Date).

See Also

Sys.Date for the current date.

Ops.Date for operators on "Date" objects.

format.Date for conversion to and from character strings.

plot.Date and hist.Date for plotting.

weekdays for convenience extraction functions.

seq.Date, cut.Date, round.Date for utility operations.

DateTimeClasses for date-time classes.

Examples

(today <- Sys.Date())
format(today, "%d %b %Y") # with month as a word
(tenweeks <- seq(today, length.out=10, by="1 week")) # next ten weeks
weekdays(today)
months(tenweeks)
as.Date(.leap.seconds)

DateTimeClasses Date-Time Classes

Description

Description of the classes "POSIXlt" and "POSIXct" representing calendar dates and times (to
the nearest second).

Usage

S3 method for class 'POSIXct':
print(x, ...)

S3 method for class 'POSIXct':
summary(object, digits = 15, ...)

time + z
time - z
time1 lop time2

DateTimeClasses 95

Arguments

x, object An object to be printed or summarized from one of the date-time classes.

digits Number of significant digits for the computations: should be high enough to
represent the least important time unit exactly.

... Further arguments to be passed from or to other methods.

time date-time objects

time1, time2 date-time objects or character vectors. (Character vectors are converted by
as.POSIXct.)

z a numeric vector (in seconds)

lop One of ==, !=, <, <=, > or >=.

Details

There are two basic classes of date/times. Class "POSIXct" represents the (signed) number of
seconds since the beginning of 1970 as a numeric vector. Class "POSIXlt" is a named list of
vectors representing

sec 0–61: seconds

min 0–59: minutes

hour 0–23: hours

mday 1–31: day of the month

mon 0–11: months after the first of the year.

year Years since 1900.

wday 0–6 day of the week, starting on Sunday.

yday 0–365: day of the year.

isdst Daylight savings time flag. Positive if in force, zero if not, negative if unknown.

The classes correspond to the POSIX/C99 constructs of ‘calendar time’ (the time_t data type)
and ‘local time’ (or broken-down time, the struct tm data type), from which they also inherit
their names.

"POSIXct" is more convenient for including in data frames, and "POSIXlt" is closer to human-
readable forms. A virtual class "POSIXt" inherits from both of the classes: it is used to allow
operations such as subtraction to mix the two classes.

Components wday and yday of "POSIXlt" are for information, and are not used in the conver-
sion to calendar time. However, isdst is needed to distinguish times at the end of DST: typically
1am to 2am occurs twice, first in DST and then in standard time. At all other times isdst can be
deduced from the first six values, but the behaviour if it is set incorrectly is platform-dependent.

Logical comparisons and limited arithmetic are available for both classes. One can add or subtract
a number of seconds from a date-time object, but not add two date-time objects. Subtraction of
two date-time objects is equivalent to using difftime. Be aware that "POSIXlt" objects will
be interpreted as being in the current timezone for these operations, unless a timezone has been
specified.

"POSIXlt" objects will often have an attribute "tzone", a character vector of length 3 giving
the timezone name from the TZ environment variable and the names of the base timezone and the
alternate (daylight-saving) timezone. Sometimes this may just be of length one, giving the timezone
name.

96 DateTimeClasses

"POSIXct" objects may also have an attribute "tzone", a character vector of length one. If
set, it will determine how the object is converted to class "POSIXlt" and in particular how it is
printed. This is usually desirable, but if you want to specify an object in a particular timezone but to
be printed in the current timezone you may want to remove the "tzone" attribute (e.g. by c(x)).

Unfortunately, the conversion is complicated by the operation of time zones and leap seconds
(23 days have been 86401 seconds long so far: the times of the extra seconds are in the object
.leap.seconds). The details of this are entrusted to the OS services where possible. This al-
ways covers the period 1970–2037, and on most machines back to 1902 (when time zones were in
their infancy). Outside the platform limits we use our own C code. This uses the offset from GMT
in use either for 1902 (when there was no DST) or that predicted for one of 2030 to 2037 (chosen so
that the likely DST transition days are Sundays), and uses the alternate (daylight-saving) timezone
only if isdst is positive or (if -1) if DST was predicted to be in operation in the 2030s on that day.
(There is no reason to suppose that the DST rules will remain the same in the future, and indeed the
US legislated in 2005 to change its rules as from 2007, with a possible future reversion.)

It seems that some rare systems use leap seconds, but most ignore them (as required by POSIX).
This is detected and corrected for at build time, so all "POSIXct" times used by R do not include
leap seconds. (Conceivably this could be wrong if the system has changed since build time, just
possibly by changing locales or the ‘zoneinfo’ database.)

Using c on "POSIXlt" objects converts them to the current time zone.

A few times have specific issues. First, the leapseconds are ignored, and real times such as "2005-
12-31 23:59:60" are (probably) treated as the next second. However, they will never be
generated by R, and are unlikely to arise as input. Second, on some OSes there is a problem in
the POSIX/C99 standard with "1969-12-31 23:59:59", which is -1 in calendar time and
is used as an error code. Thus as.POSIXct("1969-12-31 23:59:59", format="%Y-
%m-%d %H:%M:%S", tz="UTC") may give NA, and hence as.POSIXct("1969-12-31
23:59:59", tz="UTC") will give "1969-12-31 23:59:50". Other OSes report errors
separately and so are able to handle that time as valid.

Sub-second Accuracy

Classes "POSIXct" and "POSIXlt" are able to express fractions of a second. (Conversion of
fractions between the two forms may not be exact, but will have better than microsecond accuracy.)

Fractional seconds are printed only if options("digits.secs") is set: see strftime.

Warning

Some Unix-like systems (especially Linux ones) do not have "TZ" set, yet have internal code that
expects it (as does POSIX). We have tried to work around this, but if you get unexpected results try
setting "TZ". See as.POSIXlt for valid settings.

See Also

Dates for dates without times.

as.POSIXct and as.POSIXlt for conversion between the classes.

strptime for conversion to and from character representations.

Sys.time for clock time as a "POSIXct" object.

difftime for time intervals.

cut.POSIXt, seq.POSIXt, round.POSIXt and trunc.POSIXt for methods for these
classes.

weekdays.POSIXt for convenience extraction functions.

dcf 97

Examples

(z <- Sys.time()) # the current date, as class "POSIXct"

Sys.time() - 3600 # an hour ago

as.POSIXlt(Sys.time(), "GMT") # the current time in GMT
format(.leap.seconds) # all 23 leapseconds in your timezone
print(.leap.seconds, tz="PST8PDT") # and in Seattle's

dcf Read and Write Data in DCF Format

Description

Reads or writes an R object from/to a file in Debian Control File format.

Usage

read.dcf(file, fields = NULL, all = FALSE)

write.dcf(x, file = "", append = FALSE,
indent = 0.1 * getOption("width"),
width = 0.9 * getOption("width"))

Arguments

file either a character string naming a file or a connection. "" indicates output to the
console. For read.dcf this can name a gzip-compressed file.

fields Fields to read from the DCF file. Default is to read all fields.

all a logical indicating whether in case of multiple occurrences of a field in a record,
all these should be gathered. If all is false (default), only the last such occur-
rence is used.

x the object to be written, typically a data frame. If not, it is attempted to coerce
x to a data frame.

append logical. If TRUE, the output is appended to the file. If FALSE, any existing file
of the name is destroyed.

indent a positive integer specifying the indentation for continuation lines in output en-
tries.

width a positive integer giving the target column for wrapping lines in the output.

Details

DCF is a simple format for storing databases in plain text files that can easily be directly read and
written by humans. DCF is used in various places to store R system information, like descriptions
and contents of packages.

The DCF rules as implemented in R are:

1. A database consists of one or more records, each with one or more named fields. Not every
record must contain each field. Fields may appear more than once in a record.

98 debug

2. Regular lines start with a non-whitespace character.

3. Regular lines are of form tag:value, i.e., have a name tag and a value for the field, sepa-
rated by : (only the first : counts). The value can be empty (=whitespace only).

4. Lines starting with whitespace are continuation lines (to the preceding field) if at least one
character in the line is non-whitespace. Continuation lines where the only non-whitespace
character is a ‘.’ are taken as blank lines (allowing for multi-paragraph field values).

5. Records are separated by one or more empty (=whitespace only) lines.

By default, read.dcf returns a character matrix with one row per record and one column per
field. Leading and trailing whitespace of field values is ignored. If a tag name is specified, but the
corresponding value is empty, then an empty string is returned. If the tag name of a field is never
used in a record, then NA is returned. If fields are repeated within a record, the last one encountered
is returned. Malformed lines lead to an error. If all is true, a data frame is returned, again with
one row per record and one column per field, and columns lists of character vectors for fields with
multiple occurrences, and character vectors otherwise.

write.dcf does not write NA fields.

See Also

write.table.

Examples

Create a reduced version of the 'CONTENTS' file in package 'splines'
x <- read.dcf(file = system.file("CONTENTS", package = "splines"),

fields = c("Entry", "Description"))
write.dcf(x)

debug Debug a Function

Description

Set or unset the debugging flag on a function.

Usage

debug(fun)
undebug(fun)

Arguments

fun any interpreted R function.

Details

When a function flagged for debugging is entered, normal execution is suspended and the body of
function is executed one statement at a time. A new browser context is initiated for each step (and
the previous one destroyed).

At the debug prompt the user can enter commands or R expressions. The commands are

Defunct 99

n (or just return). Advance to the next step.
c continue to the end of the current context: e.g. to the end of the loop if within a loop or to the

end of the function.
cont synonym for c.
where print a stack trace of all active function calls.
Q exit the browser and the current evaluation and return to the top-level prompt.

(Leading and trailing whitespace is ignored, except for return).

Anything else entered at the debug prompt is interpreted as an R expression to be evaluated in the
calling environment: in particular typing an object name will cause the object to be printed, and
ls() lists the objects in the calling frame. (If you want to look at an object with a name such as n,
print it explicitly.)

If a function is defined inside a function, single-step though to the end of its definition, and then call
debug on its name.

In order to debug S4 methods (see Methods), you need to use trace, typically calling browser,
e.g., as
trace("plot", browser, exit=browser, signature = c("track",
"missing"))

See Also

browser, trace; traceback to see the stack after an Error: ... message; recover
for another debugging approach.

Defunct Marking Objects as Defunct

Description

When a function is removed from R it should be replaced by a function which calls .Defunct.

Usage

.Defunct(new, package = NULL, msg)

Arguments

new character string: A suggestion for a replacement function.
package character string: The package to be used when suggesting where the defunct

function might be listed.
msg character string: A message to be printed, if missing a default message is used.

Details

.Defunct is called from defunct functions. Functions should be listed in help("pkg-
defunct") for an appropriate pkg, including base.

See Also

Deprecated.

base-defunct and so on which list the defunct functions in the packages.

100 delayedAssign

delayedAssign Delay Evaluation

Description

delayedAssign creates a promise to evaluate the given expression if its value is requested. This
provides direct access to the lazy evaluation mechanism used by R for the evaluation of (interpreted)
functions.

Usage

delayedAssign(x, value, eval.env = parent.frame(1),
assign.env = parent.frame(1))

Arguments

x a variable name (given as a quoted string in the function call)

value an expression to be assigned to x

eval.env an environment in which to evaluate value

assign.env an environment in which to assign x

Details

Both eval.env and assign.env default to the currently active environment.

The expression assigned to a promise by delayedAssign will not be evaluated until it is even-
tually ‘forced’. This happens when the variable is first accessed.

When the promise is eventually forced, it is evaluated within the environment specified by
eval.env (whose contents may have changed in the meantime). After that, the value is fixed
and the expression will not be evaluated again.

Value

This function is invoked for its side effect, which is assigning a promise to evaluate value to the
variable x.

See Also

substitute, to see the expression associated with a promise.

Examples

msg <- "old"
delayedAssign("x", msg)
msg <- "new!"
x #- new!
substitute(x) #- msg

delayedAssign("x", {
for(i in 1:3)

cat("yippee!\n")
10

deparse 101

})

x^2 #- yippee
x^2 #- simple number

e <- (function(x, y = 1, z) environment())(1+2, "y", {cat(" HO! "); pi+2})
(le <- as.list(e)) # evaluates the promises

deparse Expression Deparsing

Description

Turn unevaluated expressions into character strings.

Usage

deparse(expr, width.cutoff = 60,
backtick = mode(expr) %in% c("call", "expression", "("),
control = c("keepInteger", "showAttributes", "keepNA"),
nlines = -1)

Arguments

expr any R expression.

width.cutoff integer in [20, 500] determining the cutoff at which line-breaking is tried.

backtick logical indicating whether symbolic names should be enclosed in backticks if
they do not follow the standard syntax.

control character vector of deparsing options. See .deparseOpts.

nlines the maximum number of lines to produce. Negative values indicate no limit.

Details

This function turns unevaluated expressions (where ‘expression’ is taken in a wider sense than the
strict concept of a vector of mode "expression" used in expression) into character strings
(a kind of inverse to parse).

A typical use of this is to create informative labels for data sets and plots. The example shows a
simple use of this facility. It uses the functions deparse and substitute to create labels for a
plot which are character string versions of the actual arguments to the function myplot.

The default for the backtick option is not to quote single symbols but only composite expres-
sions. This is a compromise to avoid breaking existing code.

Using control = "all" comes closest to making deparse() an inverse of parse(). How-
ever, not all objects are deparse-able even with this option and a warning will be issued if the func-
tion recognizes that it is being asked to do the impossible.

Numeric and complex vectors are converted using 15 significant digits: see as.character for
more details.

width.cutoff is a lower bound for the line lengths: deparsing a line proceeds until at least
width.cutoff bytes have been output and e.g. arg = value expressions will not be split
across lines.

102 deparseOpts

Note

To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be deparsed as an attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

substitute, parse, expression.

Quotes for quoting conventions, including backticks.

Examples

require(stats); require(graphics)

deparse(args(lm))
deparse(args(lm), width = 500)
myplot <-
function(x, y) {

plot(x, y, xlab=deparse(substitute(x)),
ylab=deparse(substitute(y)))

}
e <- quote(`foo bar`)
deparse(e)
deparse(e, backtick=TRUE)
e <- quote(`foo bar`+1)
deparse(e)
deparse(e, control = "all")

deparseOpts Options for Expression Deparsing

Description

Process the deparsing options for deparse, dput and dump.

Usage

.deparseOpts(control)

Arguments

control character vector of deparsing options.

deparseOpts 103

Details

This is called by deparse, dput and dump to process their control argument.

The control argument is a vector containing zero or more of the following strings. Partial string
matching is used.

keepInteger Either surround integer vectors by as.integer() or use suffix L, so they
are not converted to type double when parsed. This includes making sure that integer
NAs are preserved (via NA_integer_ if there are no non-NA values in the vector, unless
"S_compatible" is set).

quoteExpressions Surround expressions with quote(), so they are not evaluated when re-
parsed.

showAttributes If the object has attributes (other than a source attribute), use
structure() to display them as well as the object value. This is the default for deparse
and dput.

useSource If the object has a source attribute, display that instead of deparsing the object.
Currently only applies to function definitions.

warnIncomplete Some exotic objects such as environments, external pointers, etc. can not
be deparsed properly. This option causes a warning to be issued if any of those may give
problems.

Also, the parser in R < 2.7.0 would only accept strings of up to 8192 bytes, and this option
gives a warning for longer strings.

keepNA Integer, real and character NAs are surrounded by coercion where necessary to ensure that
they are parsed to the same type.

all An abbreviated way to specify all of the options listed above. This is the default for dump,
and the options used by edit (which are fixed).

delayPromises Deparse promises in the form <promise: expression> rather than evaluating
them. The value and the environment of the promise will not be shown and the deparsed code
cannot be sourced.

S_compatible Make deparsing as far as possible compatible with S and R < 2.5.0. For com-
patibility with S, integer values of double vectors are deparsed with a trailing decimal point.

For the most readable (but perhaps incomplete) display, use control = NULL. This displays
the object’s value, but not its attributes. The default in deparse is to display the attributes as
well, but not to use any of the other options to make the result parseable. (dput and dump do
use more default options, and printing of functions without sources uses c("keepInteger",
"keepNA").)

Using control = "all" comes closest to making deparse() an inverse of parse(). How-
ever, not all objects are deparse-able even with this option. A warning will be issued if the function
recognizes that it is being asked to do the impossible.

Value

A numerical value corresponding to the options selected.

104 det

Deprecated Marking Objects as Deprecated

Description

When an object is about removed from R it is first deprecated and should include a call to
.Deprecated.

Usage

.Deprecated(new, package=NULL, msg)

Arguments

new character string: A suggestion for a replacement function.

package character string: The package to be used when suggesting where the deprecated
function might be listed.

msg character string: A message to be printed, if missing a default message is used.

Details

.Deprecated("<new name>") is called from deprecated functions. The original help page
for these functions is often available at help("oldName-deprecated") (note the quotes).
Functions should be listed in help("pkg-deprecated") for an appropriate pkg, including
base.

See Also

Defunct

base-deprecated and so on which list the deprecated functions in the packages.

det Calculate the Determinant of a Matrix

Description

det calculates the determinant of a matrix. determinant is a generic function that returns
separately the modulus of the determinant, optionally on the logarithm scale, and the sign of the
determinant.

Usage

det(x, ...)
determinant(x, logarithm = TRUE, ...)

detach 105

Arguments

x numeric matrix.

logarithm logical; if TRUE (default) return the logarithm of the modulus of the determi-
nant.

... Optional arguments. At present none are used. Previous versions of det al-
lowed an optional method argument. This argument will be ignored but will
not produce an error.

Details

The determinant function uses an LU decomposition and the det function is simply a wrapper
around a call to determinant.

Often, computing the determinant is not what you should be doing to solve a given problem.

Value

For det, the determinant of x. For determinant, a list with components

modulus a numeric value. The modulus (absolute value) of the determinant if
logarithm is FALSE; otherwise the logarithm of the modulus.

sign integer; either +1 or −1 according to whether the determinant is positive or
negative.

Examples

(x <- matrix(1:4, ncol=2))
unlist(determinant(x))
det(x)

det(print(cbind(1,1:3,c(2,0,1))))

detach Detach Objects from the Search Path

Description

Detach a database, i.e., remove it from the search() path of available R objects. Usually, this is
either a data.frame which has been attached or a package which was required previously.

Usage

detach(name, pos = 2, version, unload = FALSE)

Arguments

name The object to detach. Defaults to search()[pos]. This can be an unquoted
name or a character string but not a character vector. If a number is supplied this
is taken as pos.

pos Index position in search() of database to detach. When name is a number,
pos = name is used.

106 detach

version A character string denoting a version number of the package to be removed. This
should be used only with a versioned installation of the package: see library.

unload A logical value indicating whether or not to attempt to unload the namespace and
S4 methods when a package is being detached. If the package has a namespace
and unload is TRUE, then detach will attempt to unload the namespace and
remove any S4 methods defined by the package. If the namespace is in use or
unload is FALSE, no unloading will occur.

Details

This most commonly used with a single number argument referring to a position on the search
list, and can also be used with a unquoted or quoted name of an item on the search list such as
package:tools.

When a package have been loaded with an explicit version number it can be detached using the
name shown by search or by supplying name and version: see the examples.

If a package has a namespace, detaching it does not by default unload the namespace (and may
not even with unload=TRUE), and detaching will not in general unload any dynamically loaded
compiled code (DLLs). Further, registered S3 methods from the namespace will not be removed. If
you use library on a package whose name space is loaded, it attaches the exports of the loaded
name space. So detaching and re-attaching a package may not refresh some or all components of
the package, and is inadvisable.

Value

The attached database is returned invisibly, either as data.frame or as list.

Note

You cannot detach either the workspace (position 1) or the base package (the last item in the search
list).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

attach, library, search, objects, unloadNamespace, library.dynam.unload .

Examples

require(splines) # package
detach(package:splines)
could equally well use detach("package:splines")
but NOT pkg <- "package:splines"; detach(pkg)
Instead, use
library(splines)
pkg <- "package:splines"
detach(pos = match(pkg, search()))

careful: do not do this unless 'splines' is not already loaded.
library(splines)
detach(2) # 'pos' used for 'name'

diag 107

an example of the name argument to attach
and of detaching a database named by a character vector
attach_and_detach <- function(db, pos=2)
{

name <- deparse(substitute(db))
attach(db, pos=pos, name=name)
print(search()[pos])
eval(substitute(detach(n), list(n=name)))

}
attach_and_detach(women, pos=3)

Not run:
Using a versioned install
library(ash, version="1.0-9") # or perhaps just library(ash)
then one of
detach("package:ash", version="1.0-9")
or
detach("package:ash_1.0-9")
End(Not run)

diag Matrix Diagonals

Description

Extract or replace the diagonal of a matrix, or construct a diagonal matrix.

Usage

diag(x = 1, nrow, ncol)
diag(x) <- value

Arguments

x a matrix, vector or 1D array.

nrow, ncol Optional dimensions for the result.

value either a single value or a vector of length equal to that of the current diagonal.
Should be of a mode which can be coerced to that of x.

Value

If x is a matrix then diag(x) returns the diagonal of x. The resulting vector will have names if
the matrix x has matching column and row names.

If x is a vector (or 1D array) of length two or more, then diag(x) returns a diagonal matrix whose
diagonal is x.

If x is a vector of length one then diag(x) returns an identity matrix of order the nearest integer
to x. The dimension of the returned matrix can be specified by nrow and ncol (the default is
square).

The replacement form sets the diagonal of the matrix x to the given value(s).

108 diff

Note

Using diag(x) can have unexpected effects if x is a vector that could be of length one. Use
diag(x, nrow = length(x)) for consistent behaviour.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

upper.tri, lower.tri, matrix.

Examples

require(stats)
dim(diag(3))
diag(10,3,4) # guess what?
all(diag(1:3) == {m <- matrix(0,3,3); diag(m) <- 1:3; m})

diag(var(M <- cbind(X = 1:5, Y = stats::rnorm(5))))
#-> vector with names "X" and "Y"

rownames(M) <- c(colnames(M),rep("",3));
M; diag(M) # named as well

diff Lagged Differences

Description

Returns suitably lagged and iterated differences.

Usage

diff(x, ...)

Default S3 method:
diff(x, lag = 1, differences = 1, ...)

S3 method for class 'POSIXt':
diff(x, lag = 1, differences = 1, ...)

S3 method for class 'Date':
diff(x, lag = 1, differences = 1, ...)

Arguments

x a numeric vector or matrix containing the values to be differenced.

lag an integer indicating which lag to use.

differences an integer indicating the order of the difference.

... further arguments to be passed to or from methods.

difftime 109

Details

diff is a generic function with a default method and ones for classes "ts", "POSIXt" and
"Date".

NA’s propagate.

Value

If x is a vector of length n and differences=1, then the computed result is equal to the succes-
sive differences x[(1+lag):n] - x[1:(n-lag)].

If difference is larger than one this algorithm is applied recursively to x. Note that the returned
value is a vector which is shorter than x.

If x is a matrix then the difference operations are carried out on each column separately.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

diff.ts, diffinv.

Examples

diff(1:10, 2)
diff(1:10, 2, 2)
x <- cumsum(cumsum(1:10))
diff(x, lag = 2)
diff(x, differences = 2)

diff(.leap.seconds)

difftime Time Intervals

Description

Create, print and round time intervals.

Usage

time1 - time2

difftime(time1, time2, tz = "",
units = c("auto", "secs", "mins", "hours",

"days", "weeks"))

as.difftime(tim, format = "%X", units="auto")

S3 method for class 'difftime':
round(x, digits = 0, ...)

110 difftime

S3 method for class 'difftime':
format(x, ...)
S3 method for class 'difftime':
units(x)
S3 replacement method for class 'difftime':
units(x) <- value
S3 method for class 'difftime':
as.double(x, units="auto", ...)

Arguments

time1, time2 date-time or date objects.

tz a timezone specification to be used for the conversion. System-specific, but ""
is the current time zone, and "GMT" is UTC.

units character. Units in which the results are desired. Can be abbreviated.

value character. Like units above, except that abbreviations are not allowed.

tim character string or numeric value specifying a time interval.

format character specifying the format of tim: see strptime. The default is a locale-
specific time format.

x an object inheriting from class "difftime".

digits integer. Number of significant digits to retain.

... arguments to be passed to or from other methods.

Details

Function difftime calculates a difference of two date/time objects and returns an object of class
"difftime" with an attribute indicating the units. There is a round method for objects of this
class, as well as methods for the group-generic (see Ops) logical and arithmetic operations.

If units = "auto", a suitable set of units is chosen, the largest possible (excluding "weeks")
in which all the absolute differences are greater than one.

Subtraction of date-time objects gives an object of this class, by calling difftime with
units="auto". Alternatively, as.difftime() works on character-coded or numeric time
intervals; in the latter case, units must be specified, and format has no effect.

Limited arithmetic is available on "difftime" objects: they can be added or subtracted, and mul-
tiplied or divided by a numeric vector. In addition, adding or subtracting a numeric vector implicitly
converts the numeric vector to a "difftime" object with the same units as the "difftime"
object.

The units of a "difftime" object can be extracted by the units function, which also has an
replacement form. If the units are changed, the numerical value is scaled accordingly.

The as.double method returns the numeric value expressed in the specified units. Using
units="auto" means the units of the object.

The format method simply formats the numeric value and appends the units as a text string.

See Also

DateTimeClasses.

dim 111

Examples

(z <- Sys.time() - 3600)
Sys.time() - z # just over 3600 seconds.

time interval between releases of R 1.2.2 and 1.2.3.
ISOdate(2001, 4, 26) - ISOdate(2001, 2, 26)

as.difftime(c("0:3:20", "11:23:15"))
as.difftime(c("3:20", "23:15", "2:"), format= "%H:%M")# 3rd gives NA
(z <- as.difftime(c(0,30,60), units="mins"))
as.numeric(z, units="secs")
as.numeric(z, units="hours")
format(z)

dim Dimensions of an Object

Description

Retrieve or set the dimension of an object.

Usage

dim(x)
dim(x) <- value

Arguments

x an R object, for example a matrix, array or data frame.

value For the default method, either NULL or a numeric vector, which is coerced to
integer (by truncation).

Details

The functions dim and dim<- are generic.

dim has a method for data.frames, which returns the lengths of the row.names attribute of x
and of x (as the numbers of rows and columns respecitvely).

Value

For an array (and hence in particular, for a matrix) dim retrieves the dim attribute of the object. It
is NULL or a vector of mode integer.

The replacement method changes the "dim" attribute (provided the new value is compatible) and
removes any "dimnames" and "names" attributes.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

112 dimnames

See Also

ncol, nrow and dimnames.

Examples

x <- 1:12 ; dim(x) <- c(3,4)
x

simple versions of nrow and ncol could be defined as follows
nrow0 <- function(x) dim(x)[1]
ncol0 <- function(x) dim(x)[2]

dimnames Dimnames of an Object

Description

Retrieve or set the dimnames of an object.

Usage

dimnames(x)
dimnames(x) <- value

Arguments

x an R object, for example a matrix, array or data frame.
value a possible value for dimnames(x): see the Value section.

Details

The functions dimnames and dimnames<- are generic.

For an array (and hence in particular, for a matrix), they retrieve or set the dimnames attribute
(see attributes) of the object. A list value can have names, and these will be used to label the
dimensions of the array where appropriate.

The replacement method for arrays/matrices coerces vector and factor elements of value to char-
acter, but does not dispatch methods for as.character. It coerces zero-length elements to
NULL. If value is a list shorter than the number of dimensions, as from R 2.8.0 it is extended with
NULLs to the needed length.

Both have methods for data frames. The dimnames of a data frame are its row.names
and its names. For the replacement method each component of value will be coerced by
as.character.

For a 1D matrix the names are the same thing as the (only) component of the dimnames.

Value

The dimnames of a matrix or array can be NULL or a list of the same length as dim(x). If a list, its
components are either NULL or a character vector with positive length of the appropriate dimension
of x.

For the "data.frame" method both dimnames are character vectors, and the rownames must
contain no duplicates nor missing values.

do.call 113

Note

Setting components of the dimnames, e.g. dimnames(A)[[1]] <- value is a common
paradigm, but note that it will not work if the value assigned is NULL. Use rownames instead,
or (as it does) manipulate the whole dimnames list.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

rownames, colnames; array, matrix, data.frame.

Examples

simple versions of rownames and colnames
could be defined as follows
rownames0 <- function(x) dimnames(x)[[1]]
colnames0 <- function(x) dimnames(x)[[2]]

do.call Execute a Function Call

Description

do.call constructs and executes a function call from a name or a function and a list of arguments
to be passed to it.

Usage

do.call(what, args, quote = FALSE, envir = parent.frame())

Arguments

what either a function or a non-empty character string naming the function to be
called.

args a list of arguments to the function call. The names attribute of args gives the
argument names.

quote a logical value indicating whether to quote the arguments.
envir an environment within which to evaluate the call. This will be most useful if

what is a character string and the arguments are symbols or quoted expressions.

Details

If quote is FALSE, the default, then the arguments are evaluated (in the calling environment,
not envir.). If quote is TRUE then each argument is quoted (see quote) so that the effect of
argument evaluation is to remove the quotes – leaving the original arguments unevaluated when the
call is constructed.

The behavior of some functions, such as substitute, will not be the same for functions evaluated
using do.call as if they were evaluated from the interpreter. The precise semantics are currently
undefined and subject to change.

114 double

Value

The result of the (evaluated) function call.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call which creates an unevaluated call.

Examples

do.call("complex", list(imag = 1:3))

if we already have a list (e.g. a data frame)
we need c() to add further arguments
tmp <- expand.grid(letters[1:2], 1:3, c("+", "-"))
do.call("paste", c(tmp, sep=""))

do.call(paste, list(as.name("A"), as.name("B")), quote=TRUE)

examples of where objects will be found.
A <- 2
f <- function(x) print(x^2)
env <- new.env()
assign("A", 10, envir = env)
assign("f", f, envir = env)
f <- function(x) print(x)
f(A) # 2
do.call("f", list(A)) # 2
do.call("f", list(A), envir=env) # 4
do.call(f, list(A), envir=env) # 2
do.call("f", list(quote(A)), envir=env) # 100
do.call(f, list(quote(A)), envir=env) # 10
do.call("f", list(as.name("A")), envir=env) # 100

eval(call("f", A)) # 2
eval(call("f", quote(A))) # 2
eval(call("f", A), envir=env) # 4
eval(call("f", quote(A)), envir=env) # 100

double Double-Precision Vectors

Description

Create, coerce to or test for a double-precision vector.

double 115

Usage

double(length = 0)
as.double(x, ...)
is.double(x)

single(length = 0)
as.single(x, ...)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Details

double creates a double-precision vector of the specified length. The elements of the vector are
all equal to 0. It is identical to numeric (and real).

as.double is a generic function. It is identical to as.numeric (and as.real). Methods
should return an object of base type "double".

is.double is a test of double type.

R has no single precision data type. All real numbers are stored in double precision format. The
functions as.single and single are identical to as.double and double except they set the
attribute Csingle that is used in the .C and .Fortran interface, and they are intended only to
be used in that context.

Value

double creates a double-precision vector of the specified length. The elements of the vector are
all equal to 0.

as.double attempts to coerce its argument to be of double type: like as.vector it strips at-
tributes including names. (To ensure that an object is of double type without stripping attributes, use
storage.mode.) Character strings containing either a decimal representation or a hexadecimal
representation (starting with 0x or 0X) can be converted. as.double for factors yields the codes
underlying the factor levels, not the numeric representation of the labels, see also factor.

is.double returns TRUE or FALSE depending on whether its argument is of double type or not.

Note on names

It is a historical anomaly that R has three names for its floating-point vectors, double, numeric
and real.

double is the name of the type. numeric is the name of the mode and also of the implicit class.
As an S4 formal class, use "numeric" (there was a formal class "double" prior to R 2.7.0).

real is deprecated and should not be used in new code.

The potential confusion is that R has used mode "numeric" to mean ‘double or integer’, which
conflicts with the S4 usage. Thus is.numeric tests the mode, not the class, but as.numeric
(which is identical to as.double) coerces to the class.

116 dput

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

integer, numeric, storage.mode.

Examples

is.double(1)
all(double(3) == 0)

dput Write an Object to a File or Recreate it

Description

Writes an ASCII text representation of an R object to a file or connection, or uses one to recreate
the object.

Usage

dput(x, file = "",
control = c("keepNA", "keepInteger", "showAttributes"))

dget(file)

Arguments

x an object.

file either a character string naming a file or a connection. "" indicates output to the
console.

control character vector indicating deparsing options. See .deparseOpts for their
description.

Details

dput opens file and deparses the object x into that file. The object name is not written (unlike
dump). If x is a function the associated environment is stripped. Hence scoping information can be
lost.

Deparsing an object is difficult, and not always possible. With the default control, dput()
attempts to deparse in a way that is readable, but for more complex or unusual objects (see dump,
not likely to be parsed as identical to the original. Use control = "all" for the most complete
deparsing; use control = NULL for the simplest deparsing, not even including attributes.

dput will warn if fewer characters were written to a file than expected, which may indicate a full
or corrupt file system.

To display saved source rather than deparsing the internal representation include "useSource"
in control. R currently saves source only for function definitions.

drop 117

Value

For dput, the first argument invisibly.

For dget, the object created.

Note

To avoid the risk of a source attribute out of sync with the actual function definition, the source
attribute of a function will never be written as an attribute.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

deparse, dump, write.

Examples

Write an ASCII version of mean to the file "foo"
dput(mean, "foo")
And read it back into 'bar'
bar <- dget("foo")
unlink("foo")
Create a function with comments
baz <- function(x) {

Subtract from one
1-x

}
and display it
dput(baz)
and now display the saved source
dput(baz, control = "useSource")

drop Drop Redundant Extent Information

Description

Delete the dimensions of an array which have only one level.

Usage

drop(x)

Arguments

x an array (including a matrix).

118 dump

Value

If x is an object with a dim attribute (e.g., a matrix or array), then drop returns an object like x,
but with any extents of length one removed. Any accompanying dimnames attribute is adjusted
and returned with x: if the result is a vector the names are taken from the dimnames (if any). If
the result is a length-one vector, the names are taken from the first dimension with a dimname.

Array subsetting ([) performs this reduction unless used with drop = FALSE, but sometimes it
is useful to invoke drop directly.

See Also

drop1 which is used for dropping terms in models.

Examples

dim(drop(array(1:12, dim=c(1,3,1,1,2,1,2))))# = 3 2 2
drop(1:3 %*% 2:4)# scalar product

dump Text Representations of R Objects

Description

This function takes a vector of names of R objects and produces text representations of the objects
on a file or connection. A dump file can usually be sourced into another R (or S) session.

Usage

dump(list, file = "dumpdata.R", append = FALSE,
control = "all", envir = parent.frame(), evaluate = TRUE)

Arguments

list character. The names of one or more R objects to be dumped.

file either a character string naming a file or a connection. "" indicates output to the
console.

append if TRUE and file is a character string, output will be appended to file; oth-
erwise, it will overwrite the contents of file.

control character vector indicating deparsing options. See .deparseOpts for their
description.

envir the environment to search for objects.

evaluate logical. Should promises be evaluated?

dump 119

Details

If some of the objects named do not exist (in scope), they are omitted, with a warning. If file is a
file and no objects exist then no file is created.

sourceing may not produce an identical copy of dumped objects. A warning is issued if it is likely
that problems will arise, for example when dumping exotic or complex objects (see the Note).

dump will also warn if fewer characters were written to a file than expected, which may indicate a
full or corrupt file system.

A dump file can be sourced into another R (or perhaps S) session, but the function save is
designed to be used for transporting R data, and will work with R objects that dump does not
handle.

To produce a more readable representation of an object, use control = NULL. This will skip
attributes, and will make other simplifications that make source less likely to produce an identical
copy. See deparse for details.

To deparse the internal representation of a function rather than displaying the saved source, use
control = c("keepInteger", "warnIncomplete", "keepNA"). This will lose all
formatting and comments, but may be useful in those cases where the saved source is no longer
correct.

Promises will normally only be encountered by users as a result of lazy-loading (when the default
evaluate = TRUE is essential) and after the use of delayedAssign, when evaluate =
FALSE might be intended.

Value

An invisible character vector containing the names of the objects which were dumped.

Note

As dump is defined in the base name space, the base package will be searched before the global
environment unless dump is called from the top level prompt or the envir argument is given
explicitly.

To avoid the risk of a source attribute becoming out of sync with the actual function definition, the
source attribute of a function will never be dumped as an attribute.

Currently environments, external pointers, weak references and objects of type S4 are not deparsed
in a way that can be sourced. In addition, language objects are deparsed in a simple way what-
ever the value of control, and this includes not dumping their attributes (which will result in a
warning).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

dput, dget, write.
save for a more reliable way to save R objects.

120 duplicated

Examples

x <- 1; y <- 1:10
dump(ls(pattern = '^[xyz]'), "xyz.Rdmped")
print(.Last.value)
unlink("xyz.Rdmped")

duplicated Determine Duplicate Elements

Description

Determines which elements of a vector or data frame are duplicates of elements with smaller sub-
scripts, and returns a logical vector indicating which elements (rows) are duplicates.

Usage

duplicated(x, incomparables = FALSE, ...)

Default S3 method:
duplicated(x, incomparables = FALSE,

fromLast = FALSE, ...)

S3 method for class 'array':
duplicated(x, incomparables = FALSE, MARGIN = 1,

fromLast = FALSE, ...)

Arguments

x a vector or a data frame or an array or NULL.
incomparables

a vector of values that cannot be compared. FALSE is a special value, meaning
that all values can be compared, and may be the only value accepted for methods
other than the default. It will be coerced internally to the same type as x.

fromLast logical indicating if duplication should be considered from the reverse
side, i.e., the last (or rightmost) of identical elements would correspond to
duplicated=FALSE.

... arguments for particular methods.

MARGIN the array margin to be held fixed: see apply.

Details

This is a generic function with methods for vectors (including lists), data frames and arrays (includ-
ing matrices).

duplicated(x, fromLast=TRUE) is equivalent to but faster than
rev(duplicated(rev(x))).

The data frame method works by pasting together a character representation of the rows separated
by \r, so may be imperfect if the data frame has characters with embedded carriage returns or
columns which do not reliably map to characters.

dyn.load 121

The array method calculates for each element of the sub-array specified by MARGIN if the remaining
dimensions are identical to those for an earlier (or later, when fromLast=TRUE) element (in row-
major order). This would most commonly be used to find duplicated rows (the default) or columns
(with MARGIN = 2).

Missing values are regarded as equal, but NaN is not equal to NA_real_.

Values in incomparables will never be marked as duplicated. This is intended to be used for a
fairly small set of values and will not be efficient for a very large set.

Value

For a vector input, a logical vector of the same lemgth as x. For a data frame, a logical vector
with one element for each row. For a matrix or array, a logical array with the same dimensions and
dimnames.

Warning

Using this for lists is potentially slow, especially if the elements are not atomic vectors (see
vector) or differ only in their attributes. In the worst case it is O(n2).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

unique.

Examples

x <- c(9:20, 1:5, 3:7, 0:8)
extract unique elements
(xu <- x[!duplicated(x)])
similar, but not the same:
(xu2 <- x[!duplicated(x, fromLast = TRUE)])

xu == unique(x) but unique(x) is more efficient
stopifnot(identical(xu, unique(x)),

identical(xu2, unique(x, fromLast = TRUE)))

duplicated(iris)[140:143]

duplicated(iris3, MARGIN = c(1, 3))

dyn.load Foreign Function Interface

Description

Load or unload DLLs (also known as shared objects), and test whether a C function or Fortran
subroutine is available.

122 dyn.load

Usage

dyn.load(x, local = TRUE, now = TRUE, ...)
dyn.unload(x)

is.loaded(symbol, PACKAGE = "", type = "")

Arguments

x a character string giving the pathname to a DLL, also known as a dynamic shared
object. (See ‘Details’ for what these terms mean.)

local a logical value controlling whether the symbols in the DLL are stored in their
own local table and not shared across DLLs, or added to the global symbol table.
Whether this has any effect is system-dependent.

now a logical controlling whether all symbols are resolved (and relocated) immedi-
ately the library is loaded or deferred until they are used. This control is useful
for developers testing whether a library is complete and has all the necessary
symbols, and for users to ignore missing symbols. Whether this has any effect
is system-dependent.

... other arguments for future expansion.

symbol a character string giving a symbol name.

PACKAGE if supplied, confine the search for the name to the DLL given by this argument
(plus the conventional extension, ‘.so’, ‘.sl’, ‘.dll’, . . .). This is intended to add
safety for packages, which can ensure by using this argument that no other pack-
age can override their external symbols. Use PACKAGE="base" for symbols
linked in to R. This is used in the same way as in .C, .Call, .Fortran and
.External functions

type The type of symbol to look for: can be any ("", the default), "Fortran",
"Call" or "External".

Details

The objects dyn.load loads are called ‘dynamically loadable libraries’ (abbreviated to ‘DLL’ on
all platforms except Mac OS X, which unfortunately uses the term for a different sort of sobject.
On Unix-alikes they are also called ‘dynamic shared objects’ (‘DSO’), or ‘shared objects’ for short.
(The POSIX standards use ‘executable object file’, but no one else does.)

See ‘See Also’ and the Writing R Extensions and R Installation and Administration manuals for
how to create and install a suitable DLL. Note that unlike some versions of S-PLUS, dyn.load
does not load an object (‘.o’) file but a shared object or DLL.

Unfortunately a very few platforms (e.g. Compaq Tru64) do not handle the PACKAGE argument
correctly, and may incorrectly find symbols linked into R.

The additional arguments to dyn.load mirror the different aspects of the mode argument to the
dlopen() routine on POSIX systems. They are available so that users can exercise greater control
over the loading process for an individual library. In general, the defaults values are appropriate and
you should override them only if there is good reason and you understand the implications.

The local argument allows one to control whether the symbols in the DLL being attached are
visible to other DLLs. While maintaining the symbols in their own name space is good practice, the
ability to share symbols across related ‘chapters’ is useful in many cases. Additionally, on certain
platforms and versions of an operating system, certain libraries must have their symbols loaded
globally to successfully resolve all symbols.

dyn.load 123

One should be careful of the potential side-effect of using lazy loading via the now argument as
FALSE. If a routine is called that has a missing symbol, the process will terminate immediately and
unsaved session variables will be lost. The intended use is for library developers to call specify a
value TRUE to check that all symbols are actually resolved and for regular users to all with FALSE
so that missing symbols can be ignored and the available ones can be called.

The initial motivation for adding these was to avoid such termination in the _init() routines
of the Java virtual machine library. However, symbols loaded locally may not be (read probably)
available to other DLLs. Those added to the global table are available to all other elements of the
application and so can be shared across two different DLLs.

Some systems do not provide (explicit) support for local/global and lazy/eager symbol resolution.
This can be the source of subtle bugs. One can arrange to have warning messages emitted when
unsupported options are used. This is done by setting either of the options verbose or warn to be
non-zero via the options function. Currently, we know of only 2 platforms that do not provide a
value for local load (RTLD_LOCAL). These are IRIX6.4 and unpatched versions of Solaris 2.5.1.

There is a short discussion of these additional arguments with some example code available at
http://cm.bell-labs.com/stat/duncan/R/dynload.

Value

The function dyn.load is used for its side effect which links the specified DLL to the executing
R image. Calls to .C, .Call, .Fortran and .External can then be used to execute compiled
C functions or Fortran subroutines contained in the library. The return value of dyn.load is an
object of class DLLInfo. See getLoadedDLLs for information about this class.

The function dyn.unload unlinks the DLL.

is.loaded checks if the symbol name is loaded and hence available for use in .C or .Fortran
or .Call or .External. It will succeed if any one of the four calling functions would succeed
in using the entry point unless type is specified. (See .Fortran for how Fortran symbols are
mapped.)

Warning

Do not use dyn.unload on a DLL loaded by library.dynam: use
library.dynam.unload. This is needed for system houskeeping.

Note

is.loaded requires the name you would give to .C etc and not (as in S) that remapped by defunct
functions symbol.C or symbol.For.

The creation of DLLs and the runtime linking of them into executing programs is very platform de-
pendent. In recent years there has been some simplification in the process because the C subroutine
call dlopen has become the POSIX standard for doing this. Under Unix-alikes dyn.load uses
the dlopen mechanism and should work on all platforms which support it. On Windows it uses
the standard mechanism (LoadLibrary) for loading DLLs.

The original code for loading DLLs in Unix-alikes was provided by Heiner Schwarte. The compat-
ibility code for HP-UX was provided by Luke Tierney.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

http://cm.bell-labs.com/stat/duncan/R/dynload

124 eapply

See Also

library.dynam to be used inside a package’s .First.lib initialization.

SHLIB for how to create suitable DLLs.

.C, .Fortran, .External, .Call.

Examples

is.loaded("hcass2") #-> probably TRUE, as stats is loaded
is.loaded("supsmu") # Fortran entry point in stats
is.loaded("supsmu", "stats", "Fortran")
is.loaded("PDF", type = "External")

eapply Apply a Function over values in an environment

Description

eapply applies FUN to the named values from an environment and returns the results as a list. The
user can request that all named objects are used (normally names that begin with a dot are not). The
output is not sorted and no parent environments are searched.

Usage

eapply(env, FUN, ..., all.names = FALSE)

Arguments

env environment to be used.
FUN the function to be applied, found via match.fun. In the case of functions like

+, %*%, etc., the function name must be backquoted or quoted.
... optional arguments to FUN.
all.names a logical indicating whether to apply the function to all values

See Also

lapply.

Examples

require(utils); require(stats)

env <- new.env()
env$a <- 1:10
env$beta <- exp(-3:3)
env$logic <- c(TRUE,FALSE,FALSE,TRUE)
what have we there?
eapply(env, str)

compute the mean for each list element
eapply(env, mean)
median and quartiles for each list element
eapply(env, quantile, probs = 1:3/4)
eapply(env, quantile)

eigen 125

eigen Spectral Decomposition of a Matrix

Description

Computes eigenvalues and eigenvectors of real or complex matrices.

Usage

eigen(x, symmetric, only.values = FALSE, EISPACK = FALSE)

Arguments

x a matrix whose spectral decomposition is to be computed.

symmetric if TRUE, the matrix is assumed to be symmetric (or Hermitian if complex) and
only its lower triangle (diagonal included) is used. If symmetric is not speci-
fied, the matrix is inspected for symmetry.

only.values if TRUE, only the eigenvalues are computed and returned, otherwise both eigen-
values and eigenvectors are returned.

EISPACK logical. Should EISPACK be used (for compatibility with R < 1.7.0)?

Details

By default eigen uses the LAPACK routines DSYEVR, DGEEV, ZHEEV and ZGEEV whereas
eigen(EISPACK=TRUE) provides an interface to the EISPACK routines RS, RG, CH and CG.

If symmetric is unspecified, the code attempts to determine if the matrix is symmetric up to
plausible numerical inaccuracies. It is faster and surer to set the value yourself.

eigen is preferred to eigen(EISPACK = TRUE) for new projects, but its eigenvectors may
differ in sign and (in the asymmetric case) in normalization. (They may also differ between methods
and between platforms.)

Computing the eigenvectors is the slow part for large matrices.

Computing the eigendecomposition of a matrix is subject to errors on a real-world computer: the
definitive analysis is Wilkinson (1965). All you can hope for is a solution to a problem suitably
close to x. So even though a real asymmetric x may have an algebraic solution with repeated real
eigenvalues, the computed solution may be of a similar matrix with complex conjugate pairs of
eigenvalues.

Value

The spectral decomposition of x is returned as components of a list with components

values a vector containing the p eigenvalues of x, sorted in decreasing order, according
to Mod(values) in the asymmetric case when they might be complex (even
for real matrices). For real asymmetric matrices the vector will be complex only
if complex conjugate pairs of eigenvalues are detected.

vectors either a p × p matrix whose columns contain the eigenvectors of x, or NULL if
only.values is TRUE.

126 encodeString

For eigen(, symmetric = FALSE, EISPACK =TRUE) the choice of
length of the eigenvectors is not defined by EISPACK. In all other cases the
vectors are normalized to unit length.
Recall that the eigenvectors are only defined up to a constant: even when the
length is specified they are still only defined up to a scalar of modulus one (the
sign for real matrices).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Smith, B. T, Boyle, J. M., Dongarra, J. J., Garbow, B. S., Ikebe,Y., Klema, V., and Moler, C.
B. (1976). Matrix Eigensystems Routines – EISPACK Guide. Springer-Verlag Lecture Notes in
Computer Science.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

Wilkinson, J. H. (1965) The Algebraic Eigenvalue Problem. Clarendon Press, Oxford.

See Also

svd, a generalization of eigen; qr, and chol for related decompositions.

To compute the determinant of a matrix, the qr decomposition is much more efficient: det.

Examples

eigen(cbind(c(1,-1),c(-1,1)))
eigen(cbind(c(1,-1),c(-1,1)), symmetric = FALSE)
same (different algorithm).

eigen(cbind(1,c(1,-1)), only.values = TRUE)
eigen(cbind(-1,2:1)) # complex values
eigen(print(cbind(c(0,1i), c(-1i,0))))# Hermite ==> real Eigen values
3 x 3:
eigen(cbind(1,3:1,1:3))
eigen(cbind(-1,c(1:2,0),0:2)) # complex values

encodeString Encode Character Vector as for Printing

Description

encodeString escapes the strings in a character vector in the same way print.default
does, and optionally fits the encoded strings within a field width.

Usage

encodeString(x, width = 0, quote = "", na.encode = TRUE,
justify = c("left", "right", "centre", "none"))

http://www.netlib.org/lapack/lug/lapack_lug.html

encodeString 127

Arguments

x A character vector, or an object that can be coerced to one by as.character.

width integer: the minimum field width. If NULL or NA, this is taken to be the largest
field width needed for any element of x.

quote character: quoting character, if any.

na.encode logical: should NA strings be encoded?

justify character: partial matches are allowed. If padding to the minimum field width is
needed, how should spaces be inserted? justify == "none" is equivalent
to width = 0, for consistency with format.default.

Details

This escapes backslash and the control characters \a (bell), \b (backspace), \f (formfeed), \n
(line feed), \r (carriage return), \t (tab) and \v (vertical tab) as well as any non-printable charac-
ters in a single-byte locale, which are printed in octal notation (\xyz with leading zeroes). (Which
characters are non-printable depends on the current locale.) See print.default for how non-
printable characters are handled in multi-byte locales.

If quote is a single or double quote any embedded quote of the same type is escaped. Note that
justification is of the quoted string, hence spaces are added outside the quotes.

Value

A character vector of the same length as x, with the same attributes (including names and dimen-
sions) but with no class set.

Note

The default for width is different from format.default, which does similar things for char-
acter vectors but without encoding using escapes.

See Also

print.default

Examples

x <- "ab\bc\ndef"
print(x)
cat(x) # interprets escapes
cat(encodeString(x), "\n", sep="") # similar to print()

factor(x) # makes use of this to print the levels

x <- c("a", "ab", "abcde")
encodeString(x, width = NA) # left justification
encodeString(x, width = NA, justify = "c")
encodeString(x, width = NA, justify = "r")
encodeString(x, width = NA, quote = "'", justify = "r")

128 Encoding

Encoding Read or Set the Declared Encodings for a Character Vector

Description

Read or set the declared encodings for a character vector.

Usage

Encoding(x)

Encoding(x) <- value

Arguments

x A character vector.

value A character vector of positive length.

Details

Character strings in R can be declared to be in "latin1" or "UTF-8". These declarations can
be read by Encoding, which will return a character vector of values "latin1", "UTF-8" or
"unknown", or set, when value is recycled as needed and other values are silently treated as
"unknown".

There are other ways for character strings to acquire a declared encoding apart from explicitly set-
ting it. Functions scan, read.table, readLines, parse and source have an encoding
argument that is used to declare encodings, iconv declares encodings from its from argument,
and console input in suitable locales is also declared. intToUtf8 declares its output as "UTF-8",
and output text connections are marked if running it a suitable locale.

Most character manipulation functions will set the encoding on output strings if it was declared on
the corresponding input. These include chartr, strsplit, strtrim, substr, tolower and
toupper as well as sub(useBytes = FALSE) and gsub(useBytes = FALSE). (Also,
under some circumstances paste will set an encoding.) Note that such functions do not preserve
the encoding, but if they know the input encoding and that the string has been successfully re-
encoded to the current encoding, they mark the output with the latter (if it is "latin1" or "UTF-
8").

As from R 2.7.0 substr does preserve the encoding, and chartr, tolower and toupper
preserve UTF-8 encoding on systems with Unicode wide characters. With their fixed and perl
options, strsplit, sub and gsub will give a UTF-8 result if any of the inputs are UTF-8.

As from R 2.8.0 paste and sprintf return a UTF-8 encoded element is any of the inputs to that
element are UTF-8.

Value

A character vector.

environment 129

Examples

x is intended to be in latin1
x <- "fa\xE7ile"
Encoding(x)
Encoding(x) <- "latin1"
x
xx <- iconv(x, "latin1", "UTF-8")
Encoding(c(x, xx))
c(x, xx)

environment Environment Access

Description

Get, set, test for and create environments.

Usage

environment(fun = NULL)
environment(fun) <- value

is.environment(x)

.GlobalEnv
globalenv()
.BaseNamespaceEnv

emptyenv()
baseenv()

new.env(hash = FALSE, parent = parent.frame(), size = 29L)

parent.env(env)
parent.env(env) <- value

environmentName(env)

env.profile(env)

Arguments

fun a function, a formula, or NULL, which is the default.
value an environment to associate with the function
x an arbitrary R object.
hash a logical, if TRUE the environment will be hashed
parent an environment to be used as the enclosure of the environment created.
env an environment
size an integer specifying the initial size for a hashed environment. An internal de-

fault value will be used if size is NA or zero. This argument is ignored if hash
is FALSE.

130 environment

Details

Environments consist of a frame, or collection of named objects, and a pointer to an enclosing envi-
ronment. The most common example is the frame of variables local to a function call; its enclosure
is the environment where the function was defined. The enclosing environment is distinguished
from the parent frame: the latter (returned by parent.frame) refers to the environment of the
caller of a function.

When get or exists search an environment with the default inherits = TRUE, they look
for the variable in the frame, then in the enclosing frame, and so on.

The global environment .GlobalEnv, more often known as the user’s workspace, is the first item
on the search path. It can also be accessed by globalenv(). On the search path, each item’s
enclosure is the next item.

The object .BaseNamespaceEnv is the name space environment for the base package. The
environment of the base package itself is available as baseenv(). The ultimate enclosure of
any environment is the empty environment emptyenv(), to which nothing may be assigned.
If one follows the parent.env() chain of enclosures back far enough from any environment,
eventually one reaches the empty environment.

The replacement function parent.env<- is extremely dangerous as it can be used to destruc-
tively change environments in ways that violate assumptions made by the internal C code. It may
be removed in the near future.

Value

If fun is a function or a formula then environment(fun) returns the environment associated
with that function or formula. If fun is NULL then the current evaluation environment is returned.

The replacement form sets the environment of the function or formula fun to the value given.

is.environment(obj) returns TRUE if and only if obj is an environment.

new.env returns a new (empty) environment enclosed in the parent’s environment, by default.

parent.env returns the parent environment of its argument.

parent.env<- sets the enclosing environment of its first argument.

environmentName returns a character string, that given when the environment is printed or ""
if it is not a named environment.

env.profile returns a list with the following components: size the number of chains that can
be stored in the hash table, nchains the number of non-empty chains in the table (as reported
by HASHPRI), and counts an integer vector giving the length of each chain (zero for empty
chains). This function is intended to assess the performance of hashed environments. When env is
a non-hashed environment, NULL is returned.

See Also

The envir argument of eval, get, and exists.

ls may be used to view the objects in an environment, and hence ls.str may be useful for an
overview.

sys.source can be used to populate an environment.

Examples

f <- function() "top level function"

##-- all three give the same:

EnvVar 131

environment()
environment(f)
.GlobalEnv

ls(envir=environment(stats::approxfun(1:2,1:2, method="const")))

is.environment(.GlobalEnv) # TRUE

e1 <- new.env(parent = baseenv()) # this one has enclosure package:base.
e2 <- new.env(parent = e1)
assign("a", 3, envir=e1)
ls(e1)
ls(e2)
exists("a", envir=e2) # this succeeds by inheritance
exists("a", envir=e2, inherits = FALSE)
exists("+", envir=e2) # this succeeds by inheritance

EnvVar Environment Variables

Description

Details of some of the environment variables which affect an R session.

Details

It is impossible to list all the environment variables which can affect an R session: some affect the
OS system functions which R uses, and others will affect add-on packages. But here are notes on
some of the more important ones.

HOME: The user’s ‘home’ directory.

LANGUAGE: Optional. The language(s) to be used for message translations.

LC_ALL: (etc) Optional. Use to set various aspects of the locale – see Sys.getlocale.

R_BATCH: Optional – set in a batch session.

R_COMPLETION: Optional. If set to FALSE, comand-line completion is not used. (Not used by
Mac OS GUI.)

R_DEFAULT_PACKAGES: A comma-separated list of packages which are to be loaded in every
session. See options.

R_ENVIRON: Optional. The path to the site environment file: see Startup.

R_GSCMD: Optional. The path to GhostScript.

R_HISTFILE: Optional. The path of the history file: see Startup.

R_HISTSIZE: Optional. The maximum size of the history file, in lines.

R_HOME: The top-level directory of the R installation. Set by R.

R_LIBS: Optional. Setting for .libPaths.

R_LIBS_SITE: Optional. Setting for .libPaths.

R_LIBS_USER: Optional. Setting for .libPaths.

R_PAPERSIZE: Optional. The default papersize, e.g. for pdf and postscript.

R_PROFILE: Optional. The path to the site profile file: see Startup.

132 eval

R_RD4DVI: Options for latex processing of Rd files.

R_RD4PDF: Options for pdflatex processing of Rd files.

TMPDIR, TMP, TEMP: Consulted (in that order) when setting the temporary directory. See
tempdir.

TZ: Optional. The current timezone. See as.POSIXlt for the system-specific formats.

no_proxy, http_proxy, ftp_proxy: (and more). Optional. Settings for
download.file.

Unix-specific

Some variables set on Unix-alikes, and not (in general) on Windows.

DISPLAY: Optional: used by X11, Tk (in package tcltk), the data editor and various packages.

EDITOR: The path to default editor.

PAGER: The path to default pager.

R_BROWSER: The path to default browser.

R_DOC_DIR: The location of the R ‘doc’ directory.

R_DVIPSCMD: The path to dvips.

R_INCLUDE_DIR: The location of the R ‘include’ directory.

R_LATEXCMD: The path to latex.

R_MAKEINDEXCMD: The path to makeindex.

R_PDFVIEWER: The path to default PDF viewer.

R_PLATFORM: The platform – a string of the form cpu-vendor-os , see R.Version.

R_PRINTCMD: Print command to be used by postscript.

R_SHARE_DIR: The location of the R ‘share’ directory.

R_UNZIPCMD: The path to unzip.

R_ZIPCMD: The path to zip.

See Also

Sys.getenv and Sys.setenv to read and set environmental variables in an R session.

eval Evaluate an (Unevaluated) Expression

Description

Evaluate an R expression in a specified environment.

Usage

eval(expr, envir = parent.frame(),
enclos = if(is.list(envir) || is.pairlist(envir))

parent.frame() else baseenv())
evalq(expr, envir, enclos)
eval.parent(expr, n = 1)
local(expr, envir = new.env())

eval 133

Arguments

expr an object to be evaluated. See ‘Details’.

envir the environment in which expr is to be evaluated. May also be NULL, a
list, a data frame, a pairlist or an integer as specified to sys.call.

enclos Relevant when envir is a (pair)list or a data frame. Specifies the enclosure, i.e.,
where R looks for objects not found in envir. This can be NULL (interpreted
as the base package environment) or an environment.

n number of parent generations to go back

Details

eval evaluates the expr argument in the environment specified by envir and returns the com-
puted value. If envir is not specified, then the default is parent.frame() (the environment
where the call to eval was made).

Objects to be evaluated can be of types call or expression or name (when the name is looked
up in the current scope and its binding is evaluated), a promise or any of the basic types such as
vectors, functions and environments (which are returned unchanged).

The evalq form is equivalent to eval(quote(expr), ...). eval evaluates its first argu-
ment in the current scope before passing it to the evaluator: evalq avoids this.

eval.parent(expr, n) is a shorthand for eval(expr, parent.frame(n)).

If envir is a list (such as a data frame) or pairlist, it is copied into a temporary environment (with
enclosure enclos), and the temporary environment is used for evaluation. So if expr changes
any of the components named in the (pair)list, the changes are lost.

If envir is NULL it is interpreted as an empty list so no values could be found in envir and
look-up goes directly to enclos.

local evaluates an expression in a local environment. It is equivalent to evalq except that its
default argument creates a new, empty environment. This is useful to create anonymous recursive
functions and as a kind of limited name space feature since variables defined in the environment are
not visible from the outside.

Value

The result of evaluating the object: for an expression vector this it the result of evaluating the last
elements.

Note

Due to the difference in scoping rules, there are some differences between R and S in this area. In
particular, the default enclosure in S is the global environment.

When evaluating expressions in data frames that has been passed as argument to a function,
the relevant enclosure is often the caller’s environment, i.e., one needs eval(x, data,
parent.frame()).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (eval only.)

134 eval

See Also

expression, quote, sys.frame, parent.frame, environment.

Further, force to force evaluation, typically of function arguments.

Examples

eval(2 ^ 2 ^ 3)
mEx <- expression(2^2^3); mEx; 1 + eval(mEx)
eval({ xx <- pi; xx^2}) ; xx

a <- 3 ; aa <- 4 ; evalq(evalq(a+b+aa, list(a=1)), list(b=5)) # == 10
a <- 3 ; aa <- 4 ; evalq(evalq(a+b+aa, -1), list(b=5)) # == 12

ev <- function() {
e1 <- parent.frame()
Evaluate a in e1
aa <- eval(expression(a),e1)
evaluate the expression bound to a in e1
a <- expression(x+y)
list(aa = aa, eval = eval(a, e1))

}
tst.ev <- function(a = 7) { x <- pi; y <- 1; ev() }
tst.ev()#-> aa : 7, eval : 4.14

a <- list(a=3, b=4)
with(a, a <- 5) # alters the copy of a from the list, discarded.

##
Example of evalq()
##

N <- 3
env <- new.env()
assign("N", 27, envir=env)
this version changes the visible copy of N only, since the argument
passed to eval is '4'.
eval(N <- 4, env)
N
get("N", envir=env)
this version does the assignment in env, and changes N only there.
evalq(N <- 5, env)
N
get("N", envir=env)

##
Uses of local()
##

Mutually recursive.
gg gets value of last assignment, an anonymous version of f.

gg <- local({
k <- function(y)f(y)
f <- function(x) if(x) x*k(x-1) else 1

})
gg(10)

exists 135

sapply(1:5, gg)

Nesting locals. a is private storage accessible to k
gg <- local({

k <- local({
a <- 1
function(y){print(a <<- a+1);f(y)}

})
f <- function(x) if(x) x*k(x-1) else 1

})
sapply(1:5, gg)

ls(envir=environment(gg))
ls(envir=environment(get("k", envir=environment(gg))))

exists Is an Object Defined?

Description

Look for an R object of the given name.

Usage

exists(x, where = -1, envir = , frame, mode = "any",
inherits = TRUE)

Arguments

x a variable name (given as a character string).

where where to look for the object (see the details section); if omitted, the function will
search as if the name of the object appeared unquoted in an expression.

envir an alternative way to specify an environment to look in, but it is usually simpler
to just use the where argument.

frame a frame in the calling list. Equivalent to giving where as
sys.frame(frame).

mode the mode or type of object sought: see the ‘Details’ section.

inherits should the enclosing frames of the environment be searched?

Details

The where argument can specify the environment in which to look for the object in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys.frame to access the currently
active function calls). The envir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

This function looks to see if the name x has a value bound to it in the specified environment. If
inherits is TRUE and a value is not found for x in the specified environment, the enclosing
frames of the environment are searched until the name x is encountered. See environment
and the ‘R Language Definition’ manual for details about the structure of environments and their
enclosures.

136 expand.grid

Warning: inherits = TRUE is the default behaviour for R but not for S.

If mode is specified then only objects of that type are sought. The mode may specify one of the
collections "numeric" and "function" (see mode): any member of the collection will suffice.
(This is true even if a member of a collection is specified, so for example mode="special" will
seek any type of function.)

Value

Logical, true if and only if an object of the correct name and mode is found.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

get.

Examples

Define a substitute function if necessary:
if(!exists("some.fun", mode="function"))
some.fun <- function(x) { cat("some.fun(x)\n"); x }

search()
exists("ls", 2) # true even though ls is in pos=3
exists("ls", 2, inherits = FALSE) # false

expand.grid Create a Data Frame from All Combinations of Factors

Description

Create a data frame from all combinations of the supplied vectors or factors. See the description of
the return value for precise details of the way this is done.

Usage

expand.grid(..., KEEP.OUT.ATTRS = TRUE)

Arguments

... vectors, factors or a list containing these.
KEEP.OUT.ATTRS

a logical indicating the "out.attrs" attribute (see below) should be com-
puted and returned.

Value

A data frame containing one row for each combination of the supplied factors. The first factors vary
fastest. The columns are labelled by the factors if these are supplied as named arguments or named
components of a list. The row names are ‘automatic’.

Attribute "out.attrs" is a list which gives the dimension and dimnames for use by predict
methods.

expression 137

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

combn (package utils) for the generation of all combinations of n elements, taken m at a time.

Examples

require(utils)

expand.grid(height = seq(60, 80, 5), weight = seq(100, 300, 50),
sex = c("Male","Female"))

x <- seq(0,10, length.out=100)
y <- seq(-1,1, length.out=20)
d1 <- expand.grid(x=x, y=y)
d2 <- expand.grid(x=x, y=y, KEEP.OUT.ATTRS = FALSE)
object.size(d1) - object.size(d2)
##-> 5992 or 8832 (on 32- / 64-bit platform)

expression Unevaluated Expressions

Description

Creates or tests for objects of mode "expression".

Usage

expression(...)

is.expression(x)
as.expression(x, ...)

Arguments

... expression: R objects, typically calls, symbols or constants.
as.expression: arguments to be passed to methods.

x an arbitrary R object.

Details

‘Expression’ here is not being used in its colloquial sense, that of mathematical expressions. Those
are calls (see call) in R, and an R expression vector is a list of calls, symbols etc, typically as
returned by parse.

As an object of mode "expression" is a list, it can be subsetted by both [and by [[, the latter
extracting individual calls etc.

138 Extract

Value

expression returns a vector of type "expression" containing its arguments (unevaluated).

is.expression returns TRUE if expr is an expression object and FALSE otherwise.

as.expression attempts to coerce its argument into an expression object. It is generic, and
only the default method is described here. NULL, calls, symbols (see as.symbol) and pairlists
are returned as the element of a length-one expression vector. Vectors (including lists) are placed
element-by-element into an expression vector. Other types are not currently supported.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call, eval, function. Further, text and legend for plotting mathematical expressions.

Examples

length(ex1 <- expression(1+ 0:9))# 1
ex1
eval(ex1)# 1:10

length(ex3 <- expression(u,v, 1+ 0:9))# 3
mode(ex3 [3]) # expression
mode(ex3[[3]])# call
rm(ex3)

Extract Extract or Replace Parts of an Object

Description

Operators acting on vectors, matrices, arrays and lists to extract or replace parts.

Usage

x[i]
x[i, j, ... , drop = TRUE]
x[[i, exact = TRUE]]
x[[i, j, ..., exact = TRUE]]
x$name

Arguments

x object from which to extract element(s) or in which to replace element(s).

i, j, ... indices specifying elements to extract or replace. Indices are numeric or
character vectors or empty (missing) or NULL. Numeric values are coerced
to integer as by as.integer (and hence truncated towards zero). Character
vectors will be matched to the names of the object (or for matrices/arrays, the
dimnames): see ‘Character indices’ below for further details.

Extract 139

For [-indexing only: i, j, ... can be logical vectors, indicating ele-
ments/slices to select. Such vectors are recycled if necessary to match the
corresponding extent. i, j, ... can also be negative integers, indicating
elements/slices to leave out of the selection.
When indexing arrays by [a single argument i can be a matrix with as many
columns as there are dimensions of x; the result is then a vector with elements
corresponding to the sets of indices in each row of i.
An index value of NULL is treated as if it were integer(0).

name A literal character string or a name (possibly backtick quoted). For extraction,
this is normally (see under ‘Environments’) partially matched to the names of
the object.

drop For matrices and arrays. If TRUE the result is coerced to the lowest possible
dimension (see the examples). This only works for extracting elements, not for
the replacement. See drop for further details.

exact Controls possible partial matching of [[when extracting by a character vec-
tor (for most objects, but see under ‘Environments’). The default is no partial
matching. Value NA allows partial matching but issues a warning when it occurs.
Value FALSE allows partial matching without any warning.

Details

These operators are generic. You can write methods to handle indexing of specific classes of objects,
see InternalMethods as well as [.data.frame and [.factor. The descriptions here apply only
to the default methods. Note that separate methods are required for the replacement functions [<-,
[[<- and $<- for use when indexing occurs on the assignment side of an expression.

The most important distinction between [, [[and $ is that the [can select more than one element
whereas the other two select a single element.

The default methods work somewhat differently for atomic vectors, matrices/arrays and for recur-
sive (list-like, see is.recursive) objects. $ is only valid for recursive objects, and is only
discussed in the section below on recursive objects. Its use on non-recursive objects was deprecated
in R 2.5.0 and removed in R 2.7.0.

Subsetting (except by an empty index) will drop all attributes except names, dim and dimnames.

Indexing can occur on the right-hand-side of an expression for extraction, or on the left-hand-side
for replacement. When an index expression appears on the left side of an assignment (known as
subassignment) then that part of x is set to the value of the right hand side of the assignment. In this
case no partial matching of character indices is done, and the left-hand-side is coerced as needed to
accept the values. Attributes are preserved (although names, dim and dimnames will be adjusted
suitably). Subassignment is done sequentially, so if an index is specified more than once the latest
assigned value for an index will result.

It is an error to apply any of these operators to an object which is not subsettable (e.g. a function).

Atomic vectors

The usual form of indexing is "[". "[[" can be used to select a single element, but "[" can also
do so.

The index object i can be numeric, logical, character or empty. Indexing by factors is allowed and
is equivalent to indexing by the numeric codes (see factor) and not by the character values which
are printed (for which use [as.character(i)]).

An empty index selects all values: this is most often used to replace all the entries but keep the
attributes.

140 Extract

Matrices and arrays

Matrices and arrays are vectors with a dimension attribute and so all the vector forms of indexing
can be used with a single index. The result will be an unnamed vector unless x is one-dimensional
when it will be a one-dimensional array.

The most common form of indexing a k-dimensional array is to specify k indices to [. As for vector
indexing, the indices can be numeric, logical, character, empty or even factor. An empty index (a
comma separated blank) indicates that all entries in that dimension are selected. The argument
drop applies to this form of indexing.

A third form of indexing is via a numeric matrix with the one column for each dimension: each row
of the index matrix then selects a single element of the array, and the result is a vector. Negative
indices are not allowed in the index matrix. NA and zero values are allowed: rows of an index matrix
containing a zero are ignored, whereas rows containing an NA produce an NA in the result.

A vector obtained by matrix indexing will be unnamed unless x is one-dimensional when the row
names (if any) will be indexed to provide names for the result.

Recursive (list-like) objects

Indexing by [is similar to atomic vectors and selects a list of the specified element(s).

Both [[and $ select a single element of the list. The main difference is that $ does not allow com-
puted indices, whereas [[does. x$name is equivalent to x[["name", exact = FALSE]].
Also, the partial matching behavior of [[can be controlled using the exact argument.

[and [[are sometimes applied to other recursive objects such as calls and expressions. Pairlists
are coerced to lists for extraction by [, but all three operators can be used for replacement.

[[can be applied recursively to lists, so that if the single index i is a vector of length p,
alist[[i]] is equivalent to alist[[i1]]...[[ip]] providing all but the final indexing
results in a list.

When either [[or $ is used for replacement, a value of NULL deletes the corresponding item of
the list.

When $<- is applied to a NULL x, it first coerces x to list(). This is what also happens with
[[<- if the replacement value value is of length greater than one: if value has length 1 or 0, x
is first coerced to a zero-length vector of the type of value.

Environments

Both $ and [[can be applied to environments. Only character indices are allowed and no
partial matching is done. The semantics of these operations are those of get(i, env=x,
inherits=FALSE). If no match is found then NULL is returned. The replacement versions,
$<- and [[<-, can also be used. Again, only character arguments are allowed. The semantics
in this case are those of assign(i, value, env=x, inherits=FALSE). Such an assign-
ment will either create a new binding or change the existing binding in x.

NAs in indexing

When extracting, a numerical, logical or character NA index picks an unknown element and so
returns NA in the corresponding element of a logical, integer, numeric, complex or character result,
and NULL for a list. (It returns 00 for a raw result.]

When replacing (that is using indexing on the lhs of an assignment) NA does not select any element
to be replaced. As there is ambiguity as to whether an element of the rhs should be used or not,
this is only allowed if the rhs value is of length one (so the two interpretations would have the same
outcome).

Extract 141

Argument matching

Note that these operations do not match their index arguments in the standard way: argument names
are ignored and positional matching only is used. So m[j=2,i=1] is equivalent to m[2,1] and
not to m[1,2].

This may not be true for methods defined for them; for example it is not true for the data.frame
methods described in [.data.frame.

To avoid confusion, do not name index arguments (but drop and exact must be named).

S4 methods

These operators are also S4 generic, but as primitives, S4 methods will be dispatched only on S4
objects.

S4 methods for $ will be passed name as a character vector: despite the message given by
getGeneric("$") you cannot usefully write methods based on the class of name.

Character indices

Character indices can in some circumstances be partially matched (see pmatch) to the names or
dimnames of the object being subsetted (but never for subassignment). Unlike S (Becker et al p.
358)), R has never used partial matching when extracting by [. As from R 2.7.0, partial matching
is not by default used by [[(see argument exact).

Thus the default behaviour is to use partial matching only when extracting from recursive
objects (except environments) by $. Even in that case, warnings can be switched on by
options(warnPartialMatchAttr = TRUE).

Neither empty ("") nor NA indices match any names, not even empty nor missing names. If any
object has no names or appropriate dimnames, they are taken as all "" and so match nothing.

Note

The documented behaviour of S is that an NA replacement index ‘goes nowhere’ but uses up an
element of value (Becker et al p. 359). However, that has not been true of other implementations.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

names for details of matching to names, and pmatch for partial matching.

list, array, matrix.

[.data.frame and [.factor for the behaviour when applied to data.frame and factors.

Syntax for operator precedence, and the R Language reference manual about indexing details.

Examples

x <- 1:12; m <- matrix(1:6, nrow=2); li <- list(pi=pi, e = exp(1))
x[10] # the tenth element of x
x <- x[-1] # delete the 1st element of x
m[1,] # the first row of matrix m
m[1, , drop = FALSE] # is a 1-row matrix

142 Extract.data.frame

m[,c(TRUE,FALSE,TRUE)]# logical indexing
m[cbind(c(1,2,1),3:1)]# matrix index
m <- m[,-1] # delete the first column of m
li[[1]] # the first element of list li
y <- list(1,2,a=4,5)
y[c(3,4)] # a list containing elements 3 and 4 of y
y$a # the element of y named a

non-integer indices are truncated:
(i <- 3.999999999) # "4" is printed
(1:5)[i] # 3

recursive indexing into lists
z <- list(a=list(b=9, c='hello'), d=1:5)
unlist(z)
z[[c(1, 2)]]
z[[c(1, 2, 1)]] # both "hello"
z[[c("a", "b")]] <- "new"
unlist(z)

check $ and [[for environments
e1 <- new.env()
e1$a <- 10
e1[["a"]]
e1[["b"]] <- 20
e1$b
ls(e1)

Extract.data.frame Extract or Replace Parts of a Data Frame

Description

Extract or replace subsets of data frames.

Usage

S3 method for class 'data.frame':
x[i, j, drop =]
S3 replacement method for class 'data.frame':
x[i, j] <- value
S3 method for class 'data.frame':
x[[..., exact = TRUE]]
S3 replacement method for class 'data.frame':
x[[i, j]] <- value
S3 replacement method for class 'data.frame':
x$i <- value

Arguments

x data frame.

Extract.data.frame 143

i, j, ... elements to extract or replace. For [and [[, these are numeric or
character or, for [only, empty. Numeric values are coerced to integer as
if by as.integer. For replacement by [, a logical matrix is allowed. For
replacement by $, i is a name or literal character string.

drop logical. If TRUE the result is coerced to the lowest possible dimension. The
default is to drop if only one column is left, but not to drop if only one row is
left.

value A suitable replacement value: it will be repeated a whole number of times if
necessary and it may be coerced: see the Coercion section. If NULL, deletes the
column if a single column is selected.

exact logical: see [, and applies to column names.

Details

Data frames can be indexed in several modes. When [and [[are used with a single index (x[i]
or x[[i]]), they index the data frame as if it were a list. In this usage a drop argument is ignored,
with a warning. Using $ is equivalent to using [[i, exact = FALSE]].

When [and [[are used with two indices (x[i, j] and x[[i, j]]) they act like indexing a
matrix: [[can only be used to select one element.

If [returns a data frame it will have unique (and non-missing) row names, if necessary transforming
the row names using make.unique. Similarly, column names will be transformed to be unique if
necessary (e.g. if columns are selected more than once, or if more than one column of a given name
is selected if the data frame has duplicate columns).

When drop = TRUE, this is applied to the subsetting of any matrices contained in the data frame
as well as to the data frame itself.

The replacement methods can be used to add whole column(s) by specifying non-existent col-
umn(s), in which case the column(s) are added at the right-hand edge of the data frame and numer-
ical indices must be contiguous to existing indices. On the other hand, rows can be added at any
row after the current last row, and the columns will be in-filled with missing values. Missing values
in the indices are not allowed for replacement.

For [the replacement value can be a list: each element of the list is used to replace (part of) one
column, recycling the list as necessary. If columns specified by number are created, the names (if
any) of the corresponding list elements are used to name the columns. If the replacement is not
selecting rows, list values can contain NULL elements which will cause the corresponding columns
to be deleted. (See the Examples.)

Matrix indexing using [is not recommended, and barely supported. For extraction, x is first coerced
to a matrix. For replacement a logical matrix (only) can be used to select the elements to be replaced
in the same way as for a matrix.

Both [and [[extraction methods partially match row names. By default neither partially match
column names, but [[will unless exact=TRUE. If you want to do exact matching on row names
use match as in the examples.

Value

For [a data frame, list or a single column (the latter two only when dimensions have been dropped).
If matrix indexing is used for extraction a matrix results. If the result would be a data frame an error
results if undefined columns are selected (as there is no general concept of a ’missing’ column in a
data frame). Otherwise if a single column is selected and this is undefined the result is NULL.

For [[a column of the data frame or NULL (extraction with one index) or a length-one vector
(extraction with two indices).

144 Extract.data.frame

For $, a column of the data frame (or NULL).

For [<-, [[<- and $<-, a data frame.

Coercion

The story over when replacement values are coerced is a complicated one, and one that has changed
during R’s development. This section is a guide only.

When [and [[are used to add or replace a whole column, no coercion takes place but value will
be replicated (by calling the generic function rep) to the right length if an exact number of repeats
can be used.

When [is used with a logical matrix, each value is coerced to the type of the column into which it
is to be placed.

When [and [[are used with two indices, the column will be coerced as necessary to accommodate
the value.

Note that when the replacement value is an array (including a matrix) it is not treated as a series of
columns (as data.frame and as.data.frame do) but inserted as a single column.

Warning

The default behaviour when only one row is left is equivalent to specifying drop = FALSE. To
drop from a data frame to a list, drop = TRUE has to be specified explicitly.

See Also

subset which is often easier for extraction, data.frame, Extract.

Examples

sw <- swiss[1:5, 1:4] # select a manageable subset

sw[1:3] # select columns
sw[, 1:3] # same
sw[4:5, 1:3] # select rows and columns
sw[1] # a one-column data frame
sw[, 1, drop = FALSE] # the same
sw[, 1] # a (unnamed) vector
sw[[1]] # the same

sw[1,] # a one-row data frame
sw[1,, drop=TRUE] # a list

sw["C",] # partially matches
sw[match("C", row.names(sw)),] # no exact match

swiss[c(1, 1:2),] # duplicate row, unique row names are created

sw[sw <= 6] <- 6 # logical matrix indexing
sw

adding a column
sw["new1"] <- LETTERS[1:5] # adds a character column
sw[["new2"]] <- letters[1:5] # ditto
sw[, "new3"] <- LETTERS[1:5] # ditto

Extract.factor 145

sw$new4 <- 1:5
sapply(sw, class)
sw$new4 <- NULL # delete the column
sw
sw[6:8] <- list(letters[10:14], NULL, aa=1:5)
delete col7, update 6, append
sw

matrices in a data frame
A <- data.frame(x=1:3, y=I(matrix(4:6)), z=I(matrix(letters[1:9],3,3)))
A[1:3, "y"] # a matrix
A[1:3, "z"] # a matrix
A[, "y"] # a matrix

Extract.factor Extract or Replace Parts of a Factor

Description

Extract or replace subsets of factors.

Usage

S3 method for class 'factor':
x[..., drop = FALSE]
S3 method for class 'factor':
x[[...]]
S3 replacement method for class 'factor':
x[...] <- value

Arguments

x a factor

... a specification of indices – see Extract.

drop logical. If true, unused levels are dropped.

value character: a set of levels. Factor values are coerced to character.

Details

When unused levels are dropped the ordering of the remaining levels is preserved.

If value is not in levels(x), a missing value is assigned with a warning.

Any contrasts assigned to the factor are preserved unless drop=TRUE.

The [[method supports argument exact.

Value

A factor with the same set of levels as x unless drop=TRUE.

See Also

factor, Extract.

146 Extremes

Examples

following example(factor)
(ff <- factor(substring("statistics", 1:10, 1:10), levels=letters))
ff[, drop=TRUE]
factor(letters[7:10])[2:3, drop = TRUE]

Extremes Maxima and Minima

Description

Returns the (parallel) maxima and minima of the input values.

Usage

max(..., na.rm = FALSE)
min(..., na.rm = FALSE)

pmax(..., na.rm = FALSE)
pmin(..., na.rm = FALSE)

pmax.int(..., na.rm = FALSE)
pmin.int(..., na.rm = FALSE)

Arguments

... numeric or character arguments (see Note).

na.rm a logical indicating whether missing values should be removed.

Details

max and min return the maximum or minimum of all the values present in their arguments, as
integer if all are logical or integer, as double if all are numeric, and character otherwise.

If na.rm is FALSE an NA value in any of the arguments will cause a value of NA to be returned,
otherwise NA values are ignored.

The minimum and maximum of a numeric empty set are +Inf and -Inf (in this order!) which
ensures transitivity, e.g., min(x1, min(x2)) == min(x1, x2). For numeric x max(x)
== -Inf and min(x) == +Infwhenever length(x) == 0 (after removing missing values
if requested). However, pmax and pmin return NA if all the parallel elements are NA even for
na.rm = TRUE.

pmax and pmin take one or more vectors (or matrices) as arguments and return a single vector
giving the ‘parallel’ maxima (or minima) of the vectors. The first element of the result is the
maximum (minimum) of the first elements of all the arguments, the second element of the result
is the maximum (minimum) of the second elements of all the arguments and so on. Shorter inputs
are recycled if necessary. attributes (such as names or dim) are transferred from the first
argument (if applicable).

pmax.int and pmin.int are faster internal versions only used when all arguments are atomic
vectors and there are no classes: they drop all attributes. (Note that all versions fail for raw and
complex vectors since these have no ordered.)

Extremes 147

max and min are generic functions: methods can be defined for them individually or via the
Summary group generic. For this to work properly, the arguments ... should be unnamed, and
dispatch is on the first argument.

By definition the min/max of any vector containing an NaN is NaN, except that the min/max of any
vector containing an NA is NA even if it also contains an NaN. Note that max(NA, Inf) == NA
even though the maximum would be Inf whatever the missing value actually is.

The max/min of an empty character vector is a character NA. (One could argue that as "" is the
smallest character element, the maximum should be "", but there is no obvious candidate for the
minimum.)

Value

For min or max, a length-one vector. For pmin or pmax, a vector of length the longest of the input
vectors.

The type of the result will be that of the highest of the inputs in the hierarchy integer < real <
character.

For min and max if there are only numeric inputs and all are empty (after possible removal of NAs),
the result is double (Inf or -Inf).

S4 methods

max and min are part of the S4 Summary group generic. Methods for them must use the signature
x, ..., na.rm.

Note

‘Numeric’ arguments are vectors of type integer and numeric, and logical (coerced to integer). For
historical reasons, NULL is accepted as equivalent to integer(0).

pmax and pmin will also work on classed objects with appropriate methods for comparison,
is.na and rep (if recycling of arguments is needed).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

range (both min and max) and which.min (which.max) for the arg min, i.e., the location
where an extreme value occurs.

‘plotmath’ for the use of min in plot annotation.

Examples

require(stats); require(graphics)
min(5:1, pi) #-> one number

pmin(5:1, pi) #-> 5 numbers

x <- sort(rnorm(100)); cH <- 1.35
pmin(cH, quantile(x)) # no names
pmin(quantile(x), cH) # has names
plot(x, pmin(cH, pmax(-cH, x)), type='b', main= "Huber's function")

148 factor

factor Factors

Description

The function factor is used to encode a vector as a factor (the terms ‘category’ and ‘enumerated
type’ are also used for factors). If ordered is TRUE, the factor levels are assumed to be ordered.
For compatibility with S there is also a function ordered.

is.factor, is.ordered, as.factor and as.ordered are the membership and coercion
functions for these classes.

Usage

factor(x = character(),
levels = sort(unique.default(x), na.last = TRUE),
labels = levels, exclude = NA, ordered = is.ordered(x))

ordered(x, ...)

is.factor(x)
is.ordered(x)

as.factor(x)
as.ordered(x)

addNA(x, ifany=FALSE)

Arguments

x a vector of data, usually taking a small number of distinct values.

levels an optional vector of the values that x might have taken. The default is the set
of values taken by x, sorted into increasing order.

labels either an optional vector of labels for the levels (in the same order as levels
after removing those in exclude), or a character string of length 1.

exclude a vector of values to be excluded when forming the set of levels. This should be
of the same type as x, and will be coerced if necessary.

ordered logical flag to determine if the levels should be regarded as ordered (in the order
given).

... (in ordered(.)): any of the above, apart from ordered itself.

ifany (in addNA): Only add an NA level if it is used, i.e. if any(is.na(x)).

Details

The type of the vector x is not restricted.

Ordered factors differ from factors only in their class, but methods and the model-fitting functions
treat the two classes quite differently.

The encoding of the vector happens as follows. First all the values in exclude are removed from
levels. If x[i] equals levels[j], then the i-th element of the result is j. If no match is
found for x[i] in levels, then the i-th element of the result is set to NA.

factor 149

Normally the ‘levels’ used as an attribute of the result are the reduced set of levels after removing
those in exclude, but this can be altered by supplying labels. This should either be a set of
new labels for the levels, or a character string, in which case the levels are that character string with
a sequence number appended.

factor(x, exclude=NULL) applied to a factor is a no-operation unless there are unused lev-
els: in that case, a factor with the reduced level set is returned. If exclude is used it should also
be a factor with the same level set as x or a set of codes for the levels to be excluded.

The codes of a factor may contain NA. For a numeric x, set exclude=NULL to make NA an extra
level (prints as <NA>); by default, this is the last level.

If NA is a level, the way to set a code to be missing (as opposed to the code of the missing level) is
to use is.na on the left-hand-side of an assignment (as in is.na(f)[i] <- TRUE; indexing
inside is.na does not work). Under those circumstances missing values are currently printed as
<NA>, i.e., identical to entries of level NA.

is.factor is generic: you can write methods to handle specific classes of objects, see Internal-
Methods.

Value

factor returns an object of class "factor" which has a set of integer codes the length of x with
a "levels" attribute of mode character. If ordered is true (or ordered is used) the result
has class c("ordered", "factor").

Applying factor to an ordered or unordered factor returns a factor (of the same type) with just
the levels which occur: see also [.factor for a more transparent way to achieve this.

is.factor returns TRUE or FALSE depending on whether its argument is of type factor or not.
Correspondingly, is.ordered returns TRUEwhen its argument is ordered and FALSE otherwise.

as.factor coerces its argument to a factor. It is an abbreviated form of factor.

as.ordered(x) returns x if this is ordered, and ordered(x) otherwise.

addNA modifies a factor by turning NA into an extra level (so that NA values are counted in tables,
for instance).

Warning

The interpretation of a factor depends on both the codes and the "levels" attribute. Be careful
only to compare factors with the same set of levels (in the same order). In particular, as.numeric
applied to a factor is meaningless, and may happen by implicit coercion. To transform a factor f to
its original numeric values, as.numeric(levels(f))[f] is recommended and slightly more
efficient than as.numeric(as.character(f)).

The levels of a factor are by default sorted, but the sort order may well depend on the locale at the
time of creation, and should not be assumed to be ASCII.

There are some anomalies associated with factors that have NA as a level. It is suggested to use
them sparingly, e.g., only for tabulation purposes.

Comparison operators and group generic methods

There are "factor" and "ordered" methods for the group generic Ops, which provide meth-
ods for the Comparison operators. (The rest of the group and the Math and Summary groups
generate an error as they are not meaningful for factors.)

Only == and != can be used for factors: a factor can only be compared to another factor with an
identical set of levels (not necessarily in the same ordering) or to a character vector. Ordered factors

150 file.access

are compared in the same way, but the general dispatch mechanism precludes comparing ordered
and unordered factors.

All the comparison operators are available for ordered factors. Sorting is done by the levels of the
operands: if both operands are ordered factors they must have the same level set.

Note

Storing character data as a factor is more efficient storage if there is even a small proportion of
repeats. On a 32-bit machine storing a string of n bytes takes 28 + 8d(n + 1)/8e bytes whereas
storing a factor code takes 4 bytes. (On a 64-bit machine 28 is replaced by 56 or more.) Only if they
were computed from the same values (or in some cases read from a file: see scan) will identical
strings share storage.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

[.factor for subsetting of factors.

gl for construction of balanced factors and C for factors with specified contrasts. levels and
nlevels for accessing the levels, and unclass to get integer codes.

Examples

(ff <- factor(substring("statistics", 1:10, 1:10), levels=letters))
as.integer(ff) # the internal codes
factor(ff) # drops the levels that do not occur
ff[, drop=TRUE] # the same, more transparently

factor(letters[1:20], labels="letter")

class(ordered(4:1)) # "ordered", inheriting from "factor"

suppose you want "NA" as a level, and to allow missing values.
(x <- factor(c(1, 2, NA), exclude = NULL))
is.na(x)[2] <- TRUE
x # [1] 1 <NA> <NA>
is.na(x)
[1] FALSE TRUE FALSE

Using addNA()
Month <- airquality$Month
table(addNA(Month))
table(addNA(Month, ifany=TRUE))

file.access Ascertain File Accessibility

Description

Utility function to access information about files on the user’s file systems.

file.access 151

Usage

file.access(names, mode = 0)

Arguments

names character vector containing file names.

mode integer specifying access mode required.

Details

Tilde-expansion is done on names: see path.expand.

The mode value can be the exclusive or of the following values

0 test for existence.

1 test for execute permission.

2 test for write permission.

4 test for read permission.

Permission will be computed for real user ID and real group ID (rather than the effective IDs).

Please note that it is not good to use this function to test before trying to open a file. On a multi-
tasking system, it is possible that the accessibility of a file will change between the time you call
file.access() and the time you try to open the file. It is better to wrap file open attempts in
try.

Value

An integer vector with values 0 for success and -1 for failure.

Note

This is intended as a replacement for the S-PLUS function access, a wrapper for the C function
of the same name, which explains the return value encoding. Note that the return value is false for
success.

See Also

file.info, try

Examples

fa <- file.access(dir("."))
table(fa) # count successes & failures

152 file.info

file.choose Choose a File Interactively

Description

Choose a file interactively.

Usage

file.choose(new = FALSE)

Arguments

new Logical: choose the style of dialog box presented to the user: at present only
new = FALSE is used.

Value

A character vector of length one giving the file path.

See Also

list.files for non-interactive selection.

file.info Extract File Information

Description

Utility function to extract information about files on the user’s file systems.

Usage

file.info(...)

Arguments

... character vectors containing file paths.

Details

The file paths are tilde-expanded: see path.expand.

What is meant by ‘file access’ and hence the last access time is system-dependent.

The file ‘mode’ follows POSIX conventions, giving three octal digits summarizing the permissions
for the file owner, the owner’s group and for anyone respectively. Each digit is the logical or of read
(4), write (2) and execute/search (1) permissions.

On most systems symbolic links are followed, so information is given about the file to which the
link points rather than about the link.

file.path 153

Value

A data frame with row names the file names and columns

size double: File size in bytes.

isdir logical: Is the file a directory?

mode integer of class "octmode". The file permissions, printed in octal, for example
644.

mtime, ctime, atime
integer of class "POSIXct": file modification, creation and last access times.

uid integer: the user ID of the file’s owner.

gid integer: the group ID of the file’s group.

uname character: uid interpreted as a user name.

grname character: gid interpreted as a group name.

Unknown user and group names will be NA.

Entries for non-existent or non-readable files will be NA. The uid, gid, uname and grname
columns may not be supplied on a non-POSIX Unix system.

Note

Some (broken) systems allow files of more than 2Gb to be created but not accessed by the stat
system call. Such files will show up as non-readable (and very likely not be readable by any of R’s
input functions).

See Also

files, file.access, list.files, and DateTimeClasses for the date formats.

Examples

ncol(finf <- file.info(dir()))# at least six
Not run: finf # the whole list
Those that are more than 100 days old :
finf[difftime(Sys.time(), finf[,"mtime"], units="days") > 100 , 1:4]

file.info("no-such-file-exists")

file.path Construct Path to File

Description

Construct the path to a file from components in a platform-independent way.

Usage

file.path(..., fsep = .Platform$file.sep)

154 file.show

Arguments

... character vectors.
fsep the path separator to use.

Value

A character vector of the arguments concatenated term-by-term and separated by fsep if all argu-
ments have positive length; otherwise, an empty character vector.

file.show Display One or More Files

Description

Display one or more files.

Usage

file.show(..., header = rep("", nfiles),
title = "R Information",
delete.file = FALSE, pager = getOption("pager"),
encoding = "")

Arguments

... one or more character vectors containing the names of the files to be displayed.
These will be tilde-expanded: see path.expand.

header character vector (of the same length as the number of files specified in ...)
giving a header for each file being displayed. Defaults to empty strings.

title an overall title for the display. If a single separate window is used for the display,
title will be used as the window title. If multiple windows are used, their
titles should combine the title and the file-specific header.

delete.file should the files be deleted after display? Used for temporary files.
pager the pager to be used.
encoding character string giving the encoding to be assumed for the file(s).

Details

This function provides the core of the R help system, but it can be used for other purposes as well,
such as page.

How the pager is implemented is highly system-dependent.

The basic Unix version concatenates the files (using the headers) to a temporary file, and displays
it in the pager selected by the pager argument, which is a character vector specifying a system
command (usually less) to run on the set of files.

Most GUI systems will use a separate pager window for each file, and let the user leave it up while
R continues running. The selection of such pagers could either be done using special pager names
being intercepted by lower-level code (such as "internal" and "console" on Windows), or
by letting pager be an R function which will be called with the same first four arguments as
file.show and take care of interfacing to the GUI.

Not all implementations will honour delete.file.

files 155

Author(s)

Ross Ihaka, Brian Ripley.

See Also

files, list.files, help.

Examples

file.show(file.path(R.home("doc"), "COPYRIGHTS"))

files File and Directory Manipulation

Description

These functions provide a low-level interface to the computer’s file system.

Usage

file.create(..., showWarnings = TRUE)
file.exists(...)
file.remove(...)
file.rename(from, to)
file.append(file1, file2)
file.copy(from, to, overwrite = FALSE)
file.symlink(from, to)
dir.create(path, showWarnings = TRUE, recursive = FALSE,

mode = "0777")
Sys.chmod(paths, mode = "0777")
Sys.umask(mode = "0000")

Arguments

..., file1, file2, from, to, paths
character vectors, containing file names or paths.

path a character vector containing a single path name.

overwrite logical; should the destination files be overwritten?

showWarnings logical; should the warnings on failure be shown?

recursive logical: should elements of the path other than the last be created? If true, like
Unix’s mkdir -p.

mode the file mode to be used on Unix-alikes: it will be coerced by as.octmode.

156 files

Details

The ... arguments are concatenated to form one character string: you can specify the files sepa-
rately or as one vector. All of these functions expand path names: see path.expand.

file.create creates files with the given names if they do not already exist and truncates them
if they do. They are created with the maximal permissions allowed by the umask setting.

file.exists returns a logical vector indicating whether the files named by its argument exist.
(Here ‘exists’ is in the sense of the system’s stat call: a file will be reported as existing only if you
have the permissions needed by stat. Existence can also be checked by file.access, which
might use different permissions and so obtain a different result. Note that the existence of a file
does not imply that it is readable: for that use file.access.)

file.remove attempts to remove the files named in its argument. On most platforms ‘file’
includes empty directories, symbolic links, fifos and sockets.

file.rename attempts to rename a single file.

file.append attempts to append the files named by its second argument to those named by its
first. The R subscript recycling rule is used to align names given in vectors of different lengths.

file.copy works in a similar way to file.append but with the arguments in the natural order
for copying. Copying to existing destination files is skipped unless overwrite = TRUE. The
to argument can specify a single existing directory.

file.symlink makes symbolic links on those Unix-like platforms which support them. The to
argument can specify a single existing directory.

dir.create creates the last element of the path, unless recursive = TRUE. Trailing path
separators are removed. The mode will be modified by the umask setting in the same way as for
the system function mkdir. What modes can be set is OS-dependent, and it is unsafe to assume
that more than three octal digits will be used. For more details see your OS’s documentation on the
system call mkdir (and not that on the command-line utility of that name).

Sys.chmod sets the file permissions of one or more files. It may not be supported (when a warn-
ing is issued). See the comments for dir.create for how modes are interpreted. Changing
mode on a symbolic link is unlikely to work (nor be necessary). For more details see your OS’s
documentation on the system call chmod (and not that on the command-line utility of that name).

Sys.umask sets the umask. It may not be supported (when a warning is issued and "0000"
returned). For more details see your OS’s documentation on the system call umask.

Value

dir.create and file.rename return a logical, true for success.

Sys.umask returns the previous value of the umask, invisibly, as a length-one object of class
"octmode".

The remaining functions return a logical vector indicating which operation succeeded for each of
the files attempted.

dir.create will return failure if the directory already exists.

If showWarnings = TRUE, file.create and dir.create will give a warning for an
unexpected failure (e.g. not for a missing value nor for an already existing component for
dir.create(recursive = TRUE)).

Using a missing value for a file or path name will always be regarded as a failure.

Author(s)

Ross Ihaka, Brian Ripley

findInterval 157

See Also

file.info, file.access, file.path, file.show, list.files, unlink,
basename, path.expand.

file_test.

Examples

cat("file A\n", file="A")
cat("file B\n", file="B")
file.append("A", "B")
file.create("A")
file.append("A", rep("B", 10))
if(interactive()) file.show("A")
file.copy("A", "C")
dir.create("tmp")
file.copy(c("A", "B"), "tmp")
list.files("tmp")
setwd("tmp")
file.remove("B")
file.symlink(file.path("..", c("A", "B")), ".")
setwd("..")
unlink("tmp", recursive=TRUE)
file.remove("A", "B", "C")

findInterval Find Interval Numbers or Indices

Description

Find the indices of x in vec, where vec must be sorted (non-decreasingly); i.e., if i <-
findInterval(x,v), we have vij ≤ xj < vij+1 where v0 := −∞, vN+1 := +∞, and N
<- length(vec). At the two boundaries, the returned index may differ by 1, depending on the
optional arguments rightmost.closed and all.inside.

Usage

findInterval(x, vec, rightmost.closed = FALSE, all.inside = FALSE)

Arguments

x numeric.

vec numeric, sorted (weakly) increasingly, of length N, say.

rightmost.closed
logical; if true, the rightmost interval, vec[N-1] .. vec[N] is treated as
closed, see below.

all.inside logical; if true, the returned indices are coerced into {1, . . . , N − 1}, i.e., 0 is
mapped to 1 and N to N − 1.

158 force

Details

The function findInterval finds the index of one vector x in another, vec, where the lat-
ter must be non-decreasing. Where this is trivial, equivalent to apply(outer(x, vec,
">="), 1, sum), as a matter of fact, the internal algorithm uses interval search ensuring
O(n logN) complexity where n <- length(x) (and N <- length(vec)). For (almost)
sorted x, it will be even faster, basically O(n).

This is the same computation as for the empirical distribution function, and indeed,
findInterval(t, sort(X)) is identical to nFn(t;X1, . . . , Xn) where Fn is the empirical
distribution function of X1, . . . , Xn.

When rightmost.closed = TRUE, the result for x[j] = vec[N] (= max(vec)), is N -
1 as for all other values in the last interval.

Value

vector of length length(x) with values in 0:N (and NA) where N <- length(vec), or val-
ues coerced to 1:(N-1) if and only if all.inside = TRUE (equivalently coercing all x values
inside the intervals). Note that NAs are propagated from x, and Inf values are allowed in both x
and vec.

Author(s)

Martin Maechler

See Also

approx(*, method = "constant") which is a generalization of findInterval(),
ecdf for computing the empirical distribution function which is (up to a factor of n) also basi-
cally the same as findInterval(.).

Examples

N <- 100
X <- sort(round(stats::rt(N, df=2), 2))
tt <- c(-100, seq(-2,2, len=201), +100)
it <- findInterval(tt, X)
tt[it < 1 | it >= N] # only first and last are outside range(X)

force Force Evaluation of an Argument

Description

Forces the evaluation of a function argument.

Usage

force(x)

Arguments

x a formal argument of the enclosing function.

Foreign 159

Details

force forces the evaluation of a formal argument. This can be useful if the argument will be
captured in a closure by the lexical scoping rules and will later be altered by an explicit assignment
or an implicit assignment in a loop or an apply function.

Note

This is semantic sugar: just evaluating the symbol will do the same thing (see the examples).

force does not force the evaluation of other promises. (It works by forcing the promise that is
created when the actual arguments of a call are matched to the formal arguments of a closure, the
mechanism which implements lazy evaluation.)

Examples

f <- function(y) function() y
lf <- vector("list", 5)
for (i in seq(along = lf)) lf[[i]] <- f(i)
lf[[1]]() # returns 5

g <- function(y) { force(y); function() y }
lg <- vector("list", 5)
for (i in seq(along = lg)) lg[[i]] <- g(i)
lg[[1]]() # returns 1

This is identical to
g <- function(y) { y; function() y }

Foreign Foreign Function Interface

Description

Functions to make calls to compiled code that has been loaded into R.

Usage

.C(name, ..., NAOK = FALSE, DUP = TRUE, PACKAGE, ENCODING)
.Fortran(name, ..., NAOK = FALSE, DUP = TRUE, PACKAGE, ENCODING)

.External(name, ..., PACKAGE)
.Call(name, ..., PACKAGE)

.External.graphics(name, ..., PACKAGE)
.Call.graphics(name, ..., PACKAGE)

Arguments

name a character string giving the name of a C function or Fortran subroutine, or an
object of class "NativeSymbolInfo" or "NativeSymbol" referring to
such a name.

... arguments to be passed to the foreign function.

160 Foreign

NAOK if TRUE then any NA or NaN or Inf values in the arguments are passed on to
the foreign function. If FALSE, the presence of NA or NaN or Inf values is
regarded as an error.

DUP if TRUE then arguments are duplicated before their address is passed to C or
Fortran.

PACKAGE if supplied, confine the search for the name to the DLL given by this argument
(plus the conventional extension, ‘.so’, ‘.sl’, ‘.dll’, . . .). This is intended to add
safety for packages, which can ensure by using this argument that no other pack-
age can override their external symbols. Use PACKAGE="base" for symbols
linked in to R.

ENCODING optional name for an encoding to be assumed for character vectors. See ‘De-
tails’.

Details

The functions .C and .Fortran can be used to make calls to compiled C and Fortran code.

.External and .External.graphics can be used to call compiled code that uses R objects
in the same way as internal R functions.

.Call and .Call.graphics can be used to call compiled code which makes use of internal
R objects. The arguments are passed to the C code as a sequence of R objects. It is included to
provide compatibility with S version 4.

Specifying ENCODING overrrides any declared encodings (see link{Encoding}) which are
otherwise used to translate to the current locale before passing the strings to the compiled code.

For details about how to write code to use with .Call and .External, see the chapter on “Sys-
tem and foreign language interfaces” in the “Writing R Extensions” manual.

Value

The functions .C and .Fortran return a list similar to the ... list of arguments passed in, but
reflecting any changes made by the C or Fortran code.

.External, .Call, .External.graphics, and .Call.graphics return an R object.

These calls are typically made in conjunction with dyn.load which links DLLs to R.

The .graphics versions of .Call and .External are used when calling code which makes
low-level graphics calls. They take additional steps to ensure that the device driver display lists are
updated correctly.

Argument types

The mapping of the types of R arguments to C or Fortran arguments in .C or .Fortran is

R C Fortran
integer int * integer
numeric double * double precision
– or – float * real
complex Rcomplex * double complex
logical int * integer
character char ** [see below]
raw unsigned char * not allowed
list SEXP * not allowed
other SEXP not allowed

Foreign 161

Numeric vectors in R will be passed as type double * to C (and as double precision to
Fortran) unless (i) .C or .Fortran is used, (ii) DUP is true and (iii) the argument has attribute
Csingle set to TRUE (use as.single or single). This mechanism is only intended to be
used to facilitate the interfacing of existing C and Fortran code.

The C type Rcomplex is defined in ‘Complex.h’ as a typedef struct {double r;
double i;}. Fortran type double complex is an extension to the Fortran standard, and the
availability of a mapping of complex to Fortran may be compiler dependent.

Note: The C types corresponding to integer and logical are int, not long as in S. This
difference matters on 64-bit platforms.

The first character string of a character vector is passed as a C character array to Fortran: that
string may be usable as character*255 if its true length is passed separately. Only up to 255
characters of the string are passed back. (How well this works, or even if it works at all, depends on
the C and Fortran compilers and the platform.)

Missing (NA) string values are passed to .C as the string "NA". As the C char type can represent
all possible bit patterns there appears to be no way to distinguish missing strings from the string
"NA". If this distinction is important use .Call.

Functions, expressions, environments and other language elements are passed as the internal R
pointer type SEXP. This type is defined in ‘Rinternals.h’ or the arguments can be declared as
generic pointers, void *. Lists are passed as C arrays of SEXP and can be declared as void *
or SEXP *. Note that you cannot assign values to the elements of the list within the C routine.
Assigning values to elements of the array corresponding to the list bypasses R’s memory manage-
ment/garbage collection and will cause problems. Essentially, the array corresponding to the list is
read-only. If you need to return S objects created within the C routine, use the .Call interface.

R functions can be invoked using call_S or call_R and can be passed lists or the simple types
as arguments.

Warning

DUP=FALSE is dangerous.

There are two dangers with using DUP=FALSE.

The first is that if you pass a local variable to .C/.Fortran with DUP=FALSE, your compiled
code can alter the local variable and not just the copy in the return list. Worse, if you pass a local
variable that is a formal parameter of the calling function, you may be able to change not only the
local variable but the variable one level up. This will be very hard to trace.

The second is that lists are passed as a single R SEXP with DUP=FALSE, not as an array of SEXP.
This means the accessor macros in ‘Rinternals.h’ are needed to get at the list elements and the lists
cannot be passed to call_S/call_R. New code using R objects should be written using .Call
or .External, so this is now only a minor issue.

In addition, character vectors and lists cannot be used with DUP=FALSE.

It is safe and useful to set DUP=FALSE if you do not change any of the variables that might be
affected, e.g.,

.C("Cfunction", input=x, output=numeric(10)).

In this case the output variable did not exist before the call so it cannot cause trouble. If the input
variable is not changed in the C code of Cfunction you are safe.

Neither .Call nor .External copy their arguments. You should treat arguments you receive
through these interfaces as read-only.

162 formals

Fortran symbol names

All compilers that can be used with R map symbol names to lower case, and so does .Fortran.

Symbol names containing underscores are not valid Fortran 77 (although they are valid in Fortran
9x). Many Fortran 77 compilers (including g77) will allow them but translate them in a different
way to names not containing underscores. Such names will work with .Fortran, but portable
code should not use Fortran names containing underscores.

Use .Fortran with care for compiled Fortran 9x code: it may not work if the Fortran 9x compiler
used differs from the Fortran compiler used when configuring R, especially if the subroutine name
is not lower-case or includes an underscore.

Header files for external code

Writing code for use with .External and .Call will need to use internal R structures. If
possible use just those defined in ‘Rinternals.h’ and/or the macros in ‘Rdefines.h’, as other header
files are not installed and are even more likely to be changed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (.C and .Fortran.)

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer. (.Call.)

See Also

dyn.load.

formals Access to and Manipulation of the Formal Arguments

Description

Get or set the formal arguments of a function.

Usage

formals(fun = sys.function(sys.parent()))
formals(fun, envir = environment(fun)) <- value

Arguments

fun a function object, or see ‘Details’.

envir environment in which the function should be defined.

value a list (or pairlist) of R expressions.

Details

For the first form, fun can also be a character string naming the function to be manipulated, which
is searched for from the parent environment. If it is not specified, the function calling formals is
used.

Only closures have formals, not primitive functions.

format 163

Value

formals returns the formal argument list of the function specified, as a pairlist, or NULL for
a non-function or primitive.

The replacement form sets the formals of a function to the list/pairlist on the right hand side, and
(potentially) resets the environment of the function.

See Also

args for a human-readable version, alist, body, function.

Examples

require(stats); require(graphics)
length(formals(lm)) # the number of formal arguments
names(formals(boxplot)) # formal arguments names

f <- function(x) a+b
formals(f) <- alist(a=,b=3) # function(a,b=3)a+b
f(2) # result = 5

format Encode in a Common Format

Description

Format an R object for pretty printing.

Usage

format(x, ...)

Default S3 method:
format(x, trim = FALSE, digits = NULL, nsmall = 0,

justify = c("left", "right", "centre", "none"),
width = NULL, na.encode = TRUE, scientific = NA,
big.mark = "", big.interval = 3,

small.mark = "", small.interval = 5,
decimal.mark = ".", zero.print = NULL, drop0trailing = FALSE, ...)

S3 method for class 'data.frame':
format(x, ..., justify = "none")

S3 method for class 'factor':
format(x, ...)

S3 method for class 'AsIs':
format(x, width = 12, ...)

164 format

Arguments

x any R object (conceptually); typically numeric.

trim logical; if FALSE, logical, numeric and complex values are right-justified to a
common width: if TRUE the leading blanks for justification are suppressed.

digits how many significant digits are to be used for numeric and complex x. The
default, NULL, uses getOption(digits). This is a suggestion: enough
decimal places will be used so that the smallest (in magnitude) number has this
many significant digits, and also to satisfy nsmall. (For the interpretation for
complex numbers see signif.)

nsmall the minimum number of digits to the right of the decimal point in format-
ting real/complex numbers in non-scientific formats. Allowed values are 0 <=
nsmall <= 20.

justify should a character vector be left-justified (the default), right-justified, centred
or left alone.

width default method: the minimum field width or NULL or 0 for no restriction.
AsIs method: the maximum field width for non-character objects. NULL cor-
responds to the default 12.

na.encode logical: should NA strings be encoded? Note this only applies to elements of
character vectors, not to numerical or logical NAs, which are always encoded as
"NA".

scientific Either a logical specifying whether elements of a real or complex vec-
tor should be encoded in scientific format, or an integer penalty (see
options("scipen"). Missing values correspond to the current default
penalty.

... further arguments passed to or from other methods.
big.mark, big.interval, small.mark, small.interval, decimal.mark, zero.print, drop0trailing

used for prettying (longish) decimal sequences, passed to prettyNum: that
help page explains the details.

Details

format is a generic function. Apart from the methods described here there are methods for
dates (see format.Date), date-times (see format.POSIXct)) and for other classes such as
format.octmode and format.dist.

format.data.frame formats the data frame column by column, applying the appropriate
method of format for each column. Methods for columns are often similar to as.character
but offer more control. Matrix and data-frame columns will be converted to separate columns in the
result, and character columns (normally all) will be given class "AsIs".

format.factor converts the factor to a character vector and then calls the default method (and
so justify applies).

format.AsIs deals with columns of complicated objects that have been extracted from a data
frame. Character objects are passed to the default method (and so width does not apply). Other-
wise it calls toString to convert the object to character (if a vector or list, element by element)
and then right-justifies the result.

Justification for character vectors (and objects converted to character vectors by their methods) is
done on display width (see nchar), taking double-width characters and the rendering of special
characters (as escape sequences, including escaping backslash: see print.default) into ac-
count. Character strings are padded with blanks to the display width of the widest. (If na.encode

format 165

= FALSE missing character strings are not included in the width computations and are not en-
coded.)

Numeric vectors are encoded with the minimum number of decimal places needed to display all the
elements to at least the digit significant digits. However, if all the elements then have trailing
zeroes, the number of decimal places is reduced until at least one element has a non-zero final digit;
see also the argument documentation for big.*, small.* etc, above.

Raw vectors are converted to their 2-digit hexadecimal representation by as.character.

Value

An object of similar structure to x containing character representations of the elements of the first
argument x in a common format, and in the current locale’s encoding.

For character, numeric, complex or factor x, dims and dimnames are preserved on matrices/arrays
and names on vectors: no other attributes are copied.

If x is a list, the result is a character vector obtained by applying format.default(x, ...)
to each element of the list (after unlisting elements which are themselves lists), and then col-
lapsing the result for each element with paste(collapse = ", "). The defaults in this case
are trim = TRUE, justify = "none" since one does not usually want alignment in the
collapsed strings.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

format.info indicates how an atomic vector would be formatted.

formatC, paste, as.character, sprintf, print, prettyNum, toString,
encodeString.

Examples

format(1:10)
format(1:10, trim = TRUE)

zz <- data.frame("(row names)"= c("aaaaa", "b"), check.names=FALSE)
format(zz)
format(zz, justify = "left")

use of nsmall
format(13.7)
format(13.7, nsmall = 3)
format(c(6.0, 13.1), digits = 2)
format(c(6.0, 13.1), digits = 2, nsmall = 1)

use of scientific
format(2^31-1)
format(2^31-1, scientific = TRUE)

a list
z <- list(a=letters[1:3], b=(-pi+0i)^((-2:2)/2), c=c(1,10,100,1000),

d=c("a", "longer", "character", "string"))

166 format.Date

format(z, digits = 2)
format(z, digits = 2, justify = "left", trim = FALSE)

format.Date Date Conversion Functions to and from Character

Description

Functions to convert between character representations and objects of class "Date" representing
calendar dates.

Usage

as.Date(x, ...)
S3 method for class 'character':
as.Date(x, format = "", ...)
S3 method for class 'numeric':
as.Date(x, origin, ...)

S3 method for class 'Date':
format(x, ...)

S3 method for class 'Date':
as.character(x, ...)

Arguments

x An object to be converted.

format A character string. The default is "%Y-%m-%d". For details see strftime.

origin a Date object, or something which can be coerced by as.Date(origin,
...) to such an object.

... Further arguments to be passed from or to other methods, including format
for as.character and as.Date methods.

Details

The usual vector re-cycling rules are applied to x and format so the answer will be of length that
of the longer of the vectors.

Locale-specific conversions to and from character strings are used where appropriate and available.
This affects the names of the days and months.

The as.Date methods accept character strings, factors, logical NA and objects of classes
"POSIXlt" and "POSIXct". (The last are converted to days by ignoring the time after mid-
night in the representation of the time in UTC.) Also objects of class "date" (from package date
or survival) and "dates" (from package chron). Character strings are processed as far as neces-
sary for the format specified: any trailing characters are ignored.

as.Date will accept numeric data (the number of days since an epoch), but only if origin is
supplied.

The format and as.character methods ignore any fractional part of the date.

format.Date 167

Value

The format and as.character methods return a character vector representing the date. NA
dates are returned as NA_character_.

The as.Date methods return an object of class "Date".

Note

The default formats follow the rules of the ISO 8601 international standard which expresses a day
as "2001-02-03".

If the date string does not specify the date completely, the returned answer may be system-specific.
The most common behaviour is to assume that a missing year, month or day is the current one. If
it specifies a date incorrectly, reliable implementations will give an error and the date is reported as
NA. Unfortunately some common implementations (such as ‘glibc’) are unreliable and guess at
the intended meaning.

Years before 1CE (aka 1AD) will probably not be handled correctly.

References

International Organization for Standardization (2004, 1988, 1997, . . .) ISO 8601. Data elements
and interchange formats – Information interchange – Representation of dates and times. For
links to versions available on-line see (at the time of writing) http://www.qsl.net/g1smd/
isopdf.htm; for information on the current official version, see http://www.iso.org/
iso/en/prods-services/popstds/datesandtime.html.

See Also

Date for details of the date class; locales to query or set a locale.

Your system’s help pages on strftime and strptime to see how to specify their formats.

Examples

locale-specific version of the date
format(Sys.Date(), "%a %b %d")

read in date info in format 'ddmmmyyyy'
This will give NA(s) in some locales; setting the C locale
as in the commented lines will overcome this on most systems.
lct <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")
x <- c("1jan1960", "2jan1960", "31mar1960", "30jul1960")
z <- as.Date(x, "%d%b%Y")
Sys.setlocale("LC_TIME", lct)
z

read in date/time info in format 'm/d/y'
dates <- c("02/27/92", "02/27/92", "01/14/92", "02/28/92", "02/01/92")
as.Date(dates, "%m/%d/%y")

date given as number of days since 1900-01-01 (a date in 1989)
as.Date(32768, origin="1900-01-01")

http://www.qsl.net/g1smd/isopdf.htm
http://www.qsl.net/g1smd/isopdf.htm
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html

168 format.info

format.info format(.) Information

Description

Information is returned on how format(x, digits, nsmall) would be formatted.

Usage

format.info(x, digits = NULL, nsmall = 0)

Arguments

x an atomic vector; a potential argument of format(x, ...).

digits how many significant digits are to be used for numeric and complex x. The
default, NULL, uses getOption(digits).

nsmall (see format(..., nsmall)).

Value

An integer vector of length 1, 3 or 6, say r.

For logical, integer and character vectors a single element, the width which would be used by
format if width = NULL.

For numeric vectors:

r[1] width (in characters) used by format(x)

r[2] number of digits after decimal point.

r[3] in 0:2; if ≥1, exponential representation would be used, with exponent length
of r[3]+1.

For a complex vector the first three elements refer to the real parts, and there are three further
elements corresponding to the imaginary parts.

See Also

format, formatC.

Examples

dd <- options("digits") ; options(digits = 7) #-- for the following
format.info(123) # 3 0 0
format.info(pi) # 8 6 0
format.info(1e8) # 5 0 1 - exponential "1e+08"
format.info(1e222) # 6 0 2 - exponential "1e+222"

x <- pi*10^c(-10,-2,0:2,8,20)
names(x) <- formatC(x, width=1, digits=3, format="g")
cbind(sapply(x,format))
t(sapply(x, format.info))

using at least 8 digits right of "."

format.pval 169

t(sapply(x, format.info, nsmall = 8))

Reset old options:
options(dd)

format.pval Format P Values

Description

format.pval is intended for formatting p-values.

Usage

format.pval(pv, digits = max(1, getOption("digits") - 2),
eps = .Machine$double.eps, na.form = "NA")

Arguments

pv a numeric vector.

digits how many significant digits are to be used.

eps a numerical tolerance: see ‘Details’.

na.form character representation of NAs.

Details

format.pval is mainly an auxiliary function for print.summary.lm etc., and does separate
formatting for fixed, floating point and very small values; those less than eps are formatted as "<
[eps]" (where ‘[eps]’ stands for format(eps, digits)).

Value

A character vector.

Examples

format.pval(c(stats::runif(5), pi^-100, NA))
format.pval(c(0.1, 0.0001, 1e-27))

170 formatC

formatC Formatting Using C-style Formats

Description

Formatting numbers individually and flexibly, using C style format specifications.

Usage

formatC(x, digits = NULL, width = NULL,
format = NULL, flag = "", mode = NULL,
big.mark = "", big.interval = 3,

small.mark = "", small.interval = 5,
decimal.mark = ".", preserve.width = "individual",

zero.print = NULL, drop0trailing = FALSE)

prettyNum(x, big.mark = "", big.interval = 3,
small.mark = "", small.interval = 5,
decimal.mark = ".",
preserve.width = c("common", "individual", "none"),
zero.print = NULL, drop0trailing = FALSE, ...)

Arguments

x an atomic numerical or character object, typically a vector of real numbers.

digits the desired number of digits after the decimal point (format = "f") or sig-
nificant digits (format = "g", = "e" or = "fg").
Default: 2 for integer, 4 for real numbers. If less than 0, the C default of 6 digits
is used. If specified as more than 50, 50 will be used with a warning unless
format = "f" where it is limited to typically 324. (Not more than 15–21
digits need be accurate, depending on the OS and compiler used. This limit is
just a precaution against segfaults in the underlying C runtime.)

width the total field width; if both digits and width are unspecified, width
defaults to 1, otherwise to digits + 1. width = 0 will use width =
digits, width < 0 means left justify the number in this field (equivalent to
flag ="-"). If necessary, the result will have more characters than width.
For character data this is interpreted in characters (not bytes nor display width).

format equal to "d" (for integers), "f", "e", "E", "g", "G", "fg" (for reals), or
"s" (for strings). Default is "d" for integers, "g" for reals.
"f" gives numbers in the usual xxx.xxx format; "e" and "E" give
n.ddde+nn or n.dddE+nn (scientific format); "g" and "G" put x[i] into
scientific format only if it saves space to do so.
"fg" uses fixed format as "f", but digits as the minimum number of signif-
icant digits. This can lead to quite long result strings, see examples below. Note
that unlike signif this prints large numbers with more significant digits than
digits. Trailing zeros are dropped in this format, unless flag contains "#".

flag For formatC, a character string giving a format modifier as in Kernighan and
Ritchie (1988, page 243). "0" pads leading zeros; "-" does left adjustment,
others are "+", " ", and "#". There can be more than one of these, in any
order.

formatC 171

mode "double" (or "real"), "integer" or "character". Default: Deter-
mined from the storage mode of x.

big.mark character; if not empty used as mark between every big.interval decimals
before (hence big) the decimal point.

big.interval see big.mark above; defaults to 3.

small.mark character; if not empty used as mark between every small.interval deci-
mals after (hence small) the decimal point.

small.interval
see small.mark above; defaults to 5.

decimal.mark the character to be used to indicate the numeric decimal point.
preserve.width

string specifying if the string widths should be preserved where possible in those
cases where marks (big.mark or small.mark) are added. "common", the
default, corresponds to format-like behavior whereas "individual" is the
default in formatC().

zero.print logical, character string or NULL specifying if and how zeros should be format-
ted specially. Useful for pretty printing ‘sparse’ objects.

drop0trailing
logical, indicating if trailing zeros, i.e., "0" after the decimal mark, should be
removed; also drops "e+00" in exponential formats.

... arguments passed to format.

Details

If you set format it overrides the setting of mode, so formatC(123.45, mode="double",
format="d") gives 123.

The rendering of scientific format is platform-dependent: some systems use n.ddde+nnn or
n.dddenn rather than n.ddde+nn.

formatC does not necessarily align the numbers on the decimal point, so formatC(c(6.11,
13.1), digits=2, format="fg") gives c("6.1", " 13"). If you want common for-
matting for several numbers, use format.

prettyNum is the utility function for prettifying x. If x is not a character, format(x[i],
...) is applied to each element, and then it is left unchanged if all the other arguments are at their
defaults. Note that prettyNum(x) may behave unexpectedly if x is a character vector not
resulting from something like format(<number>): in particular it assumes that a period is a
decimal mark.

Value

A character object of same size and attributes as x, in the current locale’s encoding. Unlike
format, each number is formatted individually. Looping over each element of x, the C function
sprintf(...) is called for numeric inputs (inside the C function str_signif).

formatC: for character x, do simple (left or right) padding with white space.

Author(s)

formatC was originally written by Bill Dunlap, later much improved by Martin Maechler. It was
first adapted for R by Friedrich Leisch.

172 formatDL

References

Kernighan, B. W. and Ritchie, D. M. (1988) The C Programming Language. Second edition. Pren-
tice Hall.

See Also

format.

sprintf for more general C like formatting.

Examples

xx <- pi * 10^(-5:4)
cbind(format(xx, digits=4), formatC(xx))
cbind(formatC(xx, width = 9, flag = "-"))
cbind(formatC(xx, digits = 5, width = 8, format = "f", flag = "0"))
cbind(format(xx, digits=4), formatC(xx, digits = 4, format = "fg"))

formatC(c("a", "Abc", "no way"), width = -7) # <=> flag = "-"
formatC(c((-1:1)/0,c(1,100)*pi), width=8, digits=1)

xx <- c(1e-12,-3.98765e-10,1.45645e-69,1e-70,pi*1e37,3.44e4)
1 2 3 4 5 6
formatC(xx)
formatC(xx, format="fg") # special "fixed" format.
formatC(xx[1:4], format="f", digits=75) #>> even longer strings

formatC(c(3.24, 2.3e-6), format="f", digits=11, drop0trailing=TRUE)

r <- c("76491283764.97430", "29.12345678901", "-7.1234", "-100.1","1123")
American:
prettyNum(r, big.mark = ",")
Some Europeans:
prettyNum(r, big.mark = "'", decimal.mark = ",")

(dd <- sapply(1:10, function(i)paste((9:0)[1:i],collapse="")))
prettyNum(dd, big.mark="'")

examples of 'small.mark'
pN <- stats::pnorm(1:7, lower.tail = FALSE)
cbind(format (pN, small.mark = " ", digits = 15))
cbind(formatC(pN, small.mark = " ", digits = 17, format = "f"))

cbind(ff <- format(1.2345 + 10^(0:5), width = 11, big.mark = "'"))
all with same width (one more than the specified minimum)

individual formatting to common width:
fc <- formatC(1.234 + 10^(0:8), format="fg", width=11, big.mark = "'")
cbind(fc)

formatDL Format Description Lists

formatDL 173

Description

Format vectors of items and their descriptions as 2-column tables or LaTeX-style description lists.

Usage

formatDL(x, y, style = c("table", "list"),
width = 0.9 * getOption("width"), indent = NULL)

Arguments

x a vector giving the items to be described, or a list of length 2 or a matrix with 2
columns giving both items and descriptions.

y a vector of the same length as x with the corresponding descriptions. Only used
if x does not already give the descriptions.

style a character string specifying the rendering style of the description information.
If "table", a two-column table with items and descriptions as columns is
produced (similar to Texinfo’s @table environment. If "list", a LaTeX-
style tagged description list is obtained.

width a positive integer giving the target column for wrapping lines in the output.

indent a positive integer specifying the indentation of the second column in table style,
and the indentation of continuation lines in list style. Must not be greater than
width/2, and defaults to width/3 for table style and width/9 for list style.

Details

After extracting the vectors of items and corresponding descriptions from the arguments, both are
coerced to character vectors.

In table style, items with more than indent - 3 characters are displayed on a line of their own.

Value

a character vector with the formatted entries.

Examples

Use R to create the 'INDEX' for package 'splines' from its 'CONTENTS'
x <- read.dcf(file = system.file("CONTENTS", package = "splines"),

fields = c("Entry", "Description"))
x <- as.data.frame(x)
writeLines(formatDL(x$Entry, x$Description))
or equivalently: writeLines(formatDL(x))
Same information in tagged description list style:
writeLines(formatDL(x$Entry, x$Description, style = "list"))
or equivalently: writeLines(formatDL(x, style = "list"))

174 function

function Function Definition

Description

These functions provide the base mechanisms for defining new functions in the R language.

Usage

function(arglist) expr
return(value)

Arguments

arglist Empty or one or more name or name=expression terms.
value An expression.

Details

The names in an argument list can be back-quoted non-standard names (see ‘backquote’).

If value is missing, NULL is returned. If it is a single expression, the value of the evaluated
expression is returned. (The expression is evaluated as soon as return is called, in the evaluation
frame of the function and before any on.exit expression is evaluated.)

If the end of a function is reached without calling return, the value of the last evaluated expression
is returned.

Warning

Prior to R 1.8.0, value could be a series of non-empty expressions separated by commas. In that
case the value returned is a list of the evaluated expressions, with names set to the expressions where
these are the names of R objects. That is, a=foo() names the list component a and gives it the
value which results from evaluating foo().

This has been deprecated (and a warning is given), as it was never documented in S, and whether or
not the list is named differs by S versions. Supply a (named) list value instead.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

args and body for accessing the arguments and body of a function.

debug for debugging; using invisible inside return(.) for returning invisibly.

Examples

norm <- function(x) sqrt(x%*%x)
norm(1:4)

An anonymous function:
(function(x,y){ z <- x^2 + y^2; x+y+z })(0:7, 1)

funprog 175

funprog Common Higher-Order Functions in Functional Programming Lan-
guages

Description

Reduce uses a binary function to successively combine the elements of a given vector and a pos-
sibly given initial value. Filter extracts the elements of a vector for which a predicate (logical)
function gives true. Find and Position give the first or last such element and its position in
the vector, respectively. Map applies a function to the corresponding elements of given vectors.
Negate creates the negation of a given function.

Usage

Reduce(f, x, init, right = FALSE, accumulate = FALSE)
Filter(f, x)
Find(f, x, right = FALSE, nomatch = NULL)
Map(f, ...)
Negate(f)
Position(f, x, right = FALSE, nomatch = NA_integer_)

Arguments

f a function of the appropriate arity (binary for Reduce, unary for Filter,
Find and Position, k-ary for Map if this is called with k arguments). An
arbitrary predicate function for Negate.

x a vector.

init an R object of the same kind as the elements of x.

right a logical indicating whether to proceed from left to right (default) or from right
to left.

accumulate a logical indicating whether the successive reduce combinations should be ac-
cumulated. By default, only the final combination is used.

nomatch the value to be returned in the case when “no match” (no element satisfying the
predicate) is found.

... vectors.

Details

If init is given, Reduce logically adds it to the start (when proceeding left to right) or the end
of x, respectively. If this possibly augmented vector v has n > 1 elements, Reduce successively
applies f to the elements of v from left to right or right to left, respectively. I.e., a left reduce
computes l1 = f(v1, v2), l2 = f(l1, v3), etc., and returns ln−1 = f(ln−2, vn), and a right reduce
does rn−1 = f(vn−1, vn), rn−2 = f(vn−2, rn−1) and returns r1 = f(v1, r2). (E.g., if v is the
sequence (2, 3, 4) and f is division, left and right reduce give (2/3)/4 = 1/6 and 2/(3/4) = 8/3,
respectively.) If v has only a single element, this is returned; if there are no elements, NULL is
returned. Thus, it is ensured that f is always called with 2 arguments.

The current implementation is non-recursive to ensure stability and scalability.

176 funprog

Reduce is patterned after Common Lisp’s reduce. A reduce is also known as a fold (e.g., in
Haskell) or an accumulate (e.g., in the C++ Standard Template Library). The accumulative version
corresponds to Haskell’s scan functions.

Filter applies the unary predicate function f to each element of x, coercing to logical if neces-
sary, and returns the subset of x for which this gives true. Note that possible NA values are currently
always taken as false; control over NA handling may be added in the future. Filter corresponds
to filter in Haskell or remove-if-not in Common Lisp.

Find and Position are patterned after Common Lisp’s find-if and position-if, re-
spectively. If there is an element for which the predicate function gives true, then the first or last
such element or its position is returned depending on whether right is false (default) or true, re-
spectively. If there is no such element, the value specified by nomatch is returned. The current
implementation is not optimized for performance.

Map is a simple wrapper to mapply which does not attempt to simplify the result, similar to
Common Lisp’s mapcar (with arguments being recycled, however). Future versions may allow
some control of the result type.

Negate corresponds to Common Lisp’s complement. Given a (predicate) function f, it creates
a function which returns the logical negation of what f returns.

Examples

A general-purpose adder:
add <- function(x) Reduce("+", x)
add(list(1, 2, 3))
Like sum(), but can also used for adding matrices etc., as it will
use the appropriate '+' method in each reduction step.
More generally, many generics meant to work on arbitrarily many
arguments can be defined via reduction:
FOO <- function(...) Reduce(FOO2, list(...))
FOO2 <- function(x, y) UseMethod("FOO2")
FOO() methods can then be provided via FOO2() methods.

A general-purpose cumulative adder:
cadd <- function(x) Reduce("+", x, accumulate = TRUE)
cadd(seq_len(7))

A simple function to compute continued fractions:
cfrac <- function(x) Reduce(function(u, v) u + 1 / v, x, right = TRUE)
Continued fraction approximation for pi:
cfrac(c(3, 7, 15, 1, 292))
Continued fraction approximation for Euler's number (e):
cfrac(c(2, 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8))

Iterative function application:
Funcall <- function(f, ...) f(...)
Compute log(exp(acos(cos(0))
Reduce(Funcall, list(log, exp, acos, cos), 0, right = TRUE)
n-fold iterate of a function, functional style:
Iterate <- function(f, n = 1)

function(x) Reduce(Funcall, rep.int(list(f), n), x, right = TRUE)
Continued fraction approximation to the golden ratio:
Iterate(function(x) 1 + 1 / x, 30)(1)
which is the same as
cfrac(rep.int(1, 31))
Computing square root approximations for x as fixed points of the

gc 177

function t |-> (t + x / t) / 2, as a function of the initial value:
asqrt <- function(x, n) Iterate(function(t) (t + x / t) / 2, n)
asqrt(2, 30)(10) # Starting from a positive value => +sqrt(2)
asqrt(2, 30)(-1) # Starting from a negative value => -sqrt(2)

A list of all functions in the base environment:
funs <- Filter(is.function, sapply(ls(baseenv()), get, baseenv()))
Functions in base with more than 10 arguments:
names(Filter(function(f) length(formals(args(f))) > 10, funs))
Number of functions in base with a '...' argument:
length(Filter(function(f)

any(names(formals(args(f))) %in% "..."),
funs))

Find all objects in the base environment which are *not* functions:
Filter(Negate(is.function), sapply(ls(baseenv()), get, baseenv()))

gc Garbage Collection

Description

A call of gc causes a garbage collection to take place. gcinfo sets a flag so that automatic collec-
tion is either silent (verbose=FALSE) or prints memory usage statistics (verbose=TRUE).

Usage

gc(verbose = getOption("verbose"), reset=FALSE)
gcinfo(verbose)

Arguments

verbose logical; if TRUE, the garbage collection prints statistics about cons cells and the
space allocated for vectors.

reset logical; if TRUE the values for maximum space used are reset to the current
values.

Details

A call of gc causes a garbage collection to take place. This will also take place automatically
without user intervention, and the primary purpose of calling gc is for the report on memory usage.

However, it can be useful to call gc after a large object has been removed, as this may prompt R to
return memory to the operating system.

R allocates space for vectors in multiples of 8 bytes: hence the report of "Vcells", a relict of an
earlier allocator (that used a vector heap).

When gcinfo(TRUE) is in force, messages are sent to the message connection at each garbage
collection of the form

Garbage collection 12 = 10+0+2 (level 0) ...
6.4 Mbytes of cons cells used (58%)
2.0 Mbytes of vectors used (32%)

178 gc.time

Here the last two lines give the current memory usage rounded up to the next 0.1Mb and as a
percentage of the current trigger value. The first line gives a breakdown of the number of garbage
collections at various levels (for an explanation see the ‘R Internals’ manual).

Value

gc returns a matrix with rows "Ncells" (cons cells), usually 28 bytes each on 32-bit systems and
56 bytes on 64-bit systems, and "Vcells" (vector cells, 8 bytes each), and columns "used" and
"gc trigger", each also interpreted in megabytes (rounded up to the next 0.1Mb).

If maxima have been set for either "Ncells" or "Vcells", a fifth column is printed giving the
current limits in Mb (with NA denoting no limit).

The final two columns show the maximum space used since the last call to gc(reset=TRUE) (or
since R started).

gcinfo returns the previous value of the flag.

See Also

The ‘R Internals’ manual.

Memory on R’s memory management, and gctorture if you are an R developer.

reg.finalizer for actions to happen at garbage collection.

Examples

gc() #- do it now
gcinfo(TRUE) #-- in the future, show when R does it
x <- integer(100000); for(i in 1:18) x <- c(x,i)
gcinfo(verbose = FALSE)#-- don't show it anymore

gc(TRUE)

gc(reset=TRUE)

gc.time Report Time Spent in Garbage Collection

Description

This function reports the time spent in garbage collection so far in the R session while GC timing
was enabled.

Usage

gc.time(on = TRUE)

Arguments

on logical; if TRUE, GC timing is enabled.

gctorture 179

Value

A numerical vector of length 5 giving the user CPU time, the system CPU time, the elapsed time and
children’s user and system CPU times (normally both zero), of time spent doing garbage collection
whilst GC timing was enabled.

Warnings

This is experimental functionality, likely to be removed as soon as the next release.

The timings are rounded up by the sampling interval for timing processes, and so are likely to be
over-estimates.

See Also

gc, proc.time for the timings for the session.

Examples

gc.time()

gctorture Torture Garbage Collector

Description

Provokes garbage collection on (nearly) every memory allocation. Intended to ferret out memory
protection bugs. Also makes R run very slowly, unfortunately.

Usage

gctorture(on = TRUE)

Arguments

on logical; turning it on/off.

Value

Previous value.

Author(s)

Peter Dalgaard

180 get

get Return the Value of a Named Object

Description

Search for an R object with a given name and return it.

Usage

get(x, pos = -1, envir = as.environment(pos), mode = "any",
inherits = TRUE)

mget(x, envir, mode = "any",
ifnotfound = list(function(x)

stop(paste("value for '", x, "' not found", sep = ""),
call. = FALSE)),

inherits = FALSE)

Arguments

x a variable name (given as a character string).

pos where to look for the object (see the details section); if omitted, the function will
search as if the name of the object appeared unquoted in an expression.

envir an alternative way to specify an environment to look in; see the ‘Details’ section.

mode the mode or type of object sought: see the ‘Details’ section.

inherits should the enclosing frames of the environment be searched?

ifnotfound A list of values to be used if the item is not found: it will be coerced to list if
necessary.

Details

The pos argument can specify the environment in which to look for the object in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys.frame to access the currently
active function calls). The envir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

This function looks to see if the name x has a value bound to it in the specified environment. If
inherits is TRUE and a value is not found for x in the specified environment, the enclosing
frames of the environment are searched until the name x is encountered. See environment
and the ‘R Language Definition’ manual for details about the structure of environments and their
enclosures.

Warning: inherits = TRUE is the default behaviour for R but not for S.

If mode is specified then only objects of that type are sought. The mode may specify one of the
collections "numeric" and "function" (see mode): any member of the collection will suffice.

Using a NULL environment is equivalent to using the current environment.

For mget multiple values are returned in a named list. This is true even if only one value is
requested. The value in mode and ifnotfound can be either the same length as the number of
requested items or of length 1. The argument ifnotfound must be a list containing either the

getDLLRegisteredRoutines 181

value to use if the requested item is not found or a function of one argument which will be called
if the item is not found, with argument the name of the item being requested. The default value for
inherits is FALSE, in contrast to the default behavior for get.

mode here is a mixture of the meanings of typeof and mode: "function" covers primitive
functions and operators, "numeric", "integer", "real" and "double" all refer to any
numeric type, "symbol" and "name" are equivalent but "language" must be used.

Value

The object found. (If no object is found an error results.)

Note

The reverse of a <- get(nam) is assign(nam, a).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

exists, assign.

Examples

get("%o%")

##test mget
e1 <- new.env()
mget(letters, e1, ifnotfound = as.list(LETTERS))

getDLLRegisteredRoutines
Reflectance Information for C/Fortran routines in a DLL

Description

This function allows us to query the set of routines in a DLL that are registered with R to enhance
dynamic lookup, error handling when calling native routines, and potentially security in the future.
This function provides a description of each of the registered routines in the DLL for the different
interfaces, i.e. .C, .Call, .Fortran and .External.

Usage

getDLLRegisteredRoutines(dll, addNames = TRUE)

182 getDLLRegisteredRoutines

Arguments

dll a character string or DLLInfo object. The character string specifies the file
name of the DLL of interest, and is given without the file name extension
(e.g., the ‘.dll’ or ‘.so’) and with no directory/path information. So a file
‘MyPackage/libs/MyPackage.so’ would be specified as ‘MyPackage’.
The DLLInfo objects can be obtained directly in calls to dyn.load and
library.dynam, or can be found after the DLL has been loaded using
getLoadedDLLs, which returns a list of DLLInfo objects (index-able by
DLL file name).
The DLLInfo approach avoids any ambiguities related to two DLLs having the
same name but corresponding to files in different directories.

addNames a logical value. If this is TRUE, the elements of the returned lists are named
using the names of the routines (as seen by R via registration or raw name).
If FALSE, these names are not computed and assigned to the lists. As a re-
sult, the call should be quicker. The name information is also available in the
NativeSymbolInfo objects in the lists.

Details

This takes the registration information after it has been registered and processed by the R internals.
In other words, it uses the extended information

Value

A list with four elements corresponding to the routines registered for the .C, .Call, .Fortran and
.External interfaces. Each element is a list with as many elements as there were routines registered
for that interface. Each element identifies a routine and is an object of class NativeSymbolInfo.
An object of this class has the following fields:

name the registered name of the routine (not necessarily the name in the C code).

address the memory address of the routine as resolved in the loaded DLL. This may be
NULL if the symbol has not yet been resolved.

dll an object of class DLLInfo describing the DLL. This is same for all elements
returned.

numParameters
the number of arguments the native routine is to be called with. In the future,
we will provide information about the types of the parameters also.

Author(s)

Duncan Temple Lang <duncan@wald.ucdavis.edu>

References

"Writing R Extensions Manual" for symbol registration. R News, Volume 1/3, September 2001. "In
search of C/C++ & Fortran Symbols"

See Also

getLoadedDLLs

getLoadedDLLs 183

Examples

dlls <- getLoadedDLLs()
getDLLRegisteredRoutines(dlls[["base"]])

getDLLRegisteredRoutines("stats")

getLoadedDLLs Get DLLs Loaded in Current Session

Description

This function provides a way to get a list of all the DLLs (see dyn.load that are currently loaded
in the R session.

Usage

getLoadedDLLs()

Details

This queries the internal table that manages the DLLs.

Value

An object of class "DLLInfoList" which is a list with an element corresponding to each DLL
that is currently loaded in the session. Each element is an object of class "DLLInfo" which has
the following entries.

name the abbreviated name.

path the fully qualified name of the loaded DLL.
dynamicLookup

a logical value indicating whether R uses only the registration information to
resolve symbols or whether it searches the entire symbol table of the DLL.

handle a reference to the C-level data structure that provides access to the contents of
the DLL. This is an object of class "DLLHandle".

Note that the class DLLInfo has an overloaded method for $ which can be used to resolve native
symbols within that DLL. Therefore, one must access the R-level elements described above using
[[, e.g. x[["name"]] or x[["handle"]].

Note

We are starting to use the handle elements in the DLL object to resolve symbols more directly in
R.

Author(s)

Duncan Temple Lang 〈duncan@wald.ucdavis.edu〉.

See Also

getDLLRegisteredRoutines, getNativeSymbolInfo

184 getNativeSymbolInfo

Examples

getLoadedDLLs()

getNativeSymbolInfo
Obtain a Description of one or more Native (C/Fortran) Symbols

Description

This finds and returns as comprehensive a description of one or more dynamically loaded or ‘ex-
ported’ built-in native symbols. For each name, it returns information about the name of the symbol,
the library in which it is located and, if available, the number of arguments it expects and by which
interface it should be called (i.e .Call, .C, .Fortran, or .External). Additionally, it returns
the address of the symbol and this can be passed to other C routines which can invoke. Specifically,
this provides a way to explicitly share symbols between different dynamically loaded package li-
braries. Also, it provides a way to query where symbols were resolved, and aids diagnosing strange
behavior associated with dynamic resolution.

This is vectorized in the name argument so can process multiple symbols in a single call. The result
is a list that can be indexed by the given symbol names.

Usage

getNativeSymbolInfo(name, PACKAGE, unlist = TRUE,
withRegistrationInfo = FALSE)

Arguments

name the name(s) of the native symbol(s) as used in a call to is.loaded, etc. Note
that Fortran symbols should be supplied as-is, not wrapped in symbol.For.

PACKAGE an optional argument that specifies to which DLL we restrict the search for this
symbol. If this is "base", we search in the R executable itself.

unlist a logical value which controls how the result is returned if the function is called
with the name of a single symbol. If unlist is TRUE and the number of sym-
bol names in name is one, then the NativeSymbolInfo object is returned.
If it is FALSE, then a list of NativeSymbolInfo objects is returned. This
is ignored if the number of symbols passed in name is more than one. To be
compatible with earlier versions of this function, this defaults to TRUE.

withRegistrationInfo
a logical value indicating whether, if TRUE, to return information that was reg-
istered with R about the symbol and its parameter types if such information is
available, or if FALSE to return the address of the symbol.

Details

This uses the same mechanism for resolving symbols as is used in all the native interfaces (.Call,
etc.). If the symbol has been explicitly registered by the DLL in which it is contained, information
about the number of arguments and the interface by which it should be called will be returned.
Otherwise, a generic native symbol object is returned.

getNativeSymbolInfo 185

Value

Generally, a list of NativeSymbolInfo elements whose elements can be indexed by the ele-
ments of name in the call. Each NativeSymbolInfo object is a list containing the following
elements:

name the name of the symbol, as given by the name argument.

address if withRegistrationInfo is FALSE, this is the native memory address
of the symbol which can be used to invoke the routine, and also to com-
pare with other symbol addresses. This is an external pointer object and of
class NativeSymbol. If withRegistrationInfo is TRUE and regis-
tration information is available for the symbol, then this is an object of class
RegisteredNativeSymbol and is a reference to an internal data type that
has access to the routine pointer and registration information. This too can be
used in calls to .Call, .C, .Fortran and .External.

package a list containing 3 elements:

name the short form of the library name which can be used as the value of the
PACKAGE argument in the different native interface functions.

path the fully qualified name of the DLL.
dynamicLookup a logical value indicating whether dynamic resolution is used

when looking for symbols in this library, or only registered routines can be
located.

numParameters
the number of arguments that should be passed in a call to this routine.

Additionally, the list will have an additional class, being CRoutine, CallRoutine,
FortranRoutine or ExternalRoutine corresponding to the R interface by which it should
be invoked.

If any of the symbols is not found, an error is immediately raised.

If name contains only one symbol name and unlist is TRUE, then the single
NativeSymbolInfo is returned rather than the list containing that one element.

Note

One motivation for accessing this reflectance information is to be able to pass native routines to
C routines as function pointers in C. This allows us to treat native routines and R functions in a
similar manner, such as when passing an R function to C code that makes callbacks to that function
at different points in its computation (e.g., nls). Additionally, we can resolve the symbol just once
and avoid resolving it repeatedly or using the internal cache. In the future, one may be able to treat
NativeSymbol objects directly as callback objects.

Author(s)

Duncan Temple Lang

References

For information about registering native routines, see “In Search of C/C++ & FORTRAN Rou-
tines”, R News, volume 1, number 3, 2001, p20–23 (http://CRAN.R-project.org/doc/
Rnews/).

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

186 getNumCConverters

See Also

getDLLRegisteredRoutines, is.loaded, .C, .Fortran, .External, .Call,
dyn.load.

Examples

library(stats) # normally loaded
getNativeSymbolInfo("dansari")

getNativeSymbolInfo("hcass2") # a Fortran symbol

getNumCConverters Management of .C argument conversion list

Description

These functions provide facilities to manage the extensible list of converters used to translate R
objects to C pointers for use in .C calls. The number and a description of each element in the list
can be retrieved. One can also query and set the activity status of individual elements, temporarily
ignoring them. And one can remove individual elements.

Usage

getNumCConverters()
getCConverterDescriptions()
getCConverterStatus()
setCConverterStatus(id, status)
removeCConverter(id)

Arguments

id either a number or a string identifying the element of interest in the converter list.
A string is matched against the description strings for each element to identify
the element. Integers are specified starting at 1 (rather than 0).

status a logical value specifying whether the element is to be considered active (TRUE)
or not (FALSE).

Details

The internal list of converters is potentially used when converting individual arguments in a .C
call. If an argument has a non-trivial class attribute, we iterate over the list of converters looking
for the first that matches. If we find a matching converter, we have it create the C-level pointer
corresponding to the R object. When the call to the C routine is complete, we use the same converter
for that argument to reverse the conversion and create an R object from the current value in the C
pointer. This is done separately for all the arguments.

The functions documented here provide R user-level capabilities for investigating and managing
the list of converters. There is currently no mechanism for adding an element to the converter list
within the R language. This must be done in C code using the routine R_addToCConverter().

getpid 187

Value

getNumCConverters returns an integer giving the number of elements in the list, both active
and inactive.

getCConverterDescriptions returns a character vector containing the description string of
each element of the converter list.

getCConverterStatus returns a logical vector with a value for each element in the converter
list. Each value indicates whether that converter is active (TRUE) or inactive (FALSE). The names
of the elements are the description strings returned by getCConverterDescriptions.

setCConverterStatus returns the logical value indicating the activity status of the specified
element before the call to change it took effect. This is TRUE for active and FALSE for inactive.

removeCConverter returns TRUE if an element in the converter list was identified and removed.
In the case that no such element was found, an error occurs.

Author(s)

Duncan Temple Lang

References

http://developer.R-project.org/CObjectConversion.pdf

See Also

.C

Examples

getNumCConverters()
getCConverterDescriptions()
getCConverterStatus()
Not run:
old <- setCConverterStatus(1, FALSE)

setCConverterStatus(1, old)
End(Not run)
Not run:
removeCConverter(1)
removeCConverter(getCConverterDescriptions()[1])
End(Not run)

getpid Get the Process ID of the R Session

Description

Get the process ID of the R Session. It is guaranteed by the operating system that two R sessions
running simultaneously will have different IDs, but it is possible that R sessions running at different
times will have the same ID.

Usage

Sys.getpid()

http://developer.R-project.org/CObjectConversion.pdf

188 gettext

Value

An integer, usually a small integer between 0 and 32767 under Unix-alikes and a much small integer
under Windows.

Examples

Sys.getpid()

gettext Translate Text Messages

Description

If Native Language Support was enabled in this build of R, attempt to translate character vectors or
set where the translations are to be found.

Usage

gettext(..., domain = NULL)

ngettext(n, msg1, msg2, domain = NULL)

bindtextdomain(domain, dirname = NULL)

Arguments

... One or more character vectors.

domain The ‘domain’ for the translation.

n a non-negative integer.

msg1 the message to be used in English for n = 1.

msg2 the message to be used in English for n = 0, 2, 3,....

dirname The directory in which to find translated message catalogs for the domain.

Details

If domain is NULL or "", a domain is searched for based on the name space which contains the
function calling gettext or ngettext. If a suitable domain can be found, each character string
is offered for translation, and replaced by its translation into the current language if one is found.

Conventionally the domain for R warning/error messages in package pkg is "R-pkg", and that for
C-level messages is "pkg".

For gettext, leading and trailing whitespace is ignored when looking for the translation.

ngettext is used where the message needs to vary by a single integer. Translating such messages
is subject to very specific rules for different languages: see the GNU Gettext Manual. The string
will often contain a single instance of %d to be used in sprintf. If English is used, msg1 is
returned if n == 1 and msg2 in all other cases.

getwd 189

Value

For gettext, a character vector, one element per string in If translation is not enabled or no
domain is found or no translation is found in that domain, the original strings are returned.

For ngettext, a character string.

For bindtextdomain, a character string giving the current base directory, or NULL if setting it
failed.

See Also

stop and warning make use of gettext to translate messages.

xgettext for extracting translatable strings from R source files.

Examples

bindtextdomain("R") # non-null if and only if NLS is enabled

for(n in 0:3)
print(sprintf(ngettext(n, "%d variable has missing values",

"%d variables have missing values"),
n))

Not run:
for translation, those strings should appear in R-pkg.pot as
msgid "%d variable has missing values"
msgid_plural "%d variables have missing values"
msgstr[0] ""
msgstr[1] ""
End(Not run)

miss <- c("one", "or", "another")
cat(ngettext(length(miss), "variable", "variables"),

paste(sQuote(miss), collapse=", "),
ngettext(length(miss), "contains", "contain"), "missing values\n")

better for translators would be to use
cat(sprintf(ngettext(length(miss),

"variable %s contains missing values\n",
"variables %s contain missing values\n"),

paste(sQuote(miss), collapse=", ")))

getwd Get or Set Working Directory

Description

getwd returns an absolute filename representing the current working directory of the R process;
setwd(dir) is used to set the working directory to dir.

Usage

getwd()
setwd(dir)

190 gl

Arguments

dir A character string.

Value

getwd returns a character vector, or NULL if the working directory is not available.

setwd returns the current directory before the change, invisibly. It will give an error if it does not
succeed.

Note

These functions are not implemented on all platforms.

See Also

list.files for the contents of a directory.

Examples

(WD <- getwd())
if (!is.null(WD)) setwd(WD)

gl Generate Factor Levels

Description

Generate factors by specifying the pattern of their levels.

Usage

gl(n, k, length = n*k, labels = 1:n, ordered = FALSE)

Arguments

n an integer giving the number of levels.

k an integer giving the number of replications.

length an integer giving the length of the result.

labels an optional vector of labels for the resulting factor levels.

ordered a logical indicating whether the result should be ordered or not.

Value

The result has levels from 1 to n with each value replicated in groups of length k out to a total
length of length.

gl is modelled on the GLIM function of the same name.

See Also

The underlying factor().

grep 191

Examples

First control, then treatment:
gl(2, 8, labels = c("Control", "Treat"))
20 alternating 1s and 2s
gl(2, 1, 20)
alternating pairs of 1s and 2s
gl(2, 2, 20)

grep Pattern Matching and Replacement

Description

grep searches for matches to pattern (its first argument) within the character vector x (second
argument). regexpr and gregexpr do too, but return more detail in a different format.

sub and gsub perform replacement of matches determined by regular expression matching.

Usage

grep(pattern, x, ignore.case = FALSE, extended = TRUE,
perl = FALSE, value = FALSE, fixed = FALSE, useBytes = FALSE)

sub(pattern, replacement, x,
ignore.case = FALSE, extended = TRUE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

gsub(pattern, replacement, x,
ignore.case = FALSE, extended = TRUE, perl = FALSE,
fixed = FALSE, useBytes = FALSE)

regexpr(pattern, text, ignore.case = FALSE, extended = TRUE,
perl = FALSE, fixed = FALSE, useBytes = FALSE)

gregexpr(pattern, text, ignore.case = FALSE, extended = TRUE,
perl = FALSE, fixed = FALSE, useBytes = FALSE)

Arguments

pattern character string containing a regular expression (or character string for
fixed = TRUE) to be matched in the given character vector. Coerced by
as.character to a character string if possible.

x, text a character vector where matches are sought, or an object which can be coerced
by as.character to a character vector.

ignore.case if FALSE, the pattern matching is case sensitive and if TRUE, case is ignored
during matching.

extended if TRUE, extended regular expression matching is used, and if FALSE basic
regular expressions are used.

perl logical. Should perl-compatible regexps be used? Has priority over extended.

192 grep

value if FALSE, a vector containing the (integer) indices of the matches deter-
mined by grep is returned, and if TRUE, a vector containing the matching ele-
ments themselves is returned.

fixed logical. If TRUE, pattern is a string to be matched as is. Overrides all con-
flicting arguments.

useBytes logical. If TRUE the matching is done byte-by-byte rather than character-by-
character. See ‘Details’.

replacement a replacement for matched pattern in sub and gsub. Coerced to character
if possible. For fixed = FALSE this can include backreferences "\1" to
"\9" to parenthesized subexpressions of pattern. For perl = TRUE only,
it can also contain "\U" or "\L" to convert the rest of the replacement to upper
or lower case.

Details

Arguments which should be character strings or character vectors are coerced to character if possi-
ble.

The two *sub functions differ only in that sub replaces only the first occurrence of a pattern
whereas gsub replaces all occurrences.

For regexpr it is an error for pattern to be NA, otherwise NA is permitted and gives an NA
match.

The regular expressions used are those specified by POSIX 1003.2, either extended or basic, de-
pending on the value of the extended argument, unless perl = TRUE when they are those
of PCRE, http://www.pcre.org/. (The exact set of patterns supported may depend on the
version of PCRE installed on the system in use if R was configured to use the system PCRE.)

useBytes is only used if fixed = TRUE or perl = TRUE. Its main effect is to avoid er-
rors/warnings about invalid inputs and spurious matches, but for regexpr it changes the interpre-
tation of the output.

PCRE only supports caseless matching for a non-ASCII pattern in a UTF-8 locale (and not for
useBytes = TRUE in any locale).

Value

For grep a vector giving either the indices of the elements of x that yielded a match or, if value
is TRUE, the matched elements of x (after coercion, preserving names but no other attributes).

For sub and gsub a character vector of the same length and with the same attributes as x (after
possible coercion). Elements of character vectors x which are not subsituted will be return un-
changed (including any declared encoding). If useBytes = FALSE, either perl = TRUE or
fixed = TRUE and any element of pattern, replacement and x is declared to be in UTF-
8, the result will be in UTF-8. Otherwise changed elements of the result will be have the encoding
declared as that of the current locale (see Encoding if the corresponding input had a declared
encoding and the current locale is either Latin-1 or UTF-8.

For regexpr an integer vector of the same length as text giving the starting position of the first
match, or −1 if there is none, with attribute "match.length" giving the length of the matched
text (or −1 for no match). In a multi-byte locale these quantities are in characters rather than bytes
unless useBytes = TRUE is used with fixed = TRUE or perl = TRUE.

For gregexpr a list of the same length as text each element of which is an integer vector as in
regexpr, except that the starting positions of every (disjoint) match are given.

http://www.pcre.org/

grep 193

If in a multi-byte locale the pattern or replacement is not a valid sequence of bytes, an error is
thrown. An invalid string in x or text is a non-match with a warning for grep or regexpr, but
an error for sub or gsub.

Warning

The standard regular-expression code has been reported to be very slow when applied to extremely
long character strings (tens of thousands of characters or more): the code used when perl =
TRUE seems much faster and more reliable for such usages.

The standard version of gsub does not substitute correctly repeated word-boundaries (e.g.
pattern = "\b"). Use perl = TRUE for such matches.

The perl = TRUE option is only implemented for single-byte and UTF-8 encodings, and will
warn if used in a non-UTF-8 multi-byte locale (unless useBytes = TRUE).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole (grep)

See Also

regular expression (aka regexp) for the details of the pattern specification.

glob2rx to turn wildcard matches into regular expressions.

agrep for approximate matching.

tolower, toupper and chartr for character translations. charmatch, pmatch, match.
apropos uses regexps and has nice examples.

Examples

grep("[a-z]", letters)

txt <- c("arm","foot","lefroo", "bafoobar")
if(length(i <- grep("foo",txt)))

cat("'foo' appears at least once in\n\t",txt,"\n")
i # 2 and 4
txt[i]

Double all 'a' or 'b's; "\" must be escaped, i.e., 'doubled'
gsub("([ab])", "\\1_\\1_", "abc and ABC")

txt <- c("The", "licenses", "for", "most", "software", "are",
"designed", "to", "take", "away", "your", "freedom",
"to", "share", "and", "change", "it.",
"", "By", "contrast,", "the", "GNU", "General", "Public", "License",
"is", "intended", "to", "guarantee", "your", "freedom", "to",
"share", "and", "change", "free", "software", "--",
"to", "make", "sure", "the", "software", "is",
"free", "for", "all", "its", "users")

(i <- grep("[gu]", txt)) # indices
stopifnot(txt[i] == grep("[gu]", txt, value = TRUE))

Note that in locales such as en_US this includes B as the
collation order is aAbBcCdEe ...
(ot <- sub("[b-e]",".", txt))

194 groupGeneric

txt[ot != gsub("[b-e]",".", txt)]#- gsub does "global" substitution

txt[gsub("g","#", txt) !=
gsub("g","#", txt, ignore.case = TRUE)] # the "G" words

regexpr("en", txt)

gregexpr("e", txt)

trim trailing white space
str <- 'Now is the time '
sub(' +$', '', str) ## spaces only
sub('[[:space:]]+$', '', str) ## white space, POSIX-style
sub('\\s+$', '', str, perl = TRUE) ## Perl-style white space

capitalizing
gsub("(\\w)(\\w*)", "\\U\\1\\L\\2", "a test of capitalizing", perl=TRUE)
gsub("\\b(\\w)", "\\U\\1", "a test of capitalizing", perl=TRUE)

groupGeneric S3 Group Generic Functions

Description

Group generic methods can be defined for four pre-specified groups of functions, Math, Ops,
Summary and Complex. (There are no objects of these names in base R, but there are in the
methods package.)

A method defined for an individual member of the group takes precedence over a method defined
for the group as a whole.

Usage

S3 methods for group generics have prototypes:
Math(x, ...)
Ops(e1, e2)
Complex(z)
Summary(..., na.rm = FALSE)

Arguments

x, z, e1, e2 objects.

... further arguments passed to methods.

na.rm logical: should missing values be removed?

Details

There are four groups for which S3 methods can be written, namely the "Math", "Ops",
"Summary" and "Complex" groups. These are not R objects, but methods can be supplied
for them and base R contains factor, data.frame and difftime methods for the first three
groups. (There is also a ordered method for Ops, POSIXt and Date methods for Math and
Ops, package_version methods for Ops and Summary, as well as a ts method for Ops in
package stats.)

groupGeneric 195

1. Group "Math":

• abs, sign, sqrt,
floor, ceiling, trunc,
round, signif

• exp, log, expm1, log1p,
cos, sin, tan,
acos, asin, atan
cosh, sinh, tanh,
acosh, asinh, atanh

• lgamma, gamma, digamma, trigamma

• cumsum, cumprod, cummax, cummin

Members of this group dispatch on x. Most members accept only one argument, but members
log, round and signif accept one or two arguments, and trunc accepts one or more.

2. Group "Ops":

• "+", "-", "*", "/", "^", "%%", "%/%"

• "&", "|", "!"

• "==", "!=", "<", "<=", ">=", ">"

This group contains both binary and unary operators (+, - and !): when a unary operator is
encountered the Ops method is called with one argument and e2 is missing.

The classes of both arguments are considered in dispatching any member of this group. For
each argument its vector of classes is examined to see if there is a matching specific (preferred)
or Ops method. If a method is found for just one argument or the same method is found
for both, it is used. If different methods are found, there is a warning about ‘incompatible
methods’: in that case or if no method is found for either argument the internal method is
used.

If the members of this group are called as functions, any argument names are removed to
ensure that positional matching is always used.

3. Group "Summary":

• all, any

• sum, prod

• min, max

• range

Members of this group dispatch on the first argument supplied.

4. Group "Complex":

• Arg, Conj, Im, Mod, Re

Members of this group dispatch on z.

Note that a method will used for either one of these groups or one of its members only if it corre-
sponds to a "class" attribute, as the internal code dispatches on oldClass and not on class.
This is for efficiency: having to dispatch on, say, Ops.integer would be too slow.

The number of arguments supplied for primitive members of the "Math" group generic methods
is not checked prior to dispatch.

There is no lazy evaluation of arguments for group-generic functions.

196 gzcon

Technical Details

These functions are all primitive and internal generic.

The details of method dispatch and variables such as .Generic are discussed in the help for
UseMethod. There are a few small differences:

• For the operators of group Ops, the object .Method is a length-two character vector with
elements the methods selected for the left and right arguments respectively. (If no method was
selected, the corresponding element is "".)

• Object .Group records the group used for dispatch (if a specific method is used this is "").

References

Appendix A, Classes and Methods of
Chambers, J. M. and Hastie, T. J. eds (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

methods for methods of non-Internal generic functions.

S4groupGeneric for group generics for S4 methods.

Examples

require(utils)

d.fr <- data.frame(x=1:9, y=stats::rnorm(9))
class(1 + d.fr) == "data.frame" ##-- add to d.f. ...

methods("Math")
methods("Ops")
methods("Summary")
methods("Complex") # none in base R

gzcon (De)compress I/O Through Connections

Description

gzcon provides a modified connection that wraps an existing connection, and decompresses reads
or compresses writes through that connection. Standard gzip headers are assumed.

Usage

gzcon(con, level = 6, allowNonCompressed = TRUE)

Arguments

con a connection.

level integer between 0 and 9, the compression level when writing.
allowNonCompressed

logical. When reading, should non-compressed input be allowed?

gzcon 197

Details

If con is open then the modified connection is opened. Closing the wrapper connection will also
close the underlying connection.

Reading from a connection which does not supply a gzip magic header is equivalent to reading
from the original connection if allowNonCompressed is true, otherwise an error.

The original connection becomes unusable: any object pointing to it will now refer to the modified
connection.

When the connection is opened for reading, the input is expected to start with the gzip magic
header. If it does not and if allowNonCompressed = TRUE (the default) the input is read
as-is.

Value

An object inheriting from class "connection". This is the same connection number as supplied,
but with a modified internal structure. It has binary mode.

See Also

gzfile

Examples

Uncompress a data file from a URL
z <- gzcon(url("http://www.stats.ox.ac.uk/pub/datasets/csb/ch12.dat.gz"))
read.table can only read from a text-mode connection.
raw <- textConnection(readLines(z))
close(z)
dat <- read.table(raw)
close(raw)
dat[1:4,]

gzfile and gzcon can inter-work.
Of course here one would used gzfile, but file() can be replaced by
any other connection generator.
zz <- gzfile("ex.gz", "w")
cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)
readLines(zz <- gzcon(file("ex.gz", "rb")))
close(zz)
unlink("ex.gz")

zz <- gzcon(file("ex2.gz", "wb"))
cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file = zz, sep = "\n")
close(zz)
readLines(zz <- gzfile("ex2.gz"))
close(zz)
unlink("ex2.gz")

198 Hyperbolic

hexmode Display Numbers in Hexadecimal

Description

Convert or print integers in hexadecimal format, with as many digits as are needed to display the
largest, using leading zeroes as necessary.

Usage

as.hexmode(x)

S3 method for class 'hexmode':
as.character(x, upper.case = FALSE, ...)

S3 method for class 'hexmode':
format(x, upper.case = FALSE, ...)

S3 method for class 'hexmode':
print(x, ...)

Arguments

x An object, for the methods inheriting from class "hexmode".

upper.case a logical indicating whether to use upper-case letters or lower-case letters (de-
fault).

... further arguments passed to or from other methods.

Details

Class "hexmode" consists of integer vectors with that class attribute, used merely to ensure that
they are printed in hex.

See Also

octmode

Hyperbolic Hyperbolic Functions

Description

These functions give the obvious hyperbolic functions. They respectively compute the hyperbolic
cosine, sine, tangent, and their inverses, arc-cosine, arc-sine, arc-tangent (or ‘area cosine’, etc).

iconv 199

Usage

cosh(x)
sinh(x)
tanh(x)
acosh(x)
asinh(x)
atanh(x)

Arguments

x a numeric or complex vector

Details

These are generic functions: methods can be defined for them individually or via the Math group
generic.

Branch cuts are consistent with the inverse trigonometric functions asin() et seq, and agree with
those defined in Abramowitz and Stegun, figure 4.7, page 86.

S4 methods

All are S4 generic functions: methods can be defined for them individually or via the Math group
generic.

References

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover.
Chapter 4. Elementary Transcendental Functions: Logarithmic, Exponential, Circular and Hyper-
bolic Functions

See Also

The trigonometric functions, cos, sin, tan, and their inverses acos, asin, atan.

The logistic distribution function plogis is a shifted version of tanh() for numeric x.

iconv Convert Character Vector between Encodings

Description

This uses system facilities to convert a character vector between encodings: the ‘i’ stands for ‘in-
ternationalization’.

Usage

iconv(x, from ="", to = "", sub = NA)

iconvlist()

200 iconv

Arguments

x A character vector, or an object to be converted to a character vector by
as.character.

from A character string describing the current encoding.

to A character string describing the target encoding.

sub character string. If not NA it is used to replace any non-convertible bytes in the
input. (This would normally be a single character, but can be more.) If "byte",
the indication is "<xx>" with the hex code of the byte.

Details

The names of encodings and which ones are available (and indeed, if any are) is platform-dependent.
On all systems that support iconv you can use "" for the encoding of the current locale, as well
as "latin1" and "UTF-8".

On many platforms iconvlist provides an alphabetical list of the supported encodings. On
others, the information is on the man page for iconv(5) or elsewhere in the man pages (and
beware that the system command iconv may not support the same set of encodings as the C
functions R calls). Unfortunately, the names are rarely common across platforms.

Elements of x which cannot be converted (perhaps because they are invalid or because they cannot
be represented in the target encoding) will be returned as NA unless sub is specified.

Most versions of iconvwill allow transliteration by appending //TRANSLIT to the to encoding:
see the examples.

Any encoding bits (see Encoding) on elements of x are ignored: they will always be translated
as if from from even if declared otherwise.

As from R 2.7.0 "UTF8" will be accepted as meaning the (more correct) "UTF-8".

Value

A character vector of the same length and the same attributes as x (after conversion).

The elements of the result have a declared encoding if from is "latin1" or "UTF-8", or if
from = "" and the current locale’s encoding is detected as Latin-1 or UTF-8.

Note

Not all platforms support these functions, although almost all support iconv. See also
capabilities("iconv").

See Also

localeToCharset, file.

Examples

utils::head(iconvlist(), n = 50)

Not run:
convert from Latin-2 to UTF-8: two of the glibc iconv variants.
iconv(x, "ISO_8859-2", "UTF-8")
iconv(x, "LATIN2", "UTF-8")
End(Not run)

icuSetCollate 201

Both x below are in latin1 and will only display correctly in a
locale that can represent and display latin1.
x <- "fa\xE7ile"
Encoding(x) <- "latin1"
x
charToRaw(xx <- iconv(x, "latin1", "UTF-8"))
xx

iconv(x, "latin1", "ASCII") # NA
iconv(x, "latin1", "ASCII", "?") # "fa?ile"
iconv(x, "latin1", "ASCII", "") # "faile"
iconv(x, "latin1", "ASCII", "byte") # "fa<e7>ile"

Extracts from R help files
x <- c("Ekstr\xf8m", "J\xf6reskog", "bi\xdfchen Z\xfcrcher")
Encoding(x) <- "latin1"
x
try(iconv(x, "latin1", "ASCII//TRANSLIT")) # platform-dependent
iconv(x, "latin1", "ASCII", sub="byte")

icuSetCollate Setup Collation by ICU

Description

Controls the way collation is done by ICU (an optional part of the R build).

Usage

icuSetCollate(...)

Arguments

... Named arguments, see ‘Details’.

Details

Optionally, R can be built to collate character strings by ICU (http://www.icu-project.
org). For such systems, icuSetCollate can be used to tune the way collation is done. On
other builds calling this function does nothing, with a warning.

Possible arguments are

locale: A character string such as "da_DK" giving the country whose collation rules are to be used.
If present, this should be the first argument.

case_first: "upper", "lower" or "default", asking for upper- or lower-case characters to be sorted
first. The default is usually lower-case first, but not in all languages (see the Danish example).

alternate_handling: Controls the handling of ‘variable’ characters (mainly punctuation and symbols). Possible
values are "non_ignorable" (primary strength) and "shifted" (quaternary strength).

strength: Which components should be used? Possible values "primary", "secondary",
"tertiary" (default), "quaternary" and "identical".

french_collation: In a French locale the way accents affect collation is from right to left, whereas in most other
locales it is from left to right. Possible values "on", "off" and "default".

http://www.icu-project.org
http://www.icu-project.org

202 identical

normalization: Should strings be normalized? Possible values "on" and "off" (default). This affects the
collation of composite characters.

case_level: An additional level between secondary and tertiary, used to distinguish large and small
Japanese Kana characters. Possible values "on" and "off" (default).

hiragana_quaternary: Possible values "on" (sort Hiragana first at quaternary level) and "off".

Only the first three are likely to be of interest except to those with a detailed understanding of
collation and specialized requirements.

Some examples are case_level="on", strength="primary" to ignore accent differ-
ences, alternate_handling="shifted" to ignore space and punctuation characters.

See Also

Comparison, sort

The ICU user guide chapter on collation (http://www.icu-project.org/userguide/
Collate_Intro.html).

Examples

x <- c("Aarhus", "aarhus", "safe", "test", "Zoo")
sort(x)
icuSetCollate(case_first="upper"); sort(x)
icuSetCollate(case_first="lower"); sort(x)

icuSetCollate(locale="da_DK", case_first="default"); sort(x)
icuSetCollate(locale="et_EE"); sort(x)

identical Test Objects for Exact Equality

Description

The safe and reliable way to test two objects for being exactly equal. It returns TRUE in this case,
FALSE in every other case.

Usage

identical(x, y)

Arguments

x, y any R objects.

Details

A call to identical is the way to test exact equality in if and while statements, as well as in
logical expressions that use && or ||. In all these applications you need to be assured of getting a
single logical value.

Users often use the comparison operators, such as == or !=, in these situations. It looks natural,
but it is not what these operators are designed to do in R. They return an object like the arguments.
If you expected x and y to be of length 1, but it happened that one of them wasn’t, you will not get

http://www.icu-project.org/userguide/Collate_Intro.html
http://www.icu-project.org/userguide/Collate_Intro.html

identical 203

a single FALSE. Similarly, if one of the arguments is NA, the result is also NA. In either case, the
expression if(x == y).... won’t work as expected.

The function all.equal is also sometimes used to test equality this way, but was intended for
something different: it allows for small differences in numeric results.

The computations in identical are also reliable and usually fast. There should never be an error.
The only known way to kill identical is by having an invalid pointer at the C level, generating a
memory fault. It will usually find inequality quickly. Checking equality for two large, complicated
objects can take longer if the objects are identical or nearly so, but represent completely independent
copies. For most applications, however, the computational cost should be negligible.

identical sees NaN as different from NA_real_, but all NaNs are equal (and all NA of the
same type are equal).

Comparison of attributes view them as a set (and not a vector, so order is not tested).

Value

A single logical value, TRUE or FALSE, never NA and never anything other than a single value.

Author(s)

John Chambers and R Core

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

all.equal for descriptions of how two objects differ; Comparison for operators that generate
elementwise comparisons. isTRUE is a simple wrapper based on identical.

Examples

identical(1, NULL) ## FALSE -- don't try this with ==
identical(1, 1.) ## TRUE in R (both are stored as doubles)
identical(1, as.integer(1)) ## FALSE, stored as different types

x <- 1.0; y <- 0.99999999999
how to test for object equality allowing for numeric fuzz :
(E <- all.equal(x,y))
isTRUE(E) # which is simply defined to just use
identical(TRUE, E)
If all.equal thinks the objects are different, it returns a
character string, and the above expression evaluates to FALSE

even for unusual R objects :
identical(.GlobalEnv, environment())

204 ifelse

identity Identity function

Description

A trivial identity function returning its argument.

Usage

identity(x)

Arguments

x an R object.

ifelse Conditional Element Selection

Description

ifelse returns a value with the same shape as test which is filled with elements selected from
either yes or no depending on whether the element of test is TRUE or FALSE.

Usage

ifelse(test, yes, no)

Arguments

test an object which can be coerced to logical mode.
yes return values for true elements of test.
no return values for false elements of test.

Details

If yes or no are too short, their elements are recycled. yes will be evaluated if and only if any
element of test is true, and analogously for no.

Missing values in test give missing values in the result.

Value

A vector of the same length and attributes (including class) as test and data values from the values
of yes or no. The mode of the answer will be coerced from logical to accommodate first any values
taken from yes and then any values taken from no.

Warning

The mode of the result may depend on the value of test, and the class attribute of the result is
taken from test and may be inappropriate for the values selected from yes and no.

Sometimes it is better to use a construction such as (tmp <- yes; tmp[!test] <-
no[!test]; tmp), possibly extended to handle missing values in test.

integer 205

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

if.

Examples

x <- c(6:-4)
sqrt(x)#- gives warning
sqrt(ifelse(x >= 0, x, NA))# no warning

Note: the following also gives the warning !
ifelse(x >= 0, sqrt(x), NA)

example of different return modes:
yes <- 1:3
no <- pi^(0:3)
typeof(ifelse(NA, yes, no)) # logical
typeof(ifelse(TRUE, yes, no)) # integer
typeof(ifelse(FALSE, yes, no))# double

integer Integer Vectors

Description

Creates or tests for objects of type "integer".

Usage

integer(length = 0)
as.integer(x, ...)
is.integer(x)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Details

Integer vectors exist so that data can be passed to C or Fortran code which expects them, and so that
small integer data can be represented exactly and compactly.

Note that on almost all implementations of R the range of representable integers is restricted to
about ±2× 109: doubles can hold much larger integers exactly.

206 interaction

Value

integer creates a integer vector of the specified length. Each element of the vector is equal to 0.

as.integer attempts to coerce its argument to be of integer type. The answer will be NA unless
the coercion succeeds. Real values larger in modulus than the largest integer are coerced to NA
(unlike S which gives the most extreme integer of the same sign). Non-integral numeric values are
truncated towards zero (i.e., as.integer(x) equals trunc(x) there), and imaginary parts of
complex numbers are discarded (with a warning). Character strings containing either a decimal rep-
resentation or a hexadecimal representation (starting with 0x or 0X) can be converted, as well as any
allowed by the platform for real numbers. Like as.vector it strips attributes including names.
(To ensure that an object is of integer type without stripping attributes, use storage.mode.)

is.integer returns TRUE or FALSE depending on whether its argument is of integer type or
not, unless it is a factor when it returns FALSE.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

numeric, storage.mode.

round (and ceiling and floor on that help page) to convert to integral values.

Examples

as.integer() truncates:
x <- pi * c(-1:1,10)
as.integer(x)

interaction Compute Factor Interactions

Description

interaction computes a factor which represents the interaction of the given factors. The result
of interaction is always unordered.

Usage

interaction(..., drop = FALSE, sep = ".", lex.order = FALSE)

Arguments

... the factors for which interaction is to be computed, or a single list giving those
factors.

drop if drop is TRUE, unused factor levels are dropped from the result. The default
is to retain all factor levels.

sep string to construct the new level labels by joining the constituent ones.

lex.order logical indicating if the order of factor concatenation should be lexically or-
dered.

interactive 207

Value

A factor which represents the interaction of the given factors. The levels are labelled as the levels
of the individual factors joined by sep which is . by default.

By default, when lex.order = FALSE, the levels are ordered so the level of the first factor
varies fastest, then the second and so on. This is the reverse of lexicographic ordering (which you
can get by lex.order = TRUE), and differs from :. (It is done this way for compatibility with
S.)

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

factor; : where f:g is similar to interaction(f, g, sep=":") when f and g are
factors.

Examples

a <- gl(2, 4, 8)
b <- gl(2, 2, 8, labels = c("ctrl", "treat"))
s <- gl(2, 1, 8, labels = c("M", "F"))
interaction(a, b)
interaction(a, b, s, sep = ":")
stopifnot(identical(a:s,

interaction(a, s, sep = ":", lex.order = TRUE)),
identical(a:s:b,

interaction(a, s, b, sep = ":", lex.order = TRUE)))

interactive Is R Running Interactively?

Description

Return TRUE when R is being used interactively and FALSE otherwise.

Usage

interactive()

See Also

source, .First

Examples

.First <- function() if(interactive()) x11()

208 InternalMethods

Internal Call an Internal Function

Description

.Internal performs a call to an internal code which is built in to the R interpreter.
Only true R wizards should even consider using this function, and only R developers can add to the
list of internal functions.

Usage

.Internal(call)

Arguments

call a call expression

See Also

.Primitive, .External (the nearest equivalent available to users).

InternalMethods Internal Generic Functions

Description

Many R-internal functions are generic and allow methods to be written for.

Details

The following primitive and internal functions are generic, i.e., you can write methods for them:
[, [[, $, [<-, [[<-, $<-,
length, length<-, dimnames, dimnames<-, dim, dim<-, names, names<-,
levels<-,
c, unlist, cbind, rbind,
as.character, as.complex, as.double, as.integer, as.logical, as.raw,
as.vector, is.array, is.matrix, is.na, is.nan, is.numeric, rep and seq.int
(which dispatches methods for "seq").
In addition, is.name is a synonym for is.symbol and dispatches methods for the latter.
Note that all of the group generic functions are also internal/primitive and allow methods to be
written for them.
.S3PrimitiveGenerics is a character vector listing the primitives which are internal generic
and not group generic. Currently as.vector, cbind, rbind and unlist are the internal
non-primitive functions which are internally generic.
For efficiency, internal dispatch only occurs on objects, that is those for which is.object returns
true.

See Also

methods for the methods which are available.

invisible 209

invisible Change the Print Mode to Invisible

Description

Return a (temporarily) invisible copy of an object.

Usage

invisible(x)

Arguments

x an arbitrary R object.

Details

This function can be useful when it is desired to have functions return values which can be assigned,
but which do not print when they are not assigned.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

withVisible, return, function.

Examples

These functions both return their argument
f1 <- function(x) x
f2 <- function(x) invisible(x)
f1(1)# prints
f2(1)# does not

is.finite Finite, Infinite and NaN Numbers

Description

is.finite and is.infinite return a vector of the same length as x, indicating which ele-
ments are finite (not infinite and not missing).

Inf and -Inf are positive and negative infinity whereas NaN means ‘Not a Number’. (These
apply to numeric values and real and imaginary parts of complex values but not to values of integer
vectors.) All are reserved words in the R language.

210 is.finite

Usage

is.finite(x)
is.infinite(x)
Inf
NaN
is.nan(x)

Arguments

x (numerical) object to be tested.

Details

is.finite returns a vector of the same length as x the jth element of which is TRUE if x[j]
is finite (i.e., it is not one of the values NA, NaN, Inf or -Inf). All elements of types other than
logical, integer, numeric and complex vectors are false. Complex numbers are finite if both the real
and imaginary parts are.

is.infinite returns a vector of the same length as x the jth element of which is TRUE if x[j]
is infinite (i.e., equal to one of Inf or -Inf). This will be false unless x is numeric or complex.
Complex numbers are infinite if either the real and imaginary part is.

is.nan tests if a numeric value is NaN. Do not test equality to NaN, or even use identical,
since systems typically have many different NaN values. One of these is used for the numeric
missing value NA, and is.nan is false for that value. A complex number is regarded as NaN if
either the real or imaginary part is NaN but not NA.

All three functions are generic: you can write methods to handle specific classes of objects, see
InternalMethods. The default methods handle real and complex vectors.

Note

In R, basically all mathematical functions (including basic Arithmetic), are supposed to work
properly with +/- Inf and NaN as input or output.

The basic rule should be that calls and relations with Infs really are statements with a proper
mathematical limit.

References

The IEC 60559 standard, also known as the ANSI/IEEE 754 Floating-Point Standard.

D. Goldberg (1991) What Every Computer Scientist Should Know about Floating-Point Arithmetic
ACM Computing Surveys, 23(1).
Postscript version available at http://www.validlab.com/goldberg/paper.ps Ex-
tended PDF version at http://www.validlab.com/goldberg/paper.pdf

http://grouper.ieee.org/groups/754/ for accessible information.

The C99 function isfinite is used for is.finite if available.

See Also

NA, ‘Not Available’ which is not a number as well, however usually used for missing values and
applies to many modes, not just numeric.

http://www.validlab.com/goldberg/paper.ps
http://www.validlab.com/goldberg/paper.pdf
http://grouper.ieee.org/groups/754/

is.function 211

Examples

pi / 0 ## = Inf a non-zero number divided by zero creates infinity
0 / 0 ## = NaN

1/0 + 1/0# Inf
1/0 - 1/0# NaN

stopifnot(
1/0 == Inf,
1/Inf == 0

)
sin(Inf)
cos(Inf)
tan(Inf)

is.function Is an Object of Type (Primitive) Function?

Description

Checks whether its argument is a (primitive) function.

Usage

is.function(x)
is.primitive(x)

Arguments

x an R object.

Details

is.primitive(x) tests if x is a primitive function (either a "builtin" or "special" as
described for typeof)?

Value

TRUE if x is a (primitive) function, and FALSE otherwise.

Examples

is.function(1) # FALSE
is.function(is.primitive) # TRUE: it is a function, but ..
is.primitive(is.primitive) # FALSE:it's not a primitive one, whereas
is.primitive(is.function) # TRUE: that one *is*

212 is.object

is.language Is an Object a Language Object?

Description

is.language returns TRUE if x is a variable name, a call, or an expression.

Usage

is.language(x)

Arguments

x object to be tested.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

ll <- list(a = expression(x^2 - 2*x + 1), b = as.name("Jim"),
c = as.expression(exp(1)), d = call("sin", pi))

sapply(ll, typeof)
sapply(ll, mode)
stopifnot(sapply(ll, is.language))

is.object Is an Object “internally classed”?

Description

A function rather for internal use. It returns TRUE if the object x has the R internal OBJECT bit set,
and FALSE otherwise. The OBJECT bit is set when a "class" attribute is added and removed
when that attribute is removed, so this is a very efficient way to check if an object has a class
attribute. (S4 objects always should.)

Usage

is.object(x)

Arguments

x object to be tested.

See Also

class, and methods.

isS4.

is.R 213

Examples

is.object(1) # FALSE
is.object(as.factor(1:3)) # TRUE

is.R Are we using R, rather than S?

Description

Test if running under R.

Usage

is.R()

Details

The function has been written such as to correctly run in all versions of R, S and S-PLUS. In order
for code to be runnable in both R and S dialects previous to S-PLUS 8.0, your code must either
define is.R or use it as

if (exists("is.R") && is.function(is.R) && is.R()) {
R-specific code
} else {
S-version of code
}

Value

is.R returns TRUE if we are using R and FALSE otherwise.

See Also

R.version, system.

Examples

x <- stats::runif(20); small <- x < 0.4
In the early years of R, 'which()' only existed in R:
if(is.R()) which(small) else seq(along=small)[small]

214 is.recursive

is.recursive Is an Object Atomic or Recursive?

Description

is.atomic returns TRUE if x is an atomic vector (or NULL) and FALSE otherwise.

is.recursive returns TRUE if x has a recursive (list-like) structure and FALSE otherwise.

Usage

is.atomic(x)
is.recursive(x)

Arguments

x object to be tested.

Details

is.atomic is true for the atomic vector types ("logical", "integer", "numeric",
"complex", "character" and "raw") and NULL.

Most types of language objects are regarded as recursive: those which are not are the atomic vector
types, NULL and symbols (as given by as.name).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

is.list, is.language, etc, and the demo("is.things").

Examples

require(stats)

is.a.r <- function(x) c(is.atomic(x), is.recursive(x))

is.a.r(c(a=1,b=3)) # TRUE FALSE
is.a.r(list()) # FALSE TRUE ??
is.a.r(list(2)) # FALSE TRUE
is.a.r(lm) # FALSE TRUE
is.a.r(y ~ x) # FALSE TRUE
is.a.r(expression(x+1)) # FALSE TRUE (not in 0.62.3!)

is.single 215

is.single Is an Object of Single Precision Type?

Description

is.single reports an error. There are no single precision values in R.

Usage

is.single(x)

Arguments

x object to be tested.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

is.unsorted Test if an Object is Not Sorted

Description

Test if an object is not sorted, without the cost of sorting it.

Usage

is.unsorted(x, na.rm = FALSE, strictly = FALSE)

Arguments

x an R object with a class or a numeric, complex, character or logical vector.

na.rm logical. Should missing values be removed before checking?

strictly logical indicating if the check should be for strictly increasing values.

Value

A length-one logical value. All objects of length 0 or 1 are sorted: the result will be NA for objects
of length 2 or more except for atomic vectors and objects with a class (where the >= or > method is
used).

See Also

sort, order.

216 isS4

isS4 Test for an S4 object

Description

Tests whether the object is an instance of an S4 class.

Usage

isS4(object)

asS4(object, value = TRUE)

Arguments

object Any R object.

value A single logical value; not NA.

Details

Note that isS4 does not rely on the methods package, so in particular it can be used to detect the
need to require that package. (But asS4 does depend on methods.)

You should not set the flag directly unless you really know why. As from R 2.6.0, S4 methods are
restricted to S4 objects for primitive functions; asS4 allows method dispatch of S4 methods on
primitives for S3 classes. For all other purposes, an object will satisfy isS4(x) if and only if it
should.

Note that S4 methods can only be set on those primitives which are ‘internal generic’ and %*%.

Value

isS4 always returns TRUE or FALSE according to whether the internal flag marking an S4 object
has been turned on for this object.

asS4 will turn this flag on or off. But see the details.

See Also

is.object

Examples

isS4(pi) # FALSE
isS4(getClass("MethodDefinition")) # TRUE

isSymmetric 217

isSymmetric Test if a Matrix or other Object is Symmetric

Description

Generic function to test if object is symmetric or not. Currently only a matrix method is imple-
mented.

Usage

isSymmetric(object, ...)
S3 method for class 'matrix':
isSymmetric(object, tol = 100 * .Machine$double.eps, ...)

Arguments

object any R object; a matrix for the matrix method.

tol numeric scalar >= 0. Smaller differences are not considered, see
all.equal.numeric.

... further arguments passed to methods; the matrix method passes these to
all.equal.

Details

The matrix method is used inside eigen by default to test symmetry of matrices up to rounding
error, using all.equal. It might not be appropriate in all situations.

Value

logical indicating if object is symmetric or not.

See Also

eigen which calls isSymmetric when its symmetric argument is missing, as per default.

Examples

isSymmetric(D3 <- diag(3)) # -> TRUE

D3[2,1] <- 1e-100
D3
isSymmetric(D3) # TRUE
isSymmetric(D3, tol = 0) # FALSE for zero-tolerance

218 jitter

jitter Add ‘Jitter’ (Noise) to Numbers

Description

Add a small amount of noise to a numeric vector.

Usage

jitter(x, factor=1, amount = NULL)

Arguments

x numeric vector to which jitter should be added.

factor numeric

amount numeric; if positive, used as amount (see below), otherwise, if = 0 the default
is factor * z/50.
Default (NULL): factor * d/5 where d is about the smallest difference be-
tween x values.

Details

The result, say r, is r <- x + runif(n, -a, a) where n <- length(x) and a is the
amount argument (if specified).

Let z <- max(x) - min(x) (assuming the usual case). The amount a to be added is either
provided as positive argument amount or otherwise computed from z, as follows:

If amount == 0, we set a <- factor * z/50 (same as S).

If amount is NULL (default), we set a <- factor * d/5 where d is the smallest difference
between adjacent unique (apart from fuzz) x values.

Value

jitter(x,...) returns a numeric of the same length as x, but with an amount of noise added
in order to break ties.

Author(s)

Werner Stahel and Martin Maechler, ETH Zurich

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P.A. (1983) Graphical Methods for Data
Analysis. Wadsworth; figures 2.8, 4.22, 5.4.

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

rug which you may want to combine with jitter.

kappa 219

Examples

round(jitter(c(rep(1,3), rep(1.2, 4), rep(3,3))), 3)
These two 'fail' with S-plus 3.x:
jitter(rep(0, 7))
jitter(rep(10000,5))

kappa Compute or Estimate the Condition Number of a Matrix

Description

The condition number of a regular (square) matrix is the product of the norm of the matrix and the
norm of its inverse (or pseudo-inverse), and hence depends on the kind of matrix-norm.

kappa() computes an estimate of the 2-norm condition number of a matrix or of the R matrix of
a QR decomposition, perhaps of a linear fit. The 2-norm condition number can be shown to be the
ratio of the largest to the smallest non-zero singular value of the matrix.

Usage

kappa(z, ...)
Default S3 method:
kappa(z, exact = FALSE,

norm = NULL, method = c("qr", "direct"), ...)
S3 method for class 'lm':
kappa(z, ...)
S3 method for class 'qr':
kappa(z, ...)

kappa.tri(z, exact = FALSE, LINPACK = TRUE, norm=NULL, ...)

rcond(x, norm = c("O","I","1"), triangular = FALSE, ...)

Arguments

z,x A matrix or a the result of qr or a fit from a class inheriting from "lm".

exact logical. Should the result be exact?

norm character string, specifying the matrix norm wrt to which the condition number
is to be computed. "O", the default, means the One- or 1-norm. The (currently
only) other possible value is "I" for the infinity norm.

method character string, specifying the method to be used; "qr" is default for back-
compatibility, mainly.

triangular logical. If true, the matrix used is just the lower triangular part of z.

LINPACK logical. If true and z is not complex, the Linpack routine dtrco() is called;
otherwise the relevant Lapack routine is.

... further arguments passed to or from other methods.

220 kronecker

Details

For kappa(), if exact = FALSE (the default) the 2-norm condition number is estimated by a
cheap approximation. Following S, by default, this uses the LINPACK routine dtrco(). However,
in R (or S) the exact calculation (via svd) is also likely to be quick enough.

Note that the 1- and Inf-norm condition numbers are much faster to calculate, and rcond() com-
putes these reciprocal condition numbers, also for complex matrices, using standard Lapack rou-
tines.

kappa.tri is an internal function called by kappa.qr.

Value

The condition number, kappa, or an approximation if exact = FALSE.

Author(s)

The design was inspired by (but differs considerably from) the S function of the same name de-
scribed in Chambers (1992).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

svd for the singular value decomposition and qr for the QR one.

Examples

kappa(x1 <- cbind(1,1:10))# 15.71
kappa(x1, exact = TRUE) # 13.68
kappa(x2 <- cbind(x1,2:11))# high! [x2 is singular!]

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
sv9 <- svd(h9 <- hilbert(9))$ d
kappa(h9)# pretty high!
kappa(h9, exact = TRUE) == max(sv9) / min(sv9)
kappa(h9, exact = TRUE) / kappa(h9) # .677 (i.e., rel.error = 32%)

kronecker Kronecker products on arrays

Description

Computes the generalised kronecker product of two arrays, X and Y. kronecker(X, Y) returns
an array A with dimensions dim(X) * dim(Y).

Usage

kronecker(X, Y, FUN = "*", make.dimnames = FALSE, ...)
X %x% Y

kronecker 221

Arguments

X A vector or array.

Y A vector or array.

FUN a function; it may be a quoted string.

make.dimnames
Provide dimnames that are the product of the dimnames of X and Y.

... optional arguments to be passed to FUN.

Details

If X and Y do not have the same number of dimensions, the smaller array is padded with dimensions
of size one. The returned array comprises submatrices constructed by taking X one term at a time
and expanding that term as FUN(x, Y, ...).

%x% is an alias for kronecker (where FUN is hardwired to "*").

Author(s)

Jonathan Rougier, 〈J.C.Rougier@durham.ac.uk〉

References

Shayle R. Searle (1982) Matrix Algebra Useful for Statistics. John Wiley and Sons.

See Also

outer, on which kronecker is built and %*% for usual matrix multiplication.

Examples

simple scalar multiplication
(M <- matrix(1:6, ncol=2))
kronecker(4, M)
Block diagonal matrix:
kronecker(diag(1, 3), M)

ask for dimnames

fred <- matrix(1:12, 3, 4, dimnames=list(LETTERS[1:3], LETTERS[4:7]))
bill <- c("happy" = 100, "sad" = 1000)
kronecker(fred, bill, make.dimnames = TRUE)

bill <- outer(bill, c("cat"=3, "dog"=4))
kronecker(fred, bill, make.dimnames = TRUE)

222 labels

l10n_info Localization Information

Description

Report on localization information.

Usage

l10n_info()

Value

A list with three logical components:

MBCS If a multi-byte character set in use?
UTF-8 Is this a UTF-8 locale?
Latin-1 Is this a Latin-1 locale?

See Also

Sys.getlocale, localeconv

Examples

l10n_info()

labels Find Labels from Object

Description

Find a suitable set of labels from an object for use in printing or plotting, for example. A generic
function.

Usage

labels(object, ...)

Arguments

object Any R object: the function is generic.
... further arguments passed to or from other methods.

Value

A character vector or list of such vectors. For a vector the results is the names or seq(along=x)
and for a data frame or array it is the dimnames (with NULL expanded to seq(len=d[i]).

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

lapply 223

lapply Apply a Function over a List or Vector

Description

lapply returns a list of the same length as X, each element of which is the result of applying FUN
to the corresponding element of X.

sapply is a user-friendly version of lapply by default returning a vector or matrix if appropriate.

replicate is a wrapper for the common use of sapply for repeated evaluation of an expression
(which will usually involve random number generation).

Usage

lapply(X, FUN, ...)

sapply(X, FUN, ..., simplify = TRUE, USE.NAMES = TRUE)

replicate(n, expr, simplify = TRUE)

Arguments

X a vector (atomic or list) or an expressions vector. Other objects (including
classed objects) will be coerced by as.list.

FUN the function to be applied to each element of X: see ‘Details’. In the case of
functions like +, %*%, etc., the function name must be backquoted or quoted.

... optional arguments to FUN.

simplify logical; should the result be simplified to a vector or matrix if possible?

USE.NAMES logical; if TRUE and if X is character, use X as names for the result unless it
had names already.

n number of replications.

expr expression (language object, usually a call) to evaluate repeatedly.

Details

FUN is found by a call to match.fun and typically is specified as a function or a symbol (e.g. a
backquoted name) or a character string specifying a function to be searched for from the environ-
ment of the call to lapply.

Function FUN must be able to accept as input any of the elements of X. If the latter is an atomic
vector, FUN will always be passed a length-one vector of the same type as X.

Simplification in sapply is only attempted if X has length greater than zero and if the return values
from all elements of X are all of the same (positive) length. If the common length is one the result
is a vector, and if greater than one is a matrix with a column corresponding to each element of X.

Users of S4 classes should pass a list to lapply: the internal coercion is done by the system
as.list in the base namespace and not one defined by a user (e.g. by setting S4 methods on the
system function).

224 lapply

Value

For lapply and sapply(simplify=FALSE), a list.

For sapply(simplify=TRUE) and replicate: if X has length zero or n = 0, an empty list.
Otherwise an atomic vector or matrix or list of the same length as X (of length n for replicate).
If simplification occurs, the output type is determined from the highest type of the return values in
the hierarchy NULL < raw < logical < integer < real < complex < character < list < expression, after
coercion of pairlists tolists.

Note

sapply(*, simplify = FALSE, USE.NAMES = FALSE) is equivalent to
lapply(*).

For historical reasons, the calls created by lapply are unevaluated, and code has been writ-
ten (e.g. bquote) that relies on this. This means that the recorded call is always of the form
FUN(X[[0L]], ...), with 0L replaced by the current integer index. This not normally a prob-
lem, but it can be if FUN uses sys.call or match.call or if it is a primitive function that
makes use of the call. This means that it is often safer to call primitive functions with a wrapper,
so that e.g. lapply(ll, function(x) is.numeric(x)) is required in R 2.7.1 to ensure
that method dispatch for is.numeric occurs correctly.

If expr is a function call, be aware of assumptions about where it is evaluated, and in particular
what ... might refer to. You can pass additional named arguments to a function call as additional
named arguments to replicate: see ‘Examples’.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

apply, tapply, mapply for applying a function to multiple arguments, and rapply for
a recursive version of lapply(), eapply for applying a function to each entry in an
environment.

Examples

require(stats); require(graphics)

x <- list(a = 1:10, beta = exp(-3:3), logic = c(TRUE,FALSE,FALSE,TRUE))
compute the list mean for each list element
lapply(x,mean)
median and quartiles for each list element
lapply(x, quantile, probs = 1:3/4)
sapply(x, quantile)
i39 <- sapply(3:9, seq) # list of vectors
sapply(i39, fivenum)

hist(replicate(100, mean(rexp(10))))

use of replicate() with parameters:
foo <- function(x=1, y=2) c(x,y)
does not work: bar <- function(n, ...) replicate(n, foo(...))
bar <- function(n, x) replicate(n, foo(x=x))
bar(5, x=3)

Last.value 225

Last.value Value of Last Evaluated Expression

Description

The value of the internal evaluation of a top-level R expression is always assigned to
.Last.value (in package:base) before further processing (e.g., printing).

Usage

.Last.value

Details

The value of a top-level assignment is put in .Last.value, unlike S.

Do not assign to .Last.value in the workspace, because this will always mask the object of the
same name in package:base.

See Also

eval

Examples

These will not work correctly from example(),
but they will in make check or if pasted in,
as example() does not run them at the top level
gamma(1:15) # think of some intensive calculation...
fac14 <- .Last.value # keep them

library("splines") # returns invisibly
.Last.value # shows what library(.) above returned

length Length of an Object

Description

Get or set the length of vectors (including lists) and factors, and of any other R object for which a
method has been defined.

Usage

length(x)
length(x) <- value

Arguments

x an R object. For replacement, a vector or factor.

value an integer.

226 levels

Details

Both functions are generic: you can write methods to handle specific classes of objects, see Inter-
nalMethods. length<- has a "factor" method.

The replacement form can be used to reset the length of a vector. If a vector is shortened, extra
values are discarded and when a vector is lengthened, it is padded out to its new length with NAs
(nul for raw vectors).

Value

The default method currently returns an integer of length 1. Since this may change in the future
and may differ for other methods, programmers should not rely on it. (Should the length exceed the
maximum representable integer, it is returned as NA.)

For vectors (including lists) and factors the length is the number of elements. For an environment it
is the number of objects in the environment, and NULL has length 0. For expressions and pairlists
(including language objects and dotlists) it is the length of the pairlist chain. All other objects
(including functions) have length one: note that for functions this differs from S.

The replacement form removes all the attributes of x except its names.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

nchar for counting the number of characters in character vectors.

Examples

length(diag(4))# = 16 (4 x 4)
length(options())# 12 or more
length(y ~ x1 + x2 + x3)# 3
length(expression(x, {y <- x^2; y+2}, x^y)) # 3

from example(warpbreaks)
require(stats)

fm1 <- lm(breaks ~ wool * tension, data = warpbreaks)
length(fm1$call) # 3, lm() and two arguments.
length(formula(fm1)) # 3, ~ lhs rhs

levels Levels Attributes

Description

levels provides access to the levels attribute of a variable. The first form returns the value of the
levels of its argument and the second sets the attribute.

levels 227

Usage

levels(x)
levels(x) <- value

Arguments

x an object, for example a factor.

value A valid value for levels(x). For the default method, NULL or a character
vector. For the factor method, a vector of character strings with length at
least the number of levels of x, or a named list specifying how to rename the
levels.

Details

Both the extractor and replacement forms are generic and new methods can be written for them.
The most important method for the replacment function is that for factors.

For the factor replacement method, a NA in value causes that level to be removed from the levels
and the elements formerly with that level to be replaced by NA.

Note that for a factor, replacing the levels via levels(x) <- value is not the same as (and is
preferred to) attr(x, "levels") <- value.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

nlevels, relevel, reorder.

Examples

assign individual levels
x <- gl(2, 4, 8)
levels(x)[1] <- "low"
levels(x)[2] <- "high"
x

or as a group
y <- gl(2, 4, 8)
levels(y) <- c("low", "high")
y

combine some levels
z <- gl(3, 2, 12)
levels(z) <- c("A", "B", "A")
z

same, using a named list
z <- gl(3, 2, 12)
levels(z) <- list(A=c(1,3), B=2)
z

we can add levels this way:

228 libPaths

f <- factor(c("a","b"))
levels(f) <- c("c", "a", "b")
f

f <- factor(c("a","b"))
levels(f) <- list(C="C", A="a", B="b")
f

libPaths Search Paths for Packages

Description

.libPaths gets/sets the library trees within which packages are looked for.

Usage

.libPaths(new)

.Library

.Library.site

Arguments

new a character vector with the locations of R library trees. Tilde expansion
(path.expand) is done, and if any element contains one of *?[, globbing
is done where supported by the platform: see Sys.glob.

Details

.Library is a character string giving the location of the default library, the ‘library’ subdirectory
of R_HOME.

.Library.site is a (possibly empty) character vector giving the locations of the site libraries,
by default the ‘site-library’ subdirectory of R_HOME (which may not exist).

.libPaths is used for getting or setting the library trees that R knows about (and hence uses
when looking for packages). If called with argument new, the library search path is set to the exist-
ing directories in unique(c(new, .Library.site, .Library)) and this is returned. If
given no argument, a character vector with the currently active library trees is returned.

The library search path is initialized at startup from the environment variable R_LIBS (which
should be a colon-separated list of directories at which R library trees are rooted) followed by those
in environment variable R_LIBS_USER. Only directories which exist at the time will be included.

By default R_LIBS is unset, and R_LIBS_USER is set to directory ‘R/R.version$platform-
library/x.y’ of the home directory (or ‘Library/R/x.y/library’ for Mac OS X AQUA builds), for
R x.y.z .

.Library.site can be set via the environment variable R_LIBS_SITE (as a colon-separated
list of library trees).

Both R_LIBS_USER and R_LIBS_SITE feature possible expansion of specifiers for R version
specific information as part of the startup process. The possible conversion specifiers all start with a
‘%’ and are followed by a single letter (use ‘%%’ to obtain ‘%’), with currently available conversion
specifications as follows:

library 229

%V R version number including the patchlevel (e.g., ‘2.5.0’).
%v R version number excluding the patchlevel (e.g., ‘2.5’).
%p the platform for which R was built.
%o the underlying operating system.
%a the architecture (CPU) R was built on/for.

(See version for details on R version information.)
Function .libPaths always uses the values of .Library and .Library.site in the base
name space. .Library.site can be set by the site in ‘Rprofile.site’, which should be followed
by a call to .libPaths(.libPaths()) to make use of the updated value.

Value

A character vector of file paths.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

library

Examples

.libPaths() # all library trees R knows about

library Loading and Listing of Packages

Description

library and require load add-on packages.
.First.lib is called when a package is loaded; .Last.lib is called when a package is de-
tached.

Usage

library(package, help, pos = 2, lib.loc = NULL,
character.only = FALSE, logical.return = FALSE,
warn.conflicts = TRUE,
keep.source = getOption("keep.source.pkgs"),
verbose = getOption("verbose"),
version)

require(package, lib.loc = NULL, quietly = FALSE,
warn.conflicts = TRUE,
keep.source = getOption("keep.source.pkgs"),
character.only = FALSE, version, save = TRUE)

.First.lib(libname, pkgname)

.Last.lib(libpath)

230 library

Arguments
package, help

the name of a package, given as a name or literal character string, or a char-
acter string, depending on whether character.only is FALSE (default) or
TRUE).

pos the position on the search list at which to attach the loaded package. Note
that .First.lib may attach other packages, and pos is computed after
.First.lib has been run. Can also be the name of a position on the cur-
rent search list as given by search().

lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to all libraries currently known.
Non-existent library trees are silently ignored.

character.only
a logical indicating whether package or help can be assumed to be character
strings.

version A character string denoting a version number of the package to be loaded, for
use with versioned installs: see the section later in this document.

logical.return
logical. If it is TRUE, FALSE or TRUE is returned to indicate success.

warn.conflicts
logical. If TRUE, warnings are printed about conflicts from attaching the
new package, unless that package contains an object .conflicts.OK. A con-
flict is a function masking a function, or a non-function masking a non-function.

keep.source logical. If TRUE, functions ‘keep their source’ including comments, see argu-
ment keep.source to options. This applies only to the named package,
and not to any packages or name spaces which might be loaded to satisfy depen-
dencies or imports.
This argument does not apply to packages using lazy-loading. Whether they
have kept source is determined when they are installed (and is most likely false).

verbose a logical. If TRUE, additional diagnostics are printed.

quietly a logical. If TRUE, no message confirming package loading is printed.

save logical or environment. If TRUE, a call to require from the source for a pack-
age will save the name of the required package in the variable ".required",
allowing function detach to warn if a required package is detached. See sec-
tion ‘Packages that require other packages’ below.

libname a character string giving the library directory where the package was found.

pkgname a character string giving the name of the package, including the version number
if the package was installed with --with-package-versions.

libpath a character string giving the complete path to the package.

Details

library(package) and require(package) both load the package with name package.
require is designed for use inside other functions; it returns FALSE and gives a warning (rather
than an error as library() does by default) if the package does not exist. Both functions check
and update the list of currently loaded packages and do not reload a package which is already
loaded. (Furthermore, if the package has a name space and a name space of that name is already
loaded, they work from the existing name space rather than reloading from the file system. If you
want to reload a package, call detach or unloadNamespace first.)

library 231

To suppress messages during the loading of packages use
suppressPackageStartupMessages: this will suppress all messages from R itself
but not necessarily all those from package authors.

If library is called with no package or help argument, it lists all available packages in the
libraries specified by lib.loc, and returns the corresponding information in an object of class
"libraryIQR". The structure of this class may change in future versions. In earlier versions of
R, only the names of all available packages were returned; use .packages(all = TRUE) for
obtaining these. Note that installed.packages() returns even more information.

library(help = somename) computes basic information about the package somename,
and returns this in an object of class "packageInfo". The structure of this class may change in
future versions. When used with the default value (NULL) for lib.loc, the loaded packages are
searched before the libraries.

.First.lib is called when a package without a name space is loaded by library. (For
packages with name spaces see .onLoad.) It is called with two arguments, the name of the
library directory where the package was found (i.e., the corresponding element of lib.loc),
and the name of the package (in that order, and with the package name including the ver-
sion for a versioned install, e.g. tree_1.0-16). It is a good place to put calls to
library.dynam which are needed when loading a package into this function (don’t call
library.dynam directly, as this will not work if the package is not installed in a standard
location). .First.lib is invoked after the search path interrogated by search() has been
updated, so as.environment(match("package:name", search())) will return the
environment in which the package is stored. If calling .First.lib gives an error the load-
ing of the package is abandoned, and the package will be unavailable. Similarly, if the option
".First.lib" has a list element with the package’s name, this element is called in the same
manner as .First.lib when the package is loaded. This mechanism allows the user to set pack-
age ‘load hooks’ in addition to startup code as provided by the package maintainers, but setHook
is preferred.

.Last.lib is called when a package is detached. Beware that it might be called if .First.lib
has failed, so it should be written defensively. (It is called within try, so errors will not stop the
package being detached.)

Value

library returns the list of loaded (or available) packages (or TRUE if logical.return is
TRUE). require returns a logical indicating whether the required package is available, invisibly

Packages that require other packages

NB: This mechanism has been almost entirely superseded by using the Depends: field in the
‘DESCRIPTION’ file of a package.

The source code for a package that requires one or more other packages should have a call to
require, preferably near the beginning of the source, and of course before any code that uses
functions, classes or methods from the other package. The default for argument save will save
the names of all required packages in the environment of the new package. The saved package
names are used by detach when a package is detached to warn if other packages still require the
to-be-detached package. Also, if a package is installed with saved image (see INSTALL), the saved
package names are used to require these packages when the new package is attached.

Formal methods

library takes some further actions when package methods is attached (as it is by default). Pack-
ages may define formal generic functions as well as re-defining functions in other packages (notably

232 library

base) to be generic, and this information is cached whenever such a package is loaded after meth-
ods and re-defined functions (implicit generics) are excluded from the list of conflicts. The caching
and check for conflicts require looking for a pattern of objects; the search may be avoided by defin-
ing an object .noGenerics (with any value) in the package. Naturally, if the package does have
any such methods, this will prevent them from being used.

Versioned installs

Packages can be installed with version information by R CMD INSTALL --with-package-
versions or install.packages(installWithVers = TRUE). This allows more than
one version of a package to be installed in a library directory, using package directory names like
foo_1.5-1. When such packages are loaded, it is this versioned name that search() returns.
Some utility functions require the versioned name and some the unversioned name (here foo).

If version is not specified, library looks first for a packages of that name, and then for ver-
sioned installs of the package, selecting the one with the latest version number. If version is
specified, a versioned install with an exactly matching version is looked for.

If version is not specified, require will accept any version that is already loaded, whereas
library will look for an unversioned install even if a versioned install is already loaded.

Loading more than one version of a package into an R session is not currently supported. Support
for versioned installs is patchy.

Note

library and require can only load an installed package, and this is detected by having a
‘DESCRIPTION’ file containing a Built: field.

Under Unix-alikes, the code checks that the package was installed under a similar operating system
as given by R.version$platform (the canonical name of the platform under which R was
compiled), provided it contains compiled code. Packages which do not contain compiled code can
be shared between Unix-alikes, but not to other OSes because of potential problems with line end-
ings and OS-specific help files. If sub-architectures are used, the OS similarity is not checked since
the OS used to build may differ (e.g. i386-pc-linux-gnu code can be built on an x86_64-
unknown-linux-gnu OS).

The package name given to library and require must match the name given in the package’s
‘DESCRIPTION’ file exactly, even on case-insensitive file systems such as MS Windows.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

.libPaths, .packages.

attach, detach, search, objects, autoload, library.dynam, data,
install.packages and installed.packages; INSTALL, REMOVE.

Examples

library() # list all available packages
library(lib.loc = .Library) # list all packages in the default library
library(help = splines) # documentation on package 'splines'
library(splines) # load package 'splines'

library.dynam 233

require(splines) # the same
search() # "splines", too
detach("package:splines")

if the package name is in a character vector, use
pkg <- "splines"
library(pkg, character.only = TRUE)
detach(pos = match(paste("package", pkg, sep=":"), search()))

require(pkg, character.only = TRUE)
detach(pos = match(paste("package", pkg, sep=":"), search()))

require(nonexistent) # FALSE
Not run:
Suppose a package needs to call a DLL named 'fooEXT',
where 'EXT' is the system-specific extension. Then you should use
.First.lib <- function(lib, pkg)
library.dynam("foo", pkg, lib)

if you want to mask as little as possible, use
library(mypkg, pos = "package:base")
End(Not run)

library.dynam Loading DLLs from Packages

Description

Load the specified file of compiled code if it has not been loaded already, or unloads it.

Usage

library.dynam(chname, package = NULL, lib.loc = NULL,
verbose = getOption("verbose"),
file.ext = .Platform$dynlib.ext, ...)

library.dynam.unload(chname, libpath,
verbose = getOption("verbose"),
file.ext = .Platform$dynlib.ext)

.dynLibs(new)

Arguments

chname a character string naming a DLL (also known as a dynamic shared object or
library) to load.

package a character vector with the names of packages to search through, or NULL. By
default, all packages in the search path are used.

lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to all libraries currently known.

libpath the path to the loaded package whose DLL is to be unloaded.

234 library.dynam

verbose a logical value indicating whether an announcement is printed on the console
before loading the DLL. The default value is taken from the verbose entry in the
system options.

file.ext the extension to append to the file name to specify the library to be loaded. This
defaults to the appropriate value for the operating system.

... additional arguments needed by some libraries that are passed to the call to
dyn.load to control how the library is loaded.

new a list of "DLLInfo" objects corresponding to the DLLs loaded by packages.
Can be missing.

Details

See dyn.load for what sort of objects these functions handle.

library.dynam is designed to be used inside a package rather than at the command line, and
should really only be used inside .First.lib or .onLoad. The system-specific extension for
DLLs (e.g., ‘.so’ or ‘.sl’ on Unix systems, ‘.so’ on Mac OS X, ‘.dll’ on Windows) should not be
added. Note that to allow for versioned installs, the chname argument should not be set to the
pkgname argument of .First.lib or .onLoad.

If ... does not include a named argument Dllpath, dyn.load is called with DLLpath set to
the package’s ‘libs’ directory. (Currently only used under Windows.)

library.dynam.unload is designed for use in .Last.lib or .onUnload: it unloads the
DLL and updates the value of .dynLibs()

.dynLibs is used for getting (with no argument) or setting the DLLs which are currently loaded
by packages (using library.dynam).

Value

If chname is not specified, library.dynam returns an object of class "DLLInfoList" cor-
responding to the DLLs loaded by packages.

If chname is specified, an object of class "DLLInfo" that identifies the DLL and can be used
in future calls is returned invisibly. For packages that have name spaces, a list of these objects is
stored in the name space’s environment for use at run-time.

Note that the class DLLInfo has an overloaded method for $ which can be used to resolve native
symbols within that DLL.

library.dynam.unload invisibly returns an object of class "DLLInfo" identifying the DLL
successfully unloaded.

.dynLibs returns an object of class "DLLInfoList" corresponding corresponding to its cur-
rent value.

Warning

Do not use dyn.unload on a DLL loaded by library.dynam: use
library.dynam.unload to ensure that .dynLibs gets updated. Otherwise a subse-
quent call to library.dynam will be told the object is already loaded.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

license 235

See Also

getLoadedDLLs for information on "DLLInfo" and "DLLInfoList" objects.
.First.lib, library, dyn.load, .packages, .libPaths
SHLIB for how to create suitable DLLs.

Examples

Which DLLs were "dynamically loaded" by packages?
library.dynam()

license The R License Terms

Description

The license terms under which R is distributed.

Usage

license()
licence()

Details

R is distributed under the terms of the GNU GENERAL PUBLIC LICENSE Version 2,
June 1991. A copy of this license is in file ‘R_HOME/COPYING’ and can be viewed by
RShowDoc("COPYING").
A small number of files (the API header files) are distributed under the LESSER GNU GENERAL
PUBLIC LICENSE version 2.1. A copy of this license is in file ‘$R_DOC_DIR/COPYING.LIB’
and can be viewed by RShowDoc("COPYING.LIB").

list Lists – Generic and Dotted Pairs

Description

Functions to construct, coerce and check for both kinds of R lists.

Usage

list(...)
pairlist(...)

as.list(x, ...)
S3 method for class 'environment':
as.list(x, all.names = FALSE, ...)
as.pairlist(x)

is.list(x)
is.pairlist(x)

alist(...)

236 list

Arguments

... objects, possibly named.

x object to be coerced or tested.

all.names a logical indicating whether to copy all values or (default) only those whose
names do not begin with a dot.

Details

Most lists in R internally are Generic Vectors, whereas traditional dotted pair lists (as in LISP) are
available but rarely seen by users (except as formals of functions).

The arguments to list or pairlist are of the form value or tag=value. The functions
return a list or dotted pair list composed of its arguments with each value either tagged or untagged,
depending on how the argument was specified.

alist handles its arguments as if they described function arguments. So the values are not evalu-
ated, and tagged arguments with no value are allowed whereas list simply ignores them. alist
is most often used in conjunction with formals.

as.list attempts to coerce its argument to a list. For functions, this returns the concatenation of
the list of formal arguments and the function body. For expressions, the list of constituent elements
is returned. as.list is generic, and as the default method calls as.vector(mode="list")
methods for as.vector may be invoked. as.list turns a factor into a list of one-element
factors. All attributes will be dropped unless the argument already is a list. (This is inconsistent
with functions such as as.character, and is for efficiency since lists can be expensive to copy.)

is.list returns TRUE if and only if its argument is a list or a pairlist of length > 0.
is.pairlist returns TRUE if and only if the argument is a pairlist or NULL (see below).

The "environment" method for as.list copies the name-value pairs (for names not begin-
ning with a dot) from an environment to a named list. The user can request that all named objects
are copied. The list is in no particular order (the order depends on the order of creation of objects
and whether the environment is hashed). No parent environments are searched. (Objects copied are
duplicated so this can be an expensive operation.)

An empty pairlist, pairlist() is the same as NULL. This is different from list().

as.pairlist is implemented as as.vector(x, "pairlist"), and hence will dispatch
methods for the generic function as.vector.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

vector("list", length) for creation of a list with empty components; c, for concatenation;
formals. unlist is an approximate inverse to as.list().

‘plotmath’ for the use of list in plot annotation.

Examples

require(graphics)

create a plotting structure
pts <- list(x=cars[,1], y=cars[,2])

list.files 237

plot(pts)

is.pairlist(.Options) # a user-level pairlist

"pre-allocate" an empty list of length 5
vector("list", 5)

Argument lists
f <- function() x
Note the specification of a "..." argument:
formals(f) <- al <- alist(x=, y=2+3, ...=)
f
al

environment->list coercion

e1 <- new.env()
e1$a <- 10
e1$b <- 20
as.list(e1)

list.files List the Files in a Directory/Folder

Description

These functions produce a character vector of the names of files in the named directory.

Usage

list.files(path = ".", pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE,
ignore.case = FALSE)

dir(path = ".", pattern = NULL, all.files = FALSE,
full.names = FALSE, recursive = FALSE,
ignore.case = FALSE)

Arguments

path a character vector of full path names; the default corresponds to the working
directory getwd(). Missing values will be ignored.

pattern an optional regular expression. Only file names which match the regular expres-
sion will be returned.

all.files a logical value. If FALSE, only the names of visible files are returned. If TRUE,
all file names will be returned.

full.names a logical value. If TRUE, the directory path is prepended to the file names. If
FALSE, only the file names are returned.

recursive logical. Should the listing recurse into directories?

ignore.case logical. Should pattern-matching be case-insensitive?

238 load

Value

A character vector containing the names of the files in the specified directories, or "" if there were
no files. If a path does not exist or is not a directory or is unreadable it is skipped, with a warning.

The files are sorted in alphabetical order, on the full path if full.names = TRUE. Directories
are included only if recursive = FALSE.

Note

File naming conventions are platform dependent.

recursive = TRUE is not supported on all platforms and may be ignored (with a warning).

Author(s)

Ross Ihaka, Brian Ripley

See Also

file.info, file.access and files for many more file handling functions and
file.choose for interactive selection.

glob2rx to convert wildcards (as used by system file commands and shells) to regular expressions.

Sys.glob for wildcard expansion on file paths.

Examples

list.files(R.home())
Only files starting with a-l or r
Note that a-l is locale-dependent, but using case-insensitive
matching makes it unambiguous in English locales
dir("../..", pattern = "^[a-lr]",full.names=TRUE, ignore.case = TRUE)

load Reload Saved Datasets

Description

Reload datasets written with the function save.

Usage

load(file, envir = parent.frame())

Arguments

file a (readable binary) connection or a character string giving the name of the file
to load.

envir the environment where the data should be loaded.

load 239

Details

load can load R objects saved in the current or any earlier format. It can read a compressed file
(see save) directly from a file or from a suitable connection (including a call to url).

Only R objects saved in the current format (used since R 1.4.0) can be read from a connection. If
no input is available on a connection a warning will be given, but any input not in the current format
will result in a error.

Loading from an earlier version will give a warning about the ‘magic number’: magic numbers
1971:1977 are from R < 0.99.0, and R[ADX]1 from R 0.99.0 to R 1.3.1.

Value

A character vector of the names of objects created, invisibly.

Warning

Saved R objects are binary files, even those saved with ascii = TRUE, so ensure that they are
transferred without conversion of end of line markers. load tries to detect this case and give an
informative error message.

See Also

save, download.file.

Examples

save all data
xx <- pi # to ensure there is some data
save(list = ls(all=TRUE), file= "all.Rdata")
rm(xx)

restore the saved values to the current environment
local({

load("all.Rdata")
ls()

})
restore the saved values to the user's workspace
load("all.Rdata", .GlobalEnv)

unlink("all.Rdata")

Not run:
con <- url("http://some.where.net/R/data/example.rda")
print the value to see what objects were created.
print(load(con))
close(con) # url() always opens the connection
End(Not run)

240 localeconv

localeconv Find Details of the Numerical and Monetary Representations in the
Current Locale

Description

Get details of the numerical and monetary representations in the current locale.

Usage

Sys.localeconv()

Details

These settings are usually controlled by the environment variables LC_NUMERIC and
LC_MONETARY and if not set the values of LC_ALL or LANG.

Normally R is run without looking at the value of LC_NUMERIC, so the decimal point remains ’.’.
So the first three of these values will not be useful unless you have set LC_NUMERIC in the current
R session.

Value

A character vector with 18 named components. See your ISO C documentation for details of the
meaning.

It is possible to compile R without support for locales, in which case the value will be NULL.

See Also

Sys.setlocale for ways to set locales.

Examples

Sys.localeconv()
The results in the C locale are
decimal_point thousands_sep grouping int_curr_symbol
"." "" "" ""
currency_symbol mon_decimal_point mon_thousands_sep mon_grouping
"" "" "" ""
positive_sign negative_sign int_frac_digits frac_digits
"" "" "127" "127"
p_cs_precedes p_sep_by_space n_cs_precedes n_sep_by_space
"127" "127" "127" "127"
p_sign_posn n_sign_posn
"127" "127"

Now try your default locale (which might be "C").
Not run:
old <- Sys.getlocale()
Sys.setlocale(locale = "")
Sys.localeconv()
Sys.setlocale(locale = old)
End(Not run)

Not run: read.table("foo", dec=Sys.localeconv()["decimal_point"])

locales 241

locales Query or Set Aspects of the Locale

Description

Get details of or set aspects of the locale for the R process.

Usage

Sys.getlocale(category = "LC_ALL")
Sys.setlocale(category = "LC_ALL", locale = "")

Arguments

category character string. The following categories should always be sup-
ported: "LC_ALL", "LC_COLLATE", "LC_CTYPE", "LC_MONETARY",
"LC_NUMERIC" and "LC_TIME". Some systems will also support
"LC_MESSAGES", "LC_PAPER" and "LC_MEASUREMENT".

locale character string. A valid locale name on the system in use. Normally "" (the
default) will pick up the default locale for the system.

Details

The locale describes aspects of the internationalization of a program. Initially most aspects of
the locale of R are set to "C" (which is the default for the C language and reflects North-American
usage). R sets "LC_CTYPE" and "LC_COLLATE", which allow the use of a different character set
and alphabetic comparisons in that character set (including the use of sort), "LC_MONETARY"
(for use by Sys.localeconv) and "LC_TIME" may affect the behaviour of as.POSIXlt and
strptime and functions which use them (but not date).

R can be built with no support for locales, but it is normally available on Unix and is available on
Windows.

The first seven categories described here are those specified by POSIX. "LC_MESSAGES" will be
"C" on systems that do not support message translation, and is not supported on Windows. Trying
to use an unsupported category is an error for Sys.setlocale.

Note that setting "LC_ALL" sets only "LC_COLLATE", "LC_CTYPE", "LC_MONETARY" and
"LC_TIME".

Attempts to set an invalid locale are ignored. There may or may not be a warning, depending on the
OS.

Attempts to change the character set (by Sys.setlocale("LC_TYPE",), if that implies a
different character set) during a session may not work and are likely to lead to some confusion.

Value

A character string of length one describing the locale in use (after setting for Sys.setlocale),
or an empty character string if the current locale settings are invalid or NULL if locale information
is unavailable.

For category = "LC_ALL" the details of the string are system-specific: it might be a single
locale name or a set of locale names separated by "/" (Solaris, Mac OS X) or ";" (Windows,
Linux). For portability, it is best to query categories individually: it is not necessarily the case

242 log

that the result of foo <- Sys.getlocale() can be used in Sys.setlocale("LC_ALL",
locale = foo).

Warning

Setting "LC_NUMERIC" may cause R to function anomalously, so gives a warning. As from R
2.7.0 input conversions in R itself are unaffected, but the reading and writing of ASCII save files
will be, as may packages. Setting it temporarily to produce graphical or text output may work well
enough, but options(OutDec) is often preferable.

See Also

strptime for uses of category = "LC_TIME". Sys.localeconv for details of numeri-
cal and monetary representations.

l10n_info gives some summary facts about the locale and its encoding.

Examples

Sys.getlocale()
Sys.getlocale("LC_TIME")
Not run:
Sys.setlocale("LC_TIME", "de") # Solaris 7: details are OS-dependent
Sys.setlocale("LC_TIME", "de_DE.utf8") # Modern Linux etc.
Sys.setlocale("LC_TIME", "German") # Windows
End(Not run)
Sys.getlocale("LC_PAPER") # may or may not be set

Sys.setlocale("LC_COLLATE", "C") # turn off locale-specific sorting

log Logarithms and Exponentials

Description

log computes logarithms, by default natural logarithms, log10 computes common (i.e., base
10) logarithms, and log2 computes binary (i.e., base 2) logarithms. The general form log(x,
base) computes logarithms with base base.

log1p(x) computes log(1 + x) accurately also for |x| � 1 (and less accurately when x ≈ −1).

exp computes the exponential function.

expm1(x) computes exp(x)− 1 accurately also for |x| � 1.

Usage

log(x, base = exp(1))
logb(x, base = exp(1))
log10(x)
log2(x)

log1p(x)

exp(x)
expm1(x)

log 243

Arguments

x a numeric or complex vector.

base a positive or complex number: the base with respect to which logarithms are
computed. Defaults to e=exp(1).

Details

All except logb are generic functions: methods can be defined for them individually or via the
Math group generic.

log10 and log2 are only convenience wrappers, but logs to bases 10 and 2 (whether computed
via log or the wrappers) will be computed more efficiently and accurately where supported by the
OS. Methods can be set for them individually (and otherwise methods for log will be used).

logb is a wrapper for log for compatibility with S. If (S3 or S4) methods are set for log they will
be dispatched. Do not set S4 methods on logb itself.

Value

A vector of the same length as x containing the transformed values. log(0) gives -Inf, and
negative values give NaN.

S4 methods

exp, expm1, log, log10, log2 and log1p are S4 generic and are members of the Math group
generic.

Note that this means that the S4 generic for log has a signature with only one argument, x, but that
base can be passed to methods (but will not be used for method selection). On the other hand, if
you only set a method for the Math group generic then base argument of log will be ignored for
your class.

Note

log and logb are the same thing in R, but logb is preferred if base is specified, for S-PLUS
compatibility.

Source

log1p and expm1 may be taken from the operating system, but if not available there are based on
the Fortran subroutine dlnrel by W. Fullerton of Los Alamos Scientific Laboratory (see http:
//www.netlib.org/slatec/fnlib/dlnrel.f and (for small x) a single Newton step for
the solution of log1p(y) = x respectively.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (for log, log10 and exp.)

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer. (for logb.)

See Also

Trig, sqrt, Arithmetic.

http://www.netlib.org/slatec/fnlib/dlnrel.f
http://www.netlib.org/slatec/fnlib/dlnrel.f

244 Logic

Examples

log(exp(3))
log10(1e7)# = 7

x <- 10^-(1+2*1:9)
cbind(x, log(1+x), log1p(x), exp(x)-1, expm1(x))

Logic Logical Operators

Description

These operators act on logical vectors.

Usage

! x
x & y
x && y
x | y
x || y
xor(x, y)

isTRUE(x)

Arguments

x, y logical vectors, or objects which can be coerced to such or for which methods
have been written.

Details

! indicates logical negation (NOT).

& and && indicate logical AND and | and || indicate logical OR. The shorter form performs
elementwise comparisons in much the same way as arithmetic operators. The longer form evaluates
left to right examining only the first element of each vector. Evaluation proceeds only until the
result is determined. The longer form is appropriate for programming control-flow and typically
preferred in if clauses.

xor indicates elementwise exclusive OR.

isTRUE(x) is an abbreviation of identical(TRUE, x), and so is true if and only if x is a
length-one logical vector with no attributes (not even names).

Numeric and complex vectors will be coerced to logical values, with zero being false and all non-
zero values being true. Raw vectors are handled without any coercion for !, & and |, with these
operators being applied bitwise (so ! is the 1-complement).

The operators !, & and | are generic functions: methods can be written for them individually or
via the Ops (or S4 Logic, see below) group generic function. (See Ops for how dispatch is
computed.)

NA is a valid logical object. Where a component of x or y is NA, the result will be NA if the
outcome is ambiguous. In other words NA & TRUE evaluates to NA, but NA & FALSE evaluates
to FALSE. See the examples below.

Logic 245

See Syntax for the precedence of these operators: unlike many other languages (including S) the
AND and OR operators do not have the same precedence (the AND operators are higher than the
OR operators).

Value

For !, a logical or raw vector of the same length as x.

For |, & and xor a logical or raw vector. The elements of shorter vectors are recycled as necessary
(with a warningwhen they are recycled only fractionally). The rules for determining the attributes
of the result are rather complicated. Most attributes are taken from the longer argument, the first
if they are of the same length. Names will be copied from the first if it is the same length as the
answer, otherwise from the second if that is. For time series, these operations are allowed only if
the series are compatible, when the class and tsp attribute of whichever is a time series (the same,
if both are) are used. For arrays (and an array result) the dimensions and dimnames are taken from
first argument if it is an array, otherwise the second.

For ||, && and isTRUE, a length-one logical vector.

S4 methods

!, & and | are S4 generics, the latter two part of the Logic group generic (and hence methods
need argument names e1, e2).

Prior to R 2.6.0 S4 methods for ! needed argument name e1, but now x is correct.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

TRUE or logical.

any and all for OR and AND on many scalar arguments.

Syntax for operator precedence.

Examples

y <- 1 + (x <- stats::rpois(50, lambda=1.5) / 4 - 1)
x[(x > 0) & (x < 1)] # all x values between 0 and 1
if (any(x == 0) || any(y == 0)) "zero encountered"

construct truth tables :

x <- c(NA, FALSE, TRUE)
names(x) <- as.character(x)
outer(x, x, "&")## AND table
outer(x, x, "|")## OR table

246 logical

logical Logical Vectors

Description

Create or test for objects of type "logical", and the basic logical constants.

Usage

TRUE
FALSE
T; F

logical(length = 0)
as.logical(x, ...)
is.logical(x)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Details

TRUE and FALSE are reserved words denoting logical constants in the R language, whereas T and
F are global variables whose initial values set to these. All four are logical(1) vectors.

Value

logical creates a logical vector of the specified length. Each element of the vector is equal to
FALSE.

as.logical attempts to coerce its argument to be of logical type. For factors, this uses the
levels (labels). Like as.vector it strips attributes including names.

is.logical returns TRUE or FALSE depending on whether its argument is of logical type or
not.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

NA, the other logical constant.

lower.tri 247

lower.tri Lower and Upper Triangular Part of a Matrix

Description

Returns a matrix of logicals the same size of a given matrix with entries TRUE in the lower or upper
triangle.

Usage

lower.tri(x, diag = FALSE)
upper.tri(x, diag = FALSE)

Arguments

x a matrix.

diag logical. Should the diagonal be included?

See Also

diag, matrix.

Examples

(m2 <- matrix(1:20, 4, 5))
lower.tri(m2)
m2[lower.tri(m2)] <- NA
m2

ls List Objects

Description

ls and objects return a vector of character strings giving the names of the objects in the specified
environment. When invoked with no argument at the top level prompt, ls shows what data sets and
functions a user has defined. When invoked with no argument inside a function, ls returns the
names of the functions local variables. This is useful in conjunction with browser.

Usage

ls(name, pos = -1, envir = as.environment(pos),
all.names = FALSE, pattern)

objects(name, pos= -1, envir = as.environment(pos),
all.names = FALSE, pattern)

248 ls

Arguments

name which environment to use in listing the available objects. Defaults to the cur-
rent environment. Although called name for back compatibility, in fact this
argument can specify the environment in any form; see the details section.

pos an alternative argument to name for specifying the environment as a position in
the search list. Mostly there for back compatibility.

envir an alternative argument to name for specifying the environment evaluation en-
vironment. Mostly there for back compatibility.

all.names a logical value. If TRUE, all object names are returned. If FALSE, names which
begin with a ‘.’ are omitted.

pattern an optional regular expression. Only names matching pattern are returned.
glob2rx can be used to convert wildcard patterns to regular expressions.

Details

The name argument can specify the environment from which object names are taken in one of
several forms: as an integer (the position in the search list); as the character string name of an
element in the search list; or as an explicit environment (including using sys.frame to access
the currently active function calls). By default, the environment of the call to ls or objects is
used. The pos and envir arguments are an alternative way to specify an environment, but are
primarily there for back compatibility.

Note that the order of the resulting strings is locale dependent, see Sys.getlocale.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

glob2rx for converting wildcard patterns to regular expressions.

ls.str for a long listing based on str. apropos (or find) for finding objects in the whole
search path; grep for more details on ‘regular expressions’; class, methods, etc., for object-
oriented programming.

Examples

.Ob <- 1
ls(pattern = "O")
ls(pattern= " O", all.names = TRUE) # also shows ".[foo]"

shows an empty list because inside myfunc no variables are defined
myfunc <- function() {ls()}
myfunc()

define a local variable inside myfunc
myfunc <- function() {y <- 1; ls()}
myfunc() # shows "y"

make.names 249

make.names Make Syntactically Valid Names

Description

Make syntactically valid names out of character vectors.

Usage

make.names(names, unique = FALSE, allow_ = TRUE)

Arguments

names character vector to be coerced to syntactically valid names. This is coerced to
character if necessary.

unique logical; if TRUE, the resulting elements are unique. This may be desired for,
e.g., column names.

allow_ logical. For compatibility with R prior to 1.9.0.

Details

A syntactically valid name consists of letters, numbers and the dot or underline characters and
starts with a letter or the dot not followed by a number. Names such as ".2way" are not valid, and
neither are the reserved words.

The character "X" is prepended if necessary. All invalid characters are translated to ".". A
missing value is translated to "NA". Names which match R keywords have a dot appended to them.
Duplicated values are altered by make.unique.

Value

A character vector of same length as names with each changed to a syntactically valid name, in the
current locale’s encoding.

Note

Prior to R version 1.9.0, underscores were not valid in variable names, and code that relies on them
being converted to dots will no longer work. Use allow_ = FALSE for back-compatibility.

allow_ = FALSE is also useful when creating names for export to applications which do not
allow underline in names (for example, S-PLUS and some DBMSs).

See Also

make.unique, names, character, data.frame.

250 make.unique

Examples

make.names(c("a and b", "a-and-b"), unique=TRUE)
"a.and.b" "a.and.b.1"
make.names(c("a and b", "a_and_b"), unique=TRUE)
"a.and.b" "a_and_b"
make.names(c("a and b", "a_and_b"), unique=TRUE, allow_=FALSE)
"a.and.b" "a.and.b.1"

state.name[make.names(state.name) != state.name] # those 10 with a space

make.unique Make Character Strings Unique

Description

Makes the elements of a character vector unique by appending sequence numbers to duplicates.

Usage

make.unique(names, sep = ".")

Arguments

names a character vector

sep a character string used to separate a duplicate name from its sequence number.

Details

The algorithm used by make.unique has the property that make.unique(c(A, B)) ==
make.unique(c(make.unique(A), B)).

In other words, you can append one string at a time to a vector, making it unique each time, and get
the same result as applying make.unique to all of the strings at once.

If character vector A is already unique, then make.unique(c(A, B)) preserves A.

Value

A character vector of same length as names with duplicates changed, in the current locale’s encod-
ing.

Author(s)

Thomas P. Minka

See Also

make.names

manglePackageName 251

Examples

make.unique(c("a", "a", "a"))
make.unique(c(make.unique(c("a", "a")), "a"))

make.unique(c("a", "a", "a.2", "a"))
make.unique(c(make.unique(c("a", "a")), "a.2", "a"))

rbind(data.frame(x=1), data.frame(x=2), data.frame(x=3))
rbind(rbind(data.frame(x=1), data.frame(x=2)), data.frame(x=3))

manglePackageName Mangle the Package Name

Description

This function takes the package name and the package version number and pastes them together
with a separating underscore.

Usage

manglePackageName(pkgName, pkgVersion)

Arguments

pkgName The package name, as a character string.

pkgVersion The package version, as a character string.

Value

A character string with the two inputs pasted together.

Examples

manglePackageName("foo", "1.2.3")

mapply Apply a function to multiple list or vector arguments

Description

mapply is a multivariate version of sapply. mapply applies FUN to the first elements of each
. . . argument, the second elements, the third elements, and so on. Arguments are recycled if neces-
sary.

Vectorize returns a new function that acts as if mapply was called.

252 mapply

Usage

mapply(FUN, ..., MoreArgs = NULL, SIMPLIFY = TRUE,
USE.NAMES = TRUE)

Vectorize(FUN, vectorize.args = arg.names, SIMPLIFY = TRUE,
USE.NAMES = TRUE)

Arguments

FUN function to apply, found via match.fun.

... arguments to vectorize over (list or vector).

MoreArgs a list of other arguments to FUN.

SIMPLIFY logical; attempt to reduce the result to a vector or matrix?

USE.NAMES logical; use names if the first . . . argument has names, or if it is a character vector,
use that character vector as the names.

vectorize.args
a character vector of arguments which should be vectorized. Defaults to all
arguments to FUN.

Details

The arguments named in the vectorize.args argument to Vectorize correspond to the
arguments passed in the ... list to mapply. However, only those that are actually passed will be
vectorized; default values will not. See the example below.

Vectorize cannot be used with primitive functions as they have no formal list.

Value

mapply returns a list, vector, or matrix.

Vectorize returns a function with the same arguments as FUN, but wrapping a call to mapply.

See Also

sapply, outer

Examples

require(graphics)

mapply(rep, 1:4, 4:1)

mapply(rep, times=1:4, x=4:1)

mapply(rep, times=1:4, MoreArgs=list(x=42))

Repeat the same using Vectorize: use rep.int as rep is primitive
vrep <- Vectorize(rep.int)
vrep(1:4, 4:1)
vrep(times=1:4, x=4:1)

vrep <- Vectorize(rep.int, "times")
vrep(times=1:4, x=42)

margin.table 253

mapply(function(x,y) seq_len(x) + y,
c(a= 1, b=2, c= 3), # names from first
c(A=10, B=0, C=-10))

word <- function(C,k) paste(rep.int(C,k), collapse='')
utils::str(mapply(word, LETTERS[1:6], 6:1, SIMPLIFY = FALSE))

f <- function(x=1:3, y) c(x,y)
vf <- Vectorize(f, SIMPLIFY = FALSE)
f(1:3,1:3)
vf(1:3,1:3)
vf(y=1:3) # Only vectorizes y, not x

Nonlinear regression contour plot, based on nls() example

SS <- function(Vm, K, resp, conc) {
pred <- (Vm * conc)/(K + conc)
sum((resp - pred)^2 / pred)

}
vSS <- Vectorize(SS, c("Vm", "K"))
Treated <- subset(Puromycin, state == "treated")

Vm <- seq(140, 310, len=50)
K <- seq(0, 0.15, len=40)
SSvals <- outer(Vm, K, vSS, Treated$rate, Treated$conc)
contour(Vm, K, SSvals, levels=(1:10)^2, xlab="Vm", ylab="K")

margin.table Compute table margin

Description

For a contingency table in array form, compute the sum of table entries for a given index.

Usage

margin.table(x, margin=NULL)

Arguments

x an array

margin index number (1 for rows, etc.)

Details

This is really just apply(x, margin, sum) packaged up for newbies, except that if margin
has length zero you get sum(x).

Value

The relevant marginal table. The class of x is copied to the output table, except in the summation
case.

254 match

Author(s)

Peter Dalgaard

See Also

prop.table and addmargins.

Examples

m <- matrix(1:4,2)
margin.table(m,1)
margin.table(m,2)

mat.or.vec Create a Matrix or a Vector

Description

mat.or.vec creates an nr by nc zero matrix if nc is greater than 1, and a zero vector of length
nr if nc equals 1.

Usage

mat.or.vec(nr, nc)

Arguments

nr, nc numbers of rows and columns.

Examples

mat.or.vec(3, 1)
mat.or.vec(3, 2)

match Value Matching

Description

match returns a vector of the positions of (first) matches of its first argument in its second.

%in% is a more intuitive interface as a binary operator, which returns a logical vector indicating if
there is a match or not for its left operand.

Usage

match(x, table, nomatch = NA_integer_, incomparables = NULL)

x %in% table

match 255

Arguments

x vector or NULL: the values to be matched.

table vector or NULL: the values to be matched against.

nomatch the value to be returned in the case when no match is found. Note that it is
coerced to integer.

incomparables
a vector of values that cannot be matched. Any value in x matching a value in
this vector is assigned the nomatch value. For historical reasons, FALSE is
equivalent to NULL.

Details

%in% is currently defined as
"%in%" <- function(x, table) match(x, table, nomatch = 0) > 0

Factors, raw vectors and lists are converted to character vectors, and then x and table are coerced
to a common type (the later of the two types in R’s ordering, logical < integer < numeric < complex
< character) before matching. If incomparables has positive length it is coerced to the common
type.

Matching for lists is potentially very slow and best avoided except in simple cases.

Exactly what matches what is to some extent a matter of definition. For all types, NA matches NA
and no other value. For real and complex values, NaN values are regarded as matching any other
NaN value, but not matching NA.

Value

A vector of the same length as x.

match: An integer vector giving the position in table of the first match if there is a match,
otherwise nomatch.

If x[i] is found to equal table[j] then the value returned in the i-th position of the return
value is j, for the smallest possible j. If no match is found, the value is nomatch.

%in%: A logical vector, indicating if a match was located for each element of x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

pmatch and charmatch for (partial) string matching, match.arg, etc for function argument
matching. findInterval similarly returns a vector of positions, but finds numbers within inter-
vals, rather than exact matches.

is.element for an S-compatible equivalent of %in%.

Examples

The intersection of two sets can be defined via match():
Simple version: intersect <- function(x, y) y[match(x, y, nomatch = 0)]
intersect # the R function in base, slightly more careful
intersect(1:10,7:20)

256 match.arg

1:10 %in% c(1,3,5,9)
sstr <- c("c","ab","B","bba","c","@","bla","a","Ba","%")
sstr[sstr %in% c(letters,LETTERS)]

"%w/o%" <- function(x,y) x[!x %in% y] #-- x without y
(1:10) %w/o% c(3,7,12)

match.arg Argument Verification Using Partial Matching

Description

match.arg matches arg against a table of candidate values as specified by choices, where
NULL means to take the first one.

Usage

match.arg(arg, choices, several.ok = FALSE)

Arguments

arg a character vector (of length one unless several.ok is TRUE) or NULL.

choices a character vector of candidate values

several.ok logical specifying if arg should be allowed to have more than one element.

Details

In the one-argument form match.arg(arg), the choices are obtained from a default setting
for the formal argument arg of the function from which match.arg was called. (Since default
argument matching will set arg to choices, this is allowed as an exception to the ‘length one
unless several.ok is TRUE’ rule, and returns the first element.)

Matching is done using pmatch, so arg may be abbreviated.

Value

The unabbreviated version of the exact or unique partial match if there is one; otherwise, an error is
signalled if several.ok is false, as per default. When several.ok is true and more than one
element of arg has a match, all unabbreviated versions of matches are returned.

See Also

pmatch, match.fun, match.call.

match.call 257

Examples

require(stats)
Extends the example for 'switch'
center <- function(x, type = c("mean", "median", "trimmed")) {
type <- match.arg(type)
switch(type,

mean = mean(x),
median = median(x),
trimmed = mean(x, trim = .1))

}
x <- rcauchy(10)
center(x, "t") # Works
center(x, "med") # Works
try(center(x, "m")) # Error
stopifnot(identical(center(x), center(x, "mean")),

identical(center(x, NULL), center(x, "mean")))

Allowing more than one match:
match.arg(c("gauss", "rect", "ep"),

c("gaussian", "epanechnikov", "rectangular", "triangular"),
several.ok = TRUE)

match.call Argument Matching

Description

match.call returns a call in which all of the specified arguments are specified by their full
names.

Usage

match.call(definition = NULL, call = sys.call(sys.parent()),
expand.dots = TRUE)

Arguments

definition a function, by default the function from which match.call is called. See
details.

call an unevaluated call to the function specified by definition, as generated by
call.

expand.dots logical. Should arguments matching ... in the call be included or left as a ...
argument?

Details

‘function’ on this help page means an interpreted function (also known as a ‘closure’):
match.call does not support primitive functions (where argument matching is normally po-
sitional).

match.call is most commonly used in two circumstances:

258 match.fun

• To record the call for later re-use: for example most model-fitting functions record the call as
element call of the list they return. Here the default expand.dots = TRUE is appropri-
ate.

• To pass most of the call to another function, often model.frame. Here the common idiom
is that expand.dots = FALSE is used, and the ... elememt of the matched call is
removed. An alternative is to explicitly select the arguments to be passed on, as is done in lm.

Calling match.call outside a function without specifying definition is an error.

Value

An object of class call.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

sys.call() is similar, but does not expand the argument names; call, pmatch, match.arg,
match.fun.

Examples

match.call(get, call("get", "abc", i = FALSE, p = 3))
-> get(x = "abc", pos = 3, inherits = FALSE)
fun <- function(x, lower = 0, upper = 1) {

structure((x - lower) / (upper - lower), CALL = match.call())
}
fun(4 * atan(1), u = pi)

match.fun Function Verification for “Function Variables”

Description

When called inside functions that take a function as argument, extract the desired function object
while avoiding undesired matching to objects of other types.

Usage

match.fun(FUN, descend = TRUE)

Arguments

FUN item to match as function: a function, symbol or character string. See ‘Details’.

descend logical; control whether to search past non-function objects.

Math 259

Details

match.fun is not intended to be used at the top level since it will perform matching in the parent
of the caller.

If FUN is a function, it is returned. If it is a symbol (for example, enclosed in backquotes) or a
character vector of length one, it will be looked up using get in the environment of the parent of
the caller. If it is of any other mode, it is attempted first to get the argument to the caller as a symbol
(using substitute twice), and if that fails, an error is declared.

If descend = TRUE, match.fun will look past non-function objects with the given name;
otherwise if FUN points to a non-function object then an error is generated.

This is used in base functions such as apply, lapply, outer, and sweep.

Value

A function matching FUN or an error is generated.

Bugs

The descend argument is a bit of misnomer and probably not actually needed by anything. It may
go away in the future.

It is impossible to fully foolproof this. If one attaches a list or data frame containing a length-one
character vector with the same name as a function, it may be used (although name spaces will help).

Author(s)

Peter Dalgaard and Robert Gentleman, based on an earlier version by Jonathan Rougier.

See Also

match.arg, get

Examples

Same as get("*"):
match.fun("*")
Overwrite outer with a vector
outer <- 1:5
Not run:
match.fun(outer, descend = FALSE) #-> Error: not a function
End(Not run)
match.fun(outer) # finds it anyway
is.function(match.fun("outer")) # as well

Math Miscellaneous Mathematical Functions

Description

These functions compute miscellaneous mathematical functions. The naming follows the standard
for computer languages such as C or Fortran.

260 matmult

Usage

abs(x)
sqrt(x)

Arguments

x a numeric or complex vector or array.

Details

These are generic functions: methods can be defined for them individually or via the Math
group generic. For complex arguments (and the default method), z, abs(z) == Mod(z) and
sqrt(z) == z^0.5.

abs(x) returns an integer vector when x is integer or logical.

S4 methods

Both are S4 generic and members of the Math group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Arithmetic for simple, log for logarithmic, sin for trigonometric, and Special for special
mathematical functions.

‘plotmath’ for the use of sqrt in plot annotation.

Examples

require(stats) # for spline
require(graphics)
xx <- -9:9
plot(xx, sqrt(abs(xx)), col = "red")
lines(spline(xx, sqrt(abs(xx)), n=101), col = "pink")

matmult Matrix Multiplication

Description

Multiplies two matrices, if they are conformable. If one argument is a vector, it will be promoted to
either a row or column matrix to make the two arguments conformable. If both are vectors it will
return the inner product (as a matrix).

Usage

x %*% y

matrix 261

Arguments

x, y numeric or complex matrices or vectors.

Details

When a vector is promoted to a matrix, its names are not promoted to row or column names, unlike
as.matrix.

This operator is S4 generic but not S3 generic. S4 methods need to be written for a function of two
arguments named x and y.

Value

A double or complex matrix product. Use drop to remove dimensions which have only one level.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

matrix, Arithmetic, diag.

Examples

x <- 1:4
(z <- x %*% x) # scalar ("inner") product (1 x 1 matrix)
drop(z) # as scalar

y <- diag(x)
z <- matrix(1:12, ncol = 3, nrow = 4)
y %*% z
y %*% x
x %*% z

matrix Matrices

Description

matrix creates a matrix from the given set of values.

as.matrix attempts to turn its argument into a matrix.

is.matrix tests if its argument is a (strict) matrix.

262 matrix

Usage

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE,
dimnames = NULL)

as.matrix(x, ...)
S3 method for class 'data.frame':
as.matrix(x, rownames.force = NA, ...)

is.matrix(x)

Arguments

data an optional data vector.

nrow the desired number of rows.

ncol the desired number of columns.

byrow logical. If FALSE (the default) the matrix is filled by columns, otherwise the
matrix is filled by rows.

dimnames A dimnames attribute for the matrix: a list of length 2 giving the row and
column names respectively.

x an R object.

... additional arguments to be passed to or from methods.
rownames.force

logical indicating if the resulting matrix should have character (rather than
NULL) rownames. The default, NA, uses NULL rownames if the data frame
has ‘automatic’ row.names or for a zero-row data frame.

Details

If one of nrow or ncol is not given, an attempt is made to infer it from the length of data and
the other parameter. If neither is given, a one-column matrix is returned.

If there are too few elements in data to fill the array, then the elements in data are recycled. If
data has length zero, NA of an appropriate type is used for atomic vectors (0 for raw vectors) and
NULL for lists.

is.matrix returns TRUE if x is a matrix and has a dim attribute of length 2) and FALSE other-
wise. Note that a data.frame is not a matrix by this test. It is generic: you can write methods to
handle specific classes of objects, see InternalMethods.

as.matrix is a generic function. The method for data frames will return a character matrix if
there is any non-(numeric/logical/complex) column, applying format to non-character columns.
Otherwise, the usual coercion hierarchy (logical < integer < double < complex) will be used, e.g.,
all-logical data frames will be coerced to a logical matrix, mixed logical-integer will give a integer
matrix, etc.

When coercing a vector, it produces a one-column matrix, and promotes the names (if any) of the
vector to the rownames of the matrix.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

maxCol 263

See Also

data.matrix, which attempts to convert to a numeric matrix.

Examples

is.matrix(as.matrix(1:10))
!is.matrix(warpbreaks)# data.frame, NOT matrix!
warpbreaks[1:10,]
as.matrix(warpbreaks[1:10,]) #using as.matrix.data.frame(.) method

Example of setting row and column names
mdat <- matrix(c(1,2,3, 11,12,13), nrow = 2, ncol=3, byrow=TRUE,

dimnames = list(c("row1", "row2"),
c("C.1", "C.2", "C.3")))

mdat

maxCol Find Maximum Position in Matrix

Description

Find the maximum position for each row of a matrix, breaking ties at random.

Usage

max.col(m, ties.method=c("random", "first", "last"))

Arguments

m numerical matrix

ties.method a character string specifying how ties are handled, "random" by default; can
be abbreviated; see ‘Details’.

Details

When ties.method = "random", as per default, ties are broken at random. In this case, the
determination of a tie assumes that the entries are probabilities: there is a relative tolerance of 10−5,
relative to the largest (in magnitude, omitting infinity) entry in the row.

If ties.method = "first", max.col returns the column number of the first of several max-
ima in every row, the same as unname(unname(m, 1, unname)).
Correspondingly, ties.method = "last" returns the last of possibly several indices.

Value

index of a maximal value for each row, an integer vector of length nrow(m).

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York: Springer
(4th ed).

264 mean

See Also

which.max for vectors.

Examples

table(mc <- max.col(swiss))# mostly "1" and "5", 5 x "2" and once "4"
swiss[unique(print(mr <- max.col(t(swiss)))) ,] # 3 33 45 45 33 6

set.seed(1)# reproducible example:
(mm <- rbind(x = round(2*stats::runif(12)),

y = round(5*stats::runif(12)),
z = round(8*stats::runif(12))))

Not run:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

x 1 1 1 2 0 2 2 1 1 0 0 0
y 3 2 4 2 4 5 2 4 5 1 3 1
z 2 3 0 3 7 3 4 5 4 1 7 5
End(Not run)
column indices of all row maxima :
utils::str(lapply(1:3, function(i) which(mm[i,] == max(mm[i,]))))
max.col(mm) ; max.col(mm) # "random"
max.col(mm, "first")# -> 4 6 5
max.col(mm, "last") # -> 7 9 11

mean Arithmetic Mean

Description

Generic function for the (trimmed) arithmetic mean.

Usage

mean(x, ...)

Default S3 method:
mean(x, trim = 0, na.rm = FALSE, ...)

Arguments

x An R object. Currently there are methods for numeric data frames, numeric
vectors and dates. A complex vector is allowed for trim = 0, only.

trim the fraction (0 to 0.5) of observations to be trimmed from each end of x before
the mean is computed. Values of trim outside that range are taken as the nearest
endpoint.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

... further arguments passed to or from other methods.

Memory 265

Value

For a data frame, a named vector with the appropriate method being applied column by column.

If trim is zero (the default), the arithmetic mean of the values in x is computed, as a numeric or
complex vector of length one. If x is not logical (coerced to numeric), integer, numeric or complex,
NA is returned, with a warning.

If trim is non-zero, a symmetrically trimmed mean is computed with a fraction of trim observa-
tions deleted from each end before the mean is computed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

weighted.mean, mean.POSIXct, colMeans for row and column means.

Examples

x <- c(0:10, 50)
xm <- mean(x)
c(xm, mean(x, trim = 0.10))

mean(USArrests, trim = 0.2)

Memory Memory Available for Data Storage

Description

Use command line options to control the memory available for R.

Usage

R --min-vsize=vl --max-vsize=vu --min-nsize=nl --max-nsize=nu --max-ppsize=N

mem.limits(nsize = NA, vsize = NA)

Arguments

vl, vu, vsize
Heap memory in bytes.

nl, nu, nsize
Number of cons cells.

N Number of nested PROTECT calls.

.

266 Memory

Details

R has a variable-sized workspace. There is much less need to set memory options than prior to R
1.2.0, and most users will never need to set these. They are provided both as a way to control the
overall memory usage (which can also be done by operating-system facilities such as limit on
Unix), and since setting larger values of the minima will make R slightly more efficient on large
tasks.

To understand the options, one needs to know that R maintains separate areas for fixed and variable
sized objects. The first of these is allocated as an array of cons cells (Lisp programmers will know
what they are, others may think of them as the building blocks of the language itself, parse trees,
etc.), and the second are thrown on a heap of ‘Vcells’ of 8 bytes each. Effectively, the inputs vl
and vu are rounded up to the next multiple of 8.

Each cons cell occupies 28 bytes on a 32-bit machine, (usually) 56 bytes on a 64-bit machine.

The ‘--*-nsize’ options can be used to specify the number of cons cells and the ‘--*-vsize’
options specify the size of the vector heap in bytes. Both options must be integers or integers
followed by G, M, K, or k meaning Giga (230 = 1073741824) Mega (220 = 1048576), (computer)
Kilo (210 = 1024), or regular kilo (1000).

The ‘--min-*’ options set the minimal sizes for the number of cons cells and for the vector heap.
These values are also the initial values, but thereafter R will grow or shrink the areas depending on
usage, but never exceeding the limits set by the ‘--max-*’ options nor decreasing below the initial
values.

The default values are currently minima of 350k cons cells, 6Mb of vector heap and no max-
ima (other than machine resources). The maxima can be changed during an R session by calling
mem.limits. (If this is called with the default values, it reports the current settings.)

You can find out the current memory consumption (the heap and cons cells used as numbers and
megabytes) by typing gc() at the R prompt. Note that following gcinfo(TRUE), automatic
garbage collection always prints memory use statistics. Maxima will never be reduced below the
current values for triggering garbage collection, and attempts to do so will be silently ignored.

The command-line option ‘--max-ppsize’ controls the maximum size of the pointer protection
stack. This defaults to 50000, but can be increased to allow deep recursion or large and complicated
calculations to be done. Note that parts of the garbage collection process goes through the full
reserved pointer protection stack and hence becomes slower when the size is increased. Currently
the maximum value accepted is 500000.

Value

mem.limits() returns an integer vector giving the current settings of the maxima, possibly NA.

See Also

An Introduction to R for more command-line options

Memory-limits for the design limitations.

gc for information on the garbage collector and total memory usage, object.size(a) for the
(approximate) size of R object a. memory.profile for profiling the usage of cons cells.

Examples

Start R with 10MB of heap memory and 500k cons cells, limit to
100Mb and 1M cells
Not run:
Unix

Memory-limits 267

R --min-vsize=10M --max-vsize=100M --min-nsize=500k --max-nsize=1M
End(Not run)

Memory-limits Memory Limits in R

Description

R holds objects it is using in memory. This help file documents the current design limitations on
large objects: these differ between 32-bit and 64-bit builds of R.

Details

R holds all objects in memory, and there are limits based on the amount of memory that can be used
by all objects:

• There may be limits on the size of the heap and the number of cons cells allowed – see
Memory – but these are usually not imposed.

• There is a limit on the address space of a single process such as the R executable. This is
system-specific, but 32-bit OSes imposes a limit of no more than 4Gb: it is often 3Gb or less.

• The environment may impose limitations on the resources available to a single process – see
the OS/shell’s help on commands such as limit or ulimit.

Error messages beginning cannot allocate vector of size indicate a failure to obtain
memory, either because the size exceeded the address-space limit for a process or, more likely,
because the system was unable to provide the memory. Note that on a 32-bit OS there may well be
enough free memory available, but not a large enough contiguous block of address space into which
to map it.

There are also limits on individual objects. On all versions of R, the maximum length (number of
elements) of a vector is 231 − 1 ≈ 2 109, as lengths are stored as signed integers. In addition, the
storage space cannot exceed the address limit, and if you try to exceed that limit, the error message
begins cannot allocate vector of length. The number of characters in a character
string is in theory only limited by the address space.

See Also

object.size(a) for the (approximate) size of R object a.

memory.profile Profile the Usage of Cons Cells

Description

Lists the usage of the cons cells by SEXPREC type.

Usage

memory.profile()

268 merge

Details

The current types and their uses are listed in the include file ‘Rinternals.h’.

Value

A vector of counts, named by the types. See typeof for an explanation of types.

See Also

gc for the overall usage of cons cells. Rprofmem and tracemem allow memory profiling of
specific code or objects, but need to be enabled at compile time.

Examples

memory.profile()

merge Merge Two Data Frames

Description

Merge two data frames by common columns or row names, or do other versions of database join
operations.

Usage

merge(x, y, ...)

Default S3 method:
merge(x, y, ...)

S3 method for class 'data.frame':
merge(x, y, by = intersect(names(x), names(y)),

by.x = by, by.y = by, all = FALSE, all.x = all, all.y = all,
sort = TRUE, suffixes = c(".x",".y"), incomparables = NULL, ...)

Arguments

x, y data frames, or objects to be coerced to one.
by, by.x, by.y

specifications of the common columns. See ‘Details’.

all logical; all = L is shorthand for all.x = L and all.y = L.

all.x logical; if TRUE, then extra rows will be added to the output, one for each row
in x that has no matching row in y. These rows will have NAs in those columns
that are usually filled with values from y. The default is FALSE, so that only
rows with data from both x and y are included in the output.

all.y logical; analogous to all.x above.

sort logical. Should the results be sorted on the by columns?

suffixes character(2) specifying the suffixes to be used for making non-by names()
unique.

merge 269

incomparables
values which cannot be matched. See match.

... arguments to be passed to or from methods.

Details

By default the data frames are merged on the columns with names they both have, but separate
specifications of the columns can be given by by.x and by.y. Columns can be specified by name,
number or by a logical vector: the name "row.names" or the number 0 specifies the row names.
The rows in the two data frames that match on the specified columns are extracted, and joined
together. If there is more than one match, all possible matches contribute one row each. For the
precise meaning of ‘match’, see match.

If by or both by.x and by.y are of length 0 (a length zero vector or NULL), the result, r,
is the Cartesian product of x and y, i.e., dim(r) = c(nrow(x)*nrow(y), ncol(x) +
ncol(y)).

If all.x is true, all the non matching cases of x are appended to the result as well, with NA filled
in the corresponding columns of y; analogously for all.y.

If the remaining columns in the data frames have any common names, these have suffixes
(".x" and ".y" by default) appended to make the names of the result unique.

The complexity of the algorithm used is proportional to the length of the answer.

In SQL database terminology, the default value of all = FALSE gives a natural join, a special
case of an inner join. Specifying all.x = TRUE gives a left (outer) join, all.y = TRUE a
right (outer) join, and both (all=TRUE a (full) outer join. DBMSes do not match NULL records,
equivalent to incomparables = NA in R.

Value

A data frame. The rows are by default lexicographically sorted on the common columns, but for
sort = FALSE are in an unspecified order. The columns are the common columns followed by
the remaining columns in x and then those in y. If the matching involved row names, an extra
character column called Row.names is added at the left, and in all cases the result has ‘automatic’
row names.

See Also

data.frame, by, cbind

Examples

use character columns of names to get sensible sort order
authors <- data.frame(

surname = I(c("Tukey", "Venables", "Tierney", "Ripley", "McNeil")),
nationality = c("US", "Australia", "US", "UK", "Australia"),
deceased = c("yes", rep("no", 4)))

books <- data.frame(
name = I(c("Tukey", "Venables", "Tierney",

"Ripley", "Ripley", "McNeil", "R Core")),
title = c("Exploratory Data Analysis",

"Modern Applied Statistics ...",
"LISP-STAT",
"Spatial Statistics", "Stochastic Simulation",
"Interactive Data Analysis",
"An Introduction to R"),

270 message

other.author = c(NA, "Ripley", NA, NA, NA, NA,
"Venables & Smith"))

(m1 <- merge(authors, books, by.x = "surname", by.y = "name"))
(m2 <- merge(books, authors, by.x = "name", by.y = "surname"))
stopifnot(as.character(m1[,1]) == as.character(m2[,1]),

all.equal(m1[, -1], m2[, -1][names(m1)[-1]]),
dim(merge(m1, m2, by = integer(0))) == c(36, 10))

"R core" is missing from authors and appears only here :
merge(authors, books, by.x = "surname", by.y = "name", all = TRUE)

example of using 'incomparables'
x <- data.frame(k1=c(NA,NA,3,4,5), k2=c(1,NA,NA,4,5), data=1:5)
y <- data.frame(k1=c(NA,2,NA,4,5), k2=c(NA,NA,3,4,5), data=1:5)
merge(x, y, by=c("k1","k2")) # NA's match
merge(x, y, by=c("k1","k2"), incomparables=NA)
merge(x, y, by="k1") # NA's match, so 6 rows
merge(x, y, by="k2", incomparables=NA) # 2 rows

message Diagnostic Messages

Description

Generate a diagnostic message from its arguments.

Usage

message(..., domain = NULL, appendLF = TRUE)
suppressMessages(expr)

packageStartupMessage(..., domain = NULL, appendLF = TRUE)
suppressPackageStartupMessages(expr)

.makeMessage(..., domain = NULL, appendLF = FALSE)

Arguments

... zero or more objects which can be coerced to character (and which are pasted
together with no separator) or (for message only) a single condition object.

domain see gettext. If NA, messages will not be translated.

appendLF logical: should messages given as a character string have a newline appended?

expr expression to evaluate.

Details

message is used for generating ‘simple’ diagnostic messages which are neither warnings nor
errors, but nevertheless represented as conditions. Unlike warnings and errors, a final newline is
regarded as part of the message, and is optional. The default handler sends the message to the
stderr() connection.

missing 271

If a condition object is supplied to message it should be the only argument, and further arguments
will be ignored, with a warning.

While the message is being processed, a muffleMessage restart is available.

suppressMessages evaluates its expression in a context that ignores all ‘simple’ diagnostic
messages.

packageStartupMessage is a variant whose messages can be suppressed separately by
suppressPackageStartupMessages. (They are still messages, so can be suppressed by
suppressMessages.)

.makeMessage is a utility used by message, warning and stop to generate a text message
from the ... arguments by possible translation (see gettext) and concatenation (with no sepa-
rator).

See Also

warning and stop for generating warnings and errors; conditions for condition handling
and recovery.

gettext for the mechanisms for the automated translation of text.

Examples

message("ABC", "DEF")
suppressMessages(message("ABC"))

testit <- function() {
message("testing package startup messages")
packageStartupMessage("initializing ...", appendLF = FALSE)
Sys.sleep(1)
packageStartupMessage(" done")

}

testit()
suppressPackageStartupMessages(testit())
suppressMessages(testit())

missing Does a Formal Argument have a Value?

Description

missing can be used to test whether a value was specified as an argument to a function.

Usage

missing(x)

Arguments

x a formal argument.

272 mode

Details

missing(x) is only reliable if x has not been altered since entering the function: in particular it
will always be false after x <- match.arg(x).

The example shows how a plotting function can be written to work with either a pair of vectors
giving x and y coordinates of points to be plotted or a single vector giving y values to be plotted
against their indexes.

Currently missing can only be used in the immediate body of the function that defines the argu-
ment, not in the body of a nested function or a local call. This may change in the future.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

substitute for argument expression; NA for missing values in data.

Examples

myplot <- function(x,y) {
if(missing(y)) {

y <- x
x <- 1:length(y)

}
plot(x,y)

}

mode The (Storage) Mode of an Object

Description

Get or set the type or storage mode of an object.

Usage

mode(x)
mode(x) <- value
storage.mode(x)
storage.mode(x) <- value

Arguments

x any R object.

value a character string giving the desired mode or ‘storage mode’ (type) of the object.

mode 273

Details

Both mode and storage.mode return a character string giving the (storage) mode of the object
— often the same — both relying on the output of typeof(x), see the example below.

mode(x) <- "newmode" changes the mode of object x to newmode. This is only sup-
ported if there is an appropriate as.newmode function, for example "logical", "integer",
"double", "complex", "raw", "character", "list", "expression", "name",
"symbol" and "function". Attributes are preserved (but see below).

storage.mode(x) <- "newmode" is a more efficient internal version of mode<-, which
works for "newmode" which is one of the internal types (see typeof), but not for "single".
Attributes are preserved.

As storage mode "single" is only a pseudo-mode in R, it will not be reported by mode or
storage.mode: use attr(object, "Csingle") to examine this. However, mode<-
can be used to set the mode to "single", which sets the real mode to "double" and the
"Csingle" attribute to TRUE. Setting any other mode will remove this attribute.

Note (in the examples below) that some calls have mode "(" which is S compatible.

Mode names

Modes have the same set of names as types (see typeof) except that

• types "integer" and "double" are returned as "numeric".

• types "special" and "builtin" are returned as "function".

• type "symbol" is called mode "name".

• type "language" is returned as "(" or "call".

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

typeof for the R-internal ‘mode’, attributes.

Examples

require(stats)

sapply(options(),mode)

cex3 <- c("NULL","1","1:1","1i","list(1)","data.frame(x=1)",
"pairlist(pi)", "c", "lm", "formals(lm)[[1]]", "formals(lm)[[2]]",
"y~x","expression((1))[[1]]", "(y~x)[[1]]",
"expression(x <- pi)[[1]][[1]]")

lex3 <- sapply(cex3, function(x) eval(parse(text=x)))
mex3 <- t(sapply(lex3,

function(x) c(typeof(x), storage.mode(x), mode(x))))
dimnames(mex3) <- list(cex3, c("typeof(.)","storage.mode(.)","mode(.)"))
mex3

This also makes a local copy of 'pi':
storage.mode(pi) <- "complex"

274 NA

storage.mode(pi)
rm(pi)

NA Not Available / “Missing” Values

Description

NA is a logical constant of length 1 which contains a missing value indicator. NA can be freely
coerced to any other vector type except raw. There are also constants NA_integer_, NA_real_,
NA_complex_ and NA_character_ of the other atomic vector types which support missing
values: all of these are reserved words in the R language.

The generic function is.na indicates which elements are missing.

The generic function is.na<- sets elements to NA.

Usage

NA
is.na(x)
S3 method for class 'data.frame':
is.na(x)

is.na(x) <- value

Arguments

x an R object to be tested.

value a suitable index vector for use with x.

Details

The NA of character type is distinct from the string "NA". Programmers who need to specify an
explicit string NA should use NA_character_ rather than "NA", or set elements to NA using
is.na<-.

is.na(x) works elementwise when x is a list. It is generic: you can write methods to handle
specific classes of objects, see InternalMethods. A complex value is regarded as NA if either its real
or imaginary part is NA or NaN.

Function is.na<- may provide a safer way to set missingness. It behaves differently for factors,
for example.

Value

The default method for is.na returns a logical vector of the same length as its argument x, con-
taining TRUE for those elements marked NA or NaN (!) and FALSE otherwise. dim, dimnames
and names attributes are preserved.

The method is.na.data.frame returns a logical matrix with the same dimensions as the data
frame, and with dimnames taken from the row and column names of the data frame.

name 275

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

NaN, is.nan, etc., and the utility function complete.cases.

na.action, na.omit, na.fail on how methods can be tuned to deal with missing values.

Examples

is.na(c(1, NA)) #> FALSE TRUE
is.na(paste(c(1, NA))) #> FALSE FALSE

(xx <- c(0:4))
is.na(xx) <- c(2, 4)
xx #> 0 NA 2 NA 4

name Names and Symbols

Description

A ‘name’ (also known as a ‘symbol’) is a way to refer to R objects by name (rather than the value
of the object, if any, bound to that name).

as.name and as.symbol are identical: they attempt to coerce the argument to a name.

is.symbol and the identical is.name return TRUE or FALSE depending on whether the argu-
ment is a name or not.

Usage

as.symbol(x)
is.symbol(x)

as.name(x)
is.name(x)

Arguments

x object to be coerced or tested.

Details

as.name first coerces its argument internally to a character vector (so methods for
as.character are not used). It then takes the first element and provided it is not "", returns a
symbol of that name (and if the element is NA_character_, the name is ‘NA‘.

as.name is implemented as as.vector(x, "symbol"), and hence will dispatch methods
for the generic function as.vector.

276 names

Value

For as.name and as.symbol, an R object of type "symbol" (see typeof).

For is.name and is.symbol, a length-one logical vector with value TRUE or FALSE.

Note

The term ‘symbol’ is from the LISP background of R, whereas ‘name’ has been the standard S term
for this.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

call, is.language. For the internal object mode, typeof.

plotmath for another use of ‘symbol’.

Examples

an <- as.name("arrg")
is.name(an) # TRUE
mode(an) # name
typeof(an) # symbol

names The Names of an Object

Description

Functions to get or set the names of an object.

Usage

names(x)
names(x) <- value

Arguments

x an R object.

value a character vector of up to the same length as x, or NULL.

names 277

Details

names is a generic accessor function, and names<- is a generic replacement function. The default
methods get and set the "names" attribute of a vector (including a list) or pairlist.

If value is shorter than x, it is extended by character NAs to the length of x.

It is possible to update just part of the names attribute via the general rules: see the exam-
ples. This works because the expression there is evaluated as z <- "names<-"(z, "[<-
"(names(z), 3, "c2")).

The name "" is special: it is used to indicate that there is no name associated with an element of a
(atomic or generic) vector. Subscripting by "" will match nothing (not even elements which have
no name).

A name can be character NA, but such a name will never be matched and is likely to lead to confu-
sion.

Value

For names, NULL or a character vector of the same length as x. (NULL is given if the object has
no names, including for objects of types which cannot have names.)

For names<-, the updated object. (Note that the value of names(x) <- value is that of the
assignment, value, not the return value from the left-hand side.)

Note

For vectors, the names are one of the attributes with restrictions on the possible values. For pairlists,
the names are the tags and converted to and from a character vector.

For a one-dimensional array the names attribute really is dimnames[[1]].

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

print the names attribute of the islands data set
names(islands)

remove the names attribute
names(islands) <- NULL
islands
rm(islands) # remove the copy made

z <- list(a=1, b="c", c=1:3)
names(z)
change just the name of the third element.
names(z)[3] <- "c2"
z

z <- 1:3
names(z)
assign just one name
names(z)[2] <- "b"
z

278 nchar

nargs The Number of Arguments to a Function

Description

When used inside a function body, nargs returns the number of arguments supplied to that func-
tion, including positional arguments left blank.

Usage

nargs()

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

args, formals and sys.call.

Examples

tst <- function(a, b = 3, ...) {nargs()}
tst() # 0
tst(clicketyclack) # 1 (even non-existing)
tst(c1, a2, rr3) # 3

foo <- function(x, y, z, w) {
cat("call was", deparse(match.call()), "\n")
nargs()

}
foo() # 0
foo(,,3) # 3
foo(z=3) # 1, even though this is the same call

nargs()# not really meaningful

nchar Count the Number of Characters (or Bytes or Width)

Description

nchar takes a character vector as an argument and returns a vector whose elements contain the
sizes of the corresponding elements of x.

nzchar is a fast way to find out if elements of a character vector are non-empty strings.

Usage

nchar(x, type = "chars", allowNA = FALSE)

nzchar(x)

nchar 279

Arguments

x character vector, or a vector to be coerced to a character vector.

type character string: partial matching to one of c("bytes", "chars",
"width"). See ‘Details’.

allowNA logical: show NA be returned for invalid multibyte strings (rather than throwing
an error)?

Details

The ‘size’ of a character string can be measured in one of three ways

bytes The number of bytes needed to store the string (plus in C a final terminator which is not
counted).

chars The number of human-readable characters.

width The number of columns cat will use to print the string in a monospaced font. The same
as chars if this cannot be calculated.

These will often be the same, and almost always will be in single-byte locales. There will be
differences between the first two with multibyte character sequences, e.g. in UTF-8 locales.

The internal equivalent of the default method of as.character is performed on x (so there is
no method dispatch). If you want to operate on non-vector objects passing them through deparse
first will be required.

Value

For nchar, an integer vector giving the sizes of each element, currently always 2 for missing
values (for NA).

If allowNA = TRUE and an element is invalid in a multi-byte character set such as UTF-8, its
number of characters and the width will be NA. Otherwise the number of characters will be non-
negative, so !is.na(nchar(x, "chars", TRUE)) is a test of validity.

Names, dims and dimnames are copied from the input.

For nzchar, a logical vector of the same length as x, true if and only if the element has non-zero
length.

Note

This does not by default give the number of characters that will be used to print() the string. Use
encodeString to find the characters used to print the string. Where character strings have been
marked as UTF-8, the number of characters and widths will be computed in UTF-8, even though
printing may use escapes such as <U+2642> in a non-UTF-8 locale.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

strwidth giving width of strings for plotting; paste, substr, strsplit

280 nlevels

Examples

x <- c("asfef", "qwerty", "yuiop[", "b", "stuff.blah.yech")
nchar(x)
5 6 6 1 15

nchar(deparse(mean))
18 17

nlevels The Number of Levels of a Factor

Description

Return the number of levels which its argument has.

Usage

nlevels(x)

Arguments

x an object, usually a factor.

Details

This is usually applied to a factor, but other objects can have levels.

The actual factor levels (if they exist) can be obtained with the levels function.

Value

The length of levels(x), which is zero if x has no levels.

See Also

levels, factor.

Examples

nlevels(gl(3,7)) # = 3

noquote 281

noquote Class for “no quote” Printing of Character Strings

Description

Print character strings without quotes.

Usage

noquote(obj)

S3 method for class 'noquote':
print(x, ...)

S3 method for class 'noquote':
c(..., recursive = FALSE)

Arguments

obj any R object, typically a vector of character strings.

x an object of class "noquote".

... further options passed to next methods, such as print.

recursive for compatibility with the generic c function.

Details

noquote returns its argument as an object of class "noquote". There is a method for c() and
subscript method ("[.noquote") which ensures that the class is not lost by subsetting. The print
method (print.noquote) prints character strings without quotes ("...").

These functions exist both as utilities and as an example of using (S3) class and object orientation.

Author(s)

Martin Maechler 〈maechler@stat.math.ethz.ch〉

See Also

methods, class, print.

Examples

letters
nql <- noquote(letters)
nql
nql[1:4] <- "oh"
nql[1:12]

cmp.logical <- function(log.v)
{
Purpose: compact printing of logicals
log.v <- as.logical(log.v)

282 nrow

noquote(if(length(log.v)==0)"()" else c(".","|")[1+log.v])
}
cmp.logical(stats::runif(20) > 0.8)

NotYet Not Yet Implemented Functions and Unused Arguments

Description

In order to pinpoint missing functionality, the R core team uses these functions for missing R func-
tions and not yet used arguments of existing R functions (which are typically there for compatibility
purposes).

You are very welcome to contribute your code . . .

Usage

.NotYetImplemented()

.NotYetUsed(arg, error = TRUE)

Arguments

arg an argument of a function that is not yet used.
error a logical. If TRUE, an error is signalled; if FALSE; only a warning is given.

See Also

the contrary, Deprecated and Defunct for outdated code.

Examples

require(graphics)
require(stats)
plot.mlm # to see how the "NotYetImplemented"

reference is made automagically
try(plot.mlm())

barplot(1:5, inside = TRUE) # 'inside' is not yet used

nrow The Number of Rows/Columns of an Array

Description

nrow and ncol return the number of rows or columns present in x. NCOL and NROW do the same
treating a vector as 1-column matrix.

Usage

nrow(x)
ncol(x)
NCOL(x)
NROW(x)

ns-dblcolon 283

Arguments

x a vector, array or data frame

Value

an integer of length 1 or NULL.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole (ncol and nrow.)

See Also

dim which returns all dimensions; array, matrix.

Examples

ma <- matrix(1:12, 3, 4)
nrow(ma) # 3
ncol(ma) # 4

ncol(array(1:24, dim = 2:4)) # 3, the second dimension
NCOL(1:12) # 1
NROW(1:12) # 12

ns-dblcolon Double Colon and Triple Colon Operators

Description

Accessing exported and internal variables in a name space.

Usage

pkg::name
pkg:::name

Arguments

pkg package name symbol or literal character string.

name variable name symbol or literal character string.

Details

The expression pkg::name returns the value of the exported variable name in package pkg if the
package has a name space. The expression pkg:::name returns the value of the internal variable
name in package pkg if the package has a name space. The package will be loaded if it was not
loaded already before the call. Assignment into name spaces is not supported.

Note that it is typically a design mistake to use ::: in your code since the corresponding object
has probably been kept namespace-internal for a good reason. Consider contacting the package
maintainer if you feel the need to access the object for anything but mere inspection.

284 ns-hooks

If the package pkg does not have a name space but is on the search path then pkg::name returns
the value of name in the package environment.

See Also

get to access an object masked by another of the same name.

Examples

base::log
base::"+"

Beware -- use ':::' at your own risk! (see "Details")
stats:::coef.default

ns-hooks Hooks for Name Space events

Description

Packages with name spaces can supply functions to be called when loaded, attached or unloaded.

Usage

.onLoad(libname, pkgname)

.onAttach(libname, pkgname)

.onUnload(libpath)

Arguments

libname a character string giving the library directory where the package defining the
namespace was found.

pkgname a character string giving the name of the package, including the version number
if the package was installed with --with-package-versions.

libpath a character string giving the complete path to the package.

Details

These functions apply only to packages with name spaces.

After loading, loadNamespace looks for a hook function named .onLoad and runs it before
sealing the namespace and processing exports.

If a name space is unloaded (via unloadNamespace), a hook function .onUnload is run before
final unloading.

Note that the code in .onLoad and .onUnload is run without the package being on the search
path, but (unless circumvented) lexical scope will make objects in the namespace and its imports
visible. (Do not use the double colon operator in .onLoad as exports have not been processed at
the point it is run.)

When the package is attached (via library), the hook function .onAttach is looked for and
if found is called after the exported functions are attached and before the package environment is
sealed. This is less likely to be useful than .onLoad, which should be seen as the analogue of
.First.lib (which is only used for packages without a name space).

ns-load 285

.onLoad, .onUnload and .onAttach are looked for as internal variables in the name space
and should not be exported.

If a function .Last.lib is visible in the package, it will be called when the package is detached:
this does need to be exported.

Anything needed for the functioning of the name space should be handled at load/unload times
by the .onLoad and .onUnload hooks. For example, DLLs can be loaded (unless done by a
useDynLib directive in the ‘NAMESPACE’ file) and initialized in .onLoad and unloaded in
.onUnload. Use .onAttach only for actions that are needed only when the package becomes
visible to the user, for example a start-up message.

If a package was installed with --with-package-versions, the pkgname supplied will be
something like tree_1.0-16.

See Also

setHook shows how users can set hooks on the same events.

ns-load Loading and Unloading Name Spaces

Description

Functions to load and unload namespaces.

Usage

attachNamespace(ns, pos = 2, dataPath = NULL)
loadNamespace(package, lib.loc = NULL,

keep.source = getOption("keep.source.pkgs"),
partial = FALSE, declarativeOnly = FALSE)

loadedNamespaces()
unloadNamespace(ns)

Arguments

ns string or namespace object.

pos integer specifying position to attach.

dataPath path to directory containing a database of datasets to be lazy-loaded into the
attached environment.

package string naming the package/name space to load.

lib.loc character vector specifying library search path.

keep.source logical specifying whether to retain source. This applies only to the specified
name space, and not to other name spaces which might be loaded to satisfy
imports.
For more details see this argument to library.

partial logical; if true, stop just after loading code.
declarativeOnly

logical; disables .Import, etc, if true.

286 ns-topenv

Details

The functions loadNamespace and attachNamespace are usually called implicitly when
library is used to load a name space and any imports needed. However it may be useful to call
these functions directly at times.

loadNamespace loads the specified name space and registers it in an internal data base. A request
to load a name space that is already loaded has no effect. The arguments have the same meaning as
the corresponding arguments to library, whose help page explains the details of how a particular
installed package comes to be chosen. After loading, loadNamespace looks for a hook function
named .onLoad as an internal variable in the name space (it should not be exported). This function
is called with the same arguments as .First.lib. Partial loading is used to support installation
with the ‘--save’ and ‘--lazy’ options.

loadNamespace does not attach the name space it loads to the search path.
attachNamespace can be used to attach a frame containing the exported values of a
name space to the search path. The hook function .onAttach is run after the name space exports
are attached.

loadedNamespaces returns a character vector of the names of the loaded name spaces.

unloadNamespace can be used to force a name space to be unloaded. An error is signaled if
the name space is imported by other loaded name spaces. If defined, a hook function .onUnload
is run before removing the name space from the internal registry. unloadNamespace will first
detach a package of the same name if one is on the path, thereby running a .Last.lib function
in the package if one is exported.

Author(s)

Luke Tierney

ns-topenv Top Level Environment

Description

Finding the top level environment.

Usage

topenv(envir = parent.frame(),
matchThisEnv = getOption("topLevelEnvironment"))

Arguments

envir environment.
matchThisEnv return this environment, if it matches before any other criterion is satisfied. The

default, the option ‘topLevelEnvironment’, is set by sys.source, which treats
a specific environment as the top level environment. Supplying the argument as
NULL means it will never match.

Details

topenv returns the first top level environment found when searching envir and its parent envi-
ronments. An environment is considered top level if it is the internal environment of a name space,
a package environment in the search path, or .GlobalEnv.

NULL 287

Examples

topenv(.GlobalEnv)
topenv(new.env())

NULL The Null Object

Description

NULL represents the null object in R: it is a reserved word. NULL is often returned by expressions
and functions whose value is undefined: it is also used as the empty pairlist.

as.null ignores its argument and returns the value NULL.

is.null returns TRUE if its argument is NULL and FALSE otherwise.

Usage

NULL
as.null(x, ...)
is.null(x)

Arguments

x an object to be tested or coerced.

... ignored.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

is.null(list()) # FALSE (on purpose!)
is.null(integer(0))# F
is.null(logical(0))# F
as.null(list(a=1,b='c'))

numeric Numeric Vectors

Description

Creates or coerces objects of type "numeric". is.numeric is a more general test of an object
being interpretable as numbers.

Usage

numeric(length = 0)
as.numeric(x, ...)
is.numeric(x)

288 numeric

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Details

numeric is identical to double (and real). It creates a double-precision vector of the specified
length with each element equal to 0.

as.numeric is a generic function, but S3 methods must be written for as.double. It is identi-
cal to as.double (and as.real).

is.numeric is generic: you can write methods to handle specific classes of objects, see Internal-
Methods. It is not the same as is.double. Factors are handled by the default method, and there
are methods for classes "Date" and "POSIXt" (in all three cases the result is false). Methods
for is.numeric should only return true if the base type of the class is double or integer and
values can reasonably be regarded as numeric (e.g. arithmetic on them makes sense).

Value

for numeric and as.numeric see double.

The default method for is.numeric returns TRUE if its argument is of mode
"numeric" (type "double" or type "integer") and not a factor, and FALSE other-
wise. That is, is.integer(x) || is.double(x), or (mode(x) == "numeric") &&
!is.factor(x).

S4 methods

as.numeric and is.numeric are internally S4 generic and so methods can be set for them via
setMethod.

To ensure that as.numeric, as.double and as.real remain identical, S4 methods can only
be set for as.numeric.

Note on names

It is a historical anomaly that R has three names for its floating-point vectors, double, numeric
and real.

double is the name of the type. numeric is the name of the mode and also of the implicit class.
As an S4 formal class, use "numeric" (there was a formal class "double" prior to R 2.7.0).

real is deprecated and should not be used in new code.

The potential confusion is that R has used mode "numeric" to mean ‘double or integer’, which
conflicts with the S4 usage. Thus is.numeric tests the mode, not the class, but as.numeric
(which is identical to as.double) coerces to the class.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

double, integer, storage.mode.

NumericConstants 289

Examples

as.numeric(c("-.1"," 2.7 ","B")) # (-0.1, 2.7, NA) + warning
as.numeric(factor(5:10))

NumericConstants Numeric Constants

Description

How R parses numeric constants.

Details

R parses numeric constants in its input in a very similar way to C99 floating-point constants.

Inf and NaN are numeric constants (with typeof(.) "double"). These are recognized
ignoring case, as is infinity as an alternative to Inf. NA_real_ and NA_integer_ are
constants of types "double" and "integer" representing missing values. All other numeric
constants start with a digit or period and are either a decimal or hexadecimal constant optionally
followed by L.

Hexadecimal constants start with 0x or 0X followed by a nonempty sequence from 0-9 a-f A-F
.which is interpreted as a hexadecimal number, optionally followed by a binary exponent. A binary
exponent consists of an P or p followed by an optional plus or minus sign followed by a non-empty
sequence of (decimal) digits, and indicates multiplication by a power of two. Thus 0x123p456 is
291× 2456.

Decimal constants consist of a nonempty sequence of digits possibly containing a period (the dec-
imal point), optionally followed by a decimal exponent. A decimal exponent consists of an E or
e followed by an optional plus or minus sign followed by a non-empty sequence of digits, and
indicates multiplication by a power of ten.

Values which are too large or too small to be representable will overflow to Inf or underflow to
0.0.

A numeric constant immediately followed by i is regarded as an imaginary complex number.

An numeric constant immediately followed by L is regarded as an integer number when possible
(and with a warning if it contains a ".").

Only the ASCII digits 0–9 are recognized as digits, even in languages which have other representa-
tions of digits. The ‘decimal separator’ is always a period and never a comma.

Note that a leading plus or minus is not regarded by the parser as part of a numeric constant but as
a unary operator applied to the constant.

See Also

Syntax.

Quotes for the parsing of character constants,

290 numeric_version

Examples

2.1
typeof(2)
sqrt(1i) # remember elementary math?
utils::str(0xA0)
identical(1L, as.integer(1))

You can combine the "0x" prefix with the "L" suffix :
identical(0xFL, as.integer(15)) # (with a regard to Fritz :-)

numeric_version Numeric Versions

Description

A simple S3 class for representing numeric versions including package versions, and associated
methods.

Usage

numeric_version(x, strict = TRUE)
package_version(x, strict = TRUE)
R_system_version(x, strict = TRUE)
getRversion()

Arguments

x a character vector with suitable numeric version strings (see ‘Details’);
for package_version, alternatively an R version object as obtained by
R.version.

strict a logical indicating whether invalid numeric versions should results in an error
(default) or not.

Details

Numeric versions are sequences of one or more non-negative integers, usually (e.g., in package
‘DESCRIPTION’ files) represented as character strings with the elements of the sequence con-
catenated and separated by single ‘.’ or ‘-’ characters. R package versions consist of at least two
such integers, an R system version of exactly three (major, minor and patchlevel).

Functions numeric_version, package_version and R_system_version create a rep-
resentation from such strings (if suitable) which allows for coercion and testing, combination, com-
parison, summaries (min/max), inclusion in data frames, subscripting, and printing. The classes can
hold a vector of such representations.

getRversion returns the version of the running R as an R system version object.

The [[operator extracts or replaces a single version. To access the integers of a version use two
indices: see the examples.

See Also

compareVersion

octmode 291

Examples

x <- package_version(c("1.2-4", "1.2-3", "2.1"))
x < "1.4-2.3"
c(min(x), max(x))
x[2, 2]
x$major
x$minor

if(getRversion() <= "2.5.0") { ## work around missing feature
cat("Your version of R, ", as.character(getRversion()),

", is outdated.\n",
"Now trying to work around that ...\n", sep = "")

}

x[[c(1,3)]] # '4' as a numeric vector, same as x[1, 3]
x[1, 3] # 4 as an integer
x[[2, 3]] <- 0 # zero the patchlevel
x[[c(2,3)]] <- 0 # same
x
x[[3]] <- "2.2.3"; x

octmode Display Numbers in Octal

Description

Convert or print integers in octal format, with as many digits as are needed to display the largest,
using leading zeroes as necessary.

Usage

as.octmode(x)

S3 method for class 'octmode':
as.character(x, ...)

S3 method for class 'octmode':
format(x, ...)

S3 method for class 'octmode':
print(x, ...)

Arguments

x An object, for the methods inheriting from class "octmode".

... further arguments passed to or from other methods.

Details

Class "octmode" consists of integer vectors with that class attribute, used merely to ensure that
they are printed in octal notation, specifically for Unix-like file permissions such as 755. Subsetting
([) works too.

292 on.exit

as.octmode can convert integers (of type "integer" or "double") and character strings to
class "octmode"

See Also

These are auxiliary functions for file.info.

hexmode

Examples

(on <- structure(c(16,32, 127:129), class = "octmode")) #-> print.*()
##-> "020" "040" "177" "200" "201"
unclass(on[3:4]) # subsetting

on.exit Function Exit Code

Description

on.exit records the expression given as its argument as needing to be executed when the current
function exits (either naturally or as the result of an error). This is useful for resetting graphical
parameters or performing other cleanup actions.

If no expression is provided, i.e., the call is on.exit(), then the current on.exit code is re-
moved.

on.exit is a primitive function so positional matching is used and names of supplied arguments
are ignored.

Usage

on.exit(expr, add = FALSE)

Arguments

expr an expression to be executed.

add if TRUE, add expr to be executed after any previously set expressions; other-
wise (the default) expr will overwrite any previously set expressions.

Details

Where expr was evaluated changed in R 2.8.0, and the following applies only to that and later
versions.

The expr argument passed to on.exit is recorded without evaluation. If it is not subsequently
removed/replaced by another on.exit call in the same function, it is evaluated in the evaluation
frame of the function when it exits (including during standard error handling). Thus any functions
or variables in the expression will be looked for in the function and its environment at the time of
exit: to capture the current value in expr use substitute or similar.

Value

Invisible NULL.

Ops.Date 293

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

sys.on.exit which returns the expression stored for use by on.exit() in the function in
which sys.on.exit() is evaluated.

Examples

require(graphics)

opar <- par(mai = c(1,1,1,1))
on.exit(par(opar))

Ops.Date Operators on the Date Class

Description

Operators for the "Date" class.

There is an Ops method and specific methods for + and - for the Date class.

Usage

date + x
date - x
date1 lop date2

Arguments

date date objects

date1, date2 date objects or character vectors. (Character vectors are converted by
as.Date.)

x a numeric vector (in days) or an object of class "difftime".

lop One of ==, !=, <, <=, > or >=.

Examples

(z <- Sys.Date())
z + 10
z < c("2006-06-01", "2007-01-01", "2010-01-01")

294 options

options Options Settings

Description

Allow the user to set and examine a variety of global options which affect the way in which R
computes and displays its results.

Usage

options(...)

getOption(x)

.Options

Arguments

... any options can be defined, using name = value or by passing a list of such
tagged values. However, only the ones below are used in base R. Further,
options(’name’) == options()[’name’], see the example.

x a character string holding an option name.

Details

Invoking options() with no arguments returns a list with the current values of the options. Note
that not all options listed below are set initially. To access the value of a single option, one should
use getOption("width"), e.g., rather than options("width") which is a list of length
one.

.Options also always contains the options() list (as a pairlist, unsorted), for S compatibility.
Assigning to it will make a local copy and not change the original.

Value

For getOption, the current value set for option x, or NULL if the option is unset.

For options(), a list of all set options sorted by name. For options(name), a list of length
one containing the set value, or NULL if it is unset. For uses setting one or more options, a list with
the previous values of the options changed (returned invisibly).

Options used in base R

add.smooth: typically logical, defaulting to TRUE. Could also be set to an integer for specifying
how many (simulated) smooths should be added. This is currently only used by plot.lm.

check.bounds: logical, defaulting to FALSE. If true, a warning is produced whenever a vector
(atomic or list) is extended, by something like x <- 1:3; x[5] <- 6.

continue: a non-empty string setting the prompt used for lines which continue over one line.

defaultPackages: the packages that are attached by default when R starts up. Ini-
tially set from value of the environment variable R_DEFAULT_PACKAGES, or if that is
unset to c("datasets", "utils", "grDevices", "graphics", "stats",

options 295

"methods"). (Set R_DEFAULT_PACKAGES to NULL or a comma-separated list of pack-
age names.) A call to options should be in your ‘.Rprofile’ file to ensure that the change
takes effect before the base package is initialized (see Startup).

deparse.max.lines: controls the number of lines used when deparsing in traceback and
browser. Initially unset, and only used if set to a positive integer.

digits: controls the number of digits to print when printing numeric values. It is a suggestion
only. Valid values are 1. . . 22 with default 7. See the warning in print.default about
values greater than 15.

digits.secs: controls the maximum number of digits to print when formatting time values in
seconds. Valid values are 0. . . 6 with default 0. See strftime.

download.file.method: Method to be used for download.file. Currently download
methods "internal", "wget" and "lynx" are available. There is no default for this
option, when method = "auto" is chosen: see download.file.

echo: logical. Only used in non-interactive mode, when it controls whether input is echoed.
Command-line option -slave sets this to FALSE, but otherwise it starts the session as TRUE.

encoding: The name of an encoding, default "native.enc"). See connections.

error: either a function or an expression governing the handling of non-catastrophic errors such
as those generated by stop as well as by signals and internally detected errors. If the option
is a function, a call to that function, with no arguments, is generated as the expression. The
default value is NULL: see stop for the behaviour in that case. The functions dump.frames
and recover provide alternatives that allow post-mortem debugging. Note that these need
to specified as e.g. options=utils::recover in startup files such as ‘.Rprofile’.

expressions: sets a limit on the number of nested expressions that will be evaluated. Valid
values are 25. . . 500000 with default 5000. If you increase it, you may also want to start R
with a larger protection stack; see -max-ppsize in Memory. Note too that you may cause
a segfault from overflow of the C stack, and on OSes where it is possible you may want to
increase that.

keep.source: When TRUE, the source code for functions (newly defined or loaded) is stored in
their "source" attribute (see attr) allowing comments to be kept in the right places.
The default is interactive(), i.e., TRUE for interactive use.

keep.source.pkgs: As for keep.source, for functions in packages loaded by library
or require. Defaults to FALSE unless the environment variable R_KEEP_PKG_SOURCE
is set to yes.
Note this does not apply to packages using lazy-loading or saved images. Whether they have
kept source is determined when they are installed (and is almost certainly false).

mailer: default mailer used by bug.report(). Can be "none".

max.contour.segments: positive integer, defaulting to 250000 and usually not set. A limit
on the number of segments in a single contour line in contour or contourLines.

max.print: integer, defaulting to 99999. print or showmethods can make use of this option,
to limit the amount of information that is printed, to something in the order of (and typically
slightly less than) max.print entries.

OutDec: one-character string. The character to be used as the decimal point in output conversions,
that is in printing, plotting and as.character but not deparsing.

pager: the command used for displaying text files by file.show. Defaults to
‘R_HOME/bin/pager’, which selects a pager via the PAGER environment variable (and that
usually defaults to less). Can be a character string or an R function, in which case it needs
to accept the same first four arguments as file.show.

296 options

papersize: the default paper format used by postscript; set by environment variable
R_PAPERSIZE when R is started: if that is unset or invalid it defaults to a value derived
from the locale category LC_PAPER, or if that is unavailable to a default set when R was
built.

printcmd: the command used by postscript for printing; set by environment variable
R_PRINTCMD when R is started. This should be a command that expects either input to
be piped to ‘stdin’ or to be given a single filename argument.

prompt: a non-empty string to be used for R’s prompt; should usually end in a blank (" ").

rl_word_breaks: Used for the readline-based terminal interface. Default value "
\t\n\"\\’‘><=%;,|&{()}". This is the set of characters use to break the input line
up into tokens for object- and file-name completion. Those who do not use spaces around
operators may prefer " \t\n\"\\’‘><=+-*%;,|&{()}". which was the default in R
2.5.0. (The default in pre-2.5.0 versions of R was " \t\n\"\\’‘@$><=;|&{(".)

save.defaults, save.image.defaults: see save.

scipen: integer. A penalty to be applied when deciding to print numeric values in fixed or expo-
nential notation. Positive values bias towards fixed and negative towards scientific notation:
fixed notation will be preferred unless it is more than scipen digits wider.

showWarnCalls, showErrorCalls: a logical. Should warning and error messages show a
summary of the call stack? By default error calls are shown in non-interactive sessions.

showNCalls: a integer. Controls how long the sequence of calls must be (in bytes) before ellipses
are used. Defaults to 40 and should be at least 30 and no more than 500.

show.error.messages: a logical. Should error messages be printed? Intended for use with
try or a user-installed error handler.

stringsAsFactors: The default setting for arguments of data.frame and read.table.

texi2dvi: used by the unexported function texi2dvi in name space tools.

timeout: integer. The timeout for some Internet operations, in seconds. Default 60 seconds. See
download.file and connections.

topLevelEnvironment: see topenv and sys.source.

useFancyQuotes: see sQuote.

verbose: logical. Should R report extra information on progress? Set to TRUE by the command-
line option ‘-verbose’.

warn: sets the handling of warning messages. If warn is negative all warnings are ignored. If
warn is zero (the default) warnings are stored until the top–level function returns. If fewer
than 10 warnings were signalled they will be printed otherwise a message saying how many
(max 50) were signalled. An object called last.warning is created and can be printed
through the function warnings. If warn is one, warnings are printed as they occur. If
warn is two or larger all warnings are turned into errors.

warnEscapes: logical. If true (the default) the parser warns on unrecognized (backslash) es-
cape sequences and there is a truncation warning on any attempt to create a character string
containing an embedded nul.

warnPartialMatchArgs: logical. If true, warns if partial matching is used in argument
matching.

warnPartialMatchAttr: logical. If true, warns if partial matching is used in extracting at-
tributes via attr.

warnPartialMatchDollar: logical. If true, warns if partial matching is used for extraction
by $.

options 297

warning.expression: an R code expression to be called if a warning is generated, replacing
the standard message. If non-null it is called irrespective of the value of option warn.

warning.length: sets the truncation limit for error and warning messages. A non-negative
integer, with allowed values 100. . . 8170, default 1000.

width: controls the maximum number of columns on a line used in printing vectors, matrices and
arrays, and when filling by cat.
Columns are normally the same as characters except in CJK languages.
You may want to change this if you re-size the window that R is running in. Valid values are
10. . . 10000 with default normally 80. (The limits on valid values are in file ‘Print.h’ and can
be changed by re-compiling R.) Some R consoles automatically change the value when they
are resized.

The ‘factory-fresh’ default settings of some of these options are

add.smooth TRUE
check.bounds FALSE
continue "+ "
digits 7
echo TRUE
encoding "native.enc"
error NULL
expressions 5000
keep.source interactive()
keep.source.pkgs FALSE
max.print 99999
OutDec "."
prompt "> "
scipen 0
show.error.messages TRUE
timeout 60
verbose FALSE
warn 0
warnings.length 1000
width 80

Others are set from environment variables or are platform-dependent.

Options set in package grDevices

These will be set when package grDevices (or its name space) is loaded if not already set.

device: a character string giving the name of a function, or the function object itself, which
when called creates a new graphics device of the default type for that session. The value of
this option defaults to the normal screen device (e.g., X11, windows or quartz) for an
interactive session, and pdf in batch use or if a screen is not available. If set to the name
of a device, the device is looked for first from the global environment (that is down the usual
search path) and then in the grDevices namespace.
The default values in interactive and non-interactive sessions are configurable via environment
variables R_INTERACTIVE_DEVICE and R_DEFAULT_DEVICE respectively.

locatorBell: logical. Should selection in locator and identify be confirmed by a bell?
Default TRUE. Honoured at least on X11 and windows devices.

298 options

device.ask.default: logical. The default for devAskNewPage("ask") when a device
is opened.

bitmapType: character. The default type for the bitmap devices such as png. Defaults to
"cairo" on systems where that is available, or to "quartz" on Mac OS X where that
is available.

Options set in package stats

These will be set when package stats (or its name space) is loaded if not already set.

contrasts: the default contrasts used in model fitting such as with aov or lm. A charac-
ter vector of length two, the first giving the function to be used with unordered factors and
the second the function to be used with ordered factors. By default the elements are named
c("unordered", "ordered"), but the names are unused.

na.action: the name of a function for treating missing values (NA’s) for certain situations.

show.coef.Pvalues: logical, affecting whether P values are printed in summary tables of
coefficients. See printCoefmat.

show.signif.stars: logical, should stars be printed on summary tables of coefficients? See
printCoefmat.

ts.eps: the relative tolerance for certain time series (ts) computations. Default 1e-05.

ts.S.compat: logical. Used to select S compatibility for plotting time-series spectra. See the
description of argument log in plot.spec.

Options set in package utils

These will be set when package utils (or its name space) is loaded if not already set.

browser: default HTML browser used by help.start() on UNIX, or a non-default browser
on Windows. Alternatively, a function that is called with a URL as its argument.

de.cellwidth: integer: the cell widths (number of characters) to be used in the data editor
dataentry. If this is unset (the default), 0, negative or NA, variable cell widths are used.

editor: a non-empty string, or a function that is called with a file path as argument. Sets the
default text editor, e.g., for edit. Set from the environment variable VISUAL on UNIX.

example.ask: default for the ask argument of example.

help.try.all.packages: default for an argument of help.

HTTPUserAgent: string used as the user agent in HTTP requests. If NULL, HTTP requests
will be made without a user agent header. The default is R (<version> <platform>
<arch> <os>)

internet.info: The minimum level of information to be printed on URL downloads etc. De-
fault is 2, for failure causes. Set to 1 or 0 to get more information.

menu.graphics: Logical: should graphical menus be used if available?. Defaults to TRUE.
Currently applies to chooseCRANmirror, setRepositories and to select from multi-
ple help files in help.

pkgType: The default type of packages to be downloaded and installed – see
install.packages. Possible values are "source" (the default except under the
CRAN Mac OS X build) and "mac.binary". The latter can have a suffix if supported
by a special build, such as "mac.binary.leopard" to access the "leopard" tree of
repositories instead of the default "universal".

options 299

repos: URLs of the repositories for use by update.packages. Defaults to
c(CRAN="@CRAN@"), a value that causes some utilities to prompt for a CRAN
mirror. To avoid this do set the CRAN mirror, by something like local({r
<- getOption("repos"); r["CRAN"] <- "http://my.local.cran";
options(repos=r)}).
Note that you can add more repositories (Bioconductor and Omegahat, notably) using
setRepositories().

SweaveHooks, SweaveSyntax: see Sweave.

unzip: a character string, the path of the command used for unzipping help files, or
"internal". Defaults to the value of R_UNZIPCMD, which is set in ‘etc/Renviron’ if
an unzip command was found during configuration.

Options used on Unix only

latexcmd, dvipscmd: character strings giving commands to be used in off-line printing of
help pages.

pdfviewer: default PDF viewer. Set from the environment variable R_PDFVIEWER.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

op <- options(); utils::str(op) # op() may contain functions.

getOption("width") == options()$width # the latter needs more memory
options(digits = 15)
pi

set the editor, and save previous value
old.o <- options(editor = "nedit")
old.o

options(check.bounds = TRUE, warn = 1)
x <- NULL; x[4] <- "yes" # gives a warning

options(digits=5)
print(1e5)
options(scipen=3); print(1e5)

options(op) # reset (all) initial options
options("digits")

Not run:
set contrast handling to be like S
options(contrasts = c("contr.helmert", "contr.poly"))
End(Not run)

Not run:
on error, terminate the R session with error status 66
options(error = quote(q("no", status=66, runLast=FALSE)))
stop("test it")
End(Not run)

300 order

Not run:
Set error actions for debugging:
enter browser on error, see ?recover:
options(error = recover)
allows to call debugger() afterwards, see ?debugger:
options(error = dump.frames)
A possible setting for non-interactive sessions
options(error = quote({dump.frames(to.file=TRUE); q()}))
End(Not run)

order Ordering Permutation

Description

order returns a permutation which rearranges its first argument into ascending or descending
order, breaking ties by further arguments. sort.list is the same, using only one argument.
See the examples for how to use these functions to sort data frames, etc.

Usage

order(..., na.last = TRUE, decreasing = FALSE)

sort.list(x, partial = NULL, na.last = TRUE, decreasing = FALSE,
method = c("shell", "quick", "radix"))

Arguments

... a sequence of numeric, complex, character or logical vectors, all of the same
length.

x a vector.

partial vector of indices for partial sorting. (Non-NULL values are not implemented.)

decreasing logical. Should the sort order be increasing or decreasing?

na.last for controlling the treatment of NAs. If TRUE, missing values in the data are put
last; if FALSE, they are put first; if NA, they are removed.

method the method to be used: partial matches are allowed.

Details

In the case of ties in the first vector, values in the second are used to break the ties. If the values are
still tied, values in the later arguments are used to break the tie (see the first example). The sort used
is stable (except for method = "quick"), so any unresolved ties will be left in their original
ordering.

Complex values are sorted first by the real part, then the imaginary part.

The sort order for character vectors will depend on the collating sequence of the locale in use: see
Comparison.

The default method for sort.list is a good compromise. Method "quick" is only supported
for numeric x with na.last=NA, and is not stable, but will be faster for long vectors. Method

order 301

"radix" is only implemented for integer x with a range of less than 100,000. For such x it is very
fast (and stable), and hence is ideal for sorting factors.

partial is supplied for compatibility with other implementations of S, but no other values are
accepted and ordering is always complete.

Note that these functions are only defined for vectors, so any class of the object supplied is ignored:
this means factors are sorted on their internal codes and not their printed representation.

Note

sort.list can get called by mistake as a method for sort with a list argument, and gives a
suitable error message for list x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

sort, rank, xtfrm.

Examples

require(stats)

(ii <- order(x <- c(1,1,3:1,1:4,3), y <- c(9,9:1), z <-c(2,1:9)))
6 5 2 1 7 4 10 8 3 9
rbind(x,y,z)[,ii] # shows the reordering (ties via 2nd & 3rd arg)

Suppose we wanted descending order on y.
A simple solution for numeric 'y' is
rbind(x,y,z)[, order(x, -y, z)]
More generally we can make use of xtfrm
cy <- as.character(y)
rbind(x,y,z)[, order(x, -xtfrm(cy), z)]

Sorting data frames:
dd <- transform(data.frame(x,y,z),

z = factor(z, labels=LETTERS[9:1]))
Either as above {for factor 'z' : using internal coding}:
dd[order(x, -y, z) ,]
or along 1st column, ties along 2nd, ... *arbitrary* no.{columns}:
dd[do.call(order, dd) ,]

set.seed(1)# reproducible example:
d4 <- data.frame(x = round(rnorm(100)), y = round(10*runif(100)),

z = round(8*rnorm(100)), u = round(50*runif(100)))
(d4s <- d4[do.call(order, d4) ,])
(i <- which(diff(d4s[,3]) == 0))
in 2 places, needed 3 cols to break ties:
d4s[rbind(i,i+1),]

rearrange matched vectors so that the first is in ascending order
x <- c(5:1, 6:8, 12:9)
y <- (x - 5)^2

302 outer

o <- order(x)
rbind(x[o], y[o])

tests of na.last
a <- c(4, 3, 2, NA, 1)
b <- c(4, NA, 2, 7, 1)
z <- cbind(a, b)
(o <- order(a, b)); z[o,]
(o <- order(a, b, na.last = FALSE)); z[o,]
(o <- order(a, b, na.last = NA)); z[o,]

Not run:
speed examples for long vectors:
x <- factor(sample(letters, 1e6, replace=TRUE))
system.time(o <- sort.list(x)) ## 1.2 secs
stopifnot(!is.unsorted(x[o]))
system.time(o <- sort.list(x, method="quick", na.last=NA)) # 0.15 sec
stopifnot(!is.unsorted(x[o]))
system.time(o <- sort.list(x, method="radix")) # 0.02 sec
stopifnot(!is.unsorted(x[o]))
xx <- sample(1:26, 1e7, replace=TRUE)
system.time(o <- sort.list(xx, method="radix")) # 0.2 sec
xx <- sample(1:100000, 1e7, replace=TRUE)
system.time(o <- sort.list(xx, method="radix")) # 0.8 sec
system.time(o <- sort.list(xx, method="quick", na.last=NA)) # 1.4 sec
End(Not run)

outer Outer Product of Arrays

Description

The outer product of the arrays X and Y is the array A with dimension c(dim(X), dim(Y))
where element A[c(arrayindex.x, arrayindex.y)] = FUN(X[arrayindex.x],
Y[arrayindex.y], ...).

Usage

outer(X, Y, FUN="*", ...)
X %o% Y

Arguments

X, Y First and second arguments for function FUN. Typically a vector or array.

FUN a function to use on the outer products, found via match.fun (except for the
special case "*").

... optional arguments to be passed to FUN.

Paren 303

Details

X and Y must be suitable arguments for FUN. Each will be extended by rep to length the products
of the lengths of X and Y before FUN is called.

FUN is called with these two extended vectors as arguments. Therefore, it must be a vectorized
function (or the name of one), expecting at least two arguments.

Where they exist, the [dim]names of X and Y will be copied to the answer, and a dimension assigned
which is the concatenation of the dimensions of X and Y (or lengths if dimensions do not exist).

FUN = "*" is handled internally as a special case, via as.vector(X) %*%
t(as.vector(Y)), and is intended only for numeric vectors and arrays.

%o% is binary operator providing a wrapper for outer(x, y, "*").

Author(s)

Jonathan Rougier

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

%*% for usual (inner) matrix vector multiplication; kronecker which is based on outer;
Vectorize for vectorizing a non-vectorized function.

Examples

x <- 1:9; names(x) <- x
Multiplication & Power Tables
x %o% x
y <- 2:8; names(y) <- paste(y,":",sep="")
outer(y, x, "^")

outer(month.abb, 1999:2003, FUN = "paste")

three way multiplication table:
x %o% x %o% y[1:3]

Paren Parentheses and Braces

Description

Open parenthesis, (, and open brace, {, are .Primitive functions in R.

Effectively, (is semantically equivalent to the identity function(x) x, whereas { is slightly
more interesting, see examples.

Usage

(...)

{ ... }

304 parse

Value

For (, the result of evaluating the argument. This has visibility set, so will auto-print if used at
top-level.

For {, the result of the last expression evaluated. This has the visibility of the last evaluation.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

if, return, etc for other objects used in the R language itself.

Syntax for operator precedence.

Examples

f <- get("(")
e <- expression(3 + 2 * 4)
identical(f(e), e)

do <- get("{")
do(x <- 3, y <- 2*x-3, 6-x-y); x; y

note the differences
(2+3)
{2+3; 4+5}
(invisible(2+3))
{invisible(2+3)}

parse Parse Expressions

Description

parse returns the parsed but unevaluated expressions in a list.

Usage

parse(file = "", n = NULL, text = NULL, prompt = "?", srcfile,
encoding = "unknown")

Arguments

file a connection, or a character string giving the name of a file or a URL to read the
expressions from. If file is "" and text is missing or NULL then input is
taken from the console.

n integer (or coerced to integer). The maximum number of expressions to parse.
If n is NULL or negative or NA the input is parsed in its entirety.

text character vector. The text to parse. Elements are treated as if they were lines of
a file. Other R objects will be coerced to character (without method dispatch) if
possible.

parse 305

prompt the prompt to print when parsing from the keyboard. NULL means to use R’s
prompt, getOption("prompt").

srcfile NULL, or a srcfile object. See the ‘Details’ section.

encoding encoding to be assumed for input strings. It is used to mark character strings as
known to be in Latin-1 or UTF-8: it is not used to re-encode the input.

Details

If text has length greater than zero (after coercion) it is used in preference to file.

All versions of R accept input from a connection with end of line marked by LF (as used on Unix),
CRLF (as used on DOS/Windows) or CR (as used on classic MacOS). The final line can be incom-
plete, that is missing the final EOL marker.

See source for the limits on the size of functions that can be parsed (by default).

When input is taken from the console, n = NULL is equivalent to n = 1, and n < 0 will read
until an EOF character is read.

The default for srcfile is set as follows. If options("keep.source") is FALSE,
srcfile defaults to NULL. Otherwise, if text is used, srcfilewill be set to a srcfilecopy
containing the text. If a character string is used for file, a srcfile object referring to that file
will be used.

Value

An object of type "expression", with up to n elements if specified as a non-negative integer.

When srcfile is non-NULL, a "srcref" attribute will be attached to the result containing a list
of srcref records corresponding to each element, and a "srcfile" attribute will be attached
containing a copy of srcfile.

A syntax error (including an incomplete expression) will throw an error.

Character strings in the result will have a declared encoding if encoding is "latin1" or "UTF-
8".

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

scan, source, eval, deparse.

Examples

cat("x <- c(1,4)\n x ^ 3 -10 ; outer(1:7,5:9)\n", file="xyz.Rdmped")
parse 3 statements from the file "xyz.Rdmped"
parse(file = "xyz.Rdmped", n = 3)
unlink("xyz.Rdmped")

306 paste

paste Concatenate Strings

Description

Concatenate vectors after converting to character.

Usage

paste(..., sep = " ", collapse = NULL)

Arguments

... one or more R objects, to be converted to character vectors.

sep a character string to separate the terms. Not NA_character_.

collapse an optional character string to separate the results. Not NA_character_.

Details

paste converts its arguments (via as.character) to character strings, and concatenates them
(separating them by the string given by sep). If the arguments are vectors, they are concatenated
term-by-term to give a character vector result. Vector arguments are recycled as needed, with zero-
length arguments being recycled to "".

Note that paste() coerces NA_character_, the character missing value, to "NA" which may
seem undesirable, e.g., when pasting two character vectors, or very desirable, e.g. in paste("the
value of p is ", p).

If a value is specified for collapse, the values in the result are then concatenated into a single
string, with the elements being separated by the value of collapse.

Value

A character vector of the concatenated values. This will be of length zero if all the objects are,
unless collapse is non-NULL in which case it is a single empty string.

If any input into an element of the result is in UTF-8, that element will be in UTF-8, otherwise in the
current encoding in which case the encoding of an element of the element is declared if the current
locale is either Latin-1 or UTF-8, at least one of the corresponding inputs (including separators) had
a declared encoding and all inputs were either ASCII or declared.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

String manipulation with as.character, substr, nchar, strsplit; further, cat which
concatenates and writes to a file, and sprintf for C like string construction.

‘plotmath’ for the use of paste in plot annotation.

path.expand 307

Examples

paste(1:12) # same as as.character(1:12)
paste("A", 1:6, sep = "")
paste("Today is", date())

path.expand Expand File Paths

Description

Expand a path name, for example by replacing a leading tilde by the user’s home directory (if
defined on that platform).

Usage

path.expand(path)

Arguments

path character vector containing one or more path names.

Details

On some Unix versions, a leading ~user will expand to the home directory of user, but not on
Unix versions without readline installed, nor if R is invoked with ‘--no-readline’.

See Also

basename

Examples

path.expand("~/foo")

pmatch Partial String Matching

Description

pmatch seeks matches for the elements of its first argument among those of its second.

Usage

pmatch(x, table, nomatch = NA_integer_, duplicates.ok = FALSE)

308 pmatch

Arguments

x the values to be matched: converted to a character vector by as.character.
table the values to be matched against: converted to a character vector.
nomatch the value to be returned at non-matching or multiply partially matching posi-

tions. Note that it is coerced to integer.
duplicates.ok

should elements be in table be used more than once?

Details

The behaviour differs by the value of duplicates.ok. Consider first the case if this is true. First
exact matches are considered, and the positions of the first exact matches are recorded. Then unique
partial matches are considered, and if found recorded. (A partial match occurs if the whole of the
element of x matches the beginning of the element of table.) Finally, all remaining elements of x
are regarded as unmatched. In addition, an empty string can match nothing, not even an exact match
to an empty string. This is the appropriate behaviour for partial matching of character indices, for
example.

If duplicates.ok is FALSE, values of table once matched are excluded from the search
for subsequent matches. This behaviour is equivalent to the R algorithm for argument matching,
except for the consideration of empty strings (which in argument matching are matched after exact
and partial matching to any remaining arguments).

charmatch is similar to pmatch with duplicates.ok true, the differences being that it dif-
ferentiates between no match and an ambiguous partial match, it does match empty strings, and it
does not allow multiple exact matches.

NA values are treated as if they were the string constant "NA".

Value

An integer vector (possibly including NA if nomatch = NA) of the same length as x, giving the
indices of the elements in table which matched, or nomatch.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

match, charmatch and match.arg, match.fun, match.call, for function argument
matching etc., grep etc for more general (regexp) matching of strings.

Examples

pmatch("", "") # returns NA
pmatch("m", c("mean", "median", "mode")) # returns NA
pmatch("med", c("mean", "median", "mode")) # returns 2

pmatch(c("", "ab", "ab"), c("abc", "ab"), dup=FALSE)
pmatch(c("", "ab", "ab"), c("abc", "ab"), dup=TRUE)
compare
charmatch(c("", "ab", "ab"), c("abc", "ab"))

polyroot 309

polyroot Find Zeros of a Real or Complex Polynomial

Description

Find zeros of a real or complex polynomial.

Usage

polyroot(z)

Arguments

z the vector of polynomial coefficients in increasing order.

Details

A polynomial of degree n− 1,

p(x) = z1 + z2x+ · · ·+ znx
n−1

is given by its coefficient vector z[1:n]. polyroot returns the n − 1 complex zeros of p(x)
using the Jenkins-Traub algorithm.

If the coefficient vector z has zeroes for the highest powers, these are discarded.

As from R 2.8.0 there is no maximum degree, but numerical stability may be an issue for all but
low-degree polynomials.

Value

A complex vector of length n− 1, where n is the position of the largest non-zero element of z.

References

Jenkins and Traub (1972) TOMS Algorithm 419. Comm. ACM, 15, 97–99.

See Also

uniroot for numerical root finding of arbitrary functions; complex and the zero example in
the demos directory.

Examples

polyroot(c(1, 2, 1))
round(polyroot(choose(8, 0:8)), 11) # guess what!
for (n1 in 1:4) print(polyroot(1:n1), digits = 4)
polyroot(c(1, 2, 1, 0, 0)) # same as the first

310 pretty

pos.to.env Convert Positions in the Search Path to Environments

Description

Returns the environment at a specified position in the search path.

Usage

pos.to.env(x)

Arguments

x an integer between 1 and length(search()), the length of the search path.

Details

Several R functions for manipulating objects in environments (such as get and ls) allow specify-
ing environments via corresponding positions in the search path. pos.to.env is a convenience
function for programmers which converts these positions to corresponding environments; users will
typically have no need for it.

Examples

pos.to.env(1) # R_GlobalEnv
the next returns the base environment
pos.to.env(length(search()))

pretty Pretty Breakpoints

Description

Compute a sequence of about n+1 equally spaced ‘round’ values which cover the range of the
values in x. The values are chosen so that they are 1, 2 or 5 times a power of 10.

Usage

pretty(x, n = 5, min.n = n %/% 3, shrink.sml = 0.75,
high.u.bias = 1.5, u5.bias = .5 + 1.5*high.u.bias,
eps.correct = 0)

Arguments

x an object coercible to numeric by as.numeric.

n integer giving the desired number of intervals. Non-integer values are rounded
down.

min.n nonnegative integer giving the minimal number of intervals. If min.n == 0,
pretty(.) may return a single value.

pretty 311

shrink.sml positive numeric by a which a default scale is shrunk in the case when
range(x) is very small (usually 0).

high.u.bias non-negative numeric, typically > 1. The interval unit is determined as
{1,2,5,10} times b, a power of 10. Larger high.u.bias values favor larger
units.

u5.bias non-negative numeric multiplier favoring factor 5 over 2. Default and ‘optimal’:
u5.bias = .5 + 1.5*high.u.bias.

eps.correct integer code, one of {0,1,2}. If non-0, an epsilon correction is made at the
boundaries such that the result boundaries will be outside range(x); in the
small case, the correction is only done if eps.correct >=2.

Details

pretty ignores non-finite values in x.

Let d <- max(x) - min(x) ≥ 0. If d is not (very close) to 0, we let c <- d/n, otherwise
more or less c <- max(abs(range(x)))*shrink.sml / min.n. Then, the 10 base b
is 10blog10(c)c such that b ≤ c < 10b.

Now determine the basic unit u as one of {1, 2, 5, 10}b, depending on c/b ∈ [1, 10) and the two
‘bias’ coefficients, h =high.u.bias and f =u5.bias.

.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

axTicks for the computation of pretty axis tick locations in plots, particularly on the log scale.

Examples

pretty(1:15) # 0 2 4 6 8 10 12 14 16
pretty(1:15, h=2)# 0 5 10 15
pretty(1:15, n=4)# 0 5 10 15
pretty(1:15 * 2) # 0 5 10 15 20 25 30
pretty(1:20) # 0 5 10 15 20
pretty(1:20, n=2) # 0 10 20
pretty(1:20, n=10)# 0 2 4 ... 20

for(k in 5:11) {
cat("k=",k,": "); print(diff(range(pretty(100 + c(0, pi*10^-k)))))}

##-- more bizarre, when min(x) == max(x):
pretty(pi)

add.names <- function(v) { names(v) <- paste(v); v}
utils::str(lapply(add.names(-10:20), pretty))
utils::str(lapply(add.names(0:20), pretty, min.n = 0))
sapply(add.names(0:20), pretty, min.n = 4)

pretty(1.234e100)
pretty(1001.1001)

312 print

pretty(1001.1001, shrink = .2)
for(k in -7:3)
cat("shrink=", formatC(2^k, width=9),":",

formatC(pretty(1001.1001, shrink.sml = 2^k), width=6),"\n")

Primitive Call a “Primitive” Internal Function

Description

.Primitive returns an entry point to a ‘primitive’ (internally implemented) function.

Usage

.Primitive(name)

Arguments

name name of the R function.

Details

The advantage of .Primitive over .Internal functions is the potential efficiency of argument
passing. However, this is done by ignoring argument names and using positional matching of
arguments (unless arranged differently for specific primitives such as rep), so this is discouraged
for functions of more than one argument.

All primitive functions are in the base name space.

See Also

.Internal.

Examples

mysqrt <- .Primitive("sqrt")
c
.Internal # this one *must* be primitive!
get("if") # just 'if' or 'print(if)' are not syntactically ok.

print Print Values

Description

print prints its argument and returns it invisibly (via invisible(x)). It is a generic function
which means that new printing methods can be easily added for new classes.

print 313

Usage

print(x, ...)

S3 method for class 'factor':
print(x, quote = FALSE, max.levels = NULL,

width = getOption("width"), ...)

S3 method for class 'table':
print(x, digits = getOption("digits"), quote = FALSE,

na.print = "", zero.print = "0", justify = "none", ...)

Arguments

x an object used to select a method.

... further arguments passed to or from other methods.

quote logical, indicating whether or not strings should be printed with surrounding
quotes.

max.levels integer, indicating how many levels should be printed for a factor; if 0, no
extra "Levels" line will be printed. The default, NULL, entails choosing
max.levels such that the levels print on one line of width width.

width only used when max.levels is NULL, see above.

digits minimal number of significant digits, see print.default.

na.print character string (or NULL) indicating NA values in printed output, see
print.default.

zero.print character specifying how zeros (0) should be printed; for sparse tables, using
"." can produce stronger results.

justify character indicating if strings should left- or right-justified or left alone, passed
to format.

Details

The default method, print.default has its own help page. Use methods("print") to get
all the methods for the print generic.

print.factor allows some customization and is used for printing ordered factors as well.

print.table for printing tables allows other customization.

See noquote as an example of a class whose main purpose is a specific print method.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

The default method print.default, and help for the methods above; further options,
noquote.

For more customizable (but cumbersome) printing, see cat, format or also write.

314 print.data.frame

Examples

require(stats)

ts(1:20)#-- print is the "Default function" --> print.ts(.) is called
rr <- for(i in 1:3) print(1:i)
rr

Printing of factors
attenu$station ## 117 levels -> 'max.levels' depending on width

ordered factors: levels "l1 < l2 < .."
esoph$agegp[1:12]
esoph$alcgp[1:12]

Printing of sparse (contingency) tables
set.seed(521)
t1 <- round(abs(rt(200, df=1.8)))
t2 <- round(abs(rt(200, df=1.4)))
table(t1,t2) # simple
print(table(t1,t2), zero.print = ".")# nicer to read

print.data.frame Printing Data Frames

Description

Print a data frame.

Usage

S3 method for class 'data.frame':
print(x, ..., digits = NULL,

quote = FALSE, right = TRUE, row.names = TRUE)

Arguments

x object of class data.frame.

... optional arguments to print or plot methods.

digits the minimum number of significant digits to be used: see print.default.

quote logical, indicating whether or not entries should be printed with surrounding
quotes.

right logical, indicating whether or not strings should be right-aligned. The default is
right-alignment.

row.names logical (or character vector), indicating whether (or what) row names should be
printed.

Details

This calls format which formats the data frame column-by-column, then converts to a character
matrix and dispatches to the print method for matrices.

When quote = TRUE only the entries are quoted not the row names nor the column names.

print.default 315

See Also

data.frame.

Examples

(dd <- data.frame(x=1:8, f=gl(2,4), ch=I(letters[1:8])))
print() with defaults

print(dd, quote = TRUE, row.names = FALSE)
suppresses row.names and quotes all entries

print.default Default Printing

Description

print.default is the default method of the generic print function which prints its argument.

Usage

Default S3 method:
print(x, digits = NULL, quote = TRUE,

na.print = NULL, print.gap = NULL, right = FALSE,
max = NULL, useSource = TRUE, ...)

Arguments

x the object to be printed.

digits a non-null value for digits specifies the minimum number of significant digits
to be printed in values. The default, NULL, uses getOption(digits). (For
the interpretation for complex numbers see signif.) Non-integer values will
be rounded down, and only values greater than or equal to 1 and no greater than
22 are accepted.

quote logical, indicating whether or not strings (characters) should be printed with
surrounding quotes.

na.print a character string which is used to indicate NA values in printed output, or NULL
(see ‘Details’).

print.gap a non-negative integer ≤ 1024, or NULL (meaning 1), giving the spacing be-
tween adjacent columns in printed vectors, matrices and arrays.

right logical, indicating whether or not strings should be right aligned. The default is
left alignment.

max a non-null value for max specifies the approximate maximum number of entries
to be printed. The default, NULL, uses getOption(max.print); see that
help page for more details.

useSource logical, indicating whether to use source references or copies rather than depars-
ing language objects. The default is to use the original source if it is available.

... further arguments to be passed to or from other methods. They are ignored in
this function.

316 print.default

Details

The default for printing NAs is to print NA (without quotes) unless this is a character NA and quote
= FALSE, when <NA> is printed.

The same number of decimal places is used throughout a vector. This means that digits specifies
the minimum number of significant digits to be used, and that at least one entry will be encoded
with that minimum number. However, if all the encoded elements then have trailing zeroes, the
number of decimal places is reduced until at least one element has a non-zero final digit. Decimal
points are only included if at least one decimal place is selected.

Attributes are printed respecting their class(es), using the values of digits to print.default,
but using the default values (for the methods called) of the other arguments.

When the methods package is attached, print will call show for R objects with formal classes if
called with no optional arguments.

Warning

Using too large a value of digits may lead to representation errors in the calculation of the
number of significant digits and the decimal representation: these are likely for digits >= 16,
and these possible errors are taken into account in assessing the numher of significant digits to be
printed in that case.

Whereas earlier versions of R might have printed further digits for digits >= 16 on some
platforms, they were not necessarily reliable.

Single-byte locales

If a non-printable character is encountered during output, it is represented as one of the ANSI escape
sequences (\a, \b, \f, \n, \r, \t, \v, \\ and \0: see Quotes), or failing that as a 3-digit octal
code: for example the UK currency pound sign in the C locale (if implemented correctly) is printed
as \243. Which characters are non-printable depends on the locale.

Unicode and other multi-byte locales

In all locales, the characters in the ASCII range (0x00 to 0x7f) are printed in the same way, as-is if
printable, otherwise via ANSI escape sequences or 3-digit octal escapes as described for single-byte
locales.

Multi-byte non-printing characters are printed as an escape sequence of the form \uxxxx or
\Uxxxxxxxx (in hexadecimal). This is the internal code for the wide-character representation
of the character. If this is not known to be the Unicode point, a warning is issued. The only known
exceptions are certain Japanese ISO2022 locales on commercial Unixes, which use a concatenation
of the bytes: it is unlikely that R compiles on such a system.

It is possible to have a character string in a character vector that is not valid in the current locale. If
a byte is encountered that is not part of a valid character it is printed in hex in the form \xab and
this is repeated until the start of a valid character. (This will rapidly recover from minor errors in
UTF-8.)

See Also

The generic print, options. The "noquote" class and print method.

encodeString, which encodes a character vector the way it would be printed.

prmatrix 317

Examples

pi
print(pi, digits = 16)
LETTERS[1:16]
print(LETTERS, quote = FALSE)

M <- cbind(I = 1, matrix(1:10000, ncol = 10,
dimnames = list(NULL, LETTERS[1:10])))

utils::head(M) # makes more sense than
print(M, max = 1000)# prints 90 rows and a message about omitting 910

prmatrix Print Matrices, Old-style

Description

An earlier method for printing matrices, provided for S compatibility.

Usage

prmatrix(x, rowlab =, collab =,
quote = TRUE, right = FALSE, na.print = NULL, ...)

Arguments

x numeric or character matrix.
rowlab,collab

(optional) character vectors giving row or column names respectively. By de-
fault, these are taken from dimnames(x).

quote logical; if TRUE and x is of mode "character", quotes (") are used.

right if TRUE and x is of mode "character", the output columns are right-
justified.

na.print how NAs are printed. If this is non-null, its value is used to represent NA.

... arguments for print methods.

Details

prmatrix is an earlier form of print.matrix, and is very similar to the S function of the same
name.

Value

Invisibly returns its argument, x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

print.default, and other print methods.

318 proc.time

Examples

prmatrix(m6 <- diag(6), rowlab = rep("",6), collab =rep("",6))

chm <- matrix(scan(system.file("help", "AnIndex", package = "splines"),
what = ""), , 2, byrow = TRUE)

chm # uses print.matrix()
prmatrix(chm, collab = paste("Column",1:3), right=TRUE, quote=FALSE)

proc.time Running Time of R

Description

proc.time determines how much real and CPU time (in seconds) the currently running R process
has already taken.

Usage

proc.time()

Details

proc.time returns five elements for backwards compatibility, but its print method prints a
named vector of length 3. The first two entries are the total user and system CPU times of the
current R process and any child processes on which it has waited, and the third entry is the ‘real’
elapsed time since the process was started.

Value

An object of class "proc_time" which is a numeric vector of length 5, containing the user,
system, and total elapsed times for the currently running R process, and the cumulative sum of user
and system times of any child processes spawned by it on which it has waited. (The print method
combines the child times with those of the main process.)

The definition of ‘user’ and ‘system’ times is from your OS. Typically it is something like

The ‘user time’ is the CPU time charged for the execution of user instructions of the calling process.
The ‘system time’ is the CPU time charged for execution by the system on behalf of the calling
process.

The resolution of the times will be system-specific and on Unix-alikes times are rounded to the
nearest 1ms. On modern systems they will be that accurate, but on older systems they might be
accurate to 1/100 or 1/60 sec.

Note

It is possible to compile R without support for proc.time, when the function will throw an error.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

prod 319

See Also

system.time for timing a valid R expression, gc.time for how much of the time was spent in
garbage collection.

Examples

Not run:
a way to time an R expression: system.time is preferred
ptm <- proc.time()
for (i in 1:50) mad(stats::runif(500))
proc.time() - ptm
End(Not run)

prod Product of Vector Elements

Description

prod returns the product of all the values present in its arguments.

Usage

prod(..., na.rm = FALSE)

Arguments

... numeric or complex or logical vectors.

na.rm logical. Should missing values be removed?

Details

If na.rm is FALSE an NA value in any of the arguments will cause a value of NA to be returned,
otherwise NA values are ignored.

This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments ... should be unnamed, and dispatch is on the first
argument.

Logical true values are regarded as one, false values as zero. For historical reasons, NULL is ac-
cepted and treated as if it were numeric(0).

Value

The product, a numeric (of type "double") or complex vector of length one. NB: the product of
an empty set is one, by definition.

S4 methods

This is part of the S4 Summary group generic. Methods for it must use the signature x, ...,
na.rm.

320 prop.table

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

sum, cumprod, cumsum.

‘plotmath’ for the use of prod in plot annotation.

Examples

print(prod(1:7)) == print(gamma(8))

prop.table Express Table Entries as Fraction of Marginal Table

Description

This is really sweep(x, margin, margin.table(x, margin), "/") for newbies, ex-
cept that if margin has length zero, then one gets x/sum(x).

Usage

prop.table(x, margin=NULL)

Arguments

x table

margin index, or vector of indices to generate margin for

Value

Table like x expressed relative to margin

Author(s)

Peter Dalgaard

See Also

margin.table

Examples

m <- matrix(1:4,2)
m
prop.table(m,1)

pushBack 321

pushBack Push Text Back on to a Connection

Description

Functions to push back text lines onto a connection, and to enquire how many lines are currently
pushed back.

Usage

pushBack(data, connection, newLine = TRUE)
pushBackLength(connection)

Arguments

data a character vector.

connection A connection.

newLine logical. If true, a newline is appended to each string pushed back.

Details

Several character strings can be pushed back on one or more occasions. The occasions form a stack,
so the first line to be retrieved will be the first string from the last call to pushBack. Lines which
are pushed back are read prior to the normal input from the connection, by the normal text-reading
functions such as readLines and scan.

Pushback is only allowed for readable connections in text mode.

Not all uses of connections respect pushbacks, in particular the input connection is still wired di-
rectly, so for example parsing commands from the console and scan("") ignore pushbacks on
stdin.

Value

pushBack returns nothing.

pushBackLength returns number of lines currently pushed back.

See Also

connections, readLines.

Examples

zz <- textConnection(LETTERS)
readLines(zz, 2)
pushBack(c("aa", "bb"), zz)
pushBackLength(zz)
readLines(zz, 1)
pushBackLength(zz)
readLines(zz, 1)
readLines(zz, 1)
close(zz)

322 qr

qr The QR Decomposition of a Matrix

Description

qr computes the QR decomposition of a matrix. It provides an interface to the techniques used
in the LINPACK routine DQRDC or the LAPACK routines DGEQP3 and (for complex matrices)
ZGEQP3.

Usage

qr(x, ...)
Default S3 method:
qr(x, tol = 1e-07 , LAPACK = FALSE, ...)

qr.coef(qr, y)
qr.qy(qr, y)
qr.qty(qr, y)
qr.resid(qr, y)
qr.fitted(qr, y, k = qr$rank)
qr.solve(a, b, tol = 1e-7)
S3 method for class 'qr':
solve(a, b, ...)

is.qr(x)
as.qr(x)

Arguments

x a matrix whose QR decomposition is to be computed.

tol the tolerance for detecting linear dependencies in the columns of x. Only used
if LAPACK is false and x is real.

qr a QR decomposition of the type computed by qr.

y, b a vector or matrix of right-hand sides of equations.

a A QR decomposition or (qr.solve only) a rectangular matrix.

k effective rank.

LAPACK logical. For real x, if true use LAPACK otherwise use LINPACK.

... further arguments passed to or from other methods

Details

The QR decomposition plays an important role in many statistical techniques. In particular it can
be used to solve the equation Ax = b for given matrix A, and vector b. It is useful for computing
regression coefficients and in applying the Newton-Raphson algorithm.

The functions qr.coef, qr.resid, and qr.fitted return the coefficients, residuals and fitted
values obtained when fitting y to the matrix with QR decomposition qr. (If pivoting is used, some
of the coefficients will be NA.) qr.qy and qr.qty return Q %*% y and t(Q) %*% y, where
Q is the (complete)Q matrix.

qr 323

All the above functions keep dimnames (and names) of x and y if there are.

solve.qr is the method for solve for qr objects. qr.solve solves systems of equations
via the QR decomposition: if a is a QR decomposition it is the same as solve.qr, but if a is
a rectangular matrix the QR decomposition is computed first. Either will handle over- and under-
determined systems, providing a least-squares fit if appropriate.

is.qr returns TRUE if x is a list with components named qr, rank and qraux and FALSE
otherwise.

It is not possible to coerce objects to mode "qr". Objects either are QR decompositions or they
are not.

Value

The QR decomposition of the matrix as computed by LINPACK or LAPACK. The components in
the returned value correspond directly to the values returned by DQRDC/DGEQP3/ZGEQP3.

qr a matrix with the same dimensions as x. The upper triangle contains the R of
the decomposition and the lower triangle contains information on the Q of the
decomposition (stored in compact form). Note that the storage used by DQRDC
and DGEQP3 differs.

qraux a vector of length ncol(x) which contains additional information onQ.

rank the rank of x as computed by the decomposition: always full rank in the LA-
PACK case.

pivot information on the pivoting strategy used during the decomposition.

Non-complex QR objects computed by LAPACK have the attribute "useLAPACK" with value
TRUE.

Note

To compute the determinant of a matrix (do you really need it?), the QR decomposition is much
more efficient than using Eigen values (eigen). See det.

Using LAPACK (including in the complex case) uses column pivoting and does not attempt to
detect rank-deficient matrices.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: SIAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

See Also

qr.Q, qr.R, qr.X for reconstruction of the matrices. lm.fit, lsfit, eigen, svd.

det (using qr) to compute the determinant of a matrix.

http://www.netlib.org/lapack/lug/lapack_lug.html

324 QR.Auxiliaries

Examples

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
h9 <- hilbert(9); h9
qr(h9)$rank #--> only 7
qrh9 <- qr(h9, tol = 1e-10)
qrh9$rank #--> 9
##-- Solve linear equation system H %*% x = y :
y <- 1:9/10
x <- qr.solve(h9, y, tol = 1e-10) # or equivalently :
x <- qr.coef(qrh9, y) #-- is == but much better than

#-- solve(h9) %*% y
h9 %*% x # = y

overdetermined system
A <- matrix(runif(12), 4)
b <- 1:4
qr.solve(A, b) # or solve(qr(A), b)
solve(qr(A, LAPACK=TRUE), b)
this is a least-squares solution, cf. lm(b ~ 0 + A)

underdetermined system
A <- matrix(runif(12), 3)
b <- 1:3
qr.solve(A, b)
solve(qr(A, LAPACK=TRUE), b)
solutions will have one zero, not necessarily the same one

QR.Auxiliaries Reconstruct the Q, R, or X Matrices from a QR Object

Description

Returns the original matrix from which the object was constructed or the components of the decom-
position.

Usage

qr.X(qr, complete = FALSE, ncol =)
qr.Q(qr, complete = FALSE, Dvec =)
qr.R(qr, complete = FALSE)

Arguments

qr object representing a QR decomposition. This will typically have come from a
previous call to qr or lsfit.

complete logical expression of length 1. Indicates whether an arbitrary orthogonal com-
pletion of the Q or X matrices is to be made, or whether the R matrix is to be
completed by binding zero-value rows beneath the square upper triangle.

ncol integer in the range 1:nrow(qr$qr). The number of columns to be in
the reconstructed X . The default when complete is FALSE is the first
min(ncol(X), nrow(X)) columns of the original X from which the qr

quit 325

object was constructed. The default when complete is TRUE is a square ma-
trix with the original X in the first ncol(X) columns and an arbitrary or-
thogonal completion (unitary completion in the complex case) in the remaining
columns.

Dvec vector (not matrix) of diagonal values. Each column of the returned Q will be
multiplied by the corresponding diagonal value. Defaults to all 1s.

Value

qr.X returnsX , the original matrix from which the qr object was constructed, provided ncol(X)
<= nrow(X). If complete is TRUE or the argument ncol is greater than ncol(X), additional
columns from an arbitrary orthogonal (unitary) completion of X are returned.

qr.Q returns part or all of Q, the order-nrow(X) orthogonal (unitary) transformation represented by
qr. If complete is TRUE, Q has nrow(X) columns. If complete is FALSE, Q has ncol(X)
columns. When Dvec is specified, each column of Q is multiplied by the corresponding value in
Dvec.

qr.R returns R. The number of rows of R is either nrow(X) or ncol(X) (and may depend on
whether complete is TRUE or FALSE.

See Also

qr, qr.qy.

Examples

p <- ncol(x <- LifeCycleSavings[,-1]) # not the 'sr'
qrstr <- qr(x) # dim(x) == c(n,p)
qrstr $ rank # = 4 = p
Q <- qr.Q(qrstr) # dim(Q) == dim(x)
R <- qr.R(qrstr) # dim(R) == ncol(x)
X <- qr.X(qrstr) # X == x
range(X - as.matrix(x))# ~ < 6e-12
X == Q %*% R if there has been no pivoting, as here.
Q %*% R

quit Terminate an R Session

Description

The function quit or its alias q terminate the current R session.

Usage

quit(save = "default", status = 0, runLast = TRUE)
q(save = "default", status = 0, runLast = TRUE)

.Last <- function(x) { }

326 quit

Arguments

save a character string indicating whether the environment (workspace) should be
saved, one of "no", "yes", "ask" or "default".

status the (numerical) error status to be returned to the operating system, where rele-
vant. Conventionally 0 indicates successful completion.

runLast should .Last() be executed?

Details

save must be one of "no", "yes", "ask" or "default". In the first case the workspace is
not saved, in the second it is saved and in the third the user is prompted and can also decide not
to quit. The default is to ask in interactive use but may be overridden by command-line arguments
(which must be supplied in non-interactive use).

Immediately before terminating, the function .Last() is executed if it exists and runLast is
true. If in interactive use there are errors in the .Last function, control will be returned to the
command prompt, so do test the function thoroughly. There is a system analogue, .Last.sys(),
which is run after .Last() if runLast is true.

Some error statuses are used by R itself. The default error handler for non-interactive use effectively
calls q("no", 1, FALSE) and returns error code 1. Error status 2 is used for R ‘suicide’, that is
a catastrophic failure, and other small numbers are used by specific ports for initialization failures.
It is recommended that users choose statuses of 10 or more.

Valid values of status are system-dependent, but 0:255 are normally valid. (Many OSes will
report the last byte of the value, that is report the number modulo 256. But not all.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

.First for setting things on startup.

Examples

Not run:
Unix-flavour example
.Last <- function() {
cat("Now sending PostScript graphics to the printer:\n")
system("lpr Rplots.ps")
cat("bye bye...\n")

}
quit("yes")
End(Not run)

Quotes 327

Quotes Quotes

Description

Descriptions of the various uses of quoting in R.

Details

Three types of quote are part of the syntax of R: single and double quotation marks and the back-
tick (or back quote, ‘). In addition, backslash is used for quoting the following characters inside
character constants.

Character constants

Single and double quotes delimit character constants. They can be used interchangeably but double
quotes are preferred (and character constants are printed using double quotes), so single quotes are
normally only used to delimit character constants containing double quotes.

Backslash is used to start an escape sequence inside character constants. Unless specified in the
following table, an escaped character is interpreted as the character itself. (Note that the parser
will warn about most such uses, as they are most often erroneous, e.g. using \. where \\. was
intended.)

Single quotes need to be escaped by backslash in single-quoted strings, and double quotes in double-
quoted strings.

\n newline
\r carriage return
\t tab
\b backspace
\a alert (bell)
\f form feed
\v vertical tab
\\ backslash \
\nnn character with given octal code (1, 2 or 3 digits)
\xnn character with given hex code (1 or 2 hex digits)
\unnnn Unicode character with given code (1–4 hex digits)
\Unnnnnnnn Unicode character with given code (1–8 hex digits)

The last two are only supported on versions of R built with MBCS support: they are an error on
other versions. Alternative forms are \u{nnnn} and \U{nnnnnnnn}. All except the Unicode
escape sequences are also supported when reading character strings by scan and read.table if
allowEscapes = TRUE.

These forms will also be used by print.default when outputting non-printable characters
(including backslash).

Note that as from R 2.8.0 embedded nuls are not allowed in character strings, so using escapes
(such as \0) for a nul will result in the string being truncated at that point (usually with a warning).

328 R.home

Names and Identifiers

Identifiers consist of a sequence of letters, digits, the period (.) and the underscore. They must not
start with a digit nor underscore, nor with a period followed by a digit.

The definition of a letter depends on the current locale, but only ASCII digits are considered to be
digits.

Such identifiers are also known as syntactic names and may be used directly in R code. Almost
always, other names can be used provided they are quoted. The preferred quote is the backtick (‘),
and deparse will normally use it, but under many circumstances single or double quotes can be
used (as a character constant will often be converted to a name). One place where backticks may be
essential is to delimit variable names in formulae: see formula.

See Also

Syntax for other aspects of the syntax.

sQuote for quoting English text.

shQuote for quoting OS commands.

The R Language Definition manual.

R.home Return the R Home Directory

Description

Return the R home directory.

Usage

R.home(component="home")

Arguments

component As well as "home" which gives the R home directory, other known values are
"bin", "doc", "etc" and "share" giving the paths to the corresponding
parts of an R installation.

Details

The R home directory is the top-level directory of the R installation being run.

The R home directory is often referred to as R_HOME , and is the value of an environment variable
of that name in an R session. It can be found outside an R session by R RHOME.

Value

A character string giving the R home directory or path to a particular component. Normally the
components are all subdirectories of the R home directory, but this may not be the case in a Unix-
like installation.

R.Version 329

R.Version Version Information

Description

R.Version() provides detailed information about the version of R running.

R.version is a variable (a list) holding this information (and version is a copy of it for S
compatibility).

Usage

R.Version()
R.version
R.version.string
version

Value

R.Version returns a list with character-string components

platform the platform for which R was built. A triplet of the form CPU-VENDOR-OS,
as determined by the configure script. E.g, "i586-unknown-linux" or
"i386-pc-mingw32".

arch the architecture (CPU) R was built on/for.
os the underlying operating system
system CPU and OS, separated by a comma.
status the status of the version (e.g., "Alpha")
major the major version number
minor the minor version number, including the patchlevel
year the year the version was released
month the month the version was released
day the day the version was released
svn rev the Subversion revision number, which should be either "unknown" or a single

number. (A range of numbers or a number with ‘M’ or ‘S’ appended indicates
inconsistencies in the sources used to build this version of R.)

language always "R".
version.string

a character string concatenating some of the info above, useful for plotting,
etc.

R.version and version are lists of class "simple.list" which has a print method.

Note

Do not use R.version$os to test the platform the code is running on: use
.Platform$OS.type instead. Slightly different versions of the OS may report different val-
ues of R.version$os, as may different versions of R.

R.version.string is a copy of R.version$version.string for simplicity and back-
wards compatibility.

330 Random

See Also

sessionInfo which provides additional information; getRversion typically used inside R
code, .Platform.

Examples

require(graphics)

R.version$os # to check how lucky you are ...
plot(0) # any plot
mtext(R.version.string, side=1,line=4,adj=1)# a useful bottom-right note

Random Random Number Generation

Description

.Random.seed is an integer vector, containing the random number generator (RNG) state for
random number generation in R. It can be saved and restored, but should not be altered by the user.

RNGkind is a more friendly interface to query or set the kind of RNG in use.

RNGversion can be used to set the random generators as they were in an earlier R version (for
reproducibility).

set.seed is the recommended way to specify seeds.

Usage

.Random.seed <- c(rng.kind, n1, n2, ...)
save.seed <- .Random.seed

RNGkind(kind = NULL, normal.kind = NULL)
RNGversion(vstr)
set.seed(seed, kind = NULL, normal.kind = NULL)

Arguments

kind character or NULL. If kind is a character string, set R’s RNG to the kind de-
sired. Use "default" to return to the R default. See ‘Details’ for the intepre-
tation of NULL.

normal.kind character string or NULL. If it is a character string, set the method of Normal
generation. Use "default" to return to the R default. NULL makes no
change.

seed a single value, interpreted as an integer.

vstr a character string containing a version number, e.g., "1.6.2"

rng.kind integer code in 0:k for the above kind.

n1, n2, ... integers. See the details for how many are required (which depends on
rng.kind).

Random 331

Details

The currently available RNG kinds are given below. kind is partially matched to this list. The
default is "Mersenne-Twister".

"Wichmann-Hill" The seed, .Random.seed[-1] == r[1:3] is an integer vector of
length 3, where each r[i] is in 1:(p[i] - 1), where p is the length 3 vector of primes,
p = (30269, 30307, 30323). The Wichmann–Hill generator has a cycle length of
6.9536 × 1012 (= prod(p-1)/4, see Applied Statistics (1984) 33, 123 which corrects the
original article).

"Marsaglia-Multicarry": A multiply-with-carry RNG is used, as recommended by George
Marsaglia in his post to the mailing list ‘sci.stat.math’. It has a period of more than 260 and
has passed all tests (according to Marsaglia). The seed is two integers (all values allowed).

"Super-Duper": Marsaglia’s famous Super-Duper from the 70’s. This is the original version
which does not pass the MTUPLE test of the Diehard battery. It has a period of ≈ 4.6× 1018

for most initial seeds. The seed is two integers (all values allowed for the first seed: the second
must be odd).
We use the implementation by Reeds et al. (1982–84).
The two seeds are the Tausworthe and congruence long integers, respectively. A one-to-one
mapping to S’s .Random.seed[1:12] is possible but we will not publish one, not least as
this generator is not exactly the same as that in recent versions of S-PLUS.

"Mersenne-Twister": From Matsumoto and Nishimura (1998). A twisted GFSR with period
219937 − 1 and equidistribution in 623 consecutive dimensions (over the whole period). The
‘seed’ is a 624-dimensional set of 32-bit integers plus a current position in that set.

"Knuth-TAOCP-2002": A 32-bit integer GFSR using lagged Fibonacci sequences with sub-
traction. That is, the recurrence used is

Xj = (Xj−100 −Xj−37) mod 230

and the ‘seed’ is the set of the 100 last numbers (actually recorded as 101 numbers, the last
being a cyclic shift of the buffer). The period is around 2129.

"Knuth-TAOCP": An earlier version from Knuth (1997).
The 2002 version was not backwards compatible with the earlier version: the initialization of
the GFSR from the seed was altered. R did not allow you to choose consecutive seeds, the
reported ‘weakness’, and already scrambled the seeds.
Initialization of this generator is done in interpreted R code and so takes a short but noticeable
time.

"user-supplied": Use a user-supplied generator. See Random.user for details.

normal.kind can be "Kinderman-Ramage", "Buggy Kinderman-Ramage" (not for
set.seed), "Ahrens-Dieter", "Box-Muller", "Inversion" (the default), or "user-
supplied". (For inversion, see the reference in qnorm.) The Kinderman-Ramage generator used
in versions prior to 1.7.1 (now called "Buggy" had several approximation errors and should only
be used for reproduction of older results. The "Box-Muller" generator is stateful as pairs of
normals are generated and returned sequentially. The state is reset whenever it is selected (even if
it is the current normal generator) and when kind is changed.

set.seed uses its single integer argument to set as many seeds as are required. It is intended as
a simple way to get quite different seeds by specifying small integer arguments, and also as a way
to get valid seed sets for the more complicated methods (especially "Mersenne-Twister" and
"Knuth-TAOCP").

The use of kind=NULL or normal.kind=NULL in RNGkind or set.seed selects the
currently-used generator (including as from R 2.8.0 that used in the previous session if the
workspace has been restored): if no generator has been used it selects "default".

332 Random

Value

.Random.seed is an integer vector whose first element codes the kind of RNG and normal
generator. The lowest two decimal digits are in 0:(k-1) where k is the number of available
RNGs. The hundreds represent the type of normal generator (starting at 0).

In the underlying C, .Random.seed[-1] is unsigned; therefore in R .Random.seed[-1]
can be negative, due to the representation of an unsigned integer by a signed integer.

RNGkind returns a two-element character vector of the RNG and normal kinds selected before the
call, invisibly if either argument is not NULL. A type starts a session as the default, and is selected
either by a call to RNGkind or by setting .Random.seed in the workspace.

RNGversion returns the same information as RNGkind about the defaults in a specific R version.

set.seed returns NULL, invisibly.

Note

Initially, there is no seed; a new one is created from the current time when one is required. Hence,
different sessions started at (sufficiently) different times will give different simulation results, by de-
fault. However, the seed might be restored from a previous session if a previously saved workspace
is restored.

.Random.seed saves the seed set for the uniform random-number generator, at least for the
system generators. It does not necessarily save the state of other generators, and in particular
does not save the state of the Box–Muller normal generator. If you want to reproduce work later,
call set.seed (preferably with explicit values for kind and normal.kind) rather than set
.Random.seed.

The object .Random.seed is only looked for in the user’s workspace.

Do not rely on randomness of low-order bits from RNGs. Most of the supplied uniform generators
return 32-bit integer values that are converted to doubles, so they take at most 232 distinct values
and long runs will return duplicated values (Wichmann-Hill is the exception, and all give at least 30
varying bits.)

Author(s)

of RNGkind: Martin Maechler. Current implementation, B. D. Ripley

References

Ahrens, J. H. and Dieter, U. (1973) Extensions of Forsythe’s method for random sampling from the
normal distribution. Mathematics of Computation 27, 927-937.

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (set.seed, storing in .Random.seed.)

Box, G. E. P. and Muller, M. E. (1958) A note on the generation of normal random deviates. Annals
of Mathmatical Statistics 29, 610–611.

De Matteis, A. and Pagnutti, S. (1993) Long-range Correlation Analysis of the Wichmann-Hill
Random Number Generator, Statist. Comput., 3, 67–70.

Kinderman, A. J. and Ramage, J. G. (1976) Computer generation of normal random variables.
Journal of the American Statistical Association 71, 893-896.

Knuth, D. E. (1997) The Art of Computer Programming. Volume 2, third edition.
Source code at http://www-cs-faculty.stanford.edu/~knuth/taocp.html.

Knuth, D. E. (2002) The Art of Computer Programming. Volume 2, third edition, ninth printing.
See http://Sunburn.Stanford.EDU/~knuth/news02.html.

http://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://Sunburn.Stanford.EDU/~knuth/news02.html

Random 333

Marsaglia, G. (1997) A random number generator for C. Discussion paper, posting on Usenet news-
group sci.stat.math on September 29, 1997.

Marsaglia, G. and Zaman, A. (1994) Some portable very-long-period random number generators.
Computers in Physics, 8, 117–121.

Matsumoto, M. and Nishimura, T. (1998) Mersenne Twister: A 623-dimensionally equidistributed
uniform pseudo-random number generator, ACM Transactions on Modeling and Computer Simula-
tion, 8, 3–30.
Source code at http://www.math.keio.ac.jp/~matumoto/emt.html.

Reeds, J., Hubert, S. and Abrahams, M. (1982–4) C implementation of SuperDuper, University of
California at Berkeley. (Personal communication from Jim Reeds to Ross Ihaka.)

Wichmann, B. A. and Hill, I. D. (1982) Algorithm AS 183: An Efficient and Portable Pseudo-
random Number Generator, Applied Statistics, 31, 188–190; Remarks: 34, 198 and 35, 89.

See Also

runif, rnorm,

Examples

require(stats)

the default random seed is 626 integers, so only print a few
runif(1); .Random.seed[1:6]; runif(1); .Random.seed[1:6]
If there is no seed, a "random" new one is created:
rm(.Random.seed); runif(1); .Random.seed[1:6]

ok <- RNGkind()
RNGkind("Wich")# (partial string matching on 'kind')

This shows how 'runif(.)' works for Wichmann-Hill,
using only R functions:

p.WH <- c(30269, 30307, 30323)
a.WH <- c(171, 172, 170)
next.WHseed <- function(i.seed = .Random.seed[-1])

{ (a.WH * i.seed) %% p.WH }
my.runif1 <- function(i.seed = .Random.seed)
{ ns <- next.WHseed(i.seed[-1]); sum(ns / p.WH) %% 1 }

rs <- .Random.seed
(WHs <- next.WHseed(rs[-1]))
u <- runif(1)
stopifnot(
next.WHseed(rs[-1]) == .Random.seed[-1],
all.equal(u, my.runif1(rs))

)

.Random.seed
RNGkind("Super")#matches "Super-Duper"
RNGkind()
.Random.seed # new, corresponding to Super-Duper

Reset:
RNGkind(ok[1])

http://www.math.keio.ac.jp/~matumoto/emt.html

334 Random.user

sum(duplicated(runif(1e6))) # around 110 for default generator
and we would expect about almost sure duplicates beyond about
qbirthday(1-1e-6, classes=2e9) # 235,000

Random.user User-supplied Random Number Generation

Description

Function RNGkind allows user-coded uniform and normal random number generators to be sup-
plied. The details are given here.

Details

A user-specified uniform RNG is called from entry points in dynamically-loaded compiled code.
The user must supply the entry point user_unif_rand, which takes no arguments and returns a
pointer to a double. The example below will show the general pattern.

Optionally, the user can supply the entry point user_unif_init, which is called with an
unsigned int argument when RNGkind (or set.seed) is called, and is intended to be used
to initialize the user’s RNG code. The argument is intended to be used to set the ‘seeds’; it is the
seed argument to set.seed or an essentially random seed if RNGkind is called.

If only these functions are supplied, no information about the generator’s state is recorded in
.Random.seed. Optionally, functions user_unif_nseed and user_unif_seedloc can
be supplied which are called with no arguments and should return pointers to the number of seeds
and to an integer array of seeds. Calls to GetRNGstate and PutRNGstate will then copy this
array to and from .Random.seed.

A user-specified normal RNG is specified by a single entry point user_norm_rand, which takes
no arguments and returns a pointer to a double.

Warning

As with all compiled code, mis-specifying these functions can crash R. Do include the
‘R_ext/Random.h’ header file for type checking.

Examples

Not run:
Marsaglia's congruential PRNG
#include <R_ext/Random.h>

static Int32 seed;
static double res;
static int nseed = 1;

double * user_unif_rand()
{

seed = 69069 * seed + 1;
res = seed * 2.32830643653869e-10;
return &res;

}

range 335

void user_unif_init(Int32 seed_in) { seed = seed_in; }
int * user_unif_nseed() { return &nseed; }
int * user_unif_seedloc() { return (int *) &seed; }

/* ratio-of-uniforms for normal */
#include <math.h>
static double x;

double * user_norm_rand()
{

double u, v, z;
do {

u = unif_rand();
v = 0.857764 * (2. * unif_rand() - 1);
x = v/u; z = 0.25 * x * x;
if (z < 1. - u) break;
if (z > 0.259/u + 0.35) continue;

} while (z > -log(u));
return &x;

}

Use under Unix:
R CMD SHLIB urand.c
R
> dyn.load("urand.so")
> RNGkind("user")
> runif(10)
> .Random.seed
> RNGkind(, "user")
> rnorm(10)
> RNGkind()
[1] "user-supplied" "user-supplied"
End(Not run)

range Range of Values

Description

range returns a vector containing the minimum and maximum of all the given arguments.

Usage

range(..., na.rm = FALSE)

Default S3 method:
range(..., na.rm = FALSE, finite = FALSE)

Arguments

... any numeric or character objects.

na.rm logical, indicating if NA’s should be omitted.

finite logical, indicating if all non-finite elements should be omitted.

336 rank

Details

range is a generic function: methods can be defined for it directly or via the Summary group
generic. For this to work properly, the arguments ... should be unnamed, and dispatch is on the
first argument.

If na.rm is FALSE, NA and NaN values in any of the arguments will cause NA values to be returned,
otherwise NA values are ignored.

If finite is TRUE, the minimum and maximum of all finite values is computed, i.e.,
finite=TRUE includes na.rm=TRUE.

A special situation occurs when there is no (after omission of NAs) nonempty argument left, see
min.

S4 methods

This is part of the S4 Summary group generic. Methods for it must use the signature x, ...,
na.rm.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

The extendrange() utility; min, max, Methods.

Examples

(r.x <- range(stats::rnorm(100)))
diff(r.x) # the SAMPLE range

x <- c(NA, 1:3, -1:1/0); x
range(x)
range(x, na.rm = TRUE)
range(x, finite = TRUE)

rank Sample Ranks

Description

Returns the sample ranks of the values in a vector. Ties (i.e., equal values) and missing values can
be handled in several ways.

Usage

rank(x, na.last = TRUE,
ties.method = c("average", "first", "random", "max", "min"))

rank 337

Arguments

x a numeric, complex, character or logical vector.

na.last for controlling the treatment of NAs. If TRUE, missing values in the data are put
last; if FALSE, they are put first; if NA, they are removed; if "keep" they are
kept with rank NA.

ties.method a character string specifying how ties are treated, see ‘Details’; can be abbrevi-
ated.

Details

If all components are different (and no NAs), the ranks are well defined, with values in
seq_len(x). With some values equal (called ‘ties’), the argument ties.method determines
the result at the corresponding indices. The "first"method results in a permutation with increas-
ing values at each index set of ties. The "random" method puts these in random order whereas
the default, "average", replaces them by their mean, and "max" and "min" replaces them by
their maximum and minimum respectively, the latter being the typical sports ranking.

NA values are never considered to be equal: for na.last = TRUE and na.last = FALSE
they are given distinct ranks in the order in which they occur in x.

NB: rank is not itself generic but xtfrm is, and rank(xtfrm(x),) will have the
desired result if there is a xtfrm method. Otherwise, rank will make use of ==, > and is.na
methods for classed objects, possibly rather slowly.

Value

A numeric vector of the same length as x with names copied from x (unless na.last = NA,
when missing values are removed). The vector is of integer type unless ties.method =
"average" when it is of double type (whether or not there are any ties).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

order and sort.

Examples

(r1 <- rank(x1 <- c(3, 1, 4, 15, 92)))
x2 <- c(3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5)
names(x2) <- letters[1:11]
(r2 <- rank(x2)) # ties are averaged

rank() is "idempotent": rank(rank(x)) == rank(x) :
stopifnot(rank(r1) == r1, rank(r2) == r2)

ranks without averaging
rank(x2, ties.method= "first") # first occurrence wins
rank(x2, ties.method= "random") # ties broken at random
rank(x2, ties.method= "random") # and again

keep ties ties, no average

338 rapply

(rma <- rank(x2, ties.method= "max")) # as used classically
(rmi <- rank(x2, ties.method= "min")) # as in Sports
stopifnot(rma + rmi == round(r2 + r2))

rapply Recursively Apply a Function to a List

Description

rapply is a recursive version of lapply.

Usage

rapply(object, f, classes = "ANY", deflt = NULL,
how = c("unlist", "replace", "list"), ...)

Arguments

object A list.

f A function of a single argument.

classes A character vector of class names, or "ANY" to match any class.

deflt The default result (not used if how = "replace").

how A character string matching the three possibilities given: see ‘Details’.

... additional arguments passed to the call to f.

Details

This function has two basic modes. If how = "replace", each element of the list which is not
itself a list and has a class included in classes is replaced by the result of applying f to the
element.

If the mode is how = "list" or how = "unlist", the list is copied, all non-list elements
which have a class included in classes are replaced by the result of applying f to the element
and all others are replaced by deflt. Finally, if how = "unlist", unlist(recursive =
TRUE) is called on the result.

The semantics differ in detail from lapply: in particular the arguments are evaluated before call-
ing the C code.

Value

If how = "unlist", a vector, otherwise a list of similar structure to object.

References

Chambers, J. A. (1998) Programming with Data. Springer.
(rapply is only described briefly there.)

See Also

lapply, dendrapply.

raw 339

Examples

X <- list(list(a=pi, b=list(c=1:1)), d="a test")
rapply(X, function(x) x, how="replace")
rapply(X, sqrt, classes="numeric", how="replace")
rapply(X, nchar, classes="character",

deflt = as.integer(NA), how="list")
rapply(X, nchar, classes="character",

deflt = as.integer(NA), how="unlist")
rapply(X, nchar, classes="character", how="unlist")
rapply(X, log, classes="numeric", how="replace", base=2)

raw Raw Vectors

Description

Creates or tests for objects of type "raw".

Usage

raw(length = 0)
as.raw(x)
is.raw(x)

Arguments

length desired length.

x object to be coerced.

Details

The raw type is intended to hold raw bytes. It is possible to extract subsequences of bytes, and to
replace elements (but only by elements of a raw vector). The relational operators (see Comparison)
work, as do the logical operators (see Logic) with a bitwise interpretation.

A raw vector is printed with each byte separately represented as a pair of hex digits. If you want to
see a character representation (with escape sequences for non-printing characters) use rawToChar.

Coercion to raw treats the input values as representing a small (decimal) integers, so the input is
first coerced to integer, and then values which are outside the range [0 ... 255] or are NA are
set to 0 (the nul byte).

Value

raw creates a raw vector of the specified length. Each element of the vector is equal to 0. Raw
vectors are used to store fixed-length sequences of bytes.

as.raw attempts to coerce its argument to be of raw type. The (elementwise) answer will be 0
unless the coercion succeeds.

is.raw returns true if and only if typeof(x) == "raw".

See Also

charToRaw, rawShift, etc.

340 rawConnection

Examples

xx <- raw(2)
xx[1] <- as.raw(40) # NB, not just 40.
xx[2] <- charToRaw("A")
xx

x <- "A test string"
(y <- charToRaw(x))
is.vector(y) # TRUE
rawToChar(y)
is.raw(x)
is.raw(y)

isASCII <- function(txt) all(charToRaw(txt) <= as.raw(127))
isASCII(x) # true
isASCII("\x9c25.63") # false (in Latin-1, this is an amount in UK pounds)

rawConnection Raw Connections

Description

Input and output raw connections.

Usage

rawConnection(object, open = "r")

rawConnectionValue(con)

Arguments

object character or raw vector. A description of the connection. For an input this is an
R raw vector object, and for an output connection the name for the connection.

open character. Any of the standard connection open modes.

con An output raw connection.

Details

An input raw connection is opened and the raw vector is copied at the time the connection object is
created, and close destroys the copy.

An output raw connection is opened and creates an R raw vector internally. The raw vector can be
retrieved via rawConnectionValue.

If a connection is open for both input and output the initial raw vector supplied is copied when the
connections is open

Value

For rawConnection, a connection object of class "rawConnection" which inherits from
class "connection".

For rawConnectionValue, a raw vector.

rawConversion 341

Note

As output raw connections keep the internal raw vector up to date call-by-call, they are relatively
expensive to use (although over-allocation is used), and it may be better to use an anonymous
file() connection to collect output.

On (rare) platforms where vsnprintf does not return the needed length of output there is a
100,000 character limit on the length of line for output connections: longer lines will be truncated
with a warning.

See Also

connections, showConnections.

Examples

zz <- rawConnection(raw(0), "r+") # start with empty raw vector
writeBin(LETTERS, zz)
seek(zz, 0)
readLines(zz) # raw vector has embedded nuls
seek(zz, 0)
writeBin(letters[1:3], zz)
rawConnectionValue(zz)
close(zz)

rawConversion Convert to or from Raw Vectors

Description

Conversion and manipulation of objects of type "raw".

Usage

charToRaw(x)
rawToChar(x, multiple = FALSE)

rawShift(x, n)

rawToBits(x)
intToBits(x)
packBits(x, type = c("raw", "integer"))

Arguments

x object to be converted or shifted.

multiple logical: should the conversion be to a single character string or multiple individ-
ual characters?

n the number of bits to shift. Positive numbers shift right and negative numbers
shift left: allowed values are -8 ... 8.

type the result type.

342 RdUtils

Details

packBits accepts raw, integer or logical inputs, the last two without any NAs.

Note that ‘bytes’ are not necessarily the same as characters, e.g. in UTF-8 domains.

Value

charToRaw converts a length-one character string to raw bytes. It does so without taking into
account any declared encoding (see Encoding).

rawToChar converts raw bytes either to a single character string or a character vector of single
bytes (with "" for 0). (Note that a single character string could contain embedded nuls, in which
case it will be truncated at the first nul with a warning.) In either case it is possible to create a result
which is invalid in a multibyte locale, e.g. one using UTF-8.

rawToBits returns a raw vector of 8 times the length of a raw vector with entries 0 or 1.
intToBits returns a raw vector of 32 times the length of an integer vector with entries 0 or
1. (Non-integral numeric values are truncated to integers.) In both cases the unpacking is least-
significant bit first.

packBits packs its input (using only the lowest bit for raw or integer vectors) least-significant bit
first to a raw or integer vector.

Examples

x <- "A test string"
(y <- charToRaw(x))
is.vector(y) # TRUE

rawToChar(y)
rawToChar(y, multiple = TRUE)
(xx <- c(y, as.raw(0), charToRaw("more")))
rawToChar(xx)
xxx <- xx
xxx[length(y)+1] <- charToRaw("&")
xxx
rawToChar(xxx)

rawShift(y, 1)
rawShift(y, -2)

rawToBits(y)

RdUtils Utilities for Processing Rd Files

Description

Utilities for converting files in R documentation (Rd) format to other formats or create indices from
them, and for converting documentation in other formats to Rd format.

readBin 343

Usage

R CMD Rdconv [options] file
R CMD Rd2dvi [options] files
R CMD Rd2txt [options] file
R CMD Sd2Rd [options] file

Arguments

file the path to a file to be processed.

files a list of file names specifying the R documentation sources to use, by either
giving the paths to the files, or the path to a directory with the sources of a
package.

options further options to control the processing, or for obtaining information about us-
age and version of the utility.

Details

Rdconv converts Rd format to other formats. Currently, plain text, HTML, LaTeX, S version 3
(Sd), and S version 4 (.sgml) formats are supported. It can also extract the examples for run-time
testing.

Rd2dvi and Rd2txt are user-level programs for producing DVI/PDF output or pretty text output
from Rd sources. Rd2dvi will make use of environment variables R_PAPERSIZE (set by R
CMD, with a default set when R was installed) and xdvi (the DVI previewer, default xdvi), and
R_PDFVIEWER (the PDF previwer). (Valid values for R_PAPERSIZE are a4, letter, legal
and executive.)

Sd2Rd converts S (version 3 or 4) documentation formats to Rd format.

Use R CMD foo --help to obtain usage information on utility foo.

Note

Conversion to S version 3/4 formats is rough: there are some ‘.Rd’ constructs for which there is no
natural analogue. They are intended as a starting point for hand-tuning.

See Also

The chapter “Processing Rd format” in the “Writing R Extensions” manual.

readBin Transfer Binary Data To and From Connections

Description

Read binary data from a connection, or write binary data to a connection.

344 readBin

Usage

readBin(con, what, n = 1, size = NA_integer_, signed = TRUE,
endian = .Platform$endian)

writeBin(object, con, size = NA_integer_,
endian = .Platform$endian)

Arguments

con A connection object or a character string naming a file or a raw vector.

what Either an object whose mode will give the mode of the vector to be read, or
a character vector of length one describing the mode: one of "numeric",
"double", "integer", "int", "logical", "complex",
"character", "raw".

n integer. The (maximal) number of records to be read. You can use an over-
estimate here, but not too large as storage is reserved for n items.

size integer. The number of bytes per element in the byte stream. The default,
NA_integer_, uses the natural size. Size changing is not supported for raw
and complex vectors.

signed logical. Only used for integers of sizes 1 and 2, when it determines if the quantity
on file should be regarded as a signed or unsigned integer.

endian The endian-ness ("big" or "little" of the target system for the file. Using
"swap" will force swapping endian-ness.

object An R object to be written to the connection.

Details

If con is a character string, the functions call file to obtain an file connection which is opened
for the duration of the function call.

If the connection is open it is read/written from its current position. If it is not open, it is opened
for the duration of the call in an appropriate mode (binary read or write) and then closed again. An
open connection must be in binary mode.

If readBin is called with con a raw vector, the data in the vector is used as input. If writeBin
is called with con a raw vector, it is just an indication that a raw vector should be returned.

If size is specified and not the natural size of the object, each element of the vector is coerced
to an appropriate type before being written or as it is read. Possible sizes are 1, 2, 4 and possibly
8 for integer or logical vectors, and 4, 8 and possibly 12/16 for numeric vectors. (Note that co-
ercion occurs as signed types except if signed = FALSE when reading integers of sizes 1 and
2.) Changing sizes is unlikely to preserve NAs, and the extended precision sizes are unlikely to be
portable across platforms.

readBin and writeBin read and write C-style zero-terminated character strings. Input strings
are limited to 10000 characters. readChar and writeChar can be used to read and write fixed-
length strings. No check is made that the string is valid in the current locale.

Handling R’s missing and special (Inf, -Inf and NaN) values is discussed in the R Data Im-
port/Export manual.

readBin 345

Value

For readBin, a vector of appropriate mode and length the number of items read (which might be
less than n).

For writeBin, a raw vector (if con is a raw vector) or invisibly NULL.

Note

Integer read/writes of size 8 will be available if either C type long is of size 8 bytes or C type
long long exists and is of size 8 bytes.

Real read/writes of size sizeof(long double) (usually 12 or 16 bytes) will be available only
if that type is available and different from double.

If readBin(what = character()) is used incorrectly on a file which does not contain C-
style character strings, warnings (usually many) are given. From a file or connection, the input will
be broken into pieces of length 10000 with any final part being discarded.

See Also

The R Data Import/Export manual.

readChar to read/write fixed-length strings.

connections, readLines, writeLines.

.Machine for the sizes of long, long long and long double.

Examples

zz <- file("testbin", "wb")
writeBin(1:10, zz)
writeBin(pi, zz, endian="swap")
writeBin(pi, zz, size=4)
writeBin(pi^2, zz, size=4, endian="swap")
writeBin(pi+3i, zz)
writeBin("A test of a connection", zz)
z <- paste("A very long string", 1:100, collapse=" + ")
writeBin(z, zz)
if(.Machine$sizeof.long == 8 || .Machine$sizeof.longlong == 8)

writeBin(as.integer(5^(1:10)), zz, size = 8)
if((s <-.Machine$sizeof.longdouble) > 8)

writeBin((pi/3)^(1:10), zz, size = s)
close(zz)

zz <- file("testbin", "rb")
readBin(zz, integer(), 4)
readBin(zz, integer(), 6)
readBin(zz, numeric(), 1, endian="swap")
readBin(zz, numeric(), size=4)
readBin(zz, numeric(), size=4, endian="swap")
readBin(zz, complex(), 1)
readBin(zz, character(), 1)
z2 <- readBin(zz, character(), 1)
if(.Machine$sizeof.long == 8 || .Machine$sizeof.longlong == 8)

readBin(zz, integer(), 10, size = 8)
if((s <-.Machine$sizeof.longdouble) > 8)

readBin(zz, numeric(), 10, size = s)
close(zz)

346 readChar

unlink("testbin")
stopifnot(z2 == z)

signed vs unsigned ints
zz <- file("testbin", "wb")
x <- as.integer(seq(0, 255, 32))
writeBin(x, zz, size=1)
writeBin(x, zz, size=1)
x <- as.integer(seq(0, 60000, 10000))
writeBin(x, zz, size=2)
writeBin(x, zz, size=2)
close(zz)
zz <- file("testbin", "rb")
readBin(zz, integer(), 8, size=1)
readBin(zz, integer(), 8, size=1, signed=FALSE)
readBin(zz, integer(), 7, size=2)
readBin(zz, integer(), 7, size=2, signed=FALSE)
close(zz)
unlink("testbin")

use of raw
z <- writeBin(pi^{1:5}, raw(), size = 4)
readBin(z, numeric(), 5, size = 4)
z <- writeBin(c("a", "test", "of", "character"), raw())
rawToChar(z)
readBin(z, character(), 4)

readChar Transfer Character Strings To and From Connections

Description

Transfer character strings to and from connections, without assuming they are null-terminated on
the connection.

Usage

readChar(con, nchars, useBytes = FALSE)

writeChar(object, con,
nchars = nchar(object, type="chars"), eos = "")

Arguments

con A connection object, or a character string naming a file, or a raw vector.

nchars integer, giving the lengths in characters of (unterminated) character strings to be
read or written. Must be >= 0 and not missing.

useBytes logical: should nchars be regarded as a number of bytes not characters in a
multi-byte locale?

object A character vector to be written to the connection, at least as long as nchars.

eos ‘end of string’: character string . The terminator to be written after each string,
followed by an ASCII nul; use NULL for no terminator at all.

readChar 347

Details

These functions complement readBin and writeBin which read and write C-style zero-
terminated character strings. They are for strings of known length, and can optionally write an
end-of-string mark. They are intended only for character strings valid in the current locale.

If con is a character string, the functions call file to obtain an file connection which is opened
for the duration of the function call.

If the connection is open it is read/written from its current position. If it is not open, it is opened
for the duration of the call in an appropriate mode (binary read or write) and then closed again. An
open connection must be in binary mode.

If readChar is called with con a raw vector, the data in the vector is used as input. If writeChar
is called with con a raw vector, it is just an indication that a raw vector should be returned.

Character strings containing ASCII nul(s) will be read correctly by readChar but truncated at
the first nul with a warning.

If the character length requested for readChar is longer than the data available on the connection,
what is available is returned. For writeChar if too many characters are requested the output is
zero-padded, with a warning.

Missing strings are written as NA.

Value

For readChar, a character vector of length the number of items read (which might be less than
length(nchars)).

For writeChar, a raw vector (if con is a raw vector) or invisibly NULL.

Note

Earlier versions of R allowed embedded nul bytes within character strings, but not R >= 2.8.0.
readCharwas commonly used to read fixed-size zero-padded byte fields for which readBinwas
unsuitable. readChar can still be used for such fields if there are no embedded nuls: otherwise
readBin(what="raw") provides an alternative.

nchars will be interpreted in bytes not characters in a non-UTF-8 multi-byte locale, with a warn-
ing.

There is little validity checking of UTF-8 reads.

See Also

The R Data Import/Export manual.

connections, readLines, writeLines, readBin

Examples

test fixed-length strings
zz <- file("testchar", "wb")
x <- c("a", "this will be truncated", "abc")
nc <- c(3, 10, 3)
writeChar(x, zz, nc, eos=NULL)
writeChar(x, zz, eos="\r\n")
close(zz)

zz <- file("testchar", "rb")

348 readline

readChar(zz, nc)
readChar(zz, nchar(x)+3) # need to read the terminator explicitly
close(zz)
unlink("testchar")

readline Read a Line from the Terminal

Description

readline reads a line from the terminal

Usage

readline(prompt = "")

Arguments

prompt the string printed when prompting the user for input. Should usually end with a
space " ".

Details

The prompt string will be truncated to a maximum allowed length, normally 256 chars (but can be
changed in the source code).

Value

A character vector of length one.

See Also

readLines for reading text lines of connections, including files.

Examples

fun <- function() {
ANSWER <- readline("Are you a satisfied R user? ")
if (substr(ANSWER, 1, 1) == "n")
cat("This is impossible. YOU LIED!\n")

else
cat("I knew it.\n")

}
fun()

readLines 349

readLines Read Text Lines from a Connection

Description

Read some or all text lines from a connection.

Usage

readLines(con = stdin(), n = -1, ok = TRUE, warn = TRUE,
encoding = "unknown")

Arguments

con a connection object or a character string.

n integer. The (maximal) number of lines to read. Negative values indicate that
one should read up to the end of the connection.

ok logical. Is it OK to reach the end of the connection before n > 0 lines are read?
If not, an error will be generated.

warn logical. Warn if a text file is missing a final EOL.

encoding encoding to be assumed for input strings. It is used to mark character strings
as known to be in Latin-1 or UTF-8: it is not used to re-encode the input.
To do the latter, specify the encoding as part of the connection con or via
options(encoding=): see the example under file.

Details

If the con is a character string, the function calls file to obtain a file connection which is opened
for the duration of the function call.

If the connection is open it is read from its current position. If it is not open, it is opened in "rt"
mode for the duration of the call and then closed again.

If the final line is incomplete (no final EOL marker) the behaviour depends on whether the con-
nection is blocking or not. For a non-blocking text-mode connection the incomplete line is pushed
back, silently. For all other connections the line will be accepted, with a warning.

Whatever mode the connection is opened in, any of LF, CRLF or CR will be accepted as the EOL
marker for a line.

Value

A character vector of length the number of lines read.

The elements of the result have a declared encoding if encoding is "latin1" or "UTF-8",

Note

The default connection, stdin, may be different from con = "stdin": see file.

See Also

connections, writeLines, readBin, scan

350 real

Examples

cat("TITLE extra line", "2 3 5 7", "", "11 13 17", file="ex.data",
sep="\n")

readLines("ex.data", n=-1)
unlink("ex.data") # tidy up

difference in blocking
cat("123\nabc", file = "test1")
readLines("test1") # line with a warning

con <- file("test1", "r", blocking = FALSE)
readLines(con) # empty
cat(" def\n", file = "test1", append = TRUE)
readLines(con) # gets both
close(con)

unlink("test1") # tidy up

real Real Vectors

Description

These functions are the same as their double equivalents and are provided for backwards compat-
ibility only.

Usage

real(length = 0)
as.real(x, ...)
is.real(x)

Arguments

length desired length.

x object to be coerced or tested.

... further arguments passed to or from other methods.

Details

as.real is a generic function, but S3 methods must be written for as.double.

Recall 351

Recall Recursive Calling

Description

Recall is used as a placeholder for the name of the function in which it is called. It allows the
definition of recursive functions which still work after being renamed, see example below.

Usage

Recall(...)

Arguments

... all the arguments to be passed.

Note

Recall will not work correctly when passed as a function argument, e.g. to the apply family of
functions.

See Also

do.call and call.

local for another way to write anonymous recursive functions.

Examples

A trivial (but inefficient!) example:
fib <- function(n)

if(n<=2) { if(n>=0) 1 else 0 } else Recall(n-1) + Recall(n-2)
fibonacci <- fib; rm(fib)
renaming wouldn't work without Recall
fibonacci(10) # 55

reg.finalizer Finalization of Objects

Description

Registers an R function to be called upon garbage collection of object or (optionally) at the end of
an R session.

Usage

reg.finalizer(e, f, onexit = FALSE)

352 regex

Arguments

e Object to finalize. Must be environment or external pointer.

f Function to call on finalization. Must accept a single argument, which will be
the object to finalize.

onexit logical: should the finalizer be run if the object is still uncollected at the end of
the R session?

Value

NULL.

Note

The purpose of this function is mainly to allow objects that refer to external items (a temporary
file, say) to perform cleanup actions when they are no longer referenced from within R. This only
makes sense for objects that are never copied on assignment, hence the restriction to environments
and external pointers.

See Also

gc and Memory for garbage collection and memory management.

Examples

f <- function(e) print("cleaning....")
g <- function(x){ e <- environment(); reg.finalizer(e,f) }
g()
invisible(gc()) # trigger cleanup

regex Regular Expressions as used in R

Description

This help page documents the regular expression patterns supported by grep and related functions
regexpr, gregexpr, sub and gsub, as well as by strsplit.

Details

A ‘regular expression’ is a pattern that describes a set of strings. Three types of regular expressions
are used in R, extended regular expressions, used by grep(extended = TRUE) (its default),
basic regular expressions, as used by grep(extended = FALSE), and Perl-like regular ex-
pressions used by grep(perl = TRUE).

Other functions which use regular expressions (often via the use of grep) include apropos,
browseEnv, help.search, list.files, ls and strsplit. These will all use extended
regular expressions, unless strsplit is called with argument extended = FALSE or perl
= TRUE.

Patterns are described here as they would be printed by cat: do remember that backslashes need
to be doubled when entering R character strings, e.g. from the keyboard.

regex 353

Extended Regular Expressions

This section covers the regular expressions allowed if extended = TRUE in grep, regexpr,
gregexpr, sub, gsub and strsplit. They use the glibc 2.7 implementation of the
POSIX 1003.2 standard.

Regular expressions are constructed analogously to arithmetic expressions, by using various opera-
tors to combine smaller expressions.

The fundamental building blocks are the regular expressions that match a single character. Most
characters, including all letters and digits, are regular expressions that match themselves. Any
metacharacter with special meaning may be quoted by preceding it with a backslash. (Escaping
other characters with a backslash is undefined in POSIX but gives the character in the R implemen-
tation.) The metacharacters in EREs are . \ | () [{ ^ $ * + ?, but note that whether
these have a special meaning depends on the context.

A character class is a list of characters enclosed between [and] which matches any single char-
acter in that list; unless the first character of the list is the caret ^, when it matches any character
not in the list. For example, the regular expression [0123456789] matches any single digit, and
[^abc] matches anything except the characters a, b or c. A range of characters may be specified
by giving the first and last characters, separated by a hyphen. (Because their interpretation is so
locale-dependent, they are best avoided.)

The precise way character ranges are interpreted depends on the values of perl and
ignore.case. For basic and extended regular expressions the collation order is taken
from the OS’s implementation of the setting of the locale category LC_COLLATE, so [W-
Z] may include x and if it does may or may not include w. (In most English lo-
cales the collation order is wWxXyYzZ.) For caseless matching the characters in a range
are interpreted as if in lower case, so in an English locale [W-z] matches WXYZwxyz.
The only portable way to specify all ASCII letters is to list them all as character class,
[ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz].

For Perl regexps, the ranges are interpreted in the numerical order of the characters, either as bytes in
a single-byte locale or as Unicode points in a UTF-8 locale. So in either case [A-Za-z] specifies
the set of ASCII letters.

Certain named classes of characters are predefined. Their interpretation depends on the locale (see
locales); the interpretation below is that of the POSIX locale.

[:alnum:] Alphanumeric characters: [:alpha:] and [:digit:].

[:alpha:] Alphabetic characters: [:lower:] and [:upper:].

[:blank:] Blank characters: space and tab.

[:cntrl:] Control characters. In ASCII, these characters have octal codes 000 through 037,
and 177 (DEL). In another character set, these are the equivalent characters, if any.

[:digit:] Digits: 0 1 2 3 4 5 6 7 8 9.

[:graph:] Graphical characters: [:alnum:] and [:punct:].

[:lower:] Lower-case letters in the current locale.

[:print:] Printable characters: [:alnum:], [:punct:] and space.

[:punct:] Punctuation characters: ! " # $ % & ’ () * + , - . / : ; < =
> ? @ [\] ^ _ ‘ { | } ~.

[:space:] Space characters: tab, newline, vertical tab, form feed, carriage return, and space.

[:upper:] Upper-case letters in the current locale.

[:xdigit:] Hexadecimal digits: 0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e
f.

354 regex

For example, [[:alnum:]] means [0-9A-Za-z], except the latter depends upon the locale
and the character encoding, whereas the former is independent of locale and character set. (Note
that the brackets in these class names are part of the symbolic names, and must be included in
addition to the brackets delimiting the bracket list.) Most metacharacters lose their special meaning
inside lists. To include a literal], place it first in the list. Similarly, to include a literal ^, place it
anywhere but first. Finally, to include a literal -, place it first or last (or, for perl = TRUE only,
precede it by a backslash.). (Only these and \ remain special inside character classes.)

The period . matches any single character. The symbol \w is documented to be synonym for
[[:alnum:]] and \W is its negation. However, \w also matches underscore in the GNU grep
code used in R.

The caret ^ and the dollar sign $ are metacharacters that respectively match the empty string at the
beginning and end of a line. The symbols \< and \> respectively match the empty string at the
beginning and end of a word. The symbol \b matches the empty string at either edge of a word,
and \B matches the empty string provided it is not at an edge of a word.

A regular expression may be followed by one of several repetition quantifiers:

? The preceding item is optional and will be matched at most once.

* The preceding item will be matched zero or more times.

+ The preceding item will be matched one or more times.

{n} The preceding item is matched exactly n times.

{n,} The preceding item is matched n or more times.

{n,m} The preceding item is matched at least n times, but not more than m times.

Repetition is greedy, so the maximal possible number of repeats is used.

Two regular expressions may be concatenated; the resulting regular expression matches any string
formed by concatenating two substrings that respectively match the concatenated subexpressions.

Two regular expressions may be joined by the infix operator |; the resulting regular expression
matches any string matching either subexpression. For example, abba|cde matches either the
string abba or the string cde. Note that alternation does not work inside character classes, where
| has its literal meaning.

Repetition takes precedence over concatenation, which in turn takes precedence over alternation. A
whole subexpression may be enclosed in parentheses to override these precedence rules.

The backreference \N, where N is a single digit, matches the substring previously matched by the
Nth parenthesized subexpression of the regular expression.

Basic Regular Expressions

This section covers the regular expressions allowed if extended = FALSE in grep, regexpr,
gregexpr, sub, gsub and strsplit.

In basic regular expressions the metacharacters ?, +, {, |, (, and) lose their special meaning;
instead use the backslashed versions \?, \+, \ {, \|, \(, and \). Thus the metacharacters are .
\ [^ $ *.

Perl Regular Expressions

The perl = TRUE argument to grep, regexpr, gregexpr, sub, gsub and strsplit
switches to the PCRE library that ‘implements regular expression pattern matching using the same
syntax and semantics as Perl 5.6 or later, with just a few differences’. It adds some features from
Perl 5.10.

regex 355

For complete details please consult the man pages for PCRE, especially man pcrepattern
and man pcreapi), on your system or from the sources at http://www.pcre.org. If PCRE
support was compiled from the sources within R, the PCRE version is 7.7 as described here (version
≥ 7.6 is required if R is configured to use the system’s PCRE library).

Perl regular expressions are computed byte-by-byte rather than character-by-character except in
UTF-8 locales. Since the only non-UTF-8 multibyte locales in common use are those for CJK
languages, they should be used with care in non-UTF-8 CJK locales.

All the regular expressions described for extended regular expressions are accepted except \< and
\>: in Perl all backslashed metacharacters are alphanumeric and backslashed symbols always are
interpreted as a literal character. { is not special if it would be the start of an invalid interval
specification. There can be more than 9 backreferences. In a UTF-8 locale the named character
classes only match ASCII characters: see \p below for an alternative.

The construct (?...) is used for Perl extensions in a variety of ways depending on what immedi-
ately follows the ?.

Perl-like matching can work in several modes, set by the options (?i) (caseless, equivalent to
Perl’s /i), (?m) (multiline, equivalent to Perl’s /m), (?s) (single line, so a dot matches all
characters, even new lines: equivalent to Perl’s /s) and (?x) (extended, whitespace data characters
are ignored unless escaped and comments are allowed: equivalent to Perl’s /x). These can be
concatenated, so for example, (?im) sets caseless multiline matching. It is also possible to unset
these options by preceding the letter with a hyphen, and to combine setting and unsetting such as
(?im-sx). These settings can be applied within patterns, and then apply to the remainder of
the pattern. Additional options not in Perl include (?U) to set ‘ungreedy’ mode (so matching is
minimal unless ? is used, when it is greedy). Initially none of these options are set.

If you want to remove the special meaning from a sequence of characters, you can do so by putting
them between \Q and \E. This is different from Perl in that $ and @ are handled as literals in
\Q...\E sequences in PCRE, whereas in Perl, $ and @ cause variable interpolation.

The escape sequences \d, \s and \w represent any decimal digit, space character and ‘word’
character (letter, digit or underscore in the current locale, except that in a UTF-8 locale only ASCII
letters are considered) respectively, and their upper-case versions represent their negation. Unlike
POSIX and earlier versions of Perl and PCRE, vertical tab is not regarded as a whitespace character.

Escape sequence \a is BEL, \e is ESC, \f is FF, \n is LF, \r is CR and \t is TAB. In addition
\cx is cntrl-x for any x, \ddd is the octal character ddd (for up to three digits unless inter-
pretable as a backreference, as \1 to \7 always are), and \xhh specifies a character in hex. In a
UTF-8 locale, \x{h...} specifies a Unicode point by one or more hex digits.

Outside a character class, \b matches a word boundary, \B is its negation, \A matches at start of
a subject (even in multiline mode, unlike ^), \Z matches at end of a subject or before newline at
end, \z matches at end of a subject. and \G matches at first matching position in a subject (which
is subtly different from Perl’s end of the previous match). \C matches a single byte. including
a newline. In a UTF-8 locale, \R matches any Unicode newline character (not just CR), and \X
matches any number of Unicode characters that form an extended Unicode sequence.

In a UTF-8 locale, some Unicode properties are supported via \p{xx} and \P{xx} which match
characters with and without property xx respectively. For a list of supported properties see the
PCRE documentation, but for example Lu is ‘upper case letter’ and Sc is ‘currency symbol’.

The same repetition quantifiers as extended POSIX are supported. However, if a quantifier is fol-
lowed by ?, the match is ‘ungreedy’, that is as short as possible rather than as long as possible
(unless the meanings are reversed by the (?U) option.)

The sequence (?# marks the start of a comment which continues up to the next closing parenthesis.
Nested parentheses are not permitted. The characters that make up a comment play no part at all in
the pattern matching.

http://www.pcre.org

356 remove

If the extended option is set, an unescaped # character outside a character class introduces a com-
ment that continues up to the next newline character in the pattern.

The pattern (?:...) groups characters just as parentheses do but does not make a backreference.

Patterns (?=...) and (?!...) are zero-width positive and negative lookahead assertions: they
match if an attempt to match the ... forward from the current position would succeed (or not), but
use up no characters in the string being processed. Patterns (?<=...) and (?<!...) are the
lookbehind equivalents: they do not allow repetition quantifiers nor \C in

Named subpatterns, atomic grouping, possessive qualifiers and conditional and recursive patterns
are not covered here.

Author(s)

This help page is based on the documentation of GNU grep 2.4.2 and the pcrepatternman page
from PCRE 7.4.

See Also

grep, apropos, browseEnv, glob2rx, help.search, list.files, ls and
strsplit.

http://www.opengroup.org/onlinepubs/009695399/basedefs/xbd_
chap09.html

The pcrepattern can be found as part of http://www.pcre.org/pcre.txt, and details
of Perl’s own implementation at http://perldoc.perl.org/perlre.html.

remove Remove Objects from a Specified Environment

Description

remove and rm can be used to remove objects. These can be specified successively as character
strings, or in the character vector list, or through a combination of both. All objects thus specified
will be removed.

If envir is NULL then the currently active environment is searched first.

If inherits is TRUE then parents of the supplied directory are searched until a variable with the
given name is encountered. A warning is printed for each variable that is not found.

Usage

remove(..., list = character(0), pos = -1,
envir = as.environment(pos), inherits = FALSE)

rm (..., list = character(0), pos = -1,
envir = as.environment(pos), inherits = FALSE)

http://www.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
http://www.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap09.html
http://www.pcre.org/pcre.txt
http://perldoc.perl.org/perlre.html

rep 357

Arguments

... the objects to be removed, as names (unquoted) or character strings (quoted).

list a character vector naming objects to be removed.

pos where to do the removal. By default, uses the current environment. See the
details for other possibilities.

envir the environment to use. See the details section.

inherits should the enclosing frames of the environment be inspected?

Details

The pos argument can specify the environment from which to remove the objects in any of several
ways: as an integer (the position in the search list); as the character string name of an element
in the search list; or as an environment (including using sys.frame to access the currently
active function calls). The envir argument is an alternative way to specify an environment, but is
primarily there for back compatibility.

It is not allowed to remove variables from the base environment and base name space, nor from any
environment which is locked (see lockEnvironment).

Earlier versions of R incorrectly claimed that supplying a character vector in ... removed the
objects named in the character vector, but it removed the character vector. Use the list argument
to specify objects via a character vector.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

ls, objects

Examples

tmp <- 1:4
work with tmp and cleanup
rm(tmp)

Not run:
remove (almost) everything in the working environment.
You will get no warning, so don't do this unless you are really sure.
rm(list = ls())
End(Not run)

rep Replicate Elements of Vectors and Lists

Description

rep replicates the values in x. It is a generic function, and the (internal) default method is described
here.

rep.int is a faster simplified version for the most common case.

358 rep

Usage

rep(x, ...)

rep.int(x, times)

Arguments

x a vector (of any mode including a list) or a pairlist or a factor or (except for
rep.int) a POSIXct or POSIXlt or date object.

... further arguments to be passed to or from other methods. For the internal default
method these can include:

times A vector giving the number of times to repeat each element if of length
length(x), or to repeat the whole vector if of length 1.

length.out non-negative integer. The desired length of the output vector.
Ignored if NA or invalid.

each non-negative integer. Each element of x is repeated each times. Treated
as 1 if NA or invalid.

times see

Details

The default behaviour is as if the call was rep(x, times=1, length.out=NA, each=1).
Normally just one of the additional arguments is specified, but if each is specified with either of
the other two, its replication is performed first, and then that implied by times or length.out.

If times consists of a single integer, the result consists of the whole input repeated this many
times. If times is a vector of the same length as x (after replication by each), the result consists
of x[1] repeated times[1] times, x[2] repeated times[2] times and so on.

length.out may be given in place of times, in which case x is repeated as many times as
is necessary to create a vector of this length. If both are given, length.out takes priority and
times is ignored.

Non-integer values of times will be truncated towards zero. If times is a computed quantity it is
prudent to add a small fuzz.

If x has length zero and length.out is supplied and is positive, the values are filled in using the
extraction rules, that is by an NA of the appropriate class for an atomic vector (0 for raw vectors)
and NULL for a list.

Value

An object of the same type as x (except that rep will coerce pairlists to vector lists).

rep.int returns no attributes.

The default method of rep gives the result names (which will almost always contain duplicates) if
x had names, but retains no other attributes except for factors.

Note

Function rep.int is a simple case handled by internal code, and provided as a separate function
purely for S compatibility.

Function rep is a primitive, but (partial) matching of argument names is performed as for normal
functions. You can no longer pass a missing argument to. e.g. length.out.

replace 359

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

seq, sequence, replicate.

Examples

rep(1:4, 2)
rep(1:4, each = 2) # not the same.
rep(1:4, c(2,2,2,2)) # same as second.
rep(1:4, c(2,1,2,1))
rep(1:4, each = 2, len = 4) # first 4 only.
rep(1:4, each = 2, len = 10) # 8 integers plus two recycled 1's.
rep(1:4, each = 2, times = 3) # length 24, 3 complete replications

rep(1, 40*(1-.8)) # length 7 on most platforms
rep(1, 40*(1-.8)+1e-7) # better

replicate a list
fred <- list(happy = 1:10, name = "squash")
rep(fred, 5)

date-time objects
x <- .leap.seconds[1:3]
rep(x, 2)
rep(as.POSIXlt(x), rep(2, 3))

named factor
x <- factor(LETTERS[1:4]); names(x) <- letters[1:4]
x
rep(x, 2)
rep(x, each=2)
rep.int(x, 2) # no names

replace Replace Values in a Vector

Description

replace replaces the values in x with indexes given in list by those given in values. If
necessary, the values in values are recycled.

Usage

replace(x, list, values)

Arguments

x vector
list an index vector
values replacement values

360 rev

Value

A vector with the values replaced.

Note

x is unchanged: remember to assign the result.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Reserved Reserved Words in R

Description

The reserved words in R are

if else repeat while function for in next break

TRUE FALSE NULL Inf NaN NA NA_integer_ NA_real_ NA_complex_
NA_character_

... and ..1, ..2 etc, used to refer to arguments passed down from an enclosing function.

rev Reverse Elements

Description

rev provides a reversed version of its argument. It is generic function with a default method for
vectors and one for dendrograms.

Note that this is no longer needed (nor efficient) for obtaining vectors sorted into descending order,
since that is now rather more directly achievable by sort(x, decreasing = TRUE).

Usage

rev(x)

Arguments

x a vector or another object for which reversal is defined.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

seq, sort.

rle 361

Examples

x <- c(1:5,5:3)
sort into descending order; first more efficiently:
stopifnot(sort(x, decreasing = TRUE) == rev(sort(x)))
stopifnot(rev(1:7) == 7:1)#- don't need 'rev' here

rle Run Length Encoding

Description

Compute the lengths and values of runs of equal values in a vector – or the reverse operation.

Usage

rle(x)
inverse.rle(x, ...)

Arguments

x an atomic vector for rle(); an object of class "rle" for inverse.rle().

... further arguments which are ignored in R.

Details

Missing values are regarded as unequal to the previous value, even if that is also missing.

inverse.rle() is the inverse function of rle(), reconstructing x from the runs.

Value

rle() returns an object of class "rle" which is a list with components:

lengths an integer vector containing the length of each run.

values a vector of the same length as lengths with the corresponding values.

inverse.rle() returns an atomic vector.

Examples

x <- rev(rep(6:10, 1:5))
rle(x)
lengths [1:5] 5 4 3 2 1
values [1:5] 10 9 8 7 6

z <- c(TRUE,TRUE,FALSE,FALSE,TRUE,FALSE,TRUE,TRUE,TRUE)
rle(z)
rle(as.character(z))

stopifnot(x == inverse.rle(rle(x)),
z == inverse.rle(rle(z)))

362 Round

Round Rounding of Numbers

Description

ceiling takes a single numeric argument x and returns a numeric vector containing the smallest
integers not less than the corresponding elements of x.

floor takes a single numeric argument x and returns a numeric vector containing the largest
integers not greater than the corresponding elements of x.

trunc takes a single numeric argument x and returns a numeric vector containing the integers
formed by truncating the values in x toward 0.

round rounds the values in its first argument to the specified number of decimal places (default 0).

signif rounds the values in its first argument to the specified number of significant digits.

zapsmall determines a digits argument dr for calling round(x, digits = dr) such
that values close to zero (compared with the maximal absolute value) are ‘zapped’, i.e., treated as
0.

Usage

ceiling(x)
floor(x)
trunc(x, ...)

round(x, digits = 0)
signif(x, digits = 6)
zapsmall(x, digits = getOption("digits"))

Arguments

x a numeric vector. A complex vector is allowed for round, signif and
zapsmall.

digits integer indicating the precision to be used.
... arguments to be passed to methods.

Details

All but zapsmall are generic functions: methods can be defined for them individually or via the
Math group generic.

Note that for rounding off a 5, the IEC 60559 standard is expected to be used, ‘go to the even
digit’. Therefore round(0.5) is 0 and round(-1.5) is -2. However, this is dependent on OS
services and on representation error (since e.g. 0.15 is not represented exactly, the rounding rule
applies to the represented number and not to the printed number, and so round(0.15, 1) could
be either 0.1 or 0.2).

For signif the recognized values of digits are 1...22. Complex numbers are rounded to
retain the specified number of digits in the larger of the components. Each element of the vector is
rounded individually, unlike printing.

All except zapsmall are primitive, but as from R 2.7.0 arguments are matched by name in round
and signif (whereas the default method for ceiling, floor and trunc ignore argument
names).

round.POSIXt 363

S4 methods

ceiling, floor and trunc are S4 generic and members of the Math group generic. As an S4
generic, trunc has only one argument.

round and signif are S4 generic and members of the Math2 group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (Except zapsmall.)

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.
(zapsmall.)

See Also

as.integer.

Examples

round(.5 + -2:4) # IEEE rounding: -2 0 0 2 2 4 4
(x1 <- seq(-2, 4, by = .5))
round(x1)#-- IEEE rounding !
x1[trunc(x1) != floor(x1)]
x1[round(x1) != floor(x1 + .5)]
(non.int <- ceiling(x1) != floor(x1))

x2 <- pi * 100^(-1:3)
round(x2, 3)
signif(x2, 3)

print (x2 / 1000, digits=4)
zapsmall(x2 / 1000, digits=4)
zapsmall(exp(1i*0:4*pi/2))

round.POSIXt Round / Truncate Data-Time Objects

Description

Round or truncate date-time objects.

Usage

S3 method for class 'POSIXt':
round(x, units = c("secs", "mins", "hours", "days"))
S3 method for class 'POSIXt':
trunc(x, units = c("secs", "mins", "hours", "days"), ...)

S3 method for class 'Date':
round(x, ...)
S3 method for class 'Date':
trunc(x, ...)

364 row

Arguments

x an object inheriting from "POSIXt" or "Date".

units one of the units listed. Can be abbreviated.

... arguments to be passed to or from other methods, notably digits for round.

Details

The time is rounded or truncated to the second, minute, hour or day. Timezones are only relevant to
days, when midnight in the current timezone is used.

The methods for class "Date" are of little use except to remove fractional days.

Value

An object of class "POSIXlt" or "Date".

See Also

round for the generic function and default methods.

DateTimeClasses, Date

Examples

round(.leap.seconds + 1000, "hour")
trunc(Sys.time(), "day")

row Row Indexes

Description

Returns a matrix of integers indicating their row number in a matrix-like object.

Usage

row(x, as.factor = FALSE)

Arguments

x a matrix-like object, that is one with a two-dimensional dim.

as.factor a logical value indicating whether the value should be returned as a factor rather
than as numeric.

Value

An integer matrix with the same dimensions as x and whose ij-th element is equal to i.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

row.names 365

See Also

col to get columns.

Examples

x <- matrix(1:12, 3, 4)
extract the diagonal of a matrix
dx <- x[row(x) == col(x)]
dx

create an identity 5-by-5 matrix
x <- matrix(0, nrow = 5, ncol = 5)
x[row(x) == col(x)] <- 1
x

row.names Get and Set Row Names for Data Frames

Description

All data frames have a row names attribute, a character vector of length the number of rows with no
duplicates nor missing values.

For convenience, these are generic functions for which users can write other methods, and there are
default methods for arrays. The description here is for the data.frame method.

Usage

row.names(x)
row.names(x) <- value

Arguments

x object of class "data.frame", or any other class for which a method has
been defined.

value an object to be coerced to character unless an integer vector. It should have
(after coercion) the same length as the number of rows of x with no duplicated
nor missing values. NULL is also allowed: see ‘Details’.

Details

A data frame has (by definition) a vector of row names which has length the number of rows in the
data frame, and contains neither missing nor duplicated values. Where a row names sequence has
been added by the software to meet this requirement, they are regarded as ‘automatic’.

Row names were character are allowed to be integer or character, but for backwards compat-
ibility (with R <= 2.4.0) row.names will always return a character vector. (Use attr(x,
"row.names") if you need an integer value.)

Using NULL for the value resets the row names to seq_len(nrow(x)), regarded as ‘automatic’.

366 row/colnames

Value

row.names returns a character vector.

row.names<- returns a data frame with the row names changed.

Note

row.names is similar to rownames for arrays, and it has a method that calls rownames for an
array argument.

Row names of the form 1:n for n > 2 are stored internally in a compact form, which might be
seen from C code or by deparsing but never via row.names or attr(x, "row.names").
Additionally, some names of this sort are marked as ‘automatic’ and handled differently by
as.matrix and data.matrix (and potentially other functions). (All zero-row data frames
are regarded as having automatic row.names.)

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

data.frame, rownames, names.

.row_names_info for the internal representations.

row/colnames Row and Column Names

Description

Retrieve or set the row or column names of a matrix-like object.

Usage

rownames(x, do.NULL = TRUE, prefix = "row")
rownames(x) <- value

colnames(x, do.NULL = TRUE, prefix = "col")
colnames(x) <- value

Arguments

x a matrix-like R object, with at least two dimensions for colnames.

do.NULL logical. Should this create names if they are NULL?

prefix for created names.

value a valid value for that component of dimnames(x). For a matrix or array this
is either NULL or a character vector of non-zero length equal to the appropriate
dimension.

rowsum 367

Details

The extractor functions try to do something sensible for any matrix-like object x. If the object has
dimnames the first component is used as the row names, and the second component (if any) is used
for the column names. For a data frame, rownames and colnames eventually call row.names
and names respectively, but the latter are preferred.

If do.NULL is FALSE, a character vector (of length NROW(x) or NCOL(x)) is returned in any
case, prepending prefix to simple numbers, if there are no dimnames or the corresponding com-
ponent of the dimnames is NULL.

The replacement methods for arrays/matrices coerce vector and factor values of value to character,
but do not dispatch methods for as.character.

For a data frame, value for rownames should be a character vector of non-duplicated and non-
missing names (this is enforced), and for colnames a character vector of (preferably) unique
syntactically-valid names. In both cases, value will be coerced by as.character, and setting
colnames will convert the row names to character.

See Also

dimnames, case.names, variable.names.

Examples

m0 <- matrix(NA, 4, 0)
rownames(m0)

m2 <- cbind(1,1:4)
colnames(m2, do.NULL = FALSE)
colnames(m2) <- c("x","Y")
rownames(m2) <- rownames(m2, do.NULL = FALSE, prefix = "Obs.")
m2

rowsum Give column sums of a matrix or data frame, based on a grouping
variable

Description

Compute column sums across rows of a matrix-like object for each level of a grouping variable.
rowsum is generic, with a method for data frames and a default method for vectors and matrices.

Usage

rowsum(x, group, reorder = TRUE, ...)

S3 method for class 'data.frame':
rowsum(x, group, reorder = TRUE, na.rm = FALSE, ...)

Default S3 method:
rowsum(x, group, reorder = TRUE, na.rm = FALSE, ...)

368 sample

Arguments

x a matrix, data frame or vector of numeric data. Missing values are allowed. A
numeric vector will be treated as a column vector.

group a vector or factor giving the grouping, with one element per row of x. Missing
values will be treated as another group and a warning will be given.

reorder if TRUE, then the result will be in order of sort(unique(group)), if
FALSE, it will be in the order that groups were encountered.

na.rm logical (TRUE or FALSE). Should NA values be discarded?

... other arguments to be passed to or from methods

Details

The default is to reorder the rows to agree with tapply as in the example below. Reordering
should not add noticeably to the time except when there are very many distinct values of group
and x has few columns.

The original function was written by Terry Therneau, but this is a new implementation using hashing
that is much faster for large matrices.

To sum over all the rows of a matrix (ie, a single group) use colSums, which should be even
faster.

Value

A matrix or data frame containing the sums. There will be one row per unique value of group.

See Also

tapply, aggregate, rowSums

Examples

require(stats)

x <- matrix(runif(100), ncol=5)
group <- sample(1:8, 20, TRUE)
(xsum <- rowsum(x, group))
Slower versions
tapply(x, list(group[row(x)], col(x)), sum)
t(sapply(split(as.data.frame(x), group), colSums))
aggregate(x, list(group), sum)[-1]

sample Random Samples and Permutations

Description

sample takes a sample of the specified size from the elements of x using either with or without
replacement.

Usage

sample(x, size, replace = FALSE, prob = NULL)

sample 369

Arguments

x Either a (numeric, complex, character or logical) vector of more than one ele-
ment from which to choose, or a positive integer.

size non-negative integer giving the number of items to choose.

replace Should sampling be with replacement?

prob A vector of probability weights for obtaining the elements of the vector being
sampled.

Details

If x has length 1, is numeric (in the sense of is.numeric) and x >= 1, sampling takes place
from 1:x. Note that this convenience feature may lead to undesired behaviour when x is of varying
length sample(x). See the resample() example below.

By default size is equal to length(x) so that sample(x) generates a random permutation of
the elements of x (or 1:x).

The optional prob argument can be used to give a vector of weights for obtaining the elements
of the vector being sampled. They need not sum to one, but they should be nonnegative and not
all zero. If replace is true, Walker’s alias method (Ripley, 1987) is used when there are more
than 250 reasonably probable values: this gives results incompatible with those from R < 2.2.0, and
there will be a warning the first time this happens in a session.

If replace is false, these probabilities are applied sequentially, that is the probability of choosing
the next item is proportional to the weights amongst the remaining items. The number of nonzero
weights must be at least size in this case.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Ripley, B. D. (1987) Stochastic Simulation. Wiley.

See Also

Package sampling for other methods of weighted sampling without replacement.

Examples

x <- 1:12
a random permutation
sample(x)
bootstrap sampling -- only if length(x) > 1 !
sample(x,replace=TRUE)

100 Bernoulli trials
sample(c(0,1), 100, replace = TRUE)

More careful bootstrapping -- Consider this when using sample()
programmatically (i.e., in your function or simulation)!

sample()'s surprise -- example
x <- 1:10

sample(x[x > 8]) # length 2
sample(x[x > 9]) # oops -- length 10!

370 save

try(sample(x[x > 10]))# error!

This is safer, but only for sampling without replacement
resample <- function(x, size, ...)
if(length(x) <= 1) { if(!missing(size) && size == 0) x[FALSE] else x
} else sample(x, size, ...)

resample(x[x > 8])# length 2
resample(x[x > 9])# length 1
resample(x[x > 10])# length 0

save Save R Objects

Description

save writes an external representation of R objects to the specified file. The objects can be read
back from the file at a later date by using the function load (or data in some cases).

save.image() is just a short-cut for ‘save my current workspace’, i.e., save(list =
ls(all=TRUE), file = ".RData"). It is also what happens with q("yes").

Usage

save(..., list = character(0),
file = stop("'file' must be specified"),
ascii = FALSE, version = NULL, envir = parent.frame(),
compress = !ascii, eval.promises = TRUE, precheck = TRUE)

save.image(file = ".RData", version = NULL, ascii = FALSE,
compress = !ascii, safe = TRUE)

Arguments

... the names of the objects to be saved (as symbols or character strings).

list A character vector containing the names of objects to be saved.

file a connection or the name of the file where the data will be saved. Must be a file
name for workspace format version 1.

ascii if TRUE, an ASCII representation of the data is written. The default value of
ascii is FALSE which leads to a more compact binary file being written.

version the workspace format version to use. NULL specifies the current default format.
The version used from R 0.99.0 to R 1.3.1 was version 1. The default format as
from R 1.4.0 is version 2.

envir environment to search for objects to be saved.

compress logical specifying whether saving to a named file is to use compression. Ignored
when file is a connection and for workspace format version 1.

eval.promises
logical: should objects which are promises be forced before saving?

precheck logical: should the existence of the objects be checked before starting to save
(and in particular before opening the file/connection)? Does not apply to version
1 saves.

save 371

safe logical. If TRUE, a temporary file is used for creating the saved workspace.
The temporary file is renamed to file if the save succeeds. This preserves an
existing workspace file if the save fails, but at the cost of using extra disk
space during the save.

Details

The names of the objects specified either as symbols (or character strings) in ... or as a character
vector in list are used to look up the objects from environment envir. By default promises are
evaluated, but if eval.promises = FALSE promises are saved (together with their evaluation
environments). (Promises embedded in objects are always saved unevaluated.)

All R platforms use the XDR (bigendian) representation of C ints and doubles in binary save-d
files, and these are portable across all R platforms. (ASCII saves used to be useful for moving data
between platforms but are now mainly of historical interest.)

Default values for the ascii, compress, safe and version arguments can be modified with
the save.defaults option (used both by save and save.image), see also the example sec-
tion below. If a save.image.defaults option is set it overrides save.defaults for func-
tion save.image (which allows this to have different defaults).

It is possible to compress later (with gzip) a file saved with compress = FALSE: the effect is
the same as saving with compress = TRUE.

Warnings

The ... arguments only give the names of the objects to be saved: they are searched for in the
environment given by the envir argument, and the actual objects given as arguments need not be
those found.

Saved R objects are binary files, even those saved with ascii = TRUE, so ensure that they are
transferred without conversion of end of line markers and of 8-bit characters. The lines are delimited
by LF on all platforms.

Although the default version has not changed since R 1.4.0, this does not mean that saved files are
necessarily backwards compatible. You will be able to load a saved image into an earlier version of
R unless use is made of later additions (for example, raw vectors or external pointers).

Note

The most common reason for failure is lack of write permission in the current directory. For
save.image and for saving at the end of a session this will shown by messages like

Error in gzfile(file, "wb") : unable to open connection
In addition: Warning message:
In gzfile(file, "wb") :

cannot open compressed file '.RDataTmp',
probable reason 'Permission denied'

The defaults were changed to use compressed saves for save in 2.3.0 and for save.image in
2.4.0. Any recent version of R can read compressed save files, and a compressed file can be uncom-
pressed (by gzip -d) for use with very old versions of R.

See Also

dput, dump, load, data.

372 scale

Examples

x <- stats::runif(20)
y <- list(a = 1, b = TRUE, c = "oops")
save(x, y, file = "xy.Rdata")
save.image()
unlink("xy.Rdata")
unlink(".RData")

set save defaults using option:
options(save.defaults=list(ascii=TRUE, safe=FALSE))
save.image()
unlink(".RData")

scale Scaling and Centering of Matrix-like Objects

Description

scale is generic function whose default method centers and/or scales the columns of a numeric
matrix.

Usage

scale(x, center = TRUE, scale = TRUE)

Arguments

x a numeric matrix(like object).

center either a logical value or a numeric vector of length equal to the number of
columns of x.

scale either a logical value or a numeric vector of length equal to the number of
columns of x.

Details

The value of center determines how column centering is performed. If center is a numeric vec-
tor with length equal to the number of columns of x, then each column of x has the corresponding
value from center subtracted from it. If center is TRUE then centering is done by subtract-
ing the column means (omitting NAs) of x from their corresponding columns, and if center is
FALSE, no centering is done.

The value of scale determines how column scaling is performed (after centering). If scale is a
numeric vector with length equal to the number of columns of x, then each column of x is divided
by the corresponding value from scale. If scale is TRUE then scaling is done by dividing the
(centered) columns of x by their root-mean-square, and if scale is FALSE, no scaling is done.

The root-mean-square for a column is obtained by computing the square-root of the sum-of-squares
of the non-missing values in the column divided by the number of non-missing values minus one.

Value

For scale.default, the centered, scaled matrix. The numeric centering and scalings used (if
any) are returned as attributes "scaled:center" and "scaled:scale"

scan 373

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

sweep which allows centering (and scaling) with arbitrary statistics.

For working with the scale of a plot, see par.

Examples

require(stats)
x <- matrix(1:10, ncol=2)
(centered.x <- scale(x, scale=FALSE))
cov(centered.scaled.x <- scale(x))# all 1

scan Read Data Values

Description

Read data into a vector or list from the console or file.

Usage

scan(file = "", what = double(0), nmax = -1, n = -1, sep = "",
quote = if(identical(sep, "\n")) "" else "'\"", dec = ".",
skip = 0, nlines = 0, na.strings = "NA",
flush = FALSE, fill = FALSE, strip.white = FALSE,
quiet = FALSE, blank.lines.skip = TRUE, multi.line = TRUE,
comment.char = "", allowEscapes = FALSE,
encoding = "unknown")

Arguments

file the name of a file to read data values from. If the specified file is "", then input
is taken from the keyboard (or whatever stdin() reads if input is redirected
or R is embedded). (In this case input can be terminated by a blank line or an
EOF signal, Ctrl-D on Unix and Ctrl-Z on Windows.)
Otherwise, the file name is interpreted relative to the current working directory
(given by getwd()), unless it specifies an absolute path. Tilde-expansion is
performed where supported. When running R from a script, file="stdin"
can be used to refer to the process’s stdin file stream.
Alternatively, file can be a connection, which will be opened if necessary,
and if so closed at the end of the function call. Whatever mode the connection
is opened in, any of LF, CRLF or CR will be accepted as the EOL marker for a
line and so will match sep = "\n".
file can also be a complete URL.
To read a data file not in the current encoding (for example a Latin-1 file in
a UTF-8 locale or conversely) use a file connection setting the encoding
argument.

374 scan

what the type of what gives the type of data to be read. The supported types are
logical, integer, numeric, complex, character, raw and list.
If what is a list, it is assumed that the lines of the data file are records each con-
taining length(what) items (‘fields’) and the list components should have
elements which are one of the first six types listed or NULL, see section ‘Details’
below.

nmax integer: the maximum number of data values to be read, or if what is a list, the
maximum number of records to be read. If omitted or not positive or an invalid
value for an integer (and nlines is not set to a positive value), scan will read
to the end of file.

n integer: the maximum number of data values to be read, defaulting to no limit.
Invalid values will be ignored.

sep by default, scan expects to read white-space delimited input fields. Alternatively,
sep can be used to specify a character which delimits fields. A field is always
delimited by an end-of-line marker unless it is quoted.
If specified this should be the empty character string (the default) or NULL or a
character string containing just one single-byte character.

quote the set of quoting characters as a single character string or NULL. In a multibyte
locale the quoting characters must be ASCII (single-byte).

dec decimal point character. This should be a character string containing just one
single-byte character. (NULL and a zero-length character vector are also ac-
cepted, and taken as the default.)

skip the number of lines of the input file to skip before beginning to read data values.

nlines if positive, the maximum number of lines of data to be read.

na.strings character vector. Elements of this vector are to be interpreted as missing (NA)
values. Blank fields are also considered to be missing values in logical, integer,
numeric and complex fields.

flush logical: if TRUE, scan will flush to the end of the line after reading the last
of the fields requested. This allows putting comments after the last field, but
precludes putting more that one record on a line.

fill logical: if TRUE, scan will implicitly add empty fields to any lines with fewer
fields than implied by what.

strip.white vector of logical value(s) corresponding to items in the what argument. It is
used only when sep has been specified, and allows the stripping of leading
and trailing white space from character fields (numeric fields are always
stripped).
If strip.white is of length 1, it applies to all fields; otherwise, if
strip.white[i] is TRUE and the i-th field is of mode character (because
what[i] is) then the leading and trailing white space from field i is stripped.

quiet logical: if FALSE (default), scan() will print a line, saying how many items have
been read.

blank.lines.skip
logical: if TRUE blank lines in the input are ignored, except when counting
skip and nlines.

multi.line logical. Only used if what is a list. If FALSE, all of a record must appear on
one line (but more than one record can appear on a single line). Note that using
fill = TRUE implies that a record will terminated at the end of a line.

scan 375

comment.char character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether (the
default).

allowEscapes logical. Should C-style escapes such as \n be processed (the default) or read
verbatim? Note that if not within quotes these could be interpreted as a delimiter
(but not as a comment character).
The escapes which are interpreted are the control characters \a, \b, \f,
\n, \r, \t, \v and octal and hexadecimal representations like \040 and
\0x2A. Any other escaped character is treated as itself, including backslash.

encoding encoding to be assumed for input strings. It is used to mark character strings
as known to be in Latin-1 or UTF-8: it is not used to re-encode the input.
To do the latter, specify the encoding as part of the connection con or via
options(encoding=): see the example under file.

Details

The value of what can be a list of types, in which case scan returns a list of vectors with the
types given by the types of the elements in what. This provides a way of reading columnar data. If
any of the types is NULL, the corresponding field is skipped (but a NULL component appears in the
result).

The type of what or its components can be one of the six atomic vector types or NULL (see
is.atomic).

‘White space’ is defined for the purposes of this function as one or more contiguous characters from
the set space, horizontal tab, carriage return and line feed. It does not include form feed or vertical
tab, but in Latin-1 and Windows 8-bit locales ’space’ includes non-breaking space.

Empty numeric fields are always regarded as missing values. Empty character fields are scanned
as empty character vectors, unless na.strings contains "" when they are regarded as missing
values.

The allowed input for a numeric field is optional whitespace followed either NA or an optional
sign followed by a decimal or hexadecimal constant (see NumericConstants), or NaN, Inf or
infinity (ignoring case). Out-of-range values are recorded as Inf, -Inf or 0.

For an integer field the allowed input is optional whitespace, followed by either NA or an optional
sign and one or more digits (0-9): all out-of-range values are converted to NA_integer_.

If sep is the default (""), the character \ in a quoted string escapes the following character, so
quotes may be included in the string by escaping them.

If sep is non-default, the fields may be quoted in the style of ‘.csv’ files where separators inside
quotes (” or "") are ignored and quotes may be put inside strings by doubling them. However, if
sep = "\n" it is assumed by default that one wants to read entire lines verbatim.

Quoting is only interpreted in character fields and in NULL fields (which might be skipping character
fields).

Note that since sep is a separator and not a terminator, reading a file by scan("foo",
sep="\n", blank.lines.skip=FALSE) will give an empty final line if the file ends in
a linefeed and not if it does not. This might not be what you expected; see also readLines.

If comment.char occurs (except inside a quoted character field), it signals that the rest of the
line should be regarded as a comment and be discarded. Lines beginning with a comment character
(possibly after white space with the default separator) are treated as blank lines.

There is a check for a user interrupt every 1000 lines if what is a list, otherwise every 10000 items.

376 scan

Value

if what is a list, a list of the same length and same names (as any) as what.

Otherwise, a vector of the type of what.

Character strings in the result will have a declared encoding if encoding is "latin1" or "UTF-
8".

Note

The default for multi.line differs from S. To read one record per line, use flush = TRUE
and multi.line = FALSE. (Note that quoted character strings can still include embedded new-
lines.)

If number of items is not specified, the internal mechanism re-allocates memory in powers of two
and so could use up to three times as much memory as needed. (It needs both old and new copies.)
If you can, specify either n or nmax whenever inputting a large vector, and nmax or nlines when
inputting a large list.

Using scan on an open connection to read partial lines can lose chars: use an explicit separator to
avoid this.

Having nul bytes in fields (including \0 if allowEscapes = TRUE) may lead to interpretation
of the field being terminated at the nul. They not normally present in text files – see readBin.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

read.table for more user-friendly reading of data matrices; readLines to read a file a line at
a time. write.

Quotes for the details of C-style escape sequences.

readChar and readBin to read fixed or variable length character strings or binary representa-
tions of numbers a few at a time from a connection.

Examples

cat("TITLE extra line", "2 3 5 7", "11 13 17", file="ex.data", sep="\n")
pp <- scan("ex.data", skip = 1, quiet= TRUE)
scan("ex.data", skip = 1)
scan("ex.data", skip = 1, nlines=1) # only 1 line after the skipped one
scan("ex.data", what = list("","","")) # flush is F -> read "7"
scan("ex.data", what = list("","",""), flush = TRUE)
unlink("ex.data") # tidy up

search 377

search Give Search Path for R Objects

Description

Gives a list of attached packages (see library), and R objects, usually data.frames.

Usage

search()
searchpaths()

Value

A character vector, starting with ".GlobalEnv", and ending with "package:base" which is
R’s base package required always.

searchpaths gives a similar character vector, with the entries for packages being the path to the
package used to load the code.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (search.)

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.
(searchPaths.)

See Also

.packages to list just the packages on search path.

loadedNamespaces to list loaded name spaces.

attach and detach to change the search path, objects to find R objects in there.

Examples

search()
searchpaths()

seek Functions to Reposition Connections

Description

Functions to re-position connections.

378 seek

Usage

seek(con, ...)
S3 method for class 'connection':
seek(con, where = NA, origin = "start", rw = "", ...)

isSeekable(con)

truncate(con, ...)

Arguments

con a connection.

where numeric. A file position (relative to the origin specified by origin), or NA.

rw character. Empty or "read" or "write", partial matches allowed.

origin character. One of "start", "current", "end": see ‘Details’.

... further arguments passed to or from other methods.

Details

seek with where = NA returns the current byte offset of a connection (from the beginning), and
with a non-missing where argument the connection is re-positioned (if possible) to the specified
position. isSeekable returns whether the connection in principle supports seek: currently only
(possibly gz-compressed) file connections do. gzfile connections do not support origin =
"end"; the file position they use is that of the uncompressed file.

where is stored as a real but should represent an integer: non-integer values are likely to be trun-
cated. Note that the possible values can exceed the largest representable number in an R integer
on 64-bit OSes, and on some 32-bit OSes.

File connections can be open for both writing/appending, in which case R keeps separate positions
for reading and writing. Which seek refers to can be set by its rw argument: the default is the last
mode (reading or writing) which was used. Most files are only opened for reading or writing and so
default to that state. If a file is open for both reading and writing but has not been used, the default
is to give the reading position (0).

The initial file position for reading is always at the beginning. The initial position for writing is
at the beginning of the file for modes "r+" and "r+b", otherwise at the end of the file. Some
platforms only allow writing at the end of the file in the append modes. (The reported write position
for a file opened in an append mode will typically be unreliable until the file has been written to.)

If seek is called with a non-NA value of where, any pushback on a text-mode connection is
discarded.

truncate truncates a file opened for writing at its current position. It works only for file
connections, and is not implemented on all platforms: on others (including Windows) it will not
work for large (> 2Gb) files.

Value

seek returns the current position (before any move), as a (numeric) byte offset from the origin, if
relevant, or 0 if not. Note that the position can exceed the largest representable number in an R
integer on 64-bit OSes, and on some 32-bit OSes.

truncate returns NULL: it stops with an error if it fails (or is not implemented).

isSeekable returns a logical value, whether the connection supports seek.

seq 379

See Also

connections

seq Sequence Generation

Description

Generate regular sequences. seq is a standard generic with a default method. seq.int is an
internal generic which can be much faster but has a few restrictions. seq_along and seq_len
are very fast primitives for two common cases.

Usage

seq(...)

Default S3 method:
seq(from = 1, to = 1, by = ((to - from)/(length.out - 1)),

length.out = NULL, along.with = NULL, ...)

seq.int(from, to, by, length.out, along.with, ...)

seq_along(along.with)
seq_len(length.out)

Arguments

... arguments passed to or from methods.

from, to the starting and (maximal) end value of the sequence.

by number: increment of the sequence.

length.out desired length of the sequence. A non-negative number, which for seq and
seq.int will be rounded up if fractional.

along.with take the length from the length of this argument.

Details

The interpretation of the unnamed arguments of seq and seq.int is not standard, and it is rec-
ommended always to name the arguments when programming.

Both seq are seq.int are generic, and only the default method is described here. Typical usages
are

seq(from, to)
seq(from, to, by=)
seq(from, to, length.out=)
seq(along.with=)
seq(from)
seq(length.out=)

380 seq

The first form generates the sequence from, from+/-1, ..., to (identical to from:to).

The second form generates from, from+by, . . . , up to the sequence value less than or equal to
to. Specifying to - from and by of opposite signs is an error. Note that the final value can go
just beyond to to allow for rounding error.

The third generates a sequence of length.out equally spaced values from from to to.
(length.out is usually abbreviated to length or len, and seq_len is much faster.)

The fourth form generates the sequence 1, 2, ..., length(along.with).
(along.with is usually abbreviated to along, and seq_along is much faster.)

The fifth form generates the sequence 1, 2, ..., length(from) (as if argument
along.with had been specified), unless the argument is numeric of length 1 when it is inter-
preted as 1:from (even for seq(0) for compatibility with S).

The final form generates 1, 2, ..., length.out unless length.out = 0, when it gen-
erates integer(0).

Very small sequences (with from - to of the order of 10−14 times the larger of the ends) will
return from.

For seq(only), up to two of from, to and by can be supplied as complex values provided
length.out or along.with is specified.

Value

Currently, the default method returns a result of type "integer" if from is (numerically equal
to an) integer and, e.g., only to is specified, or also if only length or only along.with is
specified. Note: this may change in the future and programmers should not rely on it.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

The methods seq.Date and seq.POSIXt.

:, rep, sequence, row, col.

Examples

seq(0, 1, length.out=11)
seq(stats::rnorm(20))
seq(1, 9, by = 2) # match
seq(1, 9, by = pi)# stay below
seq(1, 6, by = 3)
seq(1.575, 5.125, by=0.05)
seq(17) # same as 1:17

seq.Date 381

seq.Date Generate Regular Sequences of Dates

Description

The method for seq for objects of class class "Date" representing calendar dates.

Usage

S3 method for class 'Date':
seq(from, to, by, length.out = NULL, along.with = NULL, ...)

Arguments

from starting date. Required

to end date. Optional.

by increment of the sequence. Optional. See ‘Details’.

length.out integer, optional. desired length of the sequence.

along.with take the length from the length of this argument.

... arguments passed to or from other methods.

Details

by can be specified in several ways.

• A number, taken to be in days.

• A object of class difftime

• A character string, containing one of "day", "week", "month" or "year". This can
optionally be preceded by a (positive or negative) integer and a space, or followed by "s".
See seq.POSIXt for the details of "month".

Value

A vector of class "Date".

See Also

Date

Examples

first days of years
seq(as.Date("1910/1/1"), as.Date("1999/1/1"), "years")
by month
seq(as.Date("2000/1/1"), by="month", length.out=12)
quarters
seq(as.Date("2000/1/1"), as.Date("2003/1/1"), by="3 months")

find all 7th of the month between two dates, the last being a 7th.
st <- as.Date("1998-12-17")
en <- as.Date("2000-1-7")

382 seq.POSIXt

ll <- seq(en, st, by="-1 month")
rev(ll[ll > st & ll < en])

seq.POSIXt Generate Regular Sequences of Dates

Description

The method for seq for date-time classes.

Usage

S3 method for class 'POSIXt':
seq(from, to, by, length.out = NULL, along.with = NULL, ...)

Arguments

from starting date. Required.

to end date. Optional.

by increment of the sequence. Optional. See ‘Details’.

length.out integer, optional. desired length of the sequence.

along.with take the length from the length of this argument.

... arguments passed to or from other methods.

Details

by can be specified in several ways.

• A number, taken to be in seconds.

• A object of class difftime

• A character string, containing one of "sec", "min", "hour", "day", "DSTday",
"week", "month" or "year". This can optionally be preceded by a (positive or nega-
tive) integer and a space, or followed by "s".

The difference between "day" and "DSTday" is that the former ignores changes to/from daylight
savings time and the latter takes the same clock time each day. ("week" ignores DST (it is a period
of 144 hours), but "7 DSTdays") can be used as an alternative. "month" and "year" allow
for DST.)

The timezone of the result is taken from from: remember than GMT does not have daylight savings
time.

Using "month" first advances the month without changing the day: if this results in an invalid day
of the month, it is counted forward into the next month: see the examples.

Value

A vector of class "POSIXct".

See Also

DateTimeClasses

sequence 383

Examples

first days of years
seq(ISOdate(1910,1,1), ISOdate(1999,1,1), "years")
by month
seq(ISOdate(2000,1,1), by = "month", length.out = 12)
seq(ISOdate(2000,1,31), by = "month", length.out = 4)
quarters
seq(ISOdate(1990,1,1), ISOdate(2000,1,1), by = "3 months")
days vs DSTdays: use c() to lose the timezone.
seq(c(ISOdate(2000,3,20)), by = "day", length.out = 10)
seq(c(ISOdate(2000,3,20)), by = "DSTday", length.out = 10)
seq(c(ISOdate(2000,3,20)), by = "7 DSTdays", length.out = 4)

sequence Create A Vector of Sequences

Description

For each element of nvec the sequence seq_len(nvec[i]) is created. These are concatenated
and the result returned.

Usage

sequence(nvec)

Arguments

nvec a non-negative integer vector each element of which specifies the end point of a
sequence.

Details

Earlier versions of sequence used to work for 0 or negative inputs as seq(x) == 1:x.

Note that sequence <- function(nvec) unlist(lapply(nvec, seq_len)) and
it mainly exists in reverence to the very early history of R.

See Also

gl, seq, rep.

Examples

sequence(c(3,2))# the concatenated sequences 1:3 and 1:2.
#> [1] 1 2 3 1 2

384 sets

sets Set Operations

Description

Performs set union, intersection, (asymmetric!) difference, equality and membership on two vec-
tors.

Usage

union(x, y)
intersect(x, y)
setdiff(x, y)
setequal(x, y)

is.element(el, set)

Arguments
x, y, el, set

vectors (of the same mode) containing a sequence of items (conceptually) with
no duplicated values.

Details

Each of union, intersect, setdiff and setequal will discard any duplicated values in
the arguments, and they apply as.vector to their arguments (and so in particular coerce factors
to character vectors).

is.element(x, y) is identical to x %in% y.

Value

A vector of the same mode as x or y for setdiff and intersect, respectively, and of a
common mode for union.

A logical scalar for setequal and a logical of the same length as x for is.element.

See Also

%in%

‘plotmath’ for the use of union and intersect in plot annotation.

Examples

(x <- c(sort(sample(1:20, 9)),NA))
(y <- c(sort(sample(3:23, 7)),NA))
union(x, y)
intersect(x, y)
setdiff(x, y)
setdiff(y, x)
setequal(x, y)

True for all possible x & y :

setTimeLimit 385

setequal(union(x,y),
c(setdiff(x,y), intersect(x,y), setdiff(y,x)))

is.element(x, y)# length 10
is.element(y, x)# length 8

setTimeLimit Set CPU and/or Elapsed Time Limits

Description

Functions to set CPU and/or elapsed time limits for top-level computations or the current session.

Usage

setTimeLimit(cpu = Inf, elapsed = Inf, transient = FALSE)

setSessionTimeLimit(cpu = Inf, elapsed = Inf)

Arguments

cpu double. Limit on total cpu time.

elapsed double. Limit on elapsed time.

transient logical. If TRUE, the limits apply only to the rest of the current computation.

Details

setTimeLimit sets limits which apply to each top-level computation, that is a command line
(including any continuation lines) entered at the console or from a file. If it is called from within a
computation the limits apply to the rest of the computation and (unless transient = TRUE to
subsequent top-level computations.

setSessionTimeLimit sets limits for the rest of the session. Once a session limit is reached it
is reset to Inf.

Setting any limit has a small overhead – well under 1% on the systems measured.

Time limits are checked whenever a user interrupt could occur. This will happen frequently in R
code and during Sys.sleep, but only at points in compiled C and Foreign code identified by the
code author.

‘Total cpu time’ includes that used by child processes where the latter is reported.

It is possible (but very unusual) to build R without support for proc.time, in which case these
functions have no effect.

386 showConnections

showConnections Display Connections

Description

Display aspects of connections.

Usage

showConnections(all = FALSE)
getConnection(what)
closeAllConnections()

stdin()
stdout()
stderr()

Arguments

all logical: if true all connections, including closed ones and the standard ones are
displayed. If false only open user-created connections are included.

what integer: a row number of the table given by showConnections.

Details

stdin(), stdout() and stderr() are standard connections corresponding to input, output
and error on the console respectively (and not necessarily to file streams). They are text-mode
connections of class "terminal" which cannot be opened or closed, and are read-only, write-
only and write-only respectively. The stdout() and stderr() connections can be re-directed
by sink (and in some circumstances the output from stdout() can be split: see the help page).

The encoding for stdin() when redirected can be set by the command-line flag --encoding.

showConnections returns a matrix of information. If a connection object has been lost or
forgotten, getConnection will take a row number from the table and return a connection object
for that connection, which can be used to close the connection, for example. However, if there is
no R level object referring to the connection it will be closed automatically at the next garbage
collection.

closeAllConnections closes (and destroys) all user connections, restoring all sink diver-
sions as it does so.

Value

stdin(), stdout() and stderr() return connection objects.

showConnections returns a character matrix of information with a row for each connection, by
default only for open non-standard connections.

getConnection returns a connection object, or NULL.

shQuote 387

Note

stdin() refers to the ‘console’ and not to the C-level ‘stdin’ of the process. The distinction mat-
ters in GUI consoles (which may not have an active ‘stdin’, and if they do it may not be connected
to console input), and also in embedded applications. If you want access to the C-level file stream
‘stdin’, use file("stdin").

When R is reading a script from a file, the file is the ‘console’: this is traditional usage to allow
in-line data (see ‘An Introduction to R’ for an example).

See Also

connections

Examples

showConnections(all = TRUE)

textConnection(letters)
oops, I forgot to record that one
showConnections()
class description mode text isopen can read can write
#3 "letters" "textConnection" "r" "text" "opened" "yes" "no"
Not run: close(getConnection(3))

showConnections()

shQuote Quote Strings for Use in OS Shells

Description

Quote a string to be passed to an operating system shell.

Usage

shQuote(string, type = c("sh", "csh", "cmd"))

Arguments

string a character vector, usually of length one.

type character: the type of shell. Partial matching is supported. "cmd" refers to the
Windows NT shell, and is the default under Windows.

Details

The default type of quoting supported under Unix-alikes is that for the Bourne shell sh. If the string
does not contain single quotes, we can just surround it with single quotes. Otherwise, the string is
surrounded in double quotes, which suppresses all special meanings of metacharacters except dollar,
backquote and backslash, so these (and of course double quote) are preceded by backslash. This
type of quoting is also appropriate for bash, ksh and zsh.

The other type of quoting is for the C-shell (csh and tcsh). Once again, if the string does not
contain single quotes, we can just surround it with single quotes. If it does contain single quotes,

388 sign

we can use double quotes provided it does not contain dollar or backquote (and we need to escape
backslash, exclamation mark and double quote). As a last resort, we need to split the string into
pieces not containing single quotes and surround each with single quotes, and the single quotes with
double quotes.

References

Loukides, M. et al (2002) Unix Power Tools Third Edition. O’Reilly. Section 27.12.

http://www.mhuffman.com/notes/dos/bash_cmd.htm

See Also

Quotes for quoting R code.

sQuote for quoting English text.

Examples

test <- "abc$def`gh`i\\j"
cat(shQuote(test), "\n")
Not run: system(paste("echo", shQuote(test)))
test <- "don't do it!"
cat(shQuote(test), "\n")

tryit <- paste("use the", sQuote("-c"), "switch\nlike this")
cat(shQuote(tryit), "\n")
Not run: system(paste("echo", shQuote(tryit)))
cat(shQuote(tryit, type="csh"), "\n")

Windows-only example.
perlcmd <- 'print "Hello World\n";'
Not run: shell(paste("perl -e", shQuote(perlcmd, type="cmd")))

sign Sign Function

Description

sign returns a vector with the signs of the corresponding elements of x (the sign of a real number
is 1, 0, or −1 if the number is positive, zero, or negative, respectively).

Note that sign does not operate on complex vectors.

Usage

sign(x)

Arguments

x a numeric vector

Details

This is a generic function: methods can be defined for it directly or via the Math group generic.

http://www.mhuffman.com/notes/dos/bash_cmd.htm

Signals 389

See Also

abs

Examples

sign(pi) # == 1
sign(-2:3)# -1 -1 0 1 1 1

Signals Interrupting Execution of R

Description

On receiving SIGUSR1 R will save the workspace and quit. SIGUSR2 has the same result except
that the .Last function and on.exit expressions will not be called.

Usage

kill -USR1 pid
kill -USR2 pid

Arguments

pid The process ID of the R process

Warning

It is possible that one or more R objects will be undergoing modification at the time the signal is
sent. These objects could be saved in a corrupted form.

sink Send R Output to a File

Description

sink diverts R output to a connection.

sink.number() reports how many diversions are in use.

sink.number(type = "message") reports the number of the connection currently being
used for error messages.

Usage

sink(file = NULL, append = FALSE, type = c("output", "message"),
split = FALSE)

sink.number(type = c("output", "message"))

390 sink

Arguments

file a writable connection or a character string naming the file to write to, or NULL
to stop sink-ing.

append logical. If TRUE, output will be appended to file; otherwise, it will overwrite
the contents of file.

type character. Either the output stream or the messages stream.

split logical: if TRUE, output will be sent to the new sink and to the current output
stream, like the Unix program tee.

Details

sink diverts R output to a connection. If file is a character string, a file connection with that
name will be established for the duration of the diversion.

Normal R output (to connection stdout)) is diverted by the default type = "output". Only
prompts and (most) messages continue to appear on the console. Messages sent to stderr()
(including those from message, warning and stop) can be diverted by sink(type =
"message") (see below).

sink() or sink(file=NULL) ends the last diversion (of the specified type). There is a stack
of diversions for normal output, so output reverts to the previous diversion (if there was one). The
stack is of up to 21 connections (20 diversions).

If file is a connection it will be opened if necessary (in "wt"mode) and closed once it is removed
from the stack of diversions.

split = TRUE only splits R output (via Rvprintf) and the default output from
writeLines: it does not split all output that might be sent to stdout().

Sink-ing the messages stream should be done only with great care. For that stream file must be
an already open connection, and there is no stack of connections.

Value

sink returns NULL.

For sink.number() the number (0, 1, 2, . . .) of diversions of output in place.

For sink.number("message") the connection number used for messages, 2 if no diversion
has been used.

Warning

Do not use a connection that is open for sink for any other purpose. The software will stop you
closing one such inadvertently.

Do not sink the messages stream unless you understand the source code implementing it and hence
the pitfalls.

Note

sink(split = TRUE) is only available on systems which support the C99 function va_copy
(or under the name __va_copy), but we know of no current systems which do not.

slice.index 391

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.

See Also

capture.output

Examples

sink("sink-examp.txt")
i <- 1:10
outer(i, i, "*")
sink()
unlink("sink-examp.txt")
Not run:
capture all the output to a file.
zz <- file("all.Rout", open="wt")
sink(zz)
sink(zz, type="message")
try(log("a"))
back to the console
sink(type="message")
sink()
try(log("a"))
End(Not run)

slice.index Slice Indexes in an Array

Description

Returns a matrix of integers indicating the number of their slice in a given array.

Usage

slice.index(x, MARGIN)

Arguments

x an array. If x has no dimension attribute, it is considered a one-dimensional
array.

MARGIN an integer giving the dimension number to slice by.

Value

An integer array y with dimensions corresponding to those of x such that all elements of slice
number i with respect to dimension MARGIN have value i.

392 slotOp

See Also

row and col for determining row and column indexes; in fact, these are special cases of
slice.index corresponding to MARGIN equal to 1 and 2, respectively when x is a matrix.

Examples

x <- array(1 : 24, c(2, 3, 4))
slice.index(x, 2)

slotOp Extract Slots

Description

Extract tbe contents of a slot in a object with a formal (S4) class structure.

Usage

object@name

Arguments

object An object from a formally defined (S4) class.

name The character-string name of the slot.

Details

This operator supports the formal classes of package methods, and is enabled only when methods
is loaded (as per default). See slot for further details.

As from R 2.7.0 it is checked that object is an S4 object (see isS4), and as from R 2.8.0 it is an
error to attempt to use @ on any other object. (There is an exception for name .Data for internal
use only.)

If name is not a slot name, an error is thrown.

Value

The current contents of the slot.

See Also

Extract, slot

socketSelect 393

socketSelect Wait on Socket Connections

Description

Waits for the first of several socket connections to become available.

Usage

socketSelect(socklist, write = FALSE, timeout = NULL)

Arguments

socklist list of open socket connections

write logical. If TRUE wait for corresponding socket to become available for writing;
otherwise wait for it to become available for reading.

timeout numeric or NULL. Time in seconds to wait for a socket to become available;
NULL means wait indefinitely.

Details

The values in write are recycled if necessary to make up a logical vector the same length as
socklist. Socket connections can appear more than once in socklist; this can be useful if
you want to determine whether a socket is available for reading or writing.

Value

Logical the same length as socklist indicating whether the corresponding socket connection is
available for output or input, depending on the corresponding value of write.

Examples

Not run:
test whether socket connection s is available for writing or reading
socketSelect(list(s,s),c(TRUE,FALSE),timeout=0)
End(Not run)

solve Solve a System of Equations

Description

This generic function solves the equation a %*% x = b for x, where b can be either a vector or
a matrix.

Usage

solve(a, b, ...)

Default S3 method:
solve(a, b, tol, LINPACK = FALSE, ...)

394 solve

Arguments

a a square numeric or complex matrix containing the coefficients of the linear
system.

b a numeric or complex vector or matrix giving the right-hand side(s) of the linear
system. If missing, b is taken to be an identity matrix and solve will return
the inverse of a.

tol the tolerance for detecting linear dependencies in the columns of a. If LINPACK
is TRUE the default is 1e-7, otherwise it is .Machine$double.eps. Future
versions of R may use a tighter tolerance. Not presently used with complex
matrices a.

LINPACK logical. Should LINPACK be used (for compatibility with R < 1.7.0)? Other-
wise LAPACK is used.

... further arguments passed to or from other methods

Details

a or b can be complex, but this uses double complex arithmetic which might not be available on all
platforms and LAPACK will always be used.

The row and column names of the result are taken from the column names of a and of b respectively.
If b is missing the column names of the result are the row names of a. No check is made that the
column names of a and the row names of b are equal.

For back-compatibility a can be a (real) QR decomposition, although qr.solve should be called
in that case. qr.solve can handle non-square systems.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

solve.qr for the qr method, chol2inv for inverting from the Choleski factor backsolve,
qr.solve.

Examples

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
h8 <- hilbert(8); h8
sh8 <- solve(h8)
round(sh8 %*% h8, 3)

A <- hilbert(4)
A[] <- as.complex(A)
might not be supported on all platforms
try(solve(A))

sort 395

sort Sorting or Ordering Vectors

Description

Sort (or order) a vector or factor (partially) into ascending (or descending) order. For ordering along
more than one variable, e.g., for sorting data frames, see order.

Usage

sort(x, decreasing = FALSE, ...)

Default S3 method:
sort(x, decreasing = FALSE, na.last = NA, ...)

sort.int(x, partial = NULL, na.last = NA, decreasing = FALSE,
method = c("shell", "quick"), index.return = FALSE)

Arguments

x for sort an R object with a class or a numeric, complex, character or logical
vector. For sort.int, a numeric, complex, character or logical vector, or a
factor.

decreasing logical. Should the sort be increasing or decreasing? Not available for partial
sorting.

... arguments to be passed to or from methods or (for the default methods and
objects without a class) to sort.int.

na.last for controlling the treatment of NAs. If TRUE, missing values in the data are put
last; if FALSE, they are put first; if NA, they are removed.

partial NULL or an integer vector of indices for partial sorting.

method character string specifying the algorithm used.

index.return logical indicating if the ordering index vector should be returned as well; this is
only available for a few cases, the default na.last = NA and full sorting of
non-factors.

Details

sort is a generic function for which methods can be written, and sort.int is the internal method
which is compatible with S if only the first three arguments are used.

The default sort method makes use of order for objects with classes, which in turn makes use
of the generic function xtfrm.

If partial is not NULL, it is taken to contain indices of elements of x which are to be placed in
their correct positions by partial sorting. After the sort, the values specified in partial are in their
correct position in the sorted array. Any values smaller than these values are guaranteed to have a
smaller index in the sorted array and any values which are greater are guaranteed to have a bigger
index in the sorted array. (This is included for efficiency, and many of the options are not available
for partial sorting. It is only substantially more efficient if partial has a handful of elements, and
a full sort is done if there are more than 10.) Names are discarded for partial sorting.

396 sort

Complex values are sorted first by the real part, then the imaginary part.

The sort order for character vectors will depend on the collating sequence of the locale in use:
see Comparison. The sort order for factors is the order of their levels (which is particularly
appropriate for ordered factors).

Method "shell" uses Shellsort (an O(n4/3) variant from Sedgewick (1996)). If x has names a
stable sort is used, so ties are not reordered. (This only matters if names are present.)

Method "quick" uses Singleton’s Quicksort implementation and is only available when x is nu-
meric (double or integer) and partial is NULL. (For other types of x Shellsort is used, silently.) It
is normally somewhat faster than Shellsort (perhaps twice as fast on vectors of length a million) but
has poor performance in the rare worst case. (Peto’s modification using a pseudo-random midpoint
is used to make the worst case rarer.) This is not a stable sort, and ties may be reordered.

Value

For sort, the result depends on the S3 method which is dispatched. If x does not have a class
the rest of this section applies. For classed objects which do not have a specific method the default
method will be used and is equivalent to x[order(x, ...)]: this depends on the class having
a suitable method for [(and also that order will work, which is not the case for a class based on
a list).

For sort.int the sorted vector unless index.return is true, when the result is a list with
components named x and ix containing the sorted numbers and the ordering index vector. In the
latter case, if method == "quick" ties may be reversed in the ordering, unlike sort.list,
as quicksort is not stable.

All attributes are removed from the return value (see Becker et al, 1988, p.146) except names, which
are sorted. (If partial is specified even the names are removed.) Note that this means that the
returned value has no class, except for factors and ordered factors (which are treated specially and
whose result is transformed back to the original class).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Sedgewick, R. (1986) A new upper bound for Shell sort. J. Algorithms 7, 159–173.

Singleton, R. C. (1969) An efficient algorithm for sorting with minimal storage: Algorithm 347.
Communications of the ACM 12, 185–187.

See Also

order for sorting on or reordering multiple variables.

is.unsorted. rank.

Examples

require(stats)

x <- swiss$Education[1:25]
x; sort(x); sort(x, partial = c(10, 15))
median.default # shows you another example for 'partial'

illustrate 'stable' sorting (of ties):
sort(c(10:3,2:12), method = "sh", index.return=TRUE) # is stable
$x : 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 12

source 397

$ix: 9 8 10 7 11 6 12 5 13 4 14 3 15 2 16 1 17 18 19
sort(c(10:3,2:12), method = "qu", index.return=TRUE) # is not
$x : 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11 12
$ix: 9 10 8 7 11 6 12 5 13 4 14 3 15 16 2 17 1 18 19
^^^^^

x <- c(1:3, 3:5, 10)
is.unsorted(x) #-> FALSE: is sorted
is.unsorted(x, strictly=TRUE) #-> TRUE : is not (and cannot be) sorted strictly

Not run: ## Small speed comparison simulation:
N <- 2000
Sim <- 20
rep <- 1000 # << adjust to your CPU
c1 <- c2 <- numeric(Sim)
for(is in 1:Sim){
x <- rnorm(N)
c1[is] <- system.time(for(i in 1:rep) sort(x, method = "shell"))[1]
c2[is] <- system.time(for(i in 1:rep) sort(x, method = "quick"))[1]
stopifnot(sort(x, method = "s") == sort(x, method = "q"))

}
rbind(ShellSort = c1, QuickSort = c2)
cat("Speedup factor of quick sort():\n")
summary({qq <- c1 / c2; qq[is.finite(qq)]})

A larger test
x <- rnorm(1e7)
system.time(x1 <- sort(x, method = "shell"))
system.time(x2 <- sort(x, method = "quick"))
stopifnot(identical(x1, x2))
End(Not run)

source Read R Code from a File or a Connection

Description

source causes R to accept its input from the named file or URL (the name must be quoted) or
connection. Input is read and parsed by from that file until the end of the file is reached, then the
parsed expressions are evaluated sequentially in the chosen environment.

Usage

source(file, local = FALSE, echo = verbose, print.eval = echo,
verbose = getOption("verbose"),
prompt.echo = getOption("prompt"),
max.deparse.length = 150, chdir = FALSE,
encoding = getOption("encoding"),
continue.echo = getOption("continue"),
skip.echo = 0, keep.source = getOption("keep.source"))

398 source

Arguments

file a connection or a character string giving the pathname of the file or URL to read
from.

local if local is FALSE, the statements scanned are evaluated in the user’s
workspace (the global environment), otherwise in the environment calling
source.

echo logical; if TRUE, each expression is printed after parsing, before evaluation.

print.eval logical; if TRUE, the result of eval(i) is printed for each expression i; de-
faults to the value of echo.

verbose if TRUE, more diagnostics (than just echo = TRUE) are printed during parsing
and evaluation of input, including extra info for each expression.

prompt.echo character; gives the prompt to be used if echo = TRUE.
max.deparse.length

integer; is used only if echo is TRUE and gives the maximal number of charac-
ters output for the deparse of a single expression.

chdir logical; if TRUE and file is a pathname, the R working directory is temporar-
ily changed to the directory containing file for evaluating.

encoding character vector. The encoding(x) to be assumed when file is a character
string: see file. A possible value is "unknown": see the ‘Details’.

continue.echo
character; gives the prompt to use on continuation lines if echo = TRUE.

skip.echo integer; how many comment lines at the start of the file to skip if echo =
TRUE.

keep.source logical: should the source formatting be retained when echo expressions, if pos-
sible?

Details

Note that running code via source differs in a few respects from entering it at the R command
line. Since expressions are not executed at the top level, auto-printing is not done. So you will need
to include explicit print calls for things you want to be printed (and remember that this includes
plotting by lattice, FAQ Q7.22). Since the complete file is parsed before any of it is run, syntax
errors result in none of the code being run. If an error occurs in running a syntactically correct
script, anything assigned into the workspace by code that has been run will be kept (just as from the
command line), but diagnostic information such as traceback() will contain additional calls to
eval.with.vis, an undocumented internal function.

All versions of R accept input from a connection with end of line marked by LF (as used on Unix),
CRLF (as used on DOS/Windows) or CR (as used on classic MacOS). The final line can be incom-
plete, that is missing the final end-of-line marker.

If options("keep.source") is true (the default in interactive use), the source of functions is kept
so they can be listed exactly as input. This imposes a limit of 128K bytes on the function size
and a nesting limit of 265. Use keep.source = FALSE when these limits might take effect: if
exceeded they generate an error.

This paragraph applies if file is a filename (rather than a connection). If encoding =
"unknown", an attempt is made to guess the encoding. The result of localeToCharset()
is used as a guide. If encoding has two or more elements, they are tried in turn until the file/URL
can be read without error in the trial encoding.

Special 399

Unlike input from a console, lines in the file or on a connection can contain an unlimited number of
characters.

When skip.echo > 0, that many comment lines at the start of the file will not be echoed.
This does not affect the execution of the code at all. If there are executable lines within the first
skip.echo lines, echoing will start with the first of them.

If echo is true and a deparsed expression exceeds max.deparse.length, that many characters
are output followed by [TRUNCATED] .

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

demo which uses source; eval, parse and scan; options("keep.source").

sys.source which is a streamlined version to source a file into an environment.

Examples

If you want to source() a bunch of files, something like
the following may be useful:
sourceDir <- function(path, trace = TRUE, ...) {

for (nm in list.files(path, pattern = "\\.[RrSsQq]$")) {
if(trace) cat(nm,":")
source(file.path(path, nm), ...)
if(trace) cat("\n")

}
}

Special Special Functions of Mathematics

Description

Special mathematical functions related to the beta and gamma functions.

Usage

beta(a, b)
lbeta(a, b)

gamma(x)
lgamma(x)
psigamma(x, deriv = 0)
digamma(x)
trigamma(x)

choose(n, k)
lchoose(n, k)
factorial(x)
lfactorial(x)

400 Special

Arguments

a, b non-negative numeric vectors.

x, n numeric vectors.

k, deriv integer vectors.

Details

The functions beta and lbeta return the beta function and the natural logarithm of the beta
function,

B(a, b) =
Γ(a)Γ(b)
Γ(a+ b)

.

The formal definition is

B(a, b) =
∫ 1

0

ta−1(1− t)b−1dt

(Abramowitz and Stegun section 6.2.1, page 258). Note that it is only defined in R for non-negative
a and b, and is infinite if either is zero.

The functions gamma and lgamma return the gamma function Γ(x) and the natural logarithm of
the absolute value of the gamma function. The gamma function is defined by (Abramowitz and
Stegun section 6.1.1, page 255)

Γ(x) =
∫ ∞

0

ta−1e−tdt

for all real x except zero and negative integers (when NaN is returned). factorial(x) (x! for
non-negative integer x) is defined to be gamma(x+1) and lfactorial to be lgamma(x+1).

The functions digamma and trigamma return the first and second derivatives of the logarithm of
the gamma function. psigamma(x, deriv) (deriv >= 0) computes the deriv-th deriva-
tive of ψ(x).

digamma(x) = ψ(x) =
d

dx
ln Γ(x) =

Γ′(x)
Γ(x)

This is often called the ‘polygamma’ function, e.g. in Abramowitz and Stegun (section 6.4.1, page
260); and its higher derivatives (deriv = 2:4) have occasionally been called ‘tetragamma’,
‘pentagamma’, and ‘hexagamma’.

The functions choose and lchoose return binomial coefficients and their logarithms. Note that
choose(n,k) is defined for all real numbers n and integer k. For k ≥ 1 as n(n− 1) · · · (n− k+
1)/k!, as 1 for k = 0 and as 0 for negative k. Non-integer values of k are rounded to an integer,
with a warning.
choose(*,k) uses direct arithmetic (instead of [l]gamma calls) for small k, for speed and
accuracy reasons. Note the function combn (package utils) for enumeration of all possible combi-
nations.

The gamma, lgamma, digamma and trigamma functions are generic: methods can be defined
for them individually or via the Math group generic.

Source

gamma, lgamma, beta and lbeta are based on C translations of Fortran subroutines by W.
Fullerton of Los Alamos Scientific Laboratory (now available as part of SLATEC).

digamma, trigamma and psigamma are based on

Amos, D. E. (1983). A portable Fortran subroutine for derivatives of the psi function, Algorithm
610, ACM Transactions on Mathematical Software 9(4), 494–502.

Special 401

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (For gamma and lgamma.)

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover.
Chapter 6: Gamma and Related Functions.

See Also

Arithmetic for simple, sqrt for miscellaneous mathematical functions and Bessel for the
real Bessel functions. Note that gammaCody(x) is considerably faster than gamma(x) but
slightly less accurate and (potentially) less reliable.

For the incomplete gamma function see pgamma.

Examples

require(graphics)

choose(5, 2)
for (n in 0:10) print(choose(n, k = 0:n))

factorial(100)
lfactorial(10000)

gamma has 1st order poles at 0, -1, -2, ...
this will generate loss of precision warnings, so turn off
op <- options("warn")
options(warn = -1)
x <- sort(c(seq(-3,4, length.out=201), outer(0:-3, (-1:1)*1e-6, "+")))
plot(x, gamma(x), ylim=c(-20,20), col="red", type="l", lwd=2,

main=expression(Gamma(x)))
abline(h=0, v=-3:0, lty=3, col="midnightblue")
options(op)

x <- seq(.1, 4, length.out = 201); dx <- diff(x)[1]
par(mfrow = c(2, 3))
for (ch in c("", "l","di","tri","tetra","penta")) {
is.deriv <- nchar(ch) >= 2
nm <- paste(ch, "gamma", sep = "")
if (is.deriv) {
dy <- diff(y) / dx # finite difference
der <- which(ch == c("di","tri","tetra","penta")) - 1
nm2 <- paste("psigamma(*, deriv = ", der,")",sep='')
nm <- if(der >= 2) nm2 else paste(nm, nm2, sep = " ==\n")
y <- psigamma(x, deriv=der)

} else {
y <- get(nm)(x)

}
plot(x, y, type = "l", main = nm, col = "red")
abline(h = 0, col = "lightgray")
if (is.deriv) lines(x[-1], dy, col = "blue", lty = 2)

}
par(mfrow = c(1, 1))

"Extended" Pascal triangle:
fN <- function(n) formatC(n, width=2)

402 split

for (n in -4:10) cat(fN(n),":", fN(choose(n, k= -2:max(3,n+2))), "\n")

R code version of choose() [simplistic; warning for k < 0]:
mychoose <- function(r,k)

ifelse(k <= 0, (k==0),
sapply(k, function(k) prod(r:(r-k+1))) / factorial(k))

k <- -1:6
cbind(k=k, choose(1/2, k), mychoose(1/2, k))

Binomial theorem for n=1/2 ;
sqrt(1+x) = (1+x)^(1/2) = sum_{k=0}^Inf choose(1/2, k) * x^k :
k <- 0:10 # 10 is sufficient for ~ 9 digit precision:
sqrt(1.25)
sum(choose(1/2, k)* .25^k)

split Divide into Groups and Reassemble

Description

split divides the data in the vector x into the groups defined by f. The replacement forms replace
values corresponding to such a division. unsplit reverses the effect of split.

Usage

split(x, f, drop = FALSE, ...)
split(x, f, drop = FALSE, ...) <- value
unsplit(value, f, drop = FALSE)

Arguments

x vector or data frame containing values to be divided into groups.

f a ‘factor’ in the sense that as.factor(f) defines the grouping, or a list of
such factors in which case their interaction is used for the grouping.

drop logical indicating if levels that do not occur should be dropped (if f is a factor
or a list).

value a list of vectors or data frames compatible with a splitting of x. Recycling
applies if the lengths do not match.

... further potential arguments passed to methods.

Details

split and split<- are generic functions with default and data.frame methods. The data
frame method can also be used to split a matrix into a list of matrices, and the replacement form
likewise, provided they are invoked explicitly.

unsplit works with lists of vectors or data frames (assumed to have compatible structure, as if
created by split). It puts elements or rows back in the positions given by f. In the data frame
case, row names are obtained by unsplitting the row name vectors from the elements of value.

split 403

f is recycled as necessary and if the length of x is not a multiple of the length of f a warning is
printed.

Any missing values in f are dropped together with the corresponding values of x.

Value

The value returned from split is a list of vectors containing the values for the groups. The
components of the list are named by the levels of f (after converting to a factor, or if already a
factor and drop=TRUE, dropping unused levels).

The replacement forms return their right hand side. unsplit returns a vector or data frame for
which split(x, f) equals value

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

cut

Examples

require(stats); require(graphics)
n <- 10; nn <- 100
g <- factor(round(n * stats::runif(n * nn)))
x <- rnorm(n * nn) + sqrt(as.numeric(g))
xg <- split(x, g)
boxplot(xg, col = "lavender", notch = TRUE, varwidth = TRUE)
sapply(xg, length)
sapply(xg, mean)

Calculate z-scores by group

z <- unsplit(lapply(split(x, g), scale), g)
tapply(z, g, mean)

or

z <- x
split(z, g) <- lapply(split(x, g), scale)
tapply(z, g, sd)

data frame variation

Notice that assignment form is not used since a variable is being added

g <- airquality$Month
l <- split(airquality, g)
l <- lapply(l, transform, Oz.Z = scale(Ozone))
aq2 <- unsplit(l, g)
head(aq2)
with(aq2, tapply(Oz.Z, Month, sd, na.rm=TRUE))

404 sprintf

Split a matrix into a list by columns
ma <- cbind(x = 1:10, y = (-4:5)^2)
split(ma, col(ma))

split(1:10, 1:2)

sprintf Use C-style String Formatting Commands

Description

A wrapper for the C function sprintf, that returns a character vector containing a formatted
combination of text and variable values.

Usage

sprintf(fmt, ...)
gettextf(fmt, ..., domain = NULL)

Arguments

fmt a character vector of format strings, each of up to 8192 bytes.

... values to be passed into fmt. Only logical, integer, real and character vectors
are supported, but some coercion will be done: see the ‘Details’ section.

domain see gettext.

Details

sprintf is a wrapper for the system sprintf C-library function. Attempts are made to check
that the mode of the values passed match the format supplied, and R’s special values (NA, Inf,
-Inf and NaN) are handled correctly.

gettextf is a convenience function which provides C-style string formatting with possible trans-
lation of the format string.

The arguments (including fmt) are recycled if possible a whole number of times to the length of
the longest, and then the formatting is done in parallel.

The following is abstracted from Kernighan and Ritchie (see References). The string fmt contains
normal characters, which are passed through to the output string, and also conversion specifications
which operate on the arguments provided through The allowed conversion specifications
start with a % and end with one of the letters in the set difeEgGsxX%. These letters denote the
following types:

d, i, x, X Integer value, x and X being hexadecimal (using the same case for a-f as the
code). Numeric variables with exactly integer values will be coerced to integer. Formats d
and i can also be used for logical variables, which will be converted to 0, 1 or NA.

f Double precision value, in decimal notation of the form "[-]mmm.ddd". The number of decimal
places is specified by the precision: the default is 6; a precision of 0 suppresses the decimal
point. Non-finite values are converted to NA, NaN or (perhaps a sign followed by) Inf.

e, E Double precision value, in decimal notation of the form [-]m.ddde[+-]xx or
[-]m.dddE[+-]xx.

sprintf 405

g, G Double precision value, in %e or %E format if the exponent is less than -4 or greater than or
equal to the precision, and %f format otherwise.

a, A Double precision value, in binary notation of the form [-]0xh.hhhp[+-]d. This is a
binary fraction expressed in hex multiplied by a (decimal) power of 2. The number of hex
digits after the decimal point is specified by the precision: the default is enough digits to
represent exactly the internal binary representation. Non-finite values are converted to NA,
NaN or (perhaps a sign followed by) Inf. Format %a uses lower-case for x, p and the hex
values: format %A uses upper-case.
This might not be supported on all platforms as if is a feature of C99. The format is not
uniquely defined: although it would be possible to make the leading h always zero or one, this
is not always done. Most systems will suppress trailing zeros, but a few do not. On a well-
written platform, for normal numbers there will be a leading one before the decimal point plus
(by default) 13 hexadecimal digits, hence 53 bits. (The treatment of denormalized numbers is
very platform-dependent.)

s Character string. Character NAs are converted to "NA".

% Literal % (none of the extra formatting characters given below are permitted in this case).

Conversion by as.character is used for non-character arguments with s and by as.double
for non-double arguments with f, e, E, g, G. NB: the length is determined before conversion,
so do not rely on the internal coercion if this would change the length. The coercion is done only
once, so if length(fmt) > 1 then all elements must expect the same types of arguments.

In addition, between the initial % and the terminating conversion character there may be, in any
order:

m.n Two numbers separated by a period, denoting the field width (m) and the precision (n).

- Left adjustment of converted argument in its field.

+ Always print number with sign: by default only negative numbers are printed with a sign.

a space Prefix a space if the first character is not a sign.

0 For numbers, pad to the field width with leading zeros.

Further, immediately after % may come 1$ to 99$ to refer to numbered argument: this allows
arguments to be referenced out of order and is mainly intended for translators of error messages. If
this is done it is best if all formats are numbered: if not the unnumbered ones process the arguments
in order. See the examples. This notation allows arguments to be used more than once, in which
case they must be used as the same type (integer, double or character).

A field width or precision (but not both) may be indicated by an asterisk *: in this case an argument
specifies the desired number. A negative field width is taken as a ’-’ flag followed by a positive
field width. A negative precision is treated as if the precision were omitted. The argument should
be integer, but a double argument will be coerced to integer.

There is a limit of 8192 bytes on elements of fmt and also on strings included by a %s conversion
specification.

Field widths and precisions of %s conversions are interpreted as bytes, not characters, as described
in the C standard.

Value

A character vector of length that of the longest input. If any element of fmt or any character
argument is declared as UTF-8, the element of the result will be in UTF-8 and have the encoding
declared as UTF-8. Otherwise it will be in the current locale’s encoding.

406 sprintf

Author(s)

Original code by Jonathan Rougier, 〈J.C.Rougier@durham.ac.uk〉.

References

Kernighan, B. W. and Ritchie, D. M. (1988) The C Programming Language. Second edition, Pren-
tice Hall. describes the format options in table B-1 in the Appendix.

See Also

formatC for a way of formatting vectors of numbers in a similar fashion.

paste for another way of creating a vector combining text and values.

gettext for the mechanisms for the automated translation of text.

Examples

be careful with the format: most things in R are floats
only integer-valued reals get coerced to integer.

sprintf("%s is %f feet tall\n", "Sven", 7.1) # OK
try(sprintf("%s is %i feet tall\n", "Sven", 7.1)) # not OK
try(sprintf("%s is %i feet tall\n", "Sven", 7)) # OK

use a literal % :

sprintf("%.0f%% said yes (out of a sample of size %.0f)", 66.666, 3)

various formats of pi :

sprintf("%f", pi)
sprintf("%.3f", pi)
sprintf("%1.0f", pi)
sprintf("%5.1f", pi)
sprintf("%05.1f", pi)
sprintf("%+f", pi)
sprintf("% f", pi)
sprintf("%-10f", pi) # left justified
sprintf("%e", pi)
sprintf("%E", pi)
sprintf("%g", pi)
sprintf("%g", 1e6 * pi) # -> exponential
sprintf("%.9g", 1e6 * pi) # -> "fixed"
sprintf("%G", 1e-6 * pi)

no truncation:
sprintf("%1.f",101)

re-use one argument three times, show difference between %x and %X
xx <- sprintf("%1$d %1$x %1$X", 0:15)
xx <- matrix(xx, dimnames=list(rep("", 16), "%d%x%X"))
noquote(format(xx, justify="right"))

More sophisticated:

sprintf("min 10-char string '%10s'",

sQuote 407

c("a", "ABC", "and an even longer one"))

n <- 1:18
sprintf(paste("e with %2d digits = %.",n,"g",sep=""), n, exp(1))

Using arguments out of order
sprintf("second %2$1.0f, first %1$5.2f, third %3$1.0f", pi, 2, 3)

Using asterisk for width or precision
sprintf("precision %.*f, width '%*.3f'", 3, pi, 8, pi)

Asterisk and argument re-use, 'e' example reiterated:
sprintf("e with %1$2d digits = %2$.*1$g", n, exp(1))

re-cycle arguments
sprintf("%s %d", "test", 1:3)

binary output showing rounding/representation errors
x <- seq(0, 1.0, 0.1); y <- c(0,.1,.2,.3,.4,.5,.6,.7,.8,.9,1)
cbind(x, sprintf("%a", x), sprintf("%a", y))

sQuote Quote Text

Description

Single or double quote text by combining with appropriate single or double left and right quotation
marks.

Usage

sQuote(x)
dQuote(x)

Arguments

x an R object, to be coerced to a character vector.

Details

The purpose of the functions is to provide a simple means of markup for quoting text to be used in
the R output, e.g., in warnings or error messages.

The choice of the appropriate quotation marks depends on both the locale and the available character
sets. Older Unix/X11 fonts displayed the grave accent (ASCII code 0x60) and the apostrophe (0x27)
in a way that they could also be used as matching open and close single quotation marks. Using
modern fonts, or non-Unix systems, these characters no longer produce matching glyphs. Unicode
provides left and right single quotation mark characters (U+2018 and U+2019); if Unicode markup
cannot be assumed to be available, it seems good practice to use the apostrophe as a non-directional
single quotation mark.

Similarly, Unicode has left and right double quotation mark characters (U+201C and U+201D); if
only ASCII’s typewriter characteristics can be employed, than the ASCII quotation mark (0x22)
should be used as both the left and right double quotation mark.

408 sQuote

Some other locales also have the directional quotation marks, notably on Windows. TeX uses
grave and apostrophe for the directional single quotation marks, and doubled grave and doubled
apostrophe for the directional double quotation marks.

What rendering is used depend on the options setting for useFancyQuotes. If this is FALSE
then the undirectional ASCII quotation style is used. If this is TRUE (the default), Unicode di-
rectional quotes are used are used where available (currently, UTF-8 locales on Unix-alikes and
all Windows locales except C): if set to "UTF-8" UTF-8 markup is used (whatever the current
locale). If set to "TeX", TeX-style markup is used. Finally, if this is set to a character vector of
length four, the first two entries are used for beginning and ending single quotes and the second
two for beginning and ending double quotes: this can be used to implement non-English quoting
conventions such as the use of guillemets.

Where fancy quotes are used, you should be aware that they may not be rendered correctly as
not all fonts include the requisite glyphs: for example some have directional single quotes but not
directional double quotes.

Value

A character vector in the current locale’s encoding.

References

Markus Kuhn, “ASCII and Unicode quotation marks”. http://www.cl.cam.ac.uk/
~mgk25/ucs/quotes.html

See Also

Quotes for quoting R code.

shQuote for quoting OS commands.

Examples

op <- options("useFancyQuotes")
paste("argument", sQuote("x"), "must be non-zero")
options(useFancyQuotes = FALSE)
cat("\ndistinguish plain", sQuote("single"), "and",

dQuote("double"), "quotes\n")
options(useFancyQuotes = TRUE)
cat("\ndistinguish fancy", sQuote("single"), "and",

dQuote("double"), "quotes\n")
options(useFancyQuotes = "TeX")
cat("\ndistinguish TeX", sQuote("single"), "and",

dQuote("double"), "quotes\n")
if(l10n_info()$`Latin-1`) {

options(useFancyQuotes = c("\xab", "\xbb", "\xbf", "?"))
cat("\n", sQuote("guillemet"), "and",

dQuote("Spanish question"), "styles\n")
} else if(l10n_info()$`UTF-8`) {

options(useFancyQuotes = c("\xc2\xab", "\xc2\xbb", "\xc2\xbf", "?"))
cat("\n", sQuote("guillemet"), "and",

dQuote("Spanish question"), "styles\n")
}
options(op)

http://www.cl.cam.ac.uk/~mgk25/ucs/quotes.html
http://www.cl.cam.ac.uk/~mgk25/ucs/quotes.html

srcfile 409

srcfile References to source files

Description

These functions are for working with source files.

Usage

srcfile(filename, encoding = getOption("encoding"))
srcfilecopy(filename, lines)
getSrcLines(srcfile, first, last)
srcref(srcfile, lloc)
S3 method for class 'srcfile':
print(x, ...)
S3 method for class 'srcfile':
open(con, line, ...)
S3 method for class 'srcfile':
close(con, ...)
S3 method for class 'srcref':
print(x, useSource = TRUE, ...)
S3 method for class 'srcref':
as.character(x, useSource = TRUE, ...)
.isOpen(srcfile)

Arguments

filename The name of a file

encoding The character encoding to assume for the file

lines A character vector of source lines. Other R objects will be coerced to character.

srcfile A srcfile object.
first, last, line

Line numbers.

lloc A vector of four values giving a source location; see ‘Details’.

x, con An object of the appropriate type.

useSource Whether to read the srcfile to obtain the text of a srcref.

... Additional arguments to the methods; these will be ignored.

Details

These functions and classes handle source code references.

The srcfile function produces an object of class srcfile, which contains the name and di-
rectory of a source code file, along with its timestamp, for use in source level debugging (not yet
implemented) and source echoing. The encoding of the file is saved; see file for a discussion of
encodings, and iconvlist for a list of allowable encodings on your platform.

The srcfilecopy function produces an object of the descendant class srcfilecopy, which
saves the source lines in a character vector.

The getSrcLines function reads the specified lines from srcfile.

410 Startup

The srcref function produces an object of class srcref, which describes a range of characters in
a srcfile. The lloc value gives the following values: c(first_line, first_column,
last_line, last_column).

Methods are defined for print, open, and close for classes srcfile and srcfilecopy.
The open method opens its internal file connection at a particular line; if it was already open, it
will be repositioned to that line.

Methods are defined for print and as.character for class srcref. The as.character
method will read the associated source file to obtain the text corresponding to the reference. If
an error occurs (e.g. the file no longer exists), text like <srcref: "file" chars 1:1 to
2:10>will be returned instead, indicating the line:column ranges of the first and last character.

Lists of srcref objects may be attached to expressions as the "srcref" attribute. (The list of
srcref objects should be the same length as the expression.) By default, expressions are printed by
print.default using the associated srcref. To see deparsed code instead, call print with
argument useSource = FALSE. If a srcref object is printed with useSource = FALSE,
the <srcref: ...> record will be printed.

.isOpen is intended for internal use: it checks whether the connection associated with a
srcfile object is open.

Value

srcfile returns a srcfile object.

srcfilecopy returns a srcfilecopy object.

getSrcLines returns a character vector of source code lines.

srcref returns a srcref object.

Author(s)

Duncan Murdoch

Examples

src <- srcfile(system.file("DESCRIPTION", package = "base"))
getSrcLines(src, 1, 4)
ref <- srcref(src, c(1, 1, 2, 1000))
ref
print(ref, useSource = FALSE)

Startup Initialization at Start of an R Session

Description

In R, the startup mechanism is as follows.

Unless ‘--no-environ’ was given on the command line, R searches for site and user files to
process for setting environment variables. The name of the site file is the one pointed to by the
environment variable R_ENVIRON; if this is unset or empty, ‘R_HOME/etc/Renviron.site’ is used
(if it exists, which it does not in a ‘factory-fresh’ installation). The name of the user file can be
specified by the R_ENVIRON_USER environment variable; if this is unset, the user files searched

Startup 411

for are ‘.Renviron’ in the current or in the user’s home directory (in that order). See ‘Details’ for
how the files are read.

Then R searches for the site-wide startup profile unless the command line option
‘--no-site-file’ was given. The name of this file is taken from the value of the R_PROFILE
environment variable. If this variable is unset, the default is ‘R_HOME/etc/Rprofile.site’, which
is used if it exists (which it does not in a ‘factory-fresh’ installation). This code is sourced into the
base package. Users need to be careful not to unintentionally overwrite objects in base, and it is
normally advisable to use local if code needs to be executed: see the examples.

Then, unless ‘--no-init-file’ was given, R searches for a user profile file. The name of this
file can be specified by the R_PROFILE_USER environment variable. If this is unset, a file called
‘.Rprofile’ in the current directory or in the user’s home directory (in that order) is searched for.
The user profile is sourced into the user workspace.

Note that when the site and user profile files are sourced only the base package is loaded, so objects
in other packages need to be referred to by e.g. utils::dump.frames or after explicitly loading
the package concerned.

It then loads a saved image of the user workspace from ‘.RData’ if there is one (unless
‘--no-restore-data’ or ‘--no-restore’ was specified on the command line).

Next, if a function .First is found on the search path, it is executed as .First(). Finally,
function .First.sys() in the base package is run. This calls require to attach the default
packages specified by options("defaultPackages"). If the methods package is included,
this will have been attached earlier (by function .OptRequireMethods()) so that name space
initializations such as those from the user workspace will proceed correctly.

A function .First (and .Last) can be defined in appropriate ‘.Rprofile’ or ‘Rprofile.site’
files or have been saved in ‘.RData’. If you want a different set of packages than the de-
fault ones when you start, insert a call to options in the ‘.Rprofile’ or ‘Rprofile.site’
file. For example, options(defaultPackages = character()) will attach no ex-
tra packages on startup (only the base package) (or set R_DEFAULT_PACKAGES=NULL as
an environment variable before running R). Using options(defaultPackages = "") or
R_DEFAULT_PACKAGES="" enforces the R system default.

On front-ends which support it, the commands history is read from the file specified by the envi-
ronment variable R_HISTFILE (default ‘.Rhistory’) unless ‘--no-restore-history’ was
specified (or ‘--no-restore’).

The command-line flag ‘--vanilla’ implies ‘--no-site-file’, ‘--no-init-file’,
‘--no-restore’ and ‘--no-environ’.

Usage

.First <- function() { }

.Rprofile <startup file>

Details

Note that there are two sorts of files used in startup: environment files which contain lists of envi-
ronment variables to be set, and profile files which contain R code.

Lines in a site or user environment file should be either comment lines starting with #, or lines
of the form name=value . The latter sets the environmental variable name to value , overriding an
existing value. If value contains an expression of the form ${foo-bar}, the value is that of the
environmental variable foo if that exists and is set to a non-empty value, otherwise bar. (If it is
of the form ${foo}, the default is "".) This construction can be nested, so bar can be of the

412 Startup

same form (as in ${foo-${bar-blah}}). Note that the braces are essential: $HOME will not
be interpreted.

Leading and trailing white space in value are stripped. value is then processed in a similar way to a
Unix shell: in particular the outermost level of (single or double) quotes is stripped, and backslashes
are removed except inside quotes.

Note

The file ‘R_HOME/etc/Renviron’ is always read very early in the start-up processing. It contains
environment variables set by R in the configure process. Values in that file can be overridden in site
or user environment files: do not change ‘R_HOME/etc/Renviron’ itself. Note that this is distinct
from ‘R_HOME/etc/Renviron.site’.

See Also

.Last for final actions at the close of an R session. commandArgs for accessing the command
line arguments.

There are examples of using startup files to set defaults for graphics devices in the help for X11 and
quartz.

An Introduction to R for more command-line options: those affecting memory management are
covered in the help file for Memory.

For profiling code, see Rprof.

Examples

Not run:
Example ~/.Renviron on Unix
R_LIBS=~/R/library
PAGER=/usr/local/bin/less

Example .Renviron on Windows
R_LIBS=C:/R/library
MY_TCLTK="c:/Program Files/Tcl/bin"

Example of setting R_DEFAULT_PACKAGES (from R CMD check)
R_DEFAULT_PACKAGES='utils,grDevices,graphics,stats'
this loads the packages in the order given, so they appear on
the search path in reverse order.

Example of .Rprofile
options(width=65, digits=5)
options(show.signif.stars=FALSE)
setHook(packageEvent("grDevices", "onLoad"),

function(...) grDevices::ps.options(horizontal=FALSE))
set.seed(1234)
.First <- function() cat("\n Welcome to R!\n\n")
.Last <- function() cat("\n Goodbye!\n\n")

Example of Rprofile.site
local({
add MASS to the default packages, set a CRAN mirror
old <- getOption("defaultPackages"); r <- getOption("repos")
r["CRAN"] <- "http://my.local.cran"
options(defaultPackages = c(old, "MASS"), repos = r)

stop 413

})

if .Renviron contains
FOOBAR="coo\bar"doh\ex"abc\"def'"

then we get
> cat(Sys.getenv("FOOBAR"), "\n")
coo\bardoh\exabc"def'
End(Not run)

stop Stop Function Execution

Description

stop stops execution of the current expression and executes an error action.

geterrmessage gives the last error message.

Usage

stop(..., call. = TRUE, domain = NULL)
geterrmessage()

Arguments

... zero or more objects which can be coerced to character (and which are pasted
together with no separator) or a single condition object.

call. logical, indicating if the call should become part of the error message.

domain see gettext. If NA, messages will not be translated.

Details

The error action is controlled by error handlers established within the executing code and by the
current default error handler set by options(error=). The error is first signaled as if using
signalCondition(). If there are no handlers or if all handlers return, then the error message
is printed (if options("show.error.messages") is true) and the default error handler is
used. The default behaviour (the NULL error-handler) in interactive use is to return to the top
level prompt or the top level browser, and in non-interactive use to (effectively) call q("no",
status=1, runLast=FALSE). The default handler stores the error message in a buffer; it can
be retrieved by geterrmessage(). It also stores a trace of the call stack that can be retrieved by
traceback().

Errors will be truncated to getOption("warning.length") characters, default 1000.

If a condition object is supplied it should be the only argument, and further arguments will be
ignored, with a warning.

Value

geterrmessage gives the last error message, as a character string ending in "\n".

414 stopifnot

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

warning, try to catch errors and retry, and options for setting error handlers. stopifnot
for validity testing. tryCatch and withCallingHandlers can be used to establish custom
handlers while executing an expression.

gettext for the mechanisms for the automated translation of messages.

Examples

options(error = expression(NULL))
don't stop on stop(.) << Use with CARE! >>

iter <- 12
if(iter > 10) stop("too many iterations")

tst1 <- function(...) stop("dummy error")
tst1(1:10, long, calling, expression)

tst2 <- function(...) stop("dummy error", call. = FALSE)
tst2(1:10, longcalling, expression, but.not.seen.in.Error)

options(error = NULL)# revert to default

stopifnot Ensure the ‘Truth’ of R Expressions

Description

If any of the expressions in ... are not all TRUE, stop is called, producing an error message
indicating the first of the elements of ... which were not true.

Usage

stopifnot(...)

Arguments

... any number of (logical) R expressions, which should evaluate to TRUE.

Details

This function is intended for use in regression tests or also argument checking of functions, in
particular to make them easier to read.

stopifnot(A, B) is conceptually equivalent to { if(any(is.na(A)) || !all(A))
stop(...) ; if(any(is.na(B)) || !all(B)) stop(...) }.

strptime 415

Value

(NULL if all statements in ... are TRUE.)

See Also

stop, warning.

Examples

stopifnot(1 == 1, all.equal(pi, 3.14159265), 1 < 2) # all TRUE

m <- matrix(c(1,3,3,1), 2,2)
stopifnot(m == t(m), diag(m) == rep(1,2)) # all(.) |=> TRUE

op <- options(error = expression(NULL))
"disable stop(.)" << Use with CARE! >>

stopifnot(all.equal(pi, 3.141593), 2 < 2, all(1:10 < 12), "a" < "b")
stopifnot(all.equal(pi, 3.1415927), 2 < 2, all(1:10 < 12), "a" < "b")

options(op)# revert to previous error handler

strptime Date-time Conversion Functions to and from Character

Description

Functions to convert between character representations and objects of classes "POSIXlt" and
"POSIXct" representing calendar dates and times.

Usage

S3 method for class 'POSIXct':
format(x, format = "", tz = "", usetz = FALSE, ...)
S3 method for class 'POSIXlt':
format(x, format = "", usetz = FALSE, ...)

S3 method for class 'POSIXt':
as.character(x, ...)

strftime(x, format="", usetz = FALSE, ...)
strptime(x, format, tz = "")

ISOdatetime(year, month, day, hour, min, sec, tz = "")
ISOdate(year, month, day, hour = 12, min = 0, sec = 0, tz = "GMT")

Arguments

x An object to be converted.

tz A timezone specification to be used for the conversion. System-specific (see
as.POSIXlt), but "" is the current time zone, and "GMT" is UTC.

416 strptime

format A character string. The default is "%Y-%m-%d %H:%M:%S" if any component
has a time component which is not midnight, and "%Y-%m-%d" otherwise. If
options("digits.secs") is set, up to the specified number of digits will
be printed for seconds.

... Further arguments to be passed from or to other methods.

usetz logical. Should the timezone be appended to the output? This is used in print-
ing times, and as a workaround for problems with using "%Z" on most Linux
systems.

year, month, day
numerical values to specify a day.

hour, min, sec
numerical values for a time within a day. Fractional seconds are allowed.

Details

The format and as.character methods and strftime convert objects from the classes
"POSIXlt" and "POSIXct" (not strftime) to character vectors.

strptime converts character strings to class "POSIXlt": its input x is first coerced to character
if necessary. Each string is processed as far as necessary for the format specified: any trailing
characters are ignored.

strftime is an alias for format.POSIXlt, and format.POSIXct first converts to class
"POSIXlt" by calling as.POSIXlt. Note that only that conversion depends on the time zone.

The usual vector re-cycling rules are applied to x and format so the answer will be of length that
of the longer of the vectors.

Locale-specific conversions to and from character strings are used where appropriate and available.
This affects the names of the days and months, the AM/PM indicator (if used) and the separators in
formats such as %x and %X (via the setting of the LC_TIME locale category).

The details of the formats are system-specific, but the following are defined by the ISO C / POSIX
standard for strftime and are likely to be widely available. A conversion specification is intro-
duced by %, usually followed by a single letter or O or E and then a single letter. Any character
in the format string not part of a conversion specification is interpreted literally (and %% gives %).
Widely implemented conversion specifications include

%a Abbreviated weekday name in the current locale. (Also matches full name on input.)

%A Full weekday name in the current locale. (Also matches abbreviated name on input.)

%b Abbreviated month name in the current locale. (Also matches full name on input.)

%B Full month name in the current locale. (Also matches abbreviated name on input.)

%c Date and time, locale-specific.

%d Day of the month as decimal number (01–31).

%H Hours as decimal number (00–23).

%I Hours as decimal number (01–12).

%j Day of year as decimal number (001–366).

%m Month as decimal number (01–12).

%M Minute as decimal number (00–59).

%p AM/PM indicator in the locale. Used in conjuction with %I and not with %H. An empty string
in some locales.

strptime 417

%S Second as decimal number (00–61), allowing for up to two leap-seconds (but POSIX-compliant
OSes will ignore leap seconds).

%U Week of the year as decimal number (00–53) using Sunday as the first day 1 of the week (and
typically with the first Sunday of the year as day 1 of week 1). The US convention.

%w Weekday as decimal number (0–6, Sunday is 0).

%W Week of the year as decimal number (00–53) using Monday as the first day of week (and
typically with the first Monday of the year as day 1 of week 1). The UK convention.

%x Date, locale-specific.

%X Time, locale-specific.

%y Year without century (00–99). If you use this on input, which century you get is system-specific.
So don’t! Often values up to 68 (or 69) are prefixed by 20 and 69 (or 70) to 99 by 19.

%Y Year with century.

%z (output only.) Offset from Greenwich, so -0800 is 8 hours west of Greenwich.

%Z (output only.) Time zone as a character string (empty if not available).

Where leading zeros are shown they will be used on output but are optional on input.

Also defined in the current standards but less widely implemented (e.g. not for output on Windows)
are

%C Century (00–99): the integer part of the year divided by 100.

%D Locale-specific date format such as %m/%d/%y: ISO C99 says it should be that exact format.

%e Day of the month as decimal number (1–31), with a leading space for a single-digit number.

%F Equivalent to %Y-%m-%d (the ISO 8601 date format).

%g The last two digits of the week-based year (see %V). (Typically accepted but ignored on input.)

%G The week-based year (see %V) as a decimal number. (Typically accepted but ignored on input.)

%h Equivalent to %b.

%k The 24-hour clock time with single digits preceded by a blank.

%l The 12-hour clock time with single digits preceded by a blank.

%n Newline on output, arbitrary whitespace on input.

%r The 12-hour clock time (using the locale’s AM or PM).

%R Equivalent to %H:%M.

%t Tab on output, arbitrary whitespace on input.

%T Equivalent to %H:%M:%S.

%u Weekday as a decimal number (1–7, Monday is 1).

%V Week of the year as decimal number (00–53) as defined in ISO 8601. If the week (starting on
Monday) containing 1 January has four or more days in the new year, then it is considered
week 1. Otherwise, it is the last week of the previous year, and the next week is week 1.
(Typically accepted but ignored on input.)

For output (and possibly input) there are also %O[dHImMUVwWy] which may emit numbers in an
alternative locale-dependent format (e.g. roman numerals), and %E[cCyYxX] which can use an
alternative ‘era’ (e.g. a different religious calendar). Which of these are supported is OS-dependent.

Specific to R is %OSn, which for output gives the seconds to 0 <= n <= 6 decimal places (and if
%OS is not followed by a digit, it uses the setting of getOption("digits.secs"), or if that
is unset, n = 3). Further, for strptime %OS will input seconds including fractional seconds.
Note that %S ignores (and not rounds) fractional parts on output.

418 strptime

The behaviour of other conversion specifications (and even if other character sequences commenc-
ing with % are conversion specifications) is system-specific.

ISOdatetime and ISOdate are convenience wrappers for strptime, that differ only in their
defaults and that ISOdate sets a timezone. (For dates without times it would be better to use the
"Date" class.)

Value

The format methods and strftime return character vectors representing the time. NA times are
returned as NA_character_.

strptime turns character representations into an object of class "POSIXlt". The timezone is
used to set the isdst component and to set the "tzone" attribute if tz != "".

ISOdatetime and ISOdate return an object of class "POSIXct".

Note

The default formats follow the rules of the ISO 8601 international standard which expresses a day
as "2001-02-28" and a time as "14:01:02" using leading zeroes as here. The ISO form uses
no space to separate dates and times.

If the date string does not specify the date completely, the returned answer may be system-specific.
The most common behaviour is to assume that unspecified seconds, minutes or hours are zero,
and a missing year, month or day is the current one. If it specifies a date incorrectly, reliable
implementations will give an error and the date is reported as NA. Unfortunately some common
implementations (such as ‘glibc’) are unreliable and guess at the intended meaning.

If the timezone specified is invalid on your system, what happens is system-specific but it will
probably be ignored.

OS facilities will probably not print years before 1CE (aka 1AD) correctly.

Remember that in most timezones some times do not occur and some occur twice because of tran-
sitions to/from summer time. What happens in those cases is OS-specific.

References

International Organization for Standardization (2004, 1988, 1997, . . .) ISO 8601. Data elements
and interchange formats – Information interchange – Representation of dates and times. For
links to versions available on-line see (at the time of writing) http://www.qsl.net/g1smd/
isopdf.htm; for information on the current official version, see http://www.iso.org/
iso/en/prods-services/popstds/datesandtime.html.

See Also

DateTimeClasses for details of the date-time classes; locales to query or set a locale.

Your system’s help pages on strftime and strptime to see how to specify their formats. (On
some systems strptime is replaced by corrected code from ‘glibc’, when all the conversion
specifications described here are supported, but with no alternative number representation nor era
available in any locale.)

Examples

locale-specific version of date()
format(Sys.time(), "%a %b %d %X %Y %Z")

http://www.qsl.net/g1smd/isopdf.htm
http://www.qsl.net/g1smd/isopdf.htm
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html
http://www.iso.org/iso/en/prods-services/popstds/datesandtime.html

strsplit 419

time to sub-second accuracy (if supported by the OS)
format(Sys.time(), "%H:%M:%OS3")

read in date info in format 'ddmmmyyyy'
This will give NA(s) in some locales; setting the C locale
as in the commented lines will overcome this on most systems.
lct <- Sys.getlocale("LC_TIME"); Sys.setlocale("LC_TIME", "C")
x <- c("1jan1960", "2jan1960", "31mar1960", "30jul1960")
z <- strptime(x, "%d%b%Y")
Sys.setlocale("LC_TIME", lct)
z

read in date/time info in format 'm/d/y h:m:s'
dates <- c("02/27/92", "02/27/92", "01/14/92", "02/28/92", "02/01/92")
times <- c("23:03:20", "22:29:56", "01:03:30", "18:21:03", "16:56:26")
x <- paste(dates, times)
strptime(x, "%m/%d/%y %H:%M:%S")

time with fractional seconds
z <- strptime("20/2/06 11:16:16.683", "%d/%m/%y %H:%M:%OS")
z # prints without fractional seconds
op <- options(digits.secs=3)
z
options(op)

timezones are not portable, but 'EST5EDT' comes pretty close.
(x <- strptime(c("2006-01-08 10:07:52", "2006-08-07 19:33:02"),

"%Y-%m-%d %H:%M:%S", tz="EST5EDT"))
attr(x, "tzone")

strsplit Split the Elements of a Character Vector

Description

Split the elements of a character vector x into substrings according to the presence of substring
split within them.

Usage

strsplit(x, split, extended = TRUE, fixed = FALSE, perl = FALSE)

Arguments

x character vector, each element of which is to be split. Other inputs, including a
factor, will give an error.

split character vector (or object which can be coerced to such) containing regular
expression(s) (unless fixed = TRUE) to use for splitting. If empty matches
occur, in particular if split has length 0, x is split into single characters. If
split has length greater than 1, it is re-cycled along x.

extended logical. If TRUE (the default), extended regular expression matching is used,
and if FALSE basic regular expressions are used.

420 strsplit

fixed logical. If TRUE match split exactly, otherwise use regular expressions. Has
priority over perl and extended.

perl logical. Should perl-compatible regexps be used? Has priority over extended.

Details

Argument split will be coerced to character, so you will see uses with split = NULL to mean
split = character(0), including in the examples below.

Note that splitting into single characters can be done via split=character(0) or split="";
the two are equivalent. The definition of ‘character’ here depends on the locale (and perhaps OS):
in a single-byte locale it is a byte, and in a multi-byte locale it is the unit represented by a ‘wide
character’ (almost always a Unicode point).

A missing value of split does not split the corresponding element(s) of x at all.

The algorithm applied to each input string is

repeat {
if the string is empty

break.
if there is a match

add the string to the left of the match to the output.
remove the match and all to the left of it.

else
add the string to the output.
break.

}

Note that this means that if there is a match at the beginning of a (non-empty) string, the first
element of the output is "", but if there is a match at the end of the string, the output is the same as
with the match removed.

Value

A list of length length(x) the i-th element of which contains the vector of splits of x[i].

If fixed = TRUE or perl = TRUE and if any element of x or split is declared to be in UTF-
8 (see Encoding, non-ASCII character strings in the result will be in UTF-8 and have the encoding
declared as UTF-8. Otherwise they will be in the current locale’s encoding, and be declared to have
the encoding of the current locale if either Latin-1 or UTF-8 and the corresponding input had a
declared encoding.

Warning

The standard regular expression code has been reported to be very slow when applied to extremely
long character strings (tens of thousands of characters or more): the code used when perl =
TRUE seems much faster and more reliable for such usages.

The perl = TRUE option is only implemented for single-byte and UTF-8 encodings, and will
warn if used in a non-UTF-8 multibyte locale.

See Also

paste for the reverse, grep and sub for string search and manipulation; further nchar,
substr.

‘regular expression’ for the details of the pattern specification.

strtrim 421

Examples

noquote(strsplit("A text I want to display with spaces", NULL)[[1]])

x <- c(as = "asfef", qu = "qwerty", "yuiop[", "b", "stuff.blah.yech")
split x on the letter e
strsplit(x,"e")

unlist(strsplit("a.b.c", "."))
[1] "" "" "" "" ""
Note that 'split' is a regexp!
If you really want to split on '.', use
unlist(strsplit("a.b.c", "\\."))
[1] "a" "b" "c"
or
unlist(strsplit("a.b.c", ".", fixed = TRUE))

a useful function: rev() for strings
strReverse <- function(x)

sapply(lapply(strsplit(x, NULL), rev), paste, collapse="")
strReverse(c("abc", "Statistics"))

get the first names of the members of R-core
a <- readLines(file.path(R.home("doc"),"AUTHORS"))[-(1:8)]
a <- a[(0:2)-length(a)]
(a <- sub(" .*","", a))
and reverse them
strReverse(a)

Note that final empty strings are not produced:
strsplit(paste(c("", "a", ""), collapse="#"), split="#")[[1]]
[1] "" "a"
and also an empty string is only produced before a definite match:
strsplit("", " ")[[1]] # character(0)
strsplit(" ", " ")[[1]] # [1] ""

strtrim Trim Character Strings to Specified Widths

Description

Trim character strings to specified display widths.

Usage

strtrim(x, width)

Arguments

x a character vector, or an object which can be coerced to a character vector by
as.character.

width Positive integer values: recycled to the length of x.

422 structure

Details

‘Width’ is interpreted as the display width in a monospaced font. What happens with non-printable
characters (such as backspace, tab) is implementation-dependent and may depend on the locale (e.g.
they may be included in the count or they may be omitted).

Using this function rather than substr is important when there might be double-width characters
in character vectors

Value

A character vector of the same length and with the same attributes as x (after possible coercion).

Elements of the result will be have the encoding declared as that of the current locale (see
Encoding if the corresponding input had a declared encoding and the current locale is either
Latin-1 or UTF-8.

Examples

strtrim(c("abcdef", "abcdef", "abcdef"), c(1,5,10))

structure Attribute Specification

Description

structure returns the given object with further attributes set.

Usage

structure(.Data, ...)

Arguments

.Data an object which will have various attributes attached to it.

... attributes, specified in tag=value form, which will be attached to data.

Details

Adding a class "factor" will ensure that numeric codes are given integer storage mode.

For historical reasons (these names are used when deparsing), attributes ".Dim", ".Dimnames",
".Names", ".Tsp" and ".Label" are renamed to "dim", "dimnames", "names", "tsp"
and "levels".

It is possible to give the same tag more than once, in which case the last value assigned wins. As
with other ways of assigning attributes, using tag=NULL removes attribute tag from .Data if it
is present.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

strwrap 423

See Also

attributes, attr.

Examples

structure(1:6, dim = 2:3)

strwrap Wrap Character Strings to Format Paragraphs

Description

Each character string in the input is first split into paragraphs (or lines containing whitespace only).
The paragraphs are then formatted by breaking lines at word boundaries. The target columns for
wrapping lines and the indentation of the first and all subsequent lines of a paragraph can be con-
trolled independently.

Usage

strwrap(x, width = 0.9 * getOption("width"), indent = 0,
exdent = 0, prefix = "", simplify = TRUE)

Arguments

x a character vector, or an object which can be converted to a character vector by
as.character.

width a positive integer giving the target column for wrapping lines in the output.

indent a non-negative integer giving the indentation of the first line in a paragraph.

exdent a non-negative integer specifying the indentation of subsequent lines in para-
graphs.

prefix a character string to be used as prefix for each line.

simplify a logical. If TRUE, the result is a single character vector of line text; otherwise,
it is a list of the same length as x the elements of which are character vectors of
line text obtained from the corresponding element of x. (Hence, the result in the
former case is obtained by unlisting that of the latter.)

Details

Whitespace (space, tab or newline characters) in the input is destroyed. Double spaces after periods
(thought as representing sentence ends) are preserved. Currently, possible sentence ends at line
breaks are not considered specially.

Indentation is relative to the number of characters in the prefix string.

Value

A character vector in the current locale’s encoding.

424 subset

Examples

Read in file 'THANKS'.
x <- paste(readLines(file.path(R.home("doc"), "THANKS")), collapse = "\n")
Split into paragraphs and remove the first three ones
x <- unlist(strsplit(x, "\n[\t\n]*\n"))[-(1:3)]
Join the rest
x <- paste(x, collapse = "\n\n")
Now for some fun:
writeLines(strwrap(x, width = 60))
writeLines(strwrap(x, width = 60, indent = 5))
writeLines(strwrap(x, width = 60, exdent = 5))
writeLines(strwrap(x, prefix = "THANKS> "))

Note that messages are wrapped AT the target column indicated by
'width' (and not beyond it).
From an R-devel posting by J. Hosking <jh910@juno.com>.
x <- paste(sapply(sample(10, 100, replace=TRUE),

function(x) substring("aaaaaaaaaa", 1, x)), collapse = " ")
sapply(10:40,

function(m)
c(target = m, actual = max(nchar(strwrap(x, m)))))

subset Subsetting Vectors, Matrices and Data Frames

Description

Return subsets of vectors, matrices or data frames which meet conditions.

Usage

subset(x, ...)

Default S3 method:
subset(x, subset, ...)

S3 method for class 'matrix':
subset(x, subset, select, drop = FALSE, ...)

S3 method for class 'data.frame':
subset(x, subset, select, drop = FALSE, ...)

Arguments

x object to be subsetted.

subset logical expression indicating elements or rows to keep: missing values are taken
as false.

select expression, indicating columns to select from a data frame.

drop passed on to [indexing operator.

... further arguments to be passed to or from other methods.

substitute 425

Details

This is a generic function, with methods supplied for matrices, data frames and vectors (including
lists). Packages and users can add further methods.

For ordinary vectors, the result is simply x[subset & !is.na(subset)].

For data frames, the subset argument works on the rows. Note that subset will be evaluated
in the data frame, so columns can be referred to (by name) as variables in the expression (see the
examples).

The select argument exists only for the methods for data frames and matrices. It works by first
replacing column names in the selection expression with the corresponding column numbers in the
data frame and then using the resulting integer vector to index the columns. This allows the use of
the standard indexing conventions so that for example ranges of columns can be specified easily, or
single columns can be dropped (see the examples).

The drop argument is passed on to the indexing method for matrices and data frames: note that
the default for matrices is different from that for indexing.

Value

An object similar to x contain just the selected elements (for a vector), rows and columns (for a
matrix or data frame), and so on.

Author(s)

Peter Dalgaard and Brian Ripley

See Also

[, transform

Examples

subset(airquality, Temp > 80, select = c(Ozone, Temp))
subset(airquality, Day == 1, select = -Temp)
subset(airquality, select = Ozone:Wind)

with(airquality, subset(Ozone, Temp > 80))

sometimes requiring a logical 'subset' argument is a nuisance
nm <- rownames(state.x77)
start_with_M <- nm %in% grep("^M", nm, value=TRUE)
subset(state.x77, start_with_M, Illiteracy:Murder)

substitute Substituting and Quoting Expressions

Description

substitute returns the parse tree for the (unevaluated) expression expr, substituting any vari-
ables bound in env.

quote simply returns its argument. The argument is not evaluated and can be any R expression.

426 substitute

Usage

substitute(expr, env)
quote(expr)

Arguments

expr Any syntactically valid R expression

env An environment or a list object. Defaults to the current evaluation environment.

Details

The typical use of substitute is to create informative labels for data sets and plots. The
myplot example below shows a simple use of this facility. It uses the functions deparse and
substitute to create labels for a plot which are character string versions of the actual arguments
to the function myplot.

Substitution takes place by examining each component of the parse tree as follows: If it is not a
bound symbol in env, it is unchanged. If it is a promise object, i.e., a formal argument to a function
or explicitly created using delayedAssign(), the expression slot of the promise replaces the
symbol. If it is an ordinary variable, its value is substituted, unless env is .GlobalEnv in which
case the symbol is left unchanged.

substitute is a primitive function so positional matching is used and names of supplied argu-
ments are ignored.

Value

The mode of the result is generally "call" but may in principle be any type. In particular, single-
variable expressions have mode "name" and constants have the appropriate base mode.

Note

Substitute works on a purely lexical basis. There is no guarantee that the resulting expression makes
any sense.

Substituting and quoting often causes confusion when the argument is expression(...). The
result is a call to the expression constructor function and needs to be evaluated with eval to
give the actual expression object.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

missing for argument ‘missingness’, bquote for partial substitution, sQuote and dQuote for
adding quotation marks to strings.

Examples

require(graphics)
(s.e <- substitute(expression(a + b), list(a = 1))) #> expression(1 + b)
(s.s <- substitute(a + b, list(a = 1))) #> 1 + b
c(mode(s.e), typeof(s.e)) # "call", "language"
c(mode(s.s), typeof(s.s)) # (the same)

substr 427

but:
(e.s.e <- eval(s.e)) #> expression(1 + b)
c(mode(e.s.e), typeof(e.s.e)) # "expression", "expression"

substitute(x <- x + 1, list(x=1)) # nonsense

myplot <- function(x, y)
plot(x, y, xlab=deparse(substitute(x)),

ylab=deparse(substitute(y)))

Simple examples about lazy evaluation, etc:

f1 <- function(x, y = x) { x <- x + 1; y }
s1 <- function(x, y = substitute(x)) { x <- x + 1; y }
s2 <- function(x, y) { if(missing(y)) y <- substitute(x); x <- x + 1; y }
a <- 10
f1(a)# 11
s1(a)# 11
s2(a)# a
typeof(s2(a))# "symbol"

substr Substrings of a Character Vector

Description

Extract or replace substrings in a character vector.

Usage

substr(x, start, stop)
substring(text, first, last = 1000000)
substr(x, start, stop) <- value
substring(text, first, last = 1000000) <- value

Arguments

x, text a character vector.

start, first integer. The first element to be replaced.

stop, last integer. The last element to be replaced.

value a character vector, recycled if necessary.

Details

substring is compatible with S, with first and last instead of start and stop. For vector
arguments, it expands the arguments cyclically to the length of the longest provided none are of zero
length.

When extracting, if start is larger than the string length then "" is returned.

For the extraction functions, x or textwill be converted to a character vector by as.character
if it is not already one.

428 substr

For the replacement functions, if start is larger than the string length then no replacement is done.
If the portion to be replaced is longer than the replacement string, then only the portion the length
of the string is replaced.

If any argument is an NA element, the corresponding element of the answer is NA.

Elements of the result will be have the encoding declared as that of the current locale (see
Encoding if the corresponding input had a declared encoding and the current locale is either
Latin-1 or UTF-8.

Value

For substr, a character vector of the same length and with the same attributes as x (after possible
coercion).

For substring, a character vector of length the longest of the arguments. This will have names
taken from x (if it has any after coercion, repeated as needed), and other attributes copied from x if
it is the longest of the arguments).

Elements of x with a declared encoding (see Encoding) will be returned with the same encoding.

Note

The S4 version of substring<- ignores last; this version does not.

These functions are often used with nchar to truncate a display. That does not really work (you
want to limit the width, not the number of characters, so it would be better to use strtrim), but
at least make sure you use nchar(type="c") (the default since R 2.6.0).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (substring.)

See Also

strsplit, paste, nchar.

Examples

substr("abcdef",2,4)
substring("abcdef",1:6,1:6)
strsplit is more efficient ...

substr(rep("abcdef",4),1:4,4:5)
x <- c("asfef", "qwerty", "yuiop[", "b", "stuff.blah.yech")
substr(x, 2, 5)
substring(x, 2, 4:6)

substring(x, 2) <- c("..", "+++")
x

sum 429

sum Sum of Vector Elements

Description

sum returns the sum of all the values present in its arguments.

Usage

sum(..., na.rm = FALSE)

Arguments

... numeric or complex or logical vectors.

na.rm logical. Should missing values be removed?

Details

This is a generic function: methods can be defined for it directly or via the Summary group generic.
For this to work properly, the arguments ... should be unnamed, and dispatch is on the first
argument.

If na.rm is FALSE an NA value in any of the arguments will cause a value of NA to be returned,
otherwise NA values are ignored.

Logical true values are regarded as one, false values as zero. For historical reasons, NULL is ac-
cepted and treated as if it were integer(0).

Value

The sum. If all of ... are of type integer or logical, then the sum is integer, and in that case the
result will be NA (with a warning) if integer overflow occurs. Otherwise it is a length-one numeric
or complex vector.

NB: the sum of an empty set is zero, by definition.

S4 methods

This is part of the S4 Summary group generic. Methods for it must use the signature x, ...,
na.rm.

‘plotmath’ for the use of sum in plot annotation.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

colSums for row and column sums.

430 summary

summary Object Summaries

Description

summary is a generic function used to produce result summaries of the results of various model
fitting functions. The function invokes particular methods which depend on the class of the
first argument.

Usage

summary(object, ...)

Default S3 method:
summary(object, ..., digits = max(3, getOption("digits")-3))
S3 method for class 'data.frame':
summary(object, maxsum = 7,

digits = max(3, getOption("digits")-3), ...)

S3 method for class 'factor':
summary(object, maxsum = 100, ...)

S3 method for class 'matrix':
summary(object, ...)

Arguments

object an object for which a summary is desired.

maxsum integer, indicating how many levels should be shown for factors.

digits integer, used for number formatting with signif() (for
summary.default) or format() (for summary.data.frame).

... additional arguments affecting the summary produced.

Details

For factors, the frequency of the first maxsum - 1 most frequent levels is shown, where the
less frequent levels are summarized in "(Others)" (resulting in maxsum frequencies).

The functions summary.lm and summary.glm are examples of particular methods which sum-
marize the results produced by lm and glm.

Value

The form of the value returned by summary depends on the class of its argument. See the docu-
mentation of the particular methods for details of what is produced by that method.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

svd 431

See Also

anova, summary.glm, summary.lm.

Examples

summary(attenu, digits = 4) #-> summary.data.frame(...), default precision
summary(attenu $ station, maxsum = 20) #-> summary.factor(...)

lst <- unclass(attenu$station) > 20 # logical with NAs
summary.default() for logicals -- different from *.factor:
summary(lst)
summary(as.factor(lst))

svd Singular Value Decomposition of a Matrix

Description

Compute the singular-value decomposition of a rectangular matrix.

Usage

svd(x, nu = min(n, p), nv = min(n, p), LINPACK = FALSE)

La.svd(x, nu = min(n, p), nv = min(n, p))

Arguments

x a real or complex matrix whose SVD decomposition is to be computed.

nu the number of left singular vectors to be computed. This must between 0 and n
= nrow(x).

nv the number of right singular vectors to be computed. This must be between 0
and p = ncol(x).

LINPACK logical. Should LINPACK be used (for compatibility with R < 1.7.0)? In this
case nu must be 0, nrow(x) or ncol(x).

Details

The singular value decomposition plays an important role in many statistical techniques. svd and
La.svd provide two slightly different interfaces. The main functions used are the LAPACK rou-
tines DGESDD and ZGESVD; svd(LINPACK = TRUE) provides an interface to the LINPACK
routine DSVDC, purely for backwards compatibility.

Computing the singular vectors is the slow part for large matrices. The computation will be more
efficient if nu <= min(n, p) and nv <= min(n, p), and even more efficient if one or both
are zero.

Unsuccessful results from the underlying LAPACK code will result in an error giving a positive
error code: these can only be interpreted by detailed study of the FORTRAN code.

432 sweep

Value

The SVD decomposition of the matrix as computed by LAPACK/LINPACK,

X = UDV ′,

where U and V are orthogonal, V ′ means V transposed, and D is a diagonal matrix with the
singular values Dii. Equivalently,D = U ′XV , which is verified in the examples, below.

The returned value is a list with components

d a vector containing the singular values of x, of length min(n, p).

u a matrix whose columns contain the left singular vectors of x, present if nu >
0. Dimension c(n, nu).

v a matrix whose columns contain the right singular vectors of x, present if nv >
0. Dimension c(p, nv).

For La.svd the return value replaces v by vt, the (conjugated if complex) transpose of v.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dongarra, J. J., Bunch, J. R., Moler, C. B. and Stewart, G. W. (1978) LINPACK Users Guide.
Philadelphia: SIAM Publications.

Anderson. E. and ten others (1999) LAPACK Users’ Guide. Third Edition. SIAM.
Available on-line at http://www.netlib.org/lapack/lug/lapack_lug.html.

See Also

eigen, qr.

Examples

hilbert <- function(n) { i <- 1:n; 1 / outer(i - 1, i, "+") }
X <- hilbert(9)[,1:6]
(s <- svd(X))
D <- diag(s$d)
s$u %*% D %*% t(s$v) # X = U D V'
t(s$u) %*% X %*% s$v # D = U' X V

sweep Sweep out Array Summaries

Description

Return an array obtained from an input array by sweeping out a summary statistic.

Usage

sweep(x, MARGIN, STATS, FUN="-", check.margin=TRUE, ...)

http://www.netlib.org/lapack/lug/lapack_lug.html

sweep 433

Arguments

x an array.
MARGIN a vector of indices giving the extents of x which correspond to STATS.
STATS the summary statistic which is to be swept out.
FUN the function to be used to carry out the sweep. In the case of binary operators

such as "/" etc., the function name must backquoted or quoted. (FUN is found
by a call to match.fun.)

check.margin logical. If TRUE (the default), warn if the length or dimensions of STATS do
not match the specified dimensions of x. Set to FALSE for a small speed gain
when you know that dimensions match.

... optional arguments to FUN.

Details

The consistency check among STATS, MARGIN and x is stricter if STATS is an array than if
it is a vector. In the vector case, some kinds of recycling are allowed without a warning. Use
sweep(x,MARGIN,as.array(STATS)) if STATS is a vector and you want to be warned if
any recycling occurs.

Value

An array with the same shape as x, but with the summary statistics swept out.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

apply on which sweep used to be based; scale for centering and scaling.

Examples

require(stats) # for median
med.att <- apply(attitude, 2, median)
sweep(data.matrix(attitude), 2, med.att)# subtract the column medians

More sweeping:
A <- array(1:24, dim = 4:2)

no warnings in normal use
sweep(A, 1, 5)
(A.min <- apply(A, 1, min)) # == 1:4
sweep(A, 1, A.min)
sweep(A, 1:2, apply(A, 1:2, median))

warnings when mismatch
sweep(A, 1, 1:3)## STATS does not recycle
sweep(A, 1, 6:1)## STATS is longer

exact recycling:
sweep(A, 1, 1:2)## no warning
sweep(A, 1, as.array(1:2))## warning

434 switch

switch Select One of a List of Alternatives

Description

switch evaluates EXPR and accordingly chooses one of the further arguments (in ...).

Usage

switch(EXPR, ...)

Arguments

EXPR an expression evaluating to a number or a character string.

... the list of alternatives, given explicitly.

Details

If the value of EXPR is an integer between 1 and nargs()-1 then the corresponding element of
... is evaluated and the result returned.

If EXPR returns a character string then that string is used to match the names of the elements in
.... If there is an exact match then that element is evaluated and returned if there is one, otherwise
the next element is chosen, e.g., switch("cc", a=1, cc=, d=2) evaluates to 2.

In the case of no match, if there’s a further argument in switch that one is returned, otherwise
NULL.

Warning

Beware of partial matching: an alternative E = foo will match the first argument EXPR unless
that is named. See the examples for good practice in naming the first argument.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

require(stats)
centre <- function(x, type) {
switch(type,

mean = mean(x),
median = median(x),
trimmed = mean(x, trim = .1))

}
x <- rcauchy(10)
centre(x, "mean")
centre(x, "median")
centre(x, "trimmed")

ccc <- c("b","QQ","a","A","bb")
for(ch in ccc)

Syntax 435

cat(ch,":",switch(EXPR = ch, a=1, b=2:3), "\n")
for(ch in ccc)

cat(ch,":",switch(EXPR = ch, a=, A=1, b=2:3, "Otherwise: last"),"\n")

Numeric EXPR don't allow an 'otherwise':
for(i in c(-1:3,9)) print(switch(i, 1,2,3,4))

Syntax Operator Syntax and Precedence

Description

Outlines R syntax and gives the precedence of operators

Details

The following unary and binary operators are defined. They are listed in precedence groups, from
highest to lowest.

[[[indexing
:: ::: access variables in a name space
$ @ component / slot extraction
^ exponentiation (right to left)
- + unary minus and plus
: sequence operator
%any% special operators
* / multiply, divide
+ - (binary) add, subtract
< > <= >= == != ordering and comparison
! negation
& && and
| || or
~ as in formulae
-> ->> rightwards assignment
= assignment (right to left)
<- <<- assignment (right to left)
? help (unary and binary)

Within an expression operators of equal precedence are evaluated from left to right except where
indicated.

The links in the See Also section cover most other aspects of the basic syntax.

Note

There are substantial precedence differences between R and S. In particular, in S ? has the same
precedence as (binary) + - and & && | || have equal precedence.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

436 Sys.getenv

See Also

Arithmetic, Comparison, Control, Extract, Logic, NumericConstants, Paren,
Quotes, Reserved.

The R Language Definition manual.

Sys.getenv Get Environment Variables

Description

Sys.getenv obtains the values of the environment variables.

Usage

Sys.getenv(x = NULL, unset = "")

Arguments

x a character vector, or NULL.

unset a character string.

Details

Both arguments will be coerced to character if necessary.

Setting unset = NA will enable unset variables and those set to the value "" to be distinguished,
if the OS does.

Value

A vector of the same length as x, with the variable names as its names attribute. Each element
holds the value of the environment variable named by the corresponding component of x (or the
value of unset if no environment variable with that name was found).

On most platforms Sys.getenv() will return a named vector giving the values of all the envi-
ronment variables, sorted in the current locale. It may be confused by names containing = which
some platforms allow but POSIX does not.

See Also

Sys.setenv, Sys.getlocale for the locale in use, getwd for the working directory.

Examples

whether HOST is set will be shell-dependent e.g. Solaris' csh does not.
Sys.getenv(c("R_HOME", "R_PAPERSIZE", "R_PRINTCMD", "HOST"))

names(s <- Sys.getenv()) # all settings (the values could be very long)

Language and Locale settings -- but rather use Sys.getlocale()
s[grep("^L(C|ANG)", names(s))]

Sys.glob 437

Sys.glob Wildcard Expansion on File Paths

Description

Function to do wildcard expansion (also known as ‘globbing’) on file paths.

Not all platforms support this.

Usage

Sys.glob(paths, dirmark = FALSE)

Arguments

paths character vector of patterns for relative or absolute filepaths. Missing values will
be ignored.

dirmark logical: should matches to directories from patterns that do not already end in /
have a slash appended? May not be supported on all platforms.

Details

This expands wildcards in file paths. For precise details, see your system’s documentation on the
glob system call. There is a POSIX 1003.2 standard (see http://www.opengroup.org/
onlinepubs/009695399/functions/glob.html) but some OSes will go beyond this
(in particular some BSD-based OSes also do tilde expansion, see path.expand).

All systems should interpret * (match zero or more characters), ? (match a single character) and [
(begin a character class or range). If a filename starts with . this must be matched explicitly. By
default paths ending in / will be accepted and matched only to directories.

The rest of these details are indicative (and based on the POSIX standard).

[begins a character class. If the first character in [...] is not !, this is a character class which
matches a single character against any of the characters specified. The class cannot be empty, so]
can be included provided it is first. If the first character is !, the character class matches a single
character which is none of the specified characters.

Character classes can include ranges such as [A-Z]: include - as a character by having it first or
last in a class. (The interpretation of ranges should be locale-specific, so the example is not a good
idea in an Estonian locale.)

One can remove the special meaning of ?, * and [by preceding them by a backslash (except within
a character class).

Value

A character vector of matched file paths. The order is system-specific (but in the order of the
elements of paths): it is normally collated in either the current locale or in byte (ASCII) order.

Directory errors are normally ignored, so the matches are to accessible file paths (but not necessarily
accessible files).

On platforms which do not have the glob system call (nor, as for R under Windows, an emulation),
paths is returned unchanged.

http://www.opengroup.org/onlinepubs/009695399/functions/glob.html
http://www.opengroup.org/onlinepubs/009695399/functions/glob.html

438 Sys.info

See Also

path.expand.

Quotes for handling backslashes in character strings.

Examples

Not run:
Sys.glob(file.path(R.home(), "library", "*", "R", "*.rdx"))
End(Not run)

Sys.info Extract System and User Information

Description

Reports system and user information.

Usage

Sys.info()

Details

This function is not implemented on all R platforms, and returns NULL when not available. Where
possible it is based on POSIX system calls.

Sys.info() returns details of the platform R is running on, whereas R.version gives details
of the platform R was built on: they may well be different.

Value

A character vector with fields

sysname The operating system.

release The OS release.

version The OS version.

nodename A name by which the machine is known on the network (if any).

machine A concise description of the hardware.

login The user’s login name, or "unknown" if it cannot be ascertained.

user The name of the real user ID, or "unknown" if it cannot be ascertained.

The first five fields come from the uname(2) system call. The login name comes from
getlogin(2), and the user name from getpwuid(getuid())

Note

The meaning of OS ‘release’ and ‘version’ is system-dependent and there is no guarantee that the
node or login or user names will be what you might reasonably expect. (In particular on some Linux
distributions the login name is unknown from sessions with re-directed inputs.)

sys.parent 439

See Also

.Platform, and R.version. sessionInfo() gives a synopsis of both your system and the
R session.

Examples

Sys.info()
An alternative (and probably better) way to get the login name on Unix
Sys.getenv("LOGNAME")

sys.parent Functions to Access the Function Call Stack

Description

These functions provide access to environments (‘frames’ in S terminology) associated with
functions further up the calling stack.

Usage

sys.call(which = 0)
sys.frame(which = 0)
sys.nframe()
sys.function(which = 0)
sys.parent(n = 1)

sys.calls()
sys.frames()
sys.parents()
sys.on.exit()
sys.status()
parent.frame(n = 1)

Arguments

which the frame number if non-negative, the number of frames to go back if negative.

n the number of generations to go back. (See the ‘Details’ section.)

Details

.GlobalEnv is given number 0 in the list of frames. Each subsequent function evaluation in-
creases the frame stack by 1 and the call, function definition and the environment for evaluation of
that function are returned by sys.call, sys.function and sys.frame with the appropriate
index.

sys.call, sys.frame and sys.function accept integer values for the argument which.
Non-negative values of which are frame numbers whereas negative values are counted back from
the frame number of the current evaluation.

The parent frame of a function evaluation is the environment in which the function was called.
It is not necessarily numbered one less than the frame number of the current evaluation, nor is it
the environment within which the function was defined. sys.parent returns the number of the
parent frame if n is 1 (the default), the grandparent if n is 2, and so on. See also the Note.

440 sys.parent

sys.nframe returns an integer, the number of the current frame as described in the first paragraph.

sys.calls and sys.frames give a pairlist of all the active calls and frames, respectively, and
sys.parents returns an integer vector of indices of the parent frames of each of those frames.

Notice that even though the sys.xxx functions (except sys.status) are interpreted, their con-
texts are not counted nor are they reported. There is no access to them.

sys.status() returns a list with components sys.calls, sys.parents and
sys.frames, the results of calls to those three functions (which this will include the call
to sys.status: see the first example).

sys.on.exit() returns the expression stored for use by on.exit in the function currently
being evaluated. (Note that this differs from S, which returns a list of expressions for the current
frame and its parents.)

parent.frame(n) is a convenient shorthand for sys.frame(sys.parent(n)) (imple-
mented slightly more efficiently).

Value

sys.call returns a call, sys.function a function definition, and sys.frame and
parent.frame return an environment.

For the other functions, see the ‘Details’ section.

Note

Strictly, sys.parent and parent.frame refer to the context of the parent interpreted function.
So internal functions (which may or may not set contexts and so may or may not appear on the call
stack) are not counted, and S3 methods can also do suprising things.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (not parent.frame.)

See Also

eval for a usage of sys.frame and parent.frame.

Examples

require(utils)

Note: the first two examples will give different results
if run by example().
ff <- function(x) gg(x)
gg <- function(y) sys.status()
str(ff(1))

gg <- function(y) {
ggg <- function() {

cat("current frame is", sys.nframe(), "\n")
cat("parents are", sys.parents(), "\n")
print(sys.function(0)) # ggg
print(sys.function(2)) # gg

}
if(y > 0) gg(y-1) else ggg()

Sys.setenv 441

}
gg(3)

t1 <- function() {
aa <- "here"
t2 <- function() {
in frame 2 here
cat("current frame is", sys.nframe(), "\n")
str(sys.calls()) ## list with two components t1() and t2()
cat("parents are frame numbers", sys.parents(), "\n") ## 0 1
print(ls(envir=sys.frame(-1))) ## [1] "aa" "t2"
invisible()

}
t2()

}
t1()

test.sys.on.exit <- function() {
on.exit(print(1))
ex <- sys.on.exit()
str(ex)
cat("exiting...\n")

}
test.sys.on.exit()
gives 'language print(1)', prints 1 on exit

An example where the parent is not the next frame up the stack
since method dispatch uses a frame.
as.double.foo <- function(x)
{

str(sys.calls())
print(sys.frames())
print(sys.parents())
print(sys.frame(-1)); print(parent.frame())
x

}
t2 <- function(x) as.double(x)
a <- structure(pi, class = "foo")
t2(a)

Sys.setenv Set or Unset Environment Variables

Description

Sys.setenv sets environment variables (for other processes called from within R or future calls
to Sys.getenv from this R process).

Sys.unsetenv removes environment variables.

Usage

Sys.setenv(...)

Sys.unsetenv(x)

442 Sys.sleep

Arguments

... named arguments with values coercible to a character string.

x a character vector, or an object coercible to character.

Details

The names setenv and putenv come from different Unix traditions: R also has Sys.putenv,
but this is now deprecated. The internal code uses setenv if available, otherwise putenv.

Non-standard R names must be quoted in Sys.setenv: see the examples. Most platforms (and
POSIX) do not allow names containing "=".

There may be system-specific limits on the maximum length of the values of individual environment
variables or of all environment variables.

Value

A logical vector, with elements being true if (un)setting the corresponding variable succeeded. (For
Sys.unsetenv this includes attempting to remove a non-existent variable.)

Note

Not all systems need support Sys.setenv (although all known current platforms do) nor
Sys.unsetenv. If Sys.unsetenv is not supported, it will at least try to set the value of
the environment variable to "", with a warning.

See Also

Sys.getenv, Startup for ways to set environment variables for the R session.

setwd for the working directory.

Examples

print(Sys.setenv(R_TEST="testit", "A+C"=123)) # `A+C` could also be used
Sys.getenv("R_TEST")
Sys.unsetenv("R_TEST") # may warn and not succeed
Sys.getenv("R_TEST", unset=NA)

Sys.sleep Suspend Execution for a Time Interval

Description

Suspend execution of R expressions for a given number of seconds

Usage

Sys.sleep(time)

Arguments

time The time interval to suspend execution for, in seconds.

sys.source 443

Details

Using this function allows R to be given very low priority and hence not to interfere with more
important foreground tasks. A typical use is to allow a process launched from R to set itself up and
read its input files before R execution is resumed.

The intention is that this function suspends execution of R expressions but wakes the process up
often enough to respond to GUI events, typically every 0.5 seconds.

There is no guarantee that the process will sleep for the whole of the specified interval, and it may
well take slightly longer in real time to resume execution. The resolution of the time interval is
system-dependent, but will normally be down to 0.02 secs or better. (On modern Unix-alikes it will
be better than 1ms.)

Value

Invisible NULL.

Note

This function may not be implemented on all systems.

Examples

testit <- function(x)
{

p1 <- proc.time()
Sys.sleep(x)
proc.time() - p1 # The cpu usage should be negligible

}
testit(3.7)

sys.source Parse and Evaluate Expressions from a File

Description

Parses expressions in the given file, and then successively evaluates them in the specified environ-
ment.

Usage

sys.source(file, envir = baseenv(), chdir = FALSE,
keep.source = getOption("keep.source.pkgs"))

Arguments

file a character string naming the file to be read from

envir an R object specifying the environment in which the expressions are to be eval-
uated. May also be a list or an integer. The default value NULL corresponds to
evaluation in the base environment. This is probably not what you want; you
should typically supply an explicit envir argument.

chdir logical; if TRUE, the R working directory is changed to the directory containing
file for evaluating.

444 Sys.time

keep.source logical. If TRUE, functions keep their source including comments, see
options(keep.source = *) for more details.

Details

For large files, keep.source = FALSE may save quite a bit of memory. In order for the code
being evaluated to use the correct environment (for example, in global assignments), source code in
packages should call topenv(), which will return the name space, if any, the environment set up
by sys.source, or the global environment if a saved image is being used.

See Also

source, and library which uses sys.source.

Examples

a simple way to put some objects in an environment
high on the search path
tmp <- tempfile()
writeLines("aaa <- pi", tmp)
env <- attach(NULL, name = "myenv")
sys.source(tmp, env)
unlink(tmp)
search()
aaa
detach("myenv")

Sys.time Get Current Date and Time

Description

Sys.time and Sys.Date returns the system’s idea of the current date with and without time.

Usage

Sys.time()
Sys.Date()

Details

Sys.time returns an absolute date-time value which can be converted in various time zones and
may return different days.

Sys.Date returns the day in the current timezone.

Value

Sys.time returns an object of class "POSIXct" (see DateTimeClasses). On some systems it
will have sub-second accuracy, but on others it will increment in seconds. On systems conforming
to POSIX 1003.1-2001 the time will be reported in microsecond increments.

Sys.Date returns an object of class "Date" (see Date).

Sys.which 445

See Also

date for the system time in a fixed-format character string; the elapsed time component of
proc.time for possibly finer resolution in changes in time.

Sys.timezone.

Examples

Sys.time()
print with possibly greater accuracy:
op <- options(digits.secs=6)
Sys.time()
options(op)

locale-specific version of date()
format(Sys.time(), "%a %b %d %X %Y")

Sys.Date()

Sys.which Find Full Paths of Executables

Description

This is an interface to the system command which.

Usage

Sys.which(names)

Arguments

names Character vector of names of possible executables.

Details

The system command which reports on the full names of an executable (including an executable
script) found on the current path.

Value

A character vector of the same length as names, named by names. The elements are either the
full path to the executable/script or "" if no executable of that name was found.

Examples

the first two are likely to exist everywhere
texi2dvi exists on most Unix-alikes and under MiKTeX
Sys.which(c("ftp", "ping", "texi2dvi", "this-does-not-exist"))

446 system

system Invoke a System Command

Description

system invokes the OS command specified by command.

Usage

system(command, intern = FALSE, ignore.stderr = FALSE,
wait = TRUE, input = NULL, show.output.on.console = TRUE,
minimized = FALSE, invisible = TRUE)

Arguments

command the system command to be invoked, as a string.

intern a logical (not NA) which indicates whether to make the output of the command
an R object. Not available unless popen is supported on the platform.

ignore.stderr
a logical indicating whether error messages written to ‘stderr’ should be ig-
nored.

wait a logical indicating whether the R interpreter should wait for the command to
finish, or run it asynchronously. This will be ignored (and the interpreter will
always wait) if intern = TRUE.

input if a character vector is supplied, this is copied one string per line to a temporary
file, and the standard input of command is redirected to the file.

show.output.on.console, minimized, invisible
arguments that are accepted on other platforms but ignored on this one, with a
warning.

Details

command is parsed as a command plus arguments separated by spaces. So if the path to the
command (or a filepath argument) contains spaces, it must be quoted e.g. by shQuote.

How the command is run differs by platform: Unix-alikes use a shell (‘/bin/sh’ by default), and
Windows executes the command directly (extensions ‘.exe’, ‘.com’) or as a batch file (extensions
‘.cmd’ and ‘.bat’).

If intern is TRUE then popen is used to invoke the command and the output collected, line by
line, into an R character vector. If intern is FALSE then the C function system is used to
invoke the command.

The ordering of arguments after the first two has changed from time to time: it is recommended to
name all arguments after the first.

Value

If intern = TRUE, a character vector giving the output of the command, one line per character
string. (Output lines of more than 8095 characters will be split.) If the command could not be run
or gives an error this will be reported on the shell’s ‘stderr’ (unless popen is not supported, when
there is an R error).

system.file 447

If intern = FALSE, the return value is an error code (0 for success), given the invisible attribute
(so needs to be printed explicitly). If the command could not be run for any reason, the value is
256*127 = 52512. Otherwise if wait = TRUE the value is 256 times the error code returned
by the command, and if wait = FALSE it is 0 (the conventional success value).

Stdout and stderr

Error messages written to ‘stderr’ will be sent by the shell to the terminal unless ignore.stderr
= TRUE. They can be captured (in the most likely shells) by

system("some command 2>&1", intern=TRUE)

What happens to output sent to ‘stdout’ and ‘stderr’ if intern = FALSE is interface-specific,
and it is unsafe to assume that such messages will appear on the console (they do on the MacOS X
console but not on the gnomeGUI console, for example).

Note

wait is implemented by appending & to the command: this is shell-dependent, but required by
POSIX and so widely supported.

See Also

.Platform for platform-specific variables.

Examples

list all files in the current directory using the -F flag
Not run: system("ls -F")

t1 is a character vector, each one
representing a separate line of output from who
(if the platform has popen and who)
t1 <- try(system("who", intern = TRUE))

try(system("ls fizzlipuzzli", intern = TRUE, ignore.stderr = TRUE))
empty since file doesn't exist

system.file Find Names of R System Files

Description

Finds the full file names of files in packages etc.

Usage

system.file(..., package = "base", lib.loc = NULL)

448 system.time

Arguments

... character strings, specifying subdirectory and file(s) within some package. The
default, none, returns the root of the package. Wildcards are not supported.

package a character string with the name of a single package. An error occurs if more
than one package name is given.

lib.loc a character vector with path names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries.

Value

A character vector of positive length, containing the file names that matched ..., or the empty
string, "", if none matched. If matching the root of a package, there is no trailing separator.

As a special case, system.file() gives the root of the base package only.

See Also

R.home for the root directory of the R installation, list.files

Examples

system.file() # The root of the 'base' package
system.file(package = "stats") # The root of package 'stats'
system.file("INDEX")
system.file("help", "AnIndex", package = "splines")

system.time CPU Time Used

Description

Return CPU (and other) times that expr used.

Usage

system.time(expr, gcFirst = TRUE)
unix.time(expr, gcFirst = TRUE)

Arguments

expr Valid R expression to be timed.

gcFirst Logical - should a garbage collection be performed immediately before the tim-
ing? Default is TRUE.

t 449

Details

system.time calls the function proc.time, evaluates expr, and then calls proc.time once
more, returning the difference between the two proc.time calls.

unix.time is an alias of system.time, for compatibility with S.

Timings of evaluations of the same expression can vary considerably depending on whether the
evaluation triggers a garbage collection. When gcFirst is TRUE a garbage collection (gc) will be
performed immediately before the evaluation of expr. This will usually produce more consistent
timings.

Value

A object of class "proc_time": see proc.time for details.

Note

It is possible to compile R without support for system.time, when the function will throw an
error.

See Also

proc.time, time which is for time series.

Examples

require(stats)
system.time(for(i in 1:100) mad(runif(1000)))
Not run:
exT <- function(n = 1000) {
Purpose: Test if system.time works ok; n: loop size
system.time(for(i in 1:n) x <- mean(rt(1000, df=4)))

}
#-- Try to interrupt one of the following (using Ctrl-C / Escape):
exT() #- about 3 secs on a 1GHz PIII
system.time(exT()) #~ +/- same
End(Not run)

t Matrix Transpose

Description

Given a matrix or data.frame x, t returns the transpose of x.

Usage

t(x)

Arguments

x a matrix or data frame, typically.

450 table

Details

This is a generic function for which methods can be written. The description here applies to the
default and "data.frame" methods.

A data frame is first coerced to a matrix: see as.matrix. When x is a vector, it is treated as a
column, i.e., the result is a 1-row matrix.

Value

A matrix, with dim and dimnames constructed appropriately from those of x, and other attributes
except names copied across.

Note

The conjugate transpose of a complex matrixA, denotedAH orA∗, is computed as Conj(t(A)).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

aperm for permuting the dimensions of arrays.

Examples

a <- matrix(1:30, 5,6)
ta <- t(a) ##-- i.e., a[i, j] == ta[j, i] for all i,j :
for(j in seq(ncol(a)))
if(! all(a[, j] == ta[j,])) stop("wrong transpose")

table Cross Tabulation and Table Creation

Description

table uses the cross-classifying factors to build a contingency table of the counts at each combi-
nation of factor levels.

Usage

table(..., exclude = if (useNA == "no") c(NA, NaN), useNA = c("no",
"ifany", "always"), dnn = list.names(...), deparse.level = 1)

as.table(x, ...)
is.table(x)

S3 method for class 'table':
as.data.frame(x, row.names = NULL, ...,

responseName = "Freq")

table 451

Arguments

... one of more objects which can be interpreted as factors (including character
strings), or a list (or data frame) whose components can be so interpreted. (For
as.table and as.data.frame, arguments passed to specific methods.)

exclude levels to remove from all factors in If set to NULL, it implies
useNA="always".

useNA whether to include extra NA levels in the table.

dnn the names to be given to the dimensions in the result (the dimnames names).
deparse.level

controls how the default dnn is constructed. See details.

x an arbitrary R object, or an object inheriting from class "table" for the
as.data.frame method.

row.names a character vector giving the row names for the data frame.

responseName The name to be used for the column of table entries, usually counts.

Details

If the argument dnn is not supplied, the internal function list.names is called to compute the
‘dimname names’. If the arguments in ... are named, those names are used. For the remain-
ing arguments, deparse.level = 0 gives an empty name, deparse.level = 1 uses the
supplied argument if it is a symbol, and deparse.level = 2 will deparse the argument.

Only when exclude is specified and non-NULL (i.e., not by default), will table potentially
drop levels of factor arguments.

Both exclude and useNA operate on an "all or none" basis. If you want to control the dimensions
of a multiway table separately, modify each argument using factor or addNA

The summary method for class "table" (used for objects created by table or xtabs) which
gives basic information and performs a chi-squared test for independence of factors (note that the
function chisq.test currently only handles 2-d tables).

Value

table() returns a contingency table, an object of class "table", an array of integer values.
Note that unlike S the result is always an array, a 1D array if one factor is given.

as.table and is.table coerce to and test for contingency table, respectively.

The as.data.frame method for objects inheriting from class "table" can be used to convert
the array-based representation of a contingency table to a data frame containing the classifying
factors and the corresponding entries (the latter as component named by responseName). This
is the inverse of xtabs.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

tabulate is the underlying function and allows finer control.

Use ftable for printing (and more) of multidimensional tables. margin.table,
prop.table, addmargins.

452 tabulate

Examples

require(stats) # for rpois and xtabs
Simple frequency distribution
table(rpois(100,5))
Check the design:
with(warpbreaks, table(wool, tension))
table(state.division, state.region)

simple two-way contingency table
with(airquality, table(cut(Temp, quantile(Temp)), Month))

a <- letters[1:3]
table(a, sample(a)) # dnn is c("a", "")
table(a, sample(a), deparse.level = 0) # dnn is c("", "")
table(a, sample(a), deparse.level = 2) # dnn is c("a", "sample(a)")

xtabs() <-> as.data.frame.table() :
UCBAdmissions ## already a contingency table
DF <- as.data.frame(UCBAdmissions)
class(tab <- xtabs(Freq ~ ., DF)) # xtabs & table
tab *is* "the same" as the original table:
all(tab == UCBAdmissions)
all.equal(dimnames(tab), dimnames(UCBAdmissions))

a <- rep(c(NA, 1/0:3), 10)
table(a)
table(a, exclude=NULL)
b <- factor(rep(c("A","B","C"), 10))
table(b)
table(b, exclude="B")
d <- factor(rep(c("A","B","C"), 10), levels=c("A","B","C","D","E"))
table(d, exclude="B")
print(table(b,d), zero.print = ".")

NA counting:
is.na(d) <- 3:4
d. <- addNA(d)
d.[1:7]
table(d.) # ", exclude = NULL" is not needed
i.e., if you want to count the NA's of 'd', use
table(d, useNA="ifany")

Two-way tables with NA counts. The 3rd variant is absurd, but shows
something that cannot be done using exclude or useNA.
with(airquality,

table(OzHi=Ozone > 80, Month, useNA="ifany"))
with(airquality,

table(OzHi=Ozone > 80, Month, useNA="always"))
with(airquality,

table(OzHi=Ozone > 80, addNA(Month)))

tabulate Tabulation for Vectors

tapply 453

Description

tabulate takes the integer-valued vector bin and counts the number of times each integer occurs
in it.

Usage

tabulate(bin, nbins = max(1, bin))

Arguments

bin a numeric vector (of positive integers), or a factor.

nbins the number of bins to be used.

Details

tabulate is used as the basis of the table function.

If bin is a factor, its internal integer representation is tabulated.

If the elements of bin are numeric but not integers, they are truncated to the nearest integer.

Value

An integer vector (without names). There is a bin for each of the values 1, ..., nbins; values
outside that range are (silently) ignored.

See Also

table, factor.

Examples

tabulate(c(2,3,5))
tabulate(c(2,3,3,5), nbins = 10)
tabulate(c(-2,0,2,3,3,5)) # -2 and 0 are ignored
tabulate(c(-2,0,2,3,3,5), nbins = 3)
tabulate(factor(letters[1:10]))

tapply Apply a Function Over a “Ragged” Array

Description

Apply a function to each cell of a ragged array, that is to each (non-empty) group of values given
by a unique combination of the levels of certain factors.

Usage

tapply(X, INDEX, FUN = NULL, ..., simplify = TRUE)

454 tapply

Arguments

X an atomic object, typically a vector.

INDEX list of factors, each of same length as X. The elements are coerced to factors by
as.factor.

FUN the function to be applied. In the case of functions like +, %*%, etc., the function
name must be quoted. If FUN is NULL, tapply returns a vector which can be used
to subscript the multi-way array tapply normally produces.

... optional arguments to FUN: the Note section.

simplify If FALSE, tapply always returns an array of mode "list". If TRUE (the
default), then if FUN always returns a scalar, tapply returns an array with the
mode of the scalar.

Value

When FUN is present, tapply calls FUN for each cell that has any data in it. If FUN returns
a single atomic value for each such cell (e.g., functions mean or var) and when simplify is
TRUE, tapply returns a multi-way array containing the values, and NA for the empty cells. The
array has the same number of dimensions as INDEX has components; the number of levels in a
dimension is the number of levels (nlevels()) in the corresponding component of INDEX. Note
that if the return value has a class (e.g. an object of class "Date") the class is discarded.

Note that contrary to S, simplify = TRUE always returns an array, possibly 1-dimensional.

If FUN does not return a single atomic value, tapply returns an array of mode list whose
components are the values of the individual calls to FUN, i.e., the result is a list with a dim attribute.

When there is an array answer, its dimnames are named by the names of INDEX and are based on
the levels of the grouping factors (possibly after coercion).

For a list result, the elements corresponding to empty cells are NULL.

Note

Optional arguments to FUN supplied by the ... argument are not divided into cells. It is therefore
inappropriate for FUN to expect additional arguments with the same length as X.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

the convenience functions by and aggregate (using tapply); apply, lapply with its ver-
sions sapply and mapply.

Examples

require(stats)
groups <- as.factor(rbinom(32, n = 5, prob = 0.4))
tapply(groups, groups, length) #- is almost the same as
table(groups)

contingency table from data.frame : array with named dimnames
tapply(warpbreaks$breaks, warpbreaks[,-1], sum)

taskCallback 455

tapply(warpbreaks$breaks, warpbreaks[, 3, drop = FALSE], sum)

n <- 17; fac <- factor(rep(1:3, length = n), levels = 1:5)
table(fac)
tapply(1:n, fac, sum)
tapply(1:n, fac, sum, simplify = FALSE)
tapply(1:n, fac, range)
tapply(1:n, fac, quantile)

example of ... argument: find quarterly means
tapply(presidents, cycle(presidents), mean, na.rm = TRUE)

ind <- list(c(1, 2, 2), c("A", "A", "B"))
table(ind)
tapply(1:3, ind) #-> the split vector
tapply(1:3, ind, sum)

taskCallback Add or remove a top-level task callback

Description

addTaskCallback registers an R function that is to be called each time a top-level task is com-
pleted.

removeTaskCallback un-registers a function that was registered earlier via
addTaskCallback.

These provide low-level access to the internal/native mechanism for managing task-completion
actions. One can use taskCallbackManager at the S-language level to manage S functions
that are called at the completion of each task. This is easier and more direct.

Usage

addTaskCallback(f, data = NULL, name = character(0))
removeTaskCallback(id)

Arguments

f the function that is to be invoked each time a top-level task is successfully com-
pleted. This is called with 5 or 4 arguments depending on whether data is
specified or not, respectively. The return value should be a logical value in-
dicating whether to keep the callback in the list of active callbacks or discard
it.

data if specified, this is the 5-th argument in the call to the callback function f.

id a string or an integer identifying the element in the internal callback list to be
removed. Integer indices are 1-based, i.e the first element is 1. The names
of currently registered handlers is available using getTaskCallbackNames
and is also returned in a call to addTaskCallback.

name character: names to be used.

456 taskCallback

Details

Top-level tasks are individual expressions rather than entire lines of input. Thus an input line of the
form expression1 ; expression2 will give rise to 2 top-level tasks.

A top-level task callback is called with the expression for the top-level task, the result of the top-
level task, a logical value indicating whether it was successfully completed or not (always TRUE at
present), and a logical value indicating whether the result was printed or not. If the data argument
was specified in the call to addTaskCallback, that value is given as the fifth argument.

The callback function should return a logical value. If the value is FALSE, the callback is removed
from the task list and will not be called again by this mechanism. If the function returns TRUE, it
is kept in the list and will be called on the completion of the next top-level task.

Value

addTaskCallback returns an integer value giving the position in the list of task callbacks that
this new callback occupies. This is only the current position of the callback. It can be used to
remove the entry as long as no other values are removed from earlier positions in the list first.

removeTaskCallback returns a logical value indicating whether the specified element was
removed. This can fail (i.e., return FALSE) if an incorrect name or index is given that does not
correspond to the name or position of an element in the list.

Note

This is an experimental feature and the interface may be changed in the future.

There is also C-level access to top-level task callbacks to allow C routines rather than R functions
be used.

See Also

getTaskCallbackNames taskCallbackManager http://developer.
r-project.org/TaskHandlers.pdf

Examples

times <- function(total = 3, str="Task a") {
ctr <- 0

function(expr, value, ok, visible) {
ctr <<- ctr + 1
cat(str, ctr, "\n")
if(ctr == total) {
cat("handler removing itself\n")

}
return(ctr < total)

}
}

add the callback that will work for
4 top-level tasks and then remove itself.
n <- addTaskCallback(times(4))

now remove it, assuming it is still first in the list.
removeTaskCallback(n)

http://developer.r-project.org/TaskHandlers.pdf
http://developer.r-project.org/TaskHandlers.pdf

taskCallbackManager 457

Not run:
There is no point in running this
as
addTaskCallback(times(4))

sum(1:10)
sum(1:10)
sum(1:10)
sum(1:10)
sum(1:10)

End(Not run)

taskCallbackManager
Create an R-level task callback manager

Description

This provides an entirely S-language mechanism for managing callbacks or actions that are invoked
at the conclusion of each top-level task. Essentially, we register a single R function from this
manager with the underlying, native task-callback mechanism and this function handles invoking
the other R callbacks under the control of the manager. The manager consists of a collection of
functions that access shared variables to manage the list of user-level callbacks.

Usage

taskCallbackManager(handlers = list(), registered = FALSE,
verbose = FALSE)

Arguments

handlers this can be a list of callbacks in which each element is a list with an ele-
ment named "f" which is a callback function, and an optional element named
"data" which is the 5-th argument to be supplied to the callback when it is
invoked. Typically this argument is not specified, and one uses add to register
callbacks after the manager is created.

registered a logical value indicating whether the evaluate function has already been
registered with the internal task callback mechanism. This is usually FALSE and
the first time a callback is added via the add function, the evaluate function
is automatically registered. One can control when the function is registered by
specifying TRUE for this argument and calling addTaskCallback manually.

verbose a logical value, which if TRUE, causes information to be printed to the con-
sole about certain activities this dispatch manager performs. This is useful for
debugging callbacks and the handler itself.

Value

A list containing 6 functions:

add register a callback with this manager, giving the function, an optional 5-th ar-
gument, an optional name by which the callback is stored in the list, and a
register argument which controls whether the evaluate function is regis-
tered with the internal C-level dispatch mechanism if necessary.

458 taskCallbackNames

remove remove an element from the manager’s collection of callbacks, either by name
or position/index.

evaluate the ‘real’ callback function that is registered with the C-level dispatch mech-
anism and which invokes each of the R-level callbacks within this manager’s
control.

suspend a function to set the suspend state of the manager. If it is suspended, none of
the callbacks will be invoked when a task is completed. One sets the state by
specifying a logical value for the status argument.

register a function to register the evaluate function with the internal C-level dispatch
mechanism. This is done automatically by the add function, but can be called
manually.

callbacks returns the list of callbacks being maintained by this manager.

Note

This is an experimental feature and the interface may be changed in the future.

See Also

addTaskCallback, removeTaskCallback, getTaskCallbackNames\ http://
developer.r-project.org/TaskHandlers.pdf

Examples

create the manager
h <- taskCallbackManager()

add a callback
h$add(function(expr, value, ok, visible) {

cat("In handler\n")
return(TRUE)

}, name = "simpleHandler")

look at the internal callbacks.
getTaskCallbackNames()

look at the R-level callbacks
names(h$callbacks())

getTaskCallbackNames()
removeTaskCallback("R-taskCallbackManager")

taskCallbackNames Query the names of the current internal top-level task callbacks

Description

This provides a way to get the names (or identifiers) for the currently registered task callbacks that
are invoked at the conclusion of each top-level task. These identifiers can be used to remove a
callback.

http://developer.r-project.org/TaskHandlers.pdf
http://developer.r-project.org/TaskHandlers.pdf

tempfile 459

Usage

getTaskCallbackNames()

Value

A character vector giving the name for each of the registered callbacks which are invoked when a
top-level task is completed successfully. Each name is the one used when registering the callbacks
and returned as the in the call to addTaskCallback.

Note

One can use taskCallbackManager to manage user-level task callbacks, i.e., S-language func-
tions, entirely within the S language and access the names more directly.

See Also

addTaskCallback, removeTaskCallback, taskCallbackManager\ http:
//developer.r-project.org/TaskHandlers.pdf

Examples

n <- addTaskCallback(function(expr, value, ok, visible) {
cat("In handler\n")
return(TRUE)

}, name = "simpleHandler")

getTaskCallbackNames()

now remove it by name
removeTaskCallback("simpleHandler")

h <- taskCallbackManager()
h$add(function(expr, value, ok, visible) {

cat("In handler\n")
return(TRUE)

}, name = "simpleHandler")
getTaskCallbackNames()
removeTaskCallback("R-taskCallbackManager")

tempfile Create Names for Temporary Files

Description

tempfile returns a vector of character strings which can be used as names for temporary files.

Usage

tempfile(pattern = "file", tmpdir = tempdir())
tempdir()

http://developer.r-project.org/TaskHandlers.pdf
http://developer.r-project.org/TaskHandlers.pdf

460 textConnection

Arguments

pattern a non-empty character vector giving the initial part of the name.

tmpdir a non-empty character vector giving the directory name

Details

If pattern has length greater than one then the result is of the same length giving a temporary file
name for each component of pattern.

The names are very likely to be unique among calls to tempfile in an R session and across
simultaneous R sessions. The filenames are guaranteed not to be currently in use.

The file name is made of the pattern and a random suffix in hex. By default, the filenames will be in
the directory given by tempdir(). This will be a subdirectory of the temporary directory found
by the following rule. The environment variables TMPDIR, TMP and TEMP are checked in turn and
the first found which points to a writable directory is used: if none succeeds ‘/tmp’ is used.

Value

For tempfile a character vector giving the names of possible (temporary) files. Note that no files
are generated by tempfile.

For tempdir, the path of the per-session temporary directory.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

unlink for deleting files.

Examples

tempfile(c("ab", "a b c")) # give file name with spaces in!

tempdir() # working on all platforms with quite platform dependent result

textConnection Text Connections

Description

Input and output text connections.

Usage

textConnection(object, open = "r", local = FALSE)

textConnectionValue(con)

textConnection 461

Arguments

object character. A description of the connection. For an input this is an R character
vector object, and for an output connection the name for the R character vector
to receive the output, or NULL (for none).

open character. Either "r" (or equivalently "") for an input connection or "w" or
"a" for an output connection.

local logical. Used only for output connections. If TRUE, output is assigned to a
variable in the calling environment. Otherwise the global environment is used.

con An output text connection.

Details

An input text connection is opened and the character vector is copied at time the connection object
is created, and close destroys the copy.

An output text connection is opened and creates an R character vector of the given name in the user’s
workspace or in the calling environment, depending on the value of the local argument. This ob-
ject will at all times hold the completed lines of output to the connection, and isIncompletewill
indicate if there is an incomplete final line. Closing the connection will output the final line, com-
plete or not. (A line is complete once it has been terminated by end-of-line, represented by "\n" in
R.) The output character vector has locked bindings (see lockBinding) until close is called on
the connection. The character vector can also be retrieved via textConnectionValue, which
is the only way to do so if object = NULL. If the current locale is detected as Latin-1 or UTF-8,
non-ASCII elements of the character vector will be marked accordingly (see Encoding).

Opening a text connection with mode = "a"will attempt to append to an existing character vector
with the given name in the user’s workspace or the calling environment. If none is found (even if
an object exists of the right name but the wrong type) a new character vector will be created, with a
warning.

You cannot seek on a text connection, and seek will always return zero as the position.

Value

For textConnection, a connection object of class "textConnection" which inherits from
class "connection".

For textConnectionValue, a character vector.

Note

As output text connections keep the character vector up to date line-by-line, they are relatively
expensive to use, and it is often better to use an anonymous file() connection to collect output.

On (rare) platforms where vsnprintf does not return the needed length of output there is a
100,000 character limit on the length of line for output connections: longer lines will be truncated
with a warning.

References

Chambers, J. M. (1998) Programming with Data. A Guide to the S Language. Springer.
[S has input text conections only.]

See Also

connections, showConnections, pushBack, capture.output.

462 tilde

Examples

zz <- textConnection(LETTERS)
readLines(zz, 2)
scan(zz, "", 4)
pushBack(c("aa", "bb"), zz)
scan(zz, "", 4)
close(zz)

zz <- textConnection("foo", "w")
writeLines(c("testit1", "testit2"), zz)
cat("testit3 ", file=zz)
isIncomplete(zz)
cat("testit4\n", file=zz)
isIncomplete(zz)
close(zz)
foo

Not run:
capture R output: use part of example from help(lm)
zz <- textConnection("foo", "w")
ctl <- c(4.17, 5.58, 5.18, 6.11, 4.5, 4.61, 5.17, 4.53, 5.33, 5.14)
trt <- c(4.81, 4.17, 4.41, 3.59, 5.87, 3.83, 6.03, 4.89, 4.32, 4.69)
group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))
weight <- c(ctl, trt)
sink(zz)
anova(lm.D9 <- lm(weight ~ group))
cat("\nSummary of Residuals:\n\n")
summary(resid(lm.D9))
sink()
close(zz)
cat(foo, sep = "\n")
End(Not run)

tilde Tilde Operator

Description

Tilde is used to separate the left- and right-hand sides in model formula.

Usage

y ~ model

Arguments

y, model symbolic expressions.

Details

The left-hand side is optional, and one-sided formulae are used in some contexts.

timezones 463

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models in S eds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

formula

timezones Time Zones

Description

Information about time zones in R. Sys.timezone returns the current time zone.

Usage

Sys.timezone()

Details

Time zones are a system-specific topic, but as from R 2.7.0 almost all R platforms use the same
underlying code, used by Linux, Mac OS X, Solaris, AIX, FreeBSD, Sun Java >= 1.4 and Tcl >=
8.5, and supplied with R on Windows.

It is not in general possible to retrieve the system’s own name(s) for the current timezone, but
Sys.timezone will retrieve the name it uses for the current time (and the name may differ
depending on whether daylight saving time is in effect).

On most platforms it is possible to set the time zone via the environment variable TZ: see the section
on ‘Time zone names’ for suitable values.

Note that the principal difficulty with time zones is their individual history: over the last 100 years
places have changed their affiliation between major time zones, have opted out of (or in to) DST in
various years or adopted rule changes late or not at all. This often involves tiny administative units
in the US/Canada: Iowa had 23 different implementations of DST in the 1960’s!

Time zones did not come into use until the second half of the nineteenth century, and DST was first
introduced in the early twentieth century, most widely during the First World War (in 1916). The
most common implementation of POSIXct is a signed 32-bit integers and so only goes back to the
end of 1901: on such systems R assumes that dates prior to that are in the same time zone as they
were in 1902.

Value

Sys.timezone returns an OS-specific character string, possibly an empty string. Typically this
is an abbreviation such as "EST".

464 toString

Time zone names

Where OSes describe their valid time zones can be obscure. The help for the C function tzset can
be helpful, but it can also be inaccurate. There is a cumbersome POSIX specification (listed under
environment variable TZ at http://www.opengroup.org/onlinepubs/009695399/
basedefs/xbd_chap08.html), which is often at least partially supported, but there usually
are other more user-friendly ways to specify timezones.

Many systems make use of a timezone database compiled by Arthur Olson, in which the pre-
ferred way to refer to a time zone by a location (typically of a city) e.g. Europe/London,
America/Los_Angeles, Pacific/Easter. Some traditional designations are also allowed
such as EST5EDT or GB. (Beware that some of these designations may not be what you think: in
particular EST is a time zone used in Canada without daylight savings time, and not EST5EDT nor
(Australian) Eastern Standard Time.) The designation can also be an optional colon prepended to
the path to a file giving complied zone information (and the examples above are all files in a system-
specific location). See http://www.twinsun.com/tz/tz-link.htm for more details and
references.

For most Unix-alikes use the Olson databases. The system-specific default location in the
file system varies, e.g. ‘/usr/share/zoneinfo’, ‘/usr/etc/zoneinfo’, ‘/usr/lib/zoneinfo’ or
‘/usr/share/lib/zoneinfo’.

Note

There is currently (2007/8) considerable disruption over changes to the timings of the DST transi-
tions, aimed at energy conservation. These often have short notice and time zone databases may not
be up to date (even if the OS has been updated recently).

Note that except on Windows, the operation of time zones is an OS service, and even on Windows
a third-party database is used and can be updated (see the section on ‘Time zone names’). Incorrect
results will never be an R issue, so please ensure that you have the courtesy not to blame R for
them.

See Also

Sys.time, as.POSIXlt.

http://en.wikipedia.org/wiki/Time_zone and http://www.twinsun.com/
tz/tz-link.htm for extensive sets of links.

Examples

Sys.timezone()

toString Convert an R Object to a Character String

Description

This is a helper function for format to produce a single character string describing an R object.

http://www.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap08.html
http://www.opengroup.org/onlinepubs/009695399/basedefs/xbd_chap08.html
http://www.twinsun.com/tz/tz-link.htm
http://en.wikipedia.org/wiki/Time_zone
http://www.twinsun.com/tz/tz-link.htm
http://www.twinsun.com/tz/tz-link.htm

trace 465

Usage

toString(x, ...)

Default S3 method:
toString(x, width = NULL, ...)

Arguments

x The object to be converted.

width Suggestion for the maximum field width. Values of NULL or 0 indicate no
maximum. The minimum value accepted is 6 and smaller values are taken as 6.

... Optional arguments passed to or from methods.

Details

This is a generic function for which methods can be written: only the default method is described
here. Most methods should honor the width argument to specify the maximum display width (as
measured by nchar(type = "width") of the result.

The default method first converts x to character and then concatenates the elements separated by
", ". If width is supplied and is not NULL, the default method returns the first width -
4 characters of the result with appended, if the full result would use more than width
characters.

Value

A character vector of length 1 is returned.

Author(s)

Robert Gentleman

See Also

format

Examples

x <- c("a", "b", "aaaaaaaaaaa")
toString(x)
toString(x, width=8)

trace Interactive Tracing and Debugging of Calls to a Function or Method

Description

A call to trace allows you to insert debugging code (e.g., a call to browser or recover) at
chosen places in any function. A call to untrace cancels the tracing. Specified methods can be
traced the same way, without tracing all calls to the function. Trace code can be any R expression.
Tracing can be temporarily turned on or off globally by calling tracingState.

466 trace

Usage

trace(what, tracer, exit, at, print, signature,
where = topenv(parent.frame()), edit = FALSE)

untrace(what, signature = NULL, where = topenv(parent.frame()))

tracingState(on = NULL)
.doTrace(expr, msg)

Arguments

what The name (quoted or not) of a function to be traced or untraced. For untrace
or for trace with more than one argument, more than one name can be given
in the quoted form, and the same action will be applied to each one.

tracer Either a function or an unevaluated expression. The function will be called or
the expression will be evaluated either at the beginning of the call, or before
those steps in the call specified by the argument at. See the details section.

exit Either a function or an unevaluated expression. The function will be called or
the expression will be evaluated on exiting the function. See the details section.

at optional numeric vector. If supplied, tracer will be called just before the
corresponding step in the body of the function. See the details section.

print If TRUE (as per default), a descriptive line is printed before any trace expression
is evaluated.

signature If this argument is supplied, it should be a signature for a method for function
what. In this case, the method, and not the function itself, is traced.

edit For complicated tracing, such as tracing within a loop inside the function, you
will need to insert the desired calls by editing the body of the function. If so,
supply the edit argument either as TRUE, or as the name of the editor you want
to use. Then trace() will call edit and use the version of the function after
you edit it. See the details section for additional information.

where where to look for the function to be traced; by default, the top-level environment
of the call to trace.
An important use of this argument is to trace a function when it is called from
a package with a name space. The current name space mechanism imports the
functions to be called (with the exception of functions in the base package).
The functions being called are not the same objects seen from the top-level (in
general, the imported packages may not even be attached). Therefore, you must
ensure that the correct versions are being traced. The way to do this is to set
argument where to a function in the name space. The tracing computations
will then start looking in the environment of that function (which will be the
name space of the corresponding package). (Yes, it’s subtle, but the semantics
here are central to how name spaces work in R.)

on logical; a call to the support function tracingState returns TRUE if tracing
is globally turned on, FALSE otherwise. An argument of one or the other of
those values sets the state. If the tracing state is FALSE, none of the trace actions
will actually occur (used, for example, by debugging functions to shut off tracing
during debugging).

expr, msg

arguments to the support function .doTrace, calls to which are inserted into the modified function
or method: expr is the tracing action (such as a call to browser(), and msg is a string identifying
the place where the trace action occurs.

trace 467

Details

The trace function operates by constructing a revised version of the function (or of the method, if
signature is supplied), and assigning the new object back where the original was found. If only
the what argument is given, a line of trace printing is produced for each call to the function (back
compatible with the earlier version of trace).

The object constructed by trace is from a class that extends "function" and which contains
the original, untraced version. A call to untrace re-assigns this version.

If the argument tracer or exit is the name of a function, the tracing expression will be a call
to that function, with no arguments. This is the easiest and most common case, with the functions
browser and recover the likeliest candidates; the former browses in the frame of the function
being traced, and the latter allows browsing in any of the currently active calls.

The tracer or exit argument can also be an unevaluated expression (such as returned by a call
to quote or substitute). This expression itself is inserted in the traced function, so it will
typically involve arguments or local objects in the traced function. An expression of this form is
useful if you only want to interact when certain conditions apply (and in this case you probably
want to supply print=FALSE in the call to trace also).

When the at argument is supplied, it should be a vector of integers referring to the substeps of the
body of the function (this only works if the body of the function is enclosed in { ...}. In this
case tracer is not called on entry, but instead just before evaluating each of the steps listed in at.
(Hint: you don’t want to try to count the steps in the printed version of a function; instead, look at
as.list(body(f)) to get the numbers associated with the steps in function f.)

An intrinsic limitation in the exit argument is that it won’t work if the function itself uses
on.exit, since the existing calls will override the one supplied by trace.

Tracing does not nest. Any call to trace replaces previously traced versions of that function or
method (except for edited versions as discussed below), and untrace always restores an untraced
version. (Allowing nested tracing has too many potentials for confusion and for accidentally leaving
traced versions behind.)

When the edit argument is used repeatedly with no call to untrace on the same function or
method in between, the previously edited version is retained. If you want to throw away all the
previous tracing and then edit, call untrace before the next call to trace. Editing may be
combined with automatic tracing; just supply the other arguments such as tracer, and the edit
argument as well. The edit=TRUE argument uses the default editor (see edit).

Tracing primitive functions (builtins and specials) from the base package works, but only by a spe-
cial mechanism and not very informatively. Tracing a primitive causes the primitive to be replaced
by a function with argument . . . (only). You can get a bit of information out, but not much. A
warning message is issued when trace is used on a primitive.

The practice of saving the traced version of the function back where the function came from means
that tracing carries over from one session to another, if the traced function is saved in the session
image. (In the next session, untrace will remove the tracing.) On the other hand, functions that
were in a package, not in the global environment, are not saved in the image, so tracing expires with
the session for such functions.

Tracing a method is basically just like tracing a function, with the exception that the traced version
is stored by a call to setMethod rather than by direct assignment, and so is the untraced version
after a call to untrace.

The version of trace described here is largely compatible with the version in S-Plus, although
the two work by entirely different mechanisms. The S-Plus trace uses the session frame, with
the result that tracing never carries over from one session to another (R does not have a session
frame). Another relevant distinction has nothing directly to do with trace: The browser in S-Plus

468 trace

allows changes to be made to the frame being browsed, and the changes will persist after exiting
the browser. The R browser allows changes, but they disappear when the browser exits. This may
be relevant in that the S-Plus version allows you to experiment with code changes interactively, but
the R version does not. (A future revision may include a ‘destructive’ browser for R.)

Value

In the simple version (just the first argument), invisible NULL. Otherwise, the traced function(s)
name(s). The relevant consequence is the assignment that takes place.

Note

The version of function tracing that includes any of the arguments except for the function name
requires the methods package (because it uses special classes of objects to store and restore versions
of the traced functions).

If methods dispatch is not currently on, trace will load the methods name space, but will not put
the methods package on the search list.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

browser and recover, the likeliest tracing functions; also, quote and substitute for con-
structing general expressions.

Examples

require(graphics)

Very simple use
trace(sum)
hist(stats::rnorm(100)) # shows about 3-4 calls to sum()
untrace(sum)

if(.isMethodsDispatchOn()) { # non-simple use needs 'methods' package

f <- function(x, y) {
y <- pmax(y, .001)
x ^ y

}

arrange to call the browser on entering and exiting
function f
trace("f", browser, exit = browser)

instead, conditionally assign some data, and then browse
on exit, but only then. Don't bother me otherwise

trace("f", quote(if(any(y < 0)) yOrig <- y),
exit = quote(if(exists("yOrig")) browser()),
print = FALSE)

traceback 469

trace a utility function, with recover so we
can browse in the calling functions as well.

trace("as.matrix", recover)

turn off the tracing

untrace(c("f", "as.matrix"))

Not run:
trace calls to the function lm() that come from
the nlme package.
(The function nlme is in that package, and the package
has a name space, so the where= argument must be used
to get the right version of lm)

trace(lm, exit = recover, where = nlme)
End(Not run)
}

traceback Print Call Stacks

Description

By default traceback() prints the call stack of the last uncaught error, i.e., the sequence of calls
that lead to the error. This is useful when an error occurs with an unidentifiable error message. It
can also be used to print arbitrary lists of deparsed calls.

Usage

traceback(x = NULL, max.lines = getOption("deparse.max.lines"))

Arguments

x NULL (default, meaning .Traceback), or a list or pairlist of deparsed calls.

max.lines The maximum number of lines to be printed per call. The default is unlimited.

Details

The stack of the last uncaught error is stored as a list of deparsed calls in .Traceback, which
traceback prints in a user-friendly format. The stack of deparsed calls always contains all func-
tion calls and all foreign function calls (such as .Call): if profiling is in progress it will include
calls to some primitive functions. (Calls to builtins are included, but not to specials.)

Errors which are caught via try or tryCatch do not generate a traceback, so what is printed is
the call sequence for the last uncaught error, and not necessarily for the last error.

Value

traceback() returns nothing, but prints the deparsed call stack deepest call first. The calls may
print on more than one line, and the first line for each call is labelled by the frame number. The
number of lines printed per call can be limited via max.lines.

470 tracemem

Warning

It is undocumented where .Traceback is stored nor that it is visible, and this is subject to change.
Prior to R 2.4.0 it was stored in the workspace, but no longer.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

foo <- function(x) { print(1); bar(2) }
bar <- function(x) { x + a.variable.which.does.not.exist }
Not run:
foo(2) # gives a strange error
traceback()
End(Not run)
2: bar(2)
1: foo(2)
bar
Ah, this is the culprit ...

tracemem Trace Copying of Objects

Description

This function marks an object so that a message is printed whenever the internal function
duplicate is called. This happens when two objects share the same memory and one of them is
modified. It is a major cause of hard-to-predict memory use in R.

Usage

tracemem(x)
untracemem(x)
retracemem(x, previous = NULL)

Arguments

x An R object, not a function or environment or NULL.

previous A value as returned by tracemem or retracemem.

Details

This functionality is optional, determined at compilation, because it makes R run a little more
slowly even when no objects are being traced. tracemem and untracemem give errors when R
is not compiled with memory profiling; retracemem does not (so it can be left in code during
development).

When an object is traced any copying of the object by the C function duplicate or by arithmetic
or mathmetical operations produces a message to standard output. The message consists of the
string tracemem, the identifying strings for the object being copied and the new object being

transform 471

created, and a stack trace showing where the duplication occurred. retracemem() is used to
indicate that a variable should be considered a copy of a previous variable (e.g. after subscripting).

The messages can be turned off with tracingState.

It is not possible to trace functions, as this would conflict with trace and it is not useful to trace
NULL, environments, promises, weak references, or external pointer objects, as these are not dupli-
cated.

Value

A character string for identifying the object in the trace output (an address in hex enclosed in angle
brackets), or NULL (invisibly for untracemem.

See Also

trace, Rprofmem

http://developer.r-project.org/memory-profiling.html

Examples

Not run:
a <- 1:10
tracemem(a)
b and a share memory
b <- a
b[1] <- 1
untracemem(a)

copying in lm
d <- stats::rnorm(10)
tracemem(d)
lm(d ~ a+log(b))

f is not a copy and is not traced
f <- d[-1]
f+1
indicate that f should be traced as a copy of d
retracemem(f, retracemem(d))
f+1
End(Not run)

transform Transform an Object, for Example a Data Frame

Description

transform is a generic function, which—at least currently—only does anything useful with data
frames. transform.default converts its first argument to a data frame if possible and calls
transform.data.frame.

Usage

transform(`_data`, ...)

http://developer.r-project.org/memory-profiling.html

472 Trig

Arguments

_data The object to be transformed

... Further arguments of the form tag=value

Details

The ... arguments to transform.data.frame are tagged vector expressions, which are
evaluated in the data frame _data. The tags are matched against names(_data), and for those
that match, the value replace the corresponding variable in _data, and the others are appended to
_data.

Value

The modified value of _data.

Note

Prior to R 2.3.0, the first argument was named x, but this caused trouble if people wanted to create
a variable of that name. Names starting with an underscore are syntactically invalid, so the current
choice should be less problematic.

If some of the values are not vectors of the appropriate length, you deserve whatever you get!

Author(s)

Peter Dalgaard

See Also

subset, list, data.frame

Examples

transform(airquality, Ozone = -Ozone)
transform(airquality, new = -Ozone, Temp = (Temp-32)/1.8)

attach(airquality)
transform(Ozone, logOzone = log(Ozone)) # marginally interesting ...
detach(airquality)

Trig Trigonometric Functions

Description

These functions give the obvious trigonometric functions. They respectively compute the cosine,
sine, tangent, arc-cosine, arc-sine, arc-tangent, and the two-argument arc-tangent.

Trig 473

Usage

cos(x)
sin(x)
tan(x)
acos(x)
asin(x)
atan(x)
atan2(y, x)

Arguments

x, y numeric or complex vectors.

Details

The arc-tangent of two arguments atan2(y, x) returns the angle between the x-axis and the
vector from the origin to (x, y), i.e., for positive arguments atan2(y, x) == atan(y/x).

Angles are in radians, not degrees (i.e., a right angle is π/2).

All except atan2 are generic functions: methods can be defined for them individually or via the
Math group generic.

Complex values

For the inverse trigonometric functions, branch cuts are defined as in Abramowitz and Stegun, figure
4.4, page 79. Continuity on the branch cuts is standard.

For asin() and acos(), there are two cuts, both along the real axis: (−∞,−1] and [1,∞).
Functions asin() and acos() are continuous from above on the interval (−∞,−1] and contin-
uous from below on [1,∞).

For atan() there are two cuts, both along the pure imaginary axis: (−∞i,−1i] and [1i,∞i). It is
continuous from the left on the interval (−∞i,−1i] and from the right on the interval [1i,∞i).

S4 methods

All except atan2 are S4 generic functions: methods can be defined for them individually or via
the Math group generic.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions, New York: Dover.
Chapter 4. Elementary Transcendental Functions: Logarithmic, Exponential, Circular and Hyper-
bolic Functions

474 try

try Try an Expression Allowing Error Recovery

Description

try is a wrapper to run an expression that might fail and allow the user’s code to handle error-
recovery.

Usage

try(expr, silent = FALSE)

Arguments

expr an R expression to try.

silent logical: should the report of error messages be suppressed?

Details

try evaluates an expression and traps any errors that occur during the evaluation. If
an error occurs then the error message is printed to the stderr connection unless
options("show.error.messages") is false or the call includes silent = TRUE. The
error message is also stored in a buffer where it can be retrieved by geterrmessage. (This
should not be needed as the value returned in case of an error contains the error message.) try is
implemented using tryCatch.

Value

The value of the expression if expr is evaluated without error, but an invisible object of class
"try-error" containing the error message if it fails.

See Also

options for setting error handlers and suppressing the printing of error messages;
geterrmessage for retrieving the last error message. tryCatch provides another means of
catching and handling errors.

Examples

this example will not work correctly in example(try), but
it does work correctly if pasted in
options(show.error.messages = FALSE)
try(log("a"))
print(.Last.value)
options(show.error.messages = TRUE)

alternatively,
print(try(log("a"), TRUE))

run a simulation, keep only the results that worked.
set.seed(123)
x <- stats::rnorm(50)
doit <- function(x)

typeof 475

{
x <- sample(x, replace=TRUE)
if(length(unique(x)) > 30) mean(x)
else stop("too few unique points")

}
alternative 1
res <- lapply(1:100, function(i) try(doit(x), TRUE))
alternative 2
Not run:
res <- vector("list", 100)
for(i in 1:100) res[[i]] <- try(doit(x), TRUE)
End(Not run)
unlist(res[sapply(res, function(x) !inherits(x, "try-error"))])

typeof The Type of an Object

Description

typeof determines the (R internal) type or storage mode of any object

Usage

typeof(x)

Arguments

x any R object.

Value

A character string. The possible values are listed in the structure TypeTable in ‘src/main/util.c’.
Current values are the vector types "logical", "integer", "double", "complex",
"character", "raw" and "list", "NULL", "closure" (function), "special" and
"builtin" (basic functions and operators), "environment", "S4" (some S4 objects) and
others that are unlikely to be seen at user level ("symbol", "pairlist", "promise",
"language", "char", "...", "any", "expression", "externalptr", "bytecode"
and "weakref").

See Also

mode, storage.mode.

isS4 to determine if an object has an S4 class.

Examples

typeof(2)
mode(2)

476 unique

unique Extract Unique Elements

Description

unique returns a vector, data frame or array like x but with duplicate elements/rows removed.

Usage

unique(x, incomparables = FALSE, ...)

Default S3 method:
unique(x, incomparables = FALSE, fromLast = FALSE, ...)

S3 method for class 'matrix':
unique(x, incomparables = FALSE, MARGIN = 1,

fromLast = FALSE, ...)

S3 method for class 'array':
unique(x, incomparables = FALSE, MARGIN = 1,

fromLast = FALSE, ...)

Arguments

x a vector or a data frame or an array or NULL.
incomparables

a vector of values that cannot be compared. FALSE is a special value, meaning
that all values can be compared, and may be the only value accepted for methods
other than the default. It will be coerced internally to the same type as x.

fromLast logical indicating if duplication should be considered from the last, i.e., the last
(or rightmost) of identical elements will be kept. This only matters for names
or dimnames.

... arguments for particular methods.

MARGIN the array margin to be held fixed: a single integer.

Details

This is a generic function with methods for vectors, data frames and arrays (including matrices).

The array method calculates for each element of the dimension specified by MARGIN if the remain-
ing dimensions are identical to those for an earlier element (in row-major order). This would most
commonly be used for matrices to find unique rows (the default) or columns (with MARGIN = 2).

Note that unlike the Unix command uniq this omits duplicated and not just repeated ele-
ments/rows. That is, an element is omitted if it is identical to any previous element and not just
if it is the same as the immediately previous one. (For the latter, see rle).

Missing values are regarded as equal, but NaN is not equal to NA_real_.

Values in incomparables will never be marked as duplicated. This is intended to be used for a
fairly small set of values and will not be efficient for a very large set.

unlink 477

Value

For a vector, an object of the same type of x, but with only one copy of each duplicated element.
No attributes are copied (so the result has no names).

For a data frame, a data frame is returned with the same columns but possibly fewer rows (and with
row names from the first occurrences of the unique rows).

A matrix or array is subsetted by [, drop = FALSE], so dimensions and dimnames are copied
appropriately, and the result always has the same number of dimensions as x.

Warning

Using this for lists is potentially slow, especially if the elements are not atomic vectors (see
vector) or differ only in their attributes. In the worst case it is O(n2).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

duplicated which gives the indices of duplicated elements.

rle which is the equivalent of the Unix uniq -c command.

Examples

x <- c(3:5, 11:8, 8 + 0:5)
(ux <- unique(x))
(u2 <- unique(x, fromLast = TRUE)) # different order
stopifnot(identical(sort(ux), sort(u2)))

length(unique(sample(100, 100, replace=TRUE)))
approximately 100(1 - 1/e) = 63.21

unique(iris)

unlink Delete Files and Directories

Description

unlink deletes the file(s) or directories specified by x.

Usage

unlink(x, recursive = FALSE)

Arguments

x a character vector with the names of the file(s) or directories to be deleted. Wild-
cards (normally ‘*’ and ‘?’) are allowed.

recursive logical. Should directories be deleted recursively?

478 unlist

Details

If recursive = FALSE directories are not deleted, not even empty ones.

On most platforms ‘file’ includes symbolic links, fifos and sockets.

Wildcard expansion is done by the internal code of Sys.glob. Wildcards never match a lead-
ing ‘.’ in the filename, and files ‘.’ and ‘..’ will never be considered for deletion. Wildcards
will only be expanded if the system supports it. Most systems will support not only ‘*’ and ‘?’)
but character classes such as ‘[a-z]’ (see the man pages for glob). The metacharacters * ? [
can occur in Unix filenames, and this makes it difficult to use unlink to delete such files (see
file.remove), although escaping the metacharacters by backslashes usually works. As from R
2.8.0, if a metacharacter matches nothing it is considered as a literal character.

recursive = TRUE is not supported on all platforms, and may be ignored, with a warning.

Value

0 for success, 1 for failure. Not deleting a non-existent file is not a failure, nor is being unable to
delete a directory if recursive = FALSE. However, missing values in x result are regarded as
failures.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

file.remove.

unlist Flatten Lists

Description

Given a list structure x, unlist simplifies it to produce a vector which contains all the atomic
components which occur in x.

Usage

unlist(x, recursive = TRUE, use.names = TRUE)

Arguments

x an R object, typically a list or vector.

recursive logical. Should unlisting be applied to list components of x?

use.names logical. Should names be preserved?

unlist 479

Details

unlist is generic: you can write methods to handle specific classes of objects, see InternalMeth-
ods, and note, e.g., relist with the unlist method for relistable objects.

If recursive = FALSE, the function will not recurse beyond the first level items in x.

Factors are treated specially. If all non-list elements of x are factors (or ordered factors) then the
result will be a factor with levels the union of the level sets of the elements, in the order the levels
occur in the level sets of the elements (which means that if all the elements have the same level set,
that is the level set of the result).

x can be an atomic vector, but then unlist does nothing useful, not even drop names.

By default, unlist tries to retain the naming information present in x. If use.names = FALSE
all naming information is dropped.

Where possible the list elements are coerced to a common mode during the unlisting, and so the
result often ends up as a character vector. Vectors will be coerced to the highest type of the com-
ponents in the hierarchy NULL < raw < logical < integer < real < complex < character < list <
expression: pairlists are treated as lists.

A list is a (generic) vector, and the simplified vector might still be a list (and might be unchanged).
Non-vector elements of the list (for example language elements such as names, formulas and calls)
are not coerced, and so a list containing one or more of these remains a list. (The effect of unlisting
an lm fit is a list which has individual residuals as components.)

Value

NULL or an expression or a vector of an appropriate mode to hold the list components.

The output type is determined from the highest type of the components in the hierarchy NULL <
raw < logical < integer < real < complex < character < list < expression, after coercion of pairlists
to lists.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

c, as.list, relist.

Examples

unlist(options())
unlist(options(), use.names=FALSE)

l.ex <- list(a = list(1:5, LETTERS[1:5]), b = "Z", c = NA)
unlist(l.ex, recursive = FALSE)
unlist(l.ex, recursive = TRUE)

l1 <- list(a="a", b=2, c=pi+2i)
unlist(l1) # a character vector
l2 <- list(a="a", b=as.name("b"), c=pi+2i)
unlist(l2) # remains a list

480 UseMethod

unname Remove ‘names’ or ‘dimnames’

Description

Remove the names or dimnames attribute of an R object.

Usage

unname(obj, force = FALSE)

Arguments

obj an R object.

force logical; if true, the dimnames are even removed from data.frames. This
argument is currently experimental and hence might change!

Value

Object as obj but without names or dimnames.

Examples

require(graphics); require(stats)

Answering a question on R-help (14 Oct 1999):
col3 <- 750+ 100*rt(1500, df = 3)
breaks <- factor(cut(col3,breaks=360+5*(0:155)))
z <- table(breaks)
z[1:5] # The names are larger than the data ...
barplot(unname(z), axes= FALSE)

UseMethod Class Methods

Description

R possesses a simple generic function mechanism which can be used for an object-oriented style
of programming. Method dispatch takes place based on the class(es) of the first argument to the
generic function or of the object supplied as an argument to UseMethod or NextMethod.

Usage

UseMethod(generic, object)

NextMethod(generic = NULL, object = NULL, ...)

UseMethod 481

Arguments

generic a character string naming a function (and not a built-in operator). Required for
UseMethod.

object for UseMethod: an object whose class will determine the method to be dis-
patched. Defaults to the first argument of the enclosing function.

... further arguments to be passed to the next method.

Details

An R object is a data object which has a class attribute (and this can be tested by is.object).
A class attribute is a character vector giving the names of the classes from which the object inherits.
If the object does not have a class attribute, it has an implicit class. Matrices and arrays have class
"matrix" or"array" followed by the class of the underlying vector. Most vectors have class
the result of mode(x), except that integer vectors have class c("integer", "numeric")
and real vectors have class c("double", "numeric").

When a function calling UseMethod("fun") is applied to an object with class attribute
c("first", "second"), the system searches for a function called fun.first and, if it
finds it, applies it to the object. If no such function is found a function called fun.second is
tried. If no class name produces a suitable function, the function fun.default is used, if it
exists, or an error results.

Function methods can be used to find out about the methods for a particular generic function or
class.

UseMethod is a primitive function so positional matching is used and names of supplied argu-
ments are ignored. It is not the only means of dispatch of methods, for there are internal generic
and group generic functions. UseMethod currently dispatches on the implicit class even for argu-
ments that are not objects, but the other means of dispatch do not.

NextMethod invokes the next method (determined by the class vector, either of the object supplied
to the generic, or of the first argument to the function containing NextMethod if a method was
invoked directly). Normally NextMethod is used with only one argument, generic, but if
further arguments are supplied these modify the call to the next method.

NextMethod should not be called except in methods called by UseMethod or from internal
generics (see InternalGenerics). In particular it will not work inside anonymous calling functions
(e.g. get("print.ts")(AirPassengers)).

Name spaces can register methods for generic functions. To support this, UseMethod and
NextMethod search for methods in two places: first in the environment in which the generic
function is called, and then in the registration data base for the environment in which the generic
is defined (typically a name space). So methods for a generic function need to be available in the
environment of the call to the generic, or they must be registered. (It does not matter whether they
are visible in the environment in which the generic is defined.)

Technical Details

Now for some obscure details that need to appear somewhere. These comments will be slightly
different than those in Chambers(1992). (See also the draft ‘R Language Definition’.) UseMethod
creates a new function call with arguments matched as they came in to the generic. Any local
variables defined before the call to UseMethod are retained (unlike S). Any statements after the
call to UseMethod will not be evaluated as UseMethod does not return. UseMethod can be
called with more than two arguments: a warning will be given and additional arguments ignored.
(They are not completely ignored in S.) If it is called with just one argument, the class of the first

482 UseMethod

argument of the enclosing function is used as object: unlike S this is the first actual argument
passed and not the current value of the object of that name.

NextMethod works by creating a special call frame for the next method. If no new arguments are
supplied, the arguments will be the same in number, order and name as those to the current method
but their values will be promises to evaluate their name in the current method and environment. Any
named arguments matched to ... are handled specially: they either replace existing arguments of
the same name or are appended to the argument list. They are passed on as the promise that was
supplied as an argument to the current environment. (S does this differently!) If they have been
evaluated in the current (or a previous environment) they remain evaluated. (This is a complex area,
and subject to change: see the draft ‘R Language Definition’.)

The search for methods for NextMethod is slightly different from that for UseMethod. Finding
no fun.default is not necessarily an error, as the search continues to the generic itself. This is
to pick up an internal generic like [which has no separate default method, and succeeds only if the
generic is a primitive function or a wrapper for a .Internal function of the same name. (When a
primitive is called as the default method, argument matching may not work as described above due
to the different semantics of primitives.)

You will see objects such as .Generic, .Method, and .Class used in methods. These are set
in the environment within which the method is evaluated by the dispatch mechanism, which is as
follows:

1. Find the context for the calling function (the generic): this gives us the unevaluated arguments
for the original call.

2. Evaluate the object (usually an argument) to be used for dispatch, and find a method (possibly
the default method) or throw an error.

3. Create an environment for evaluating the method and insert special variables (see below) into
that environment. Also copy any variables in the environment of the generic that are not formal
(or actual) arguments.

4. Fix up the argument list to be the arguments of the call matched to the formals of the method.

.Generic is a length-one character vector naming the generic function.

.Method is a character vector (normally of length one) naming the method function. (For functions
in the group generic Ops it is of length two.)

.Class is a character vector of classes used to find the next method. NextMethod adds an
attribute "previous" to .Class giving the .Class last used for dispatch, and shifts .Class
along to that used for dispatch.

.GenericCallEnv and .GenericDefEnv are the environments of the call to be generic and
defining the generic respectively. (The latter is used to find methods registered for the generic.)

Note that .Class is set when the generic is called, and is unchanged if the class of the dispatching
argument is changed in a method. It is possible to change the method that NextMethod would
dispatch by manipulating .Class, but ‘this is not recommended unless you understand the inheri-
tance mechanism thoroughly’ (Chambers & Hastie, 1992, p. 469).

Note

This scheme is called S3 (S version 3). For new projects, it is recommended to use the more flexible
and robust S4 scheme provided in the methods package.

References

Chambers, J. M. (1992) Classes and methods: object-oriented programming in S. Appendix A of
Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

UserHooks 483

See Also

The draft ‘R Language Definition’.

methods, class, getS3method, is.object.

UserHooks Functions to Get and Set Hooks for Load, Attach, Detach and Unload

Description

These functions allow users to set actions to be taken before packages are attached/detached and
name spaces are (un)loaded.

Usage

getHook(hookName)
setHook(hookName, value,

action = c("append", "prepend", "replace"))

packageEvent(pkgname,
event = c("onLoad", "attach", "detach", "onUnload"))

Arguments

hookName character string: the hook name

pkgname character string: the package/name space name. If versioned install has been
used, pkgname should be the unversioned name of the package (but any version
information will be stripped).

event character string: an event for the package

value A function, or for action="replace", NULL.

action The action to be taken. The names can be appreviated.

Details

setHook provides a general mechanism for users to register hooks, a list of functions to be called
from system (or user) functions. The initial set of hooks is associated with events on packages/name
spaces: these hooks are named via calls to packageEvent.

To remove a hook completely, call setHook(hookName, NULL, "replace").

When an R package is attached by library, it can call initialization code via a function
.First.lib, and when it is detach-ed it can tidy up via a function .Last.lib. Users can
add their own initialization code via the hooks provided by these functions, functions which will be
called as funname(pkgname, pkgpath) inside a try call. (The attach hook is called after
.First.lib and the detach hook before .Last.lib.)

If a package has a name space, there are two further actions, when the name space is loaded (before
being attached and after .onLoad is called) and when it is unloaded (after being detached and
before .onUnload). Note that code in these hooks is run without the package being on the search
path, so objects in the package need to be referred to using the double colon operator as in the
example. (Unlike .onLoad, the user hook is run after the name space has been sealed.)

484 utf8Conversion

Hooks are normally run in the order shown by getHook, but the "detach" and "onUnload"
hooks are run in reverse order so the default for package events is to add hooks ‘inside’ existing
ones.

Note that when an R session is finished, packages are not detached and name spaces are not un-
loaded, so the corresponding hooks will not be run.

The hooks are stored in the environment .userHooksEnv in the base package, with ‘mangled’
names.

Value

For getHook function, a list of functions (possible empty). For setHook function, no return
value. For packageEvent, the derived hook name (a character string).

See Also

library, detach, loadNamespace.

Other hooks may be added later: plot.new and persp already have them.

Examples

setHook(packageEvent("grDevices", "onLoad"),
function(...) grDevices::ps.options(horizontal=FALSE))

utf8Conversion Convert to or from UTF-8-encoded Character Vectors

Description

Conversion of UTF-8 encoded character vectors to and from integer vectors.

Usage

utf8ToInt(x)
intToUtf8(x, multiple = FALSE)

Arguments

x object to be converted.

multiple logical: should the conversion be to a single character string or multiple individ-
ual characters?

Details

These will work in any locale, including on machines that do not otherwise support multi-byte
character sets.

vector 485

Value

utf8ToInt converts a length-one character string encoded in UTF-8 to an integer vector of (nu-
meric) UTF-8 code points.

intToUtf8 converts a vector of (numeric) UTF-8 code points either to a single character string or
a character vector of single characters. (For a single character string 0 is silently omitted: otherwise
0 is mapped to "". Non-integral numeric values are truncated to integers.) The Encoding is
declared as "UTF-8".

Examples

Not run:
will only display in some locales and fonts
intToUtf8(0x03B2L) # Greek beta
End(Not run)

vector Vectors

Description

vector produces a vector of the given length and mode.

as.vector, a generic, attempts to coerce its argument into a vector of mode mode (the default is
to coerce to whichever mode is most convenient).

is.vector returns TRUE if x is a vector (of mode logical, integer, real, complex, character, raw
or list if not specified) or expression and FALSE otherwise.

Usage

vector(mode = "logical", length = 0)
as.vector(x, mode = "any")
is.vector(x, mode = "any")

Arguments

mode A character string giving an atomic mode or "list", or (not for vector)
"any".

length A non-negative integer specifying the desired length.

x An object.

Details

The atomic modes are "logical", "integer", "numeric", "complex", "character"
and "raw".

is.vector returns FALSE if x has any attributes except names. (This is incompatible with S.)
On the other hand, as.vector removes all attributes including names for results of atomic mode.

Note that factors are not vectors; is.vector returns FALSE and as.vector converts to a
character vector for mode = "any".

486 warning

Value

For vector, a vector of the given length and mode. Logical vector elements are initialized to
FALSE, numeric vector elements to 0, character vector elements to "", raw vector elements to
nul bytes and list elements to NULL.

All attributes are removed from the answer if it is of an atomic mode.

Note

as.vector and is.vector are quite distinct from the meaning of the formal class "vector"
in the methods package, and hence as(x, "vector") and is(x, "vector").

modes of "symbol", "pairlist" and "expression" are allowed but have long been un-
documented.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

c, is.numeric, is.list, etc.

Examples

df <- data.frame(x=1:3, y=5:7)
Not run:
Error:
as.vector(data.frame(x=1:3, y=5:7), mode="numeric")

End(Not run)

x <- c(a = 1, b = 2)
is.vector(x)
as.vector(x)
all.equal(x, as.vector(x)) ## FALSE

###-- All the following are TRUE:
is.list(df)
! is.vector(df)
! is.vector(df, mode="list")

is.vector(list(), mode="list")
is.vector(NULL, mode="NULL")

warning Warning Messages

Description

Generates a warning message that corresponds to its argument(s) and (optionally) the expression or
function from which it was called.

warning 487

Usage

warning(..., call. = TRUE, immediate. = FALSE, domain = NULL)
suppressWarnings(expr)

Arguments

... zero or more objects which can be coerced to character (and which are pasted
together with no separator) or a single condition object.

call. logical, indicating if the call should become part of the warning message.

immediate. logical, indicating if the call should be output immediately, even if
getOption(warn) <= 0.

expr expression to evaluate.

domain see gettext. If NA, messages will not be translated.

Details

The result depends on the value of options("warn") and on handlers established in the exe-
cuting code.

If a condition object is supplied it should be the only argument, and further arguments will be
ignored, with a message.

warning signals a warning condition by (effectively) calling signalCondition. If there are
no handlers or if all handlers return, then the value of warn = getOption("warn") is used
to determine the appropriate action. If warn is negative warnings are ignored; if it is zero they are
stored and printed after the top–level function has completed; if it is one they are printed as they
occur and if it is 2 (or larger) warnings are turned into errors. Calling warning(immediate.
= TRUE) turns warn <= 0 into warn = 1 for this call only.

If warn is zero (the default), a read-only variable last.warning is created. It contains the
warnings which can be printed via a call to warnings.

Warnings will be truncated to getOption("warning.length") characters, default 1000,
indicated by [... truncated].

While the warning is being processed, a muffleWarning restart is available. If this restart is
invoked with invokeRestart, then warning returns immediately.

An attempt is made to coerce other types of inputs to warning to character vectors.

suppressWarnings evaluates its expression in a context that ignores all warnings.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

stop for fatal errors, message for diagnostic messages, warnings, and options with argu-
ment warn=.

gettext for the mechanisms for the automated translation of messages.

488 warnings

Examples

testit <- function() warning("testit")
testit() ## shows call
testit <- function() warning("problem in testit", call. = FALSE)
testit() ## no call
suppressWarnings(warning("testit"))

warnings Print Warning Messages

Description

warnings and its print method print the variable last.warning in a pleasing form.

Usage

warnings(...)

Arguments

... arguments to be passed to cat.

Details

See the decription of options("warn") for the circumstances under which there is a
last.warning object and warnings() is used. In essence this is if options(warn =
0) and warning has been called at least once.

It is possible that last.warning refers to the last recorded warning and not to the last warning,
for example if options(warn) has been changed or if a catastrophic error occurred.

Warning

It is undocumented where last.warning is stored nor that it is visible, and this is subject to
change. Prior to R 2.4.0 it was stored in the workspace, but no longer.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

warning.

weekdays 489

Examples

NB this example is intended to be pasted in,
rather than run by example()
ow <- options("warn")
for(w in -1:1) {

options(warn = w); cat("\n warn =",w,"\n")
for(i in 1:3) { cat(i,"..\n"); m <- matrix(1:7, 3,4) }

}
warnings()
options(ow) # reset

weekdays Extract Parts of a POSIXt or Date Object

Description

Extract the weekday, month or quarter, or the Julian time (days since some origin). These are
generic functions: the methods for the internal date-time classes are documented here.

Usage

weekdays(x, abbreviate)
S3 method for class 'POSIXt':
weekdays(x, abbreviate = FALSE)
S3 method for class 'Date':
weekdays(x, abbreviate = FALSE)

months(x, abbreviate)
S3 method for class 'POSIXt':
months(x, abbreviate = FALSE)
S3 method for class 'Date':
months(x, abbreviate = FALSE)

quarters(x, abbreviate)
S3 method for class 'POSIXt':
quarters(x, ...)
S3 method for class 'Date':
quarters(x, ...)

julian(x, ...)
S3 method for class 'POSIXt':
julian(x, origin = as.POSIXct("1970-01-01", tz="GMT"), ...)
S3 method for class 'Date':
julian(x, origin = as.Date("1970-01-01"), ...)

Arguments

x an object inheriting from class "POSIXt" or "Date".

abbreviate logical. Should the names be abbreviated?

origin an length-one object inheriting from class "POSIXt" or "Date".

... arguments for other methods.

490 which

Value

weekdays and months return a character vector of names in the locale in use.

quarters returns a character vector of "Q1" to "Q4".

julian returns the number of days (possibly fractional) since the origin, with the origin as a
"origin" attribute.

Note

Other components such as the day of the month or the year are very easy to compute: just use
as.POSIXlt and extract the relevant component.

See Also

DateTimeClasses, Date

Examples

weekdays(.leap.seconds)
months(.leap.seconds)
quarters(.leap.seconds)

Julian Day Number (JDN, http://en.wikipedia.org/wiki/Julian_day)
is the number of days since noon UTC on the first day of 4317 BC.
julian(Sys.Date(), -2440588) # for a day
floor(as.numeric(julian(Sys.time())) + 2440587.5) # for a date-time

which Which indices are TRUE?

Description

Give the TRUE indices of a logical object, allowing for array indices.

Usage

which(x, arr.ind = FALSE)

Arguments

x a logical vector or array. NAs are allowed and omitted (treated as if FALSE).

arr.ind logical; should array indices be returned when x is an array?

Value

If arr.ind == FALSE (the default), an integer vector with length equal to sum(x), i.e., to
the number of TRUEs in x; Basically, the result is (1:length(x))[x].

If arr.ind == TRUE and x is an array (has a dim attribute), the result is a matrix whose rows
each are the indices of one element of x; see Examples below.

Author(s)

Werner Stahel and Peter Holzer 〈holzer@stat.math.ethz.ch〉, for the array case.

which.min 491

See Also

Logic, which.min for the index of the minimum or maximum, and match for the first index
of an element in a vector, i.e., for a scalar a, match(a,x) is equivalent to min(which(x ==
a)) but much more efficient.

Examples

which(LETTERS == "R")
which(ll <- c(TRUE,FALSE,TRUE,NA,FALSE,FALSE,TRUE))#> 1 3 7
names(ll) <- letters[seq(ll)]
which(ll)
which((1:12)%%2 == 0) # which are even?
which(1:10 > 3, arr.ind=TRUE)

(m <- matrix(1:12,3,4))
which(m %% 3 == 0)
which(m %% 3 == 0, arr.ind=TRUE)
rownames(m) <- paste("Case",1:3, sep="_")
which(m %% 5 == 0, arr.ind=TRUE)

dim(m) <- c(2,2,3); m
which(m %% 3 == 0, arr.ind=FALSE)
which(m %% 3 == 0, arr.ind=TRUE)

vm <- c(m)
dim(vm) <- length(vm) #-- funny thing with length(dim(...)) == 1
which(vm %% 3 == 0, arr.ind=TRUE)

which.min Where is the Min() or Max() ?

Description

Determines the location, i.e., index of the (first) minimum or maximum of a numeric vector.

Usage

which.min(x)
which.max(x)

Arguments

x numeric (integer or double) vector, whose min or max is searched for.

Value

Missing and NaN values are discarded.

an integer of length 1 or 0 (iff x has no non-NAs), giving the index of the first minimum or
maximum respectively of x.

If this extremum is unique (or empty), the results are the same as (but more efficient than) which(x
== min(x)) or which(x == max(x)) respectively.

492 with

Author(s)

Martin Maechler

See Also

which, max.col, max, etc.

which.is.max in package nnet differs in breaking ties at random (and having a ‘fuzz’ in the
definition of ties).

Examples

x <- c(1:4,0:5,11)
which.min(x)
which.max(x)

it *does* work with NA's present, by discarding them:
presidents[1:30]
range(presidents, na.rm = TRUE)
which.min(presidents) # 28
which.max(presidents) # 2

with Evaluate an Expression in a Data Environment

Description

Evaluate an R expression in an environment constructed from data, possibly modifying the original
data.

Usage

with(data, expr, ...)
within(data, expr, ...)

Arguments

data data to use for constructing an environment. For the default with method this
may be an environment, a list, a data frame, or an integer as in sys.call. For
within, it can be a list or a data frame.

expr expression to evaluate.

... arguments to be passed to future methods.

Details

with is a generic function that evaluates expr in a local environment constructed from data.
The environment has the caller’s environment as its parent. This is useful for simplifying calls to
modeling functions. (Note: if data is already an environment then this is used with its existing
parent.)

Note that assignments within expr take place in the constructed environment and not in the user’s
workspace.

with 493

within is similar, except that it examines the environment after the evaluation of expr and makes
the corresponding modifications to data (this may fail in the data frame case if objects are created
which cannot be stored in a data frame), and returns it. within can be used as an alternative to
transform.

Value

For with, the value of the evaluated expr. For within, the modified object.

See Also

evalq, attach, assign, transform.

Examples

require(stats); require(graphics)
#examples from glm:
Not run:
library(MASS)
with(anorexia, {

anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt),
family = gaussian)

summary(anorex.1)
})
End(Not run)

aq <- within(airquality, { # Notice that multiple vars can be changed
lOzone<-log(Ozone)
Month<-factor(month.abb[Month])
cTemp <- round((Temp - 32) * 5/9, 1) # From Fahrenheit to Celsius
rm(Day, Temp)

})
head(aq)

with(data.frame(u = c(5,10,15,20,30,40,60,80,100),
lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12)),

list(summary(glm(lot1 ~ log(u), family = Gamma)),
summary(glm(lot2 ~ log(u), family = Gamma))))

example from boxplot:
with(ToothGrowth, {

boxplot(len ~ dose, boxwex = 0.25, at = 1:3 - 0.2,
subset = (supp == "VC"), col = "yellow",
main = "Guinea Pigs' Tooth Growth",
xlab = "Vitamin C dose mg",
ylab = "tooth length", ylim = c(0,35))

boxplot(len ~ dose, add = TRUE, boxwex = 0.25, at = 1:3 + 0.2,
subset = supp == "OJ", col = "orange")

legend(2, 9, c("Ascorbic acid", "Orange juice"),
fill = c("yellow", "orange"))

})

alternate form that avoids subset argument:
with(subset(ToothGrowth, supp == "VC"),

boxplot(len ~ dose, boxwex = 0.25, at = 1:3 - 0.2,

494 write

col = "yellow", main = "Guinea Pigs' Tooth Growth",
xlab = "Vitamin C dose mg",
ylab = "tooth length", ylim = c(0,35)))

with(subset(ToothGrowth, supp == "OJ"),
boxplot(len ~ dose, add = TRUE, boxwex = 0.25, at = 1:3 + 0.2,

col = "orange"))
legend(2, 9, c("Ascorbic acid", "Orange juice"),

fill = c("yellow", "orange"))

write Write Data to a File

Description

The data (usually a matrix) x are written to file file. If x is a two-dimensional matrix you need
to transpose it to get the columns in file the same as those in the internal representation.

Usage

write(x, file = "data",
ncolumns = if(is.character(x)) 1 else 5,
append = FALSE, sep = " ")

Arguments

x the data to be written out.

file A connection, or a character string naming the file to write to. If "", print to the
standard output connection. If it is "|cmd", the output is piped to the command
given by ‘cmd’.

ncolumns the number of columns to write the data in.

append if TRUE the data x are appended to the connection.

sep a string used to separate columns. Using sep = "\t" gives tab delimited
output; default is " ".

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

write is a wrapper for cat, which gives further details on the format used.

save for writing any R objects, write.table for data frames, and scan for reading data.

writeLines 495

Examples

create a 2 by 5 matrix
x <- matrix(1:10,ncol=5)

the file data contains x, two rows, five cols
1 3 5 7 9 will form the first row
write(t(x))

Writing to the "console" 'tab-delimited'
two rows, five cols but the first row is 1 2 3 4 5
write(x, "", sep = "\t")
unlink("data") # tidy up

writeLines Write Lines to a Connection

Description

Write text lines to a connection.

Usage

writeLines(text, con = stdout(), sep = "\n")

Arguments

text A character vector

con A connection object or a character string.

sep character. A string to be written to the connection after each line of text.

Details

If the con is a character string, the function calls file to obtain a file connection which is opened
for the duration of the function call.

If the connection is open it is written from its current position. If it is not open, it is opened for the
duration of the call in "wt" mode and then closed again.

Normally writeLines is used with a text-mode connection, and the default separator is converted
to the normal separator for that platform (LF on Unix/Linux, CRLF on Windows). For more control,
open a binary connection and specify the precise value you want written to the file in sep. For even
more control, use writeChar on a binary connection.

See Also

connections, writeChar, writeBin, readLines, cat

496 zpackages

xtfrm Auxiliary Function for Sorting and Ranking

Description

A generic auxiliary function that produces a numeric vector which will sort in the same order as x.

Usage

xtfrm(x)

Arguments

x an R object.

Details

This is a special case of ranking, but as a less general function than rank is more suitable
to be made generic. The default method is equivalent to rank(x, ties.method="min",
na.last="keep"), so NA values are given rank NA and all tied values are given equal integer
rank.

The factor method extracts the codes. The Surv method sorts first on times and then on status
code(s).

The default method will make use of ==, > and is.na methods for the class of x, but might be
rather slow when doing so.

Value

A numeric (usually integer) vector of the same length as x.

See Also

rank, sort, order.

zpackages Listing of Packages

Description

.packages returns information about package availability.

Usage

.packages(all.available = FALSE, lib.loc = NULL)

Arguments
all.available

logical; if TRUE return a character vector of all available packages in lib.loc.
lib.loc a character vector describing the location of R library trees to search through, or

NULL. The default value of NULL corresponds to all libraries currently known.

zutils 497

Details

.packages() returns the names of the currently attached packages invisibly whereas

.packages(all.available = TRUE) gives (visibly) all packages available in the library
location path lib.loc. If versioned installs have been used, the names returned will be of the
form pkgname_version.

For a package to be regarded as being available it must have a ‘DESCRIPTION’ file containing a
valid version field.

Value

A character vector of package base names, invisible unless all.available = TRUE.

Author(s)

R core; Guido Masarotto for the all.available=TRUE part of .packages.

See Also

library, .libPaths.

Examples

(.packages()) # maybe just "base"
.packages(all.available = TRUE) # return all available as character vector
require(splines)
(.packages()) # "splines", too
detach("package:splines")

zutils Miscellaneous Internal/Programming Utilities

Description

Miscellaneous internal/programming utilities.

Usage

.standard_regexps()

Details

.standard_regexps returns a list of ‘standard’ regexps, including elements named
valid_package_name and valid_package_version with the obvious meanings. The
regexps are not anchored.

498 zutils

Chapter 2

The datasets package

datasets-package The R Datasets Package

Description

Base R datasets

Details

This package contains a variety of datasets. For a complete list, use
library(help="datasets").

Author(s)

R Development Core Team and contributors worldwide

Maintainer: R Core Team 〈R-core@r-project.org〉

ability.cov Ability and Intelligence Tests

Description

Six tests were given to 112 individuals. The covariance matrix is given in this object.

Usage

ability.cov

499

500 airmiles

Details

The tests are described as

general: a non-verbal measure of general intelligence using Cattell’s culture-fair test.

picture: a picture-completion test

blocks: block design

maze: mazes

reading: reading comprehension

vocab: vocabulary

Bartholomew gives both covariance and correlation matrices, but these are inconsistent. Neither are
in the original paper.

Source

Barthlomew, D. J. (1987) Latent Variable Analysis and Factor Analysis. Griffin.

Barthlomew, D. J. and Knott, M. (1990) Latent Variable Analysis and Factor Analysis. Second
Edition, Arnold.

References

Smith, G. A. and Stanley G. (1983) Clocking g: relating intelligence and measures of timed perfor-
mance. Intelligence, 7, 353–368.

Examples

require(stats)
(ability.FA <- factanal(factors = 1, covmat=ability.cov))
update(ability.FA, factors=2)
update(ability.FA, factors=2, rotation="promax")

airmiles Passenger Miles on Commercial US Airlines, 1937–1960

Description

The revenue passenger miles flown by commercial airlines in the United States for each year from
1937 to 1960.

Usage

airmiles

Format

A time series of 24 observations; yearly, 1937–1960.

Source

F.A.A. Statistical Handbook of Aviation.

AirPassengers 501

References

Brown, R. G. (1963) Smoothing, Forecasting and Prediction of Discrete Time Series. Prentice-Hall.

Examples

require(graphics)
plot(airmiles, main = "airmiles data",

xlab = "Passenger-miles flown by U.S. commercial airlines", col = 4)

AirPassengers Monthly Airline Passenger Numbers 1949-1960

Description

The classic Box & Jenkins airline data. Monthly totals of international airline passengers, 1949 to
1960.

Usage

AirPassengers

Format

A monthly time series, in thousands.

Source

Box, G. E. P., Jenkins, G. M. and Reinsel, G. C. (1976) Time Series Analysis, Forecasting and
Control. Third Edition. Holden-Day. Series G.

Examples

Not run:
These are quite slow and so not run by example(AirPassengers)

The classic 'airline model', by full ML
(fit <- arima(log10(AirPassengers), c(0, 1, 1),

seasonal = list(order=c(0, 1 ,1), period=12)))
update(fit, method = "CSS")
update(fit, x=window(log10(AirPassengers), start = 1954))
pred <- predict(fit, n.ahead = 24)
tl <- pred$pred - 1.96 * pred$se
tu <- pred$pred + 1.96 * pred$se
ts.plot(AirPassengers, 10^tl, 10^tu, log = "y", lty = c(1,2,2))

full ML fit is the same if the series is reversed, CSS fit is not
ap0 <- rev(log10(AirPassengers))
attributes(ap0) <- attributes(AirPassengers)
arima(ap0, c(0, 1, 1), seasonal = list(order=c(0, 1 ,1), period=12))
arima(ap0, c(0, 1, 1), seasonal = list(order=c(0, 1 ,1), period=12),

method = "CSS")

Structural Time Series

502 airquality

ap <- log10(AirPassengers) - 2
(fit <- StructTS(ap, type= "BSM"))
par(mfrow=c(1,2))
plot(cbind(ap, fitted(fit)), plot.type = "single")
plot(cbind(ap, tsSmooth(fit)), plot.type = "single")
End(Not run)

airquality New York Air Quality Measurements

Description

Daily air quality measurements in New York, May to September 1973.

Usage

airquality

Format

A data frame with 154 observations on 6 variables.

[,1] Ozone numeric Ozone (ppb)
[,2] Solar.R numeric Solar R (lang)
[,3] Wind numeric Wind (mph)
[,4] Temp numeric Temperature (degrees F)
[,5] Month numeric Month (1–12)
[,6] Day numeric Day of month (1–31)

Details

Daily readings of the following air quality values for May 1, 1973 (a Tuesday) to September 30,
1973.

• Ozone: Mean ozone in parts per billion from 1300 to 1500 hours at Roosevelt Island

• Solar.R: Solar radiation in Langleys in the frequency band 4000–7700 Angstroms from
0800 to 1200 hours at Central Park

• Wind: Average wind speed in miles per hour at 0700 and 1000 hours at LaGuardia Airport

• Temp: Maximum daily temperature in degrees Fahrenheit at La Guardia Airport.

Source

The data were obtained from the New York State Department of Conservation (ozone data) and the
National Weather Service (meteorological data).

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods for Data
Analysis. Belmont, CA: Wadsworth.

anscombe 503

Examples

require(graphics)
pairs(airquality, panel = panel.smooth, main = "airquality data")

anscombe Anscombe’s Quartet of “Identical” Simple Linear Regressions

Description

Four x-y datasets which have the same traditional statistical properties (mean, variance, correlation,
regression line, etc.), yet are quite different.

Usage

anscombe

Format

A data frame with 11 observations on 8 variables.

x1 == x2 == x3 the integers 4:14, specially arranged
x4 values 8 and 19

y1, y2, y3, y4 numbers in (3, 12.5) with mean 7.5 and sdev 2.03

Source

Tufte, Edward R. (1989) The Visual Display of Quantitative Information, 13–14. Graphics Press.

References

Anscombe, Francis J. (1973) Graphs in statistical analysis. American Statistician, 27, 17–21.

Examples

require(stats); require(graphics)
summary(anscombe)

##-- now some "magic" to do the 4 regressions in a loop:
ff <- y ~ x
for(i in 1:4) {
ff[2:3] <- lapply(paste(c("y","x"), i, sep=""), as.name)
or ff[[2]] <- as.name(paste("y", i, sep=""))
ff[[3]] <- as.name(paste("x", i, sep=""))
assign(paste("lm.",i,sep=""), lmi <- lm(ff, data= anscombe))
print(anova(lmi))

}

See how close they are (numerically!)
sapply(objects(pattern="lm\\.[1-4]$"), function(n) coef(get(n)))
lapply(objects(pattern="lm\\.[1-4]$"),

function(n) coef(summary(get(n))))

Now, do what you should have done in the first place: PLOTS

504 attenu

op <- par(mfrow=c(2,2), mar=.1+c(4,4,1,1), oma= c(0,0,2,0))
for(i in 1:4) {
ff[2:3] <- lapply(paste(c("y","x"), i, sep=""), as.name)
plot(ff, data =anscombe, col="red", pch=21, bg = "orange", cex = 1.2,

xlim=c(3,19), ylim=c(3,13))
abline(get(paste("lm.",i,sep="")), col="blue")

}
mtext("Anscombe's 4 Regression data sets", outer = TRUE, cex=1.5)
par(op)

attenu The Joyner–Boore Attenuation Data

Description

This data gives peak accelerations measured at various observation stations for 23 earthquakes in
California. The data have been used by various workers to estimate the attenuating affect of distance
on ground acceleration.

Usage

attenu

Format

A data frame with 182 observations on 5 variables.

[,1] event numeric Event Number
[,2] mag numeric Moment Magnitude
[,3] station factor Station Number
[,4] dist numeric Station-hypocenter distance (km)
[,5] accel numeric Peak acceleration (g)

Source

Joyner, W.B., D.M. Boore and R.D. Porcella (1981). Peak horizontal acceleration and velocity
from strong-motion records including records from the 1979 Imperial Valley, California earthquake.
USGS Open File report 81-365. Menlo Park, Ca.

References

Boore, D. M. and Joyner, W.B.(1982) The empirical prediction of ground motion, Bull. Seism. Soc.
Am., 72, S269–S268.

Bolt, B. A. and Abrahamson, N. A. (1982) New attenuation relations for peak and expected accel-
erations of strong ground motion, Bull. Seism. Soc. Am., 72, 2307–2321.

Bolt B. A. and Abrahamson, N. A. (1983) Reply to W. B. Joyner & D. M. Boore’s “Comments on:
New attenuation relations for peak and expected accelerations for peak and expected accelerations
of strong ground motion”, Bull. Seism. Soc. Am., 73, 1481–1483.

Brillinger, D. R. and Preisler, H. K. (1984) An exploratory analysis of the Joyner-Boore attenuation
data, Bull. Seism. Soc. Am., 74, 1441–1449.

attitude 505

Brillinger, D. R. and Preisler, H. K. (1984) Further analysis of the Joyner-Boore attenuation data.
Manuscript.

Examples

require(graphics)
check the data class of the variables
sapply(attenu, data.class)
summary(attenu)
pairs(attenu, main = "attenu data")
coplot(accel ~ dist | as.factor(event), data = attenu, show.given = FALSE)
coplot(log(accel) ~ log(dist) | as.factor(event),

data = attenu, panel = panel.smooth, show.given = FALSE)

attitude The Chatterjee–Price Attitude Data

Description

From a survey of the clerical employees of a large financial organization, the data are aggregated
from the questionnaires of the approximately 35 employees for each of 30 (randomly selected)
departments. The numbers give the percent proportion of favourable responses to seven questions
in each department.

Usage

attitude

Format

A dataframe with 30 observations on 7 variables. The first column are the short names from the
reference, the second one the variable names in the data frame:

Y rating numeric Overall rating
X[1] complaints numeric Handling of employee complaints
X[2] privileges numeric Does not allow special privileges
X[3] learning numeric Opportunity to learn
X[4] raises numeric Raises based on performance
X[5] critical numeric Too critical
X[6] advancel numeric Advancement

Source

Chatterjee, S. and Price, B. (1977) Regression Analysis by Example. New York: Wiley. (Section
3.7, p.68ff of 2nd ed.(1991).)

Examples

require(stats); require(graphics)
pairs(attitude, main = "attitude data")
summary(attitude)
summary(fm1 <- lm(rating ~ ., data = attitude))
opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

506 beavers

mar = c(4.1, 4.1, 2.1, 1.1))
plot(fm1)
summary(fm2 <- lm(rating ~ complaints, data = attitude))
plot(fm2)
par(opar)

austres Quarterly Time Series of the Number of Australian Residents

Description

Numbers (in thousands) of Australian residents measured quarterly from March 1971 to March
1994. The object is of class "ts".

Usage

austres

Source

P. J. Brockwell and R. A. Davis (1996) Introduction to Time Series and Forecasting. Springer

beavers Body Temperature Series of Two Beavers

Description

Reynolds (1994) describes a small part of a study of the long-term temperature dynamics of beaver
Castor canadensis in north-central Wisconsin. Body temperature was measured by telemetry every
10 minutes for four females, but data from a one period of less than a day for each of two animals
is used there.

Usage

beaver1
beaver2

Format

The beaver1 data frame has 114 rows and 4 columns on body temperature measurements at 10
minute intervals.

The beaver2 data frame has 100 rows and 4 columns on body temperature measurements at 10
minute intervals.

The variables are as follows:

day Day of observation (in days since the beginning of 1990), December 12–13 (beaver1) and
November 3–4 (beaver2).

time Time of observation, in the form 0330 for 3:30am

temp Measured body temperature in degrees Celsius.

activ Indicator of activity outside the retreat.

BJsales 507

Note

The observation at 22:20 is missing in beaver1.

Source

P. S. Reynolds (1994) Time-series analyses of beaver body temperatures. Chapter 11 of Lange, N.,
Ryan, L., Billard, L., Brillinger, D., Conquest, L. and Greenhouse, J. eds (1994) Case Studies in
Biometry. New York: John Wiley and Sons.

Examples

require(graphics)
(yl <- range(beaver1$temp, beaver2$temp))

beaver.plot <- function(bdat, ...) {
nam <- deparse(substitute(bdat))
with(bdat, {
Hours since start of day:
hours <- time %/% 100 + 24*(day - day[1]) + (time %% 100)/60
plot (hours, temp, type = "l", ...,

main = paste(nam, "body temperature"))
abline(h = 37.5, col = "gray", lty = 2)
is.act <- activ == 1
points(hours[is.act], temp[is.act], col = 2, cex = .8)

})
}
op <- par(mfrow = c(2,1), mar = c(3,3,4,2), mgp = .9* 2:0)
beaver.plot(beaver1, ylim = yl)
beaver.plot(beaver2, ylim = yl)

par(op)

BJsales Sales Data with Leading Indicator

Description

The sales time series BJsales and leading indicator BJsales.lead each contain 150 observa-
tions. The objects are of class "ts".

Usage

BJsales
BJsales.lead

Source

The data are given in Box & Jenkins (1976). Obtained from the Time Series Data Library at http:
//www-personal.buseco.monash.edu.au/~hyndman/TSDL/

http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/

508 BOD

References

G. E. P. Box and G. M. Jenkins (1976): Time Series Analysis, Forecasting and Control, Holden-Day,
San Francisco, p. 537.

P. J. Brockwell and R. A. Davis (1991): Time Series: Theory and Methods, Second edition, Springer
Verlag, NY, pp. 414.

BOD Biochemical Oxygen Demand

Description

The BOD data frame has 6 rows and 2 columns giving the biochemical oxygen demand versus time
in an evaluation of water quality.

Usage

BOD

Format

This data frame contains the following columns:

Time A numeric vector giving the time of the measurement (days).

demand A numeric vector giving the biochemical oxygen demand (mg/l).

Source

Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications, Wiley,
Appendix A1.4.

Originally from Marske (1967), Biochemical Oxygen Demand Data Interpretation Using Sum of
Squares Surface M.Sc. Thesis, University of Wisconsin – Madison.

Examples

require(stats)
simplest form of fitting a first-order model to these data
fm1 <- nls(demand ~ A*(1-exp(-exp(lrc)*Time)), data = BOD,

start = c(A = 20, lrc = log(.35)))
coef(fm1)
print(fm1)
using the plinear algorithm
fm2 <- nls(demand ~ (1-exp(-exp(lrc)*Time)), data = BOD,

start = c(lrc = log(.35)), algorithm = "plinear", trace = TRUE)
using a self-starting model
fm3 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)
summary(fm3)

cars 509

cars Speed and Stopping Distances of Cars

Description

The data give the speed of cars and the distances taken to stop. Note that the data were recorded in
the 1920s.

Usage

cars

Format

A data frame with 50 observations on 2 variables.

[,1] speed numeric Speed (mph)
[,2] dist numeric Stopping distance (ft)

Source

Ezekiel, M. (1930) Methods of Correlation Analysis. Wiley.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

require(stats); require(graphics)
plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",

las = 1)
lines(lowess(cars$speed, cars$dist, f = 2/3, iter = 3), col = "red")
title(main = "cars data")
plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",

las = 1, log = "xy")
title(main = "cars data (logarithmic scales)")
lines(lowess(cars$speed, cars$dist, f = 2/3, iter = 3), col = "red")
summary(fm1 <- lm(log(dist) ~ log(speed), data = cars))
opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))
plot(fm1)
par(opar)

An example of polynomial regression
plot(cars, xlab = "Speed (mph)", ylab = "Stopping distance (ft)",

las = 1, xlim = c(0, 25))
d <- seq(0, 25, length.out = 200)
for(degree in 1:4) {
fm <- lm(dist ~ poly(speed, degree), data = cars)
assign(paste("cars", degree, sep="."), fm)
lines(d, predict(fm, data.frame(speed=d)), col = degree)

}
anova(cars.1, cars.2, cars.3, cars.4)

510 ChickWeight

ChickWeight Weight versus age of chicks on different diets

Description

The ChickWeight data frame has 578 rows and 4 columns from an experiment on the effect of
diet on early growth of chicks.

Usage

ChickWeight

Format

This data frame contains the following columns:

weight a numeric vector giving the body weight of the chick (gm).

Time a numeric vector giving the number of days since birth when the measurement was made.

Chick an ordered factor with levels 18 < . . . < 48 giving a unique identifier for the chick. The
ordering of the levels groups chicks on the same diet together and orders them according to
their final weight (lightest to heaviest) within diet.

Diet a factor with levels 1,. . . ,4 indicating which experimental diet the chick received.

Details

The body weights of the chicks were measured at birth and every second day thereafter until day
20. They were also measured on day 21. There were four groups on chicks on different protein
diets.

Source

Crowder, M. and Hand, D. (1990), Analysis of Repeated Measures, Chapman and Hall (example
5.3)

Hand, D. and Crowder, M. (1996), Practical Longitudinal Data Analysis, Chapman and Hall (table
A.2)

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

require(stats); require(graphics)
coplot(weight ~ Time | Chick, data = ChickWeight,

type = "b", show.given = FALSE)
fit a representative chick
fm1 <- nls(weight ~ SSlogis(Time, Asym, xmid, scal),

data = ChickWeight, subset = Chick == 1)
summary(fm1)

chickwts 511

chickwts Chicken Weights by Feed Type

Description

An experiment was conducted to measure and compare the effectiveness of various feed supple-
ments on the growth rate of chickens.

Usage

chickwts

Format

A data frame with 71 observations on 2 variables.

weight a numeric variable giving the chick weight.

feed a factor giving the feed type.

Details

Newly hatched chicks were randomly allocated into six groups, and each group was given a different
feed supplement. Their weights in grams after six weeks are given along with feed types.

Source

Anonymous (1948) Biometrika, 35, 214.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(stats); require(graphics)
boxplot(weight ~ feed, data = chickwts, col = "lightgray",

varwidth = TRUE, notch = TRUE, main = "chickwt data",
ylab = "Weight at six weeks (gm)")

anova(fm1 <- lm(weight ~ feed, data = chickwts))
opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))
plot(fm1)
par(opar)

512 CO2

CO2 Carbon Dioxide uptake in grass plants

Description

The CO2 data frame has 84 rows and 5 columns of data from an experiment on the cold tolerance
of the grass species Echinochloa crus-galli.

Usage

CO2

Format

This data frame contains the following columns:

Plant an ordered factor with levels Qn1 < Qn2 < Qn3 < . . . < Mc1 giving a unique identifier for
each plant.

Type a factor with levels Quebec Mississippi giving the origin of the plant

Treatment a factor with levels nonchilled chilled

conc a numeric vector of ambient carbon dioxide concentrations (mL/L).

uptake a numeric vector of carbon dioxide uptake rates (µmol/m2 sec).

Details

The CO2 uptake of six plants from Quebec and six plants from Mississippi was measured at several
levels of ambient CO2 concentration. Half the plants of each type were chilled overnight before the
experiment was conducted.

Source

Potvin, C., Lechowicz, M. J. and Tardif, S. (1990) “The statistical analysis of ecophysiological
response curves obtained from experiments involving repeated measures”, Ecology, 71, 1389–1400.

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

require(stats); require(graphics)
coplot(uptake ~ conc | Plant, data = CO2, show.given = FALSE, type = "b")
fit the data for the first plant
fm1 <- nls(uptake ~ SSasymp(conc, Asym, lrc, c0),

data = CO2, subset = Plant == 'Qn1')
summary(fm1)
fit each plant separately
fmlist <- list()
for (pp in levels(CO2$Plant)) {
fmlist[[pp]] <- nls(uptake ~ SSasymp(conc, Asym, lrc, c0),

data = CO2, subset = Plant == pp)
}
check the coefficients by plant
sapply(fmlist, coef)

co2 513

co2 Mauna Loa Atmospheric CO2 Concentration

Description

Atmospheric concentrations of CO2 are expressed in parts per million (ppm) and reported in the
preliminary 1997 SIO manometric mole fraction scale.

Usage

co2

Format

A time series of 468 observations; monthly from 1959 to 1997.

Details

The values for February, March and April of 1964 were missing and have been obtained by inter-
polating linearly between the values for January and May of 1964.

Source

Keeling, C. D. and Whorf, T. P., Scripps Institution of Oceanography (SIO), University of Califor-
nia, La Jolla, California USA 92093-0220.

ftp://cdiac.esd.ornl.gov/pub/maunaloa-co2/maunaloa.co2.

References

Cleveland, W. S. (1993) Visualizing Data. New Jersey: Summit Press.

Examples

require(graphics)
plot(co2, ylab = expression("Atmospheric concentration of CO"[2]),

las = 1)
title(main = "co2 data set")

crimtab Student’s 3000 Criminals Data

Description

Data of 3000 male criminals over 20 years old undergoing their sentences in the chief prisons of
England and Wales.

Usage

data(crimtab)

ftp://cdiac.esd.ornl.gov/pub/maunaloa-co2/maunaloa.co2

514 crimtab

Format

A table object of integer counts, of dimension 42 × 22 with a total count, sum(crimtab)
of 3000.

The 42 rownames ("9.4", "9.5", . . .) correspond to midpoints of intervals of finger lengths
whereas the 22 column names (colnames) ("142.24", "144.78", . . .) correspond to (body)
heights of 3000 criminals, see also below.

Details

Student is the pseudonym of William Sealy Gosset. In his 1908 paper he wrote (on page 13) at the
beginning of section VI entitled Practical Test of the forgoing Equations:

“Before I had succeeded in solving my problem analytically, I had endeavoured to do so empirically.
The material used was a correlation table containing the height and left middle finger measurements
of 3000 criminals, from a paper by W. R. MacDonell (Biometrika, Vol. I., p. 219). The measure-
ments were written out on 3000 pieces of cardboard, which were then very thoroughly shuffled and
drawn at random. As each card was drawn its numbers were written down in a book, which thus
contains the measurements of 3000 criminals in a random order. Finally, each consecutive set of 4
was taken as a sample—750 in all—and the mean, standard deviation, and correlation of each sam-
ple determined. The difference between the mean of each sample and the mean of the population
was then divided by the standard deviation of the sample, giving us the z of Section III.”

The table is in fact page 216 and not page 219 in MacDonell(1902). In the MacDonell table,
the middle finger lengths were given in mm and the heights in feet/inches intervals, they are
both converted into cm here. The midpoints of intervals were used, e.g., where MacDonell has
4′7′′9/16−−8′′9/16, we have 142.24 which is 2.54*56 = 2.54*(4′8′′).

MacDonell credited the source of data (page 178) as follows: The data on which the memoir is
based were obtained, through the kindness of Dr Garson, from the Central Metric Office, New
Scotland Yard... He pointed out on page 179 that : The forms were drawn at random from the mass
on the office shelves; we are therefore dealing with a random sampling.

Source

http://pbil.univ-lyon1.fr/R/donnees/criminals1902.txt thanks to Jean R.
Lobry and Anne-Béatrice Dufour.

References

Garson, J.G. (1900) The metric system of identification of criminals, as used in in Great Britain and
Ireland. The Journal of the Anthropological Institute of Great Britain and Ireland 30, 161–198.

MacDonell, W.R. (1902) On criminal anthropometry and the identification of criminals. Biometrika
1, 2, 177–227.

Student (1908) The probable error of a mean. Biometrika 6, 1–25.

Examples

require(stats)
dim(crimtab)
utils::str(crimtab)
for nicer printing:
local({cT <- crimtab

colnames(cT) <- substring(colnames(cT), 2,3)
print(cT, zero.print = " ")

})

http://pbil.univ-lyon1.fr/R/donnees/criminals1902.txt

discoveries 515

Repeat Student's experiment:

1) Reconstitute 3000 raw data for heights in inches and rounded to
nearest integer as in Student's paper:

(heIn <- round(as.numeric(colnames(crimtab)) / 2.54))
d.hei <- data.frame(height = rep(heIn, colSums(crimtab)))

2) shuffle the data:

set.seed(1)
d.hei <- d.hei[sample(1:3000), , drop = FALSE]

3) Make 750 samples each of size 4:

d.hei$sample <- as.factor(rep(1:750, each = 4))

4) Compute the means and standard deviations (n) for the 750 samples:

h.mean <- with(d.hei, tapply(height, sample, FUN = mean))
h.sd <- with(d.hei, tapply(height, sample, FUN = sd)) * sqrt(3/4)

5) Compute the difference between the mean of each sample and
the mean of the population and then divide by the
standard deviation of the sample:

zobs <- (h.mean - mean(d.hei[,"height"]))/h.sd

6) Replace infinite values by +/- 6 as in Student's paper:

zobs[infZ <- is.infinite(zobs)] # 3 of them
zobs[infZ] <- 6 * sign(zobs[infZ])

7) Plot the distribution:

require(grDevices); require(graphics)
hist(x = zobs, probability = TRUE, xlab = "Student's z",

col = grey(0.8), border = grey(0.5),
main = "Distribution of Student's z score for 'crimtab' data")

discoveries Yearly Numbers of Important Discoveries

Description

The numbers of “great” inventions and scientific discoveries in each year from 1860 to 1959.

Usage

discoveries

Format

A time series of 100 values.

516 DNase

Source

The World Almanac and Book of Facts, 1975 Edition, pages 315–318.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

require(graphics)
plot(discoveries, ylab = "Number of important discoveries",

las = 1)
title(main = "discoveries data set")

DNase Elisa assay of DNase

Description

The DNase data frame has 176 rows and 3 columns of data obtained during development of an
ELISA assay for the recombinant protein DNase in rat serum.

Usage

DNase

Format

This data frame contains the following columns:

Run an ordered factor with levels 10 < . . . < 3 indicating the assay run.

conc a numeric vector giving the known concentration of the protein.

density a numeric vector giving the measured optical density (dimensionless) in the assay. Dupli-
cate optical density measurements were obtained.

Source

Davidian, M. and Giltinan, D. M. (1995) Nonlinear Models for Repeated Measurement Data, Chap-
man & Hall (section 5.2.4, p. 134)

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

require(stats); require(graphics)
coplot(density ~ conc | Run, data = DNase,

show.given = FALSE, type = "b")
coplot(density ~ log(conc) | Run, data = DNase,

show.given = FALSE, type = "b")
fit a representative run
fm1 <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal),

data = DNase, subset = Run == 1)
compare with a four-parameter logistic

esoph 517

fm2 <- nls(density ~ SSfpl(log(conc), A, B, xmid, scal),
data = DNase, subset = Run == 1)

summary(fm2)
anova(fm1, fm2)

esoph Smoking, Alcohol and (O)esophageal Cancer

Description

Data from a case-control study of (o)esophageal cancer in Ile-et-Vilaine, France.

Usage

esoph

Format

A data frame with records for 88 age/alcohol/tobacco combinations.

[,1] "agegp" Age group 1 25–34 years
2 35–44
3 45–54
4 55–64
5 65–74
6 75+

[,2] "alcgp" Alcohol consumption 1 0–39 gm/day
2 40–79
3 80–119
4 120+

[,3] "tobgp" Tobacco consumption 1 0– 9 gm/day
2 10–19
3 20–29
4 30+

[,4] "ncases" Number of cases
[,5] "ncontrols" Number of controls

Author(s)

Thomas Lumley

Source

Breslow, N. E. and Day, N. E. (1980) Statistical Methods in Cancer Research. 1: The Analysis of
Case-Control Studies. IARC Lyon / Oxford University Press.

Examples

require(stats)
require(graphics) # for mosaicplot
summary(esoph)
effects of alcohol, tobacco and interaction, age-adjusted

518 euro

model1 <- glm(cbind(ncases, ncontrols) ~ agegp + tobgp * alcgp,
data = esoph, family = binomial())

anova(model1)
Try a linear effect of alcohol and tobacco
model2 <- glm(cbind(ncases, ncontrols) ~ agegp + unclass(tobgp)

+ unclass(alcgp),
data = esoph, family = binomial())

summary(model2)
Re-arrange data for a mosaic plot
ttt <- table(esoph$agegp, esoph$alcgp, esoph$tobgp)
ttt[ttt == 1] <- esoph$ncases
tt1 <- table(esoph$agegp, esoph$alcgp, esoph$tobgp)
tt1[tt1 == 1] <- esoph$ncontrols
tt <- array(c(ttt, tt1), c(dim(ttt),2),

c(dimnames(ttt), list(c("Cancer", "control"))))
mosaicplot(tt, main = "esoph data set", color = TRUE)

euro Conversion Rates of Euro Currencies

Description

Conversion rates between the various Euro currencies.

Usage

euro
euro.cross

Format

euro is a named vector of length 11, euro.cross a matrix of size 11 by 11, with dimnames.

Details

The data set euro contains the value of 1 Euro in all currencies participating in the European
monetary union (Austrian Schilling ATS, Belgian Franc BEF, German Mark DEM, Spanish Peseta
ESP, Finnish Markka FIM, French Franc FRF, Irish Punt IEP, Italian Lira ITL, Luxembourg Franc
LUF, Dutch Guilder NLG and Portuguese Escudo PTE). These conversion rates were fixed by
the European Union on December 31, 1998. To convert old prices to Euro prices, divide by the
respective rate and round to 2 digits.

The data set euro.cross contains conversion rates between the various Euro currencies, i.e., the
result of outer(1 / euro, euro).

Examples

cbind(euro)

These relations hold:
euro == signif(euro,6) # [6 digit precision in Euro's definition]
all(euro.cross == outer(1/euro, euro))

Convert 20 Euro to Belgian Franc

eurodist 519

20 * euro["BEF"]
Convert 20 Austrian Schilling to Euro
20 / euro["ATS"]
Convert 20 Spanish Pesetas to Italian Lira
20 * euro.cross["ESP", "ITL"]

require(graphics)
dotchart(euro,

main = "euro data: 1 Euro in currency unit")
dotchart(1/euro,

main = "euro data: 1 currency unit in Euros")
dotchart(log(euro, 10),

main = "euro data: log10(1 Euro in currency unit)")

eurodist Distances Between European Cities

Description

The data give the road distances (in km) between 21 cities in Europe. The data are taken from a
table in The Cambridge Encyclopaedia.

Usage

eurodist

Format

A dist object based on 21 objects. (You must have the stats package loaded to have the methods
for this kind of object available).

Source

Crystal, D. Ed. (1990) The Cambridge Encyclopaedia. Cambridge: Cambridge University Press,

EuStockMarkets Daily Closing Prices of Major European Stock Indices, 1991–1998

Description

Contains the daily closing prices of major European stock indices: Germany DAX (Ibis), Switzer-
land SMI, France CAC, and UK FTSE. The data are sampled in business time, i.e., weekends and
holidays are omitted.

Usage

EuStockMarkets

Format

A multivariate time series with 1860 observations on 4 variables. The object is of class "mts".

520 faithful

Source

The data were kindly provided by Erste Bank AG, Vienna, Austria.

faithful Old Faithful Geyser Data

Description

Waiting time between eruptions and the duration of the eruption for the Old Faithful geyser in
Yellowstone National Park, Wyoming, USA.

Usage

faithful

Format

A data frame with 272 observations on 2 variables.

[,1] eruptions numeric Eruption time in mins
[,2] waiting numeric Waiting time to next eruption (in mins)

Details

A closer look at faithful$eruptions reveals that these are heavily rounded times originally
in seconds, where multiples of 5 are more frequent than expected under non-human measurement.
For a better version of the eruption times, see the example below.

There are many versions of this dataset around: Azzalini and Bowman (1990) use a more complete
version.

Source

W. Härdle.

References

Härdle, W. (1991) Smoothing Techniques with Implementation in S. New York: Springer.

Azzalini, A. and Bowman, A. W. (1990). A look at some data on the Old Faithful geyser. Applied
Statistics 39, 357–365.

See Also

geyser in package MASS for the Azzalini–Bowman version.

Examples

require(stats); require(graphics)
f.tit <- "faithful data: Eruptions of Old Faithful"

ne60 <- round(e60 <- 60 * faithful$eruptions)
all.equal(e60, ne60) # relative diff. ~ 1/10000

Formaldehyde 521

table(zapsmall(abs(e60 - ne60))) # 0, 0.02 or 0.04
faithful$better.eruptions <- ne60 / 60
te <- table(ne60)
te[te >= 4] # (too) many multiples of 5 !
plot(names(te), te, type="h", main = f.tit, xlab = "Eruption time (sec)")

plot(faithful[, -3], main = f.tit,
xlab = "Eruption time (min)",
ylab = "Waiting time to next eruption (min)")

lines(lowess(faithful$eruptions, faithful$waiting, f = 2/3, iter = 3),
col = "red")

Formaldehyde Determination of Formaldehyde

Description

These data are from a chemical experiment to prepare a standard curve for the determination of
formaldehyde by the addition of chromatropic acid and concentrated sulpuric acid and the reading
of the resulting purple color on a spectrophotometer.

Usage

Formaldehyde

Format

A data frame with 6 observations on 2 variables.

[,1] carb numeric Carbohydrate (ml)
[,2] optden numeric Optical Density

Source

Bennett, N. A. and N. L. Franklin (1954) Statistical Analysis in Chemistry and the Chemical Indus-
try. New York: Wiley.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(stats); require(graphics)
plot(optden ~ carb, data = Formaldehyde,

xlab = "Carbohydrate (ml)", ylab = "Optical Density",
main = "Formaldehyde data", col = 4, las = 1)

abline(fm1 <- lm(optden ~ carb, data = Formaldehyde))
summary(fm1)
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(fm1)
par(opar)

522 freeny

freeny Freeny’s Revenue Data

Description

Freeny’s data on quarterly revenue and explanatory variables.

Usage

freeny
freeny.x
freeny.y

Format

There are three ‘freeny’ data sets.

freeny.y is a time series with 39 observations on quarterly revenue from (1962,2Q) to (1971,4Q).

freeny.x is a matrix of explanatory variables. The columns are freeny.y lagged 1 quarter,
price index, income level, and market potential.

Finally, freeny is a data frame with variables y, lag.quarterly.revenue,
price.index, income.level, and market.potential obtained from the above
two data objects.

Source

A. E. Freeny (1977) A Portable Linear Regression Package with Test Programs. Bell Laboratories
memorandum.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

require(stats); require(graphics)
summary(freeny)
pairs(freeny, main = "freeny data")
gives warning: freeny$y has class "ts"

summary(fm1 <- lm(y ~ ., data = freeny))
opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))
plot(fm1)
par(opar)

HairEyeColor 523

HairEyeColor Hair and Eye Color of Statistics Students

Description

Distribution of hair and eye color and sex in 592 statistics students.

Usage

HairEyeColor

Format

A 3-dimensional array resulting from cross-tabulating 592 observations on 3 variables. The vari-
ables and their levels are as follows:

No Name Levels
1 Hair Black, Brown, Red, Blond
2 Eye Brown, Blue, Hazel, Green
3 Sex Male, Female

Details

The Hair × Eye table comes rom a survey of students at the University of Delaware reported by
Snee (1974). The split by Sex was added by Friendly (1992a) for didactic purposes.

This data set is useful for illustrating various techniques for the analysis of contingency tables, such
as the standard chi-squared test or, more generally, log-linear modelling, and graphical methods
such as mosaic plots, sieve diagrams or association plots.

Source

http://euclid.psych.yorku.ca/ftp/sas/vcd/catdata/haireye.sas

Snee (1974) gives the two-way table aggregated over Sex. The Sex split of the ‘Brown hair, Brown
eye’ cell was changed in R 2.6.0 to agree with that used by Friendly (2000).

References

Snee, R. D. (1974) Graphical display of two-way contingency tables. The American Statistician,
28, 9–12.

Friendly, M. (1992a) Graphical methods for categorical data. SAS User Group Interna-
tional Conference Proceedings, 17, 190–200. http://www.math.yorku.ca/SCS/sugi/
sugi17-paper.html

Friendly, M. (1992b) Mosaic displays for loglinear models. Proceedings of the Statistical Graphics
Section, American Statistical Association, pp. 61–68. http://www.math.yorku.ca/SCS/
Papers/asa92.html

Friendly, M. (2000) Visualizing Categorical Data. SAS Institute, ISBN 1-58025-660-0.

See Also

chisq.test, loglin, mosaicplot

http://euclid.psych.yorku.ca/ftp/sas/vcd/catdata/haireye.sas
http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://www.math.yorku.ca/SCS/Papers/asa92.html
http://www.math.yorku.ca/SCS/Papers/asa92.html

524 Harman74.cor

Examples

require(graphics)
Full mosaic
mosaicplot(HairEyeColor)
Aggregate over sex (as in Snee's original data)
x <- apply(HairEyeColor, c(1, 2), sum)
x
mosaicplot(x, main = "Relation between hair and eye color")

Harman23.cor Harman Example 2.3

Description

A correlation matrix of eight physical measurements on 305 girls between ages seven and seventeen.

Usage

Harman23.cor

Source

Harman, H. H. (1976) Modern Factor Analysis, Third Edition Revised, University of Chicago Press,
Table 2.3.

Examples

require(stats)
(Harman23.FA <- factanal(factors = 1, covmat = Harman23.cor))
for(factors in 2:4) print(update(Harman23.FA, factors = factors))

Harman74.cor Harman Example 7.4

Description

A correlation matrix of 24 psychological tests given to 145 seventh and eight-grade children in a
Chicago suburb by Holzinger and Swineford.

Usage

Harman74.cor

Source

Harman, H. H. (1976) Modern Factor Analysis, Third Edition Revised, University of Chicago Press,
Table 7.4.

Indometh 525

Examples

require(stats)
(Harman74.FA <- factanal(factors = 1, covmat = Harman74.cor))
for(factors in 2:5) print(update(Harman74.FA, factors = factors))
Harman74.FA <- factanal(factors = 5, covmat = Harman74.cor,

rotation="promax")
print(Harman74.FA$loadings, sort = TRUE)

Indometh Pharmacokinetics of Indomethicin

Description

The Indometh data frame has 66 rows and 3 columns of data on the pharmacokinetics of indome-
thicin.

Usage

Indometh

Format

This data frame contains the following columns:

Subject an ordered factor with containing the subject codes. The ordering is according to increas-
ing maximum response.

time a numeric vector of times at which blood samples were drawn (hr).

conc a numeric vector of plasma concentrations of indomethicin (mcg/ml).

Details

Each of the six subjects were given an intravenous injection of indomethicin.

Source

Kwan, Breault, Umbenhauer, McMahon and Duggan (1976), Kinetics of Indomethicin absorption,
elimination, and enterohepatic circulation in man. Journal of Pharmacokinetics and Biopharma-
ceutics, 4, 255–280.

Davidian, M. and Giltinan, D. M. (1995) Nonlinear Models for Repeated Measurement Data, Chap-
man & Hall (section 5.2.4, p. 134)

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

require(stats)
fm1 <- nls(conc ~ SSbiexp(time, A1, lrc1, A2, lrc2),

data = Indometh, subset = Subject == 1)
summary(fm1)

526 infert

infert Infertility after Spontaneous and Induced Abortion

Description

This is a matched case-control study dating from before the availability of conditional logistic re-
gression.

Usage

infert

Format

1. Education 0 = 0-5 years
1 = 6-11 years
2 = 12+ years

2. age age in years of case
3. parity count
4. number of prior 0 = 0

induced abortions 1 = 1
2 = 2 or more

5. case status 1 = case
0 = control

6. number of prior 0 = 0
spontaneous abortions 1 = 1

2 = 2 or more
7. matched set number 1-83
8. stratum number 1-63

Note

One case with two prior spontaneous abortions and two prior induced abortions is omitted.

Source

Trichopoulos et al. (1976) Br. J. of Obst. and Gynaec. 83, 645–650.

Examples

require(stats)
model1 <- glm(case ~ spontaneous+induced, data=infert,family=binomial())
summary(model1)
adjusted for other potential confounders:
summary(model2 <- glm(case ~ age+parity+education+spontaneous+induced,

data=infert,family=binomial()))
Really should be analysed by conditional logistic regression
which is in the survival package
if(require(survival)){

iris 527

model3 <- clogit(case~spontaneous+induced+strata(stratum),data=infert)
print(summary(model3))
detach()# survival (conflicts)

}

InsectSprays Effectiveness of Insect Sprays

Description

The counts of insects in agricultural experimental units treated with different insecticides.

Usage

InsectSprays

Format

A data frame with 72 observations on 2 variables.

[,1] count numeric Insect count
[,2] spray factor The type of spray

Source

Beall, G., (1942) The Transformation of data from entomological field experiments, Biometrika,
29, 243–262.

References

McNeil, D. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(stats); require(graphics)
boxplot(count ~ spray, data = InsectSprays,

xlab = "Type of spray", ylab = "Insect count",
main = "InsectSprays data", varwidth = TRUE, col = "lightgray")

fm1 <- aov(count ~ spray, data = InsectSprays)
summary(fm1)
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(fm1)
fm2 <- aov(sqrt(count) ~ spray, data = InsectSprays)
summary(fm2)
plot(fm2)
par(opar)

iris Edgar Anderson’s Iris Data

528 iris

Description

This famous (Fisher’s or Anderson’s) iris data set gives the measurements in centimeters of the
variables sepal length and width and petal length and width, respectively, for 50 flowers from each
of 3 species of iris. The species are Iris setosa, versicolor, and virginica.

Usage

iris
iris3

Format

iris is a data frame with 150 cases (rows) and 5 variables (columns) named Sepal.Length,
Sepal.Width, Petal.Length, Petal.Width, and Species.

iris3 gives the same data arranged as a 3-dimensional array of size 50 by 4 by 3, as represented
by S-PLUS. The first dimension gives the case number within the species subsample, the second the
measurements with names Sepal L., Sepal W., Petal L., and Petal W., and the third
the species.

Source

Fisher, R. A. (1936) The use of multiple measurements in taxonomic problems. Annals of Eugenics,
7, Part II, 179–188.

The data were collected by Anderson, Edgar (1935). The irises of the Gaspe Peninsula, Bulletin of
the American Iris Society, 59, 2–5.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (has iris3 as iris.)

See Also

matplot some examples of which use iris.

Examples

dni3 <- dimnames(iris3)
ii <- data.frame(matrix(aperm(iris3, c(1,3,2)), ncol=4,

dimnames = list(NULL, sub(" L.",".Length",
sub(" W.",".Width", dni3[[2]])))),

Species = gl(3, 50, labels=sub("S", "s", sub("V", "v", dni3[[3]]))))
all.equal(ii, iris) # TRUE

islands 529

islands Areas of the World’s Major Landmasses

Description

The areas in thousands of square miles of the landmasses which exceed 10,000 square miles.

Usage

islands

Format

A named vector of length 48.

Source

The World Almanac and Book of Facts, 1975, page 406.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

require(graphics)
dotchart(log(islands, 10),

main = "islands data: log10(area) (log10(sq. miles))")
dotchart(log(islands[order(islands)], 10),

main = "islands data: log10(area) (log10(sq. miles))")

JohnsonJohnson Quarterly Earnings per Johnson & Johnson Share

Description

Quarterly earnings (dollars) per Johnson & Johnson share 1960–80.

Usage

JohnsonJohnson

Format

A quarterly time series

Source

Shumway, R. H. and Stoffer, D. S. (2000) Time Series Analysis and its Applications. Second Edi-
tion. Springer. Example 1.1.

530 lh

Examples

require(stats); require(graphics)
JJ <- log10(JohnsonJohnson)
plot(JJ)
(fit <- StructTS(JJ, type="BSM"))
tsdiag(fit)
sm <- tsSmooth(fit)
plot(cbind(JJ, sm[, 1], sm[, 3]-0.5), plot.type = "single",

col = c("black", "green", "blue"))
abline(h = -0.5, col = "grey60")

monthplot(fit)

LakeHuron Level of Lake Huron 1875–1972

Description

Annual measurements of the level, in feet, of Lake Huron 1875–1972.

Usage

LakeHuron

Format

A time series of length 98.

Source

Brockwell, P. J. & Davis, R. A. (1991). Time Series and Forecasting Methods. Second edition.
Springer, New York. Series A, page 555.

Brockwell, P. J. & Davis, R. A. (1996). Introduction to Time Series and Forecasting. Springer, New
York. Sections 5.1 and 7.6.

lh Luteinizing Hormone in Blood Samples

Description

A regular time series giving the luteinizing hormone in blood samples at 10 mins intervals from a
human female, 48 samples.

Usage

lh

Source

P.J. Diggle (1990) Time Series: A Biostatistical Introduction. Oxford, table A.1, series 3

LifeCycleSavings 531

LifeCycleSavings Intercountry Life-Cycle Savings Data

Description

Data on the savings ratio 1960–1970.

Usage

LifeCycleSavings

Format

A data frame with 50 observations on 5 variables.

[,1] sr numeric aggregate personal savings
[,2] pop15 numeric % of population under 15
[,3] pop75 numeric % of population over 75
[,4] dpi numeric real per-capita disposable income
[,5] ddpi numeric % growth rate of dpi

Details

Under the life-cycle savings hypothesis as developed by Franco Modigliani, the savings ratio (aggre-
gate personal saving divided by disposable income) is explained by per-capita disposable income,
the percentage rate of change in per-capita disposable income, and two demographic variables:
the percentage of population less than 15 years old and the percentage of the population over 75
years old. The data are averaged over the decade 1960–1970 to remove the business cycle or other
short-term fluctuations.

Source

The data were obtained from Belsley, Kuh and Welsch (1980). They in turn obtained the data from
Sterling (1977).

References

Sterling, Arnie (1977) Unpublished BS Thesis. Massachusetts Institute of Technology.

Belsley, D. A., Kuh. E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

Examples

require(stats); require(graphics)
pairs(LifeCycleSavings, panel = panel.smooth,

main = "LifeCycleSavings data")
fm1 <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)
summary(fm1)

532 longley

Loblolly Growth of Loblolly pine trees

Description

The Loblolly data frame has 84 rows and 3 columns of records of the growth of Loblolly pine
trees.

Usage

Loblolly

Format

This data frame contains the following columns:

height a numeric vector of tree heights (ft).

age a numeric vector of tree ages (yr).

Seed an ordered factor indicating the seed source for the tree. The ordering is according to increas-
ing maximum height.

Source

Kung, F. H. (1986), Fitting logistic growth curve with predetermined carrying capacity, in Proceed-
ings of the Statistical Computing Section, American Statistical Association, 340–343.

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

require(stats); require(graphics)
plot(height ~ age, data = Loblolly, subset = Seed == 329,

xlab = "Tree age (yr)", las = 1,
ylab = "Tree height (ft)",
main = "Loblolly data and fitted curve (Seed 329 only)")

fm1 <- nls(height ~ SSasymp(age, Asym, R0, lrc),
data = Loblolly, subset = Seed == 329)

summary(fm1)
age <- seq(0, 30, length.out = 101)
lines(age, predict(fm1, list(age = age)))

longley Longley’s Economic Regression Data

Description

A macroeconomic data set which provides a well-known example for a highly collinear regression.

Usage

longley

lynx 533

Format

A data frame with 7 economical variables, observed yearly from 1947 to 1962 (n = 16).

GNP.deflator: GNP implicit price deflator (1954 = 100)

GNP: Gross National Product.

Unemployed: number of unemployed.

Armed.Forces: number of people in the armed forces.

Population: ‘noninstitutionalized’ population ≥ 14 years of age.

Year: the year (time).

Employed: number of people employed.

The regression lm(Employed ~ .) is known to be highly collinear.

Source

J. W. Longley (1967) An appraisal of least-squares programs from the point of view of the user.
Journal of the American Statistical Association, 62, 819–841.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

require(stats); require(graphics)
give the data set in the form it is used in S-PLUS:
longley.x <- data.matrix(longley[, 1:6])
longley.y <- longley[, "Employed"]
pairs(longley, main = "longley data")
summary(fm1 <- lm(Employed ~ ., data = longley))
opar <- par(mfrow = c(2, 2), oma = c(0, 0, 1.1, 0),

mar = c(4.1, 4.1, 2.1, 1.1))
plot(fm1)
par(opar)

lynx Annual Canadian Lynx trappings 1821–1934

Description

Annual numbers of lynx trappings for 1821–1934 in Canada. Taken from Brockwell & Davis
(1991), this appears to be the series considered by Campbell & Walker (1977).

Usage

lynx

Source

Brockwell, P. J. and Davis, R. A. (1991) Time Series and Forecasting Methods. Second edition.
Springer. Series G (page 557).

534 morley

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Campbell, M. J.and A. M. Walker (1977). A Survey of statistical work on the Mackenzie River
series of annual Canadian lynx trappings for the years 1821–1934 and a new analysis. Journal of
the Royal Statistical Society series A, 140, 411–431.

morley Michaelson-Morley Speed of Light Data

Description

The classical data of Michaelson and Morley on the speed of light. The data consists of five exper-
iments, each consisting of 20 consecutive ‘runs’. The response is the speed of light measurement,
suitably coded.

Usage

morley

Format

A data frame contains the following components:

Expt The experiment number, from 1 to 5.

Run The run number within each experiment.

Speed Speed-of-light measurement.

Details

The data is here viewed as a randomized block experiment with ‘experiment’ and ‘run’ as the
factors. ‘run’ may also be considered a quantitative variate to account for linear (or polynomial)
changes in the measurement over the course of a single experiment.

Source

A. J. Weekes (1986) A Genstat Primer. London: Edward Arnold.

Examples

require(stats); require(graphics)
morley$Expt <- factor(morley$Expt)
morley$Run <- factor(morley$Run)

xtabs(~ Expt + Run, data = morley)# 5 x 20 balanced (two-way)
plot(Speed ~ Expt, data = morley,

main = "Speed of Light Data", xlab = "Experiment No.")
fm <- aov(Speed ~ Run + Expt, data = morley)
summary(fm)
fm0 <- update(fm, . ~ . - Run)
anova(fm0, fm)

nhtemp 535

mtcars Motor Trend Car Road Tests

Description

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption
and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).

Usage

mtcars

Format

A data frame with 32 observations on 11 variables.

[, 1] mpg Miles/(US) gallon
[, 2] cyl Number of cylinders
[, 3] disp Displacement (cu.in.)
[, 4] hp Gross horsepower
[, 5] drat Rear axle ratio
[, 6] wt Weight (lb/1000)
[, 7] qsec 1/4 mile time
[, 8] vs V/S
[, 9] am Transmission (0 = automatic, 1 = manual)

[,10] gear Number of forward gears
[,11] carb Number of carburetors

Source

Henderson and Velleman (1981), Building multiple regression models interactively. Biometrics, 37,
391–411.

Examples

require(graphics)
pairs(mtcars, main = "mtcars data")
coplot(mpg ~ disp | as.factor(cyl), data = mtcars,

panel = panel.smooth, rows = 1)

nhtemp Average Yearly Temperatures in New Haven

Description

The mean annual temperature in degrees Fahrenheit in New Haven, Connecticut, from 1912 to
1971.

Usage

nhtemp

536 Nile

Format

A time series of 60 observations.

Source

Vaux, J. E. and Brinker, N. B. (1972) Cycles, 1972, 117–121.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(stats); require(graphics)
plot(nhtemp, main = "nhtemp data",
ylab = "Mean annual temperature in New Haven, CT (deg. F)")

Nile Flow of the River Nile

Description

Measurements of the annual flow of the river Nile at Ashwan 1871–1970.

Usage

Nile

Format

A time series of length 100.

Source

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford Uni-
versity Press. http://www.ssfpack.com/dkbook/

References

Balke, N. S. (1993) Detecting level shifts in time series. Journal of Business and Economic Statistics
11, 81–92.

Cobb, G. W. (1978) The problem of the Nile: conditional solution to a change-point problem.
Biometrika 65, 243–51.

http://www.ssfpack.com/dkbook/

nottem 537

Examples

require(stats); require(graphics)
par(mfrow = c(2,2))
plot(Nile)
acf(Nile)
pacf(Nile)
ar(Nile) # selects order 2
cpgram(ar(Nile)$resid)
par(mfrow = c(1,1))
arima(Nile, c(2, 0, 0))

Now consider missing values, following Durbin & Koopman
NileNA <- Nile
NileNA[c(21:40, 61:80)] <- NA
arima(NileNA, c(2, 0, 0))
plot(NileNA)
pred <-

predict(arima(window(NileNA, 1871, 1890), c(2,0,0)), n.ahead = 20)
lines(pred$pred, lty = 3, col = "red")
lines(pred$pred + 2*pred$se, lty=2, col="blue")
lines(pred$pred - 2*pred$se, lty=2, col="blue")
pred <-

predict(arima(window(NileNA, 1871, 1930), c(2,0,0)), n.ahead = 20)
lines(pred$pred, lty = 3, col = "red")
lines(pred$pred + 2*pred$se, lty=2, col="blue")
lines(pred$pred - 2*pred$se, lty=2, col="blue")

Structural time series models
par(mfrow = c(3, 1))
plot(Nile)
local level model
(fit <- StructTS(Nile, type = "level"))
lines(fitted(fit), lty = 2) # contemporaneous smoothing
lines(tsSmooth(fit), lty = 2, col = 4) # fixed-interval smoothing
plot(residuals(fit)); abline(h = 0, lty = 3)
local trend model
(fit2 <- StructTS(Nile, type = "trend")) ## constant trend fitted
pred <- predict(fit, n.ahead = 30)
with 50% confidence interval
ts.plot(Nile, pred$pred,

pred$pred + 0.67*pred$se, pred$pred -0.67*pred$se)

Now consider missing values
plot(NileNA)
(fit3 <- StructTS(NileNA, type = "level"))
lines(fitted(fit3), lty = 2)
lines(tsSmooth(fit3), lty = 3)
plot(residuals(fit3)); abline(h = 0, lty = 3)

nottem Average Monthly Temperatures at Nottingham, 1920–1939

538 occupationalStatus

Description

A time series object containing average air temperatures at Nottingham Castle in degrees Fahrenheit
for 20 years.

Usage

nottem

Source

Anderson, O. D. (1976) Time Series Analysis and Forecasting: The Box-Jenkins approach. Butter-
worths. Series R.

Examples

Not run:
require(stats); require(graphics)
nott <- window(nottem, end=c(1936,12))
fit <- arima(nott,order=c(1,0,0), list(order=c(2,1,0), period=12))
nott.fore <- predict(fit, n.ahead=36)
ts.plot(nott, nott.fore$pred, nott.fore$pred+2*nott.fore$se,

nott.fore$pred-2*nott.fore$se, gpars=list(col=c(1,1,4,4)))
End(Not run)

occupationalStatus Occupational Status of Fathers and their Sons

Description

Cross-classification of a sample of British males according to each subject’s occupational status and
his father’s occupational status.

Usage

occupationalStatus

Format

A table of counts, with classifying factors origin (father’s occupational status; levels 1:8) and
destination (son’s occupational status; levels 1:8).

Source

Goodman, L. A. (1979) Simple Models for the Analysis of Association in Cross-Classifications
having Ordered Categories. J. Am. Stat. Assoc., 74 (367), 537–552.

The data set has been in package gnm and been provided by the package authors.

Orange 539

Examples

require(stats); require(graphics)

plot(occupationalStatus)

Fit a uniform association model separating diagonal effects
Diag <- as.factor(diag(1:8))
Rscore <- scale(as.numeric(row(occupationalStatus)), scale = FALSE)
Cscore <- scale(as.numeric(col(occupationalStatus)), scale = FALSE)
modUnif <- glm(Freq ~ origin + destination + Diag + Rscore:Cscore,

family = poisson, data = occupationalStatus)

summary(modUnif)
plot(modUnif) # 4 plots, with warning about h_ii ~= 1

Orange Growth of Orange Trees

Description

The Orange data frame has 35 rows and 3 columns of records of the growth of orange trees.

Usage

Orange

Format

This data frame contains the following columns:

Tree an ordered factor indicating the tree on which the measurement is made. The ordering is
according to increasing maximum diameter.

age a numeric vector giving the age of the tree (days since 1968/12/31)
circumference a numeric vector of trunk circumferences (mm). This is probably “circumference

at breast height”, a standard measurement in forestry.

Source

Draper, N. R. and Smith, H. (1998), Applied Regression Analysis (3rd ed), Wiley (exercise 24.N).

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer.

Examples

require(stats); require(graphics)
coplot(circumference ~ age | Tree, data = Orange, show.given = FALSE)
fm1 <- nls(circumference ~ SSlogis(age, Asym, xmid, scal),

data = Orange, subset = Tree == 3)
plot(circumference ~ age, data = Orange, subset = Tree == 3,

xlab = "Tree age (days since 1968/12/31)",
ylab = "Tree circumference (mm)", las = 1,
main = "Orange tree data and fitted model (Tree 3 only)")

age <- seq(0, 1600, length.out = 101)
lines(age, predict(fm1, list(age = age)))

540 OrchardSprays

OrchardSprays Potency of Orchard Sprays

Description

An experiment was conducted to assess the potency of various constituents of orchard sprays in
repelling honeybees, using a Latin square design.

Usage

OrchardSprays

Format

A data frame with 64 observations on 4 variables.

[,1] rowpos numeric Row of the design
[,2] colpos numeric Column of the design
[,3] treatment factor Treatment level
[,4] decrease numeric Response

Details

Individual cells of dry comb were filled with measured amounts of lime sulphur emulsion in sucrose
solution. Seven different concentrations of lime sulphur ranging from a concentration of 1/100 to
1/1,562,500 in successive factors of 1/5 were used as well as a solution containing no lime sulphur.

The responses for the different solutions were obtained by releasing 100 bees into the chamber for
two hours, and then measuring the decrease in volume of the solutions in the various cells.

An 8× 8 Latin square design was used and the treatments were coded as follows:

A highest level of lime sulphur
B next highest level of lime sulphur
.
.
.

G lowest level of lime sulphur
H no lime sulphur

Source

Finney, D. J. (1947) Probit Analysis. Cambridge.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(graphics)
pairs(OrchardSprays, main = "OrchardSprays data")

precip 541

PlantGrowth Results from an Experiment on Plant Growth

Description

Results from an experiment to compare yields (as measured by dried weight of plants) obtained
under a control and two different treatment conditions.

Usage

PlantGrowth

Format

A data frame of 30 cases on 2 variables.

[, 1] weight numeric
[, 2] group factor

The levels of group are ‘ctrl’, ‘trt1’, and ‘trt2’.

Source

Dobson, A. J. (1983) An Introduction to Statistical Modelling. London: Chapman and Hall.

Examples

One factor ANOVA example from Dobson's book, cf. Table 7.4:
require(stats); require(graphics)
boxplot(weight ~ group, data = PlantGrowth, main = "PlantGrowth data",

ylab = "Dried weight of plants", col = "lightgray",
notch = TRUE, varwidth = TRUE)

anova(lm(weight ~ group, data = PlantGrowth))

precip Annual Precipitation in US Cities

Description

The average amount of precipitation (rainfall) in inches for each of 70 United States (and Puerto
Rico) cities.

Usage

precip

Format

A named vector of length 70.

542 presidents

Source

Statistical Abstracts of the United States, 1975.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(graphics)
dotchart(precip[order(precip)], main = "precip data")
title(sub = "Average annual precipitation (in.)")

presidents Quarterly Approval Ratings of US Presidents

Description

The (approximately) quarterly approval rating for the President of the United states from the first
quarter of 1945 to the last quarter of 1974.

Usage

presidents

Format

A time series of 120 values.

Details

The data are actually a fudged version of the approval ratings. See McNeil’s book for details.

Source

The Gallup Organisation.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(stats); require(graphics)
plot(presidents, las = 1, ylab = "Approval rating (%)",

main = "presidents data")

Puromycin 543

pressure Vapor Pressure of Mercury as a Function of Temperature

Description

Data on the relation between temperature in degrees Celsius and vapor pressure of mercury in
millimeters (of mercury).

Usage

pressure

Format

A data frame with 19 observations on 2 variables.

[, 1] temperature numeric temperature (deg C)
[, 2] pressure numeric pressure (mm)

Source

Weast, R. C., ed. (1973) Handbook of Chemistry and Physics. CRC Press.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(graphics)
plot(pressure, xlab = "Temperature (deg C)",

ylab = "Pressure (mm of Hg)",
main = "pressure data: Vapor Pressure of Mercury")

plot(pressure, xlab = "Temperature (deg C)", log = "y",
ylab = "Pressure (mm of Hg)",
main = "pressure data: Vapor Pressure of Mercury")

Puromycin Reaction velocity of an enzymatic reaction

Description

The Puromycin data frame has 23 rows and 3 columns of the reaction velocity versus substrate
concentration in an enzymatic reaction involving untreated cells or cells treated with Puromycin.

Usage

Puromycin

544 Puromycin

Format

This data frame contains the following columns:

conc a numeric vector of substrate concentrations (ppm)

rate a numeric vector of instantaneous reaction rates (counts/min/min)

state a factor with levels treated untreated

Details

Data on the velocity of an enzymatic reaction were obtained by Treloar (1974). The number of
counts per minute of radioactive product from the reaction was measured as a function of substrate
concentration in parts per million (ppm) and from these counts the initial rate (or velocity) of the
reaction was calculated (counts/min/min). The experiment was conducted once with the enzyme
treated with Puromycin, and once with the enzyme untreated.

Source

Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications, Wiley,
Appendix A1.3.

Treloar, M. A. (1974), Effects of Puromycin on Galactosyltransferase in Golgi Membranes, M.Sc.
Thesis, U. of Toronto.

Examples

require(stats); require(graphics)
plot(rate ~ conc, data = Puromycin, las = 1,

xlab = "Substrate concentration (ppm)",
ylab = "Reaction velocity (counts/min/min)",
pch = as.integer(Puromycin$state),
col = as.integer(Puromycin$state),
main = "Puromycin data and fitted Michaelis-Menten curves")

simplest form of fitting the Michaelis-Menten model to these data
fm1 <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin,

subset = state == "treated",
start = c(Vm = 200, K = 0.05), trace = TRUE)

fm2 <- nls(rate ~ Vm * conc/(K + conc), data = Puromycin,
subset = state == "untreated",
start = c(Vm = 160, K = 0.05), trace = TRUE)

summary(fm1)
summary(fm2)
using partial linearity
fm3 <- nls(rate ~ conc/(K + conc), data = Puromycin,

subset = state == "treated", start = c(K = 0.05),
algorithm = "plinear", trace = TRUE)

using a self-starting model
fm4 <- nls(rate ~ SSmicmen(conc, Vm, K), data = Puromycin,

subset = state == "treated")
summary(fm4)
add fitted lines to the plot
conc <- seq(0, 1.2, length.out = 101)
lines(conc, predict(fm1, list(conc = conc)), lty = 1, col = 1)
lines(conc, predict(fm2, list(conc = conc)), lty = 2, col = 2)
legend(0.8, 120, levels(Puromycin$state),

col = 1:2, lty = 1:2, pch = 1:2)

randu 545

quakes Locations of Earthquakes off Fiji

Description

The data set give the locations of 1000 seismic events of MB > 4.0. The events occurred in a cube
near Fiji since 1964.

Usage

quakes

Format

A data frame with 1000 observations on 5 variables.

[,1] lat numeric Latitude of event
[,2] long numeric Longitude
[,3] depth numeric Depth (km)
[,4] mag numeric Richter Magnitude
[,5] stations numeric Number of stations reporting

Details

There are two clear planes of seismic activity. One is a major plate junction; the other is the Tonga
trench off New Zealand. These data constitute a subsample from a larger dataset of containing 5000
observations.

Source

This is one of the Harvard PRIM-H project data sets. They in turn obtained it from Dr. John
Woodhouse, Dept. of Geophysics, Harvard University.

Examples

require(graphics)
pairs(quakes, main = "Fiji Earthquakes, N = 1000", cex.main=1.2, pch=".")

randu Random Numbers from Congruential Generator RANDU

Description

400 triples of successive random numbers were taken from the VAX FORTRAN function RANDU
running under VMS 1.5.

Usage

randu

546 rivers

Format

A data frame with 400 observations on 3 variables named x, y and z which give the first, second
and third random number in the triple.

Details

In three dimensional displays it is evident that the triples fall on 15 parallel planes in 3-space. This
can be shown theoretically to be true for all triples from the RANDU generator.

These particular 400 triples start 5 apart in the sequence, that is they are ((U[5i+1], U[5i+2],
U[5i+3]), i= 0, . . . , 399), and they are rounded to 6 decimal places.

Under VMS versions 2.0 and higher, this problem has been fixed.

Source

David Donoho

Examples

Not run:
We could re-generate the dataset by the following R code
seed <- as.double(1)
RANDU <- function() {

seed <<- ((2^16 + 3) * seed) %% (2^31)
seed/(2^31)

}
for(i in 1:400) {

U <- c(RANDU(), RANDU(), RANDU(), RANDU(), RANDU())
print(round(U[1:3], 6))

}
End(Not run)

rivers Lengths of Major North American Rivers

Description

This data set gives the lengths (in miles) of 141 “major” rivers in North America, as compiled by
the US Geological Survey.

Usage

rivers

Format

A vector containing 141 observations.

Source

World Almanac and Book of Facts, 1975, page 406.

sleep 547

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

rock Measurements on Petroleum Rock Samples

Description

Measurements on 48 rock samples from a petroleum reservoir.

Usage

rock

Format

A data frame with 48 rows and 4 numeric columns.

[,1] area area of pores space, in pixels out of 256 by 256
[,2] peri perimeter in pixels
[,3] shape perimeter/sqrt(area)
[,4] perm permeability in milli-Darcies

Details

Twelve core samples from petroleum reservoirs were sampled by 4 cross-sections. Each core sam-
ple was measured for permeability, and each cross-section has total area of pores, total perimeter of
pores, and shape.

Source

Data from BP Research, image analysis by Ronit Katz, U. Oxford.

sleep Student’s Sleep Data

Description

Data which show the effect of two soporific drugs (increase in hours of sleep compared to control)
on 10 patients.

Usage

sleep

Format

A data frame with 20 observations on 2 variables.

[, 1] extra numeric increase in hours of sleep
[, 2] group factor drug given

548 stackloss

Source

Cushny, A. R. and Peebles, A. R. (1905) The action of optical isomers: II hyoscines. The Journal
of Physiology 32, 501–510.

Student (1908) The probable error of the mean. Biometrika, 6, 20.

References

Scheffé, Henry (1959) The Analysis of Variance. New York, NY: Wiley.

Examples

require(stats)
Student's paired t-test
t.test(extra ~ group, data = sleep, paired = TRUE)

stackloss Brownlee’s Stack Loss Plant Data

Description

Operational data of a plant for the oxidation of ammonia to nitric acid.

Usage

stackloss

stack.x
stack.loss

Format

stackloss is a data frame with 21 observations on 4 variables.

[,1] Air Flow Flow of cooling air
[,2] Water Temp Cooling Water Inlet Temperature
[,3] Acid Conc. Concentration of acid [per 1000, minus 500]
[,4] stack.loss Stack loss

For compatibility with S-PLUS, the data sets stack.x, a matrix with the first three (independent)
variables of the data frame, and stack.loss, the numeric vector giving the fourth (dependent)
variable, are provided as well.

Details

“Obtained from 21 days of operation of a plant for the oxidation of ammonia (NH3) to nitric acid
(HNO3). The nitric oxides produced are absorbed in a countercurrent absorption tower”. (Brownlee,
cited by Dodge, slightly reformatted by MM.)

Air Flow represents the rate of operation of the plant. Water Temp is the temperature of cool-
ing water circulated through coils in the absorption tower. Acid Conc. is the concentration of the
acid circulating, minus 50, times 10: that is, 89 corresponds to 58.9 per cent acid. stack.loss
(the dependent variable) is 10 times the percentage of the ingoing ammonia to the plant that escapes

state 549

from the absorption column unabsorbed; that is, an (inverse) measure of the over-all efficiency of
the plant.

Source

Brownlee, K. A. (1960, 2nd ed. 1965) Statistical Theory and Methodology in Science and Engi-
neering. New York: Wiley. pp. 491–500.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Dodge, Y. (1996) The guinea pig of multiple regression. In: Robust Statistics, Data Analysis, and
Computer Intensive Methods; In Honor of Peter Huber’s 60th Birthday, 1996, Lecture Notes in
Statistics 109, Springer-Verlag, New York.

Examples

require(stats)
summary(lm.stack <- lm(stack.loss ~ stack.x))

state US State Facts and Figures

Description

Data sets related to the 50 states of the United States of America.

Usage

state.abb
state.area
state.center
state.division
state.name
state.region
state.x77

Details

R currently contains the following “state” data sets. Note that all data are arranged according to
alphabetical order of the state names.

state.abb: character vector of 2-letter abbreviations for the state names.

state.area: numeric vector of state areas (in square miles).

state.center: list with components named x and y giving the approximate geographic center
of each state in negative longitude and latitude. Alaska and Hawaii are placed just off the West
Coast.

state.division: factor giving state divisions (New England, Middle Atlantic, South Atlantic,
East South Central, West South Central, East North Central, West North Central, Mountain,
and Pacific).

550 sunspot.month

state.name: character vector giving the full state names.

state.region: factor giving the region (Northeast, South, North Central, West) that each state
belongs to.

state.x77: matrix with 50 rows and 8 columns giving the following statistics in the respective
columns.

Population: population estimate as of July 1, 1975
Income: per capita income (1974)
Illiteracy: illiteracy (1970, percent of population)
Life Exp: life expectancy in years (1969–71)
Murder: murder and non-negligent manslaughter rate per 100,000 population (1976)
HS Grad: percent high-school graduates (1970)
Frost: mean number of days with minimum temperature below freezing (1931–1960) in

capital or large city
Area: land area in square miles

Source

U.S. Department of Commerce, Bureau of the Census (1977) Statistical Abstract of the United
States.

U.S. Department of Commerce, Bureau of the Census (1977) County and City Data Book.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

sunspot.month Monthly Sunspot Data, 1749–1997

Description

Monthly numbers of sunspots.

Usage

sunspot.month

Format

The univariate time series sunspot.year and sunspot.month contain 289 and 2988 obser-
vations, respectively. The objects are of class "ts".

Source

World Data Center-C1 For Sunspot Index Royal Observatory of Belgium, Av. Circulaire, 3, B-1180
BRUSSELS http://www.oma.be/KSB-ORB/SIDC/sidc_txt.html

See Also

sunspot.month is a longer version of sunspots that runs until 1988 rather than 1983.

http://www.oma.be/KSB-ORB/SIDC/sidc_txt.html

sunspot.year 551

Examples

require(stats); require(graphics)
Compare the monthly series
plot (sunspot.month, main = "sunspot.month [stats]", col = 2)
lines(sunspots) # "very barely" see something

Now look at the difference :
all(tsp(sunspots) [c(1,3)] ==

tsp(sunspot.month)[c(1,3)]) ## Start & Periodicity are the same
n1 <- length(sunspots)
table(eq <- sunspots == sunspot.month[1:n1]) #> 132 are different !
i <- which(!eq)
rug(time(eq)[i])
s1 <- sunspots[i] ; s2 <- sunspot.month[i]
cbind(i = i, sunspots = s1, ss.month = s2,

perc.diff = round(100*2*abs(s1-s2)/(s1+s2), 1))

sunspot.year Yearly Sunspot Data, 1700–1988

Description

Yearly numbers of sunspots.

Usage

sunspot.year

Format

The univariate time series sunspot.year contains 289 observations, and is of class "ts".

Source

H. Tong (1996) Non-Linear Time Series. Clarendon Press, Oxford, p. 471.

sunspots Monthly Sunspot Numbers, 1749–1983

Description

Monthly mean relative sunspot numbers from 1749 to 1983. Collected at Swiss Federal Observa-
tory, Zurich until 1960, then Tokyo Astronomical Observatory.

Usage

sunspots

Format

A time series of monthly data from 1749 to 1983.

552 swiss

Source

Andrews, D. F. and Herzberg, A. M. (1985) Data: A Collection of Problems from Many Fields for
the Student and Research Worker. New York: Springer-Verlag.

See Also

sunspot.month has a longer (and a bit different) series.

Examples

require(graphics)
plot(sunspots, main = "sunspots data", xlab = "Year",

ylab = "Monthly sunspot numbers")

swiss Swiss Fertility and Socioeconomic Indicators (1888) Data

Description

Standardized fertility measure and socio-economic indicators for each of 47 French-speaking
provinces of Switzerland at about 1888.

Usage

swiss

Format

A data frame with 47 observations on 6 variables, each of which is in percent, i.e., in [0, 100].

[,1] Fertility Ig , ‘common standardized fertility measure’
[,2] Agriculture % of males involved in agriculture as occupation
[,3] Examination % draftees receiving highest mark on army examination
[,4] Education % education beyond primary school for draftees.
[,5] Catholic % ‘catholic’ (as opposed to ‘protestant’).
[,6] Infant.Mortality live births who live less than 1 year.

All variables but ‘Fertility’ give proportions of the population.

Details

(paraphrasing Mosteller and Tukey):

Switzerland, in 1888, was entering a period known as the demographic transition; i.e., its fertility
was beginning to fall from the high level typical of underdeveloped countries.

The data collected are for 47 French-speaking “provinces” at about 1888.

Here, all variables are scaled to [0, 100], where in the original, all but "Catholic" were scaled to
[0, 1].

Theoph 553

Note

Files for all 182 districts in 1888 and other years have been available at http:
//opr.princeton.edu/archive/eufert/switz.html or http://opr.
princeton.edu/archive/pefp/switz.asp.

They state that variables Examination and Education are averages for 1887, 1888 and 1889.

Source

Project “16P5”, pages 549–551 in

Mosteller, F. and Tukey, J. W. (1977) Data Analysis and Regression: A Second Course in Statistics.
Addison-Wesley, Reading Mass.

indicating their source as “Data used by permission of Franice van de Walle. Office of Population
Research, Princeton University, 1976. Unpublished data assembled under NICHD contract number
No 1-HD-O-2077.”

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

require(stats); require(graphics)
pairs(swiss, panel = panel.smooth, main = "swiss data",

col = 3 + (swiss$Catholic > 50))
summary(lm(Fertility ~ . , data = swiss))

Theoph Pharmacokinetics of theophylline

Description

The Theoph data frame has 132 rows and 5 columns of data from an experiment on the pharma-
cokinetics of theophylline.

Usage

Theoph

Format

This data frame contains the following columns:

Subject an ordered factor with levels 1, . . . , 12 identifying the subject on whom the observation
was made. The ordering is by increasing maximum concentration of theophylline observed.

Wt weight of the subject (kg).

Dose dose of theophylline administered orally to the subject (mg/kg).

Time time since drug administration when the sample was drawn (hr).

conc theophylline concentration in the sample (mg/L).

http://opr.princeton.edu/archive/eufert/switz.html
http://opr.princeton.edu/archive/eufert/switz.html
http://opr.princeton.edu/archive/pefp/switz.asp
http://opr.princeton.edu/archive/pefp/switz.asp

554 Titanic

Details

Boeckmann, Sheiner and Beal (1994) report data from a study by Dr. Robert Upton of the kinetics
of the anti-asthmatic drug theophylline. Twelve subjects were given oral doses of theophylline then
serum concentrations were measured at 11 time points over the next 25 hours.

These data are analyzed in Davidian and Giltinan (1995) and Pinheiro and Bates (2000) using a
two-compartment open pharmacokinetic model, for which a self-starting model function, SSfol,
is available.

Source

Boeckmann, A. J., Sheiner, L. B. and Beal, S. L. (1994), NONMEM Users Guide: Part V, NON-
MEM Project Group, University of California, San Francisco.

Davidian, M. and Giltinan, D. M. (1995) Nonlinear Models for Repeated Measurement Data, Chap-
man & Hall (section 5.5, p. 145 and section 6.6, p. 176)

Pinheiro, J. C. and Bates, D. M. (2000) Mixed-effects Models in S and S-PLUS, Springer (Appendix
A.29)

See Also

SSfol

Examples

require(stats); require(graphics)
coplot(conc ~ Time | Subject, data = Theoph, show.given = FALSE)
Theoph.4 <- subset(Theoph, Subject == 4)
fm1 <- nls(conc ~ SSfol(Dose, Time, lKe, lKa, lCl),

data = Theoph.4)
summary(fm1)
plot(conc ~ Time, data = Theoph.4,

xlab = "Time since drug administration (hr)",
ylab = "Theophylline concentration (mg/L)",
main = "Observed concentrations and fitted model",
sub = "Theophylline data - Subject 4 only",
las = 1, col = 4)

xvals <- seq(0, par("usr")[2], length.out = 55)
lines(xvals, predict(fm1, newdata = list(Time = xvals)),

col = 4)

Titanic Survival of passengers on the Titanic

Description

This data set provides information on the fate of passengers on the fatal maiden voyage of the ocean
liner ‘Titanic’, summarized according to economic status (class), sex, age and survival.

Usage

Titanic

ToothGrowth 555

Format

A 4-dimensional array resulting from cross-tabulating 2201 observations on 4 variables. The vari-
ables and their levels are as follows:

No Name Levels
1 Class 1st, 2nd, 3rd, Crew
2 Sex Male, Female
3 Age Child, Adult
4 Survived No, Yes

Details

The sinking of the Titanic is a famous event, and new books are still being published about it. Many
well-known facts—from the proportions of first-class passengers to the ‘women and children first’
policy, and the fact that that policy was not entirely successful in saving the women and children in
the third class—are reflected in the survival rates for various classes of passenger.

These data were originally collected by the British Board of Trade in their investigation of the
sinking. Note that there is not complete agreement among primary sources as to the exact numbers
on board, rescued, or lost.

Due in particular to the very successful film ‘Titanic’, the last years saw a rise in public interest in
the Titanic. Very detailed data about the passengers is now available on the Internet, at sites such as
Encyclopedia Titanica (http://www.rmplc.co.uk/eduweb/sites/phind).

Source

Dawson, Robert J. MacG. (1995), The ‘Unusual Episode’ Data Revisited. Journal of Statis-
tics Education, 3. http://www.amstat.org/publications/jse/v3n3/datasets.
dawson.html

The source provides a data set recording class, sex, age, and survival status for each person on board
of the Titanic, and is based on data originally collected by the British Board of Trade and reprinted
in:

British Board of Trade (1990), Report on the Loss of the ‘Titanic’ (S.S.). British Board of Trade
Inquiry Report (reprint). Gloucester, UK: Allan Sutton Publishing.

Examples

require(graphics)
mosaicplot(Titanic, main = "Survival on the Titanic")
Higher survival rates in children?
apply(Titanic, c(3, 4), sum)
Higher survival rates in females?
apply(Titanic, c(2, 4), sum)
Use loglm() in package 'MASS' for further analysis ...

ToothGrowth The Effect of Vitamin C on Tooth Growth in Guinea Pigs

http://www.rmplc.co.uk/eduweb/sites/phind
http://www.amstat.org/publications/jse/v3n3/datasets.dawson.html
http://www.amstat.org/publications/jse/v3n3/datasets.dawson.html

556 treering

Description

The response is the length of odontoblasts (teeth) in each of 10 guinea pigs at each of three dose
levels of Vitamin C (0.5, 1, and 2 mg) with each of two delivery methods (orange juice or ascorbic
acid).

Usage

ToothGrowth

Format

A data frame with 60 observations on 3 variables.

[,1] len numeric Tooth length
[,2] supp factor Supplement type (VC or OJ).
[,3] dose numeric Dose in milligrams.

Source

C. I. Bliss (1952) The Statistics of Bioassay. Academic Press.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(graphics)
coplot(len ~ dose | supp, data = ToothGrowth, panel = panel.smooth,

xlab = "ToothGrowth data: length vs dose, given type of supplement")

treering Yearly Treering Data, -6000–1979

Description

Contains normalized tree-ring widths in dimensionless units.

Usage

treering

Format

A univariate time series with 7981 observations. The object is of class "ts".

Each tree ring corresponds to one year.

Details

The data were recorded by Donald A. Graybill, 1980, from Gt Basin Bristlecone Pine 2805M,
3726-11810 in Methuselah Walk, California.

trees 557

Source

Time Series Data Library: http://www-personal.buseco.monash.edu.au/
~hyndman/TSDL/, series ‘CA535.DAT’

References

For background on Bristlecone pines and Methuselah Walk, see http://www.sonic.net/
bristlecone/; for some photos see http://www.ltrr.arizona.edu/~hallman/
sitephotos/meth.html

trees Girth, Height and Volume for Black Cherry Trees

Description

This data set provides measurements of the girth, height and volume of timber in 31 felled black
cherry trees. Note that girth is the diameter of the tree (in inches) measured at 4 ft 6 in above the
ground.

Usage

trees

Format

A data frame with 31 observations on 3 variables.

[,1] Girth numeric Tree diameter in inches
[,2] Height numeric Height in ft
[,3] Volume numeric Volume of timber in cubic ft

Source

Ryan, T. A., Joiner, B. L. and Ryan, B. F. (1976) The Minitab Student Handbook. Duxbury Press.

References

Atkinson, A. C. (1985) Plots, Transformations and Regression. Oxford University Press.

Examples

require(stats); require(graphics)
pairs(trees, panel = panel.smooth, main = "trees data")
plot(Volume ~ Girth, data = trees, log = "xy")
coplot(log(Volume) ~ log(Girth) | Height, data = trees,

panel = panel.smooth)
summary(fm1 <- lm(log(Volume) ~ log(Girth), data = trees))
summary(fm2 <- update(fm1, ~ . + log(Height), data = trees))
step(fm2)
i.e., Volume ~= c * Height * Girth^2 seems reasonable

http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
http://www-personal.buseco.monash.edu.au/~hyndman/TSDL/
http://www.sonic.net/bristlecone/
http://www.sonic.net/bristlecone/
http://www.ltrr.arizona.edu/~hallman/sitephotos/meth.html
http://www.ltrr.arizona.edu/~hallman/sitephotos/meth.html

558 UCBAdmissions

UCBAdmissions Student Admissions at UC Berkeley

Description

Aggregate data on applicants to graduate school at Berkeley for the six largest departments in 1973
classified by admission and sex.

Usage

UCBAdmissions

Format

A 3-dimensional array resulting from cross-tabulating 4526 observations on 3 variables. The vari-
ables and their levels are as follows:

No Name Levels
1 Admit Admitted, Rejected
2 Gender Male, Female
3 Dept A, B, C, D, E, F

Details

This data set is frequently used for illustrating Simpson’s paradox, see Bickel et al. (1975). At
issue is whether the data show evidence of sex bias in admission practices. There were 2691 male
applicants, of whom 1198 (44.5%) were admitted, compared with 1835 female applicants of whom
557 (30.4%) were admitted. This gives a sample odds ratio of 1.83, indicating that males were
almost twice as likely to be admitted. In fact, graphical methods (as in the example below) or
log-linear modelling show that the apparent association between admission and sex stems from
differences in the tendency of males and females to apply to the individual departments (females
used to apply more to departments with higher rejection rates).

This data set can also be used for illustrating methods for graphical display of categorical data, such
as the general-purpose mosaic plot or the ourfold display for 2-by-2-by-k tables. See the home
page of Michael Friendly (http://www.math.yorku.ca/SCS/friendly.html) for fur-
ther information.

References

Bickel, P. J., Hammel, E. A., and O’Connell, J. W. (1975) Sex bias in graduate admissions: Data
from Berkeley. Science, 187, 398–403.

Examples

require(graphics)
Data aggregated over departments
apply(UCBAdmissions, c(1, 2), sum)
mosaicplot(apply(UCBAdmissions, c(1, 2), sum),

main = "Student admissions at UC Berkeley")
Data for individual departments
opar <- par(mfrow = c(2, 3), oma = c(0, 0, 2, 0))
for(i in 1:6)

http://www.math.yorku.ca/SCS/friendly.html

UKDriverDeaths 559

mosaicplot(UCBAdmissions[,,i],
xlab = "Admit", ylab = "Sex",
main = paste("Department", LETTERS[i]))

mtext(expression(bold("Student admissions at UC Berkeley")),
outer = TRUE, cex = 1.5)

par(opar)

UKDriverDeaths Road Casualties in Great Britain 1969–84

Description

UKDriverDeaths is a time series giving the monthly totals of car drivers in Great Britain killed
or seriously injured Jan 1969 to Dec 1984. Compulsory wearing of seat belts was introduced on 31
Jan 1983.

Seatbelts is more information on the same problem.

Usage

UKDriverDeaths
Seatbelts

Format

Seatbelts is a multiple time series, with columns

DriversKilled car drivers killed.

drivers same as UKDriverDeaths.

front front-seat passengers killed or seriously injured.

rear rear-seat passengers killed or seriously injured.

kms distance driven.

PetrolPrice petrol price.

VanKilled number of van (‘light goods vehicle’) drivers.

law 0/1: was the law in effect that month?

Source

Harvey, A.C. (1989) Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge
University Press, pp. 519–523.

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford Uni-
versity Press. http://www.ssfpack.com/dkbook/

References

Harvey, A. C. and Durbin, J. (1986) The effects of seat belt legislation on British road casualties:
A case study in structural time series modelling. Journal of the Royal Statistical Society series B,
149, 187–227.

http://www.ssfpack.com/dkbook/

560 UKgas

Examples

require(stats); require(graphics)
work with pre-seatbelt period to identify a model, use logs
work <- window(log10(UKDriverDeaths), end = 1982+11/12)
par(mfrow = c(3,1))
plot(work); acf(work); pacf(work)
par(mfrow = c(1,1))
(fit <- arima(work, c(1,0,0), seasonal = list(order= c(1,0,0))))
z <- predict(fit, n.ahead = 24)
ts.plot(log10(UKDriverDeaths), z$pred, z$pred+2*zse, zpred-2*z$se,

lty = c(1,3,2,2), col = c("black", "red", "blue", "blue"))

now see the effect of the explanatory variables
X <- Seatbelts[, c("kms", "PetrolPrice", "law")]
X[, 1] <- log10(X[, 1]) - 4
arima(log10(Seatbelts[, "drivers"]), c(1,0,0),

seasonal = list(order= c(1,0,0)), xreg = X)

UKgas UK Quarterly Gas Consumption

Description

Quarterly UK gas consumption from 1960Q1 to 1986Q4, in millions of therms.

Usage

UKgas

Format

A quarterly time series of length 108.

Source

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford Uni-
versity Press. http://www.ssfpack.com/dkbook/

Examples

maybe str(UKgas) ; plot(UKgas) ...

http://www.ssfpack.com/dkbook/

UKLungDeaths 561

UKLungDeaths Monthly Deaths from Lung Diseases in the UK

Description

Three time series giving the monthly deaths from bronchitis, emphysema and asthma in the UK,
1974–1979, both sexes (ldeaths), males (mdeaths) and females (fdeaths).

Usage

ldeaths
fdeaths
mdeaths

Source

P. J. Diggle (1990) Time Series: A Biostatistical Introduction. Oxford, table A.3

Examples

require(stats); require(graphics) # for time
plot(ldeaths)
plot(mdeaths, fdeaths)
Better labels:
yr <- floor(tt <- time(mdeaths))
plot(mdeaths, fdeaths,

xy.labels = paste(month.abb[12*(tt - yr)], yr-1900, sep="'"))

USAccDeaths Accidental Deaths in the US 1973–1978

Description

A time series giving the monthly totals of accidental deaths in the USA. The values for the first six
months of 1979 are 7798 7406 8363 8460 9217 9316.

Usage

USAccDeaths

Source

P. J. Brockwell and R. A. Davis (1991) Time Series: Theory and Methods. Springer, New York.

562 USJudgeRatings

USArrests Violent Crime Rates by US State

Description

This data set contains statistics, in arrests per 100,000 residents for assault, murder, and rape in each
of the 50 US states in 1973. Also given is the percent of the population living in urban areas.

Usage

USArrests

Format

A data frame with 50 observations on 4 variables.

[,1] Murder numeric Murder arrests (per 100,000)
[,2] Assault numeric Assault arrests (per 100,000)
[,3] UrbanPop numeric Percent urban population
[,4] Rape numeric Rape arrests (per 100,000)

Source

World Almanac and Book of facts 1975. (Crime rates).

Statistical Abstracts of the United States 1975. (Urban rates).

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

See Also

The state data sets.

Examples

require(graphics)
pairs(USArrests, panel = panel.smooth, main = "USArrests data")

USJudgeRatings Lawyers’ Ratings of State Judges in the US Superior Court

Description

Lawyers’ ratings of state judges in the US Superior Court.

Usage

USJudgeRatings

USPersonalExpenditure 563

Format

A data frame containing 43 observations on 12 numeric variables.

[,1] CONT Number of contacts of lawyer with judge.
[,2] INTG Judicial integrity.
[,3] DMNR Demeanor.
[,4] DILG Diligence.
[,5] CFMG Case flow managing.
[,6] DECI Prompt decisions.
[,7] PREP Preparation for trial.
[,8] FAMI Familiarity with law.
[,9] ORAL Sound oral rulings.

[,10] WRIT Sound written rulings.
[,11] PHYS Physical ability.
[,12] RTEN Worthy of retention.

Source

New Haven Register, 14 January, 1977 (from John Hartigan).

Examples

require(graphics)
pairs(USJudgeRatings, main = "USJudgeRatings data")

USPersonalExpenditure
Personal Expenditure Data

Description

This data set consists of United States personal expenditures (in billions of dollars) in the categories;
food and tobacco, household operation, medical and health, personal care, and private education for
the years 1940, 1945, 1950, 1955 and 1960.

Usage

USPersonalExpenditure

Format

A matrix with 5 rows and 5 columns.

Source

The World Almanac and Book of Facts, 1962, page 756.

References

Tukey, J. W. (1977) Exploratory Data Analysis. Addison-Wesley.

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

564 VADeaths

Examples

require(stats) # for medpolish
USPersonalExpenditure
medpolish(log10(USPersonalExpenditure))

uspop Populations Recorded by the US Census

Description

This data set gives the population of the United States (in millions) as recorded by the decennial
census for the period 1790–1970.

Usage

uspop

Format

A time series of 19 values.

Source

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(graphics)
plot(uspop, log = "y", main = "uspop data", xlab = "Year",

ylab = "U.S. Population (millions)")

VADeaths Death Rates in Virginia (1940)

Description

Death rates per 1000 in Virginia in 1940.

Usage

VADeaths

Format

A matrix with 5 rows and 4 columns.

Details

The death rates are measured per 1000 population per year. They are cross-classified by age group
(rows) and population group (columns). The age groups are: 50–54, 55–59, 60–64, 65–69, 70–74
and the population groups are Rural/Male, Rural/Female, Urban/Male and Urban/Female.

This provides a rather nice 3-way analysis of variance example.

volcano 565

Source

Molyneaux, L., Gilliam, S. K., and Florant, L. C.(1947) Differences in Virginia death rates by color,
sex, age, and rural or urban residence. American Sociological Review, 12, 525–535.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

require(stats); require(graphics)
n <- length(dr <- c(VADeaths))
nam <- names(VADeaths)
d.VAD <- data.frame(
Drate = dr,
age = rep(ordered(rownames(VADeaths)),length.out=n),
gender= gl(2,5,n, labels= c("M", "F")),
site = gl(2,10, labels= c("rural", "urban")))

coplot(Drate ~ as.numeric(age) | gender * site, data = d.VAD,
panel = panel.smooth, xlab = "VADeaths data - Given: gender")

summary(aov.VAD <- aov(Drate ~ .^2, data = d.VAD))
opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(aov.VAD)
par(opar)

volcano Topographic Information on Auckland’s Maunga Whau Volcano

Description

Maunga Whau (Mt Eden) is one of about 50 volcanos in the Auckland volcanic field. This data set
gives topographic information for Maunga Whau on a 10m by 10m grid.

Usage

volcano

Format

A matrix with 87 rows and 61 columns, rows corresponding to grid lines running east to west and
columns to grid lines running south to north.

Source

Digitized from a topographic map by Ross Ihaka. These data should not be regarded as accurate.

See Also

filled.contour for a nice plot.

566 warpbreaks

Examples

require(grDevices); require(graphics)
filled.contour(volcano, color.palette = terrain.colors, asp = 1)
title(main = "volcano data: filled contour map")

warpbreaks The Number of Breaks in Yarn during Weaving

Description

This data set gives the number of warp breaks per loom, where a loom corresponds to a fixed length
of yarn.

Usage

warpbreaks

Format

A data frame with 54 observations on 3 variables.

[,1] breaks numeric The number of breaks
[,2] wool factor The type of wool (A or B)
[,3] tension factor The level of tension (L, M, H)

There are measurements on 9 looms for each of the six types of warp (AL, AM, AH, BL, BM, BH).

Source

Tippett, L. H. C. (1950) Technological Applications of Statistics. Wiley. Page 106.

References

Tukey, J. W. (1977) Exploratory Data Analysis. Addison-Wesley.

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

See Also

xtabs for ways to display these data as a table.

Examples

require(stats); require(graphics)
summary(warpbreaks)
opar <- par(mfrow = c(1,2), oma = c(0, 0, 1.1, 0))
plot(breaks ~ tension, data = warpbreaks, col = "lightgray",

varwidth = TRUE, subset = wool == "A", main = "Wool A")
plot(breaks ~ tension, data = warpbreaks, col = "lightgray",

varwidth = TRUE, subset = wool == "B", main = "Wool B")
mtext("warpbreaks data", side = 3, outer = TRUE)
par(opar)
summary(fm1 <- lm(breaks ~ wool*tension, data = warpbreaks))

WorldPhones 567

anova(fm1)

women Average Heights and Weights for American Women

Description

This data set gives the average heights and weights for American women aged 30–39.

Usage

women

Format

A data frame with 15 observations on 2 variables.

[,1] height numeric Height (in)
[,2] weight numeric Weight (lbs)

Details

The data set appears to have been taken from the American Society of Actuaries Build and Blood
Pressure Study for some (unknown to us) earlier year.

The World Almanac notes: “The figures represent weights in ordinary indoor clothing and shoes,
and heights with shoes”.

Source

The World Almanac and Book of Facts, 1975.

References

McNeil, D. R. (1977) Interactive Data Analysis. Wiley.

Examples

require(graphics)
plot(women, xlab = "Height (in)", ylab = "Weight (lb)",

main = "women data: American women aged 30-39")

WorldPhones The World’s Telephones

Description

The number of telephones in various regions of the world (in thousands).

Usage

phones

568 WWWusage

Format

A matrix with 7 rows and 8 columns. The columns of the matrix give the figures for a given region,
and the rows the figures for a year.

The regions are: North America, Europe, Asia, South America, Oceania, Africa, Central America.

The years are: 1951, 1956, 1957, 1958, 1959, 1960, 1961.

Source

AT&T (1961) The World’s Telephones.

References

McNeil, D. R. (1977) Interactive Data Analysis. New York: Wiley.

Examples

require(graphics)
matplot(rownames(WorldPhones), WorldPhones, type = "b", log = "y",

xlab = "Year", ylab = "Number of telephones (1000's)")
legend(1951.5, 80000, colnames(WorldPhones), col = 1:6, lty = 1:5,

pch = rep(21, 7))
title(main = "World phones data: log scale for response")

WWWusage Internet Usage per Minute

Description

A time series of the numbers of users connected to the Internet through a server every minute.

Usage

WWWusage

Format

A time series of length 100.

Source

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford Uni-
versity Press. http://www.ssfpack.com/dkbook/

References

Makridakis, S., Wheelwright, S. C. and Hyndman, R. J. (1998) Forecasting: Methods and Applica-
tions. Wiley.

http://www.ssfpack.com/dkbook/

WWWusage 569

Examples

require(graphics)
work <- diff(WWWusage)
par(mfrow = c(2,1)); plot(WWWusage); plot(work)
Not run:
require(stats)
aics <- matrix(, 6, 6, dimnames=list(p=0:5, q=0:5))
for(q in 1:5) aics[1, 1+q] <- arima(WWWusage, c(0,1,q),

optim.control = list(maxit = 500))$aic
for(p in 1:5)

for(q in 0:5) aics[1+p, 1+q] <- arima(WWWusage, c(p,1,q),
optim.control = list(maxit = 500))$aic

round(aics - min(aics, na.rm=TRUE), 2)
End(Not run)

570 WWWusage

Chapter 3

The grDevices package

grDevices-package The R Graphics Devices and Support for Colours and Fonts

Description

Graphics devices and support for base and grid graphics

Details

This package contains functions which support both base and grid graphics.

For a complete list of functions, use library(help="grDevices").

Author(s)

R Development Core Team and contributors worldwide

Maintainer: R Core Team 〈R-core@r-project.org〉

as.graphicsAnnot Coerce an Object for Graphics Annotation

Description

Coerce an R object into a form suitable for graphics annotation.

Usage

as.graphicsAnnot(x)

Arguments

x an R object

571

572 boxplot.stats

Details

Expressions, calls and names (as used by plotmath) are passed through unchanged. All other objects
with an S3 class (as determined by is.object) are coerced by as.character to character
vectors.

All the graphics and grid functions which use this coerce calls and names to expressions internally.

Value

A language object or a character vector.

boxplot.stats Box Plot Statistics

Description

This function is typically called by another function to gather the statistics necessary for producing
box plots, but may be invoked separately.

Usage

boxplot.stats(x, coef = 1.5, do.conf = TRUE, do.out = TRUE)

Arguments

x a numeric vector for which the boxplot will be constructed (NAs and NaNs are
allowed and omitted).

coef this determines how far the plot ‘whiskers’ extend out from the box. If coef is
positive, the whiskers extend to the most extreme data point which is no more
than coef times the length of the box away from the box. A value of zero
causes the whiskers to extend to the data extremes (and no outliers be returned).

do.conf,do.out
logicals; if FALSE, the conf or out component respectively will be empty in
the result.

Details

The two ‘hinges’ are versions of the first and third quartile, i.e., close to quantile(x,
c(1,3)/4). The hinges equal the quartiles for odd n (where n <- length(x)) and differ
for even n. Whereas the quartiles only equal observations for n %% 4 == 1 (n ≡ 1 mod 4),
the hinges do so additionally for n %% 4 == 2 (n ≡ 2 mod 4), and are in the middle of two
observations otherwise.

The notches (if requested) extend to +/-1.58 IQR/sqrt(n). This seems to be based on the
same calculations as the formula with 1.57 in Chambers et al. (1983, p. 62), given in McGill et al.
(1978, p. 16). They are based on asymptotic normality of the median and roughly equal sample
sizes for the two medians being compared, and are said to be rather insensitive to the underlying
distributions of the samples. The idea appears to be to give roughly a 95% confidence interval for
the difference in two medians.

boxplot.stats 573

Value

List with named components as follows:

stats a vector of length 5, containing the extreme of the lower whisker, the lower
‘hinge’, the median, the upper ‘hinge’ and the extreme of the upper whisker.

n the number of non-NA observations in the sample.

conf the lower and upper extremes of the ‘notch’ (if(do.conf)). See the details.

out the values of any data points which lie beyond the extremes of the whiskers
(if(do.out)).

Note that $stats and $conf are sorted in increasing order, unlike S, and that $n and $out
include any +- Inf values.

References

Tukey, J. W. (1977) Exploratory Data Analysis. Section 2C.

McGill, R., Tukey, J. W. and Larsen, W. A. (1978) Variations of box plots. The American Statisti-
cian 32, 12–16.

Velleman, P. F. and Hoaglin, D. C. (1981) Applications, Basics and Computing of Exploratory Data
Analysis. Duxbury Press.

Emerson, J. D and Strenio, J. (1983). Boxplots and batch comparison. Chapter 3 of Understanding
Robust and Exploratory Data Analysis, eds. D. C. Hoaglin, F. Mosteller and J. W. Tukey. Wiley.

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods for Data
Analysis. Wadsworth & Brooks/Cole.

See Also

fivenum, boxplot, bxp.

Examples

require(stats)
x <- c(1:100, 1000)
(b1 <- boxplot.stats(x))
(b2 <- boxplot.stats(x, do.conf=FALSE, do.out=FALSE))
stopifnot(b1 $ stats == b2 $ stats) # do.out=F is still robust
boxplot.stats(x, coef = 3, do.conf=FALSE)
no outlier treatment:
boxplot.stats(x, coef = 0)

boxplot.stats(c(x, NA)) # slight change : n is 101
(r <- boxplot.stats(c(x, -1:1/0)))
stopifnot(r$out == c(1000, -Inf, Inf))

574 cairo

cairo Cairo-based SVG, PDF and PostScript Graphics Devices

Description

Graphics devices for SVG, PDF and PostScript graphics files.

Usage

svg(filename = if(onefile) "Rplots.svg" else "Rplot%03d.svg",
width = 7, height = 7, pointsize = 12,
onefile = FALSE, bg = "white", antialias)

cairo_pdf(filename = if(onefile) "Rplots.pdf" else "Rplot%03d.pdf",
width = 7, height = 7, pointsize = 12,
onefile = FALSE, bg = "white", antialias)

cairo_ps(filename = if(onefile) "Rplots.ps" else "Rplot%03d.ps",
width = 7, height = 7, pointsize = 12,
onefile = FALSE, bg = "white", antialias)

Arguments

filename the name of the output file. The page number is substituted if a C integer format
is included in the character string, as in the default. (The result must be less than
PATH_MAX characters long, and may be truncated if not. See postscript for
further details.) Tilde expansion is performed where supported by the platform.

width the width of the device in inches.

height the height of the device in inches.

pointsize the default pointsize of plotted text (in big points).

onefile should all plots appear in one file or in separate files?

bg the initial background colour: can be overridden by setting par("bg").

antialias the type of anti-aliasing (if any) to be used. See X11.

Details

SVG (Scalar Vector Graphics) is a W3C standard for vector graphics. See http://www.w3.
org/Graphics/SVG/. The output is SVG version 1.1 for onefile = FALSE (the default),
otherwise SVG 1.2. (Very few SVG viewers are capable of displaying multi-page SVG files.)

Note that unlike postscript and pdf, cairo_pdf and cairo_ps sometimes record bitmaps
and not vector graphics: a resolution of 72dpi is used. On the other hand, they can (on suitable
platforms) include a much wider range of UTF-8 glyphs, and embed the fonts used. They are
somewhat experimental.

R can be compiled without support for any of these devices: this will be reported if you attempt to
use them on a system where they are not supported. They all require cairo version 1.2 or later.

If you plot more than one page on one of these devices and do not include something like %d for
the sequence number in file (or set onefile=TRUE) the file will contain the last page plotted.

The cairo_ps output is not yet encapsulated (that is coming in cairo 1.6).

http://www.w3.org/Graphics/SVG/
http://www.w3.org/Graphics/SVG/

check.options 575

There is full support of transparency, but using this is one of the things liable to trigger bitmap
output (and will always do so for cairo_ps).

Value

A plot device is opened: nothing is returned to the R interpreter.

Conventions

This section describes the implementation of the conventions for graphics devices set out in the “R
Internals Manual”.

• The default device size is in pixels (svg) or inches.

• Font sizes are in big points.

• The default font family is Helvetica.

• Line widths are multiples of 1/96 inch.

• Circle radii have a minumum of 1/72 inch.

• Colours are interpreted by the viewing application.

See Also

Devices, dev.print, pdf, postscript

capabilities to see if cairo is supported.

check.options Set Options with Consistency Checks

Description

Utility function for setting options with some consistency checks. The attributes of the new
settings in new are checked for consistency with the model (often default) list in name.opt.

Usage

check.options(new, name.opt, reset = FALSE, assign.opt = FALSE,
envir = .GlobalEnv,
check.attributes = c("mode", "length"),
override.check = FALSE)

Arguments

new a named list

name.opt character with the name of R object containing the default list.

reset logical; if TRUE, reset the options from name.opt. If there is more than one
R object with name name.opt, remove the first one in the search() path.

assign.opt logical; if TRUE, assign the . . .

envir the environment used for get and assign.
check.attributes

character containing the attributes which check.options should check.

576 chull

override.check
logical vector of length length(new) (or 1 which entails recycling). For
those new[i] where override.check[i] == TRUE, the checks are
overridden and the changes made anyway.

Value

A list of components with the same names as the one called name.opt. The values of the compo-
nents are changed from the new list, as long as these pass the checks (when these are not overridden
according to override.check).

Note

Option "names" is exempt from all the checks or warnings, as in the application it can be NULL
or a variable-length character vector.

Author(s)

Martin Maechler

See Also

ps.options and pdf.options, which use check.options.

Examples

(L1 <- list(a=1:3, b=pi, ch="CH"))
check.options(list(a=0:2), name.opt = "L1")
check.options(NULL, reset = TRUE, name.opt = "L1")

chull Compute Convex Hull of a Set of Points

Description

Computes the subset of points which lie on the convex hull of the set of points specified.

Usage

chull(x, y = NULL)

Arguments

x, y coordinate vectors of points. This can be specified as two vectors x and y, a
2-column matrix x, a list x with two components, etc, see xy.coords.

Details

xy.coords is used to interpret the specification of the points. The algorithm is that given by Eddy
(1977).

‘Peeling’ as used in the S function chull can be implemented by calling chull recursively.

cm 577

Value

An integer vector giving the indices of the points lying on the convex hull, in clockwise order.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Eddy, W. F. (1977) A new convex hull algorithm for planar sets. ACM Transactions on Mathemati-
cal Software, 3, 398–403.

Eddy, W. F. (1977) Algorithm 523. CONVEX, A new convex hull algorithm for planar sets[Z].
ACM Transactions on Mathematical Software, 3, 411–412.

See Also

xy.coords,polygon

Examples

require(stats)
X <- matrix(rnorm(2000), ncol = 2)
chull(X)
Not run:
Example usage from graphics package
plot(X, cex = 0.5)
hpts <- chull(X)
hpts <- c(hpts, hpts[1])
lines(X[hpts,])

End(Not run)

cm Unit Transformation

Description

Translates from inches to cm (centimeters).

Usage

cm(x)

Arguments

x numeric vector

Examples

cm(1)# = 2.54

Translate *from* cm *to* inches:

10 / cm(1) # -> 10cm are 3.937 inches

578 col2rgb

col2rgb Color to RGB Conversion

Description

R color to RGB (red/green/blue) conversion.

Usage

col2rgb(col, alpha = FALSE)

Arguments

col vector of any of the three kind of R colors, i.e., either a color name (an element
of colors()), a hexadecimal string of the form "#rrggbb", or an integer i
meaning palette()[i]. Non-string values are coerced to integer.

alpha logical value indicating whether alpha channel values should be returned.

Details

For integer colors, 0 is shorthand for the current par("bg") (and hence is only relevant to base
graphics), and NA means transparent.

For character colors, "NA" is equivalent to NA above.

Value

an integer matrix with three or four rows and number of columns the length (and names if any) as
col.

Author(s)

Martin Maechler

See Also

rgb, colors, palette, etc.

Examples

col2rgb("peachpuff")
col2rgb(c(blu = "royalblue", reddish = "tomato")) # names kept

col2rgb(1:8)# the ones from the palette() :

col2rgb(paste("gold", 1:4, sep=""))

col2rgb("#08a0ff")
all three kind of colors mixed :
col2rgb(c(red="red", palette= 1:3, hex="#abcdef"))

##-- NON-INTRODUCTORY examples --

grC <- col2rgb(paste("gray",0:100,sep=""))

colorRamp 579

table(print(diff(grC["red",])))# '2' or '3': almost equidistant
The 'named' grays are in between {"slate gray" is not gray, strictly}
col2rgb(c(g66="gray66", darkg= "dark gray", g67="gray67",

g74="gray74", gray = "gray", g75="gray75",
g82="gray82", light="light gray", g83="gray83"))

crgb <- col2rgb(cc <- colors())
colnames(crgb) <- cc
t(crgb)## The whole table

ccodes <- c(256^(2:0) %*% crgb)## = internal codes
How many names are 'aliases' of each other:
table(tcc <- table(ccodes))
length(uc <- unique(sort(ccodes))) # 502
All the multiply named colors:
mult <- uc[tcc >= 2]
cl <- lapply(mult, function(m) cc[ccodes == m])
names(cl) <- apply(col2rgb(sapply(cl, function(x)x[1])),

2, function(n)paste(n, collapse=","))
utils::str(cl)
Not run:
if(require(xgobi)) { ## Look at the color cube dynamically :
tc <- t(crgb[, !duplicated(ccodes)])
table(is.gray <- tc[,1] == tc[,2] & tc[,2] == tc[,3])# (397, 105)
xgobi(tc, color = c("gold", "gray")[1 + is.gray])

}
End(Not run)

colorRamp Color interpolation

Description

These functions return functions that interpolate a set of given colors to create new color palettes
(like topo.colors) and color ramps, functions that map the interval [0, 1] to colors (like grey).

Usage

colorRamp(colors, bias = 1, space = c("rgb", "Lab"),
interpolate = c("linear", "spline"))

colorRampPalette(colors, ...)

Arguments

colors Colors to interpolate

bias A positive number. Higher values give more widely spaced colors at the high
end.

space Interpolation in RGB or CIE Lab color spaces

interpolate Use spline or linear interpolation.

... arguments to pass to colorRamp.

580 colorRamp

Details

The CIE Lab color space is approximately perceptually uniform, and so gives smoother and more
uniform color ramps. On the other hand, palettes that vary from one hue to another via white may
have a more symmetrical appearance in RGB space.

The conversion formulas in this function do not appear to be completely accurate and the color ramp
may not reach the extreme values in Lab space. Future changes in the R color model may change
the colors produced with space="Lab".

Value

colorRamp returns a function that maps values between 0 and 1 to colors. colorRampPalette
returns a function that takes an integer argument and returns that number of colors interpolating the
given sequence (similar to heat.colors or terrain.colors.

See Also

Good starting points for interpolation are the "sequential" and "diverging" ColorBrewer palettes in
the RColorBrewer package

Examples

require(graphics)

Here space="rgb" gives palettes that vary only in saturation,
as intended.
With space="Lab" the steps are more uniform, but the hues
are slightly purple.
filled.contour(volcano,

color.palette =
colorRampPalette(c("red", "white", "blue")),

asp = 1)
filled.contour(volcano,

color.palette =
colorRampPalette(c("red", "white", "blue"),

space = "Lab"),
asp = 1)

Interpolating a 'sequential' ColorBrewer palette
YlOrBr <- c("#FFFFD4", "#FED98E", "#FE9929", "#D95F0E", "#993404")
filled.contour(volcano,

color.palette = colorRampPalette(YlOrBr, space = "Lab"),
asp = 1)

filled.contour(volcano,
color.palette = colorRampPalette(YlOrBr, space = "Lab",

bias = 0.5),
asp = 1)

'jet.colors' is "as in Matlab"
(and hurting the eyes by over-saturation)
jet.colors <-
colorRampPalette(c("#00007F", "blue", "#007FFF", "cyan",

"#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000"))
filled.contour(volcano, color = jet.colors, asp = 1)

space="Lab" helps when colors don't form a natural sequence

colors 581

m <- outer(1:20,1:20,function(x,y) sin(sqrt(x*y)/3))
rgb.palette <- colorRampPalette(c("red", "orange", "blue"),

space = "rgb")
Lab.palette <- colorRampPalette(c("red", "orange", "blue"),

space = "Lab")
filled.contour(m, col = rgb.palette(20))
filled.contour(m, col = Lab.palette(20))

colors Color Names

Description

Returns the built-in color names which R knows about.

Usage

colors()
colours()

Details

These color names can be used with a col= specification in graphics functions.

An even wider variety of colors can be created with primitives rgb and hsv or the derived
rainbow, heat.colors, etc.

Value

A character vector containing all the built-in color names.

See Also

palette for setting the ‘palette’ of colors for par(col=<num>); rgb, hsv, hcl, gray;
rainbow for a nice example; and heat.colors, topo.colors for images.

col2rgb for translating to RGB numbers and extended examples.

Examples

cl <- colors()
length(cl); cl[1:20]

582 contourLines

contourLines Calculate Contour Lines

Description

Calculate contour lines for a given set of data.

Usage

contourLines(x = seq(0, 1, length.out = nrow(z)),
y = seq(0, 1, length.out = ncol(z)),
z, nlevels = 10,
levels = pretty(range(z, na.rm=TRUE), nlevels))

Arguments

x,y locations of grid lines at which the values in z are measured. These must be in
ascending order. By default, equally spaced values from 0 to 1 are used. If x is
a list, its components x$x and x$y are used for x and y, respectively. If the
list has component z this is used for z.

z a matrix containing the values to be plotted (NAs are allowed). Note that x can
be used instead of z for convenience.

nlevels number of contour levels desired iff levels is not supplied.

levels numeric vector of levels at which to draw contour lines.

Details

contourLines draws nothing, but returns a set of contour lines.

There is currently no documentation about the algorithm. The source code is in
‘R_HOME/src/main/plot3d.c’.

Value

A list of contours. Each contour is a list with elements:

level The contour level.

x The x-coordinates of the contour.

y The y-coordinates of the contour.

See Also

options("max.countour.segments") for the maximal complexity of a single contour
line.

contour.

Examples

x <- 10*1:nrow(volcano)
y <- 10*1:ncol(volcano)
contourLines(x, y, volcano)

convertColor 583

convertColor Convert between colour spaces

Description

Convert colours between standard colour space representations. This function is experimental.

Usage

convertColor(color, from, to, from.ref.white, to.ref.white,
scale.in=1, scale.out=1, clip=TRUE)

Arguments

color A matrix whose rows specify colors.

from,to Input and output color spaces. See ‘Details’ below.
from.ref.white,to.ref.white

Reference whites or NULL if these are built in to the definition, as for RGB
spaces. D65 is the default, see ‘Details’ for others.

scale.in, scale.out
Input is divided by scale.in, output is multiplied by scale.out. Use
NULL to suppress scaling when input or output is not numeric.

clip If TRUE, truncate RGB output to [0,1], FALSE return out-of-range RGB, NA set
out of range colors to NaN.

Details

Color spaces are specified by objects of class colorConverter, created by colorConverter
or make.rgb. Built-in color spaces may be referenced by strings: "XYZ", "sRGB", "Apple
RGB", "CIE RGB", "Lab", "Luv". The converters for these colour spaces are in the object
colorspaces.

The "sRGB" color space is that used by standard PC monitors. "Apple RGB" is used by Apple
monitors. "Lab" and "Luv" are approximately perceptually uniform spaces standardized by the
Commission Internationale d’Eclairage. XYZ is a 1931 CIE standard capable of representing all
visible colors (and then some), but not in a perceptually uniform way.

The Lab and Luv spaces describe colors of objects, and so require the specification of a reference
‘white light’ color. Illuminant D65 is a standard indirect daylight, Illuminant D50 is close to direct
sunlight, and Illuminant A is the light from a standard incandescent bulb. Other standard CIE
illuminants supported are B, C, E and D55. RGB colour spaces are defined relative to a particular
reference white, and can be only approximately translated to other reference whites. The Bradford
chromatic adaptation algorithm is used for this.

The RGB color spaces are specific to a particular class of display. An RGB space cannot represent
all colors, and the clip option controls what is done to out-of-range colors.

Value

A 3-row matrix whose columns specify the colors.

584 convertColor

References

For all the conversion equations http://www.brucelindbloom.com/

For the white points http://www.efg2.com/Lab/Graphics/Colors/
Chromaticity.htm

See Also

col2rgb and colors for ways to specify colors in graphics.

make.rgb for specifying other colour spaces.

Examples

require(graphics); require(stats) # for na.omit
par(mfrow=c(2,2))
The displayable colors from four planes of Lab space
ab <- expand.grid(a=(-10:15)*10,b=(-15:10)*10)

Lab <- cbind(L=20,ab)
srgb <- convertColor(Lab,from="Lab",to="sRGB",clip=NA)
clipped <- attr(na.omit(srgb),"na.action")
srgb[clipped,] <- 0
cols <- rgb(srgb[,1],srgb[,2],srgb[,3])
image((-10:15)*10,(-15:10)*10,matrix(1:(26*26),ncol=26),col=cols,

xlab="a",ylab="b",main="Lab: L=20")

Lab <- cbind(L=40,ab)
srgb <- convertColor(Lab,from="Lab",to="sRGB",clip=NA)
clipped <- attr(na.omit(srgb),"na.action")
srgb[clipped,] <- 0
cols <- rgb(srgb[,1],srgb[,2],srgb[,3])
image((-10:15)*10,(-15:10)*10,matrix(1:(26*26),ncol=26),col=cols,

xlab="a",ylab="b",main="Lab: L=40")

Lab <- cbind(L=60,ab)
srgb <- convertColor(Lab,from="Lab",to="sRGB",clip=NA)
clipped <- attr(na.omit(srgb),"na.action")
srgb[clipped,] <- 0
cols <- rgb(srgb[,1],srgb[,2],srgb[,3])
image((-10:15)*10,(-15:10)*10,matrix(1:(26*26),ncol=26),col=cols,

xlab="a",ylab="b",main="Lab: L=60")

Lab <- cbind(L=80,ab)
srgb <- convertColor(Lab,from="Lab",to="sRGB",clip=NA)
clipped <- attr(na.omit(srgb),"na.action")
srgb[clipped,] <- 0
cols <- rgb(srgb[,1],srgb[,2],srgb[,3])
image((-10:15)*10,(-15:10)*10,matrix(1:(26*26),ncol=26),col=cols,
xlab="a",ylab="b",main="Lab: L=80")

(cols <- t(col2rgb(palette())))
(lab <- convertColor(cols,from="sRGB",to="Lab",scale.in=255))
round(convertColor(lab,from="Lab",to="sRGB",scale.out=255))

http://www.brucelindbloom.com/
http://www.efg2.com/Lab/Graphics/Colors/Chromaticity.htm
http://www.efg2.com/Lab/Graphics/Colors/Chromaticity.htm

dev.interactive 585

dev.interactive Is the Current Graphics Device Interactive ?

Description

Test if the current graphics device (or that which would be opened) is interactive.

Usage

dev.interactive(orNone = FALSE)

deviceIsInteractive(name = NULL)

Arguments

orNone logical; if TRUE, the function also returns TRUE when .Device == "null
device" and getOption("device") is among the known interactive de-
vices.

name one or more device names as a character vector, or NULL to give the existing
list.

Details

The X11 (Unix), windows (Windows) and quartz (MacOS X, on-screen types only) are re-
garded as interactive, together with JavaGD (from the package of the same name) and CairoWin
and CairoX11 (from package Cairo). Packages can add their devices to the list by calling
deviceIsInteractive.

Value

dev.interactive() returns a logical, TRUE if and only if an interactive (screen) device is in
use.

deviceIsInteractive returns the updated list of known interactive devices, invisibly unless
name = NULL.

See Also

Devices for the available devices on your platform.

Examples

dev.interactive()
print(deviceIsInteractive(NULL))

586 dev.xxx

dev.size Find Size of Device Surface

Description

Find the dimensions of the device surface of the current device.

Usage

dev.size(units = c("in", "cm", "px"))

Arguments

units the units in which to return the value – inches, cm, or pixels (device units).

Value

A two-element numeric vector giving width and height of the current device; a new device is opened
if there is none, similarly to dev.new().

See Also

The size information in inches can be obtained by par("din"), but this provides a way to access
it independent of the graphics sub-system in use.

Examples

dev.size("cm")

dev.xxx Control Multiple Devices

Description

These functions provide control over multiple graphics devices.

Usage

dev.cur()
dev.list()
dev.next(which = dev.cur())
dev.prev(which = dev.cur())
dev.off(which = dev.cur())
dev.set(which = dev.next())
dev.new(...)
graphics.off()

Arguments

which An integer specifying a device number.

... arguments to be passed to the device selected.

dev.xxx 587

Details

Only one device is the ‘active’ device: this is the device in which all graphics operations occur.
There is a "null device" which is always open but is really a placeholder: any attempt to use
it will open a new device specified by getOption("device")).

Devices are associated with a name (e.g., "X11" or "postscript") and a number in the range
1 to 63; the "null device" is always device 1. Once a device has been opened the null device
is not considered as a possible active device. There is a list of open devices, and this is considered
as a circular list not including the null device. dev.next and dev.prev select the next open
device in the appropriate direction, unless no device is open.

dev.off shuts down the specified (by default the current) device. If the current device is shut
down and any other devices are open, the next open device is made current. It is an error to attempt
to shut down device 1. graphics.off() shuts down all open graphics devices.

dev.set makes the specified device the active device. If there is no device with that number, it is
equivalent to dev.next. If which = 1 it opens a new device and selects that.

dev.new opens a new device. Normally R will open a new device automatically when needed,
but this enables you to open further devices in a platform-independent way. (For which device
is used see getOption("device").) Note that care is needed with file-based devices such
as pdf and postscript and in that case file names such as ‘Rplots.pdf’, ‘Rplots1.pdf’, . . . ,
‘Rplots999.pdf’ are tried in turn. Only named arguments are passed to the device, and then only
if they match the argument list of the device. Even so, case is needed with the interpretation of
e.g. width, and for the standard bitmap devices units="in", res=72 is forced if neither is
supplied but both width and height are.

Value

dev.cur returns a length-one named integer vector giving the number and name of the active
device, or 1, the null device, if none is active.

dev.list returns the numbers of all open devices, except device 1, the null device. This is
a numeric vector with a names attribute giving the device names, or NULL is there is no open
device.

dev.next and dev.prev return the number and name of the next / previous device in the list of
devices. This will be the null device if and only if there are no open devices.

dev.off returns the number and name of the new active device (after the specified device has
been shut down).

dev.set returns the number and name of the new active device.

dev.new returns the return value of the device opened, usually invisible NULL.

See Also

Devices, such as postscript, etc.

layout and its links for setting up plotting regions on the current device.

Examples

Not run:
Unix-specific example
x11()
plot(1:10)
x11()
plot(rnorm(10))

588 dev2

dev.set(dev.prev())
abline(0,1)# through the 1:10 points
dev.set(dev.next())
abline(h=0, col="gray")# for the residual plot
dev.set(dev.prev())
dev.off(); dev.off()#- close the two X devices
End(Not run)

dev2 Copy Graphics Between Multiple Devices

Description

dev.copy copies the graphics contents of the current device to the device specified by which
or to a new device which has been created by the function specified by device (it is an error to
specify both which and device). (If recording is off on the current device, there are no contents
to copy: this will result in no plot or an empty plot.) The device copied to becomes the current
device.

dev.print copies the graphics contents of the current device to a new device which has been
created by the function specified by device and then shuts the new device.

dev.copy2eps is similar to dev.print but produces an EPSF output file in portrait orientation
(horizontal = FALSE). dev.copy2pdf is the analogue for PDF output.

dev.control allows the user to control the recording of graphics operations in a device. If
displaylist is "inhibit" ("enable") then recording is turned off (on). It is only safe to
change this at the beginning of a plot (just before or just after a new page). Initially recording is on
for screen devices, and off for print devices.

Usage

dev.copy(device, ..., which = dev.next())
dev.print(device = postscript, ...)
dev.copy2eps(...)
dev.copy2pdf(..., out.type = "pdf")
dev.control(displaylist = c("inhibit", "enable"))

Arguments

device A device function (e.g., x11, postscript, . . .)

... Arguments to the device function above: for dev.copy2eps arguments to
postscript and for dev.copy2pdf, arguments to pdf. For dev.print,
this includes which and by default any postscript arguments.

which A device number specifying the device to copy to.

out.type The name of the output device: can be "pdf", or "quartz" (some Mac OS
X builds) or "cairo" (some Unix-alikes, see cairo_pdf).

displaylist A character string: the only valid values are "inhibit" and "enable".

dev2 589

Details

Note that these functions copy the device region and not a plot: the background colour of the device
surface is part of what is copied. Most screen devices default to a transparent background, which is
probably not what is needed when copying to a device such as png.

For dev.copy2eps and dev.copy2pdf, width and height are taken from the current de-
vice unless otherwise specified. If just one of width and height is specified, the other is adjusted
to preserve the aspect ratio of the device being copied. The default file name is Rplot.eps or
Rplot.pdf, and can be overridden by specifying a file argument.

Copying to devices such as postscript and pdf which need font families pre-specified needs
extra care – R is unaware of which families were used in a plot and so they will need to manually
specified by the fonts argument passed as part of Similarly, if the device to be copied from
was opened with a family argument, a suitable family argument will need to be included in
....

The default for dev.print is to produce and print a postscript copy, if
options("printcmd") is set suitably.

dev.print is most useful for producing a postscript print (its default) when the following applies.
Unless file is specified, the plot will be printed. Unless width, height and pointsize are
specified the plot dimensions will be taken from the current device, shrunk if necessary to fit on the
paper. (pointsize is rescaled if the plot is shrunk.) If horizontal is not specified and the plot
can be printed at full size by switching its value this is done instead of shrinking the plot region.

If dev.print is used with a specified device (even postscript) it sets the width and height
in the same way as dev.copy2eps. This will not be appropriate unless the device specifies
dimensions in inches, in particular not for png and jpeg.

Value

dev.copy returns the name and number of the device which has been copied to.

dev.print, dev.copy2eps and dev.copy2pdf return the name and number of the device
which has been copied from.

Note

Most devices (including all screen devices) have a display list which records all of the graphics
operations that occur in the device. dev.copy copies graphics contents by copying the display list
from one device to another device. Also, automatic redrawing of graphics contents following the
resizing of a device depends on the contents of the display list.

After the command dev.control("inhibit"), graphics operations are not recorded in the
display list so that dev.copy and dev.printwill not copy anything and the contents of a device
will not be redrawn automatically if the device is resized.

The recording of graphics operations is relatively expensive in terms of memory so the command
dev.control("inhibit") can be useful if memory usage is an issue.

See Also

dev.cur and other dev.xxx functions.

Examples

Not run:
x11()

590 dev2bitmap

plot(rnorm(10), main="Plot 1")
dev.copy(device=x11)
mtext("Copy 1", 3)
dev.print(width=6, height=6, horizontal=FALSE) # prints it
dev.off(dev.prev())
dev.off()
End(Not run)

dev2bitmap Graphics Device for Bitmap Files via GhostScript

Description

bitmap generates a graphics file. dev2bitmap copies the current graphics device to a file in a
graphics format.

Usage

bitmap(file, type = "png16m", height = 7, width = 7, res = 72,
units = "in", pointsize, taa = NA, gaa = NA, ...)

dev2bitmap(file, type = "png16m", height = 7, width = 7, res = 72,
units = "in", pointsize, ...,
method = c("postscript", "pdf"), taa = NA, gaa = NA)

Arguments

file The output file name, with an appropriate extension.

type The type of bitmap. the default is "png256".
width, height

Dimensions of the display region.

res Resolution, in dots per inch.

units The units in which height and width are given. Can be in (inches), px
(pixels), cm or mm.

pointsize The pointsize to be used for text: defaults to something reasonable given the
width and height

... Other parameters passed to postscript or pdf.

method Should the plot be done by postscript or pdf?

taa, gaa Number of bits of antialiasing for text and for graphics respectively. Usually 4
(for best effect) or 2. Not supported on all types.

Details

dev2bitmap works by copying the current device to a postscript or pdf device, and
post-processing the output file using ghostscript. bitmap works in the same way using a
postscript device and post-processing the output as ‘printing’.

You will need ghostscript: the full path to the executable can be set by the environment variable
R_GSCMD. (If this is unset the command "gs" is used, which will work if it is in your path.)

dev2bitmap 591

The types available will depend on the version of ghostscript, but are likely to in-
clude "pcxmono", "pcxgray", "pcx16", "pcx256", "pcx24b", "pcxcmyk", "pbm",
"pbmraw", "pgm", "pgmraw", "pgnm", "pgnmraw", "pnm", "pnmraw", "ppm",
"ppmraw", "pkm", "pkmraw", "tiffcrle", "tiffg3", "tiffg32d", "tiffg4",
"tifflzw", "tiffpack", "tiff12nc", "tiff24nc", "psmono", "psgray",
"psrgb", "bit", "bitrgb", "bitcmyk", "pngmono", "pnggray", "pngalpha",
"png16", "png256", "png16m", "png48", "jpeg", "jpeggray", "pdfwrite".

The default type, "png16m" supports 24-bit colour and anti-aliasing. Versions of R prior to 2.7.0
defaulted to "png256", which used a palette of 256 colours and could be a more compact repre-
sentation. Monochrome graphs can used "pngmono", or "pnggray" if anti-aliasing is desired.

For formats which contain a single image, a file specification like Rplots%03d.png can be used:
this is interpreted by GhostScript.

For dev2bitmap if just one of width and height is specified, the other is chosen to preserve
aspect ratio of the device being copied. The main reason to prefer method = "pdf" over the
default would be to allow semi-transparent colours to be used.

For graphics parameters such as "cra" that need to work in pixels, the default resolution of 72dpi
is always used.

Value

None.

Conventions

This section describes the implementation of the conventions for graphics devices set out in the “R
Internals Manual”. These devices follow the underlying device, so when viewed at the stated res:

• The default device size is 7 inches square.

• Font sizes are in big points.

• The default font family is (for the standard GhostScript setup) URW Nimbus Sans.

• Line widths are as a multiple of 1/96 inch, with no minimum.

• Circle of any radius are allowed.

• Colours are interpreted by the viewing/printing application.

See Also

savePlot, which for windows and X11(type = "Cairo") provides a simple way to record
a PNG record of the current plot.

postscript, pdf, png and jpeg and on Windows bmp.

To display an array of data, see image.

592 Devices

devAskNewPage Prompt before New Page

Description

This function can be used to control (for the current device) whether the user is prompted before
starting a new page of output.

Usage

devAskNewPage(ask = NULL)

Arguments

ask NULL or a logical value. If TRUE, the user is prompted before a new page of
output is started.

Details

If the current device is the null device, this will open a graphics device.

The default argument just returns the current setting and does not change it.

The default value when a device is opened is taken from the setting of
options("device.ask.default").

The precise circumstances when the user will be asked to confirm a new page depend on the graphics
subsystem. Obviously this needs to be an interactive session. In addition ‘recording’ needs to be in
operation, so only when the display list is enabled (see dev.control) which it usually is only on
a screen device.

Value

The current prompt setting before any new setting is applied.

See Also

plot.new, grid.newpage

Devices List of Graphical Devices

Description

The following graphics devices are currently available:

• postscript Writes PostScript graphics commands to a file

• pdf Write PDF graphics commands to a file

• pictex Writes LaTeX/PicTeX graphics commands to a file

• xfig Device for XFIG graphics file format

• bitmap bitmap pseudo-device via GhostScript (if available).

embedFonts 593

The following devices will be functional if R was compiled to use them (they exist but will return
with a warning on other systems):

• X11 The graphics device for the X11 Window system

• bmp Windows bitmap device

• jpeg JPEG bitmap device

• png PNG bitmap device

• tiff TIFF bitmap device

• cairo_pdf, cairo_ps PDF and PostScript devices based on cairo graphics.

• quartz The graphics device for the Mac OS X native Quartz 2d graphics system. (This is
only functional on Mac OS X, but unlike R < 2.7.0 can be used from the command line and
not just from the GUI console.)

Details

If no device is open, using a high-level graphics function will cause a device to be opened.
Which device is given by options("device") which is initially set as the most appro-
priate for each platform: a screen device for most interactive use and pdf (or the setting of
R_DEFAULT_DEVICE) otherwise. The exception is interactive use under Unix if no screen de-
vice is known to be available, when pdf()is used.

See Also

The individual help files for further information on any of the devices listed here; X11.options,
quartz.options, ps.options and pdf.options for how to customize devices.

dev.interactive, dev.cur, dev.print, graphics.off, image, dev2bitmap.

capabilities to see if X11, jpeg png and quartz are available.

Examples

Not run:
open the default screen device on this platform if no device is
open
if(dev.cur() == 1) dev.new()
End(Not run)

embedFonts Embed Fonts in PostScript and PDF

Description

Runs Ghostscript to process a PDF or PostScript file and embed all fonts in the file.

Usage

embedFonts(file, format, outfile = file, fontpaths = "",
options = "")

594 extendrange

Arguments

file a character string giving the name of the original file.

format either "pswrite" or "pdfwrite". If not specified, it is guessed from the
suffix of file.

outfile the name of the new file (with fonts embedded).

fontpaths a character vector giving directories that Ghostscript will search for fonts.

options a character string containing further options to Ghostscript.

Details

This function is not necessary if you just use the standard default fonts for PostScript and PDF
output.

If you use a special font, this function is useful for embedding that font in your PostScript or PDF
document so that it can be shared with others without them having to install your special font
(provided the font licence allows this).

If the special font is not installed for Ghostscript, you will need to tell Ghostscript where the font
is, using something like options="-sFONTPATH=path/to/font".

This function relies on a suitable Ghostscript executable being in your path, or the environment
variable R_GSCMD (the same as bitmap) being set as the full path to the Ghostscript executable.
This defaults to "gs".

Note that Ghostscript may do font substitution, so the font embedded may differ from that specified
in the original file.

Value

The shell command used to invoke Ghostscript is returned invisibly. This may be useful for debug-
ging purposes as you can run the command by hand in a shell to look for problems.

See Also

postscriptFonts, Devices.

Paul Murrell and Brian Ripley (2006) Non-standard fonts in PostScript and PDF graphics. R News,
6(2):41–47. http://cran.r-project.org/doc/Rnews/Rnews_2006-2.pdf.

extendrange Extend a Numerical Range by a Small Percentage

Description

Extends a numerical range by a small percentage, i.e., fraction, on both sides.

Usage

extendrange(x, r = range(x, na.rm = TRUE), f = 0.05)

http://cran.r-project.org/doc/Rnews/Rnews_2006-2.pdf

getGraphicsEvent 595

Arguments

x numeric vector; not used if r is specified.

r numeric vector of length 2; defaults to the range of x.

f number specifying the fraction by which the range should be extended.

Value

A numeric vector of length 2, r + c(-f,f) * diff(r).

See Also

range; pretty which can be considered a sophisticated extension of extendrange.

Examples

x <- 1:5
(r <- range(x)) # 1 5
extendrange(x) # 0.8 5.2
extendrange(x, f= 0.01) # 0.96 5.04
Use 'r' if you have it already:
stopifnot(identical(extendrange(r=r),

extendrange(x)))

getGraphicsEvent Wait for a mouse or keyboard event from a graphics window

Description

This function waits for input from a graphics window in the form of a mouse or keyboard event.

Usage

getGraphicsEvent(prompt = "Waiting for input",
onMouseDown = NULL, onMouseMove = NULL,
onMouseUp = NULL, onKeybd = NULL)

Arguments

prompt prompt to be displayed to the user

onMouseDown a function to respond to mouse clicks

onMouseMove a function to respond to mouse movement

onMouseUp a function to respond to mouse button releases

onKeybd a function to respond to key presses

596 getGraphicsEvent

Details

This function allows user input from some graphics devices (currently only the Windows screen
display). When called, event handlers may be installed to respond to events involving the mouse or
keyboard.

The mouse event handlers should be functions with header function(buttons, x, y). The
coordinates x and y will be passed to mouse event handlers in device independent coordinates (i.e.
the lower left corner of the window is (0,0), the upper right is (1,1)). The buttons argument
will be a vector listing the buttons that are pressed at the time of the event, with 0 for left, 1 for
middle, and 2 for right.

The keyboard event handler should be a function with header function(key). A single element
character vector will be passed to this handler, corresponding to the key press. Shift and other
modifier keys will have been processed, so shift-a will be passed as "A". The following special
keys may also be passed to the handler:

• Control keys, passed as "Ctrl-A", etc.

• Navigation keys, passed as one of "Left", "Up", "Right", "Down", "PgUp",
"PgDn", "End", "Home"

• Edit keys, passed as one of "Ins", "Del"

• Function keys, passed as one of "F1", "F2", ...

The event handlers are standard R functions, and will be executed in an environment as though they
had been called directly from getGraphicsEvent.

Events will be processed until

• one of the event handlers returns a non-NULL value which will be returned as the value of
getGraphicsEvent, or

• the user interrupts the function from the console.

Value

A non-NULL value returned from one of the event handlers.

Author(s)

Duncan Murdoch

Examples

Not run:
mousedown <- function(buttons, x, y) {

plx <- grconvertX(x, "ndc", "user")
ply <- grconvertY(y, "ndc", "user")
cat("Buttons ", paste(buttons, collapse=" "), " at ndc",

x, y, "user", plx, ply, "\n")
points(plx, ply, col="red", pch=19, cex=2)
if (x > 0.85 && y > 0.85) "Done"
else NULL

}

mousemove <- function(buttons, x, y) {
plx <- grconvertX(x, "ndc", "user")
ply <- grconvertY(y, "ndc", "user")
points(plx, ply)

gray 597

NULL
}

keybd <- function(key) {
cat("Key <", key, ">\n", sep = "")

}

plot(0:1, 0:1, type='n')
getGraphicsEvent("Click on upper right to quit",

onMouseDown = mousedown,
onMouseMove = mousemove,
onKeybd = keybd)

End(Not run)

gray Gray Level Specification

Description

Create a vector of colors from a vector of gray levels.

Usage

gray(level)
grey(level)

Arguments

level a vector of desired gray levels between 0 and 1; zero indicates "black" and
one indicates "white".

Details

The values returned by gray can be used with a col= specification in graphics functions or in
par.

grey is an alias for gray.

Value

A vector of colors of the same length as level.

See Also

rainbow, hsv, hcl, rgb.

Examples

gray(0:8 / 8)

598 gray.colors

gray.colors Gray Color Palette

Description

Create a vector of n gamma-corrected gray colors.

Usage

gray.colors(n, start = 0.3, end = 0.9, gamma = 2.2)
grey.colors(n, start = 0.3, end = 0.9, gamma = 2.2)

Arguments

n the number of gray colors (≥ 1) to be in the palette.

start starting gray level in the palette (should be between 0 and 1where zero indicates
"black" and one indicates "white").

end ending gray level in the palette.

gamma the gamma correction.

Details

The function gray.colors chooses a series of n gamma-corrected gray levels between start
and end: (startγ , . . . , endγ)(1/γ). The returned palette contains the corresponding gray colors.
This palette is used in barplot.default.

grey.colors is an alias for gray.colors.

Value

A vector of n gray colors.

See Also

gray, rainbow, palette.

Examples

require(graphics)

pie(rep(1,12), col = gray.colors(12))
barplot(1:12, col = gray.colors(12))

hcl 599

hcl HCL Color Specification

Description

Create a vector of colors from vectors specifying hue, chroma and luminance.

Usage

hcl(h = 0, c = 35, l = 85, alpha, fixup = TRUE)

Arguments

h The hue of the color specified as an angle in the range [0,360]. 0 yields red, 120
yields green 240 yields blue, etc.

c The chroma of the color. The upper bound for chroma depends on hue and
luminance.

l A value in the range [0,100] giving the luminance of the colour. For a given
combination of hue and chroma, only a subset of this range is possible.

alpha numeric vector of values in the range [0,1] for alpha transparency channel (0
means transparent and 1 means opaque).

fixup a logical value which indicates whether the resulting RGB values should be cor-
rected to ensure that a real color results. if fixup is FALSE RGB components
lying outside the range [0,1] will result in an NA value.

Details

This function corresponds to polar coordinates in the CIE-LUV color space. Steps of equal size
in this space correspond to approximately equal perceptual changes in color. Thus, hcl can be
thought of as a perceptually based version of hsv.

The function is primarily intended as a way of computing colors for filling areas in plots where area
corresponds to a numerical value (pie charts, bar charts, mosaic plots, histograms, etc). Choosing
colors which have equal chroma and luminance provides a way of minimising the irradiation illusion
which would otherwise produce a misleading impression of how large the areas are.

The default values of chroma and luminance make it possible to generate a full range of hues and
have a relatively pleasant pastel appearance.

The RGB values produced by this function correspond to the sRGB color space used on most PC
computer displays. There are other packages which provide more general color space facilities.

Semi-transparent colors (0 < alpha < 1) are supported only on some devices: see rgb.

Value

A vector of character strings which can be used as color specifications by R graphics functions.

Note

At present there is no guarantee that the colours rendered by R graphics devices will correspond to
their sRGB description. It is planned to adopt sRGB as the standard R color description in future.

600 hcl

Author(s)

Ross Ihaka

References

Ihaka, R. (2003). Colour for Presentation Graphics, Proceedings of the 3rd International Work-
shop on Distributed Statistical Computing (DSC 2003), March 20-22, 2003, Technische Universität
Wien, Vienna, Austria. http://www.ci.tuwien.ac.at/Conferences/DSC-2003.

See Also

hsv, rgb.

Examples

require(graphics)

The Foley and Van Dam PhD Data.
csd <- matrix(c(4,2,4,6, 4,3,1,4, 4,7,7,1,

0,7,3,2, 4,5,3,2, 5,4,2,2,
3,1,3,0, 4,4,6,7, 1,10,8,7,
1,5,3,2, 1,5,2,1, 4,1,4,3,
0,3,0,6, 2,1,5,5), nrow=4)

csphd <- function(colors)
barplot(csd, col = colors, ylim = c(0,30),

names = 72:85, xlab = "Year", ylab = "Students",
legend = c("Winter", "Spring", "Summer", "Fall"),
main = "Computer Science PhD Graduates", las = 1)

The Original (Metaphorical) Colors (Ouch!)
csphd(c("blue", "green", "yellow", "orange"))

A Color Tetrad (Maximal Color Differences)
csphd(hcl(h = c(30, 120, 210, 300)))

Same, but lighter and less colorful
Turn of automatic correction to make sure
that we have defined real colors.
csphd(hcl(h = c(30, 120, 210, 300),

c = 20, l = 90, fixup = FALSE))

Analogous Colors
Good for those with red/green color confusion
csphd(hcl(h = seq(60, 240, by = 60)))

Metaphorical Colors
csphd(hcl(h = seq(210, 60, length = 4)))

Cool Colors
csphd(hcl(h = seq(120, 0, length = 4) + 150))

Warm Colors
csphd(hcl(h = seq(120, 0, length = 4) - 30))

Single Color

http://www.ci.tuwien.ac.at/Conferences/DSC-2003

Hershey 601

hist(stats::rnorm(1000), col = hcl(240))

Hershey Hershey Vector Fonts in R

Description

If the family graphical parameter (see par) has been set to one of the Hershey fonts (see ‘De-
tails’) Hershey vector fonts are used to render text.

When using the text and contour functions Hershey fonts may be selected via the vfont
argument, which is a character vector of length 2 (see ‘Details’ for valid values). This allows
Cyrillic to be selected, which is not available via the font families.

Usage

Hershey

Details

The Hershey fonts have two advantages:

1. vector fonts describe each character in terms of a set of points; R renders the character by join-
ing up the points with straight lines. This intimate knowledge of the outline of each character
means that R can arbitrarily transform the characters, which can mean that the vector fonts
look better for rotated text.

2. this implementation was adapted from the GNU libplot library which provides support for
non-ASCII and non-English fonts. This means that it is possible, for example, to produce
weird plotting symbols and Japanese characters.

Drawback:
You cannot use mathematical expressions (plotmath) with Hershey fonts.

The Hershey characters are organised into a set of fonts. A particular font is selected by specifying
one of the following font families via par(family) and specifying the desired font face (plain,
bold, italic, bold-italic) via par(font).

family faces available
"HersheySerif" plain, bold, italic, bold-italic
"HersheySans" plain, bold, italic, bold-italic
"HersheyScript" plain, bold
"HersheyGothicEnglish" plain
"HersheyGothicGerman" plain
"HersheyGothicItalian" plain
"HersheySymbol" plain, bold, italic, bold-italic
"HersheySansSymbol" plain, italic

In the vfont specification for the text and contour functions, the Hershey font is specified by a
typeface (e.g., serif or sans serif) and a fontindex or ‘style’ (e.g., plain or italic). The
first element of vfont specifies the typeface and the second element specifies the fontindex. The
first table produced by demo(Hershey) shows the character a produced by each of the different
fonts.

602 Hershey

The available typeface and fontindex values are available as list components of the variable
Hershey. The allowed pairs for (typeface, fontindex) are:

serif plain
serif italic
serif bold
serif bold italic
serif cyrillic
serif oblique cyrillic
serif EUC
sans serif plain
sans serif italic
sans serif bold
sans serif bold italic
script plain
script italic
script bold
gothic english plain
gothic german plain
gothic italian plain
serif symbol plain
serif symbol italic
serif symbol bold
serif symbol bold italic
sans serif symbol plain
sans serif symbol italic

and the indices of these are available as Hershey$allowed.

Escape sequences: The string to be drawn can include escape sequences, which all begin with a
\. When R encounters a \, rather than drawing the \, it treats the subsequent character(s) as
a coded description of what to draw.
One useful escape sequence (in the current context) is of the form: \123. The three digits
following the \ specify an octal code for a character. For example, the octal code for p is 160
so the strings "p" and "\160" are equivalent. This is useful for producing characters when
there is not an appropriate key on your keyboard.
The other useful escape sequences all begin with \\. These are described below. Remember
that backslashes have to be doubled in R character strings, so they need to be entered with
four backslashes.

Symbols: an entire string of Greek symbols can be produced by selecting the HersheySymbol or
HersheySansSymbol family or the Serif Symbol or Sans Serif Symbol typeface. To allow
Greek symbols to be embedded in a string which uses a non-symbol typeface, there are a
set of symbol escape sequences of the form \\ab. For example, the escape sequence *a
produces a Greek alpha. The second table in demo(Hershey) shows all of the symbol
escape sequences and the symbols that they produce.

ISO Latin-1: further escape sequences of the form \\ab are provided for producing ISO Latin-1
characters. Another option is to use the appropriate octal code. The (non-ASCII) ISO Latin-1
characters are in the range 241. . . 377. For example, \366 produces the character o with an
umlaut. The third table in demo(Hershey) shows all of the ISO Latin-1 escape sequences.
These characters can be used directly in a Latin-1 locale or on a system with MBCS support.
(In the latter, characters not in Latin-1 are replaced by a dot.)

Hershey 603

Several characters are missing, c-cedilla has no cedilla and ‘sharp s’ (U+00DF, also known as
‘esszett’) is rendered as ss.

Special Characters: a set of characters are provided which do not fall into any standard font.
These can only be accessed by escape sequence. For example, \\LI produces the zodiac
sign for Libra, and \\JU produces the astronomical sign for Jupiter. The fourth table in
demo(Hershey) shows all of the special character escape sequences.

Cyrillic Characters: cyrillic characters are implemented according to the K018-R encoding, and
can be used directly in such a locale using the Serif typeface and Cyrillic (or Oblique Cyril-
lic) fontindex. Alternatively they can be specified via an octal code in the range 300 to
337 for lower case characters or 340 to 377 for upper case characters. The fifth table in
demo(Hershey) shows the octal codes for the available cyrillic characters.
Cyrillic has to be selected via a ("serif", fontindex) pair rather than via a font fam-
ily.

Japanese Characters: 83 Hiragana, 86 Katakana, and 603 Kanji characters are implemented ac-
cording to the EUC-JP (Extended Unix Code) encoding. Each character is identified by
a unique hexadecimal code. The Hiragana characters are in the range 0x2421 to 0x2473,
Katakana are in the range 0x2521 to 0x2576, and Kanji are (scattered about) in the range
0x3021 to 0x6d55.
When using the Serif typeface and EUC fontindex, these characters can be produced by a pair
of octal codes. Given the hexadecimal code (e.g., 0x2421), take the first two digits and add
0x80 and do the same to the second two digits (e.g., 0x21 and 0x24 become 0xa4 and 0xa1),
then convert both to octal (e.g., 0xa4 and 0xa1 become 244 and 241). For example, the first
Hiragana character is produced by \244\241.
It is also possible to use the hexadecimal code directly. This works for all non-EUC fonts
by specifying an escape sequence of the form \\#J1234. For example, the first Hiragana
character is produced by \\#J2421.
The Kanji characters may be specified in a third way, using the so-called "Nelson Index", by
specifying an escape sequence of the form \\#N1234. For example, the (obsolete) Kanji for
‘one’ is produced by \\#N0001.
demo(Japanese) shows the available Japanese characters.

Raw Hershey Glyphs: all of the characters in the Hershey fonts are stored in a large array. Some
characters are not accessible in any of the Hershey fonts. These characters can only be ac-
cessed via an escape sequence of the form \\#H1234. For example, the fleur-de-lys is pro-
duced by \\#H0746. The sixth and seventh tables of demo(Hershey) shows all of the
available raw glyphs.

References

http://www.gnu.org/software/plotutils/plotutils.html

See Also

demo(Hershey), par, text, contour.

Japanese for the Japanese characters in the Hershey fonts.

Examples

Hershey

for tables of examples, see demo(Hershey)

http://www.gnu.org/software/plotutils/plotutils.html

604 hsv

hsv HSV Color Specification

Description

Create a vector of colors from vectors specifying hue, saturation and value.

Usage

hsv(h = 1, s = 1, v = 1, gamma = 1, alpha)

Arguments

h,s,v numeric vectors of values in the range [0,1] for ‘hue’, ‘saturation’ and ‘value’
to be combined to form a vector of colors. Values in shorter arguments are
recycled.

gamma a gamma-correction exponent, γ

alpha numeric vector of values in the range [0,1] for alpha transparency channel (0
means transparent and 1 means opaque).

Details

Semi-transparent colors (0 < alpha < 1) are supported only on some devices: see rgb.

Value

This function creates a vector of colors corresponding to the given values in HSV space. The values
returned by hsv can be used with a col= specification in graphics functions or in par.

Gamma correction

For each color, (r, g, b) in RGB space (with all values in [0, 1]), the final color corresponds to
(rγ , gγ , bγ).

See Also

hcl for a perceptually based version of hsv(), rgb and rgb2hsv for RGB to HSV conversion;
rainbow, gray.

Examples

require(graphics)

hsv(.5,.5,.5)

Look at gamma effect:
n <- 20; y <- -sin(3*pi*((1:n)-1/2)/n)
op <- par(mfrow=c(3,2),mar=rep(1.5,4))
for(gamma in c(.4, .6, .8, 1, 1.2, 1.5))
plot(y, axes = FALSE, frame.plot = TRUE,

xlab = "", ylab = "", pch = 21, cex = 30,
bg = rainbow(n, start=.85, end=.1, gamma = gamma),

Japanese 605

main = paste("Red tones; gamma=",format(gamma)))
par(op)

Japanese Japanese characters in R

Description

The implementation of Hershey vector fonts provides a large number of Japanese characters (Hira-
gana, Katakana, and Kanji).

Details

Without keyboard support for typing Japanese characters, the only way to produce these characters
is to use special escape sequences: see Hershey.

For example, the Hiragana character for the sound "ka" is produced by \\#J242b and the
Katakana character for this sound is produced by \\#J252b. The Kanji ideograph for "one" is
produced by \\#J306c or \\#N0001.

The output from demo(Japanese) shows tables of the escape sequences for the available
Japanese characters.

References

http://www.gnu.org/software/plotutils/plotutils.html

See Also

demo(Japanese), Hershey, text

Examples

require(graphics)

plot(1:9, type="n", axes=FALSE, frame=TRUE, ylab="",
main= "example(Japanese)", xlab= "using Hershey fonts")

par(cex=3)
Vf <- c("serif", "plain")
text(4, 2, "\\#J2438\\#J2421\\#J2451\\#J2473", vfont = Vf)
text(4, 4, "\\#J2538\\#J2521\\#J2551\\#J2573", vfont = Vf)
text(4, 6, "\\#J467c\\#J4b5c", vfont = Vf)
text(4, 8, "Japan", vfont = Vf)
par(cex=1)
text(8, 2, "Hiragana")
text(8, 4, "Katakana")
text(8, 6, "Kanji")
text(8, 8, "English")

http://www.gnu.org/software/plotutils/plotutils.html

606 make.rgb

make.rgb Create colour spaces

Description

These functions specify colour spaces for use in convertColor.

Usage

make.rgb(red, green, blue, name = NULL, white = "D65",
gamma = 2.2)

colorConverter(toXYZ, fromXYZ, name, white=NULL)

Arguments
red,green,blue

Chromaticity (xy or xyY) of RGB primaries

name Name for the colour space

white Character string specifying the reference white (see ‘Details’.)

gamma Display gamma (nonlinearity). A positive number or the string "sRGB"

fromXYZ Function to convert from XYZ tristimulus coordinates to this space

toXYZ Function to convert from this space to XYZ tristimulus coordinates.

Details

An RGB colour space is defined by the chromaticities of the red, green and blue primaries. These
are given as vectors of length 2 or 3 in xyY coordinates (the Y component is not used and may be
omitted). The chromaticities are defined relative to a reference white, which must be one of the CIE
standard illuminants: "A", "B", "C", "D50", "D55", "D60", "E" (usually "D65").

The display gamma is most commonly 2.2, though 1.8 is used for Apple RGB. The sRGB standard
specifies a more complicated function that is close to a gamma of 2.2; gamma="sRGB" uses this
function.

Colour spaces other than RGB can be specified directly by giving conversions to and from XYZ
tristimulus coordinates. The functions should take two arguments. The first is a vector giving the
coordinates for one colour. The second argument is the reference white. If a specific reference
white is included in the definition of the colour space (as for the RGB spaces) this second argument
should be ignored and may be

Value

An object of class colorConverter

References

Conversion algorithms from http://www.brucelindbloom.com

See Also

convertColor

http://www.brucelindbloom.com

n2mfrow 607

Examples

(pal <- make.rgb(red= c(0.6400,0.3300),
green=c(0.2900,0.6000),
blue= c(0.1500,0.0600),
name = "PAL/SECAM RGB"))

converter for sRGB in #rrggbb format
hexcolor <- colorConverter(toXYZ = function(hex,...) {

rgb <- t(col2rgb(hex))/255
colorspaces$sRGB$toXYZ(rgb,...) },

fromXYZ = function(xyz,...) {
rgb <- colorspaces$sRGB$fromXYZ(xyz,..)
rgb <- round(rgb,5)
if (min(rgb) < 0 || max(rgb) > 1)

as.character(NA)
else

rgb(rgb[1],rgb[2],rgb[3])},
white = "D65", name = "#rrggbb")

(cols <- t(col2rgb(palette())))
(luv <- convertColor(cols,from="sRGB", to="Luv", scale.in=255))
(hex <- convertColor(luv, from="Luv", to=hexcolor, scale.out=NULL))

must make hex a matrix before using it
(cc <- round(convertColor(as.matrix(hex), from= hexcolor, to= "sRGB",

scale.in=NULL, scale.out=255)))
stopifnot(cc == cols)

n2mfrow Compute Default mfrow From Number of Plots

Description

Easy setup for plotting multiple figures (in a rectangular layout) on one page. This computes a
sensible default for par(mfrow).

Usage

n2mfrow(nr.plots)

Arguments

nr.plots integer; the number of plot figures you’ll want to draw.

Value

A length two integer vector nr, nc giving the number of rows and columns, fulfilling nr >= nc
>= 1 and nr * nc >= nr.plots.

Author(s)

Martin Maechler

608 nclass

See Also

par, layout.

Examples

require(graphics)

n2mfrow(8) # 3 x 3

n <- 5 ; x <- seq(-2,2, len=51)
suppose now that 'n' is not known {inside function}
op <- par(mfrow = n2mfrow(n))
for (j in 1:n)

plot(x, x^j, main = substitute(x^ exp, list(exp = j)), type = "l",
col = "blue")

sapply(1:10, n2mfrow)

nclass Compute the Number of Classes for a Histogram

Description

Compute the number of classes for a histogram.

Usage

nclass.Sturges(x)
nclass.scott(x)
nclass.FD(x)

Arguments

x A data vector.

Details

nclass.Sturges uses Sturges’ formula, implicitly basing bin sizes on the range of the data.

nclass.scott uses Scott’s choice for a normal distribution based on the estimate of the standard
error, unless that is zero where it returns 1.

nclass.FD uses the Freedman-Diaconis choice based on the inter-quartile range (IQR) unless
that’s zero where it reverts to mad(x, constant=2) and when that is 0 as well, returns 1.

Value

The suggested number of classes.

palette 609

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S-PLUS. Springer, page
112.

Freedman, D. and Diaconis, P. (1981) On the histogram as a density estimator: L2 theory. Zeitschrift
für Wahrscheinlichkeitstheorie und verwandte Gebiete 57, 453–476.

Scott, D. W. (1979) On optimal and data-based histograms. Biometrika 66, 605–610.

Scott, D. W. (1992) Multivariate Density Estimation. Theory, Practice, and Visualization. Wiley.

See Also

hist and truehist (which use a different default).

Examples

set.seed(1)
x <- stats::rnorm(1111)
nclass.Sturges(x)

Compare them:
NC <- function(x) c(Sturges = nclass.Sturges(x),

Scott = nclass.scott(x), FD = nclass.FD(x))
NC(x)
onePt <- rep(1, 11)
NC(onePt) # no longer gives NaN

palette Set or View the Graphics Palette

Description

View or manipulate the color palette which is used when a col= has a numeric index.

Usage

palette(value)

Arguments

value an optional character vector.

Details

If value has length 1, it is taken to be the name of a built in color palette. If value has length
greater than 1 it is assumed to contain a description of the colors which are to make up the new
palette (either by name or by RGB levels).

If value is omitted or has length 0, no change is made the current palette.

Currently, the only built-in palette is "default".

Value

The palette which was in effect. This is invisible unless the argument is omitted.

610 Palettes

See Also

colors for the vector of built-in named colors; hsv, gray, rainbow,
terrain.colors,. . . to construct colors.

colorRamp to interpolate colors, making custom palettes; col2rgb for translating colors to
RGB 3-vectors.

Examples

require(graphics)

palette() # obtain the current palette
palette(rainbow(6)) # six color rainbow

(palette(gray(seq(0,.9,len=25)))) # gray scales; print old palette
matplot(outer(1:100,1:30), type='l', lty=1,lwd=2, col=1:30,

main = "Gray Scales Palette",
sub = "palette(gray(seq(0,.9,len=25)))")

palette("default") # reset back to the default

Palettes Color Palettes

Description

Create a vector of n contiguous colors.

Usage

rainbow(n, s = 1, v = 1, start = 0, end = max(1,n - 1)/n,
gamma = 1, alpha = 1)

heat.colors(n, alpha = 1)
terrain.colors(n, alpha = 1)
topo.colors(n, alpha = 1)
cm.colors(n, alpha = 1)

Arguments

n the number of colors (≥ 1) to be in the palette.

s,v the ‘saturation’ and ‘value’ to be used to complete the HSV color descriptions.

start the (corrected) hue in [0,1] at which the rainbow begins.

end the (corrected) hue in [0,1] at which the rainbow ends.

gamma the gamma correction, see argument gamma in hsv.

alpha the alpha transparency, a number in [0,1], see argument alpha in hsv.

pdf 611

Details

Conceptually, all of these functions actually use (parts of) a line cut out of the 3-dimensional color
space, parametrized by hsv(h,s,v, gamma), where gamma= 1 for the foo.colors function,
and hence, equispaced hues in RGB space tend to cluster at the red, green and blue primaries.

Some applications such as contouring require a palette of colors which do not wrap around to give
a final color close to the starting one.

With rainbow, the parameters start and end can be used to specify particular subranges of
hues. The following values can be used when generating such a subrange: red=0, yellow= 1

6 ,
green= 2

6 , cyan= 3
6 , blue= 4

6 and magenta= 5
6 .

Value

A character vector, cv, of color names. This can be used either to create a user–defined color palette
for subsequent graphics by palette(cv), a col= specification in graphics functions or in par.

See Also

colors, palette, hsv, hcl, rgb, gray and col2rgb for translating to RGB numbers.

Examples

require(graphics)
A Color Wheel
pie(rep(1,12), col=rainbow(12))

##------ Some palettes ------------
demo.pal <-
function(n, border = if (n<32) "light gray" else NA,

main = paste("color palettes; n=",n),
ch.col = c("rainbow(n, start=.7, end=.1)", "heat.colors(n)",

"terrain.colors(n)", "topo.colors(n)",
"cm.colors(n)"))

{
nt <- length(ch.col)
i <- 1:n; j <- n / nt; d <- j/6; dy <- 2*d
plot(i,i+d, type="n", yaxt="n", ylab="", main=main)
for (k in 1:nt) {

rect(i-.5, (k-1)*j+ dy, i+.4, k*j,
col = eval(parse(text=ch.col[k])), border = border)

text(2*j, k * j +dy/4, ch.col[k])
}

}
n <- if(.Device == "postscript") 64 else 16

Since for screen, larger n may give color allocation problem
demo.pal(n)

pdf PDF Graphics Device

Description

pdf starts the graphics device driver for producing PDF graphics.

612 pdf

Usage

pdf(file = ifelse(onefile, "Rplots.pdf", "Rplot%03d.pdf"),
width, height, onefile, family, title, fonts, version,
paper, encoding, bg, fg, pointsize, pagecentre, colormodel,
useDingbats)

Arguments

file a character string giving the name of the file. For use with onefile=FALSE
give a C integer format such as "Rplot%03d.pdf" (the default in that case).
(See postscript for further details.)

width, height
the width and height of the graphics region in inches. The default values are 7.

onefile logical: if true (the default) allow multiple figures in one file. If false, generate
a file with name containing the page number for each page. Defaults to TRUE.

family the font family to be used, see postscript. Defaults to "Helvetica".

title title string to embed as the /Title field in the file. Defaults to "R Graphics
Output".

fonts a character vector specifying R graphics font family names for fonts which will
be included in the PDF file. Defaults to NULL.

version a string describing the PDF version that will be required to view the output. This
is a minimum, and will be increased (with a warning) if necessary. Defaults to
"1.4", but see ‘Details’.

paper the target paper size. The choices are "a4", "letter", "legal" (or "us")
and "executive" (and these can be capitalized), or "a4r" and "USr" for
rotated (‘landscape’). The default is "special", which means that the width
and height specify the paper size. A further choice is "default"; if this is
selected, the papersize is taken from the option "papersize" if that is set and
as "a4" if it is unset or empty. Defaults "special".

encoding the name of an encoding file. See postscript for details. Defaults to
"default".

bg the initial background color to be used. Defaults to "transparent".

fg the initial foreground color to be used. Defaults to "black".

pointsize the default point size to be used. Strictly speaking, in bp, that is 1/72 of an inch,
but approximately in points. Defaults to 12.

pagecentre logical: should the device region be centred on the page? – is only relevant for
paper != "special". Defaults to true.

colormodel a character string describing the color model: currently allowed values are
"rgb", "gray" and "cmyk". Defaults to "rgb".

useDingbats logical. Should small circles be rendered via the Dingbats font? Defaults to true,
which produces smaller and better output – this is provided for those who insist
on using broken PDF viewers.

Details

All arguments except file default to values given by pdf.options(). The ultimate defaults
are quoted in the arguments section.

pdf 613

pdf() opens the file file and the PDF commands needed to plot any graphics requested are sent
to that file.

The file argument is interpreted as a C integer format as used by sprintf, with inte-
ger argument the page number. The default gives files ‘Rplot001.pdf’, . . . , ‘Rplot999.pdf’,
‘Rplot1000.pdf’,

The family argument can be used to specify a PDF-specific font family as the initial/default font
for the device.

If a device-independent R graphics font family is specified (e.g., via par(family=) in the graph-
ics package), the PDF device makes use of the PostScript font mappings to convert the R graphics
font family to a PDF-specific font family description. (See the documentation for pdfFonts.)

R does not embed fonts in the PDF file, so it is only straightforward to use mappings to the font fam-
ilies that can be assumed to be available in any PDF viewer: "Times" (equivalently "serif"),
"Helvetica" (equivalently "sans") and "Courier" (equivalently "mono"). Other families
may be specified, but it is the user’s responsibility to ensure that these fonts are available on the
system and third-party software, e.g., Ghostscript, may be required to embed the fonts so that the
PDF can be included in other documents (e.g., LaTeX): see embedFonts. The URW-based fami-
lies described for postscript can be used with viewers set up to use URW fonts, which is usual
with those based on xpdf or Ghostscript. Since embedFonts makes use of Ghostscript, it should
be able to embed the URW-based families for use with other viewers.

See postscript for details of encodings, as the internal code is shared between the drivers. The
native PDF encoding is given in file ‘PDFDoc.enc’.

pdf writes uncompressed PDF. It is primarily intended for producing PDF graphics for inclusion
in other documents, and PDF-includers such as pdftex are usually able to handle compression.

The PDF produced is fairly simple, with each page being represented as a single stream. The R
graphics model does not distinguish graphics objects at the level of the driver interface.

The version argument declares the version of PDF that gets produced. The version must be
at least 1.4 for semi-transparent output to be understood, and at least 1.3 if CID fonts are to be
used: if these features are used the version number will be increased (with a warning). Specifying
a low version number is useful if you want to produce PDF output that can be viewed on older or
non-Adobe PDF viewers. (PDF 1.4 requires Acrobat 5 or later.)

Line widths as controlled by par(lwd=) are in multiples of 1/96 inch. Multiples less than 1 are
allowed. pch="." with cex = 1 corresponds to a square of side 1/72 inch, which is also the
‘pixel’ size assumed for graphics parameters such as "cra".

The paper argument sets the /MediaBox entry in the file, which defaults to width by height.
If it is set to something other than "special", a device region of the specified size is (by default)
centred on the rectangle given by the paper size: if either width or height is less than 0.1 or too
large to give a total margin of 0.5 inch, it is reset to the corresponding paper dimension minus 0.5.
Thus if you want the default behaviour of postscript use pdf(paper="a4r", width=0,
height=0) to centre the device region on a landscape A4 page with 0.25 inch margins.

When the background colour is fully transparent (as is the initial default value), the PDF produced
does not paint the background. Almost all PDF viewers will use a white canvas so the visual effect is
if the background were white. This will not be the case when printing onto coloured paper, though.

Color models

The default color model is RGB, and model "gray"maps RGB colors to greyscale using perceived
luminosity (biased towards green). "cmyk" outputs in CMYK colorspace. Nothing in R specifies
the interpretation of the RGB or CMYK color spaces, and the simplest possible conversion to
CMYK is used (http://en.wikipedia.org/wiki/CMYK_color_model#Mapping_
RGB_to_CMYK).

http://en.wikipedia.org/wiki/CMYK_color_model#Mapping_RGB_to_CMYK
http://en.wikipedia.org/wiki/CMYK_color_model#Mapping_RGB_to_CMYK

614 pdf

Conventions

This section describes the implementation of the conventions for graphics devices set out in the “R
Internals Manual”.

• The default device size is 7 inches square.

• Font sizes are in big points.

• The default font family is Helvetica.

• Line widths are as a multiple of 1/96 inch, with no minimum.

• Circles of any radius are allowed. Unless useDingbats = FALSE, opaque circles of less
than 10 big points radius are rendered using char 108 in the Dingbats font: all semi-transparent
and larger circles using a Bézier curve for each quadrant.

• Colours are interpreted by the viewing/printing application.

Note

Acrobat Reader does not use the fonts specified but rather emulates them from multiple-master
fonts. This can be seen in imprecise centering of characters, for example the multiply and divide
signs in Helvetica. This can be circumvented by embedding fonts where possible. Most other
viewers substitute fonts, e.g. URW fonts for the standard Helvetica and Times fonts, and these too
often have different font metrics from the true fonts.

Acrobat Reader 5.x and later can be extended by support for Asian and (so-called) Central European
fonts (the latter only for 7.x and later, part of the ‘Extended’ pack for 8.x and later), and these will
be needed for the full use of encodings other than Latin-1. See http://www.adobe.com/
products/acrobat/acrrasianfontpack.html for Reader 5.x to 8.x, and Updates on
http://www.adobe.com for 9.x.

See Also

pdfFonts, pdf.options, embedFonts, Devices, postscript. cairo_pdf and (on
Mac OS X only) quartz for other devices that can produce PDF.

More details of font families and encodings and especially handling text in a non-Latin-1 encoding
and embedding fonts can be found in

Paul Murrell and Brian Ripley (2006) Non-standard fonts in PostScript and PDF graphics. R News,
6(2):41–47. http://cran.r-project.org/doc/Rnews/Rnews_2006-2.pdf.

Examples

Not run:
Test function for encodings
TestChars <- function(encoding="ISOLatin1", ...)
{

pdf(encoding=encoding, ...)
par(pty="s")
plot(c(-1,16), c(-1,16), type="n", xlab="", ylab="",

xaxs="i", yaxs="i")
title(paste("Centred chars in encoding", encoding))

grid(17, 17, lty=1)
for(i in c(32:255)) {

x <- i %% 16
y <- i %/% 16
points(x, y, pch=i)

http://www.adobe.com/products/acrobat/acrrasianfontpack.html
http://www.adobe.com/products/acrobat/acrrasianfontpack.html
http://www.adobe.com
http://cran.r-project.org/doc/Rnews/Rnews_2006-2.pdf

pdf.options 615

}
dev.off()

}
there will be many warnings.
TestChars("ISOLatin2")
this does not view properly in older viewers.
TestChars("ISOLatin2", family="URWHelvetica")
works well for viewing in gs-based viewers, and often in xpdf.
End(Not run)

pdf.options Auxiliary Function to Set/View Defaults for Arguments of pdf

Description

The auxiliary function pdf.options can be used to set or view (if called without arguments) the
default values for some of the arguments to pdf.

pdf.options needs to be called before calling pdf, and the default values it sets can be over-
ridden by supplying arguments to pdf.

Usage

pdf.options(..., reset = FALSE)

Arguments

... arguments width, height, onefile, family, title, fonts, paper,
encoding, pointsize, bg, fg, pagecentre, useDingbats and
colormodel can be supplied.

reset logical: should the defaults be reset to their ‘factory-fresh’ values?

Details

If both reset = TRUE and ... are supplied the defaults are first reset to the ‘factory-fresh’
values and then the new values are applied.

Value

A named list of all the defaults. If any arguments are supplied the return values are the old values
and the result has the visibility flag turned off.

See Also

pdf, ps.options.

Examples

pdf.options(bg = "pink")
utils::str(pdf.options())
pdf.options(reset = TRUE) # back to factory-fresh

616 pictex

pictex A PicTeX Graphics Driver

Description

This function produces graphics suitable for inclusion in TeX and LaTeX documents.

Usage

pictex(file = "Rplots.tex", width = 5, height = 4, debug = FALSE,
bg = "white", fg = "black")

Arguments

file the file where output will appear.

width The width of the plot in inches.

height the height of the plot in inches.

debug should debugging information be printed.

bg the background color for the plot. Ignored.

fg the foreground color for the plot. Ignored.

Details

This driver does not have any font metric information, so the use of plotmath is not supported.

Multiple plots will be placed as separate environments in the output file.

Line widths are ignored except when setting the spacing of line textures. pch="." corresponds to
a square of side 1pt.

This device does not support colour (nor does the PicTeX package), and all colour settings are
ignored.

Conventions

This section describes the implementation of the conventions for graphics devices set out in the “R
Internals Manual”.

• The default device size is 5 inches by 5 inches.

• There is no pointsize argument: the default size is interpreted as 10 point.

• The only font family is cmss10.

• Line widths are only used when setting the spacing on line textures.

• Circle of any radius are allowed.

• Colour is not supported.

Author(s)

This driver was provided by Valerio Aimale 〈valerio@svpop.com.dist.unige.it〉 of the Department
of Internal Medicine, University of Genoa, Italy.

plotmath 617

References

Knuth, D. E. (1984) The TeXbook. Reading, MA: Addison-Wesley.

Lamport, L. (1994) LATEX: A Document Preparation System. Reading, MA: Addison-Wesley.

Goossens, M., Mittelbach, F. and Samarin, A. (1994) The LATEX Companion. Reading, MA:
Addison-Wesley.

See Also

postscript, Devices.

Examples

require(graphics)

pictex()
plot(1:11,(-5:5)^2, type='b', main="Simple Example Plot")
dev.off()
##--------------------
Not run:
%% LaTeX Example
\documentclass{article}
\usepackage{pictex}
\begin{document}
%...
\begin{figure}[h]
\centerline{\input{Rplots.tex}}
\caption{}

\end{figure}
%...
\end{document}

%%-- plain TeX Example --
\input pictex
$$ \input Rplots.tex $$
End(Not run)
##--------------------
unlink("Rplots.tex")

plotmath Mathematical Annotation in R

Description

If the text argument to one of the text-drawing functions (text, mtext, axis, legend) in R
is an expression, the argument is interpreted as a mathematical expression and the output will be
formatted according to TeX-like rules. Expressions can also be used for titles, subtitles and x- and
y-axis labels (but not for axis labels on persp plots).

In most cases other language objects (names and calls) are coerced to expressions and so can also
be used.

618 plotmath

Details

A mathematical expression must obey the normal rules of syntax for any R expression, but it is
interpreted according to very different rules than for normal R expressions.

It is possible to produce many different mathematical symbols, generate sub- or superscripts, pro-
duce fractions, etc.

The output from demo(plotmath) includes several tables which show the available features. In
these tables, the columns of grey text show sample R expressions, and the columns of black text
show the resulting output.

The available features are also described in the tables below:

Syntax Meaning
x + y x plus y
x - y x minus y
x*y juxtapose x and y
x/y x forwardslash y
x %+-% y x plus or minus y
x %/% y x divided by y
x %*% y x times y
x %.% y x cdot y
x[i] x subscript i
x^2 x superscript 2
paste(x, y, z) juxtapose x, y, and z
sqrt(x) square root of x
sqrt(x, y) yth root of x
x == y x equals y
x != y x is not equal to y
x < y x is less than y
x <= y x is less than or equal to y
x > y x is greater than y
x >= y x is greater than or equal to y
x %~~% y x is approximately equal to y
x %=~% y x and y are congruent
x %==% y x is defined as y
x %prop% y x is proportional to y
plain(x) draw x in normal font
bold(x) draw x in bold font
italic(x) draw x in italic font
bolditalic(x) draw x in bolditalic font
symbol(x) draw x in symbol font
list(x, y, z) comma-separated list
... ellipsis (height varies)
cdots ellipsis (vertically centred)
ldots ellipsis (at baseline)
x %subset% y x is a proper subset of y
x %subseteq% y x is a subset of y
x %notsubset% y x is not a subset of y
x %supset% y x is a proper superset of y
x %supseteq% y x is a superset of y
x %in% y x is an element of y
x %notin% y x is not an element of y
hat(x) x with a circumflex

plotmath 619

tilde(x) x with a tilde
dot(x) x with a dot
ring(x) x with a ring
bar(xy) xy with bar
widehat(xy) xy with a wide circumflex
widetilde(xy) xy with a wide tilde
x %<->% y x double-arrow y
x %->% y x right-arrow y
x %<-% y x left-arrow y
x %up% y x up-arrow y
x %down% y x down-arrow y
x %<=>% y x is equivalent to y
x %=>% y x implies y
x %<=% y y implies x
x %dblup% y x double-up-arrow y
x %dbldown% y x double-down-arrow y
alpha – omega Greek symbols
Alpha – Omega uppercase Greek symbols
theta1, phi1, sigma1, omega1 cursive Greek symbols
Upsilon1 capital upsilon with hook
aleph first letter of Hebrew alphabet
infinity infinity symbol
partialdiff partial differential symbol
nabla nabla, gradient symbol
32*degree 32 degrees
60*minute 60 minutes of angle
30*second 30 seconds of angle
displaystyle(x) draw x in normal size (extra spacing)
textstyle(x) draw x in normal size
scriptstyle(x) draw x in small size
scriptscriptstyle(x) draw x in very small size
underline(x) draw x underlined
x ~~ y put extra space between x and y
x + phantom(0) + y leave gap for "0", but don’t draw it
x + over(1, phantom(0)) leave vertical gap for "0" (don’t draw)
frac(x, y) x over y
over(x, y) x over y
atop(x, y) x over y (no horizontal bar)
sum(x[i], i==1, n) sum x[i] for i equals 1 to n
prod(plain(P)(X==x), x) product of P(X=x) for all values of x
integral(f(x)*dx, a, b) definite integral of f(x) wrt x
union(A[i], i==1, n) union of A[i] for i equals 1 to n
intersect(A[i], i==1, n) intersection of A[i]
lim(f(x), x %->% 0) limit of f(x) as x tends to 0
min(g(x), x > 0) minimum of g(x) for x greater than 0
inf(S) infimum of S
sup(S) supremum of S
x^y + z normal operator precedence
x^(y + z) visible grouping of operands
x^{y + z} invisible grouping of operands
group("(",list(a, b),"]") specify left and right delimiters
bgroup("(",atop(x,y),")") use scalable delimiters

620 plotmath

group(lceil, x, rceil) special delimiters

The symbol font uses Adobe Symbol encoding so, for example, a lower case mu can be obtained
either by the special symbol mu or by symbol("m"). This provides access to symbols that have
no special symbol name, for example, the universal, or forall, symbol is symbol("\042").

Note to TeX users: TeX’s \Upsilon is Upsilon1, TeX’s \varepsilon is close to epsilon,
and there is no equivalent of TeX’s \epsilon. TeX’s \varpi is close to omega1. vartheta,
varphi and varsigma are allowed as synonyms for theta1, phi1 and sigma1.

sigma1 is also known as stigma, its Unicode name.

Control characters (e.g. \n) are not interpreted in character strings in plotmath, unlike normal
plotting.

The fonts used are taken from the current font family, and so can be set by par(family=) in
base graphics, and gpar(fontfamily=) in package grid.

References

Murrell, P. and Ihaka, R. (2000) An approach to providing mathematical annotation in plots. Journal
of Computational and Graphical Statistics, 9, 582–599.

The symbol codes can be found in octal in the Adobe reference manuals, e.g. for Postscript http:
//www.adobe.com/products/postscript/pdfs/PLRM.pdf or PDF http://www.
adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf and in decimal, octal
and hex at http://www.stat.auckland.ac.nz/~paul/R/CM/AdobeSym.html.

See Also

demo(plotmath), axis, mtext, text, title, substitute quote, bquote

Examples

require(graphics)

x <- seq(-4, 4, len = 101)
y <- cbind(sin(x), cos(x))
matplot(x, y, type = "l", xaxt = "n",

main = expression(paste(plain(sin) * phi, " and ",
plain(cos) * phi)),

ylab = expression("sin" * phi, "cos" * phi), # only 1st is taken
xlab = expression(paste("Phase Angle ", phi)),
col.main = "blue")

axis(1, at = c(-pi, -pi/2, 0, pi/2, pi),
labels = expression(-pi, -pi/2, 0, pi/2, pi))

How to combine "math" and numeric variables :
plot(1:10, type="n", xlab="", ylab="", main = "plot math & numbers")
theta <- 1.23 ; mtext(bquote(hat(theta) == .(theta)))
for(i in 2:9)

text(i,i+1, substitute(list(xi,eta) == group("(",list(x,y),")"),
list(x=i, y=i+1)))

note that both of these use calls rather than expressions.

plot(1:10, 1:10)
text(4, 9, expression(hat(beta) == (X^t * X)^{-1} * X^t * y))
text(4, 8.4, "expression(hat(beta) == (X^t * X)^{-1} * X^t * y)",

http://www.adobe.com/products/postscript/pdfs/PLRM.pdf
http://www.adobe.com/products/postscript/pdfs/PLRM.pdf
http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
http://www.stat.auckland.ac.nz/~paul/R/CM/AdobeSym.html

png 621

cex = .8)
text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n)))
text(4, 6.4, "expression(bar(x) == sum(frac(x[i], n), i==1, n))",

cex = .8)
text(8, 5, expression(paste(frac(1, sigma*sqrt(2*pi)), " ",

plain(e)^{frac(-(x-mu)^2, 2*sigma^2)})),
cex = 1.2)

some other useful symbols
plot.new(); plot.window(c(0,4), c(15,1))
text(1, 1, "universal", adj=0); text(2.5, 1, "\\042")
text(3, 1, expression(symbol("\042")))
text(1, 2, "existential", adj=0); text(2.5, 2, "\\044")
text(3, 2, expression(symbol("\044")))
text(1, 3, "suchthat", adj=0); text(2.5, 3, "\\047")
text(3, 3, expression(symbol("\047")))
text(1, 4, "therefore", adj=0); text(2.5, 4, "\\134")
text(3, 4, expression(symbol("\134")))
text(1, 5, "perpendicular", adj=0); text(2.5, 5, "\\136")
text(3, 5, expression(symbol("\136")))
text(1, 6, "circlemultiply", adj=0); text(2.5, 6, "\\304")
text(3, 6, expression(symbol("\304")))
text(1, 7, "circleplus", adj=0); text(2.5, 7, "\\305")
text(3, 7, expression(symbol("\305")))
text(1, 8, "emptyset", adj=0); text(2.5, 8, "\\306")
text(3, 8, expression(symbol("\306")))
text(1, 9, "angle", adj=0); text(2.5, 9, "\\320")
text(3, 9, expression(symbol("\320")))
text(1, 10, "lefrangle", adj=0); text(2.5, 10, "\\341")
text(3, 10, expression(symbol("\341")))
text(1, 11, "rightangle", adj=0); text(2.5, 11, "\\361")
text(3, 11, expression(symbol("\361")))

png BMP, JPEG, PNG and TIFF graphics devices

Description

Graphics devices for JPEG, PNG or TIFF format bitmap files.

Usage

bmp(filename = "Rplot%03d.bmp",
width = 480, height = 480, units = "px",
pointsize = 12, bg = "white", res = NA, ...,
type = c("cairo", "Xlib", "quartz"), antialias)

jpeg(filename = "Rplot%03d.jpeg",
width = 480, height = 480, units = "px",
pointsize = 12, quality = 75, bg = "white", res = NA, ...,
type = c("cairo", "Xlib", "quartz"), antialias)

png(filename = "Rplot%03d.png",
width = 480, height = 480, units = "px",

622 png

pointsize = 12, bg = "white", res = NA, ...,
type = c("cairo", "Xlib", "cairo1", "quartz"), antialias)

tiff(filename = "Rplot%03d.tiff",
width = 480, height = 480, units = "px", pointsize = 12,
compression = c("none", "rle", "lzw", "jpeg", "zip"),
bg = "white", res = NA, ...,
type = c("cairo", "Xlib", "quartz"), antialias)

Arguments

filename the name of the output file. The page number is substituted if a C integer format
is included in the character string, as in the default. (The result must be less than
PATH_MAX characters long, and may be truncated if not. See postscript for
further details.) Tilde expansion is performed where supported by the platform.

width the width of the device.

height the height of the device.

units The units in which height and width are given. Can be px (pixels, the
default), in (inches), cm or mm.

pointsize the default pointsize of plotted text, interpreted as big points (1/72 inch) at res
dpi.

bg the initial background colour: can be overridden by setting par("bg").

quality the ‘quality’ of the JPEG image, as a percentage. Smaller values will give more
compression but also more degradation of the image.

compression the type of compression to be used.

res The nominal resolution in dpi which will be recorded in the bitmap file, if a
positive integer. Also used for units other than the default, and to convert
points to pixels.

... for type = "Xlib" only, additional arguments to the underlying X11 device,
such as gamma and fonts.

type character string, one of "Xlib" (the only type prior to R 2.7.0) or "quartz"
(some Mac OS X builds) or "cairo" or "cairo1". The latter two will
only be available if the system was compiled with support for cairo – otherwise
"Xlib" will be used. The default is set by getOption("bitmapType")
– the ‘out of the box’ default is "quartz" or "cairo" where available, oth-
erwise "Xlib".

antialias for type = "cairo", giving the type of anti-aliasing (if any) to be used. See
X11. The default is set by X11.options.

Details

Plots in PNG and JPEG format can easily be converted to many other bitmap formats, and both can
be displayed in modern web browsers. The PNG format is lossless and is best for line diagrams and
blocks of colour. The JPEG format is lossy, but may be useful for image plots, for example. BMP
is a standard format on Windows. TIFF is a meta-format: the default format written by tiff is
lossless and stores RGB (and alpha where appropriate) values uncompressed—such files are widely
accepted, which is their main virtue over PNG.

png supports transparent backgrounds: use bg = "transparent". Not all PNG viewers ren-
der files with transparency correctly. When transparency is in use in the type = "Xlib" vari-
ant a very light grey is used as the background and so appear as transparent if used in the plot.

png 623

This allows opaque white to be used, as in the example. The type = "cairo" and type =
"cairo1" variants allows semi-transparent colours, including on a transparent or semi-transparent
background.

tiff(type = "cairo") supports semi-transparent colours, including on a transparent or
semi-transparent background.

R can be compiled without support for each of these devices: this will be reported if you attempt to
use them on a system where they are not supported. For type = "Xlib" they may not be usable
unless the X11 display is available to the owner of the R process. type = "cairo" requires
cairo 1.2 or later. type = "quartz" uses the quartz device and so is only available where
that is (on some Mac OS X) builds. It is at present experimental.

By default no resolution is recorded in the file. Viewers will often assume a nominal resolution of
72dpi when none is recorded. As resolutions in PNG files are recorded in pixels/metre, the reported
dpi value will be changed slightly.

For graphics parameters that make use of dimensions in inches (including font sizes in points) the
resolution used is res (or 72dpi if unset).

png will use a palette if there are less than 256 colours on the page, and record a 24-bit RGB file
otherwise (or a 32-bit RGBA file if type = "cairo" and non-opaque colours are used).

png(type = "cairo1") uses cairo directly to output the file – the resolution is not recorded
and the PNG format used is chosen by cairo (and undocumented – it is currently 32-bit RGBA, that
is with an alpha channel whether used or not). It is included for use on platforms with cairo 1.0
(where type = "cairo" is not available).

Value

A plot device is opened: nothing is returned to the R interpreter.

Warnings

Note that by default the width and height are in pixels not inches. A warning will be issued if
both are less than 20.

If you plot more than one page on one of these devices and do not include something like %d for
the sequence number in file, the file will contain the last page plotted.

Conventions

This section describes the implementation of the conventions for graphics devices set out in the “R
Internals Manual”.

• The default device size is in pixels.

• Font sizes are in big points interpreted at res dpi.

• The default font family is Helvetica.

• Line widths in 1/96 inch, minimum one pixel for type = "Xlib", 0.01 for type =
"cairo".

• For type = "Xlib" circle radii are in pixels with minimum one.

• Colours are interpreted by the viewing application.

For type = "quartz" see the help for quartz.

624 postscript

Note

For type = "Xlib" these devices are based on the X11 device. The colour model used will be
that set up by X11.options at the time the first Xlib-based devices was opened (or the first after
all such devices have been closed).

Author(s)

Guido Masarotto and Brian Ripley

See Also

Devices, dev.print

capabilities to see if these devices are supported by this build of R, and if type =
"cairo" is supported.

bitmap provides an alternative way to generate PNG and JPEG plots that does not depend on
accessing the X11 display but does depend on having GhostScript installed. (Devices GDD in CRAN
package GDD and CairoJPEG / CairoPNG in CRAN package Cairo are further alternatives
using several other additional pieces of software.)

Examples

these examples will work only if the devices are available
and either cairo or an X11 display is available.

copy current plot to a (large) PNG file
Not run: dev.print(png, file="myplot.png", width=1024, height=768)

png(file="myplot.png", bg="transparent")
plot(1:10)
rect(1, 5, 3, 7, col="white")
dev.off()

will make myplot1.jpeg and myplot2.jpeg
jpeg(file="myplot%d.jpeg")
example(rect)
dev.off()

postscript PostScript Graphics

Description

postscript starts the graphics device driver for producing PostScript graphics.

Usage

postscript(file = ifelse(onefile, "Rplots.ps", "Rplot%03d.ps"),
onefile, family, title, fonts, encoding, bg, fg,
width, height, horizontal, pointsize,
paper, pagecentre, print.it, command, colormodel)

postscript 625

Arguments

file a character string giving the name of the file. If it is "", the output is piped to
the command given by the argument command. If it is of the form "|cmd",
the output is piped to the command given by ‘cmd’.
For use with onefile = FALSE give a printf format such as
"Rplot%03d.ps" (the default in that case). The string should not otherwise
contain a %: if it is really necessary, use %% in the string for % in the file name.
A single integer format matching the regular expression "%[#0 +=-]*[0-
9.]*[diouxX]" is allowed.

onefile logical: if true (the default) allow multiple figures in one file. If false, generate
a file name containing the page number for each page and use an EPSF header
and no DocumentMedia comment. Defaults to the TRUE.

family the initial font family to be used, normally as a character string. See the section
‘Families’. Defaults to "Helvetica".

title title string to embed as the Title comment in the file. Defaults to "R
Graphics Output".

fonts a character vector specifying additional R graphics font family names for font
families whose declarations will be included in the PostScript file and are avail-
able for use with the device. See ‘Families’ below. Defaults to NULL.

encoding the name of an encoding file. Defaults to "default". The latter is interpreted
as ‘"ISOLatin1.enc"’ unless the locale is recognized as corresponding to a lan-
guage using ISO 8859-5,7,13,15 or KOI8-R,U. The file is looked forin the ‘enc’
directory of package grDevices if the path does not contain a path separator. An
extension ".enc" can be omitted.

bg the initial background color to be used. If "transparent" (or any other
non-opaque colour), no background is painted. Defaults to "transparent".

fg the initial foreground color to be used. Defaults to "black".
width, height

the width and height of the graphics region in inches. Default to t0.
If paper != "special" and width or height is less than 0.1 or too
large to give a total margin of 0.5 inch, it is reset to the corresponding paper
dimension minus 0.5.

horizontal the orientation of the printed image, a logical. Defaults to true, that is landscape
orientation on paper sizes with width less than height.

pointsize the default point size to be used. Strictly speaking, in bp, that is 1/72 of an inch,
but approximately in points. Defaults to 12.

paper the size of paper in the printer. The choices are "a4", "letter" (or
"us"), "legal" and "executive" (and these can be capitalized). Also,
"special" can be used, when arguments width and height specify the
paper size. A further choice is "default" (the default): If this is selected, the
papersize is taken from the option "papersize" if that is set and to "a4" if
it is unset or empty.

pagecentre logical: should the device region be centred on the page? Defaults to true.
print.it logical: should the file be printed when the device is closed? (This only applies

if file is a real file name.) Defaults to false.
command the command to be used for ‘printing’. Defaults to "default", the value of

option "printcmd". The length limit is 2*PATH_MAX, typically 8096 bytes.
colormodel a character string describing the color model: currently allowed values as

"rgb", "rgb-nogray", "gray" and "cmyk". Defaults to "rgb".

626 postscript

Details

All arguments except file default to values given by ps.options(). The ultimate defaults are
quoted in the arguments section.

postscript opens the file file and the PostScript commands needed to plot any graphics
requested are written to that file. This file can then be printed on a suitable device to obtain hard
copy.

The file argument is interpreted as a C integer format as used by sprintf, with integer argu-
ment the page number. The default gives files ‘Rplot001.ps’, . . . , ‘Rplot999.ps’, ‘Rplot1000.ps’,
. . . .

The postscript produced for a single R plot is EPS (Encapsulated PostScript) compatible, and can be
included into other documents, e.g., into LaTeX, using \includegraphics{<filename>}.
For use in this way you will probably want to use setEPS() to set the defaults as horizontal
= FALSE, onefile = FALSE, paper = "special". Note that the bounding box is for
the device region: if you find the white space around the plot region excessive, reduce the margins
of the figure region via par(mar=).

Most of the PostScript prologue used is taken from the R character vector .ps.prolog. This
is marked in the output, and can be changed by changing that vector. (This is only advisable for
PostScript experts: the standard version is in namespace:grDevices.)

A PostScript device has a default family, which can be set by the user via family. If other font
families are to be used when drawing to the PostScript device, these must be declared when the
device is created via fonts; the font family names for this argument are R graphics font family
names (see the documentation for postscriptFonts).

Line widths as controlled by par(lwd=) are in multiples of 1/96 inch: multiples less than 1 are
allowed. pch="." with cex = 1 corresponds to a square of side 1/72 inch, which is also the
‘pixel’ size assumed for graphics parameters such as "cra".

When the background colour is fully transparent (as is the initial default value), the PostScript
produced does not paint the background. Almost all PostScript viewers will use a white canvas
so the visual effect is if the background were white. This will not be the case when printing onto
coloured paper, though.

Families

Font families are collections of fonts covering the five font faces, (conventionally plain, bold, italic,
bold-italic and symbol) selected by the graphics parameter par(font=) or the grid parameter
gpar(fontface=). Font families can be specified either as an an initial/default font family
for the device via the family argument or after the device is opened by the graphics parameter
par(family=) or the grid parameter gpar(fontfamily=). Families which will be used in
addition to the initial family must be specified in the fonts argument when the device is opened.

Font families are declared via a call to postscriptFonts.

The argument family specifies the initial/default font family to be used. In normal use it is one
of "AvantGarde", "Bookman", "Courier", "Helvetica", "Helvetica-Narrow",
"NewCenturySchoolbook", "Palatino" or "Times", and refers to the standard Adobe
PostScript fonts families of those names which are included (or cloned) in all common PostScript
devices.

Many PostScript emulators (including those based on ghostscript) use the URW equivalents
of these fonts, which are "URWGothic", "URWBookman", "NimbusMon", "NimbusSan",
"NimbusSanCond", "CenturySch", "URWPalladio" and "NimbusRom" respectively.
If your PostScript device is using URW fonts, you will obtain access to more characters and more

postscript 627

appropriate metrics by using these names. To make these easier to remember, "URWHelvetica"
== "NimbusSan" and "URWTimes" == "NimbusRom" are also supported.

Another type of family makes use of CID-keyed fonts for East Asian languages – see
postscriptFonts.

The family argument is normally a character string naming a font family, but family objects
generated by Type1Font and CIDFont are also accepted. For compatibility with earlier versions
of R, the initial family can also be specified as a vector of four or five afm files.

Note that R does not embed the font(s) used in the PostScript output: see embedFonts for a utility
to help do so.

Encodings

Encodings describe which glyphs are used to display the character codes (in the range 0–255). Most
commonly R uses ISOLatin1 encoding, and the examples for text are in that encoding. However,
the encoding used on machines running R may well be different, and by using the encoding
argument the glyphs can be matched to encoding in use. This suffices for European and Cyrillic
languages, but not for CJK languages. For the latter, composite CID fonts are used. These fonts are
useful for other languages: for example they may contain Greek glyphs. (The rest of this section
applies only when CID fonts are not used.)

None of this will matter if only ASCII characters (codes 32–126) are used as all the encodings (ex-
cept "TeXtext") agree over that range. Some encodings are supersets of ISOLatin1, too. How-
ever, if accented and special characters do not come out as you expect, you may need to change the
encoding. Some other encodings are supplied with R: "WinAnsi.enc" and "MacRoman.enc"
correspond to the encodings normally used on Windows and Classic MacOS (at least by Adobe),
and "PDFDoc.enc" is the first 256 characters of the Unicode encoding, the standard for PDF.
There are also encodings "ISOLatin2.enc", "CP1250.enc", "ISOLatin7.enc" (ISO
8859-13), "CP1257.enc", and "ISOLatin9.enc" (ISO 8859-15), "Cyrillic.enc" (ISO
8859-5), "KOI8-R.enc", "KOI8-U.enc", "CP1251.enc", "Greek.enc" (ISO 8859-7)
and "CP1253.enc". Note that many glyphs in these encodings are not in the fonts corresponding
to the standard families. (The Adobe ones for all but Courier, Helvetica and Times cover little more
than Latin-1, whereas the URW ones also cover Latin-2, Latin-7, Latin-9 and Cyrillic but no Greek.
The Adobe exceptions cover the Latin character sets, but not the Euro.)

If you specify the encoding, it is your responsibility to ensure that the PostScript font contains the
glyphs used. One issue here is the Euro symbol which is in the WinAnsi and MacRoman encodings
but may well not be in the PostScript fonts. (It is in the URW variants; it is not in the supplied
Adobe Font Metric files.)

There is an exception. Character 45 ("-") is always set as minus (its value in Adobe ISOLatin1)
even though it is hyphen in the other encodings. Hyphen is available as character 173 (octal 0255)
in all the Latin encodings, Cyrillic and Greek. (This can be entered as "\uad" in a UTF-8 locale.)
There are some discrepancies in accounts of glyphs 39 and 96: the supplied encodings (except
CP1250 and CP1251) treat these as ‘quoteright’ and ‘quoteleft’ (rather than ‘quotesingle’/‘acute’
and ‘grave’ respectively), as they are in the Adobe documentation.

TeX fonts

TeX has traditionally made use of fonts such as Computer Modern which are encoded rather differ-
ently, in a 7-bit encoding. This encoding can be specified by encoding = "TeXtext.enc",
taking care that the ASCII characters < > \ _ { } are not available in those fonts.

There are supplied families "ComputerModern" and "ComputerModernItalic" which
use this encoding, and which are only supported for postscript (and not pdf). They are in-
tended to use with the Type 1 versions of the TeX CM fonts. It will normally be possible to include

628 postscript

such output in TeX or LaTeX provided it is processed with dvips -Ppfb -j0 or the equivalent
on your system. (-j0 turns off font subsetting.) When family = "ComputerModern" is
used, the italic/bold-italic fonts used are slanted fonts (cmsl10 and cmbxsl10). To use text italic
fonts instead, set family = "ComputerModernItalic".

These families use the TeX math italic and symbol fonts for a comprehensive but incomplete cover-
age of the glyphs covered by the Adobe symbol font in other families. This is achieved by special-
casing the postscript code generated from the supplied ‘CM_symbol_10.afm’.

Color models

The default color model is RGB, with pure gray colors expressed as greyscales. Color model "rgb-
nogray" uses only RGB, model "cmyk" only CMYK, and model "gray" only greyscales
(and selecting any other colour is an error). Nothing in R specifies the interpretation of the
RGB or CMYK color spaces, and the simplest possible conversion to CMYK is used (http:
//en.wikipedia.org/wiki/CMYK_color_model#Mapping_RGB_to_CMYK).

Printing

A postscript plot can be printed via postscript in two ways.

1. Setting print.it = TRUE causes the command given in argument command to be called
with argument "file" when the device is closed. Note that the plot file is not deleted unless
command arranges to delete it.

2. file="" or file="|cmd" can be used to print using a pipe on systems that support
‘popen’. Failure to open the command will probably be reported to the terminal but not
to ‘popen’, in which case close the device by dev.off immediately.

Conventions

This section describes the implementation of the conventions for graphics devices set out in the “R
Internals Manual”.

• The default device size is 7 inches square.

• Font sizes are in big points.

• The default font family is Helvetica.

• Line widths are as a multiple of 1/96 inch, with no minimum.

• Circle of any radius are allowed.

• Colours are interpreted by the viewing/printing application.

Author(s)

Support for Computer Modern fonts is based on a contribution by Brian D’Urso
〈durso@hussle.harvard.edu〉.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

http://en.wikipedia.org/wiki/CMYK_color_model#Mapping_RGB_to_CMYK
http://en.wikipedia.org/wiki/CMYK_color_model#Mapping_RGB_to_CMYK

postscript 629

See Also

postscriptFonts, Devices, check.options which is called from both ps.options
and postscript. cairo_ps for another device that can produce PostScript.

More details of font families and encodings and especially handling text in a non-Latin-1 encoding
and embedding fonts can be found in

Paul Murrell and Brian Ripley (2006) Non-standard fonts in PostScript and PDF graphics. R News,
6(2):41–47. http://cran.r-project.org/doc/Rnews/Rnews_2006-2.pdf.

Examples

require(graphics)
Not run:
open the file "foo.ps" for graphics output
postscript("foo.ps")
produce the desired graph(s)
dev.off() # turn off the postscript device
postscript("|lp -dlw")
produce the desired graph(s)
dev.off() # plot will appear on printer

for URW PostScript devices
postscript("foo.ps", family = "NimbusSan")

for inclusion in Computer Modern TeX documents, perhaps
postscript("cm_test.eps", width = 4.0, height = 3.0,

horizontal = FALSE, onefile = FALSE, paper = "special",
family = "ComputerModern", encoding = "TeXtext.enc")

The resultant postscript file can be used by dvips -Ppfb -j0.

To test out encodings, you can use
TestChars <- function(encoding="ISOLatin1", family="URWHelvetica")
{

postscript(encoding=encoding, family=family)
par(pty="s")
plot(c(-1,16), c(-1,16), type="n", xlab="", ylab="",

xaxs="i", yaxs="i")
title(paste("Centred chars in encoding", encoding))
grid(17, 17, lty=1)
for(i in c(32:255)) {

x <- i %% 16
y <- i %/% 16
points(x, y, pch=i)

}
dev.off()

}
there will be many warnings. We use URW to get a complete enough
set of font metrics.
TestChars()
TestChars("ISOLatin2")
TestChars("WinAnsi")
End(Not run)

http://cran.r-project.org/doc/Rnews/Rnews_2006-2.pdf

630 postscriptFonts

postscriptFonts PostScript and PDF Font Families

Description

These functions handle the translation of a R graphics font family name to a PostScript or PDF font
description, used by the postscript or pdf graphics devices.

Usage

postscriptFonts(...)
pdfFonts(...)

Arguments

... either character strings naming mappings to display, or named arguments speci-
fying mappings to add or change.

Details

If these functions are called with no argument they list all the existing mappings, whereas if they
are called with named arguments they add (or change) mappings.

A PostScript or PDF device is created with a default font family (see the documentation for
postscript), but it is also possible to specify a font family when drawing to the device (for
example, see the documentation for "family" in par and for "fontfamily" in gpar in the
grid package).

The font family sent to the device is a simple string name, which must be mapped to a set of
PostScript fonts. Separate lists of mappings for postscript and pdf devices are maintained for
the current R session and can be added to by the user.

The postscriptFonts and pdfFonts functions can be used to list existing mappings and
to define new mappings. The Type1Font and CIDFont functions can be used to create new
mappings, when the xxxFonts function is used to add them to the database. See the examples.

Default mappings are provided for three device-independent family names: "sans" for a sans-serif
font (to "Helvetica"), "serif" for a serif font (to "Times") and "mono" for a monospaced
font (to "Courier").

Mappings for a number of standard Adobe fonts (and URW equivalents) are also pro-
vided: "AvantGarde", "Bookman", "Courier", "Helvetica", "Helvetica-
Narrow", "NewCenturySchoolbook", "Palatino" and "Times"; "URWGothic",
"URWBookman", "NimbusMon", "NimbusSan" (synonym "URWHelvetica"),
"NimbusSanCond", "CenturySch", "URWPalladio" and "NimbusRom" (synonym
"URWTimes").

There are also mappings for "ComputerModern" and "ComputerModernItalic".

Finally, there are some default mappings for East Asian locales described in a separate section.

The specification of font metrics and encodings is described in the help for the postscript
function.

The fonts are not embedded in the resulting PostScript or PDF file, so software including the
PostScript or PDF plot file should either embed the font outlines (usually from ‘.pfb’ or ‘.pfa’

postscriptFonts 631

files) or use DSC comments to instruct the print spooler or including application to do so (see also
embedFonts).

A font family has both an R-level name, the argument name used when postscriptFonts was
called, and an internal name, the family component. These two names are the same for all the
pre-defined font families.

Once a font family is in use it cannot be changed. ‘In use’ means that it has been specified via a
family or fonts argument to an invocation of the same graphics device already in the R session.
(For these purposes xfig counts the same as postscript but only uses some of the predefined
mappings.)

Value

A list of one or more font mappings.

East Asian fonts

There are some default mappings for East Asian locales:
"Japan1", "Japan1HeiMin", "Japan1GothicBBB", and "Japan1Ryumin" for
Japanese; "Korea1" and "Korea1deb" for Korean; "GB1" (Simplified Chinese) for mainland
China and Singapore; "CNS1" (Traditional Chinese) for Hong Kong and Taiwan.

These refer to the following fonts

Japan1 (PS) HeiseiKakuGo-W5
Linotype Japanese printer font

Japan1 (PDF) KozMinPro-Regular-Acro
from Adobe Reader 7.0 Japanese Font Pack

Japan1HeiMin (PS) HeiseiMin-W3
Linotype Japanese printer font

Japan1HeiMin (PDF) HeiseiMin-W3-Acro
from Adobe Reader 7.0 Japanese Font Pack

Japan1GothicBBB GothicBBB-Medium
Japanese-market PostScript printer font

Japan1Ryumin Ryumin-Light
Japanese-market PostScript printer font

Korea1 (PS) Baekmuk-Batang
TrueType font found on some Linux systems

Korea1 (PDF) HYSMyeongJoStd-Medium-Acro
from Adobe Reader 7.0 Korean Font Pack

Korea1deb (PS) Batang-Regular
another name for Baekmuk-Batang

Korea1deb (PDF) HYGothic-Medium-Acro
from Adobe Reader 4.0 Korean Font Pack

GB1 (PS) BousungEG-Light-GB
TrueType font found on some Linux systems

GB1 (PDF) STSong-Light-Acro
from Adobe Reader 7.0 Simplified Chinese Font Pack

CNS1 (PS) MOESung-Regular
Ken Lunde’s CJKV resources

CNS1 (PDF) MSungStd-Light-Acro
from Adobe Reader 7.0 Traditional Chinese Font Pack

Baekmuk-Batang can be found at ftp://ftp.mizi.com/pub/baekmuk/.

ftp://ftp.mizi.com/pub/baekmuk/

632 ps.options

BousungEG-Light-GB can be found at ftp://ftp.gnu.org/pub/non-gnu/
chinese-fonts-truetype/. Ken Lunde’s CJKV resources are at ftp://ftp.oreilly.
com/pub/examples/nutshell/cjkv/adobe/samples/. These will need to be in-
stalled or otherwise made available to the postscript/PDF interpreter such as ghostscript (and not
all interpreters can handle TrueType fonts).

You may well find that your postscript/PDF interpreters has been set up to provide aliases for many
of these fonts. For example, ghostscript on Windows can optionally be installed to map common
CJK fonts names to Windows TrueType fonts. (You may want to add the -Acro versions as well.)

Adding a mapping for a CID-keyed font is for gurus only.

Author(s)

Support for Computer Modern fonts is based on a contribution by Brian D’Urso
〈durso@hussle.harvard.edu〉.

See Also

postscript and pdf; Type1Font and CIDFont for specifying new font mappings.

Examples

postscriptFonts()
This duplicates "ComputerModernItalic".
CMitalic <- Type1Font("ComputerModern2",

c("CM_regular_10.afm", "CM_boldx_10.afm",
"cmti10.afm", "cmbxti10.afm",
"CM_symbol_10.afm"),

encoding = "TeXtext.enc")
postscriptFonts(CMitalic = CMitalic)

A CID font for Japanese using a different CMap and
corresponding cmapEncoding.
`Jp_UCS-2` <- CIDFont("TestUCS2",

c("Adobe-Japan1-UniJIS-UCS2-H.afm",
"Adobe-Japan1-UniJIS-UCS2-H.afm",
"Adobe-Japan1-UniJIS-UCS2-H.afm",
"Adobe-Japan1-UniJIS-UCS2-H.afm"),

"UniJIS-UCS2-H", "UCS-2")
pdfFonts(`Jp_UCS-2` = `Jp_UCS-2`)
names(pdfFonts())

ps.options Auxiliary Function to Set/View Defaults for Arguments of postscript

Description

The auxiliary function ps.options can be used to set or view (if called without arguments) the
default values for some of the arguments to postscript.

ps.options needs to be called before calling postscript, and the default values it sets can
be overridden by supplying arguments to postscript.

ftp://ftp.gnu.org/pub/non-gnu/chinese-fonts-truetype/
ftp://ftp.gnu.org/pub/non-gnu/chinese-fonts-truetype/
ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/adobe/samples/
ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/adobe/samples/

ps.options 633

Usage

ps.options(..., reset = FALSE, override.check = FALSE)

setEPS(...)
setPS(...)

Arguments

... arguments onefile, family, title, fonts, encoding, bg, fg, width,
height, horizontal, pointsize, paper, pagecentre, print.it,
command and colormodel can be supplied. onefile, horizontal and
paper are ignored for setEPS and setPS.

reset logical: should the defaults be reset to their ‘factory-fresh’ values?

override.check
logical argument passed to check.options. See the Examples.

Details

If both reset = TRUE and ... are supplied the defaults are first reset to the ‘factory-fresh’
values and then the new values are applied.

For backwards compatibility argument append is accepted but ignored with a warning.

setEPS and setPS are wrappers to set defaults appropriate for figures for inclusion in documents
(the default size is 7 inches square unless width or height is supplied) and for spooling to a
PostScript printer respectively. For historical reasons the latter is the ultimate default.

Value

A named list of all the previous defaults. If ... or reset = TRUE is supplied the result has the
visibility flag turned off.

See Also

postscript, pdf.options

Examples

ps.options(bg = "pink")
utils::str(ps.options())

---- error checking of arguments: ----
ps.options(width=0:12, onefile=0, bg=pi)
override the check for 'width', but not 'bg':
ps.options(width=0:12, bg=pi, override.check = c(TRUE,FALSE))
utils::str(ps.options())
ps.options(reset = TRUE) # back to factory-fresh

634 quartz

quartz MacOS X Quartz Device

Description

quartz starts a graphics device driver for the Mac OS X System. It supports plotting both to the
screen (the default) and to various graphics file formats.

Usage

quartz(title, width, height, pointsize, family, fontsmooth, antialias,
type, file = NULL, bg, canvas, dpi)

quartz.options(..., reset = FALSE)

Arguments

title title for the Quartz window (applies to on-screen output only), default "Quartz
%d". A C-style format for an integer will be substituted by the device number
(see the file argument to postscript for further details).

width the width of the plotting area in inches. Default 7.

height the height of the plotting area in inches. Default 7.

pointsize the default pointsize to be used. Default 12.

family this is the family name of the font that will be used by the device. Default
"Helvetica".

fontsmooth logical specifying if fonts should be smoothed. Default TRUE. Currently un-
used.

antialias whether to use antialiasing. Default TRUE.

type the type of output to use. See ‘Details’ for more information. Default
"native".

file an optional target for the graphics device. The default, NULL, selects a default
name where one is needed. See ‘Details’ for more information.

bg the initial background colour to use for the device. Default "transparent".
An opaque colour such as "white" will normally be required on off-screen
types that support transparency such as "png" and "tiff".

canvas canvas colour to use for an on-screen device. Default "white", and will be
forced to be an opaque colour.

dpi resolution of the output. The default (NA_real_) for an on-screen display de-
faults to the resolution of the main screen, and to 72 dpi otherwise. See ‘Details’.

... Any of the arguments to quartz except file.

reset logical: should the defaults be reset to their defaults?

quartz 635

Details

The defaults for all but one of the arguments of quartz are set by quartz.options: the
‘Arguments’ section gives the ‘factory-fresh’ defaults.

The Quartz graphics device supports a variety of output types. On-screen output types are "" or
"native" (picks the best possible on-screen output), "Cocoa" (Mac OS X 10.4 and later) and
"Carbon" (not currently implemented – potentially Mac OS X 10.3 and earlier). Off-screen out-
put types produce output files and utilize the file argument. type = "pdf" gives PDF output.
The following bitmap formats may be supported (on OS X 10.4 and later): "png", "jpeg",
"jpg", "jpeg2000", "tif", "tiff", "gif", "psd" (Adobe Photoshop), "bmp" (Win-
dows bitmap), "sgi" and "pict". (The availability of some formats is OS-version-dependent.)

To reproduce the default of older Quartz devices on-screen, set dpi = 72 (for a permanent solu-
tion set quartz.options(dpi = 72)).

The file argument is used for off-screen drawing. The actual file is only created when the device
is closed (e.g. using dev.off()). For the bitmap devices, the page number is substituted if a
C integer format is included in the character string, e.g. Rplot%03d.png. (The result must be
less than PATH_MAX characters long, and may be truncated if not. See postscript for further
details.) If a file argument is not supplied, the default is Rplots.pdf or Rplot%03d.type .

If a device-independent R graphics font family is specified (e.g., via par(family=) in the graph-
ics package), the Quartz device makes use of the Quartz font database (see quartzFonts) to
convert the R graphics font family to a Quartz-specific font family description.

On-screen devices are launched with a semi-transparent canvas. Once a new plot is created, the
canvas is first painted with the canvas colour and then the current background colour (which can
be transparent or semi-transparent). Off-screen devices have no canvas colour, and so start with a
transparent background where possible (e.g. type="png" and type="tiff") – otherwise it
appears that a solid white canvas is assumed in the Quartz code.

title can be used for on-screen output. It must be a single character string with an optional
integer printf-style format that will be substituted by the device number. It is also optionally used
(without a format) to give a title to a PDF file.

Calling quartz() sets .Device to "quartz" for on-scren devices and to
"quartz_off_screen" otherwise.

Conventions

This section describes the implementation of the conventions for graphics devices set out in the “R
Internals Manual”.

• The default device size is 7 inches square.

• Font sizes are in big points.

• The default font family is Arial.

• Line widths are a multiple of 1/96 inch with no minimum set by R.

• Circle radii are real-valued with no minimum set by R.

• Colour interpretation is by the viewer, including the screen display.

See Also

quartzFonts, Devices.

png for way to access the bitmap types of this device via R’s standard bitmap devices.

636 quartzFonts

Examples

Not run:
put something this is your .Rprofile to customize the defaults
setHook(packageEvent("grDevices", "onLoad"),

function(...) grDevices::quartz.options(width=8, height=6,
pointsize=10))

End(Not run)

quartzFonts quartz Fonts

Description

These functions handle the translation of a device-independent R graphics font family name to a
quartz font description.

Usage

quartzFont(family)

quartzFonts(...)

Arguments

family a character vector containing the four PostScript font names for plain, bold,
italic, and bolditalic versions of a font family.

... either character strings naming mappings to display, or new (named) mappings
to define.

Details

A quartz device is created with a default font (see the documentation for quartz), but it is also
possible to specify a font family when drawing to the device (for example, see the documentation
for gpar in the grid package).

The font family sent to the device is a simple string name, which must be mapped to something
more specific to quartz fonts. A list of mappings is maintained and can be modified by the user.

The quartzFonts function can be used to list existing mappings and to define new mappings.
The quartzFont function can be used to create a new mapping.

Default mappings are provided for three device-independent font family names: "sans" for a
sans-serif font, "serif" for a serif font and "mono" for a monospaced font.

See Also

quartz

Examples

quartzFonts()
quartzFonts("mono")

recordGraphics 637

recordGraphics Record graphics operations

Description

Records arbitrary code on the graphics engine display list. Useful for encapsulating calculations
with graphical output that depends on the calculations. Intended only for expert use.

Usage

recordGraphics(expr, list, env)

Arguments

expr object of mode expression or call or an unevaluated expression.

list a list defining the environment in which expr is to be evaluated.

env An environment specifying where R looks for objects not found in envir.

Details

The code in expr is evaluated in an environment constructed from list, with env as the parent
of that environment.

All three arguments are saved on the graphics engine display list so that on a device resize or
copying between devices, the original evaluation environment can be recreated and the code can be
re-evaluated to reproduce the graphical output.

Value

The value from evaluating expr.

Warning

This function is not intended for general use. Incorrect or improper use of this function could lead
to unintended and/or undesirable results.

An example of acceptable use is querying the current state of a graphics device or graphics system
setting and then calling a graphics function.

An example of improper use would be calling the assign function to performing assignments in
the global environment.

See Also

eval

Examples

require(graphics)

plot(1:10)
This rectangle remains 1inch wide when the device is resized
recordGraphics(
{

638 recordPlot

rect(4, 2,
4 + diff(par("usr")[1:2])/par("pin")[1], 3)

},
list(),
getNamespace("graphics"))

recordPlot Record and Replay Plots

Description

Functions to save the current plot in an R variable, and to replay it.

Usage

recordPlot()
replayPlot(x)

Arguments

x A saved plot.

Details

These functions record and replay the displaylist of the current graphics device. The returned object
is of class "recordedplot", and replayPlot acts as a print method for that class.

Value

recordPlot returns an object of class "recordedplot".

replayPlot has no return value.

Warning

The format of recorded plots may change between R versions. Recorded plots should not be used
as a permanent storage format for R plots.

R will always attempt to replay a recorded plot, but if the plot was recorded with a different R
version then bad things may happen.

rgb 639

rgb RGB Color Specification

Description

This function creates colors corresponding to the given intensities (between 0 and max) of the red,
green and blue primaries.

An alpha transparency value can also be specified (0 means fully transparent and max means
opaque). If alpha is not specified, an opaque colour is generated.

The names argument may be used to provide names for the colors.

The values returned by these functions can be used with a col= specification in graphics functions
or in par.

Usage

rgb(red, green, blue, alpha, names = NULL, maxColorValue = 1)

Arguments

red, blue, green, alpha
numeric vectors with values in [0,M] where M is maxColorValue. When
this is 255, the red, blue, green, and alpha values are coerced to integers
in 0:255 and the result is computed most efficiently.

names character. The names for the resulting vector.
maxColorValue

number giving the maximum of the color values range, see above.

Details

The colors may be specified by passing a matrix or dataframe as argument red, and leaving blue
and green missing. In this case the first three columns of red are taken to be the red, green
and blue values.

Semi-transparent colors (0 < alpha < 1) are supported only on some devices: at the time of
writing on the pdf, windows, quartz and X11(type="cairo") devices and associated
bitmap devices (jpeg, png, bmp, tiff and bitmap). They are supported by several third-party
devices such as those in packages Cairo, cairoDevice and JavaGD. Only some of these devices
support semi-transparent backgrounds.

Most other graphics devices plot semi-transparent colors as fully transparent, usually with a warning
when first encountered.

Value

A character vector with elements of 7 or 9 characters, "#" followed by the red, blue, green and
optionally alpha values in hexadecimal (after rescaling to 0 ... 255).

See Also

col2rgbfor translating R colors to RGB vectors; rainbow, hsv, hcl, gray.

640 rgb2hsv

Examples

rgb(0,1,0)

rgb((0:15)/15, green=0, blue=0, names=paste("red",0:15,sep="."))

rgb(0, 0:12, 0, max = 255)# integer input

ramp <- colorRamp(c("red", "white"))
rgb(ramp(seq(0, 1, length = 5)), max = 255)

rgb2hsv RGB to HSV Conversion

Description

rgb2hsv transforms colors from RGB space (red/green/blue) into HSV space
(hue/saturation/value).

Usage

rgb2hsv(r, g = NULL, b = NULL, gamma = 1, maxColorValue = 255)

Arguments

r vector of ‘red’ values in [0,M], (M =maxColorValue) or 3-row rgb matrix.

g vector of ‘green’ values, or NULL when r is a matrix.

b vector of ‘blue’ values, or NULL when r is a matrix.

gamma a gamma-correction (supposedly applied to the r,g,b values previously), see
hsv(...., gamma).

maxColorValue
number giving the maximum of the RGB color values range. The default 255
corresponds to the typical 0:255 RGB coding as in col2rgb().

Details

Value (brightness) gives the amount of light in the color.
Hue describes the dominant wavelength.
Saturation is the amount of Hue mixed into the color.

Value

A matrix with a column for each color. The three rows of the matrix indicate hue, saturation and
value and are named "h", "s", and "v" accordingly.

Author(s)

R interface by Wolfram Fischer 〈wolfram@fischer-zim.ch〉;
C code mainly by Nicholas Lewin-Koh 〈nikko@hailmail.net〉.

See Also

hsv, col2rgb, rgb.

rgb2hsv 641

Examples

These (saturated, bright ones) only differ by hue
(rc <- col2rgb(c("red", "yellow","green","cyan", "blue", "magenta")))
(hc <- rgb2hsv(rc))
6 * hc["h",] # the hues are equispaced

(rgb3 <- floor(256 * matrix(stats::runif(3*12), 3,12)))
(hsv3 <- rgb2hsv(rgb3))
Consistency :
stopifnot(rgb3 == col2rgb(hsv(h=hsv3[1,], s=hsv3[2,], v=hsv3[3,])),

all.equal(hsv3, rgb2hsv(rgb3/255, maxColorValue = 1)))

A (simplified) pure R version -- originally by Wolfram Fischer --
showing the exact algorithm:
rgb2hsvR <- function(rgb, gamma = 1, maxColorValue = 255)
{

if(!is.numeric(rgb)) stop("rgb matrix must be numeric")
d <- dim(rgb)
if(d[1] != 3) stop("rgb matrix must have 3 rows")
n <- d[2]
if(n == 0) return(cbind(c(h=1,s=1,v=1))[,0])
rgb <- rgb/maxColorValue
if(gamma != 1) rgb <- rgb ^ (1/gamma)

get the max and min
v <- apply(rgb, 2, max)
s <- apply(rgb, 2, min)
D <- v - s # range

set hue to zero for undefined values (gray has no hue)
h <- numeric(n)
notgray <- (s != v)

blue hue
idx <- (v == rgb[3,] & notgray)
if (any (idx))

h[idx] <- 2/3 + 1/6 * (rgb[1,idx] - rgb[2,idx]) / D[idx]
green hue
idx <- (v == rgb[2,] & notgray)
if (any (idx))

h[idx] <- 1/3 + 1/6 * (rgb[3,idx] - rgb[1,idx]) / D[idx]
red hue
idx <- (v == rgb[1,] & notgray)
if (any (idx))

h[idx] <- 1/6 * (rgb[2,idx] - rgb[3,idx]) / D[idx]

correct for negative red
idx <- (h < 0)
h[idx] <- 1+h[idx]

set the saturation
s[! notgray] <- 0;
s[notgray] <- 1 - s[notgray] / v[notgray]

rbind(h=h, s=s, v=v)

642 savePlot

}

confirm the equivalence:
all.equal(rgb2hsv (rgb3),

rgb2hsvR(rgb3), tol=1e-14) # TRUE

savePlot Save Cairo X11 Plot to File

Description

Save the current page of a cairo X11() device to a file.

Usage

savePlot(filename = paste("Rplot", type, sep="."),
type = c("png", "jpeg", "tiff", "bmp"),
device = dev.cur())

Arguments

filename filename to save to.

type file type: only "png" will be accepted for cairo version 1.0.

device the device to save from.

Details

Only X11 devices of types "cairo" and "nbcairo" are supported.

This works by copying the image surface to a file. For PNG will always be a 24-bit per pixel PNG
‘DirectClass’ file, for JPEG the quality is 75% and for TIFF there is no compression.

At present the plot is saved after rendering onto the canvas (default opaque white), so for the default
bg = "transparent" the effective background colour is the canvas colour.

Value

Invisible NULL.

See Also

X11, dev.copy, dev.print

trans3d 643

trans3d 3D to 2D Transformation for Perspective Plots

Description

Projection of 3-dimensional to 2-dimensional points using a 4x4 viewing transformation matrix.
Mainly for adding to perspective plots such as persp.

Usage

trans3d(x,y,z, pmat)

Arguments

x, y, z numeric vectors of equal length, specifying points in 3D space.

pmat a 4×4 viewing transformation matrix, suitable for projecting the 3D coordinates
(x, y, z) into the 2D plane using homogeneous 4D coordinates (x, y, z, t); such
matrices are returned by persp().

Value

a list with two components

x,y the projected 2d coordinates of the 3d input (x,y,z).

See Also

persp

Examples

See help(persp) {after attaching the 'graphics' package}

Type1Font Type 1 and CID Fonts

Description

These functions are used to define the translation of a R graphics font family name to a Type 1 or
CID font descriptions, used by both the postscript and pdf graphics devices.

Usage

Type1Font(family, metrics, encoding = "default")

CIDFont(family, cmap, cmapEncoding, pdfresource = "")

644 Type1Font

Arguments

family a character string giving the name to be used internally for a Type 1 or CID-
keyed font family. This needs to uniquely identify each family, so if you modify
a family which is in use (see postscriptFonts) you need to change the
family name.

metrics a character vector of four or five strings giving paths to the afm (Adobe Font
Metric) files for the font.

cmap the name of a CMap file for a CID-keyed font.

encoding for Type1Font, the name of an encoding file. Defaults to "default", which
maps on this platform to "ISOLatin1.enc". Otherwise, a file name in the ‘enc’
directory of the grDevices package, which is used if the path does not contain a
path separator. An extension ".enc" can be omitted.

cmapEncoding The name of a character encoding to be used with the named CMap file: strings
will be translated to this encoding when written to the file.

pdfresource A chunk of PDF code; only required for using a CID-keyed font on pdf; users
should not be expected to provide this.

Details

For Type1Fonts, if four ‘.afm’ files are supplied the fifth is taken to be "Symbol.afm". Rela-
tive paths are taken relative to the directory ‘R_HOME/library/grDevices/afm’. The fifth (symbol)
font must be in AdobeSym encoding. However, the glyphs in the first four fonts are referenced by
name and any encoding given within the ‘.afm’ files is not used.

Glyphs in CID-keyed fonts are accessed by ID (number) and not by name. The CMap file maps
encoded strings (usually in a MBCS) to IDs, so cmap and cmapEncoding specifications must
match. There are no real bold or italic versions of CID fonts (bold/italic were very rarely used in
traditional CJK topography), and for the pdf device all four font faces will be identical. However,
for the postscript device, bold and italic (and bold italic) are emulated.

CID-keyed fonts are intended only for use for the glyphs of CJK languages, which are all
monospaced and are all treated as filling the same bounding box. (Thus plotmath will work
with such characters, but the spacing will be less carefully controlled than with Western glyphs.)
The CID-keyed fonts do contain other characters, including a Latin alphabet: non-CJK glyphs are
regarded as monospaced with half the width of CJK glyphs. This is often the case, but sometimes
Latin glyphs designed for proportional spacing are used (and may look odd). We strongly recom-
mend that CID-keyed fonts are only used for CJK glyphs.

Value

A list of class "Type1Font" or "CIDFont".

See Also

postscript, pdf, postscriptFonts, and pdfFonts.

Examples

This duplicates "ComputerModernItalic".
CMitalic <- Type1Font("ComputerModern2",

c("CM_regular_10.afm", "CM_boldx_10.afm",
"cmti10.afm", "cmbxti10.afm",
"CM_symbol_10.afm"),

x11 645

encoding = "TeXtext.enc")

Not run:
This could be used by
postscript(family = CMitalic)
or
postscriptFonts(CMitalic = CMitalic) # once in a session
postscript(family = "CMitalic", encoding = "TeXtext.enc")
End(Not run)

x11 X Window System Graphics

Description

X11 starts a graphics device driver for the X Window System (version 11). This can only be done
on machines/accounts that have access to an X server.

x11 is recognized as a synonym for X11.

Usage

X11(display = "", width, height, pointsize, gamma, bg, canvas,
fonts, xpos, ypos, title, type, antialias)

X11.options(..., reset = FALSE)

Arguments

display the display on which the graphics window will appear. The default is to use
the value in the user’s environment variable DISPLAY. This is ignored (with a
warning) if an X11 device is already open on another display.

width, height
the width and height of the plotting window, in inches. If NA, taken from the
resources and if not specified there defaults to 7 inches. See also ‘Resources’.

pointsize the default pointsize to be used. Defaults to 12.

gamma the gamma correction factor. This value is used to help ensure that the colours
perceived are linearly related to RGB values (see hsv). By default 1 (default
correction).

bg colour, the initial background colour. Default "transparent".

canvas colour. The colour of the canvas, which is visible only when the background
colour is transparent. Should be a solid colour (and any alpha value will be
ignored). Default "white".

fonts X11 font description strings into which weight, slant and size will be substituted.
There are two, the first for fonts 1 to 4 and the second for font 5, the symbol font.
See section ‘Fonts’.

xpos, ypos integer: initial position of the top left corner of the window, in pixels. Negative
values are from the opposite corner, e.g. xpos=-100 says the top right corner
should be 100 pixels from the right edge of the screen. If NA (the default),
successive devices are cascaded in 20 pixel steps from the top left. See also
‘Resources’.

646 x11

title character string, up to 100 bytes. With the default, "", a suitable title is created
internally. A C-style format for an integer will be substituted by the device
number (see the file argument to postscript for further details). How
non-ASCII titles are handled is implementation-dependent.

type character string, one of "Xlib" (the only type prior to R 2.7.0) or "cairo" or
"nbcairo". The latter two will only be available if the system was compiled
with support for cairo. Default "cairo" where available, otherwise "Xlib".

antialias for cairo types, the type of anti-aliasing (if any) to be used. One of
c("default", "none", "gray", "subpixel").

reset logical: should the defaults be reset to their defaults?

... Any of the arguments to X11, plus colortype and maxcubesize (see sec-
tion ‘Colour Rendering’).

Details

The defaults for all of the arguments of X11 are set by X11.options: the ‘Arguments’ section
gives the ‘factory-fresh’ defaults.

The initial size and position are only hints, and may not be acted on by the window manager. Also,
some systems (especially laptops) are set up to appear to have a screen of a different size to the
physical screen.

Option type selects between two separate devices: R can be built with support for neither, type
= "Xlib" or both. Where both are available, types "cairo" and "nbcairo" offer

• antialiasing of text and lines.

• translucent colours.

• scalable text, including to sizes like 4.5 pt.

• full support for UTF-8, so on systems with suitable fonts you can plot in many languages on
a single figure (and this will work even in non-UTF-8 locales). The output should be locale-
independent.

type = "nbcairo" is the same device as type="cairo" without buffering: which is faster
will depend on the X11 connection. Both will be slower than type = "Xlib", especially on a
slow X11 connection as all the rendering is done on the machine running R rather than in the X
server.

All devices which use an X11 server (including the type = "Xlib" versions of bitmap devices
such as png) share internal structures, which means that they must use the same display and
visual. If you want to change display, first close all such devices.

X11 Fonts

This section applies only to type = "Xlib".

An initial/default font family for the device can be specified via the fonts argument, but if a
device-independent R graphics font family is specified (e.g., via par(family=) in the graphics
package), the X11 device makes use of the X11 font database (see X11Fonts) to convert the R
graphics font family to an X11-specific font family description.

X11 chooses fonts by matching to a pattern, and it is quite possible that it will choose a font in
the wrong encoding or which does not contain glyphs for your language (particularly common in
iso10646-1 fonts).

The fonts argument is a two-element character vector, and the first element will be crucial in
successfully using non-Western-European fonts. Settings that have proved useful include

x11 647

"-*-mincho-%s-%s-*-*-%d-*-*-*-*-*-*-*" for CJK languages and "-cronyx-
helvetica-%s-%s-*-*-%d-*-*-*-*-*-*-*" for Russian.

For UTF-8 locales, the XLC_LOCALE databases provide mappings between character encodings,
and you may need to add an entry for your locale (e.g. Fedora Core 3 lacked one for ru_RU.utf8).

Cairo Fonts

The cairo-based device works directly with font family names such as "Helvetica" which
should be selected by par or gpar. There are mappings for the three device-independent font fam-
ilies, "sans" for a sans-serif font (to "Helvetica"), "serif" for a serif font (to "Times")
and "mono" for a monospaced font (to "Courier").

The font selection is handled by Pango (usually) or cairo (on Mac OS X and perhaps elsewhere).
Both make use of fontconfig (http://wwww.fontconfig.org) to select fonts and so the
results depend on the fonts installed on the system running R – setting the environmnent variable
FC_DEBUG to 1 allows some tracing of the selection process.

This works best when high-quality scalable fonts are installed, usually in Type 1 or TrueType for-
mats: see the “R Installation and Administration Manual” for advice on how to obtain and install
such fonts.

Resources

The standard X11 resource geometry can be used to specify the window position and/or size,
but will be overridden by values specified as arguments or non-NA defaults set in X11.options.
The class looked for is R_x11. Note that the resource specifies the width and height in pixels and
not in inches. See for example http://web.mit.edu/answers/xwindows/xwindows_
resources.html and perhaps ‘man X’ (or http://www.xfree86.org/current/X.
7.html). An example line in ‘ /.Xresources’ might be

R_x11*geometry: 900x900-0+0

which specifies a 900 x 900 pixel window at the top right of the screen.

Colour Rendering

X11 supports several ‘visual’ types, and nowadays almost all systems support ‘truecolor’ which
X11 will use by default. This uses a direct specification of any RGB colour up to the depth sup-
ported (usually 8 bits per colour). Other visuals make use of a palette to support fewer colours, only
grays or even only black/white. The palette is shared between all X11 clients, so it can be necessary
to limit the number of colours used by R.

Cairo-based devices currently support only ‘truecolor’ visuals. (Cairo 1.6 will support other visu-
als.)

The default for type="Xlib" is to use the best possible colour model for the visual of the X11
server. This can be overridden by the colortype argument of X11.options. Note: All X11
and type = "Xlib" bmp, jpeg, png and tiff devices share a colortype which is set
when the first device to be opened. To change the colortype you need to close all open such
devices, and then use X11.options(colortype=).

The colortype types are tried in the order "true", "pseudo", "gray" and "mono" (black
or white only). The values "pseudo" and "pseudo.cube" provide colour strategies for a
pseudocolor visual. The first strategy provides on-demand colour allocation which produces exact
colours until the colour resources of the display are exhausted (when plotting will fail). The second
allocates (if possible) a standard colour cube, and requested colours are approximated by the closest
value in the cube.

http://wwww.fontconfig.org
http://web.mit.edu/answers/xwindows/xwindows_resources.html
http://web.mit.edu/answers/xwindows/xwindows_resources.html
http://www.xfree86.org/current/X.7.html
http://www.xfree86.org/current/X.7.html

648 X11Fonts

With colortype equal to "pseudo.cube" or "gray" successively smaller palettes are tried
until one is completely allocated. If allocation of the smallest attempt fails the device will revert
to "mono". For "gray" the search starts at 256 grays for a display with depth greater than 8,
otherwise with half the available colours. For "pseudo.cube" the maximum cube size is set by
X11.options(maxcolorsize=) and defaults to 256. With that setting the largest cube tried
is 4 levels each for RGB, using 64 colours in the palette.

Anti-aliasing

Anti-aliasing is only supported for cairo-based devices, and applies to graphics and to fonts. It is
generally preferable for lines and text, but can lead to undesirable effects for fills, e.g. for image
plots, and so is never used for fills.

antialias = "default" is in principle platform-dependent, but seems most often equivalent
to antialias = "gray".

Conventions

This section describes the implementation of the conventions for graphics devices set out in the “R
Internals Manual”.

• The default device size is 7 inches square.

• Font sizes are in big points.

• The default font family is Helvetica.

• Line widths in 1/96 inch, minimum one pixel for type = "Xlib", 0.01 otherwise.

• For type = "Xlib" circle radii are in pixels with minimum one.

• Colours are interpreted by the X11 server, normally in a fair approximation to sRGB.

See Also

Devices, X11Fonts, savePlot.

Examples

Not run:
put something this is your .Rprofile to customize the defaults
setHook(packageEvent("grDevices", "onLoad"),

function(...) grDevices::X11.options(width=8, height=6, xpos=0,
pointsize=10))

End(Not run)

X11Fonts X11 Fonts

Description

These functions handle the translation of a device-independent R graphics font family name to an
X11 font description.

xfig 649

Usage

X11Font(font)

X11Fonts(...)

Arguments

font a character string containing an X11 font description.

... either character strings naming mappings to display, or new (named) mappings
to define.

Details

These functions apply only to an X11 device with type = "Xlib" – X11(type = "Cairo"
uses a different mechanism to select fonts.

Such a device is created with a default font (see the documentation for X11), but it is also possi-
ble to specify a font family when drawing to the device (for example, see the documentation for
"family" in par and for "fontfamily" in gpar in the grid package).

The font family sent to the device is a simple string name, which must be mapped to something
more specific to X11 fonts. A list of mappings is maintained and can be modified by the user.

The X11Fonts function can be used to list existing mappings and to define new mappings. The
X11Font function can be used to create a new mapping.

Default mappings are provided for three device-independent font family names: "sans" for a
sans-serif font, "serif" for a serif font and "mono" for a monospaced font.

See Also

X11

Examples

X11Fonts()
X11Fonts("mono")
utopia <- X11Font("-*-utopia-*-*-*-*-*-*-*-*-*-*-*-*")
X11Fonts(utopia=utopia)

xfig XFig Graphics Device

Description

xfig starts the graphics device driver for producing XFig (version 3.2) graphics.

The auxiliary function ps.options can be used to set and view (if called without arguments)
default values for the arguments to xfig and postscript.

650 xfig

Usage

xfig(file = ifelse(onefile, "Rplots.fig", "Rplot%03d.fig"),
onefile = FALSE, encoding = "none",
paper = "default", horizontal = TRUE,
width = 0, height = 0, family = "Helvetica",
pointsize = 12, bg = "transparent", fg = "black",
pagecentre = TRUE)

Arguments

file a character string giving the name of the file. For use with onefile = FALSE
give a C integer format such as "Rplot%03d.fig" (the default in that case).
(See postscript for further details.)

onefile logical: if true allow multiple figures in one file. If false, assume only one page
per file and generate a file number containing the page number.

encoding The encoding in which to write text strings. The default is not to re-encode.
This can be any encoding recognized by iconv: in a Western UTF-8 locale
you probably want to select an 8-bit encoding such as latin1, and in an East
Asian locale an EUC encoding. If re-encoding fails, the text strings will be
written in the current encoding with a warning.

paper the size of paper region. The choices are "A4", "Letter" and "Legal" (and
these can be lowercase). A further choice is "default", which is the default.
If this is selected, the papersize is taken from the option "papersize" if that
is set to a non-empty value, otherwise "A4".

horizontal the orientation of the printed image, a logical. Defaults to true, that is landscape
orientation.

width, height
the width and height of the graphics region in inches. The default is to use the
entire page less a 0.5 inch overall margin in each direction. (See postscript
for further details.)

family the font family to be used. This must be one of "AvantGarde",
"Bookman", "Courier", "Helvetica" (the default), "Helvetica-
Narrow", "NewCenturySchoolbook", "Palatino" or "Times".
Any other value is replaced by "Helvetica", with a warning.

pointsize the default point size to be used.
bg the initial background color to be used.
fg the initial foreground color to be used.
pagecentre logical: should the device region be centred on the page?

Details

Although xfig can produce multiple plots in one file, the XFig format does not say how to separate
or view them. So onefile = FALSE is the default.

The file argument is interpreted as a C integer format as used by sprintf, with integer argu-
ment the page number. The default gives files ‘Rplot001.fig’, . . . , ‘Rplot999.fig’, ‘Rplot1000.fig’,
. . . .

Line widths as controlled by par(lwd=) are in multiples of 5/6*1/72 inch. Multiples less than 1
are allowed. pch="." with cex = 1 corresponds to a square of side 1/72 inch.

Windows users can make use of WinFIG (http://www.schmidt-web-berlin.de/
WinFIG.htm, shareware).

http://www.schmidt-web-berlin.de/WinFIG.htm
http://www.schmidt-web-berlin.de/WinFIG.htm

xy.coords 651

Conventions

This section describes the implementation of the conventions for graphics devices set out in the “R
Internals Manual”.

• The default device size is the paper size with a 0.25 inch border on all sides.

• Font sizes are in big points.

• The default font family is Helvetica.

• Line widths are integers, multiples of 5/432 inch.

• Circle radii are multiples of 1/1200 inch.

• Colours are interpreted by the viewing/printing application.

Note

Only some line textures (0 <= lty < 4) are used. Eventually this may be partially remedied,
but the XFig file format does not allow as general line textures as the R model. Unimplemented
line textures are displayed as dash-double-dotted.

There is a limit of 512 colours (plus white and black) per file.

See Also

Devices, postscript, ps.options.

xy.coords Extracting Plotting Structures

Description

xy.coords is used by many functions to obtain x and y coordinates for plotting. The use of this
common mechanism across all relevant R functions produces a measure of consistency.

Usage

xy.coords(x, y = NULL, xlab = NULL, ylab = NULL, log = NULL,
recycle = FALSE)

Arguments

x, y the x and y coordinates of a set of points. Alternatively, a single argument x can
be provided.

xlab,ylab names for the x and y variables to be extracted.

log character, "x", "y" or both, as for plot. Sets negative values to NA and gives
a warning.

recycle logical; if TRUE, recycle (rep) the shorter of x or y if their lengths differ.

652 xy.coords

Details

An attempt is made to interpret the arguments x and y in a way suitable for bivariate plotting (or
other bivariate procedures).

If y is NULL and x is a

formula: of the form yvar ~ xvar. xvar and yvar are used as x and y variables.

list: containing components x and y, these are used to define plotting coordinates.

time series: the x values are taken to be time(x) and the y values to be the time series.

matrix or data.frame with two or more columns: the first is assumed to contain the x values
and the second the y values. Note that is also true if x has columns named "x" and "y";
these names will be irrelevant here.

In any other case, the x argument is coerced to a vector and returned as y component where the
resulting x is just the index vector 1:n. In this case, the resulting xlab component is set to
"Index".

If x (after transformation as above) inherits from class "POSIXt" it is coerced to class
"POSIXct".

Value

A list with the components

x numeric (i.e., "double") vector of abscissa values.

y numeric vector of the same length as x.

xlab character(1) or NULL, the ‘label’ of x.

ylab character(1) or NULL, the ‘label’ of y.

See Also

plot.default, lines, points and lowess are examples of functions which use this mech-
anism.

Examples

xy.coords(stats::fft(c(1:10)), NULL)

with(cars, xy.coords(dist ~ speed, NULL)$xlab) # = "speed"

xy.coords(1:3, 1:2, recycle=TRUE)
xy.coords(-2:10,NULL, log="y")
##> warning: 3 y values <=0 omitted ..

xyTable 653

xyTable Multiplicities of (x,y) Points, e.g., for a Sunflower Plot

Description

Given (x,y) points, determine their multiplicity – checking for equality only up to some (crude kind
of) noise. Note that this is special kind of 2D binning.

Usage

xyTable(x, y = NULL, digits)

Arguments

x,y numeric vectors of the same length; alternatively other (x,y) argument combina-
tions as allowed by xy.coords(x,y).

digits integer specifying the significant digits to be used for determining equality of co-
ordinates. These are compared after rounding them via signif(*,digits).

Value

A list with three components of same length,

x x coordinates, rounded and sorted.

y y coordinates, rounded (and sorted within x).

number multiplicities (positive integers); i.e., number[i] is the multiplicity of
(x[i],y[i]).

See Also

sunflowerplot which typically uses xyTable(); signif.

Examples

xyTable(iris[,3:4], digits = 6)

Discretized uncorrelated Gaussian:

require(stats)
xy <- data.frame(x = round(sort(rnorm(100))), y = rnorm(100))
xyTable(xy, digits = 1)

654 xyz.coords

xyz.coords Extracting Plotting Structures

Description

Utility for obtaining consistent x, y and z coordinates and labels for three dimensional (3D) plots.

Usage

xyz.coords(x, y = NULL, z = NULL,
xlab = NULL, ylab = NULL, zlab = NULL,
log = NULL, recycle = FALSE)

Arguments

x, y, z the x, y and z coordinates of a set of points. Both y and z can be left at NULL.
In this case, an attempt is made to interpret x in a way suitable for plotting.
If the argument is a formula zvar ~ xvar + yvar, xvar, yvar and zvar
are used as x, y and z variables; if the argument is a list containing components
x, y and z, these are assumed to define plotting coordinates; if the argument is
a matrix or data.frame with three or more columns, the first is assumed to
contain the x values, the 2nd the y ones, and the 3rd the z ones – independently
of any column names that x may have.
Alternatively two arguments x and y can be provided (leaving z = NULL). One
may be real, the other complex; in any other case, the arguments are coerced to
vectors and the values plotted against their indices.

xlab, ylab, zlab
names for the x, y and z variables to be extracted.

log character, "x", "y", "z" or combinations. Sets negative values to NA and gives
a warning.

recycle logical; if TRUE, recycle (rep) the shorter ones of x, y or z if their lengths
differ.

Value

A list with the components

x numeric (i.e., double) vector of abscissa values.

y numeric vector of the same length as x.

z numeric vector of the same length as x.

xlab character(1) or NULL, the axis label of x.

ylab character(1) or NULL, the axis label of y.

zlab character(1) or NULL, the axis label of z.

Author(s)

Uwe Ligges and Martin Maechler

xyz.coords 655

See Also

xy.coords for 2D.

Examples

xyz.coords(data.frame(10*1:9, -4), y = NULL, z = NULL)

xyz.coords(1:6, stats::fft(1:6), z = NULL, xlab = "X", ylab = "Y")

y <- 2 * (x2 <- 10 + (x1 <- 1:10))
xyz.coords(y ~ x1 + x2, y = NULL, z = NULL)

xyz.coords(data.frame(x = -1:9, y = 2:12, z = 3:13), y = NULL, z = NULL,
log = "xy")

##> Warning message: 2 x values <= 0 omitted ...

656 xyz.coords

Chapter 4

The graphics package

graphics-package The R Graphics Package

Description

R functions for base graphics

Details

This package contains functions for base graphics. Base graphics are traditional S graphics, as
opposed to the newer grid graphics.

For a complete list of functions with individual help pages, use library(help="graphics").

Author(s)

R Development Core Team and contributors worldwide

Maintainer: R Core Team 〈R-core@r-project.org〉

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

abline Add Straight Lines to a Plot

Description

This function adds one or more straight lines through the current plot.

Usage

abline(a = NULL, b = NULL, h = NULL, v = NULL, reg = NULL,
coef = NULL, untf = FALSE, ...)

657

658 abline

Arguments

a, b the intercept and slope, single values.

untf logical asking whether to untransform. See ‘Details’.

h the y-value(s) for horizontal line(s).

v the x-value(s) for vertical line(s).

coef a vector of length two giving the intercept and slope.

reg an object with a coef method. See ‘Details’.

... graphical parameters such as col, lty and lwd (possibly as vectors: see ‘De-
tails’) and the line characteristics lend, ljoin and lmitre.

Details

Typical usages are

abline(a, b, untf = FALSE, ...)
abline(h=, untf = FALSE, ...)
abline(v=, untf = FALSE, ...)
abline(coef=, untf = FALSE, ...)
abline(reg=, untf = FALSE, ...)

The first form specifies the line in intercept/slope form (alternatively a can be specified on its own
and is taken to contain the slope and intercept in vector form).

The h= and v= forms draw horizontal and vertical lines at the specified coordinates.

The coef form specifies the line by a vector containing the slope and intercept.

reg is a regression object with a coef method. If this returns a vector of length 1 then the value
is taken to be the slope of a line through the origin, otherwise, the first 2 values are taken to be the
intercept and slope.

If untf is true, and one or both axes are log-transformed, then a curve is drawn corresponding to a
line in original coordinates, otherwise a line is drawn in the transformed coordinate system. The h
and v parameters always refer to original coordinates.

The graphical parameters col, lty and lwd can be specified; see par for details. For the h= and
v= usages they can be vectors of length greater than one, recycled as necessary.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

lines and segments for connected and arbitrary lines given by their endpoints. par.

Examples

Setup up coordinate system (with x==y aspect ratio):
plot(c(-2,3), c(-1,5), type = "n", xlab="x", ylab="y", asp = 1)
the x- and y-axis, and an integer grid
abline(h=0, v=0, col = "gray60")
text(1,0, "abline(h = 0)", col = "gray60", adj = c(0, -.1))

arrows 659

abline(h = -1:5, v = -2:3, col = "lightgray", lty=3)
abline(a=1, b=2, col = 2)
text(1,3, "abline(1, 2)", col=2, adj=c(-.1,-.1))

Simple Regression Lines:
require(stats)
sale5 <- c(6, 4, 9, 7, 6, 12, 8, 10, 9, 13)
plot(sale5)
abline(lsfit(1:10,sale5))
abline(lsfit(1:10,sale5, intercept = FALSE), col= 4) # less fitting

z <- lm(dist ~ speed, data = cars)
plot(cars)
abline(z) # equivalent to abline(reg = z) or
abline(coef = coef(z))

trivial intercept model
abline(mC <- lm(dist ~ 1, data = cars)) ## the same as
abline(a = coef(mC), b = 0, col = "blue")

arrows Add Arrows to a Plot

Description

Draw arrows between pairs of points.

Usage

arrows(x0, y0, x1, y1, length = 0.25, angle = 30, code = 2,
col = par("fg"), lty = par("lty"), lwd = par("lwd"),
...)

Arguments

x0, y0 coordinates of points from which to draw.

x1, y1 coordinates of points to which to draw.

length length of the edges of the arrow head (in inches).

angle angle from the shaft of the arrow to the edge of the arrow head.

code integer code, determining kind of arrows to be drawn.

col, lty, lwd
graphical parameters, possible vectors. NA values in col cause the arrow to be
omitted.

... graphical parameters such as xpd and the line characteristics lend, ljoin
and lmitre: see par.

660 assocplot

Details

For each i, an arrow is drawn between the point (x0[i], y0[i]) and the point
(x1[i],y1[i]). The coordinate vectors will be recycled to the length of the longest.

If code=1 an arrowhead is drawn at (x0[i],y0[i]) and if code=2 an arrowhead is drawn at
(x1[i],y1[i]). If code=3 a head is drawn at both ends of the arrow. Unless length = 0,
when no head is drawn.

The graphical parameters col, lty and lwd can be vectors of length greater than one and will be
recycled if necessary.

The direction of a zero-length arrow is indeterminate, and hence so is the direction of the arrow-
heads. To allow for rounding error, arrowheads are omitted (with a warning) on any arrow of length
less than 1/1000 inch.

Note

The first four arguments in the comparable S function are named x1,y1,x2,y2.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

segments to draw segments.

Examples

x <- stats::runif(12); y <- stats::rnorm(12)
i <- order(x,y); x <- x[i]; y <- y[i]
plot(x,y, main="arrows(.) and segments(.)")
draw arrows from point to point :
s <- seq(length(x)-1)# one shorter than data
arrows(x[s], y[s], x[s+1], y[s+1], col= 1:3)
s <- s[-length(s)]
segments(x[s], y[s], x[s+2], y[s+2], col= 'pink')

assocplot Association Plots

Description

Produce a Cohen-Friendly association plot indicating deviations from independence of rows and
columns in a 2-dimensional contingency table.

Usage

assocplot(x, col = c("black", "red"), space = 0.3,
main = NULL, xlab = NULL, ylab = NULL)

assocplot 661

Arguments

x a two-dimensional contingency table in matrix form.

col a character vector of length two giving the colors used for drawing positive and
negative Pearson residuals, respectively.

space the amount of space (as a fraction of the average rectangle width and height) left
between each rectangle.

main overall title for the plot.

xlab a label for the x axis. Defaults to the name (if any) of the row dimension in x.

ylab a label for the y axis. Defaults to the name (if any) of the column dimension in
x.

Details

For a two-way contingency table, the signed contribution to Pearson’s χ2 for cell i, j is dij =
(fij − eij)/

√
eij , where fij and eij are the observed and expected counts corresponding to the

cell. In the Cohen-Friendly association plot, each cell is represented by a rectangle that has (signed)
height proportional to dij and width proportional to√eij , so that the area of the box is proportional
to the difference in observed and expected frequencies. The rectangles in each row are positioned
relative to a baseline indicating independence (dij = 0). If the observed frequency of a cell is
greater than the expected one, the box rises above the baseline and is shaded in the color specified
by the first element of col, which defaults to black; otherwise, the box falls below the baseline and
is shaded in the color specified by the second element of col, which defaults to red.

A more flexible and extensible implementation of association plots written in the grid graphics
system is provided in the function assoc in the contributed package vcd (Meyer, Zeileis and
Hornik, 2005).

References

Cohen, A. (1980), On the graphical display of the significant components in a two-way contingency
table. Communications in Statistics—Theory and Methods, A9, 1025–1041.

Friendly, M. (1992), Graphical methods for categorical data. SAS User Group Interna-
tional Conference Proceedings, 17, 190–200. http://www.math.yorku.ca/SCS/sugi/
sugi17-paper.html

Meyer, D., Zeileis, A., and Hornik, K. (2005) The strucplot framework: Visualizing multi-way
contingency tables with vcd. Report 22, Department of Statistics and Mathematics, Wirtschaftsuni-
versität Wien, Research Report Series. http://epub.wu-wien.ac.at/dyn/openURL?
id=oai:epub.wu-wien.ac.at:epub-wu-01_8a1

See Also

mosaicplot, chisq.test.

Examples

Aggregate over sex:
x <- margin.table(HairEyeColor, c(1, 2))
x
assocplot(x, main = "Relation between hair and eye color")

http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://www.math.yorku.ca/SCS/sugi/sugi17-paper.html
http://epub.wu-wien.ac.at/dyn/openURL?id=oai:epub.wu-wien.ac.at:epub-wu-01_8a1
http://epub.wu-wien.ac.at/dyn/openURL?id=oai:epub.wu-wien.ac.at:epub-wu-01_8a1

662 Axis

Axis Generic function to add an Axis to a Plot

Description

Generic function to add a suitable axis to the current plot.

Usage

Axis(x = NULL, at = NULL, ..., side, labels = NULL)

Arguments

x an object which indicates the range over which an axis should be drawn

at the points at which tick-marks are to be drawn.

side an integer specifying which side of the plot the axis is to be drawn on. The axis
is placed as follows: 1=below, 2=left, 3=above and 4=right.

labels this can either be a logical value specifying whether (numerical) annotations are
to be made at the tickmarks, or a character or expression vector of labels to be
placed at the tickpoints. If this is specified as a character or expression vector,
at should be supplied and they should be the same length.

... Arguments to be passed to methods and perhaps then to axis.

Details

This is a generic function. It works in a slightly non-standard way: if x is supplied and non-NULL
it dispatches on x, otherwise if at is supplied and non-NULL it dispatches on at, and the default
action is to call axis, omitting argument x.

The idea is that for plots for which either or both of the axes are numerical but with a spe-
cial interpretation, the standard plotting functions (including boxplot, contour, coplot,
filled.contour, pairs, plot.default, rug and stripchart) will set up user co-
ordinates and Axis will be called to label them appropriately.

There are "Date", "POSIXct" and "POSIXlt" methods which can pass an argument format
onto the appropriate axis method (see axis.POSIXct).

Value

The numeric locations on the axis scale at which tick marks were drawn when the plot was first
drawn (see ‘Details’).

This function is usually invoked for its side effect, which is to add an axis to an already existing
plot.

See Also

axis.

axis 663

axis Add an Axis to a Plot

Description

Adds an axis to the current plot, allowing the specification of the side, position, labels, and other
options.

Usage

axis(side, at = NULL, labels = TRUE, tick = TRUE, line = NA,
pos = NA, outer = FALSE, font = NA, lty = "solid",
lwd = 1, lwd.ticks = lwd, col = NULL, col.ticks = NULL,
hadj = NA, padj = NA, ...)

Arguments

side an integer specifying which side of the plot the axis is to be drawn on. The axis
is placed as follows: 1=below, 2=left, 3=above and 4=right.

at the points at which tick-marks are to be drawn. Non-finite (infinite, NaN or NA)
values are omitted. By default (when NULL) tickmark locations are computed,
see ‘Details’ below.

labels this can either be a logical value specifying whether (numerical) annotations are
to be made at the tickmarks, or a character or expression vector of labels to be
placed at the tickpoints. (Other objects are coerced by as.graphicsAnnot.)
If this is not logical, at should also be supplied and of the same length. If
labels is of length zero after coercion, it has the same effect as supplying
TRUE.

tick a logical value specifying whether tickmarks and an axis line should be drawn

line the number of lines into the margin at which the axis line will be drawn, if not
NA.

pos the coordinate at which the axis line is to be drawn: if not NA this overrides the
value of line.

outer a logical value indicating whether the axis should be drawn in the outer plot
margin, rather than the standard plot margin.

font font for text. Defaults to par("font").

lty line type for both the axis line and the tick marks.
lwd, lwd.ticks

line widths for the axis line and the tick marks. Zero or negative values will
suppress the line or ticks.

col, col.ticks
colors for the axis line and the tick marks respectively. col = NULL means
to use par("fg"), possibly specified inline, and col=NULL means to use
whatever color col resolved to.

hadj adjustment (see par("adj")) for all labels parallel (‘horizontal’) to the read-
ing direction. If this is not a finite value, the default is used (centring for strings
parallel to the axis, justification of the end nearest the axis otherwise).

664 axis

padj adjustment for each tick label perpendicular to the reading direction. For labels
parallel to the axes, padj=0 means right or top alignment, and padj=1 means
left or bottom alignment. This can be a vector given a value for each string, and
will be recycled as necessary.
If padj is not a finite value (the default), the value of par("las") determines
the adjustment. For strings plotted perpendicular to the axis the default is to
centre the string.

... other graphical parameters may also be passed as arguments to this function, par-
ticularly, cex.axis, col.axis and font.axis for axis annotation, mgp
and xaxp or yaxp for positioning, tck or tcl for tick mark length and di-
rection, las for vertical/horizontal label orientation, or fg instead of col, and
xpd for clipping. See par on these.
Parameters xaxt (sides 1 and 3) and yaxt (sides 2 and 4) control if the axis is
plotted at all.
Note that lab will partial match to argument labels unless the latter is also
supplied. (Since the default axes have already been set up by plot.window,
lab will not be acted on by axis.)

Details

The axis line is drawn from the lowest to the highest value of at, but will be clipped at the plot
region. By default, only ticks which are drawn from points within the plot region (up to a tolerance
for rounding error) are plotted, but the ticks and their labels may well extend outside the plot region.
Use xpd=TRUE or xpd=NA to allow axes to extend further.

When at = NULL, pretty tick mark locations are computed internally (the same way
axTicks(side) would) from par("xaxp") or "yaxp" and par("xlog") (or "ylog").
Note that these locations may change if an on-screen plot is resized (for example, if the plot
argument asp (see plot.window) is set.)

If labels is not specified, the numeric values supplied or calculated for at are converted to
character strings as if they were a numeric vector printed by print.default(digits=7).

The code tries hard not to draw overlapping tick labels, and so will omit labels where they would
abut or overlap previously drawn labels. This can result in, for example, every other tick being
labelled. (The ticks are drawn left to right or bottom to top, and space at least the size of an ‘m’ is
left between labels.)

If either line or pos is set, they (rather than par("mgp")[3]) determine the position of the
axis line and tick marks, and the tick labels are placed par("mgp")[2] further lines into (or
towards for pos) the margin.

Several of the graphics parameters affect the way axes are drawn. The vertical (for sides 1 and 3)
positions of the axis and the tick labels are controlled by mgp[2:3] and mex, the size and direction
of the ticks is controlled by tck and tcl and the appearance of the tick labels by cex.axis,
col.axis and font.axis with orientation controlled by las (but not srt, unlike S which
uses srt if at is supplied and las if it is not). Note that adj is not supported and labels are
always centered. See par for details.

Value

The numeric locations on the axis scale at which tick marks were drawn when the plot was first
drawn (see ‘Details’).

This function is usually invoked for its side effect, which is to add an axis to an already existing
plot.

axis.POSIXct 665

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

Axis for a generic interface.

axTicks returns the axis tick locations corresponding to at=NULL; pretty is more flexible for
computing pretty tick coordinates and does not depend on (nor adapt to) the coordinate system in
use.

Several graphics parameters affecting the appearance are documented in par.

Examples

require(stats) # for rnorm
plot(1:4, rnorm(4), axes = FALSE)
axis(1, 1:4, LETTERS[1:4])
axis(2)
box() #- to make it look "as usual"

plot(1:7, rnorm(7), main = "axis() examples",
type = "s", xaxt = "n", frame = FALSE, col = "red")

axis(1, 1:7, LETTERS[1:7], col.axis = "blue")
unusual options:
axis(4, col = "violet", col.axis="dark violet", lwd = 2)
axis(3, col = "gold", lty = 2, lwd = 0.5)

one way to have a custom x axis
plot(1:10, xaxt = "n")
axis(1, xaxp=c(2, 9, 7))

axis.POSIXct Date and Date-time Plotting Functions

Description

Functions to plot objects of classes "POSIXlt", "POSIXct" and "Date" representing calendar
dates and times.

Usage

axis.POSIXct(side, x, at, format, labels = TRUE, ...)
axis.Date(side, x, at, format, labels = TRUE, ...)

S3 method for class 'POSIXct':
plot(x, y, xlab = "", ...)
S3 method for class 'POSIXlt':
plot(x, y, xlab = "", ...)
S3 method for class 'Date':
plot(x, y, xlab = "", ...)

666 axis.POSIXct

Arguments

x, at A date-time or date object.

y numeric values to be plotted against x.

xlab a character string giving the label for the x axis.

side See axis.

format See strptime.

labels Either a logical value specifying whether annotations are to be made at the tick-
marks, or a vector of character strings to be placed at the tickpoints.

... Further arguments to be passed from or to other methods, typically graphical
parameters or arguments of plot.default. For the plot methods, also
format.

Details

The functions plot against an x-axis of date-times. axis.POSIXct and axis.Date work quite
hard to choose suitable time units (years, months, days, hours, minutes or seconds) and a sensible
output format, but this can be overridden by supplying a format specification.

If at is supplied it specifies the locations of the ticks and labels whereas if x is specified a suitable
grid of labels is chosen. Printing of tick labels can be suppressed by using labels = FALSE.

Value

The locations on the axis scale at which tick marks were drawn.

See Also

DateTimeClasses, Dates for details of the classes.

Examples

with(beaver1, {
time <- strptime(paste(1990, day, time %/% 100, time %% 100),

"%Y %j %H %M")
plot(time, temp, type="l") # axis at 4-hour intervals.
now label every hour on the time axis
plot(time, temp, type="l", xaxt="n")
r <- as.POSIXct(round(range(time), "hours"))
axis.POSIXct(1, at=seq(r[1], r[2], by="hour"), format="%H")
})

plot(.leap.seconds, 1:23, type="n", yaxt="n",
xlab="leap seconds", ylab="", bty="n")

rug(.leap.seconds)
or as dates
lps <- as.Date(.leap.seconds)
plot(lps, 1:23, type = "n", yaxt = "n", xlab = "leap seconds",

ylab = "", bty = "n")
rug(lps)

100 random dates in a 10-week period
random.dates <- as.Date("2001/1/1") + 70*sort(stats::runif(100))
plot(random.dates, 1:100)
or for a better axis labelling

axTicks 667

plot(random.dates, 1:100, xaxt="n")
axis.Date(1, at=seq(as.Date("2001/1/1"), max(random.dates)+6, "weeks"))
axis.Date(1, at=seq(as.Date("2001/1/1"), max(random.dates)+6, "days"),

labels = FALSE, tcl = -0.2)

axTicks Compute Axis Tickmark Locations

Description

Compute pretty tickmark locations, the same way as R does internally. This is only non-trivial
when log coordinates are active. By default, gives the at values which axis(side) would use.

Usage

axTicks(side, axp = NULL, usr = NULL, log = NULL)

Arguments

side integer in 1:4, as for axis.

axp numeric vector of length three, defaulting to par("xaxp") or
par("yaxp") depending on the side argument.

usr numeric vector of length four, defaulting to par("usr") giving horizontal
(‘x’) and vertical (‘y’) user coordinate limits.

log logical indicating if log coordinates are active; defaults to par("xlog") or
par("ylog").

Details

The axp, usr, and log arguments must be consistent as their default values (the par(..) re-
sults) are. If you specify all three (as non-NULL), the graphics environment is not used at all.
Note that the meaning of axp alters very much when log is TRUE, see the documentation on
par(xaxp=.).

axTicks() can be regarded as an R implementation of the C function CreateAtVector() in
‘..../src/main/plot.c’ which is called by axis(side,*) when no argument at is specified.

Value

numeric vector of coordinate values at which axis tickmarks can be drawn. By default, when only
the first argument is specified, these values should be identical to those that axis(side) would
use or has used.

See Also

axis, par. pretty uses the same algorithm (but independently of the graphics environment)
and has more options. However it is not available for log = TRUE.

668 barplot

Examples

plot(1:7, 10*21:27)
axTicks(1)
axTicks(2)
stopifnot(identical(axTicks(1), axTicks(3)),

identical(axTicks(2), axTicks(4)))

Show how axTicks() and axis() correspond :
op <- par(mfrow = c(3,1))
for(x in 9999*c(1,2,8)) {

plot(x,9, log = "x")
cat(formatC(par("xaxp"), width=5),";", T <- axTicks(1),"\n")
rug(T, col="red")

}
par(op)

barplot Bar Plots

Description

Creates a bar plot with vertical or horizontal bars.

Usage

barplot(height, ...)

Default S3 method:
barplot(height, width = 1, space = NULL,

names.arg = NULL, legend.text = NULL, beside = FALSE,
horiz = FALSE, density = NULL, angle = 45,
col = NULL, border = par("fg"),
main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
xlim = NULL, ylim = NULL, xpd = TRUE, log = "",
axes = TRUE, axisnames = TRUE,
cex.axis = par("cex.axis"), cex.names = par("cex.axis"),
inside = TRUE, plot = TRUE, axis.lty = 0, offset = 0,
add = FALSE, ...)

Arguments

height either a vector or matrix of values describing the bars which make up the plot.
If height is a vector, the plot consists of a sequence of rectangular bars with
heights given by the values in the vector. If height is a matrix and beside is
FALSE then each bar of the plot corresponds to a column of height, with the
values in the column giving the heights of stacked sub-bars making up the bar.
If height is a matrix and beside is TRUE, then the values in each column
are juxtaposed rather than stacked.

width optional vector of bar widths. Re-cycled to length the number of bars drawn.
Specifying a single value will have no visible effect unless xlim is specified.

barplot 669

space the amount of space (as a fraction of the average bar width) left before each bar.
May be given as a single number or one number per bar. If height is a matrix
and beside is TRUE, space may be specified by two numbers, where the first
is the space between bars in the same group, and the second the space between
the groups. If not given explicitly, it defaults to c(0,1) if height is a matrix
and beside is TRUE, and to 0.2 otherwise.

names.arg a vector of names to be plotted below each bar or group of bars. If this argument
is omitted, then the names are taken from the names attribute of height if
this is a vector, or the column names if it is a matrix.

legend.text a vector of text used to construct a legend for the plot, or a logical indicating
whether a legend should be included. This is only useful when height is
a matrix. In that case given legend labels should correspond to the rows of
height; if legend.text is true, the row names of height will be used as
labels if they are non-null.

beside a logical value. If FALSE, the columns of height are portrayed as stacked
bars, and if TRUE the columns are portrayed as juxtaposed bars.

horiz a logical value. If FALSE, the bars are drawn vertically with the first bar to the
left. If TRUE, the bars are drawn horizontally with the first at the bottom.

density a vector giving the density of shading lines, in lines per inch, for the bars or bar
components. The default value of NULL means that no shading lines are drawn.
Non-positive values of density also inhibit the drawing of shading lines.

angle the slope of shading lines, given as an angle in degrees (counter-clockwise), for
the bars or bar components.

col a vector of colors for the bars or bar components. By default, grey is used if
height is a vector, and a gamma-corrected grey palette if height is a matrix.

border the color to be used for the border of the bars. Use border = NA to omit bor-
ders. If there are shading lines, border = TRUE means use the same colour
for the border as for the shading lines.

main,sub overall and sub title for the plot.

xlab a label for the x axis.

ylab a label for the y axis.

xlim limits for the x axis.

ylim limits for the y axis.

xpd logical. Should bars be allowed to go outside region?

log string specifying if axis scales should be logarithmic; see plot.default.

axes logical. If TRUE, a vertical (or horizontal, if horiz is true) axis is drawn.

axisnames logical. If TRUE, and if there are names.arg (see above), the other axis is
drawn (with lty=0) and labeled.

cex.axis expansion factor for numeric axis labels.

cex.names expansion factor for axis names (bar labels).

inside logical. If TRUE, the lines which divide adjacent (non-stacked!) bars will be
drawn. Only applies when space = 0 (which it partly is when beside =
TRUE).

plot logical. If FALSE, nothing is plotted.

axis.lty the graphics parameter lty applied to the axis and tick marks of the categorical
(default horizontal) axis. Note that by default the axis is suppressed.

670 barplot

offset a vector indicating how much the bars should be shifted relative to the x axis.

add logical specifying if bars should be added to an already existing plot; defaults to
FALSE.

... arguments to be passed to/from other methods. For the default method these
can include further arguments (such as axes, asp and main) and graphical
parameters (see par) which are passed to plot.window(), title() and
axis.

Details

This is a generic function, it currently only has a default method. A formula interface may be added
eventually.

Value

A numeric vector (or matrix, when beside = TRUE), say mp, giving the coordinates of all the
bar midpoints drawn, useful for adding to the graph.

If beside is true, use colMeans(mp) for the midpoints of each group of bars, see example.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

plot(..., type="h"), dotchart, hist.

Examples

require(grDevices) # for colours
tN <- table(Ni <- stats::rpois(100, lambda=5))
r <- barplot(tN, col=rainbow(20))
#- type = "h" plotting *is* 'bar'plot
lines(r, tN, type='h', col='red', lwd=2)

barplot(tN, space = 1.5, axisnames=FALSE,
sub = "barplot(..., space= 1.5, axisnames = FALSE)")

barplot(VADeaths, plot = FALSE)
barplot(VADeaths, plot = FALSE, beside = TRUE)

mp <- barplot(VADeaths) # default
tot <- colMeans(VADeaths)
text(mp, tot + 3, format(tot), xpd = TRUE, col = "blue")
barplot(VADeaths, beside = TRUE,

col = c("lightblue", "mistyrose", "lightcyan",
"lavender", "cornsilk"),

legend = rownames(VADeaths), ylim = c(0, 100))
title(main = "Death Rates in Virginia", font.main = 4)

hh <- t(VADeaths)[, 5:1]
mybarcol <- "gray20"

box 671

mp <- barplot(hh, beside = TRUE,
col = c("lightblue", "mistyrose",

"lightcyan", "lavender"),
legend = colnames(VADeaths), ylim= c(0,100),
main = "Death Rates in Virginia", font.main = 4,
sub = "Faked upper 2*sigma error bars", col.sub = mybarcol,
cex.names = 1.5)

segments(mp, hh, mp, hh + 2*sqrt(1000*hh/100), col = mybarcol, lwd = 1.5)
stopifnot(dim(mp) == dim(hh))# corresponding matrices
mtext(side = 1, at = colMeans(mp), line = -2,

text = paste("Mean", formatC(colMeans(hh))), col = "red")

Bar shading example
barplot(VADeaths, angle = 15+10*1:5, density = 20, col = "black",

legend = rownames(VADeaths))
title(main = list("Death Rates in Virginia", font = 4))

border :
barplot(VADeaths, border = "dark blue")

log scales (not much sense here):
barplot(tN, col=heat.colors(12), log = "y")
barplot(tN, col=gray.colors(20), log = "xy")

box Draw a Box around a Plot

Description

This function draws a box around the current plot in the given color and linetype. The bty param-
eter determines the type of box drawn. See par for details.

Usage

box(which = "plot", lty = "solid", ...)

Arguments

which character, one of "plot", "figure", "inner" and "outer".

lty line type of the box.

... further graphical parameters, such as bty, col, or lwd, see par. Note that
xpd is not accepted as clipping is always to the device region.

Details

The choice of colour is complicated. If col was supplied and is not NA, it is used. Otherwise, if
fg was supplied and is not NA, it is used. The final default is par("col").

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

672 boxplot

See Also

rect for drawing of arbitrary rectangles.

Examples

plot(1:7, abs(stats::rnorm(7)), type = 'h', axes = FALSE)
axis(1, at = 1:7, labels = letters[1:7])
box(lty = '1373', col = 'red')

boxplot Box Plots

Description

Produce box-and-whisker plot(s) of the given (grouped) values.

Usage

boxplot(x, ...)

S3 method for class 'formula':
boxplot(formula, data = NULL, ..., subset, na.action = NULL)

Default S3 method:
boxplot(x, ..., range = 1.5, width = NULL, varwidth = FALSE,

notch = FALSE, outline = TRUE, names, plot = TRUE,
border = par("fg"), col = NULL, log = "",
pars = list(boxwex = 0.8, staplewex = 0.5, outwex = 0.5),
horizontal = FALSE, add = FALSE, at = NULL)

Arguments

formula a formula, such as y ~ grp, where y is a numeric vector of data values to be
split into groups according to the grouping variable grp (usually a factor).

data a data.frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used for plotting.

na.action a function which indicates what should happen when the data contain NAs. The
default is to ignore missing values in either the response or the group.

x for specifying data from which the boxplots are to be produced. Either a numeric
vector, or a single list containing such vectors. Additional unnamed arguments
specify further data as separate vectors (each corresponding to a component
boxplot). NAs are allowed in the data.

... For the formulamethod, named arguments to be passed to the default method.
For the default method, unnamed arguments are additional data vectors (unless x
is a list when they are ignored), and named arguments are arguments and graph-
ical parameters to be passed to bxp in addition to the ones given by argument
pars (and override those in pars).

boxplot 673

range this determines how far the plot whiskers extend out from the box. If range is
positive, the whiskers extend to the most extreme data point which is no more
than range times the interquartile range from the box. A value of zero causes
the whiskers to extend to the data extremes.

width a vector giving the relative widths of the boxes making up the plot.

varwidth if varwidth is TRUE, the boxes are drawn with widths proportional to the
square-roots of the number of observations in the groups.

notch if notch is TRUE, a notch is drawn in each side of the boxes. If the notches
of two plots do not overlap this is ‘strong evidence’ that the two medians differ
(Chambers et al., 1983, p. 62). See boxplot.stats for the calculations
used.

outline if outline is not true, the outliers are not drawn (as points whereas S+ uses
lines).

names group labels which will be printed under each boxplot. Can be a character vector
or an expression (see plotmath).

boxwex a scale factor to be applied to all boxes. When there are only a few groups, the
appearance of the plot can be improved by making the boxes narrower.

staplewex staple line width expansion, proportional to box width.

outwex outlier line width expansion, proportional to box width.

plot if TRUE (the default) then a boxplot is produced. If not, the summaries which
the boxplots are based on are returned.

border an optional vector of colors for the outlines of the boxplots. The values in
border are recycled if the length of border is less than the number of plots.

col if col is non-null it is assumed to contain colors to be used to colour the bodies
of the box plots. By default they are in the background colour.

log character indicating if x or y or both coordinates should be plotted in log scale.

pars a list of (potentially many) more graphical parameters, e.g., boxwex or
outpch; these are passed to bxp (if plot is true); for details, see there.

horizontal logical indicating if the boxplots should be horizontal; default FALSE means
vertical boxes.

add logical, if true add boxplot to current plot.

at numeric vector giving the locations where the boxplots should be drawn, partic-
ularly when add = TRUE; defaults to 1:n where n is the number of boxes.

Details

The generic function boxplot currently has a default method (boxplot.default) and a for-
mula interface (boxplot.formula).

If multiple groups are supplied either as multiple arguments or via a formula, parallel boxplots will
be plotted, in the order of the arguments or the order of the levels of the factor (see factor).

Missing values are ignored when forming boxplots.

Value

List with the following components:

stats a matrix, each column contains the extreme of the lower whisker, the lower
hinge, the median, the upper hinge and the extreme of the upper whisker for one
group/plot. If all the inputs have the same class attribute, so will this component.

674 boxplot

n a vector with the number of observations in each group.

conf a matrix where each column contains the lower and upper extremes of the notch.

out the values of any data points which lie beyond the extremes of the whiskers.

group a vector of the same length as out whose elements indicate to which group the
outlier belongs.

names a vector of names for the groups.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods for Data
Analysis. Wadsworth & Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See also boxplot.stats.

See Also

boxplot.stats which does the computation, bxp for the plotting and more examples; and
stripchart for an alternative (with small data sets).

Examples

boxplot on a formula:
boxplot(count ~ spray, data = InsectSprays, col = "lightgray")
add notches (somewhat funny here):
boxplot(count ~ spray, data = InsectSprays,

notch = TRUE, add = TRUE, col = "blue")

boxplot(decrease ~ treatment, data = OrchardSprays,
log = "y", col = "bisque")

rb <- boxplot(decrease ~ treatment, data = OrchardSprays, col="bisque")
title("Comparing boxplot()s and non-robust mean +/- SD")

mn.t <- tapply(OrchardSprays$decrease, OrchardSprays$treatment, mean)
sd.t <- tapply(OrchardSprays$decrease, OrchardSprays$treatment, sd)
xi <- 0.3 + seq(rb$n)
points(xi, mn.t, col = "orange", pch = 18)
arrows(xi, mn.t - sd.t, xi, mn.t + sd.t,

code = 3, col = "pink", angle = 75, length = .1)

boxplot on a matrix:
mat <- cbind(Uni05 = (1:100)/21, Norm = rnorm(100),

`5T` = rt(100, df = 5), Gam2 = rgamma(100, shape = 2))
boxplot(as.data.frame(mat),

main = "boxplot(as.data.frame(mat), main = ...)")
par(las=1)# all axis labels horizontal
boxplot(as.data.frame(mat), main = "boxplot(*, horizontal = TRUE)",

horizontal = TRUE)

Using 'at = ' and adding boxplots -- example idea by Roger Bivand :

boxplot(len ~ dose, data = ToothGrowth,

bxp 675

boxwex = 0.25, at = 1:3 - 0.2,
subset = supp == "VC", col = "yellow",
main = "Guinea Pigs' Tooth Growth",
xlab = "Vitamin C dose mg",
ylab = "tooth length",
xlim = c(0.5, 3.5), ylim = c(0, 35), yaxs = "i")

boxplot(len ~ dose, data = ToothGrowth, add = TRUE,
boxwex = 0.25, at = 1:3 + 0.2,
subset = supp == "OJ", col = "orange")

legend(2, 9, c("Ascorbic acid", "Orange juice"),
fill = c("yellow", "orange"))

more examples in help(bxp)

bxp Draw Box Plots from Summaries

Description

bxp draws box plots based on the given summaries in z. It is usually called from within boxplot,
but can be invoked directly.

Usage

bxp(z, notch = FALSE, width = NULL, varwidth = FALSE,
outline = TRUE, notch.frac = 0.5, log = "",
border = par("fg"), pars = NULL, frame.plot = axes,
horizontal = FALSE, add = FALSE, at = NULL, show.names = NULL,
...)

Arguments

z a list containing data summaries to be used in constructing the plots. These are
usually the result of a call to boxplot, but can be generated in any fashion.

notch if notch is TRUE, a notch is drawn in each side of the boxes. If the notches
of two plots do not overlap then the medians are significantly different at the 5
percent level.

width a vector giving the relative widths of the boxes making up the plot.

varwidth if varwidth is TRUE, the boxes are drawn with widths proportional to the
square-roots of the number of observations in the groups.

outline if outline is not true, the outliers are not drawn.

notch.frac numeric in (0,1). When notch=TRUE, the fraction of the box width that the
notches should use.

border character or numeric (vector), the color of the box borders. Is recycled for
multiple boxes. Is used as default for the boxcol, medcol, whiskcol,
staplecol, and outcol options (see below).

log character, indicating if any axis should be drawn in logarithmic scale, as in
plot.default.

frame.plot logical, indicating if a ‘frame’ (box) should be drawn; defaults to TRUE, unless
axes = FALSE is specified.

676 bxp

horizontal logical indicating if the boxplots should be horizontal; default FALSE means
vertical boxes.

add logical, if true add boxplot to current plot.

at numeric vector giving the locations where the boxplots should be drawn, partic-
ularly when add = TRUE; defaults to 1:n where n is the number of boxes.

show.names Set to TRUE or FALSE to override the defaults on whether an x-axis label is
printed for each group.

pars,... graphical parameters (etc) can be passed as arguments to this function, either
as a list (pars) or normally(...), see the following. (Those in ... take
precedence over those in pars.)
Currently, yaxs and ylim are used ‘along the boxplot’, i.e., vertically,
when horizontal is false, and xlim horizontally. xaxt, yaxt, las,
cex.axis, and col.axis are passed to axis, and main, cex.main,
col.main, sub, cex.sub, col.sub, xlab, ylab, cex.lab, and
col.lab are passed to title.
In addition, axes is accepted (see plot.window), with default TRUE.
The following arguments (or pars components) allow further customization
of the boxplot graphics. Their defaults are typically determined from the non-
prefixed version (e.g., boxlty from lty), either from the specified argument
or pars component or the corresponding par one.

boxwex: a scale factor to be applied to all boxes. When there are only a few
groups, the appearance of the plot can be improved by making the boxes
narrower. The default depends on at and typically is 0.8.

staplewex, outwex: staple and outlier line width expansion, proportional to box
width; both default to 0.5.

boxlty, boxlwd, boxcol, boxfill: box outline type, width, color, and fill color
(which currently defaults to col and will in future default to par("bg")).

medlty, medlwd, medpch, medcex, medcol, medbg: median line type, line
width, point character, point size expansion, color, and background color.
The default medpch= NA suppresses the point, and medlty="blank"
does so for the line. Note thatmedlwd defaults to 3× the default lwd.

whisklty, whisklwd, whiskcol: whisker line type (default: "dashed"),
width, and color.

staplelty, staplelwd, staplecol: staple (= end of whisker) line type, width, and
color.

outlty, outlwd, outpch, outcex, outcol, outbg: outlier line type, line width,
point character, point size expansion, color, and background color. The
default outlty= "blank" suppresses the lines and outpch=NA sup-
presses points.

Value

An invisible vector, actually identical to the at argument, with the coordinates ("x" if horizontal is
false, "y" otherwise) of box centers, useful for adding to the plot.

Note

if add = FALSE, the default is xlim = c(0.5, n +0.5). It will usually be a good idea to
specify the latter if the "x" axis has a log scale or at is specified or width is far from uniform.

bxp 677

Author(s)

The R Core development team and Arni Magnusson 〈arnima@u.washington.edu〉who has provided
most changes for the box*, med*, whisk*, staple*, and out* arguments.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

require(stats)
set.seed(753)
(bx.p <- boxplot(split(rt(100, 4), gl(5,20))))
op <- par(mfrow= c(2,2))
bxp(bx.p, xaxt = "n")
bxp(bx.p, notch = TRUE, axes = FALSE, pch = 4, boxfill=1:5)
bxp(bx.p, notch = TRUE, boxfill= "lightblue", frame= FALSE,

outl= FALSE, main = "bxp(*, frame= FALSE, outl= FALSE)")
bxp(bx.p, notch = TRUE, boxfill= "lightblue", border= 2:6,

ylim = c(-4,4), pch = 22, bg = "green", log = "x",
main = "... log='x', ylim=*")

par(op)
op <- par(mfrow= c(1,2))

single group -- no label
boxplot (weight ~ group, data = PlantGrowth, subset = group=="ctrl")
with label
bx <- boxplot(weight ~ group, data = PlantGrowth,

subset = group=="ctrl", plot = FALSE)
bxp(bx,show.names=TRUE)
par(op)

z <- split(rnorm(1000), rpois(1000,2.2))
boxplot(z, whisklty=3, main="boxplot(z, whisklty = 3)")

Colour support similar to plot.default:
op <- par(mfrow=1:2, bg="light gray", fg="midnight blue")
boxplot(z, col.axis="skyblue3", main="boxplot(*, col.axis=..,main=..)")
plot(z[[1]], col.axis="skyblue3", main= "plot(*, col.axis=..,main=..)")
mtext("par(bg=\"light gray\", fg=\"midnight blue\")",

outer = TRUE, line = -1.2)
par(op)

Mimic S-Plus:
splus <- list(boxwex=0.4, staplewex=1, outwex=1, boxfill="grey40",

medlwd=3, medcol="white", whisklty=3, outlty=1, outpch=NA)
boxplot(z, pars=splus)
Recycled and "sweeping" parameters
op <- par(mfrow=c(1,2))
boxplot(z, border=1:5, lty = 3, medlty = 1, medlwd = 2.5)
boxplot(z, boxfill=1:3, pch=1:5, lwd = 1.5, medcol="white")

par(op)
too many possibilities
boxplot(z, boxfill= "light gray", outpch = 21:25, outlty = 2,

bg = "pink", lwd = 2,

678 cdplot

medcol = "dark blue", medcex = 2, medpch = 20)

cdplot Conditional Density Plots

Description

Computes and plots conditional densities describing how the conditional distribution of a categori-
cal variable y changes over a numerical variable x.

Usage

cdplot(x, ...)

Default S3 method:
cdplot(x, y,

plot = TRUE, tol.ylab = 0.05, ylevels = NULL,
bw = "nrd0", n = 512, from = NULL, to = NULL,
col = NULL, border = 1, main = "", xlab = NULL, ylab = NULL,
yaxlabels = NULL, xlim = NULL, ylim = c(0, 1), ...)

S3 method for class 'formula':
cdplot(formula, data = list(),

plot = TRUE, tol.ylab = 0.05, ylevels = NULL,
bw = "nrd0", n = 512, from = NULL, to = NULL,
col = NULL, border = 1, main = "", xlab = NULL, ylab = NULL,
yaxlabels = NULL, xlim = NULL, ylim = c(0, 1), ...,
subset = NULL)

Arguments

x an object, the default method expects either a single numerical variable.

y a "factor" interpreted to be the dependent variable

formula a "formula" of type y ~ x with a single dependent "factor" and a single
numerical explanatory variable.

data an optional data frame.

plot logical. Should the computed conditional densities be plotted?

tol.ylab convenience tolerance parameter for y-axis annotation. If the distance between
two labels drops under this threshold, they are plotted equidistantly.

ylevels a character or numeric vector specifying in which order the levels of the depen-
dent variable should be plotted.

bw, n, from, to, ...
arguments passed to density

col a vector of fill colors of the same length as levels(y). The default is to call
gray.colors.

border border color of shaded polygons.
main, xlab, ylab

character strings for annotation

cdplot 679

yaxlabels character vector for annotation of y axis, defaults to levels(y).

xlim, ylim the range of x and y values with sensible defaults.

subset an optional vector specifying a subset of observations to be used for plotting.

Details

cdplot computes the conditional densities of x given the levels of y weighted by the marginal
distribution of y. The densities are derived cumulatively over the levels of y.

This visualization technique is similar to spinograms (see spineplot) and plots P (y|x) against
x. The conditional probabilities are not derived by discretization (as in the spinogram), but using a
smoothing approach via density.

Note, that the estimates of the conditional densities are more reliable for high-density regions of x.
Conversely, the are less reliable in regions with only few x observations.

Value

The conditional density functions (cumulative over the levels of y) are returned invisibly.

Author(s)

Achim Zeileis 〈Achim.Zeileis@R-project.org〉

References

Hofmann, H., Theus, M. (2005), Interactive graphics for visualizing conditional distributions, Un-
published Manuscript.

See Also

spineplot, density

Examples

NASA space shuttle o-ring failures
fail <- factor(c(2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1,

1, 2, 1, 1, 1, 1, 1),
levels = 1:2, labels = c("no", "yes"))

temperature <- c(53, 57, 58, 63, 66, 67, 67, 67, 68, 69, 70, 70,
70, 70, 72, 73, 75, 75, 76, 76, 78, 79, 81)

CD plot
cdplot(fail ~ temperature)
cdplot(fail ~ temperature, bw = 2)
cdplot(fail ~ temperature, bw = "SJ")

compare with spinogram
(spineplot(fail ~ temperature, breaks = 3))

highlighting for failures
cdplot(fail ~ temperature, ylevels = 2:1)

scatter plot with conditional density
cdens <- cdplot(fail ~ temperature, plot = FALSE)
plot(I(as.numeric(fail) - 1) ~ jitter(temperature, factor = 2),

680 clip

xlab = "Temperature", ylab = "Conditional failure probability")
lines(53:81, 1 - cdens[[1]](53:81), col = 2)

clip Set Clipping Region

Description

Set clipping region in user coordinates

Usage

clip(x1, x2, y1, y2)

Arguments

x1, x2, y1, y2
user coordinates of clipping rectange

Details

How the clipping rectangle is set depends on the setting of par("xpd"): this function changes
the current setting until the next high-level plotting command resets it.

Exactly when the clipping region will be reset can be hard to predict. plot.new always resets it.
Functions such as lines and text only reset it if par("xpd") has been changed. However,
functions such as box, mtext, title and plot.dendrogram can manipulate the xpd setting.

See Also

par

Examples

x <- rnorm(1000)
hist(x, xlim=c(-4,4))
usr <- par("usr")
clip(usr[1], -2, usr[3], usr[4])
hist(x, col = 'red', add = TRUE)
clip(2, usr[2], usr[3], usr[4])
hist(x, col = 'blue', add = TRUE)
do.call("clip", as.list(usr)) # reset to plot region

contour 681

contour Display Contours

Description

Create a contour plot, or add contour lines to an existing plot.

Usage

contour(x, ...)

Default S3 method:
contour(x = seq(0, 1, length.out = nrow(z)),

y = seq(0, 1, length.out = ncol(z)),
z,
nlevels = 10, levels = pretty(zlim, nlevels),
labels = NULL,
xlim = range(x, finite = TRUE),
ylim = range(y, finite = TRUE),
zlim = range(z, finite = TRUE),
labcex = 0.6, drawlabels = TRUE, method = "flattest",
vfont, axes = TRUE, frame.plot = axes,
col = par("fg"), lty = par("lty"), lwd = par("lwd"),
add = FALSE, ...)

Arguments

x,y locations of grid lines at which the values in z are measured. These must be in
ascending order. By default, equally spaced values from 0 to 1 are used. If x is
a list, its components x$x and x$y are used for x and y, respectively. If the
list has component z this is used for z.

z a matrix containing the values to be plotted (NAs are allowed). Note that x can
be used instead of z for convenience.

nlevels number of contour levels desired iff levels is not supplied.

levels numeric vector of levels at which to draw contour lines.

labels a vector giving the labels for the contour lines. If NULL then the levels are used
as labels, otherwise this is coerced by as.character.

labcex cex for contour labelling. This is an absolute size, not a multiple of
par("cex").

drawlabels logical. Contours are labelled if TRUE.

method character string specifying where the labels will be located. Possible values
are "simple", "edge" and "flattest" (the default). See the ‘Details’
section.

vfont if NULL, the current font family and face are used for the contour labels. If a
character vector of length 2 then Hershey vector fonts are used for the contour
labels. The first element of the vector selects a typeface and the second element
selects a fontindex (see text for more information). The default is NULL on
graphics devices with high-quality rotation of text and c("sans serif",
"plain") otherwise.

682 contour

xlim, ylim, zlim
x-, y- and z-limits for the plot.

axes, frame.plot
logical indicating whether axes or a box should be drawn, see plot.default.

col color for the lines drawn.

lty line type for the lines drawn.

lwd line width for the lines drawn.

add logical. If TRUE, add to a current plot.

... additional arguments to plot.window, title, Axis and box, typically
graphical parameters such as cex.axis.

Details

contour is a generic function with only a default method in base R.

The methods for positioning the labels on contours are "simple" (draw at the edge of the plot,
overlaying the contour line), "edge" (draw at the edge of the plot, embedded in the contour line,
with no labels overlapping) and "flattest" (draw on the flattest section of the contour, embed-
ded in the contour line, with no labels overlapping). The second and third may not draw a label on
every contour line.

For information about vector fonts, see the help for text and Hershey.

Notice that contour interprets the z matrix as a table of f(x[i], y[j]) values, so that the x
axis corresponds to row number and the y axis to column number, with column 1 at the bottom, i.e.
a 90 degree clockwise rotation of the conventional textual layout.

Alternatively, use contourplot from the lattice package where the formula notation allows
to use vectors x,y,z of the same length.

There is limited control over the axes and frame as arguments col, lwd and lty refer to the
contour lines (rather than being general graphical parameters). For more control, add contours to a
plot, or add axes and frame to a contour plot.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

options("max.countour.segments") for the maximal complexity of a single contour
line.

contourLines, filled.contour for color-filled contours, contourplot (and
levelplot) from package lattice. Further, image and the graphics demo which can be
invoked as demo(graphics).

Examples

require(grDevices) # for colours
x <- -6:16
op <- par(mfrow = c(2, 2))
contour(outer(x, x), method = "edge", vfont = c("sans serif", "plain"))
z <- outer(x, sqrt(abs(x)), FUN = "/")
image(x, x, z)

convertXY 683

contour(x, x, z, col = "pink", add = TRUE, method = "edge",
vfont = c("sans serif", "plain"))

contour(x, x, z, ylim = c(1, 6), method = "simple", labcex = 1)
contour(x, x, z, ylim = c(-6, 6), nlev = 20, lty = 2, method = "simple")
par(op)

Persian Rug Art:
x <- y <- seq(-4*pi, 4*pi, len = 27)
r <- sqrt(outer(x^2, y^2, "+"))
opar <- par(mfrow = c(2, 2), mar = rep(0, 4))
for(f in pi^(0:3))

contour(cos(r^2)*exp(-r/f),
drawlabels = FALSE, axes = FALSE, frame = TRUE)

rx <- range(x <- 10*1:nrow(volcano))
ry <- range(y <- 10*1:ncol(volcano))
ry <- ry + c(-1,1) * (diff(rx) - diff(ry))/2
tcol <- terrain.colors(12)
par(opar); opar <- par(pty = "s", bg = "lightcyan")
plot(x = 0, y = 0,type = "n", xlim = rx, ylim = ry, xlab = "", ylab = "")
u <- par("usr")
rect(u[1], u[3], u[2], u[4], col = tcol[8], border = "red")
contour(x, y, volcano, col = tcol[2], lty = "solid", add = TRUE,

vfont = c("sans serif", "plain"))
title("A Topographic Map of Maunga Whau", font = 4)
abline(h = 200*0:4, v = 200*0:4, col = "lightgray", lty = 2, lwd = 0.1)

contourLines produces the same contour lines as contour
line.list <- contourLines(x, y, volcano)
plot(x = 0, y = 0,type = "n", xlim = rx, ylim = ry, xlab = "", ylab = "")
u <- par("usr")
rect(u[1], u[3], u[2], u[4], col = tcol[8], border = "red")
contour(x, y, volcano, col = tcol[2], lty = "solid", add = TRUE,

vfont = c("sans serif", "plain"))
templines <- function(clines) {
lines(clines[[2]], clines[[3]])

}
invisible(lapply(line.list, templines))
par(opar)

convertXY Convert between Graphics Coordinate Systems

Description

Convert between graphics coordinate systems.

Usage

grconvertX(x, from = "user", to = "user")
grconvertY(y, from = "user", to = "user")

684 coplot

Arguments

x, y numeric vector of coordinates.

from, to character strings giving the coordinate systems to convert between.

Details

The coordinate systems are

"user" user coordinates.

"inches" inches.

"device" the device coordinate system.

"ndc" normalized device coordinates.

"nfc" normalized figure coordinates.

"npc" normalized plot coordinates.

"nic" normalized inner region coordinates. (The ‘inner region’ is that inside the outer margins.)

(These names can be partially matched.) For the ‘normalized’ coordinate systems the lower left has
value 0 and the top right value 1.

Device coordinates are those in which the device works: they are usually in pixels where that makes
sense and in big points (1/72 inch) otherwise (e.g. pdf and postscript).

Value

A numeric vector of the same length as the input.

Examples

op <- par(omd=c(0.1, 0.9, 0.1, 0.9), mfrow = c(1, 2))
plot(1:4)
for(tp in c("in", "dev", "ndc", "nfc", "npc", "nic"))

print(grconvertX(c(1.0, 4.0), "user", tp))
par(op)

coplot Conditioning Plots

Description

This function produces two variants of the conditioning plots discussed in the reference below.

Usage

coplot(formula, data, given.values, panel = points, rows, columns,
show.given = TRUE, col = par("fg"), pch = par("pch"),
bar.bg = c(num = gray(0.8), fac = gray(0.95)),
xlab = c(x.name, paste("Given :", a.name)),
ylab = c(y.name, paste("Given :", b.name)),
subscripts = FALSE,
axlabels = function(f) abbreviate(levels(f)),
number = 6, overlap = 0.5, xlim, ylim, ...)

co.intervals(x, number = 6, overlap = 0.5)

coplot 685

Arguments

formula a formula describing the form of conditioning plot. A formula of the form y ~
x | a indicates that plots of y versus x should be produced conditional on the
variable a. A formula of the form y ~ x| a * b indicates that plots of y
versus x should be produced conditional on the two variables a and b.
All three or four variables may be either numeric or factors. When x or y are
factors, the result is almost as if as.numeric() was applied, whereas for
factor a or b, the conditioning (and its graphics if show.given is true) are
adapted.

data a data frame containing values for any variables in the formula. By default the
environment where coplot was called from is used.

given.values a value or list of two values which determine how the conditioning on a and b
is to take place.
When there is no b (i.e., conditioning only on a), usually this is a matrix with
two columns each row of which gives an interval, to be conditioned on, but is can
also be a single vector of numbers or a set of factor levels (if the variable being
conditioned on is a factor). In this case (no b), the result of co.intervals
can be used directly as given.values argument.

panel a function(x, y, col, pch, ...) which gives the action to be car-
ried out in each panel of the display. The default is points.

rows the panels of the plot are laid out in a rows by columns array. rows gives
the number of rows in the array.

columns the number of columns in the panel layout array.

show.given logical (possibly of length 2 for 2 conditioning variables): should conditioning
plots be shown for the corresponding conditioning variables (default TRUE)

col a vector of colors to be used to plot the points. If too short, the values are
recycled.

pch a vector of plotting symbols or characters. If too short, the values are recycled.

bar.bg a named vector with components "num" and "fac" giving the background
colors for the (shingle) bars, for numeric and factor conditioning variables re-
spectively.

xlab character; labels to use for the x axis and the first conditioning variable. If only
one label is given, it is used for the x axis and the default label is used for the
conditioning variable.

ylab character; labels to use for the y axis and any second conditioning variable.

subscripts logical: if true the panel function is given an additional (third) argument
subscripts giving the subscripts of the data passed to that panel.

axlabels function for creating axis (tick) labels when x or y are factors.

number integer; the number of conditioning intervals, for a and b, possibly of length 2.
It is only used if the corresponding conditioning variable is not a factor.

overlap numeric < 1; the fraction of overlap of the conditioning variables, possibly of
length 2 for x and y direction. When overlap < 0, there will be gaps between the
data slices.

xlim the range for the x axis.

ylim the range for the y axis.

... additional arguments to the panel function.

x a numeric vector.

686 coplot

Details

In the case of a single conditioning variable a, when both rows and columns are unspecified, a
‘close to square’ layout is chosen with columns >= rows.

In the case of multiple rows, the order of the panel plots is from the bottom and from the left
(corresponding to increasing a, typically).

A panel function should not attempt to start a new plot, but just plot within a given coordinate
system: thus plot and boxplot are not panel functions.

The rendering of arguments xlab and ylab is not controlled by par arguments cex.lab and
font.lab even though they are plotted by mtext rather than title.

Value

co.intervals(., number, .) returns a (number × 2) matrix, say ci, where ci[k,]
is the range of x values for the k-th interval.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

Cleveland, W. S. (1993) Visualizing Data. New Jersey: Summit Press.

See Also

pairs, panel.smooth, points.

Examples

Tonga Trench Earthquakes
coplot(lat ~ long | depth, data = quakes)
given.depth <- co.intervals(quakes$depth, number=4, overlap=.1)
coplot(lat ~ long | depth, data = quakes, given.v=given.depth, rows=1)

Conditioning on 2 variables:
ll.dm <- lat ~ long | depth * mag
coplot(ll.dm, data = quakes)
coplot(ll.dm, data = quakes, number=c(4,7), show.given=c(TRUE,FALSE))
coplot(ll.dm, data = quakes, number=c(3,7),

overlap=c(-.5,.1)) # negative overlap DROPS values

given two factors
Index <- seq(length=nrow(warpbreaks)) # to get nicer default labels
coplot(breaks ~ Index | wool * tension, data = warpbreaks,

show.given = 0:1)
coplot(breaks ~ Index | wool * tension, data = warpbreaks,

col = "red", bg = "pink", pch = 21,
bar.bg = c(fac = "light blue"))

Example with empty panels:
with(data.frame(state.x77), {
coplot(Life.Exp ~ Income | Illiteracy * state.region, number = 3,

panel = function(x, y, ...) panel.smooth(x, y, span = .8, ...))
y ~ factor -- not really sensical, but 'show off':
coplot(Life.Exp ~ state.region | Income * state.division,

panel = panel.smooth)

curve 687

})

curve Draw Function Plots

Description

Draws a curve corresponding to the given function or, for curve() also an expression (in x) over
the interval [from,to].

Usage

curve(expr, from = NULL, to = NULL, n = 101, add = FALSE,
type = "l", ylab = NULL, log = NULL, xlim = NULL, ...)

S3 method for class 'function':
plot(x, y = 0, to = 1, from = y, xlim = NULL, ...)

Arguments

expr an expression written as a function of x, or alternatively the name of a function
which will be plotted.

x a ‘vectorizing’ numeric R function.

from,to the range over which the function will be plotted.

n integer; the number of x values at which to evaluate.

add logical; if TRUE add to already existing plot.

xlim numeric of length 2; if specified, it serves as default for c(from, to).

type plot type: see plot.default.

y alias for from for compatibility with plot()
ylab, log, ...

labels and graphical parameters can also be specified as arguments.
plot.function passes all these to curve.

Details

The evaluation of expr is at n points equally spaced over the range [from, to], possibly
adapted to log scale. The points determined in this way are then joined with straight lines. x(t) or
expr (with x inside) must return a numeric of the same length as the argument t or x.

For curve(), if either of from or to is NULL, it defaults to the corresponding element of xlim,
and xlim defaults to the x-limits of the current plot. For plot(<function>, ..), the defaults
for (from, to) are (0, 1).

log is taken from the current plot only when add is true, and otherwise defaults to "" indicating
linear scales on both axes.

This used to be a quick hack which now seems to serve a useful purpose, but can give bad results
for functions which are not smooth.

For expensive-to-compute expressions, you should use smarter tools.

688 dotchart

See Also

splinefun for spline interpolation, lines.

Examples

plot(qnorm)
plot(qlogis, main = "The Inverse Logit : qlogis()")
abline(h=0, v=0:2/2, lty=3, col="gray")

curve(sin, -2*pi, 2*pi)
curve(tan, main = "curve(tan) --> same x-scale as previous plot")

op <- par(mfrow=c(2,2))
curve(x^3-3*x, -2, 2)
curve(x^2-2, add = TRUE, col = "violet")

simple and sophisticated, quite similar:
plot(cos, -pi, 3*pi)
plot(cos, xlim = c(-pi,3*pi), n = 1001, col = "blue", add=TRUE)

chippy <- function(x) sin(cos(x)*exp(-x/2))
curve(chippy, -8, 7, n=2001)
plot (chippy, -8, -5)

for(ll in c("","x","y","xy"))
curve(log(1+x), 1,100, log=ll, sub=paste("log= '",ll,"'",sep=""))

par(op)

dotchart Cleveland Dot Plots

Description

Draw a Cleveland dot plot.

Usage

dotchart(x, labels = NULL, groups = NULL, gdata = NULL,
cex = par("cex"), pch = 21, gpch = 21, bg = par("bg"),
color = par("fg"), gcolor = par("fg"), lcolor = "gray",
xlim = range(x[is.finite(x)]),
main = NULL, xlab = NULL, ylab = NULL, ...)

Arguments

x either a vector or matrix of numeric values (NAs are allowed). If x is a matrix
the overall plot consists of juxtaposed dotplots for each row.

labels a vector of labels for each point. For vectors the default is to use names(x)
and for matrices the row labels dimnames(x)[[1]].

groups an optional factor indicating how the elements of x are grouped. If x is a matrix,
groups will default to the columns of x.

filled.contour 689

gdata data values for the groups. This is typically a summary such as the median or
mean of each group.

cex the character size to be used. Setting cex to a value smaller than one can be
a useful way of avoiding label overlap. Unlike many other graphics functions,
this sets the actual size, not a multiple of par("cex").

pch the plotting character or symbol to be used.

gpch the plotting character or symbol to be used for group values.

bg the background color of plotting characters or symbols to be used; use
par(bg= *) to set the background color of the whole plot.

color the color(s) to be used for points and labels.

gcolor the single color to be used for group labels and values.

lcolor the color(s) to be used for the horizontal lines.

xlim horizontal range for the plot, see plot.window, e.g.

main overall title for the plot, see title.

xlab, ylab axis annotations as in title.

... graphical parameters can also be specified as arguments.

Value

This function is invoked for its side effect, which is to produce two variants of dotplots as described
in Cleveland (1985).

Dot plots are a reasonable substitute for bar plots.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Cleveland, W. S. (1985) The Elements of Graphing Data. Monterey, CA: Wadsworth.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

Examples

dotchart(VADeaths, main = "Death Rates in Virginia - 1940")
op <- par(xaxs="i")# 0 -- 100%
dotchart(t(VADeaths), xlim = c(0,100),

main = "Death Rates in Virginia - 1940")
par(op)

filled.contour Level (Contour) Plots

Description

This function produces a contour plot with the areas between the contours filled in solid color
(Cleveland calls this a level plot). A key showing how the colors map to z values is shown to the
right of the plot.

690 filled.contour

Usage

filled.contour(x = seq(0, 1, length.out = nrow(z)),
y = seq(0, 1, length.out = ncol(z)),
z,
xlim = range(x, finite=TRUE),
ylim = range(y, finite=TRUE),
zlim = range(z, finite=TRUE),
levels = pretty(zlim, nlevels), nlevels = 20,
color.palette = cm.colors,
col = color.palette(length(levels) - 1),
plot.title, plot.axes, key.title, key.axes,
asp = NA, xaxs = "i", yaxs = "i", las = 1,
axes = TRUE, frame.plot = axes, ...)

Arguments

x,y locations of grid lines at which the values in z are measured. These must be in
ascending order. By default, equally spaced values from 0 to 1 are used. If x is
a list, its components x$x and x$y are used for x and y, respectively. If the
list has component z this is used for z.

z a matrix containing the values to be plotted (NAs are allowed). Note that x can
be used instead of z for convenience.

xlim x limits for the plot.

ylim y limits for the plot.

zlim z limits for the plot.

levels a set of levels which are used to partition the range of z. Must be strictly in-
creasing (and finite). Areas with z values between consecutive levels are painted
with the same color.

nlevels if levels is not specified, the range of z, values is divided into approximately
this many levels.

color.palette
a color palette function to be used to assign colors in the plot.

col an explicit set of colors to be used in the plot. This argument overrides any
palette function specification.

plot.title statements which add titles to the main plot.

plot.axes statements which draw axes (and a box) on the main plot. This overrides the
default axes.

key.title statements which add titles for the plot key.

key.axes statements which draw axes on the plot key. This overrides the default axis.

asp the y/x aspect ratio, see plot.window.

xaxs the x axis style. The default is to use internal labeling.

yaxs the y axis style. The default is to use internal labeling.

las the style of labeling to be used. The default is to use horizontal labeling.
axes, frame.plot

logicals indicating if axes and a box should be drawn, as in plot.default.

... additional graphical parameters, currently only passed to title().

filled.contour 691

Note

This function currently uses the layout function and so is restricted to a full page display. As
an alternative consider the levelplot and contourplot functions from the lattice package
which work in multipanel displays.

The output produced by filled.contour is actually a combination of two plots; one is the
filled contour and one is the legend. Two separate coordinate systems are set up for these two plots,
but they are only used internally - once the function has returned these coordinate systems are lost.
If you want to annotate the main contour plot, for example to add points, you can specify graphics
commands in the plot.axes argument. An example is given below.

Author(s)

Ross Ihaka.

References

Cleveland, W. S. (1993) Visualizing Data. Summit, New Jersey: Hobart.

See Also

contour, image, palette; contourplot from package lattice.

Examples

require(grDevices) # for colours
filled.contour(volcano, color = terrain.colors, asp = 1)# simple

x <- 10*1:nrow(volcano)
y <- 10*1:ncol(volcano)
filled.contour(x, y, volcano, color = terrain.colors,

plot.title = title(main = "The Topography of Maunga Whau",
xlab = "Meters North", ylab = "Meters West"),
plot.axes = { axis(1, seq(100, 800, by = 100))

axis(2, seq(100, 600, by = 100)) },
key.title = title(main="Height\n(meters)"),
key.axes = axis(4, seq(90, 190, by = 10)))# maybe also asp=1

mtext(paste("filled.contour(.) from", R.version.string),
side = 1, line = 4, adj = 1, cex = .66)

Annotating a filled contour plot
a <- expand.grid(1:20, 1:20)
b <- matrix(a[,1] + a[,2], 20)
filled.contour(x = 1:20, y = 1:20, z = b,

plot.axes={ axis(1); axis(2); points(10,10) })

Persian Rug Art:
x <- y <- seq(-4*pi, 4*pi, len = 27)
r <- sqrt(outer(x^2, y^2, "+"))
filled.contour(cos(r^2)*exp(-r/(2*pi)), axes = FALSE)
rather, the key *should* be labeled:
filled.contour(cos(r^2)*exp(-r/(2*pi)), frame.plot = FALSE,

plot.axes = {})

692 fourfoldplot

fourfoldplot Fourfold Plots

Description

Creates a fourfold display of a 2 by 2 by k contingency table on the current graphics device, allowing
for the visual inspection of the association between two dichotomous variables in one or several
populations (strata).

Usage

fourfoldplot(x, color = c("#99CCFF", "#6699CC"),
conf.level = 0.95,
std = c("margins", "ind.max", "all.max"),
margin = c(1, 2), space = 0.2, main = NULL,
mfrow = NULL, mfcol = NULL)

Arguments

x a 2 by 2 by k contingency table in array form, or as a 2 by 2 matrix if k is 1.

color a vector of length 2 specifying the colors to use for the smaller and larger diag-
onals of each 2 by 2 table.

conf.level confidence level used for the confidence rings on the odds ratios. Must be a sin-
gle nonnegative number less than 1; if set to 0, confidence rings are suppressed.

std a character string specifying how to standardize the table. Must be one of
"margins", "ind.max", or "all.max", and can be abbreviated by the ini-
tial letter. If set to "margins", each 2 by 2 table is standardized to equate the
margins specified by margin while preserving the odds ratio. If "ind.max"
or "all.max", the tables are either individually or simultaneously standard-
ized to a maximal cell frequency of 1.

margin a numeric vector with the margins to equate. Must be one of 1, 2, or c(1,
2) (the default), which corresponds to standardizing the row, column, or both
margins in each 2 by 2 table. Only used if std equals "margins".

space the amount of space (as a fraction of the maximal radius of the quarter circles)
used for the row and column lebals.

main character string for the fourfold title.

mfrow a numeric vector of the form c(nr, nc), indicating that the displays for the 2
by 2 tables should be arranged in an nr by nc layout, filled by rows.

mfcol a numeric vector of the form c(nr, nc), indicating that the displays for the 2
by 2 tables should be arranged in an nr by nc layout, filled by columns.

Details

The fourfold display is designed for the display of 2 by 2 by k tables.

Following suitable standardization, the cell frequencies fij of each 2 by 2 table are shown as a
quarter circle whose radius is proportional to

√
fij so that its area is proportional to the cell fre-

quency. An association (odds ratio different from 1) between the binary row and column variables
is indicated by the tendency of diagonally opposite cells in one direction to differ in size from those

frame 693

in the other direction; color is used to show this direction. Confidence rings for the odds ratio allow
a visual test of the null of no association; the rings for adjacent quadrants overlap if and only if the
observed counts are consistent with the null hypothesis.

Typically, the number k corresponds to the number of levels of a stratifying variable, and it is of
interest to see whether the association is homogeneous across strata. The fourfold display visualizes
the pattern of association. Note that the confidence rings for the individual odds ratios are not
adjusted for multiple testing.

References

Friendly, M. (1994). A fourfold display for 2 by 2 by k tables. Technical Report 217, York Uni-
versity, Psychology Department. http://www.math.yorku.ca/SCS/Papers/4fold/
4fold.ps.gz

See Also

mosaicplot

Examples

Use the Berkeley admission data as in Friendly (1995).
x <- aperm(UCBAdmissions, c(2, 1, 3))
dimnames(x)[[2]] <- c("Yes", "No")
names(dimnames(x)) <- c("Sex", "Admit?", "Department")
stats::ftable(x)

Fourfold display of data aggregated over departments, with
frequencies standardized to equate the margins for admission
and sex.
Figure 1 in Friendly (1994).
fourfoldplot(margin.table(x, c(1, 2)))

Fourfold display of x, with frequencies in each table
standardized to equate the margins for admission and sex.
Figure 2 in Friendly (1994).
fourfoldplot(x)

Fourfold display of x, with frequencies in each table
standardized to equate the margins for admission. but not
for sex.
Figure 3 in Friendly (1994).
fourfoldplot(x, margin = 2)

frame Create / Start a New Plot Frame

Description

This function (frame is an alias for plot.new) causes the completion of plotting in the current
plot (if there is one) and an advance to a new graphics frame. This is used in all high-level plotting
functions and also useful for skipping plots when a multi-figure region is in use.

http://www.math.yorku.ca/SCS/Papers/4fold/4fold.ps.gz
http://www.math.yorku.ca/SCS/Papers/4fold/4fold.ps.gz

694 grid

Usage

plot.new()
frame()

Details

The new page is painted with the background colour (par("bg")), which is often transparent. For
devices with a canvas colour (the on-screen devices X11, windows and quartz), the window is
first painted with the canvas colour and then the background colour.

There is a hook called "plot.new" (see setHook) called immediately after advancing the
frame, which is used in the testing code to annotate the new page. The hook function(s) are called
with no argument. (If the value is a character string, get is called on it from within the graphics
namespace.)

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (frame.)

See Also

plot.window, plot.default.

grid Add Grid to a Plot

Description

grid adds an nx by ny rectangular grid to an existing plot.

Usage

grid(nx = NULL, ny = nx, col = "lightgray", lty = "dotted",
lwd = par("lwd"), equilogs = TRUE)

Arguments

nx,ny number of cells of the grid in x and y direction. When NULL, as per default,
the grid aligns with the tick marks on the corresponding default axis (i.e., tick-
marks as computed by axTicks). When NA, no grid lines are drawn in the
corresponding direction.

col character or (integer) numeric; color of the grid lines.

lty character or (integer) numeric; line type of the grid lines.

lwd non-negative numeric giving line width of the grid lines.

equilogs logical, only used when log coordinates and alignment with the axis tick marks
are active. Setting equilogs = FALSE in that case gives non equidistant
tick aligned grid lines.

hist 695

Note

If more fine tuning is required, use abline(h = ., v = .) directly.

References

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

plot, abline, lines, points.

Examples

plot(1:3)
grid(NA, 5, lwd = 2) # grid only in y-direction

maybe change the desired number of tick marks: par(lab=c(mx,my,7))
op <- par(mfcol = 1:2)
with(iris,

{
plot(Sepal.Length, Sepal.Width, col = as.integer(Species),

xlim = c(4, 8), ylim = c(2, 4.5), panel.first = grid(),
main = "with(iris, plot(...., panel.first = grid(), ..))")

plot(Sepal.Length, Sepal.Width, col = as.integer(Species),
panel.first = grid(3, lty=1,lwd=2),
main = "... panel.first = grid(3, lty=1,lwd=2), ..")

}
)

par(op)

hist Histograms

Description

The generic function hist computes a histogram of the given data values. If plot=TRUE, the re-
sulting object of class "histogram" is plotted by plot.histogram, before it is returned.

Usage

hist(x, ...)

Default S3 method:
hist(x, breaks = "Sturges",

freq = NULL, probability = !freq,
include.lowest = TRUE, right = TRUE,
density = NULL, angle = 45, col = NULL, border = NULL,
main = paste("Histogram of" , xname),
xlim = range(breaks), ylim = NULL,
xlab = xname, ylab,
axes = TRUE, plot = TRUE, labels = FALSE,
nclass = NULL, ...)

696 hist

Arguments

x a vector of values for which the histogram is desired.

breaks one of:

• a vector giving the breakpoints between histogram cells,

• a single number giving the number of cells for the histogram,

• a character string naming an algorithm to compute the number of cells (see
‘Details’),

• a function to compute the number of cells.

In the last three cases the number is a suggestion only.

freq logical; if TRUE, the histogram graphic is a representation of frequencies, the
counts component of the result; if FALSE, probability densities, component
density, are plotted (so that the histogram has a total area of one). Defaults
to TRUE if and only if breaks are equidistant (and probability is not
specified).

probability an alias for !freq, for S compatibility.

include.lowest
logical; if TRUE, an x[i] equal to the breaks value will be included in the
first (or last, for right = FALSE) bar. This will be ignored (with a warning)
unless breaks is a vector.

right logical; if TRUE, the histograms cells are right-closed (left open) intervals.

density the density of shading lines, in lines per inch. The default value of NULL means
that no shading lines are drawn. Non-positive values of density also inhibit
the drawing of shading lines.

angle the slope of shading lines, given as an angle in degrees (counter-clockwise).

col a colour to be used to fill the bars. The default of NULL yields unfilled bars.

border the color of the border around the bars. The default is to use the standard fore-
ground color.

main, xlab, ylab
these arguments to title have useful defaults here.

xlim, ylim the range of x and y values with sensible defaults. Note that xlim is not used
to define the histogram (breaks), but only for plotting (when plot = TRUE).

axes logical. If TRUE (default), axes are draw if the plot is drawn.

plot logical. If TRUE (default), a histogram is plotted, otherwise a list of breaks and
counts is returned. In the latter case, a warning is used if (typically graphical)
arguments are specified that only apply to the plot = TRUE case.

labels logical or character. Additionally draw labels on top of bars, if not FALSE; see
plot.histogram.

nclass numeric (integer). For S(-PLUS) compatibility only, nclass is equivalent to
breaks for a scalar or character argument.

... further arguments and graphical parameters passed to plot.histogram and
thence to title and axis (if plot=TRUE).

hist 697

Details

The definition of histogram differs by source (with country-specific biases). R’s default with equi-
spaced breaks (also the default) is to plot the counts in the cells defined by breaks. Thus the height
of a rectangle is proportional to the number of points falling into the cell, as is the area provided the
breaks are equally-spaced.

The default with non-equi-spaced breaks is to give a plot of area one, in which the area of the
rectangles is the fraction of the data points falling in the cells.

If right = TRUE (default), the histogram cells are intervals of the form (a, b], i.e., they
include their right-hand endpoint, but not their left one, with the exception of the first cell when
include.lowest is TRUE.

For right = FALSE, the intervals are of the form [a, b), and include.lowest means
‘include highest’.

A numerical tolerance of 10−7 times the median bin size is applied when counting entries on the
edges of bins.

The default for breaks is "Sturges": see nclass.Sturges. Other names for which al-
gorithms are supplied are "Scott" and "FD" / "Freedman-Diaconis" (with corresponding
functions nclass.scott and nclass.FD). Case is ignored and partial matching is used. Alter-
natively, a function can be supplied which will compute the intended number of breaks as a function
of x.

Value

an object of class "histogram" which is a list with components:

breaks the n+ 1 cell boundaries (= breaks if that was a vector).

counts n integers; for each cell, the number of x[] inside.

density values f̂(xi), as estimated density values. If all(diff(breaks) ==
1), they are the relative frequencies counts/n and in general satisfy∑
i f̂(xi)(bi+1 − bi) = 1, where bi = breaks[i].

intensities same as density. Deprecated, but retained for compatibility.

mids the n cell midpoints.

xname a character string with the actual x argument name.

equidist logical, indicating if the distances between breaks are all the same.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Venables, W. N. and Ripley. B. D. (2002) Modern Applied Statistics with S. Springer.

See Also

nclass.Sturges, stem, density, truehist in package MASS.

Typical plots with vertical bars are not histograms. Consider barplot or plot(*, type =
"h") for such bar plots.

698 hist.POSIXt

Examples

op <- par(mfrow=c(2, 2))
hist(islands)
utils::str(hist(islands, col="gray", labels = TRUE))

hist(sqrt(islands), breaks = 12, col="lightblue", border="pink")
##-- For non-equidistant breaks, counts should NOT be graphed unscaled:
r <- hist(sqrt(islands), breaks = c(4*0:5, 10*3:5, 70, 100, 140),

col='blue1')
text(r$mids, r$density, r$counts, adj=c(.5, -.5), col='blue3')
sapply(r[2:3], sum)
sum(r$density * diff(r$breaks)) # == 1
lines(r, lty = 3, border = "purple") # -> lines.histogram(*)
par(op)

require(utils) # for str
str(hist(islands, breaks=12, plot= FALSE)) #-> 10 (~= 12) breaks
str(hist(islands, breaks=c(12,20,36,80,200,1000,17000), plot = FALSE))

hist(islands, breaks=c(12,20,36,80,200,1000,17000), freq = TRUE,
main = "WRONG histogram") # and warning

require(stats)
set.seed(14)
x <- rchisq(100, df = 4)

Comparing data with a model distribution should be done with qqplot()!
qqplot(x, qchisq(ppoints(x), df = 4)); abline(0,1, col = 2, lty = 2)

if you really insist on using hist() ... :
hist(x, freq = FALSE, ylim = c(0, 0.2))
curve(dchisq(x, df = 4), col = 2, lty = 2, lwd = 2, add = TRUE)

hist.POSIXt Histogram of a Date or Date-Time Object

Description

Method for hist applied to date or date-time objects.

Usage

S3 method for class 'POSIXt':
hist(x, breaks, ...,

xlab = deparse(substitute(x)),
plot = TRUE, freq = FALSE,
start.on.monday = TRUE, format)

S3 method for class 'Date':
hist(x, breaks, ...,

xlab = deparse(substitute(x)),
plot = TRUE, freq = FALSE,
start.on.monday = TRUE, format)

hist.POSIXt 699

Arguments

x an object inheriting from class "POSIXt" or "Date".

breaks a vector of cut points or number giving the number of intervals which x is to be
cut into or an interval specification, one of "days", "weeks", "months",
"quarters" or "years", plus "secs", "mins", "hours" for date-time
objects.

... graphical parameters, or arguments to hist.default such as
include.lowest, right and labels.

xlab a character string giving the label for the x axis, if plotted.

plot logical. If TRUE (default), a histogram is plotted, otherwise a list of breaks and
counts is returned.

freq logical; if TRUE, the histogram graphic is a representation of frequencies, i.e, the
counts component of the result; if FALSE, relative frequencies (probabilities)
are plotted.

start.on.monday
logical. If breaks = "weeks", should the week start on Mondays or Sun-
days?

format for the x-axis labels. See strptime.

Details

Using breaks = "quarters" will create intervals of 3 calendar months, with the intervals
beginning on January 1, April 1, July 1 or October 1, based upon min(x) as appropriate.

Value

An object of class "histogram": see hist.

See Also

seq.POSIXt, axis.POSIXct, hist

Examples

hist(.leap.seconds, "years", freq = TRUE)
hist(.leap.seconds,

seq(ISOdate(1970, 1, 1), ISOdate(2010, 1, 1), "5 years"))

100 random dates in a 10-week period
random.dates <- as.Date("2001/1/1") + 70*stats::runif(100)
hist(random.dates, "weeks", format = "%d %b")

700 identify

identify Identify Points in a Scatter Plot

Description

identify reads the position of the graphics pointer when the (first) mouse button is pressed. It
then searches the coordinates given in x and y for the point closest to the pointer. If this point is
close enough to the pointer, its index will be returned as part of the value of the call.

Usage

identify(x, ...)

Default S3 method:
identify(x, y = NULL, labels = seq_along(x), pos = FALSE,

n = length(x), plot = TRUE, atpen = FALSE, offset = 0.5,
tolerance = 0.25, ...)

Arguments

x,y coordinates of points in a scatter plot. Alternatively, any object which defines
coordinates (a plotting structure, time series etc: see xy.coords) can be given
as x, and y left missing.

labels an optional character vector giving labels for the points. Will be coerced using
as.character, and recycled if necessary to the length of x. Excess labels
will be discarded, with a warning.

pos if pos is TRUE, a component is added to the return value which indicates where
text was plotted relative to each identified point: see Value.

n the maximum number of points to be identified.

plot logical: if plot is TRUE, the labels are printed near the points and if FALSE
they are omitted.

atpen logical: if TRUE and plot = TRUE, the lower-left corners of the labels are
plotted at the points clicked rather than relative to the points.

offset the distance (in character widths) which separates the label from identified
points. Negative values are allowed. Not used if atpen = TRUE.

tolerance the maximal distance (in inches) for the pointer to be ‘close enough’ to a point.

... further arguments passed to par such as cex, col and font.

Details

identify is a generic function, and only the default method is described here.

identify is only supported on screen devices such as X11, windows and quartz. On other
devices the call will do nothing.

Clicking near (as defined by tolerance) a point adds it to the list of identified points. Points can
be identified only once, and if the point has already been identified or the click is not near any of
the points a message is printed immediately on the R console.

If plot is TRUE, the point is labelled with the corresponding element of labels. If atpen is
false (the default) the labels are placed below, to the left, above or to the right of the identified point,

identify 701

depending on where the pointer was relative to the point. If atpen is true, the labels are placed
with the bottom left of the string’s box at the pointer.

For the usual X11 device the identification process is terminated by pressing any mouse button
other than the first. For the quartz device the process is terminated by pressing either the pop-up
menu equivalent (usually second mouse button or Ctrl-click) or the ESC key.

On most devices which support identify, successful selection of a point is indicated by a bell
sound unless options(locatorBell = FALSE) has been set.

If the window is resized or hidden and then exposed before the identification process has terminated,
any labels drawn by identify will disappear. These will reappear once the identification process
has terminated and the window is resized or hidden and exposed again. This is because the labels
drawn by identify are not recorded in the device’s display list until the identification process
has terminated.

If you interrupt the identify call this leaves the graphics device in an undefined state, with
points labelled but labels not recorded in the display list. Copying a device in that state will give
unpredictable results.

Value

If pos is FALSE, an integer vector containing the indices of the identified points, in the order they
were identified.

If pos is TRUE, a list containing a component ind, indicating which points were identified and a
component pos, indicating where the labels were placed relative to the identified points (1=below,
2=left, 3=above, 4=right and 0=no offset, used if atpen = TRUE).

Technicalities

The algorithm used for placing labels is the same as used by text if pos is specified there, the
difference being that the position of the pointer relative the identified point determines pos in
identify.

For labels placed to the left of a point, the right-hand edge of the string’s box is placed offset
units to the left of the point, and analogously for points to the right. The baseline of the text is placed
below the point so as to approximately centre string vertically. For labels placed above or below a
point, the string is centered horizontally on the point. For labels placed above, the baseline of the
text is placed offset units above the point, and for those placed below, the baseline is placed so
that the top of the string’s box is approximately offset units below the point. If you want more
precise placement (e.g. centering) use plot = FALSE and plot via text or points: see the
examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

locator, text.

Examples

A function to use identify to select points, and overplot the
points with another symbol as they are selected
identifyPch <- function(x, y=NULL, n=length(x), pch=19, ...)

702 image

{
xy <- xy.coords(x, y); x <- xy$x; y <- xy$y
sel <- rep(FALSE, length(x)); res <- integer(0)
while(sum(sel) < n) {

ans <- identify(x[!sel], y[!sel], n=1, plot=FALSE, ...)
if(!length(ans)) break
ans <- which(!sel)[ans]
points(x[ans], y[ans], pch = pch)
sel[ans] <- TRUE
res <- c(res, ans)

}
res

}

image Display a Color Image

Description

Creates a grid of colored or gray-scale rectangles with colors corresponding to the values in z. This
can be used to display three-dimensional or spatial data aka images. This is a generic function.

The functions heat.colors, terrain.colors and topo.colors create heat-spectrum
(red to white) and topographical color schemes suitable for displaying ordered data, with n giv-
ing the number of colors desired.

Usage

image(x, ...)

Default S3 method:
image(x, y, z, zlim, xlim, ylim, col = heat.colors(12),

add = FALSE, xaxs = "i", yaxs = "i", xlab, ylab,
breaks, oldstyle = FALSE, ...)

Arguments

x,y locations of grid lines at which the values in z are measured. These must be
finite, non-missing and in (strictly) ascending order. By default, equally spaced
values from 0 to 1 are used. If x is a list, its components x$x and x$y are
used for x and y, respectively. If the list has component z this is used for z.

z a matrix containing the values to be plotted (NAs are allowed). Note that x can
be used instead of z for convenience.

zlim the minimum and maximum z values for which colors should be plotted, de-
faulting to the range of the finite values of z. Each of the given colors will be
used to color an equispaced interval of this range. The midpoints of the intervals
cover the range, so that values just outside the range will be plotted.

xlim, ylim ranges for the plotted x and y values, defaulting to the ranges of x and y.

col a list of colors such as that generated by rainbow, heat.colors,
topo.colors, terrain.colors or similar functions.

add logical; if TRUE, add to current plot (and disregard the following arguments).
This is rarely useful because image ‘paints’ over existing graphics.

image 703

xaxs, yaxs style of x and y axis. The default "i" is appropriate for images. See par.

xlab, ylab each a character string giving the labels for the x and y axis. Default to the ‘call
names’ of x or y, or to "" if these were unspecified.

breaks a set of breakpoints for the colours: must give one more breakpoint than colour.

oldstyle logical. If true the midpoints of the colour intervals are equally spaced, and
zlim[1] and zlim[2] were taken to be midpoints. The default is to have
colour intervals of equal lengths between the limits.

... graphical parameters for plotmay also be passed as arguments to this function,
as can the plot aspect ratio asp and axes (see plot.window).

Details

The length of x should be equal to the nrow(z)+1 or nrow(z). In the first case x specifies the
boundaries between the cells: in the second case x specifies the midpoints of the cells. Similar
reasoning applies to y. It probably only makes sense to specify the midpoints of an equally-spaced
grid. If you specify just one row or column and a length-one x or y, the whole user area in the
corresponding direction is filled.

Rectangles corresponding to missing values are not plotted (and so are transparent and (unless
add=TRUE) the default background painted in par("bg") will show though and if that is trans-
parent, the canvas colour will be seen).

If breaks is specified then zlim is unused and the algorithm used follows cut, so intervals are
closed on the right and open on the left except for the lowest interval.

Notice that image interprets the z matrix as a table of f(x[i], y[j]) values, so that the x axis
corresponds to row number and the y axis to column number, with column 1 at the bottom, i.e. a 90
degree counter-clockwise rotation of the conventional printed layout of a matrix.

Note

Based on a function by Thomas Lumley 〈tlumley@u.washington.edu〉.

See Also

filled.contour or heatmap which can look nicer (but are less modular), contour; The
lattice equivalent of image is levelplot.

heat.colors, topo.colors, terrain.colors, rainbow, hsv, par.

Examples

require(grDevices) # for colours
x <- y <- seq(-4*pi, 4*pi, len=27)
r <- sqrt(outer(x^2, y^2, "+"))
image(z = z <- cos(r^2)*exp(-r/6), col=gray((0:32)/32))
image(z, axes = FALSE, main = "Math can be beautiful ...",

xlab = expression(cos(r^2) * e^{-r/6}))
contour(z, add = TRUE, drawlabels = FALSE)

Volcano data visualized as matrix. Need to transpose and flip
matrix horizontally.
image(t(volcano)[ncol(volcano):1,])

A prettier display of the volcano
x <- 10*(1:nrow(volcano))

704 layout

y <- 10*(1:ncol(volcano))
image(x, y, volcano, col = terrain.colors(100), axes = FALSE)
contour(x, y, volcano, levels = seq(90, 200, by = 5),

add = TRUE, col = "peru")
axis(1, at = seq(100, 800, by = 100))
axis(2, at = seq(100, 600, by = 100))
box()
title(main = "Maunga Whau Volcano", font.main = 4)

layout Specifying Complex Plot Arrangements

Description

layout divides the device up into as many rows and columns as there are in matrix mat, with the
column-widths and the row-heights specified in the respective arguments.

Usage

layout(mat, widths = rep(1, ncol(mat)),
heights = rep(1, nrow(mat)), respect = FALSE)

layout.show(n = 1)
lcm(x)

Arguments

mat a matrix object specifying the location of the nextN figures on the output device.
Each value in the matrix must be 0 or a positive integer. If N is the largest
positive integer in the matrix, then the integers {1, . . . , N −1}must also appear
at least once in the matrix.

widths a vector of values for the widths of columns on the device. Relative widths are
specified with numeric values. Absolute widths (in centimetres) are specified
with the lcm() function (see examples).

heights a vector of values for the heights of rows on the device. Relative and absolute
heights can be specified, see widths above.

respect either a logical value or a matrix object. If the latter, then it must have the same
dimensions as mat and each value in the matrix must be either 0 or 1.

n number of figures to plot.

x a dimension to be interpreted as a number of centimetres.

Details

Figure i is allocated a region composed from a subset of these rows and columns, based on the rows
and columns in which i occurs in mat.

The respect argument controls whether a unit column-width is the same physical measurement
on the device as a unit row-height.

There is a limit (currently 50) for the numbers of rows and columns in the layout, and also for the
total number of cells (500).

layout 705

layout.show(n) plots (part of) the current layout, namely the outlines of the next n figures.

lcm is a trivial function, to be used as the interface for specifying absolute dimensions for the
widths and heights arguments of layout().

Value

layout returns the number of figures, N , see above.

Warnings

These functions are totally incompatible with the other mechanisms for arranging plots on a device:
par(mfrow), par(mfcol) and split.screen.

Author(s)

Paul R. Murrell

References

Murrell, P. R. (1999) Layouts: A mechanism for arranging plots on a page. Journal of Computa-
tional and Graphical Statistics, 8, 121-134.

Chapter 5 of Paul Murrell’s Ph.D. thesis.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

par with arguments mfrow, mfcol, or mfg.

Examples

def.par <- par(no.readonly = TRUE) # save default, for resetting...

divide the device into two rows and two columns
allocate figure 1 all of row 1
allocate figure 2 the intersection of column 2 and row 2
layout(matrix(c(1,1,0,2), 2, 2, byrow = TRUE))
show the regions that have been allocated to each plot
layout.show(2)

divide device into two rows and two columns
allocate figure 1 and figure 2 as above
respect relations between widths and heights
nf <- layout(matrix(c(1,1,0,2), 2, 2, byrow=TRUE), respect=TRUE)
layout.show(nf)

create single figure which is 5cm square
nf <- layout(matrix(1), widths=lcm(5), heights=lcm(5))
layout.show(nf)

##-- Create a scatterplot with marginal histograms -----

x <- pmin(3, pmax(-3, stats::rnorm(50)))
y <- pmin(3, pmax(-3, stats::rnorm(50)))
xhist <- hist(x, breaks=seq(-3,3,0.5), plot=FALSE)
yhist <- hist(y, breaks=seq(-3,3,0.5), plot=FALSE)

706 legend

top <- max(c(xhist$counts, yhist$counts))
xrange <- c(-3,3)
yrange <- c(-3,3)
nf <- layout(matrix(c(2,0,1,3),2,2,byrow=TRUE), c(3,1), c(1,3), TRUE)
layout.show(nf)

par(mar=c(3,3,1,1))
plot(x, y, xlim=xrange, ylim=yrange, xlab="", ylab="")
par(mar=c(0,3,1,1))
barplot(xhist$counts, axes=FALSE, ylim=c(0, top), space=0)
par(mar=c(3,0,1,1))
barplot(yhist$counts, axes=FALSE, xlim=c(0, top), space=0, horiz=TRUE)

par(def.par)#- reset to default

legend Add Legends to Plots

Description

This function can be used to add legends to plots. Note that a call to the function locator(1)
can be used in place of the x and y arguments.

Usage

legend(x, y = NULL, legend, fill = NULL, col = par("col"),
lty, lwd, pch,
angle = 45, density = NULL, bty = "o", bg = par("bg"),
box.lwd = par("lwd"), box.lty = par("lty"), box.col = par("fg"),
pt.bg = NA, cex = 1, pt.cex = cex, pt.lwd = lwd,
xjust = 0, yjust = 1, x.intersp = 1, y.intersp = 1,
adj = c(0, 0.5), text.width = NULL, text.col = par("col"),
merge = do.lines && has.pch, trace = FALSE,
plot = TRUE, ncol = 1, horiz = FALSE, title = NULL,
inset = 0, xpd)

Arguments

x, y the x and y co-ordinates to be used to position the legend. They can be specified
by keyword or in any way which is accepted by xy.coords: See ‘Details’.

legend a character or expression vector. of length ≥ 1 to appear in the legend. Other
objects will be coerced by as.graphicsAnnot.

fill if specified, this argument will cause boxes filled with the specified colors (or
shaded in the specified colors) to appear beside the legend text.

col the color of points or lines appearing in the legend.

lty, lwd the line types and widths for lines appearing in the legend. One of these two
must be specified for line drawing.

pch the plotting symbols appearing in the legend, either as vector of 1-character
strings, or one (multi character) string. Must be specified for symbol drawing.

angle angle of shading lines.

legend 707

density the density of shading lines, if numeric and positive. If NULL or negative or NA
color filling is assumed.

bty the type of box to be drawn around the legend. The allowed values are "o" (the
default) and "n".

bg the background color for the legend box. (Note that this is only used if bty !=
"n".)

box.lty, box.lwd, box.col
the line type, width and color for the legend box (if bty = "o").

pt.bg the background color for the points, corresponding to its argument bg.

cex character expansion factor relative to current par("cex").

pt.cex expansion factor(s) for the points.

pt.lwd line width for the points, defaults to the one for lines, or if that is not set, to
par("lwd").

xjust how the legend is to be justified relative to the legend x location. A value of 0
means left justified, 0.5 means centered and 1 means right justified.

yjust the same as xjust for the legend y location.

x.intersp character interspacing factor for horizontal (x) spacing.

y.intersp the same for vertical (y) line distances.

adj numeric of length 1 or 2; the string adjustment for legend text. Useful for y-
adjustment when labels are plotmath expressions.

text.width the width of the legend text in x ("user") coordinates. (Should be posi-
tive even for a reversed x axis.) Defaults to the proper value computed by
strwidth(legend).

text.col the color used for the legend text.

merge logical; if TRUE, merge points and lines but not filled boxes. Defaults to TRUE
if there are points and lines.

trace logical; if TRUE, shows how legend does all its magical computations.

plot logical. If FALSE, nothing is plotted but the sizes are returned.

ncol the number of columns in which to set the legend items (default is 1, a vertical
legend).

horiz logical; if TRUE, set the legend horizontally rather than vertically (specifying
horiz overrides the ncol specification).

title a character string or length-one expression giving a title to be placed at the top
of the legend. Other objects will be coerced by as.graphicsAnnot.

inset inset distance(s) from the margins as a fraction of the plot region when legend
is placed by keyword.

xpd if supplied, a value of the graphical parameter xpd to be used while the legend
is being drawn.

Details

Arguments x, y, legend are interpreted in a non-standard way to allow the coordinates to be
specified via one or two arguments. If legend is missing and y is not numeric, it is assumed that
the second argument is intended to be legend and that the first argument specifies the coordinates.

The coordinates can be specified in any way which is accepted by xy.coords. If this gives the
coordinates of one point, it is used as the top-left coordinate of the rectangle containing the legend.

708 legend

If it gives the coordinates of two points, these specify opposite corners of the rectangle (either pair
of corners, in any order).

The location may also be specified by setting x to a single keyword from the list "bottomright",
"bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and
"center". This places the legend on the inside of the plot frame at the given location. Partial
argument matching is used. The optional inset argument specifies how far the legend is inset
from the plot margins. If a single value is given, it is used for both margins; if two values are given,
the first is used for x- distance, the second for y-distance.

Attribute arguments such as col, pch, lty, etc, are recycled if necessary: merge is not.

Points are drawn after lines in order that they can cover the line with their background color pt.bg,
if applicable.

See the examples for how to right-justify labels.

Value

A list with list components

rect a list with components

w, h positive numbers giving width and height of the legend’s box.
left, top x and y coordinates of upper left corner of the box.

text a list with components

x, y numeric vectors of length length(legend), giving the x and y coor-
dinates of the legend’s text(s).

returned invisibly.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

plot, barplot which uses legend(), and text for more examples of math expressions.

Examples

Run the example in '?matplot' or the following:
leg.txt <- c("Setosa Petals", "Setosa Sepals",

"Versicolor Petals", "Versicolor Sepals")
y.leg <- c(4.5, 3, 2.1, 1.4, .7)
cexv <- c(1.2, 1, 4/5, 2/3, 1/2)
matplot(c(1,8), c(0,4.5), type = "n", xlab = "Length", ylab = "Width",

main = "Petal and Sepal Dimensions in Iris Blossoms")
for (i in seq(cexv)) {
text (1, y.leg[i]-.1, paste("cex=",formatC(cexv[i])), cex=.8, adj = 0)
legend(3, y.leg[i], leg.txt, pch = "sSvV", col = c(1, 3), cex = cexv[i])

}

'merge = TRUE' for merging lines & points:
x <- seq(-pi, pi, len = 65)
plot(x, sin(x), type = "l", ylim = c(-1.2, 1.8), col = 3, lty = 2)

legend 709

points(x, cos(x), pch = 3, col = 4)
lines(x, tan(x), type = "b", lty = 1, pch = 4, col = 6)
title("legend(..., lty = c(2, -1, 1), pch = c(-1,3,4), merge = TRUE)",

cex.main = 1.1)
legend(-1, 1.9, c("sin", "cos", "tan"), col = c(3,4,6),

text.col = "green4", lty = c(2, -1, 1), pch = c(-1, 3, 4),
merge = TRUE, bg = 'gray90')

right-justifying a set of labels: thanks to Uwe Ligges
x <- 1:5; y1 <- 1/x; y2 <- 2/x
plot(rep(x, 2), c(y1, y2), type="n", xlab="x", ylab="y")
lines(x, y1); lines(x, y2, lty=2)
temp <- legend("topright", legend = c(" ", " "),

text.width = strwidth("1,000,000"),
lty = 1:2, xjust = 1, yjust = 1,
title = "Line Types")

text(temp$rect$left + temp$rect$w, temp$text$y,
c("1,000", "1,000,000"), pos=2)

##--- log scaled Examples ------------------------------
leg.txt <- c("a one", "a two")

par(mfrow = c(2,2))
for(ll in c("","x","y","xy")) {
plot(2:10, log=ll, main=paste("log = '",ll,"'", sep=""))
abline(1,1)
lines(2:3,3:4, col=2) #
points(2,2, col=3) #
rect(2,3,3,2, col=4)
text(c(3,3),2:3, c("rect(2,3,3,2, col=4)",

"text(c(3,3),2:3,\"c(rect(...)\")"), adj = c(0,.3))
legend(list(x=2,y=8), legend = leg.txt, col=2:3, pch=1:2,

lty=1, merge=TRUE)#, trace=TRUE)
}
par(mfrow=c(1,1))

##-- Math expressions: ------------------------------
x <- seq(-pi, pi, len = 65)
plot(x, sin(x), type="l", col = 2, xlab = expression(phi),

ylab = expression(f(phi)))
abline(h=-1:1, v=pi/2*(-6:6), col="gray90")
lines(x, cos(x), col = 3, lty = 2)
ex.cs1 <- expression(plain(sin) * phi, paste("cos", phi))# 2 ways
utils::str(legend(-3, .9, ex.cs1, lty=1:2, plot=FALSE,

adj = c(0, .6)))# adj y !
legend(-3, .9, ex.cs1, lty=1:2, col=2:3, adj = c(0, .6))

require(stats)
x <- rexp(100, rate = .5)
hist(x, main = "Mean and Median of a Skewed Distribution")
abline(v = mean(x), col=2, lty=2, lwd=2)
abline(v = median(x), col=3, lty=3, lwd=2)
ex12 <- expression(bar(x) == sum(over(x[i], n), i==1, n),

hat(x) == median(x[i], i==1,n))
utils::str(legend(4.1, 30, ex12, col = 2:3, lty=2:3, lwd=2))

'Filled' boxes -- for more, see example(plot.factor)

710 lines

op <- par(bg="white") # to get an opaque box for the legend
plot(cut(weight, 3) ~ group, data = PlantGrowth, col = NULL,

density = 16*(1:3))
par(op)

Using 'ncol' :
x <- 0:64/64
matplot(x, outer(x, 1:7, function(x, k) sin(k * pi * x)),

type = "o", col = 1:7, ylim = c(-1, 1.5), pch = "*")
op <- par(bg="antiquewhite1")
legend(0, 1.5, paste("sin(", 1:7, "pi * x)"), col=1:7, lty=1:7,

pch = "*", ncol = 4, cex = 0.8)
legend(.8,1.2, paste("sin(", 1:7, "pi * x)"), col=1:7, lty=1:7,

pch = "*", cex = 0.8)
legend(0, -.1, paste("sin(", 1:4, "pi * x)"), col=1:4, lty=1:4,

ncol = 2, cex = 0.8)
legend(0, -.4, paste("sin(", 5:7, "pi * x)"), col=4:6, pch=24,

ncol = 2, cex = 1.5, lwd = 2, pt.bg = "pink", pt.cex = 1:3)
par(op)

point covering line :
y <- sin(3*pi*x)
plot(x, y, type="l", col="blue",

main = "points with bg & legend(*, pt.bg)")
points(x, y, pch=21, bg="white")
legend(.4,1, "sin(c x)", pch=21, pt.bg="white", lty=1, col = "blue")

legends with titles at different locations
plot(x, y, type='n')
legend("bottomright", "(x,y)", pch=1, title="bottomright")
legend("bottom", "(x,y)", pch=1, title="bottom")
legend("bottomleft", "(x,y)", pch=1, title="bottomleft")
legend("left", "(x,y)", pch=1, title="left")
legend("topleft", "(x,y)", pch=1, title="topleft, inset = .05",

inset = .05)
legend("top", "(x,y)", pch=1, title="top")
legend("topright", "(x,y)", pch=1, title="topright, inset = .02",

inset = .02)
legend("right", "(x,y)", pch=1, title="right")
legend("center", "(x,y)", pch=1, title="center")

lines Add Connected Line Segments to a Plot

Description

A generic function taking coordinates given in various ways and joining the corresponding points
with line segments.

Usage

lines(x, ...)

Default S3 method:
lines(x, y = NULL, type = "l", ...)

locator 711

Arguments

x, y coordinate vectors of points to join.

type character indicating the type of plotting; actually any of the types as in
plot.default.

... Further graphical parameters (see par) may also be supplied as arguments, par-
ticularly, line type, lty, line width, lwd, color, col and for type = "b",
pch. Also the line characteristics lend, ljoin and lmitre.

Details

The coordinates can be passed in a plotting structure (a list with x and y components), a two-column
matrix, a time series, See xy.coords. If supplied separately, they must be of the same length.

The coordinates can contain NA values. If a point contains NA in either its x or y value, it is omitted
from the plot, and lines are not drawn to or from such points. Thus missing values can be used to
achieve breaks in lines.

For type = "h", col can be a vector and will be recycled as needed.

lwd can be a vector: its first element will apply to lines but the whole vector to symbols (recycled
as necessary).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

points, particularly for type %in% c("p","b","o"), plot, and the workhorse function
plot.xy.

abline for drawing (single) straight lines.

par for how to specify colors.

Examples

draw a smooth line through a scatter plot
plot(cars, main="Stopping Distance versus Speed")
lines(stats::lowess(cars))

locator Graphical Input

Description

Reads the position of the graphics cursor when the (first) mouse button is pressed.

Usage

locator(n = 512, type = "n", ...)

712 matplot

Arguments

n the maximum number of points to locate. Valid values start at 1.

type One of "n", "p", "l" or "o". If "p" or "o" the points are plotted; if "l" or
"o" they are joined by lines.

... additional graphics parameters used if type != "n" for plotting the loca-
tions.

Details

locator is only supported on screen devices such as X11, windows and quartz. On other
devices the call will do nothing.

Unless the process is terminated prematurely by the user (see below) at most n positions are deter-
mined.

For the usual X11 device the identification process is terminated by pressing any mouse button
other than the first. For the quartz device the process is terminated by pressing the ESC key.

The current graphics parameters apply just as if plot.default has been called with the same
value of type. The plotting of the points and lines is subject to clipping, but locations outside the
current clipping rectangle will be returned.

On most devices which support locator, successful selection of a point is indicated by a bell
sound unless options(locatorBell=FALSE) has been set.

If the window is resized or hidden and then exposed before the input process has terminated, any
lines or points drawn by locator will disappear. These will reappear once the input process has
terminated and the window is resized or hidden and exposed again. This is because the points and
lines drawn by locator are not recorded in the device’s display list until the input process has
terminated.

Value

A list containing x and y components which are the coordinates of the identified points in the user
coordinate system, i.e., the one specified by par("usr").

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

identify

matplot Plot Columns of Matrices

Description

Plot the columns of one matrix against the columns of another.

matplot 713

Usage

matplot(x, y, type = "p", lty = 1:5, lwd = 1, pch = NULL,
col = 1:6, cex = NULL, bg = NA,
xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL,
..., add = FALSE, verbose = getOption("verbose"))

matpoints(x, y, type = "p", lty = 1:5, lwd = 1, pch = NULL,
col = 1:6, ...)

matlines (x, y, type = "l", lty = 1:5, lwd = 1, pch = NULL,
col = 1:6, ...)

Arguments

x,y vectors or matrices of data for plotting. The number of rows should match. If
one of them are missing, the other is taken as y and an x vector of 1:n is used.
Missing values (NAs) are allowed.

type character string (length 1 vector) or vector of 1-character strings indicating the
type of plot for each column of y, see plot for all possible types. The first
character of type defines the first plot, the second character the second, etc.
Characters in type are cycled through; e.g., "pl" alternately plots points and
lines.

lty,lwd vector of line types and widths. The first element is for the first column, the
second element for the second column, etc., even if lines are not plotted for all
columns. Line types will be used cyclically until all plots are drawn.

pch character string or vector of 1-characters or integers for plotting characters, see
points. The first character is the plotting-character for the first plot, the second
for the second, etc. The default is the digits (1 through 9, 0) then the lowercase
and uppercase letters.

col vector of colors. Colors are used cyclically.

cex vector of character expansion sizes, used cyclically. This works as a multiple of
par("cex"). NULL is equivalent to 1.0.

bg vector of background (fill) colors for the open plot symbols given by
pch=21:25 as in points. The default NA corresponds to the one of the
underlying function plot.xy.

xlab, ylab titles for x and y axes, as in plot.

xlim, ylim ranges of x and y axes, as in plot.

... Graphical parameters (see par) and any further arguments of plot, typically
plot.default, may also be supplied as arguments to this function. Hence,
the high-level graphics control arguments described under par and the argu-
ments to title may be supplied to this function.

add logical. If TRUE, plots are added to current one, using points and lines.

verbose logical. If TRUE, write one line of what is done.

Details

Points involving missing values are not plotted.

The first column of x is plotted against the first column of y, the second column of x against the
second column of y, etc. If one matrix has fewer columns, plotting will cycle back through the

714 matplot

columns again. (In particular, either x or y may be a vector, against which all columns of the other
argument will be plotted.)

The first element of col, cex, lty, lwd is used to plot the axes as well as the first line.

Because plotting symbols are drawn with lines and because these functions may be changing the
line style, you should probably specify lty=1 when using plotting symbols.

Side Effects

Function matplot generates a new plot; matpoints and matlines add to the current one.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

plot, points, lines, matrix, par.

Examples

require(grDevices)
matplot((-4:5)^2, main = "Quadratic") # almost identical to plot(*)
sines <- outer(1:20, 1:4, function(x, y) sin(x / 20 * pi * y))
matplot(sines, pch = 1:4, type = "o", col = rainbow(ncol(sines)))
matplot(sines, type = "b", pch = 21:23, col = 2:5, bg = 2:5,

main = "matplot(...., pch = 21:23, bg = 2:5)")

x <- 0:50/50
matplot(x, outer(x, 1:8, function(x, k) sin(k*pi * x)),

ylim = c(-2,2), type = "plobcsSh",
main= "matplot(,type = \"plobcsSh\")")

pch & type = vector of 1-chars :
matplot(x, outer(x, 1:4, function(x, k) sin(k*pi * x)),

pch = letters[1:4], type = c("b","p","o"))

table(iris$Species) # is data.frame with 'Species' factor
iS <- iris$Species == "setosa"
iV <- iris$Species == "versicolor"
op <- par(bg = "bisque")
matplot(c(1, 8), c(0, 4.5), type= "n", xlab = "Length", ylab = "Width",

main = "Petal and Sepal Dimensions in Iris Blossoms")
matpoints(iris[iS,c(1,3)], iris[iS,c(2,4)], pch = "sS", col = c(2,4))
matpoints(iris[iV,c(1,3)], iris[iV,c(2,4)], pch = "vV", col = c(2,4))
legend(1, 4, c(" Setosa Petals", " Setosa Sepals",

"Versicolor Petals", "Versicolor Sepals"),
pch = "sSvV", col = rep(c(2,4), 2))

nam.var <- colnames(iris)[-5]
nam.spec <- as.character(iris[1+50*0:2, "Species"])
iris.S <- array(NA, dim = c(50,4,3),

dimnames = list(NULL, nam.var, nam.spec))
for(i in 1:3) iris.S[,,i] <- data.matrix(iris[1:50+50*(i-1), -5])

matplot(iris.S[,"Petal.Length",], iris.S[,"Petal.Width",], pch="SCV",
col = rainbow(3, start = .8, end = .1),

mosaicplot 715

sub = paste(c("S", "C", "V"), dimnames(iris.S)[[3]],
sep = "=", collapse= ", "),

main = "Fisher's Iris Data")
par(op)

mosaicplot Mosaic Plots

Description

Plots a mosaic on the current graphics device.

Usage

mosaicplot(x, ...)

Default S3 method:
mosaicplot(x, main = deparse(substitute(x)),

sub = NULL, xlab = NULL, ylab = NULL,
sort = NULL, off = NULL, dir = NULL,
color = NULL, shade = FALSE, margin = NULL,
cex.axis = 0.66, las = par("las"),
type = c("pearson", "deviance", "FT"), ...)

S3 method for class 'formula':
mosaicplot(formula, data = NULL, ...,

main = deparse(substitute(data)), subset,
na.action = stats::na.omit)

Arguments

x a contingency table in array form, with optional category labels specified in the
dimnames(x) attribute. The table is best created by the table() command.

main character string for the mosaic title.

sub character string for the mosaic sub-title (at bottom).

xlab,ylab x- and y-axis labels used for the plot; by default, the first and second element of
names(dimnames(X)) (i.e., the name of the first and second variable in X).

sort vector ordering of the variables, containing a permutation of the integers
1:length(dim(x)) (the default).

off vector of offsets to determine percentage spacing at each level of the mosaic
(appropriate values are between 0 and 20, and the default is 20 times the number
of splits for 2-dimensional tables, and 10 otherwise. Rescaled to maximally 50,
and recycled if necessary.

dir vector of split directions ("v" for vertical and "h" for horizontal) for each level
of the mosaic, one direction for each dimension of the contingency table. The
default consists of alternating directions, beginning with a vertical split.

color logical or (recycling) vector of colors for color shading, used only when shade
is FALSE, or NULL (default). By default, grey boxes are drawn. color=TRUE
uses a gamma-corrected grey palette. color=FALSE gives empty boxes with
no shading.

716 mosaicplot

shade a logical indicating whether to produce extended mosaic plots, or a numeric
vector of at most 5 distinct positive numbers giving the absolute values of the
cut points for the residuals. By default, shade is FALSE, and simple mosaics
are created. Using shade = TRUE cuts absolute values at 2 and 4.

margin a list of vectors with the marginal totals to be fit in the log-linear model. By
default, an independence model is fitted. See loglin for further information.

cex.axis The magnification to be used for axis annotation, as a multiple of
par("cex").

las numeric; the style of axis labels, see par.
type a character string indicating the type of residual to be represented. Must be one

of "pearson" (giving components of Pearson’s χ2), "deviance" (giving
components of the likelihood ratio χ2), or "FT" for the Freeman-Tukey residu-
als. The value of this argument can be abbreviated.

formula a formula, such as y ~ x.
data a data frame (or list), or a contingency table from which the variables in

formula should be taken.
... further arguments to be passed to or from methods.
subset an optional vector specifying a subset of observations in the data frame to be

used for plotting.
na.action a function which indicates what should happen when the data contains variables

to be cross-tabulated, and these variables contain NAs. The default is to omit
cases which have an NA in any variable. Since the tabulation will omit all cases
containing missing values, this will only be useful if the na.action function
replaces missing values.

Details

This is a generic function. It currently has a default method (mosaicplot.default) and a
formula interface (mosaicplot.formula).

Extended mosaic displays visualize standardized residuals of a loglinear model for the table by color
and outline of the mosaic’s tiles. (Standardized residuals are often referred to a standard normal
distribution.) Negative residuals are drawn in shaded of red and with broken outlines; positive ones
are drawn in blue with solid outlines.

For the formula method, if data is an object inheriting from classes "table" or "ftable", or
an array with more than 2 dimensions, it is taken as a contingency table, and hence all entries should
be nonnegative. In this case, the left-hand side of formula should be empty, and the variables on
the right-hand side should be taken from the names of the dimnames attribute of the contingency
table. A marginal table of these variables is computed, and a mosaic of this table is produced.

Otherwise, data should be a data frame or matrix, list or environment containing the variables
to be cross-tabulated. In this case, after possibly selecting a subset of the data as specified by the
subset argument, a contingency table is computed from the variables given in formula, and a
mosaic is produced from this.

See Emerson (1998) for more information and a case study with television viewer data from Nielsen
Media Research.

Missing values are not supported except via an na.action function when data contains vari-
ables to be cross-tabulated.

A more flexible and extensible implementation of mosaic plots written in the grid graphics system
is provided in the function mosaic in the contributed package vcd (Meyer, Zeileis and Hornik,
2005).

mosaicplot 717

Author(s)

S-PLUS original by John Emerson 〈john.emerson@yale.edu〉. Originally modified and enhanced
for R by Kurt Hornik.

References

Hartigan, J.A., and Kleiner, B. (1984) A mosaic of television ratings. The American Statistician,
38, 32–35.

Emerson, J. W. (1998) Mosaic displays in S-PLUS: A general implementation and a case study.
Statistical Computing and Graphics Newsletter (ASA), 9, 1, 17–23.

Friendly, M. (1994) Mosaic displays for multi-way contingency tables. Journal of the American
Statistical Association, 89, 190–200.

Meyer, D., Zeileis, A., and Hornik, K. (2005) The strucplot framework: Visualizing multi-way
contingency tables with vcd. Report 22, Department of Statistics and Mathematics, Wirtschaftsuni-
versität Wien, Research Report Series. http://epub.wu-wien.ac.at/dyn/openURL?
id=oai:epub.wu-wien.ac.at:epub-wu-01_8a1

The home page of Michael Friendly (http://www.math.yorku.ca/SCS/friendly.
html) provides information on various aspects of graphical methods for analyzing categorical data,
including mosaic plots.

See Also

assocplot, loglin.

Examples

require(stats)
mosaicplot(Titanic, main = "Survival on the Titanic", color = TRUE)
Formula interface for tabulated data:
mosaicplot(~ Sex + Age + Survived, data = Titanic, color = TRUE)

mosaicplot(HairEyeColor, shade = TRUE)
Independence model of hair and eye color and sex. Indicates that
there are more blue eyed blonde females than expected in the case
of independence and too few brown eyed blonde females.
The corresponding model is:
fm <- loglin(HairEyeColor, list(1, 2, 3))
pchisq(fm$pearson, fm$df, lower.tail = FALSE)

mosaicplot(HairEyeColor, shade = TRUE, margin = list(1:2, 3))
Model of joint independence of sex from hair and eye color. Males
are underrepresented among people with brown hair and eyes, and are
overrepresented among people with brown hair and blue eyes.
The corresponding model is:
fm <- loglin(HairEyeColor, list(1:2, 3))
pchisq(fm$pearson, fm$df, lower.tail = FALSE)

Formula interface for raw data: visualize cross-tabulation of numbers
of gears and carburettors in Motor Trend car data.
mosaicplot(~ gear + carb, data = mtcars, color = TRUE, las = 1)
color recycling
mosaicplot(~ gear + carb, data = mtcars, color = 2:3, las = 1)

http://epub.wu-wien.ac.at/dyn/openURL?id=oai:epub.wu-wien.ac.at:epub-wu-01_8a1
http://epub.wu-wien.ac.at/dyn/openURL?id=oai:epub.wu-wien.ac.at:epub-wu-01_8a1
http://www.math.yorku.ca/SCS/friendly.html
http://www.math.yorku.ca/SCS/friendly.html

718 mtext

mtext Write Text into the Margins of a Plot

Description

Text is written in one of the four margins of the current figure region or one of the outer margins of
the device region.

Usage

mtext(text, side = 3, line = 0, outer = FALSE, at = NA,
adj = NA, padj = NA, cex = NA, col = NA, font = NA, ...)

Arguments

text a character or expression vector specifying the text to be written. Other objects
are coerced by as.graphicsAnnot.

side on which side of the plot (1=bottom, 2=left, 3=top, 4=right).

line on which MARgin line, starting at 0 counting outwards.

outer use outer margins if available.

at give location in user coordinates. If length(at)==0 (the default), the loca-
tion will be determined by adj.

adj adjustment for each string in reading direction. For strings parallel to the axes,
adj = 0 means left or bottom alignment, and adj = 1 means right or top
alignment.

If adj is not a finite value (the default), the value of par("las") determines
the adjustment. For strings plotted parallel to the axis the default is to centre the
string.

padj adjustment for each string perpendicular to the reading direction (which is con-
trolled by adj). For strings parallel to the axes, padj = 0 means right or top
alignment, and padj = 1 means left or bottom alignment.

If padj is not a finite value (the default), the value of par("las") determines
the adjustment. For strings plotted perpendicular to the axis the default is to
centre the string.

cex character expansion factor. NULL and NA are equivalent to 1.0. This is an
absolute measure, not scaled by par("cex") or by setting par("mfrow")
or par("mfcol"). Can be a vector.

col color to use. Can be a vector. NA values (the default) mean use par("col").

font font for text. Can be a vector. NA values (the default) mean use par("font").

... Further graphical parameters (see par), including family, las and xpd.
(The latter defaults to the figure region unless outer = TRUE, otherwise the
device region. It can only be increased.)

pairs 719

Details

The user coordinates in the outer margins always range from zero to one, and are not affected by
the user coordinates in the figure region(s) — R differs here from other implementations of S.

All of the named arguments can be vectors, and recycling will take place to plot as many strings as
the longest of the vector arguments.

Note that a vector adj has a different meaning from text. adj = 0.5 will centre the string, but
for outer=TRUE on the device region rather than the plot region.

Parameter las will determine the orientation of the string(s). For strings plotted perpendicular to
the axis the default justification is to place the end of the string nearest the axis on the specified line.
(Note that this differs from S, which uses srt if at is supplied and las if it is not. Parameter srt
is ignored in R.)

Note that if the text is to be plotted perpendicular to the axis, adj determines the justification of
the string and the position along the axis unless at is specified.

Side Effects

The given text is written onto the current plot.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

title, text, plot, par; plotmath for details on mathematical annotation.

Examples

plot(1:10, (-4:5)^2, main="Parabola Points", xlab="xlab")
mtext("10 of them")
for(s in 1:4)

mtext(paste("mtext(..., line= -1, {side, col, font} = ",s,
", cex = ", (1+s)/2, ")"), line = -1,
side=s, col=s, font=s, cex= (1+s)/2)

mtext("mtext(..., line= -2)", line = -2)
mtext("mtext(..., line= -2, adj = 0)", line = -2, adj =0)
##--- log axis :
plot(1:10, exp(1:10), log='y', main="log='y'", xlab="xlab")
for(s in 1:4) mtext(paste("mtext(...,side=",s,")"), side=s)

pairs Scatterplot Matrices

Description

A matrix of scatterplots is produced.

720 pairs

Usage

pairs(x, ...)

S3 method for class 'formula':
pairs(formula, data = NULL, ..., subset,

na.action = stats::na.pass)

Default S3 method:
pairs(x, labels, panel = points, ...,

lower.panel = panel, upper.panel = panel,
diag.panel = NULL, text.panel = textPanel,
label.pos = 0.5 + has.diag/3,
cex.labels = NULL, font.labels = 1,
row1attop = TRUE, gap = 1)

Arguments

x the coordinates of points given as numeric columns of a matrix or dataframe.
Logical and factor columns are converted to numeric in the same way that
data.matrix does.

formula a formula, such as ~ x + y + z. Each term will give a separate variable in
the pairs plot, so terms should be numeric vectors. (A response will be inter-
preted as another variable, but not treated specially, so it is confusing to use
one.)

data a data.frame (or list) from which the variables in formula should be taken.

subset an optional vector specifying a subset of observations to be used for plotting.

na.action a function which indicates what should happen when the data contain NAs. The
default is to pass missing values on to the panel functions, but na.action =
na.omit will cause cases with missing values in any of the variables to be
omitted entirely.

labels the names of the variables.

panel function(x,y,...) which is used to plot the contents of each panel of the
display.

... arguments to be passed to or from methods.
Also, graphical parameters can be given as can arguments to plot such as
main. par("oma") will be set appropriately unless specified.

lower.panel, upper.panel
separate panel functions to be used below and above the diagonal respectively.

diag.panel optional function(x, ...) to be applied on the diagonals.

text.panel optional function(x, y, labels, cex, font, ...) to be applied
on the diagonals.

label.pos y position of labels in the text panel.
cex.labels, font.labels

graphics parameters for the text panel.

row1attop logical. Should the layout be matrix-like with row 1 at the top, or graph-like
with row 1 at the bottom?

gap Distance between subplots, in margin lines.

pairs 721

Details

The ijth scatterplot contains x[,i] plotted against x[,j]. The scatterplot can be customised
by setting panel functions to appear as something completely different. The off-diagonal panel
functions are passed the appropriate columns of x as x and y: the diagonal panel function (if any)
is passed a single column, and the text.panel function is passed a single (x, y) location and
the column name.

The graphical parameters pch and col can be used to specify a vector of plotting symbols and
colors to be used in the plots.

The graphical parameter oma will be set by pairs.default unless supplied as an argument.

A panel function should not attempt to start a new plot, but just plot within a given coordinate
system: thus plot and boxplot are not panel functions.

By default, missing values are passed to the panel functions and will often be ignored within a
panel. However, for the formula method and na.action = na.omit, all cases which contain
a missing values for any of the variables are omitted completely (including when the scales are
selected).

Author(s)

Enhancements for R 1.0.0 contributed by Dr. Jens Oehlschlaegel-Akiyoshi and R-core members.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

pairs(iris[1:4], main = "Anderson's Iris Data -- 3 species",
pch = 21, bg = c("red", "green3", "blue")[unclass(iris$Species)])

formula method
pairs(~ Fertility + Education + Catholic, data = swiss,

subset = Education < 20, main = "Swiss data, Education < 20")

pairs(USJudgeRatings)

put histograms on the diagonal
panel.hist <- function(x, ...)
{

usr <- par("usr"); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5))
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col="cyan", ...)

}
pairs(USJudgeRatings[1:5], panel=panel.smooth,

cex = 1.5, pch = 24, bg="light blue",
diag.panel=panel.hist, cex.labels = 2, font.labels=2)

put (absolute) correlations on the upper panels,
with size proportional to the correlations.
panel.cor <- function(x, y, digits=2, prefix="", cex.cor)
{

722 panel.smooth

usr <- par("usr"); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
r <- abs(cor(x, y))
txt <- format(c(r, 0.123456789), digits=digits)[1]
txt <- paste(prefix, txt, sep="")
if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt)
text(0.5, 0.5, txt, cex = cex.cor * r)

}
pairs(USJudgeRatings, lower.panel=panel.smooth, upper.panel=panel.cor)

panel.smooth Simple Panel Plot

Description

An example of a simple useful panel function to be used as argument in e.g., coplot or pairs.

Usage

panel.smooth(x, y, col = par("col"), bg = NA, pch = par("pch"),
cex = 1, col.smooth = "red", span = 2/3, iter = 3,
...)

Arguments

x, y numeric vectors of the same length

col, bg, pch, cex
numeric or character codes for the color(s), point type and size of points; see
also par.

col.smooth color to be used by lines for drawing the smooths.

span smoothing parameter f for lowess, see there.

iter number of robustness iterations for lowess.

... further arguments to lines.

See Also

coplot and pairs where panel.smooth is typically used; lowess which does the smooth-
ing.

Examples

pairs(swiss, panel = panel.smooth, pch = ".")# emphasize the smooths
pairs(swiss, panel = panel.smooth, lwd = 2, cex= 1.5, col="blue")# hmm...

par 723

par Set or Query Graphical Parameters

Description

par can be used to set or query graphical parameters. Parameters can be set by specifying them as
arguments to par in tag = value form, or by passing them as a list of tagged values.

Usage

par(..., no.readonly = FALSE)

<highlevel plot> (..., <tag> = <value>)

Arguments

... arguments in tag = value form, or a list of tagged values. The tags must
come from the graphical parameters described below.

no.readonly logical; if TRUE and there are no other arguments, only parameters are returned
which can be set by a subsequent par() call on the same device.

Details

Each device has its own set of graphical parameters. If the current device is the null device,
par will open a new device before querying/setting parameters. (What device is controlled by
options("device").)

Parameters are queried by giving one or more character vectors to par.

par() (no arguments) or par(no.readonly=TRUE) is used to get all the graphical parameters
(as a named list). Their names are currently taken from the unexported variable .Pars.

R.O. indicates read-only arguments: These may only be used in queries and cannot be set. ("cin",
"cra", "csi", "cxy" and "din" are always read-only.)

There are several parameters can only be set by a call to par():

• "ask",

• "fig", "fin",

• "lheight",

• "mai", "mar", "mex", "mfcol", "mfrow", "mfg",

• "new",

• "oma", "omd", "omi",

• "pin", "plt", "ps", "pty",

• "usr",

• "xlog", "ylog"

The remaining parameters can also be set as arguments (often via ...) to high-level plot
functions such as plot.default, plot.window, points, lines, abline, axis,
title, text, mtext, segments, symbols, arrows, polygon, rect, box, contour,
filled.contour and image. Such settings will be active during the execution of the function,

724 par

only. However, see the comments on bg and cex, which may be taken as arguments to certain plot
functions rather than as graphical parameters.

The meaning of ‘character size’ is not well-defined: this is set up for the device taking pointsize
into account but often not the actual font family in use. Internally the corresponding pars (cra, cin,
cxy and csi) are used only to set the inter-line spacing used to convert mar and oma to physical
margins. (The same inter-line spacing multiplied by lheight is used for multi-line strings in
text and strheight.)

Value

When parameters are set, their former values are returned in an invisible named list. Such a list
can be passed as an argument to par to restore the parameter values. Use par(no.readonly
= TRUE) for the full list of parameters that can be restored. However, restoring all of these is
not wise since they contain several ways to set the same quantities, and these can have conflicting
effects if the graphics device has been resized since the parameters were saved. You will reset all of
mfrow, mfcol and mfg and will find mfrow wins.

When just one parameter is queried, the value of that parameter is returned as (atomic) vector. When
two or more parameters are queried, their values are returned in a list, with the list names giving the
parameters.

Note the inconsistency: setting one parameter returns a list, but querying one parameter returns a
vector.

Graphical Parameters

adj The value of adj determines the way in which text strings are justified in text, mtext
and title. A value of 0 produces left-justified text, 0.5 (the default) centered text and 1
right-justified text. (Any value in [0, 1] is allowed, and on most devices values outside that
interval will also work.) Note that the adj argument of text also allows adj = c(x,
y) for different adjustment in x- and y- directions. Note that whereas for text it refers to
positioning of text about a point, for mtext and title it controls placement within the plot
or device region.

ann If set to FALSE, high-level plotting functions calling plot.default do not annotate the
plots they produce with axis titles and overall titles. The default is to do annotation.

ask logical. If TRUE (and the R session is interactive) the user is asked for input, before a new
figure is drawn. As this applies to the device, it also affects output by packages grid and
lattice. It can be set even on non-screen devices but may have no effect there.
This not really a graphics parameter, and its use is deprecated in favour of devAskNewPage.

bg The color to be used for the background of the device region. When called from par() it also
sets new=FALSE. See section ‘Color Specification’ for suitable values. For many devices
the initial value is set from the bg argument of the device, and for the rest it is normally
"white".
Note that some graphics functions such as plot.default and points have an argument
of this name with a different meaning.

bty A character string which determined the type of box which is drawn about plots. If bty
is one of "o" (the default), "l", "7", "c", "u", or "]" the resulting box resembles the
corresponding upper case letter. A value of "n" suppresses the box.

cex A numerical value giving the amount by which plotting text and symbols should be magnified
relative to the default. Note that some graphics functions such as plot.default have an
argument of this name which multiplies this graphical parameter, and some functions such as
points accept a vector of values which are recycled. Other uses will take just the first value
if a vector of length greater than one is supplied.

par 725

cex.axis The magnification to be used for axis annotation relative to the current setting of cex.

cex.lab The magnification to be used for x and y labels relative to the current setting of cex.

cex.main The magnification to be used for main titles relative to the current setting of cex.

cex.sub The magnification to be used for sub-titles relative to the current setting of cex.

cin R.O.; character size (width, height) in inches. These are the same measurements as
cra, expressed in different units.

col A specification for the default plotting color. See section ‘Color Specification’. (Some func-
tions such as lines accept a vector of values which are recycled. Other uses will take just
the first value if a vector of length greater than one is supplied.)

col.axis The color to be used for axis annotation. Defaults to "black".

col.lab The color to be used for x and y labels. Defaults to "black".

col.main The color to be used for plot main titles. Defaults to "black".

col.sub The color to be used for plot sub-titles. Defaults to "black".

cra R.O.; size of default character (width, height) in ‘rasters’ (pixels). Some devices have
no concept of pixels and so assume an arbitrary pixel size, usually 1/72 inch. These are the
same measurements as cin, expressed in different units.

crt A numerical value specifying (in degrees) how single characters should be rotated. It is unwise
to expect values other than multiples of 90 to work. Compare with srt which does string
rotation.

csi R.O.; height of (default-sized) characters in inches. The same as par("cin")[2].

cxy R.O.; size of default character (width, height) in user coordinate units. par("cxy")
is par("cin")/par("pin") scaled to user coordinates. Note that c(strwidth(ch),
strwidth(ch)) for a given string ch is usually much more precise.

din R.O.; the device dimensions, (width,height), in inches.

err (Unimplemented; R is silent when points outside the plot region are not plotted.) The degree
of error reporting desired.

family The name of a font family for drawing text. The maximum allowed length is 200 bytes.
This name gets mapped by each graphics device to a device-specific font description. The
default value is "" which means that the default device fonts will be used (and what those are
should be listed on the help page for the device). Standard values are "serif", "sans"
and "mono", and the Hershey font families are also available. (Different devices may define
others, and some devices will ignore this setting completely.) This can be specified inline for
text.

fg The color to be used for the foreground of plots. This is the default color used for things like
axes and boxes around plots. When called from par() this also sets parameter col to the
same value. See section ‘Color Specification’. A few devices have an argument to set the
initial value, which is otherwise "black".

fig A numerical vector of the form c(x1, x2, y1, y2) which gives the (NDC) coordinates
of the figure region in the display region of the device. If you set this, unlike S, you start a
new plot, so to add to an existing plot use new=TRUE as well.

fin The figure region dimensions, (width,height), in inches. If you set this, unlike S, you
start a new plot.

font An integer which specifies which font to use for text. If possible, device drivers arrange so
that 1 corresponds to plain text (the default), 2 to bold face, 3 to italic and 4 to bold italic.
Also, font 5 is expected to be the symbol font, in Adobe symbol encoding. On some devices
font families can be selected by family to choose different sets of 5 fonts.

726 par

font.axis The font to be used for axis annotation.

font.lab The font to be used for x and y labels.

font.main The font to be used for plot main titles.

font.sub The font to be used for plot sub-titles.

lab A numerical vector of the form c(x, y, len) which modifies the default way that axes
are annotated. The values of x and y give the (approximate) number of tickmarks on the x
and y axes and len specifies the label length. The default is c(5, 5, 7). Note that this
only affects the way the parameters xaxp and yaxp are set when the user coordinate system
is set up, and is not consulted when axes are drawn. len is unimplemented in R.

las numeric in {0,1,2,3}; the style of axis labels.

0: always parallel to the axis [default],
1: always horizontal,
2: always perpendicular to the axis,
3: always vertical.

Also supported by mtext. Note that other string/character rotation (via argument srt to
par) does not affect the axis labels.

lend The line end style. This can be specified as an integer or string:

0 and "round" mean rounded line caps [default];
1 and "butt" mean butt line caps;
2 and "square" mean square line caps.

lheight The line height multiplier. The height of a line of text (used to vertically space multi-
line text) is found by multiplying the character height both by the current character expansion
and by the line height multiplier. Default value is 1. Used in text and strheight.

ljoin The line join style. This can be specified as an integer or string:

0 and "round" mean rounded line joins [default];
1 and "mitre" mean mitred line joins;
2 and "bevel" mean bevelled line joins.

lmitre The line mitre limit. This controls when mitred line joins are automatically converted
into bevelled line joins. The value must be larger than 1 and the default is 10. Not all devices
will honour this setting.

lty The line type. Line types can either be specified as an integer (0=blank, 1=solid (de-
fault), 2=dashed, 3=dotted, 4=dotdash, 5=longdash, 6=twodash) or as one of the character
strings "blank", "solid", "dashed", "dotted", "dotdash", "longdash", or
"twodash", where "blank" uses ‘invisible lines’ (i.e., does not draw them).
Alternatively, a string of up to 8 characters (from c(1:9, "A":"F")) may be given, giving
the length of line segments which are alternatively drawn and skipped. See section ‘Line Type
Specification’.
Some functions such as lines accept a vector of values which are recycled. Other uses will
take just the first value if a vector of length greater than one is supplied.

lwd The line width, a positive number, defaulting to 1. The interpretation is device-specific, and
some devices do not implement line widths less than one. (See the help on the device for
details of the interpretation.)
Some functions such as lines accept a vector of values which are recycled. Other uses will
take just the first value if a vector of length greater than one is supplied.

mai A numerical vector of the form c(bottom, left, top, right) which gives the mar-
gin size specified in inches.

par 727

mar A numerical vector of the form c(bottom, left, top, right)which gives the num-
ber of lines of margin to be specified on the four sides of the plot. The default is c(5, 4,
4, 2) + 0.1.

mex mex is a character size expansion factor which is used to describe coordinates in the margins
of plots. Note that this does not change the font size, rather specifies the size of font (as a
multiple of csi) used to convert between mar and mai, and between oma and omi.

mfcol, mfrow A vector of the form c(nr, nc). Subsequent figures will be drawn in an
nr-by-nc array on the device by columns (mfcol), or rows (mfrow), respectively.
In a layout with exactly two rows and columns the base value of "cex" is reduced by a factor
of 0.83: if there are three or more of either rows or columns, the reduction factor is 0.66.
If either of these is queried it will give the current layout, so querying cannot tell you the order
the array will be filled.
Consider the alternatives, layout and split.screen.

mfg A numerical vector of the form c(i, j) where i and j indicate which figure in an array of
figures is to be drawn next (if setting) or is being drawn (if enquiring). The array must already
have been set by mfcol or mfrow.
For compatibility with S, the form c(i, j, nr, nc) is also accepted, when nr and nc
should be the current number of rows and number of columns. Mismatches will be ignored,
with a warning.

mgp The margin line (in mex units) for the axis title, axis labels and axis line. Note that mgp[1]
affects title whereas mgp[2:3] affect axis. The default is c(3, 1, 0).

mkh The height in inches of symbols to be drawn when the value of pch is an integer. Completely
ignored currently.

new logical, defaulting to FALSE. If set to TRUE, the next high-level plotting command (actually
plot.new) should not clean the frame before drawing as if it was on a new device. It is an
error (ignored with a warning) to try to use new=TRUE on a device that does not currently
contain a high-level plot.

oma A vector of the form c(bottom, left, top, right) giving the size of the outer
margins in lines of text.

omd A vector of the form c(x1, x2, y1, y2) giving the region inside outer margins in NDC
(= normalized device coordinates), i.e., as fraction (in [0, 1]) of the device region.

omi A vector of the form c(bottom, left, top, right) giving the size of the outer
margins in inches.

pch Either an integer specifying a symbol or a single character to be used as the default in plotting
points. See points for possible values and their interpretation. Note that only integers and
single-character strings can be set as a graphics parameter (and not NA nor NULL).

pin The current plot dimensions, (width,height), in inches.

plt A vector of the form c(x1, x2, y1, y2) giving the coordinates of the plot region as
fractions of the current figure region.

ps integer; the point size of text (but not symbols). Unlike the pointsize argument of most
devices, this does not change the relationship between mar and mai (nor oma and omi).
What is meant by ‘point size’ is device-specific, but most devices mean a multiple of 1bp, that
is 1/72 of an inch.

pty A character specifying the type of plot region to be used; "s" generates a square plotting
region and "m" generates the maximal plotting region.

smo (Unimplemented) a value which indicates how smooth circles and circular arcs should be.

srt The string rotation in degrees. See the comment about crt. Only supported by text.

728 par

tck The length of tick marks as a fraction of the smaller of the width or height of the plotting
region. If tck >= 0.5 it is interpreted as a fraction of the relevant side, so if tck = 1
grid lines are drawn. The default setting (tck = NA) is to use tcl = -0.5.

tcl The length of tick marks as a fraction of the height of a line of text. The default value is -0.5;
setting tcl = NA sets tck = -0.01 which is S’ default.

usr A vector of the form c(x1, x2, y1, y2) giving the extremes of the user coordinates
of the plotting region. When a logarithmic scale is in use (i.e., par("xlog") is true, see
below), then the x-limits will be 10 ^ par("usr")[1:2]. Similarly for the y-axis.

xaxp A vector of the form c(x1, x2, n) giving the coordinates of the extreme tick marks and
the number of intervals between tick-marks when par("xlog") is false. Otherwise, when
log coordinates are active, the three values have a different meaning: For a small range, n
is negative, and the ticks are as in the linear case, otherwise, n is in 1:3, specifying a case
number, and x1 and x2 are the lowest and highest power of 10 inside the user coordinates,
10 ^ par("usr")[1:2]. (The "usr" coordinates are log10-transformed here!)

n=1 will produce tick marks at 10j for integer j,
n=2 gives marks k10j with k ∈ {1, 5},
n=3 gives marks k10j with k ∈ {1, 2, 5}.
See axTicks() for a pure R implementation of this.
This parameter is reset when a user coordinate system is set up, for example by starting a new
page or by calling plot.window or setting par("usr"): n is taken from par("lab").
It affects the default behaviour of subsequent calls to axis for sides 1 or 3.

xaxs The style of axis interval calculation to be used for the x-axis. Possible values are "r",
"i", "e", "s", "d". The styles are generally controlled by the range of data or xlim, if
given. Style "r" (regular) first extends the data range by 4 percent at each end and then finds
an axis with pretty labels that fits within the extended range. Style "i" (internal) just finds
an axis with pretty labels that fits within the original data range. Style "s" (standard) finds
an axis with pretty labels within which the original data range fits. Style "e" (extended) is
like style "s", except that it is also ensures that there is room for plotting symbols within the
bounding box. Style "d" (direct) specifies that the current axis should be used on subsequent
plots. (Only "r" and "i" styles are currently implemented)

xaxt A character which specifies the x axis type. Specifying "n" suppresses plotting of the axis.
The standard value is "s": for compatibility with S values "l" and "t" are accepted but are
equivalent to "s": any value other than "n" implies plotting.

xlog A logical value (see log in plot.default). If TRUE, a logarithmic scale is in use (e.g.,
after plot(*, log = "x")). For a new device, it defaults to FALSE, i.e., linear scale.

xpd A logical value or NA. If FALSE, all plotting is clipped to the plot region, if TRUE, all plotting
is clipped to the figure region, and if NA, all plotting is clipped to the device region. See also
clip.

yaxp A vector of the form c(y1, y2, n) giving the coordinates of the extreme tick marks and
the number of intervals between tick-marks unless for log coordinates, see xaxp above.

yaxs The style of axis interval calculation to be used for the y-axis. See xaxs above.

yaxt A character which specifies the y axis type. Specifying "n" suppresses plotting.

ylog A logical value; see xlog above.

Color Specification

Colors can be specified in several different ways. The simplest way is with a character string giving
the color name (e.g., "red"). A list of the possible colors can be obtained with the function

par 729

colors. Alternatively, colors can be specified directly in terms of their RGB components with
a string of the form "#RRGGBB" where each of the pairs RR, GG, BB consist of two hexadecimal
digits giving a value in the range 00 to FF. Colors can also be specified by giving an index into a
small table of colors, the palette. This provides compatibility with S. Index 0 corresponds to
the background color. (Because apparently some people have been assuming it, it is also possible
to specify integers as character strings, e.g. "3".)

Additionally, "transparent" or (integer) NA is transparent, useful for filled areas (such as the
background!), and just invisible for things like lines or text. Semi-transparent colors are available
for use on devices that support them.

The functions rgb, hsv, hcl, gray and rainbow provide additional ways of generating colors.

Line Type Specification

Line types can either be specified by giving an index into a small built-in table of line types (1 =
solid, 2 = dashed, etc, see lty above) or directly as the lengths of on/off stretches of line. This is
done with a string of an even number (up to eight) of characters, namely non-zero (hexadecimal)
digits which give the lengths in consecutive positions in the string. For example, the string "33"
specifies three units on followed by three off and "3313" specifies three units on followed by three
off followed by one on and finally three off. The ‘units’ here are (on most devices) proportional to
lwd, and with lwd = 1 are in pixels or points or 1/96 inch.

The five standard dash-dot line types (lty = 2:6) correspond to c("44", "13", "1343",
"73", "2262").

Note that NA is not a valid value for lty.

Note

The effect of restoring all the (settable) graphics parameters as in the examples is hard to predict if
the device has been resized. Several of them are attempting to set the same things in different ways,
and those last in the alphabet will win. In particular, the settings of mai, mar, pin, plt and pty
interact, as do the outer margin settings, the figure layout and figure region size.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

plot.default for some high-level plotting parameters; colors; clip; options for other
setup parameters; graphic devices x11, postscript and setting up device regions by layout
and split.screen.

Examples

op <- par(mfrow = c(2, 2), # 2 x 2 pictures on one plot
pty = "s") # square plotting region,

independent of device size

At end of plotting, reset to previous settings:
par(op)

Alternatively,

730 persp

op <- par(no.readonly = TRUE) # the whole list of settable par's.
do lots of plotting and par(.) calls, then reset:
par(op)
Note this is not in general good practice

par("ylog") # FALSE
plot(1 : 12, log = "y")
par("ylog") # TRUE

plot(1:2, xaxs = "i") # 'inner axis' w/o extra space
par(c("usr", "xaxp"))

(nr.prof <-
c(prof.pilots=16,lawyers=11,farmers=10,salesmen=9,physicians=9,
mechanics=6,policemen=6,managers=6,engineers=5,teachers=4,
housewives=3,students=3,armed.forces=1))

par(las = 3)
barplot(rbind(nr.prof)) # R 0.63.2: shows alignment problem
par(las = 0)# reset to default

require(grDevices) # for gray
'fg' use:
plot(1:12, type = "b", main="'fg' : axes, ticks and box in gray",

fg = gray(0.7), bty="7" , sub=R.version.string)

ex <- function() {
old.par <- par(no.readonly = TRUE) # all par settings which

could be changed.
on.exit(par(old.par))
...
... do lots of par() settings and plots
...
invisible() #-- now, par(old.par) will be executed

}
ex()

persp Perspective Plots

Description

This function draws perspective plots of surfaces over the x–y plane. persp is a generic function.

Usage

persp(x, ...)

Default S3 method:
persp(x = seq(0, 1, length.out = nrow(z)),

y = seq(0, 1, length.out = ncol(z)),
z, xlim = range(x), ylim = range(y),
zlim = range(z, na.rm = TRUE),
xlab = NULL, ylab = NULL, zlab = NULL,
main = NULL, sub = NULL,

persp 731

theta = 0, phi = 15, r = sqrt(3), d = 1,
scale = TRUE, expand = 1,
col = "white", border = NULL, ltheta = -135, lphi = 0,
shade = NA, box = TRUE, axes = TRUE, nticks = 5,
ticktype = "simple", ...)

Arguments

x, y locations of grid lines at which the values in z are measured. These must be in
ascending order. By default, equally spaced values from 0 to 1 are used. If x is
a list, its components x$x and x$y are used for x and y, respectively.

z a matrix containing the values to be plotted (NAs are allowed). Note that x can
be used instead of z for convenience.

xlim, ylim, zlim
x-, y- and z-limits. The plot is produced so that the rectangular volume defined
by these limits is visible.

xlab, ylab, zlab
titles for the axes. N.B. These must be character strings; expressions are not
accepted. Numbers will be coerced to character strings.

main, sub main and sub title, as for title.

theta, phi angles defining the viewing direction. theta gives the azimuthal direction and
phi the colatitude.

r the distance of the eyepoint from the centre of the plotting box.

d a value which can be used to vary the strength of the perspective transformation.
Values of d greater than 1 will lessen the perspective effect and values less and
1 will exaggerate it.

scale before viewing the x, y and z coordinates of the points defining the surface are
transformed to the interval [0,1]. If scale is TRUE the x, y and z coordinates
are transformed separately. If scale is FALSE the coordinates are scaled so
that aspect ratios are retained. This is useful for rendering things like DEM
information.

expand a expansion factor applied to the z coordinates. Often used with 0 < expand
< 1 to shrink the plotting box in the z direction.

col the color(s) of the surface facets. Transparent colours are ignored. This is recy-
cled to the (nx− 1)(ny − 1) facets.

border the color of the line drawn around the surface facets. The default, NULL, corre-
sponds to par("fg"). A value of NA will disable the drawing of borders: this
is sometimes useful when the surface is shaded.

ltheta, lphi if finite values are specified for ltheta and lphi, the surface is shaded
as though it was being illuminated from the direction specified by azimuth
ltheta and colatitude lphi.

shade the shade at a surface facet is computed as ((1+d)/2)^shade, where d is the
dot product of a unit vector normal to the facet and a unit vector in the direction
of a light source. Values of shade close to one yield shading similar to a point
light source model and values close to zero produce no shading. Values in the
range 0.5 to 0.75 provide an approximation to daylight illumination.

box should the bounding box for the surface be displayed. The default is TRUE.

axes should ticks and labels be added to the box. The default is TRUE. If box is
FALSE then no ticks or labels are drawn.

732 persp

ticktype character: "simple" draws just an arrow parallel to the axis to indicate direc-
tion of increase; "detailed" draws normal ticks as per 2D plots.

nticks the (approximate) number of tick marks to draw on the axes. Has no effect if
ticktype is "simple".

... additional graphical parameters (see par).

Details

The plots are produced by first transforming the coordinates to the interval [0,1]. The surface is
then viewed by looking at the origin from a direction defined by theta and phi. If theta and
phi are both zero the viewing direction is directly down the negative y axis. Changing theta will
vary the azimuth and changing phi the colatitude.

There is a hook called "persp" (see setHook) called after the plot is completed, which is used
in the testing code to annotate the plot page. The hook function(s) are called with no argument.

Notice that persp interprets the z matrix as a table of f(x[i], y[j]) values, so that the x axis
corresponds to row number and the y axis to column number, with column 1 at the bottom, so that
with the standard rotation angles, the top left corner of the matrix is displayed at the left hand side,
closest to the user.

The sizes and fonts of the axis labels and the annotations for ticktype="detailed" are con-
trolled by graphics parameters "cex.lab"/"font.lab" and "cex.axis"/"font.axis"
respectively. (This changed in R 2.5.0.)

Value

persp() returns the viewing transformation matrix, say VT, a 4× 4 matrix suitable for projecting
3D coordinates (x, y, z) into the 2D plane using homogeneous 4D coordinates (x, y, z, t). It can
be used to superimpose additional graphical elements on the 3D plot, by lines() or points(),
using the simple function trans3d().

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

contour and image; trans3d.

Examples

require(grDevices) # for trans3d
More examples in demo(persp) !!

(1) The Obligatory Mathematical surface.
Rotated sinc function.

x <- seq(-10, 10, length= 30)
y <- x
f <- function(x,y) { r <- sqrt(x^2+y^2); 10 * sin(r)/r }
z <- outer(x, y, f)
z[is.na(z)] <- 1
op <- par(bg = "white")

pie 733

persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue")
persp(x, y, z, theta = 30, phi = 30, expand = 0.5, col = "lightblue",

ltheta = 120, shade = 0.75, ticktype = "detailed",
xlab = "X", ylab = "Y", zlab = "Sinc(r)"

) -> res
round(res, 3)

(2) Add to existing persp plot - using trans3d() :

xE <- c(-10,10); xy <- expand.grid(xE, xE)
points(trans3d(xy[,1], xy[,2], 6, pmat = res), col = 2, pch =16)
lines (trans3d(x, y=10, z= 6 + sin(x), pmat = res), col = 3)

phi <- seq(0, 2*pi, len = 201)
r1 <- 7.725 # radius of 2nd maximum
xr <- r1 * cos(phi)
yr <- r1 * sin(phi)
lines(trans3d(xr,yr, f(xr,yr), res), col = "pink", lwd = 2)
(no hidden lines)

(3) Visualizing a simple DEM model

z <- 2 * volcano # Exaggerate the relief
x <- 10 * (1:nrow(z)) # 10 meter spacing (S to N)
y <- 10 * (1:ncol(z)) # 10 meter spacing (E to W)
Don't draw the grid lines : border = NA
par(bg = "slategray")
persp(x, y, z, theta = 135, phi = 30, col = "green3", scale = FALSE,

ltheta = -120, shade = 0.75, border = NA, box = FALSE)

(4) Surface colours corresponding to z-values

par(bg = "white")
x <- seq(-1.95, 1.95, length = 30)
y <- seq(-1.95, 1.95, length = 35)
z <- outer(x, y, function(a,b) a*b^2)
nrz <- nrow(z)
ncz <- ncol(z)
Create a function interpolating colors in the range of specified colors
jet.colors <- colorRampPalette(c("blue", "green"))
Generate the desired number of colors from this palette
nbcol <- 100
color <- jet.colors(nbcol)
Compute the z-value at the facet centres
zfacet <- z[-1, -1] + z[-1, -ncz] + z[-nrz, -1] + z[-nrz, -ncz]
Recode facet z-values into color indices
facetcol <- cut(zfacet, nbcol)
persp(x, y, z, col=color[facetcol], phi=30, theta=-30)

par(op)

pie Pie Charts

734 pie

Description

Draw a pie chart.

Usage

pie(x, labels = names(x), edges = 200, radius = 0.8,
clockwise = FALSE, init.angle = if(clockwise) 90 else 0,
density = NULL, angle = 45, col = NULL, border = NULL,
lty = NULL, main = NULL, ...)

Arguments

x a vector of non-negative numerical quantities. The values in x are displayed as
the areas of pie slices.

labels one or more expressions or character strings giving names for the slices. Other
objects are coerced by as.graphicsAnnot. For empty or NA (after coercion
to character) labels, no label nor pointing line is drawn.

edges the circular outline of the pie is approximated by a polygon with this many
edges.

radius the pie is drawn centered in a square box whose sides range from −1 to 1. If the
character strings labeling the slices are long it may be necessary to use a smaller
radius.

clockwise logical indicating if slices are drawn clockwise or counter clockwise (i.e., math-
ematically positive direction), the latter is default.

init.angle number specifying the starting angle (in degrees) for the slices. Defaults to 0
(i.e., ‘3 o’clock’) unless clockwise is true where init.angle defaults to
90 (degrees), (i.e., ‘12 o’clock’).

density the density of shading lines, in lines per inch. The default value of NULL means
that no shading lines are drawn. Non-positive values of density also inhibit
the drawing of shading lines.

angle the slope of shading lines, given as an angle in degrees (counter-clockwise).

col a vector of colors to be used in filling or shading the slices. If missing a set of 6
pastel colours is used, unless density is specified when par("fg") is used.

border, lty (possibly vectors) arguments passed to polygon which draws each slice.

main an overall title for the plot.

... graphical parameters can be given as arguments to pie. They will affect the
main title and labels only.

Note

Pie charts are a very bad way of displaying information. The eye is good at judging linear measures
and bad at judging relative areas. A bar chart or dot chart is a preferable way of displaying this type
of data.

Cleveland (1985), page 264: “Data that can be shown by pie charts always can be shown by a dot
chart. This means that judgements of position along a common scale can be made instead of the less
accurate angle judgements.” This statement is based on the empirical investigations of Cleveland
and McGill as well as investigations by perceptual psychologists.

plot 735

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Cleveland, W. S. (1985) The elements of graphing data. Wadsworth: Monterey, CA, USA.

See Also

dotchart.

Examples

require(grDevices)
pie(rep(1, 24), col = rainbow(24), radius = 0.9)

pie.sales <- c(0.12, 0.3, 0.26, 0.16, 0.04, 0.12)
names(pie.sales) <- c("Blueberry", "Cherry",

"Apple", "Boston Cream", "Other", "Vanilla Cream")
pie(pie.sales) # default colours
pie(pie.sales,

col = c("purple", "violetred1", "green3", "cornsilk", "cyan", "white"))
pie(pie.sales, col = gray(seq(0.4,1.0,length=6)))
pie(pie.sales, density = 10, angle = 15 + 10 * 1:6)
pie(pie.sales, clockwise=TRUE, main="pie(*, clockwise=TRUE)")
segments(0,0, 0,1, col= "red", lwd = 2)
text(0,1, "init.angle = 90", col= "red")

n <- 200
pie(rep(1,n), labels="", col=rainbow(n), border=NA,

main = "pie(*, labels=\"\", col=rainbow(n), border=NA,..")

plot Generic X-Y Plotting

Description

Generic function for plotting of R objects. For more details about the graphical parameter argu-
ments, see par.

Usage

plot(x, y, ...)

Arguments

x the coordinates of points in the plot. Alternatively, a single plotting structure,
function or any R object with a plot method can be provided.

y the y coordinates of points in the plot, optional if x is an appropriate structure.

... Arguments to be passed to methods, such as graphical parameters (see par).
Many methods will accept the following arguments:

type what type of plot should be drawn. Possible types are

• "p" for points,

736 plot

• "l" for lines,

• "b" for both,

• "c" for the lines part alone of "b",

• "o" for both ‘overplotted’,

• "h" for ‘histogram’ like (or ‘high-density’) vertical lines,

• "s" for stair steps,

• "S" for other steps, see ‘Details’ below,

• "n" for no plotting.

All other types give a warning or an error; using, e.g., type = "punkte"
being equivalent to type = "p" for S compatibility.

main an overall title for the plot: see title.

sub a sub title for the plot: see title.

xlab a title for the x axis: see title.

ylab a title for the y axis: see title.

asp the y/x aspect ratio, see plot.window.

Details

For simple scatter plots, plot.default will be used. However, there are plot meth-
ods for many R objects, including functions, data.frames, density objects, etc. Use
methods(plot) and the documentation for these.

The two step types differ in their x-y preference: Going from (x1, y1) to (x2, y2) with x1 < x2,
type = "s" moves first horizontal, then vertical, whereas type = "S" moves the other way
around.

See Also

plot.default, plot.formula and other methods; points, lines, par.

Examples

require(stats)
plot(cars)
lines(lowess(cars))

plot(sin, -pi, 2*pi)

Discrete Distribution Plot:
plot(table(rpois(100,5)), type = "h", col = "red", lwd=10,

main="rpois(100,lambda=5)")

Simple quantiles/ECDF, see ecdf() {library(stats)} for a better one:
plot(x <- sort(rnorm(47)), type = "s", main = "plot(x, type = \"s\")")
points(x, cex = .5, col = "dark red")

plot.data.frame 737

plot.data.frame Plot Method for Data Frames

Description

plot.data.frame, a method for the plot generic. It is designed for a quick look at numeric
data frames.

Usage

S3 method for class 'data.frame':
plot(x, ...)

Arguments

x object of class data.frame.

... further arguments to stripchart, plot.default or pairs.

Details

This is intended for data frames with numeric columns. For more than two columns it first calls
data.matrix to convert the data frame to a numeric matrix and then calls pairs to produce a
scatterplot matrix). This can fail and may well be inappropriate: for example numerical conversion
of dates will lose their special meaning and a warning will be given.

For a two-column data frame it plots the second column against the first by the most appropriate
method for the first column.

For a single numeric column it uses stripchart, and for other single-column data frames tries
to find a plot method for the single column.

See Also

data.frame

Examples

plot(OrchardSprays[1], method="jitter")
plot(OrchardSprays[c(4,1)])
plot(OrchardSprays)

plot(iris)
plot(iris[5:4])
plot(women)

738 plot.default

plot.default The Default Scatterplot Function

Description

Draw a scatter plot with decorations such as axes and titles in the active graphics window.

Usage

Default S3 method:
plot(x, y = NULL, type = "p", xlim = NULL, ylim = NULL,

log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
ann = par("ann"), axes = TRUE, frame.plot = axes,
panel.first = NULL, panel.last = NULL, asp = NA, ...)

Arguments

x, y the x and y arguments provide the x and y coordinates for the plot. Any
reasonable way of defining the coordinates is acceptable. See the function
xy.coords for details. If supplied separately, they must be of the same length.

type 1-character string giving the type of plot desired. The following values are pos-
sible, for details, see plot: "p" for points, "l" for lines, "o" for overplotted
points and lines, "b", "c") for (empty if "c") points joined by lines, "s" and
"S" for stair steps and "h" for histogram-like vertical lines. Finally, "n" does
not produce any points or lines.

xlim the x limits (x1, x2) of the plot. Note that x1 > x2 is allowed and leads to a
‘reversed axis’.

ylim the y limits of the plot.

log a character string which contains "x" if the x axis is to be logarithmic, "y"
if the y axis is to be logarithmic and "xy" or "yx" if both axes are to be
logarithmic.

main a main title for the plot, see also title.

sub a sub title for the plot.

xlab a label for the x axis, defaults to a description of x.

ylab a label for the y axis, defaults to a description of y.

ann a logical value indicating whether the default annotation (title and x and y axis
labels) should appear on the plot.

axes a logical value indicating whether both axes should be drawn on the plot. Use
graphical parameter "xaxt" or "yaxt" to suppress just one of the axes.

frame.plot a logical indicating whether a box should be drawn around the plot.

panel.first an expression to be evaluated after the plot axes are set up but before any plotting
takes place. This can be useful for drawing background grids or scatterplot
smooths.

panel.last an expression to be evaluated after plotting has taken place.

asp the y/x aspect ratio, see plot.window.

... other graphical parameters (see par and section ‘Details’ below).

plot.default 739

Details

Commonly used graphical parameters are:

col The colors for lines and points. Multiple colors can be specified so that each point can be
given its own color. If there are fewer colors than points they are recycled in the standard
fashion. Lines will all be plotted in the first colour specified.

bg a vector of background colors for open plot symbols, see points. Note: this is not the same
setting as par("bg").

pch a vector of plotting characters or symbols: see points.

cex a numerical vector giving the amount by which plotting characters and symbols should be
scaled relative to the default. This works as a multiple of par("cex"). NULL and NA are
equivalent to 1.0. Note that this does not affect annotation: see below.

lty the line type, see par.

cex.main, col.lab, font.sub, etc settings for main- and sub-title and axis annotation,
see title and par.

lwd the line width, see par.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Cleveland, W. S. (1985) The Elements of Graphing Data. Monterey, CA: Wadsworth.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

plot, plot.window, xy.coords.

Examples

Speed <- cars$speed
Distance <- cars$dist
plot(Speed, Distance, panel.first = grid(8,8),

pch = 0, cex = 1.2, col = "blue")
plot(Speed, Distance,

panel.first = lines(stats::lowess(Speed, Distance), lty = "dashed"),
pch = 0, cex = 1.2, col = "blue")

Show the different plot types
x <- 0:12
y <- sin(pi/5 * x)
op <- par(mfrow = c(3,3), mar = .1+ c(2,2,3,1))
for (tp in c("p","l","b", "c","o","h", "s","S","n")) {

plot(y ~ x, type = tp,
main = paste("plot(*, type = \"",tp,"\")",sep=""))

if(tp == "S") {
lines(x,y, type = "s", col = "red", lty = 2)
mtext("lines(*, type = \"s\", ...)", col = "red", cex=.8)

}
}
par(op)

740 plot.design

##--- Log-Log Plot with custom axes
lx <- seq(1,5, length=41)
yl <- expression(e^{-frac(1,2) * {log[10](x)}^2})
y <- exp(-.5*lx^2)
op <- par(mfrow=c(2,1), mar=par("mar")+c(0,1,0,0))
plot(10^lx, y, log="xy", type="l", col="purple",

main="Log-Log plot", ylab=yl, xlab="x")
plot(10^lx, y, log="xy", type="o", pch='.', col="forestgreen",

main="Log-Log plot with custom axes", ylab=yl, xlab="x",
axes = FALSE, frame.plot = TRUE)

my.at <- 10^(1:5)
axis(1, at = my.at, labels = formatC(my.at, format="fg"))
at.y <- 10^(-5:-1)
axis(2, at = at.y, labels = formatC(at.y, format="fg"), col.axis="red")
par(op)

plot.design Plot Univariate Effects of a ‘Design’ or Model

Description

Plot univariate effects of one ore more factors, typically for a designed experiment as analyzed
by aov(). Further, in S this a method of the plot generic function for design objects.

Usage

plot.design(x, y = NULL, fun = mean, data = NULL, ...,
ylim = NULL, xlab = "Factors", ylab = NULL,
main = NULL, ask = NULL, xaxt = par("xaxt"),
axes = TRUE, xtick = FALSE)

Arguments

x either a data frame containing the design factors and optionally the response, or
a formula or terms object.

y the response, if not given in x.

fun a function (or name of one) to be applied to each subset. It must return one
number for a numeric (vector) input.

data data frame containing the variables referenced by x when that is formula like.

... graphical arguments such as col, see par.

ylim range of y values, as in plot.default.

xlab x axis label, see title.

ylab y axis label with a ‘smart’ default.

main main title, see title.

ask logical indicating if the user should be asked before a new page is started – in
the case of multiple y’s.

xaxt character giving the type of x axis.

axes logical indicating if axes should be drawn.

xtick logical indicating if ticks (one per factor) should be drawn on the x axis.

plot.design 741

Details

The supplied function will be called once for each level of each factor in the design and the plot
will show these summary values. The levels of a particular factor are shown along a vertical line,
and the overall value of fun() for the response is drawn as a horizontal line.

This is a new R implementation which will not be completely compatible to the earlier S imple-
mentations. This is not a bug but might still change.

Note

A big effort was taken to make this closely compatible to the S version. However, col (and fg)
specification has different effects.

Author(s)

Roberto Frisullo and Martin Maechler

References

Chambers, J. M. and Hastie, T. J. eds (1992) Statistical Models in S. Chapman & Hall, London, the
white book, pp. 546–7 (and 163–4).

Freeny, A. E. and Landwehr, J. M. (1990) Displays for data from large designed experiments;
Computer Science and Statistics: Proc. 22nd Sympİnterface, 117–126, Springer Verlag.

See Also

interaction.plot for a ‘standard graphic’ of designed experiments.

Examples

require(stats)
plot.design(warpbreaks)# automatic for data frame with one numeric var.

Form <- breaks ~ wool + tension
summary(fm1 <- aov(Form, data = warpbreaks))
plot.design(Form, data = warpbreaks, col = 2)# same as above

More than one y :
utils::str(esoph)
plot.design(esoph) ## two plots; if interactive you are "ask"ed

or rather, compare mean and median:
op <- par(mfcol = 1:2)
plot.design(ncases/ncontrols ~ ., data = esoph, ylim = c(0, 0.8))
plot.design(ncases/ncontrols ~ ., data = esoph, ylim = c(0, 0.8),

fun = median)
par(op)

742 plot.formula

plot.factor Plotting Factor Variables

Description

This functions implements a scatterplot method for factor arguments of the generic plot func-
tion. Actually, boxplot is used when y is numeric and a spineplot when y is a factor. For a
single factor x (i.e., with y missing) a simple barplot is produced.

Usage

S3 method for class 'factor':
plot(x, y, legend.text = NULL, ...)

Arguments

x, y numeric or factor. y may be missing.

legend.text character vector for annotation of y axis, defaults to levels(y). Can be used
instead of yaxlabels (for backward compatibility).

... Further arguments to plot, see also par.

See Also

plot.default, plot.formula, barplot, boxplot, spineplot.

Examples

require(grDevices)
plot(PlantGrowth) # -> plot.data.frame
plot(weight ~ group, data = PlantGrowth) # numeric vector ~ factor
plot(cut(weight, 2) ~ group, data = PlantGrowth) # factor ~ factor
passing "..." to spineplot() eventually:
plot(cut(weight, 3) ~ group, data = PlantGrowth,

col = hcl(c(0, 120, 240), 50, 70))

plot(PlantGrowth$group, axes=FALSE, main="no axes")# extremely silly

plot.formula Formula Notation for Scatterplots

Description

Specify a scatterplot or add points or lines via a formula.

plot.formula 743

Usage

S3 method for class 'formula':
plot(formula, data = parent.frame(), ..., subset,

ylab = varnames[response], ask = dev.interactive())

S3 method for class 'formula':
points(formula, data = parent.frame(), ..., subset)

S3 method for class 'formula':
lines(formula, data = parent.frame(), ..., subset)

Arguments

formula a formula, such as y ~ x.

data a data.frame (or list) from which the variables in formula should be taken.

... Arguments to be passed to or from other methods. horizontal = TRUE is
also accepted.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

ylab the y label of the plot(s).

ask logical, see par.

Details

Both the terms in the formula and the ... arguments are evaluated in data enclosed in
parent.frame() if data is a list or a data frame. The terms of the formula and those ar-
guments in ... that are of the same length as data are subjected to the subsetting specified in
subset. If the formula in plot.formula contains more than one non-response term, a series of
plots of y against each term is given. A plot against the running index can be specified as plot(y
~ 1).

Missing values are not considered in these methods, and in particular cases with missing values are
not removed.

If y is an object (i.e. has a class attribute) then plot.formula looks for a plot method for that
class first. Otherwise, the class of x will determine the type of the plot. For factors this will be a
parallel boxplot, and argument horizontal = TRUE can be used (see boxplot).

Value

These functions are invoked for their side effect of drawing in the active graphics device.

See Also

plot.default, points, lines, plot.factor.

Examples

op <- par(mfrow=c(2,1))
plot(Ozone ~ Wind, data = airquality, pch=as.character(Month))
plot(Ozone ~ Wind, data = airquality, pch=as.character(Month),

subset = Month != 7)
par(op)

744 plot.histogram

plot.histogram Plot Histograms

Description

These are methods for objects of class "histogram", typically produced by hist.

Usage

S3 method for class 'histogram':
plot(x, freq = equidist, density = NULL, angle = 45,

col = NULL, border = par("fg"), lty = NULL,
main = paste("Histogram of",

paste(x$xname, collapse="\n")),
sub = NULL, xlab = x$xname, ylab,
xlim = range(x$breaks), ylim = NULL,
axes = TRUE, labels = FALSE, add = FALSE, ann = TRUE, ...)

S3 method for class 'histogram':
lines(x, ...)

Arguments

x a histogram object, or a list with components density, mid, etc, see hist
for information about the components of x.

freq logical; if TRUE, the histogram graphic is to present a representation of fre-
quencies, i.e, x$counts; if FALSE, relative frequencies (probabilities), i.e.,
x$density, are plotted. The default is true for equidistant breaks and false
otherwise.

col a colour to be used to fill the bars. The default of NULL yields unfilled bars.

border the color of the border around the bars.
angle, density

select shading of bars by lines: see rect.

lty the line type used for the bars, see also lines.
main, sub, xlab, ylab

these arguments to title have useful defaults here.

xlim, ylim the range of x and y values with sensible defaults.

axes logical, indicating if axes should be drawn.

labels logical or character. Additionally draw labels on top of bars, if not FALSE; if
TRUE, draw the counts or rounded densities; if labels is a character, draw
itself.

add logical. If TRUE, only the bars are added to the current plot. This is what
lines.histogram(*) does.

ann logical. Should annotations (titles and axis titles) be plotted?

... further graphical parameters to title and axis.

Details

lines.histogram(*) is the same as plot.histogram(*, add = TRUE).

plot.table 745

See Also

hist, stem, density.

Examples

(wwt <- hist(women$weight, nclass = 7, plot = FALSE))
plot(wwt, labels = TRUE) # default main & xlab using wwt$xname
plot(wwt, border = "dark blue", col = "light blue",

main = "Histogram of 15 women's weights", xlab = "weight [pounds]")

Fake "lines" example, using non-default labels:
w2 <- wwt; w2$counts <- w2$counts - 1
lines(w2, col = "Midnight Blue", labels = ifelse(w2$counts, "> 1", "1"))

plot.table Plot Methods for ‘table’ Objects

Description

This is a method of the generic plot function for (contingency) table objects. Whereas for two-
and more dimensional tables, a mosaicplot is drawn, one-dimensional ones are plotted as bars.

Usage

S3 method for class 'table':
plot(x, type = "h", ylim = c(0, max(x)), lwd = 2,

xlab = NULL, ylab = NULL, frame.plot = is.num, ...)

Arguments

x a table (like) object.

type plotting type.

ylim range of y-axis.

lwd line width for bars when type = "h" is used in the 1D case.

xlab, ylab x- and y-axis labels.

frame.plot logical indicating if a frame (box) should be drawn in the 1D case. Defaults to
true when x has dimnames coerce-able to numbers.

... further graphical arguments, see plot.default.

See Also

plot.factor, the plot method for factors.

746 plot.window

Examples

1-d tables
(Poiss.tab <- table(N = stats::rpois(200, lambda = 5)))
plot(Poiss.tab, main = "plot(table(rpois(200, lambda = 5)))")

plot(table(state.division))

4-D :
plot(Titanic, main ="plot(Titanic, main= *)")

plot.window Set up World Coordinates for Graphics Window

Description

This function sets up the world coordinate system for a graphics window. It is called by higher level
functions such as plot.default (after plot.new).

Usage

plot.window(xlim, ylim, log = "", asp = NA, ...)

Arguments

xlim, ylim numeric vectors of length 2, giving the x and y coordinates ranges.

log character; indicating which axes should be in log scale.

asp numeric, giving the aspect ratio y/x, see below.

... further graphical parameters as in par. The relevant ones are xaxs, yaxs and
lab.

Details

asp: If asp is a finite positive value then the window is set up so that one data unit in the x direction
is equal in length to asp × one data unit in the y direction.
Note that in this case, par("usr") is no longer determined by, e.g., par("xaxs"), but
rather by asp and the device’s aspect ratio. (See what happens if you interactively resize the
plot device after running the example below!)
The special case asp == 1 produces plots where distances between points are represented
accurately on screen. Values with asp > 1 can be used to produce more accurate maps when
using latitude and longitude.

To reverse an axis, use xlim or ylim of the form c(hi, lo).

The function attempts to produce a plausible set of scales if one or both of xlim and ylim is of
length one or the two values given are identical, but it is better to avoid that case.

Usually, one should rather use the higher level functions such as plot, hist, image, . . . , instead
and refer to their help pages for explanation of the arguments.

A side-effect of the call is to set up the usr, xaxp and yaxp graphical parameters. (It is for the
latter two that lab is used.)

plot.xy 747

See Also

xy.coords, plot.xy, plot.default.

Examples

##--- An example for the use of 'asp' :
require(stats) # normally loaded
loc <- cmdscale(eurodist)
rx <- range(x <- loc[,1])
ry <- range(y <- -loc[,2])
plot(x, y, type="n", asp=1, xlab="", ylab="")
abline(h = pretty(rx, 10), v = pretty(ry, 10), col = "lightgray")
text(x, y, labels(eurodist), cex=0.8)

plot.xy Basic Internal Plot Function

Description

This is the internal function that does the basic plotting of points and lines. Usually, one should
rather use the higher level functions instead and refer to their help pages for explanation of the
arguments.

Usage

plot.xy(xy, type, pch = par("pch"), lty = par("lty"),
col = par("col"), bg = NA,
cex = 1, lwd = par("lwd"), ...)

Arguments

xy A four-element list as results from xy.coords.

type 1 character code: see plot.default. NULL is accepted as a synonym for
"p".

pch character or integer code for kind of points, see points.default.

lty line type code, see lines.

col color code or name, see colors, palette. Here NULL means colour 0.

bg background (fill) color for the open plot symbols 21:25: see
points.default.

cex character expansion.

lwd line width, also used for (non-filled) plot symbols, see lines and points.

... further graphical parameters such as xpd, lend, ljoin and lmitre.

Details

The arguments pch, col, bg, cex, lwd may be vectors and may be recycled, depending
on type: see points and lines for specifics. In particular note that lwd is treated as a vector
for points and as a single (first) value for lines.

cex is a numeric factor in addition to par("cex")which affects symbols and characters as drawn
by type "p", "o", "b" and "c".

748 points

See Also

plot, plot.default, points, lines.

Examples

points.default # to see how it calls "plot.xy(xy.coords(x, y), ...)"

points Add Points to a Plot

Description

points is a generic function to draw a sequence of points at the specified coordinates. The speci-
fied character(s) are plotted, centered at the coordinates.

Usage

points(x, ...)

Default S3 method:
points(x, y = NULL, type = "p", ...)

Arguments

x, y coordinate vectors of points to plot.

type character indicating the type of plotting; actually any of the types as in
plot.default.

... Further graphical parameters may also be supplied as arguments. See ‘Details’.

Details

The coordinates can be passed in a plotting structure (a list with x and y components), a two-column
matrix, a time series, See xy.coords. If supplied separately, they must be of the same length.

Graphical parameters commonly used are

pch plotting ‘character’, i.e., symbol to use. This can either be a single character or an integer code
for one of a set of graphics symbols. The full set of S symbols is available with pch=0:18,
see the examples below.
Value pch="." (equivalently pch = 46) is handled specially. It is a rectangle of side 0.01
inch (scaled by cex). In addition, if cex = 1 (the default), each side is at least one pixel
(1/72 inch on the pdf, postscript and xfig devices).
For other text symbols, cex = 1 corresponds to the default fontsize of the device, often
specified by an argument pointsize. For pch in 0:25 the default size is about 75% of the
character height (see par("cin")).

col color code or name, see par.

bg background (fill) color for the open plot symbols given by pch=21:25.

cex character (or symbol) expansion: a numerical vector. This works as a multiple of
par("cex").

lwd line width for drawing symbols see par.

points 749

Others less commonly used are lty and lwd for types such as "b" and "l".

Graphical parameters pch, col, bg, cex and lwd can be vectors (which will be recycled as
needed) giving a value for each point plotted. If lines are to be plotted (e.g. for type = "b"/ the
first element of lwd is used.

Points whose x, y, pch, col or cex value is NA are omitted from the plot.

’pch’ values

Values of pch are stored internally as integers. The interpretation is

• NA_integer_: no symbol.

• 0:18: S-compatible vector symbols.

• 0:25: R vector symbols.

• 26:31: unused (and ignored).

• 32:127: ASCII characters.

• 128:255 native characters only in a single-byte locale and for the symbol font. (128:159
are only used on Windows.)

• -32 ... Unicode point (where supported).

Note that unlike S (which uses octagons), symbols 1, 10, 13 and 16 use circles. The filled shapes
do not include a border.

The following R plotting symbols are can be obtained with pch=19:25: those with 21:25 can
be colored and filled with different colors: col gives the border color and bg the background color.

• pch=19: solid circle,

• pch=20: bullet (smaller circle),

• pch=21: filled circle,

• pch=22: filled square,

• pch=23: filled diamond,

• pch=24: filled triangle point-up,

• pch=25: filled triangle point down.

Note that all of these both fill the shape and draw a border. Some care in interpretation is needed
when semi-transparent colours are used for both fill and border (and the result might be device-
specific and even viewer-specific for pdf).

Values pch=26:31 are currently unused and pch=32:127 give the ASCII characters. In a
single-byte locale pch=128:255 give the corresponding character (if any) in the locale’s char-
acter set. Where supported by the OS, negative values specify a Unicode point, so e.g. -0x2642L
is a ‘male sign’ and -0x20ACL is the Euro.

A character string consisting of a single character is converted to an integer: 32:127 for ASCII
characters, and usually to the Unicode point number otherwise. (In non-Latin-1 single-byte locales,
128:255 will be used for 8-bit characters.)

If pch supplied is a logical, integer or character NA or an empty character string the point is omitted
from the plot.

If pch is NULL or otherwise of length 0, par("pch") is used.

If the symbol font (par(font = 5)) is used, numerical values should be used for pch: the range
is c(32:126, 160:254) in all locales (but 240 is not defined (used for ‘apple’ on Mac OS)
and 160, Euro, may not be present).

750 points

Note

A single-byte encoding may include the characters in pch=128:255, and if it does, a font may
not include all (or even any) of them.

Not all negative numbers are valid as Unicode points, and no check is done. A display device is
likely to use a rectangle for (or omit) Unicode points that do not exist or which it does not have a
glyph.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

plot, lines, and the underlying workhorse function plot.xy.

Examples

require(stats) # for rnorm
plot(-4:4, -4:4, type = "n")# setting up coord. system
points(rnorm(200), rnorm(200), col = "red")
points(rnorm(100)/2, rnorm(100)/2, col = "blue", cex = 1.5)

op <- par(bg = "light blue")
x <- seq(0,2*pi, len=51)
something "between type='b' and type='o'":
plot(x, sin(x), type="o", pch=21, bg=par("bg"), col = "blue", cex=.6,
main='plot(..., type="o", pch=21, bg=par("bg"))')

par(op)

##-------- Showing all the extra & some char graphics symbols ---------
pchShow <-
function(extras = c("*",".", "o","O","0","+","-","|","%","#"),

cex = 3, ## good for both .Device=="postscript" and "x11"
col = "red3", bg = "gold", coltext = "brown", cextext = 1.2,
main = paste("plot symbols : points (... pch = *, cex =",

cex,")"))
{
nex <- length(extras)
np <- 26 + nex
ipch <- 0:(np-1)
k <- floor(sqrt(np))
dd <- c(-1,1)/2
rx <- dd + range(ix <- ipch %/% k)
ry <- dd + range(iy <- 3 + (k-1)- ipch %% k)
pch <- as.list(ipch) # list with integers & strings
if(nex > 0) pch[26+ 1:nex] <- as.list(extras)
plot(rx, ry, type="n", axes = FALSE, xlab = "", ylab = "",

main = main)
abline(v = ix, h = iy, col = "lightgray", lty = "dotted")
for(i in 1:np) {
pc <- pch[[i]]
'col' symbols with a 'bg'-colored interior (where available) :
points(ix[i], iy[i], pch = pc, col = col, bg = bg, cex = cex)
if(cextext > 0)

polygon 751

text(ix[i] - 0.3, iy[i], pc, col = coltext, cex = cextext)
}

}

pchShow()
pchShow(c("o","O","0"), cex = 2.5)
pchShow(NULL, cex = 4, cextext = 0, main = NULL)

------------ test code for various pch specifications -------------
Try this in various font families (including Hershey)
and locales. Use sign=-1 asserts we want Latin-1.
Standard cases in a MBCS locale will not plot the top half.
TestChars <- function(sign=1, font=1, ...)
{

if(font == 5) { sign <- 1; r <- c(32:126, 160:254)
} else if (l10n_info()$MBCS) r <- 32:126 else r <- 32:255
if (sign == -1) r <- c(32:126, 160:255)
par(pty="s")
plot(c(-1,16), c(-1,16), type="n", xlab="", ylab="",

xaxs="i", yaxs="i")
grid(17, 17, lty=1)
for(i in r) try(points(i%%16, i%/%16, pch=sign*i, font=font,...))

}
TestChars()
try(TestChars(sign=-1)) # needs MBCS support
TestChars(font=5) # Euro might be at 160. Mac OS has apple at 240.

polygon Polygon Drawing

Description

polygon draws the polygons whose vertices are given in x and y.

Usage

polygon(x, y = NULL, density = NULL, angle = 45,
border = NULL, col = NA, lty = par("lty"), ...)

Arguments

x,y vectors containing the coordinates of the vertices of the polygon.

density the density of shading lines, in lines per inch. The default value of NULL means
that no shading lines are drawn. A zero value of density means no shading
nor filling whereas negative values (and NA) suppress shading (and so allow
color filling).

angle the slope of shading lines, given as an angle in degrees (counter-clockwise).

col the color for filling the polygon. The default, NA, is to leave polygons unfilled,
unless density is specified. (For back-compatibility, NULL is equivalent to
NA.) If density is specified with a positive value this gives the color of the
shading lines.

752 polygon

border the color to draw the border. The default, NULL, means to use par("fg").
Use border = NA to omit borders.
For compatibility with S, border can also be logical, in which case FALSE
is equivalent to NA (borders omitted) and TRUE is equivalent to NULL (use the
foreground colour),

lty the line type to be used, as in par.

... graphical parameters such as xpd, lend, ljoin and lmitre can be given as
arguments.

Details

The coordinates can be passed in a plotting structure (a list with x and y components), a two-column
matrix, See xy.coords.

It is assumed that the polygon is to be closed by joining the last point to the first point.

The coordinates can contain missing values. The behaviour is similar to that of lines, except
that instead of breaking a line into several lines, NA values break the polygon into several complete
polygons (including closing the last point to the first point). See the examples below.

When multiple polygons are produced, the values of density, angle, col, border, and lty
are recycled in the usual manner.

Bugs

The present shading algorithm can produce incorrect results for self-intersecting polygons.

Author(s)

The code implementing polygon shading was donated by Kevin Buhr 〈buhr@stat.wisc.edu〉.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

segments for even more flexibility, lines, rect, box, abline.

par for how to specify colors.

Examples

x <- c(1:9,8:1)
y <- c(1,2*(5:3),2,-1,17,9,8,2:9)
op <- par(mfcol=c(3,1))
for(xpd in c(FALSE,TRUE,NA)) {

plot(1:10, main = paste("xpd =", xpd))
box("figure", col = "pink", lwd=3)
polygon(x,y, xpd=xpd, col="orange", lty=2, lwd=2, border="red")

}
par(op)

n <- 100

rect 753

xx <- c(0:n, n:0)
yy <- c(c(0,cumsum(stats::rnorm(n))), rev(c(0,cumsum(stats::rnorm(n)))))
plot (xx, yy, type="n", xlab="Time", ylab="Distance")
polygon(xx, yy, col="gray", border = "red")
title("Distance Between Brownian Motions")

Multiple polygons from NA values
and recycling of col, border, and lty
op <- par(mfrow=c(2,1))
plot(c(1,9), 1:2, type="n")
polygon(1:9, c(2,1,2,1,1,2,1,2,1),

col=c("red", "blue"),
border=c("green", "yellow"),
lwd=3, lty=c("dashed", "solid"))

plot(c(1,9), 1:2, type="n")
polygon(1:9, c(2,1,2,1,NA,2,1,2,1),

col=c("red", "blue"),
border=c("green", "yellow"),
lwd=3, lty=c("dashed", "solid"))

par(op)

Line-shaded polygons
plot(c(1,9), 1:2, type="n")
polygon(1:9, c(2,1,2,1,NA,2,1,2,1),

density=c(10, 20), angle=c(-45, 45))

rect Draw One or More Rectangles

Description

rect draws a rectangle (or sequence of rectangles) with the given coordinates, fill and border
colors.

Usage

rect(xleft, ybottom, xright, ytop, density = NULL, angle = 45,
col = NA, border = NULL, lty = par("lty"), lwd = par("lwd"),
...)

Arguments

xleft a vector (or scalar) of left x positions.

ybottom a vector (or scalar) of bottom y positions.

xright a vector (or scalar) of right x positions.

ytop a vector (or scalar) of top y positions.

density the density of shading lines, in lines per inch. The default value of NULL means
that no shading lines are drawn. A zero value of density means no shading
lines whereas negative values (and NA) suppress shading (and so allow color
filling).

angle angle (in degrees) of the shading lines.

754 rect

col color(s) to fill or shade the rectangle(s) with. The default NA (or also NULL)
means do not fill, i.e., draw transparent rectangles, unless density is specified.

border color for rectangle border(s). The default means par("fg"). Use border
= NA to omit borders. If there are shading lines, border = TRUE means use
the same colour for the border as for the shading lines.

lty line type for borders and shading; defaults to "solid".
lwd line width for borders and shading.
... graphical parameters such as xpd, lend, ljoin and lmitre can be given as

arguments.

Details

The positions supplied, i.e., xleft, ..., are relative to the current plotting region. If the x-axis
goes from 100 to 200 then xleft must be larger than 100 and xright must be less than 200. The
position vectors will be recycled to the length of the longest.

It is a graphics primitive used in hist, barplot, legend, etc.

See Also

box for the standard box around the plot; polygon and segments for flexible line drawing.

par for how to specify colors.

Examples

require(grDevices)
set up the plot region:
op <- par(bg = "thistle")
plot(c(100, 250), c(300, 450), type = "n", xlab="", ylab="",

main = "2 x 11 rectangles; 'rect(100+i,300+i, 150+i,380+i)'")
i <- 4*(0:10)
draw rectangles with bottom left (100, 300)+i
and top right (150, 380)+i
rect(100+i, 300+i, 150+i, 380+i, col=rainbow(11, start=.7,end=.1))
rect(240-i, 320+i, 250-i, 410+i, col=heat.colors(11), lwd=i/5)
Background alternating (transparent / "bg") :
j <- 10*(0:5)
rect(125+j, 360+j, 141+j, 405+j/2, col = c(NA,0),

border = "gold", lwd = 2)
rect(125+j, 296+j/2, 141+j, 331+j/5, col = c(NA,"midnightblue"))
mtext("+ 2 x 6 rect(*, col = c(NA,0)) and col = c(NA,\"m..blue\"))")

an example showing colouring and shading
plot(c(100, 200), c(300, 450), type= "n", xlab="", ylab="")
rect(100, 300, 125, 350) # transparent
rect(100, 400, 125, 450, col="green", border="blue") # coloured
rect(115, 375, 150, 425, col=par("bg"), border="transparent")
rect(150, 300, 175, 350, density=10, border="red")
rect(150, 400, 175, 450, density=30, col="blue",

angle=-30, border="transparent")

legend(180, 450, legend=1:4, fill=c(NA, "green", par("fg"), "blue"),
density=c(NA, NA, 10, 30), angle=c(NA, NA, 30, -30))

par(op)

rug 755

rug Add a Rug to a Plot

Description

Adds a rug representation (1-d plot) of the data to the plot.

Usage

rug(x, ticksize = 0.03, side = 1, lwd = 0.5, col = par("fg"),
quiet = getOption("warn") < 0, ...)

Arguments

x A numeric vector

ticksize The length of the ticks making up the ‘rug’. Positive lengths give inwards ticks.

side On which side of the plot box the rug will be plotted. Normally 1 (bottom) or 3
(top).

lwd The line width of the ticks. Some devices will round the default width up to 1.

col The colour the ticks are plotted in.

quiet logical indicating if there should be a warning about clipped values.

... further arguments, passed to axis, such as line or pos for specifying the
location of the rug.

Details

Because of the way rug is implemented, only values of x that fall within the plot region are in-
cluded. There will be a warning if any finite values are omitted, but non-finite values are omitted
silently.

Prior to R 2.8.0 rug re-drew the axis like: it no longer does so.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

jitter which you may want for ties in x.

Examples

require(stats)# both 'density' and its default method
with(faithful, {

plot(density(eruptions, bw = 0.15))
rug(eruptions)
rug(jitter(eruptions, amount = 0.01), side = 3, col = "light blue")

})

756 screen

screen Creating and Controlling Multiple Screens on a Single Device

Description

split.screen defines a number of regions within the current device which can, to some extent,
be treated as separate graphics devices. It is useful for generating multiple plots on a single device.
Screens can themselves be split, allowing for quite complex arrangements of plots.

screen is used to select which screen to draw in.

erase.screen is used to clear a single screen, which it does by filling with the background
colour.

close.screen removes the specified screen definition(s).

Usage

split.screen(figs, screen, erase = TRUE)
screen(n = , new = TRUE)
erase.screen(n =)
close.screen(n, all.screens = FALSE)

Arguments

figs A two-element vector describing the number of rows and the number of columns
in a screen matrix or a matrix with 4 columns. If a matrix, then each row de-
scribes a screen with values for the left, right, bottom, and top of the screen (in
that order) in NDC units, that is 0 at the lower left corner of the device surface,
and 1 at the upper right corner.

screen A number giving the screen to be split. It defaults to the current screen if there
is one, otherwise the whole device region.

erase logical: should be selected screen be cleared?

n A number indicating which screen to prepare for drawing (screen), erase
(erase.screen), or close (close.screen). (close.screen will ac-
cept a vector of screen numbers.)

new A logical value indicating whether the screen should be erased as part of the
preparation for drawing in the screen.

all.screens A logical value indicating whether all of the screens should be closed.

Details

The first call to split.screen places R into split-screen mode. The other split-screen functions
only work within this mode. While in this mode, certain other commands should be avoided (see
the Warnings section below). Split-screen mode is exited by the command close.screen(all
= TRUE).

If the current screen is closed, close.screen sets the current screen to be the next larger screen
number if there is one, otherwise to the first available screen.

screen 757

Value

split.screen returns a vector of screen numbers for the newly-created screens. With no argu-
ments, split.screen returns a vector of valid screen numbers.

screen invisibly returns the number of the selected screen. With no arguments, screen returns
the number of the current screen.

close.screen returns a vector of valid screen numbers.

screen, erase.screen, and close.screen all return FALSE if R is not in split-screen
mode.

Warnings

The recommended way to use these functions is to completely draw a plot and all additions (i.e.
points and lines) to the base plot, prior to selecting and plotting on another screen. The behavior
associated with returning to a screen to add to an existing plot is unpredictable and may result in
problems that are not readily visible.

These functions are totally incompatible with the other mechanisms for arranging plots on a device:
par(mfrow), par(mfcol) and layout().

The functions are also incompatible with some plotting functions, such as coplot, which make
use of these other mechanisms.

erase.screen will appear not to work if the background colour is transparent (as it is by default
on most devices).

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

par, layout, Devices, dev.*

Examples

if (interactive()) {
par(bg = "white") # default is likely to be transparent
split.screen(c(2,1)) # split display into two screens
split.screen(c(1,3), screen = 2) # now split the bottom half into 3
screen(1) # prepare screen 1 for output
plot(10:1)
screen(4) # prepare screen 4 for output
plot(10:1)
close.screen(all = TRUE) # exit split-screen mode

split.screen(c(2,1)) # split display into two screens
split.screen(c(1,2),2) # split bottom half in two
plot(1:10) # screen 3 is active, draw plot
erase.screen() # forgot label, erase and redraw
plot(1:10, ylab= "ylab 3")
screen(1) # prepare screen 1 for output
plot(1:10)
screen(4) # prepare screen 4 for output
plot(1:10, ylab="ylab 4")

758 segments

screen(1, FALSE) # return to screen 1, but do not clear
plot(10:1, axes=FALSE, lty=2, ylab="") # overlay second plot
axis(4) # add tic marks to right-hand axis
title("Plot 1")
close.screen(all = TRUE) # exit split-screen mode
}

segments Add Line Segments to a Plot

Description

Draw line segments between pairs of points.

Usage

segments(x0, y0, x1, y1,
col = par("fg"), lty = par("lty"), lwd = par("lwd"),
...)

Arguments

x0, y0 coordinates of points from which to draw.

x1, y1 coordinates of points to which to draw.

col, lty, lwd
usual graphical parameters as in par, possibly vectors. NA values in col cause
the segment to be omitted.

... further graphical parameters (from par), such as xpd and the line characteris-
tics lend, ljoin and lmitre.

Details

For each i, a line segment is drawn between the point (x0[i], y0[i]) and the point (x1[i],
y1[i]). The coordinate vectors will be recycled to the length of the longest.

The graphical parameters col, lty and lwd can be vectors of length greater than one and will be
recycled if necessary.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

arrows, polygon for slightly easier and less flexible line drawing, and lines for the usual
polygons.

spineplot 759

Examples

x <- stats::runif(12); y <- stats::rnorm(12)
i <- order(x,y); x <- x[i]; y <- y[i]
plot(x, y, main="arrows(.) and segments(.)")
draw arrows from point to point :
s <- seq(length(x)-1)# one shorter than data
arrows(x[s], y[s], x[s+1], y[s+1], col= 1:3)
s <- s[-length(s)]
segments(x[s], y[s], x[s+2], y[s+2], col= 'pink')

spineplot Spine Plots and Spinograms

Description

Spine plots are a special cases of mosaic plots, and can be seen as a generalization of stacked (or
highlighted) bar plots. Analogously, spinograms are an extension of histograms.

Usage

spineplot(x, ...)

Default S3 method:
spineplot(x, y = NULL,

breaks = NULL, tol.ylab = 0.05, off = NULL,
ylevels = NULL, col = NULL,
main = "", xlab = NULL, ylab = NULL,
xaxlabels = NULL, yaxlabels = NULL,
xlim = NULL, ylim = c(0, 1), ...)

S3 method for class 'formula':
spineplot(formula, data = list(),

breaks = NULL, tol.ylab = 0.05, off = NULL,
ylevels = NULL, col = NULL,
main = "", xlab = NULL, ylab = NULL,
xaxlabels = NULL, yaxlabels = NULL,
xlim = NULL, ylim = c(0, 1), ...,
subset = NULL)

Arguments

x an object, the default method expects either a single variable (interpreted to be
the explanatory variable) or a 2-way table. See details.

y a "factor" interpreted to be the dependent variable

formula a "formula" of type y ~ x with a single dependent "factor" and a single
explanatory variable.

data an optional data frame.

breaks if the explanatory variable is numeric, this controls how it is discretized.
breaks is passed to hist and can be a list of arguments.

760 spineplot

tol.ylab convenience tolerance parameter for y-axis annotation. If the distance between
two labels drops under this threshold, they are plotted equidistantly.

off vertical offset between the bars (in per cent). It is fixed to 0 for spinograms and
defaults to 2 for spine plots.

ylevels a character or numeric vector specifying in which order the levels of the depen-
dent variable should be plotted.

col a vector of fill colors of the same length as levels(y). The default is to call
gray.colors.

main, xlab, ylab
character strings for annotation

xaxlabels, yaxlabels
character vectors for annotation of x and y axis. Default to levels(y) and
levels(x), respectively for the spine plot. For xaxlabels in the spino-
gram, the breaks are used.

xlim, ylim the range of x and y values with sensible defaults.

... additional arguments passed to rect.

subset an optional vector specifying a subset of observations to be used for plotting.

Details

spineplot creates either a spinogram or a spine plot. It can be called via spineplot(x,
y) or spineplot(y ~ x) where y is interpreted to be the dependent variable (and has to be
categorical) and x the explanatory variable. x can be either categorical (then a spine plot is created)
or numerical (then a spinogram is plotted). Additionally, spineplot can also be called with only
a single argument which then has to be a 2-way table, interpreted to correspond to table(x, y).

Both, spine plots and spinograms, are essentially mosaic plots with special formatting of spacing
and shading. Conceptually, they plot P (y|x) against P (x). For the spine plot (where both x and
y are categorical), both quantities are approximated by the corresponding empirical relative fre-
quencies. For the spinogram (where x is numerical), x is first discretized (by calling hist with
breaks argument) and then empirical relative frequencies are taken.

Thus, spine plots can also be seen as a generalization of stacked bar plots where not the heights
but the widths of the bars corresponds to the relative frequencies of x. The heights of the bars then
correspond to the conditional relative frequencies of y in every x group. Analogously, spinograms
extend stacked histograms.

Value

The table visualized is returned invisibly.

Author(s)

Achim Zeileis 〈Achim.Zeileis@R-project.org〉

References

Friendly, M. (1994), Mosaic displays for multi-way contingency tables. Journal of the American
Statistical Association, 89, 190–200.

Hartigan, J.A., and Kleiner, B. (1984), A mosaic of television ratings. The American Statistician,
38, 32–35.

stars 761

Hofmann, H., Theus, M. (2005), Interactive graphics for visualizing conditional distributions, Un-
published Manuscript.

Hummel, J. (1996), Linked bar charts: Analysing categorical data graphically. Computational
Statistics, 11, 23–33.

See Also

mosaicplot, hist, cdplot

Examples

treatment and improvement of patients with rheumatoid arthritis
treatment <- factor(rep(c(1, 2), c(43, 41)), levels = c(1, 2),

labels = c("placebo", "treated"))
improved <- factor(rep(c(1, 2, 3, 1, 2, 3), c(29, 7, 7, 13, 7, 21)),

levels = c(1, 2, 3),
labels = c("none", "some", "marked"))

(dependence on a categorical variable)
(spineplot(improved ~ treatment))

applications and admissions by department at UC Berkeley
(two-way tables)
(spineplot(margin.table(UCBAdmissions, c(3, 2)),

main = "Applications at UCB"))
(spineplot(margin.table(UCBAdmissions, c(3, 1)),

main = "Admissions at UCB"))

NASA space shuttle o-ring failures
fail <- factor(c(2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1,

1, 1, 1, 2, 1, 1, 1, 1, 1),
levels = c(1, 2), labels = c("no", "yes"))

temperature <- c(53, 57, 58, 63, 66, 67, 67, 67, 68, 69, 70, 70,
70, 70, 72, 73, 75, 75, 76, 76, 78, 79, 81)

(dependence on a numerical variable)
(spineplot(fail ~ temperature))
(spineplot(fail ~ temperature, breaks = 3))
(spineplot(fail ~ temperature, breaks = quantile(temperature)))

highlighting for failures
spineplot(fail ~ temperature, ylevels = 2:1)

stars Star (Spider/Radar) Plots and Segment Diagrams

Description

Draw star plots or segment diagrams of a multivariate data set. With one single location, also draws
‘spider’ (or ‘radar’) plots.

762 stars

Usage

stars(x, full = TRUE, scale = TRUE, radius = TRUE,
labels = dimnames(x)[[1]], locations = NULL,
nrow = NULL, ncol = NULL, len = 1,
key.loc = NULL, key.labels = dimnames(x)[[2]],
key.xpd = TRUE,
xlim = NULL, ylim = NULL, flip.labels = NULL,
draw.segments = FALSE,
col.segments = 1:n.seg, col.stars = NA,
axes = FALSE, frame.plot = axes,
main = NULL, sub = NULL, xlab = "", ylab = "",
cex = 0.8, lwd = 0.25, lty = par("lty"), xpd = FALSE,
mar = pmin(par("mar"),

1.1+ c(2*axes+ (xlab != ""),
2*axes+ (ylab != ""), 1,0)),

add = FALSE, plot = TRUE, ...)

Arguments

x matrix or data frame of data. One star or segment plot will be produced for each
row of x. Missing values (NA) are allowed, but they are treated as if they were 0
(after scaling, if relevant).

full logical flag: if TRUE, the segment plots will occupy a full circle. Otherwise,
they occupy the (upper) semicircle only.

scale logical flag: if TRUE, the columns of the data matrix are scaled independently so
that the maximum value in each column is 1 and the minimum is 0. If FALSE,
the presumption is that the data have been scaled by some other algorithm to the
range [0, 1].

radius logical flag: in TRUE, the radii corresponding to each variable in the data will
be drawn.

labels vector of character strings for labeling the plots. Unlike the S function stars,
no attempt is made to construct labels if labels = NULL.

locations Either two column matrix with the x and y coordinates used to place each of the
segment plots; or numeric of length 2 when all plots should be superimposed
(for a ‘spider plot’). By default, locations = NULL, the segment plots will
be placed in a rectangular grid.

nrow, ncol integers giving the number of rows and columns to use when locations is
NULL. By default, nrow == ncol, a square layout will be used.

len scale factor for the length of radii or segments.

key.loc vector with x and y coordinates of the unit key.

key.labels vector of character strings for labeling the segments of the unit key. If omitted,
the second component of dimnames(x) is used, if available.

key.xpd clipping switch for the unit key (drawing and labeling), see par("xpd").

xlim vector with the range of x coordinates to plot.

ylim vector with the range of y coordinates to plot.

flip.labels logical indicating if the label locations should flip up and down from diagram to
diagram. Defaults to a somewhat smart heuristic.

stars 763

draw.segments
logical. If TRUE draw a segment diagram.

col.segments color vector (integer or character, see par), each specifying a color for one of
the segments (variables). Ignored if draw.segments = FALSE.

col.stars color vector (integer or character, see par), each specifying a color for one of
the stars (cases). Ignored if draw.segments = TRUE.

axes logical flag: if TRUE axes are added to the plot.

frame.plot logical flag: if TRUE, the plot region is framed.

main a main title for the plot.

sub a sub title for the plot.

xlab a label for the x axis.

ylab a label for the y axis.

cex character expansion factor for the labels.

lwd line width used for drawing.

lty line type used for drawing.

xpd logical or NA indicating if clipping should be done, see par(xpd = .).

mar argument to par(mar = *), typically choosing smaller margins than by de-
fault.

... further arguments, passed to the first call of plot(), see plot.default and
to box() if frame.plot is true.

add logical, if TRUE add stars to current plot.

plot logical, if FALSE, nothing is plotted.

Details

Missing values are treated as 0.

Each star plot or segment diagram represents one row of the input x. Variables (columns) start on
the right and wind counterclockwise around the circle. The size of the (scaled) column is shown by
the distance from the center to the point on the star or the radius of the segment representing the
variable.

Only one page of output is produced.

Note

This code started life as spatial star plots by David A. Andrews. See http://www.udallas.
edu:8080/~andrews/software/software.html.

Prior to 1.4.1, scaling only shifted the maximum to 1, although documented as here.

Author(s)

Thomas S. Dye

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

http://www.udallas.edu:8080/~andrews/software/software.html
http://www.udallas.edu:8080/~andrews/software/software.html

764 stem

See Also

symbols for another way to draw stars and other symbols.

Examples

require(grDevices)
stars(mtcars[, 1:7], key.loc = c(14, 2),

main = "Motor Trend Cars : stars(*, full = F)", full = FALSE)
stars(mtcars[, 1:7], key.loc = c(14, 1.5),

main = "Motor Trend Cars : full stars()",flip.labels=FALSE)

'Spider' or 'Radar' plot:
stars(mtcars[, 1:7], locations = c(0,0), radius = FALSE,

key.loc=c(0,0), main="Motor Trend Cars", lty = 2)

Segment Diagrams:
palette(rainbow(12, s = 0.6, v = 0.75))
stars(mtcars[, 1:7], len = 0.8, key.loc = c(12, 1.5),

main = "Motor Trend Cars", draw.segments = TRUE)
stars(mtcars[, 1:7], len = 0.6, key.loc = c(1.5, 0),

main = "Motor Trend Cars", draw.segments = TRUE,
frame.plot=TRUE, nrow = 4, cex = .7)

scale linearly (not affinely) to [0, 1]
USJudge <- apply(USJudgeRatings, 2, function(x) x/max(x))
Jnam <- row.names(USJudgeRatings)
Snam <- abbreviate(substring(Jnam,1,regexpr("[,.]",Jnam) - 1), 7)
stars(USJudge, labels = Jnam, scale = FALSE,

key.loc = c(13, 1.5), main = "Judge not ...", len = 0.8)
stars(USJudge, labels = Snam, scale = FALSE,

key.loc = c(13, 1.5), radius = FALSE)

loc <- stars(USJudge, labels = NULL, scale = FALSE,
radius = FALSE, frame.plot = TRUE,
key.loc = c(13, 1.5), main = "Judge not ...", len = 1.2)

text(loc, Snam, col = "blue", cex = 0.8, xpd = TRUE)

'Segments':
stars(USJudge, draw.segments = TRUE, scale = FALSE, key.loc = c(13,1.5))

'Spider':
stars(USJudgeRatings, locations=c(0,0), scale=FALSE,radius = FALSE,

col.stars=1:10, key.loc = c(0,0), main="US Judges rated")
'Radar-Segments'
stars(USJudgeRatings[1:10,], locations = 0:1, scale=FALSE,

draw.segments = TRUE, col.segments=0, col.stars=1:10,key.loc= 0:1,
main="US Judges 1-10 ")

palette("default")
stars(cbind(1:16,10*(16:1)),draw.segments=TRUE,

main = "A Joke -- do *not* use symbols on 2D data!")

stem Stem-and-Leaf Plots

stripchart 765

Description

stem produces a stem-and-leaf plot of the values in x. The parameter scale can be used to
expand the scale of the plot. A value of scale=2 will cause the plot to be roughly twice as long
as the default.

Usage

stem(x, scale = 1, width = 80, atom = 1e-08)

Arguments

x a numeric vector.

scale This controls the plot length.

width The desired width of plot.

atom a tolerance.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Examples

stem(islands)
stem(log10(islands))

stripchart 1-D Scatter Plots

Description

stripchart produces one dimensional scatter plots (or dot plots) of the given data. These plots
are a good alternative to boxplots when sample sizes are small.

Usage

stripchart(x, ...)

S3 method for class 'formula':
stripchart(x, data = NULL, dlab = NULL, ...,

subset, na.action = NULL)

Default S3 method:
stripchart(x, method = "overplot", jitter = 0.1, offset = 1/3,

vertical = FALSE, group.names, add = FALSE,
at = NULL, xlim = NULL, ylim = NULL,
ylab=NULL, xlab=NULL, dlab="", glab="",
log = "", pch = 0, col = par("fg"), cex = par("cex"),
axes = TRUE, frame.plot = axes, ...)

766 stripchart

Arguments

x the data from which the plots are to be produced. In the default method the
data can be specified as a single numeric vector, or as list of numeric vectors,
each corresponding to a component plot. In the formula method, a symbolic
specification of the form y ~ g can be given, indicating the observations in
the vector y are to be grouped according to the levels of the factor g. NAs are
allowed in the data.

data a data.frame (or list) from which the variables in x should be taken.

subset an optional vector specifying a subset of observations to be used for plotting.

na.action a function which indicates what should happen when the data contain NAs. The
default is to ignore missing values in either the response or the group.

... additional parameters passed to the default method, or by it to plot, axis and
title to control the appearance of the plot.

method the method to be used to separate coincident points. The default method
"overplot" causes such points to be overplotted, but it is also possible to
specify "jitter" to jitter the points, or "stack" have coincident points
stacked. The last method only makes sense for very granular data.

jitter when method="jitter" is used, jitter gives the amount of jittering ap-
plied.

offset when stacking is used, points are stacked this many line-heights (symbol widths)
apart.

vertical when vertical is TRUE the plots are drawn vertically rather than the default hor-
izontal.

group.names group labels which will be printed alongside (or underneath) each plot.

add logical, if true add the chart to the current plot.

at numeric vector giving the locations where the charts should be drawn, particu-
larly when add = TRUE; defaults to 1:n where n is the number of boxes.

ylab, xlab labels: see title.

dlab, glab alternate way to specify axis labels: see ‘Details’.

xlim, ylim plot limits: see plot.window.

log on which axes to use a log scale: see plot.default

pch, col, cex
Graphical parameters: see par.

axes, frame.plot
Axis control: see plot.default

Details

Extensive examples of the use of this kind of plot can be found in Box, Hunter and Hunter or Seber
and Wild.

The dlab and glab labels may be used instead of xlab and ylab if those are not specified.
dlab applies to the continuous data axis (the X axis unless vertical is TRUE), glab to the
group axis.

strwidth 767

Examples

x <- stats::rnorm(50)
xr <- round(x, 1)
stripchart(x) ; m <- mean(par("usr")[1:2])
text(m, 1.04, "stripchart(x, \"overplot\")")
stripchart(xr, method = "stack", add = TRUE, at = 1.2)
text(m, 1.35, "stripchart(round(x,1), \"stack\")")
stripchart(xr, method = "jitter", add = TRUE, at = 0.7)
text(m, 0.85, "stripchart(round(x,1), \"jitter\")")

stripchart(decrease ~ treatment,
main = "stripchart(OrchardSprays)",
vertical = TRUE, log = "y", data = OrchardSprays)

stripchart(decrease ~ treatment, at = c(1:8)^2,
main = "stripchart(OrchardSprays)",
vertical = TRUE, log = "y", data = OrchardSprays)

strwidth Plotting Dimensions of Character Strings and Math Expressions

Description

These functions compute the width or height, respectively, of the given strings or mathematical
expressions s[i] on the current plotting device in user coordinates, inches or as fraction of the
figure width par("fin").

Usage

strwidth(s, units = "user", cex = NULL, font = NULL, vfont = NULL, ...)
strheight(s, units = "user", cex = NULL, font = NULL, vfont = NULL, ...)

Arguments

s a character or expression vector whose dimensions are to be determined. Other
objects are coerced by as.graphicsAnnot.

units character indicating in which units s is measured; should be one of "user",
"inches", "figure"; partial matching is performed.

cex numeric character expansion factor; multiplied by par("cex") yields the fi-
nal character size; the default NULL is equivalent to 1.

font, vfont, ...
additional information about the font, possibly including the graphics parameter
"family": see text.

Details

Where an element of s is a multi-line string (that is, contains newlines \n), the width and height
are of an enclosing rectangle of the string as plotted by text. The inter-line spacing is controlled
by cex, par("lheight") and the ‘point size’ (but not the actual font in use).

Measurements in "user" units (the default) are only available after plot.new has been called –
otherwise an error is thrown.

768 sunflowerplot

Value

Numeric vector with the same length as s, giving the width or height for each s[i]. NA strings are
given width and height 0 (as they are not plotted).

See Also

text, nchar

Examples

str.ex <- c("W","w","I",".","WwI.")
op <- par(pty='s'); plot(1:100,1:100, type="n")
sw <- strwidth(str.ex); sw
all.equal(sum(sw[1:4]), sw[5])
#- since the last string contains the others

sw.i <- strwidth(str.ex, "inches"); 25.4 * sw.i # width in [mm]
unique(sw / sw.i)
constant factor: 1 value
mean(sw.i / strwidth(str.ex, "fig")) / par('fin')[1] # = 1: are the same

See how letters fall in classes
-- depending on graphics device and font!
all.lett <- c(letters, LETTERS)
shL <- strheight(all.lett, units = "inches") * 72 # 'big points'
table(shL) # all have same heights ...
mean(shL)/par("cin")[2] # around 0.6

(swL <- strwidth(all.lett, units="inches") * 72) # 'big points'
split(all.lett, factor(round(swL, 2)))

sumex <- expression(sum(x[i], i=1,n), e^{i * pi} == -1)
strwidth(sumex)
strheight(sumex)

par(op)#- reset to previous setting

sunflowerplot Produce a Sunflower Scatter Plot

Description

Multiple points are plotted as ‘sunflowers’ with multiple leaves (‘petals’) such that overplotting is
visualized instead of accidental and invisible.

Usage

sunflowerplot(x, y = NULL, number, log = "", digits = 6,
xlab = NULL, ylab = NULL, xlim = NULL, ylim = NULL,
add = FALSE, rotate = FALSE,
pch = 16, cex = 0.8, cex.fact = 1.5,
col = par("col"), bg = NA, size = 1/8, seg.col = 2,
seg.lwd = 1.5, ...)

sunflowerplot 769

Arguments

x numeric vector of x-coordinates of length n, say, or another valid plotting struc-
ture, as for plot.default, see also xy.coords.

y numeric vector of y-coordinates of length n.

number integer vector of length n. number[i] = number of replicates for
(x[i],y[i]), may be 0.
Default (missing(number)): compute the exact multiplicity of the points
x[],y[], via xyTable().

log character indicating log coordinate scale, see plot.default.

digits when number is computed (i.e., not specified), x and y are rounded to digits
significant digits before multiplicities are computed.

xlab,ylab character label for x-, or y-axis, respectively.

xlim,ylim numeric(2) limiting the extents of the x-, or y-axis.

add logical; should the plot be added on a previous one ? Default is FALSE.

rotate logical; if TRUE, randomly rotate the sunflowers (preventing artefacts).

pch plotting character to be used for points (number[i]==1) and center of sun-
flowers.

cex numeric; character size expansion of center points (s. pch).

cex.fact numeric shrinking factor to be used for the center points when there are flower
leaves, i.e., cex / cex.fact is used for these.

col, bg colors for the plot symbols, passed to plot.default.

size of sunflower leaves in inches, 1[in] := 2.54[cm]. Default: 1/8,̈ approximately
3.2mm.

seg.col color to be used for the segments which make the sunflowers leaves, see
par(col=); col = "gold" reminds of real sunflowers.

seg.lwd numeric; the line width for the leaves’ segments.

... further arguments to plot [if add=FALSE].

Details

For number[i]==1, a (slightly enlarged) usual plotting symbol (pch) is drawn. For
number[i] > 1, a small plotting symbol is drawn and number[i] equi-angular ‘rays’ em-
anate from it.

If rotate=TRUE and number[i] >= 2, a random direction is chosen (instead of the y-axis)
for the first ray. The goal is to jitter the orientations of the sunflowers in order to prevent
artefactual visual impressions.

Value

A list with three components of same length,

x x coordinates

y y coordinates

number number

Use xyTable() (from package grDevices) if you are only interested in this return value.

770 symbols

Side Effects

A scatter plot is drawn with ‘sunflowers’ as symbols.

Author(s)

Andreas Ruckstuhl, Werner Stahel, Martin Maechler, Tim Hesterberg, 1989–1993. Port to R by
Martin Maechler 〈maechler@stat.math.ethz.ch〉.

References

Chambers, J. M., Cleveland, W. S., Kleiner, B. and Tukey, P. A. (1983) Graphical Methods for Data
Analysis. Wadsworth.

Schilling, M. F. and Watkins, A. E. (1994) A suggestion for sunflower plots. The American Statis-
tician, 48, 303–305.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

density, xyTable

Examples

require(stats)
require(grDevices)

'number' is computed automatically:
sunflowerplot(iris[, 3:4])
Imitating Chambers et al., p.109, closely:
sunflowerplot(iris[, 3:4], cex=.2, cex.fact=1, size=.035, seg.lwd=.8)

sunflowerplot(x=sort(2*round(rnorm(100))), y= round(rnorm(100),0),
main = "Sunflower Plot of Rounded N(0,1)")

Similarly using a "xyTable" argument:
xyT <- xyTable(x=sort(2*round(rnorm(100))), y= round(rnorm(100),0),

digits=3)
utils::str(xyT, vec.len=20)
sunflowerplot(xyT, main = "2nd Sunflower Plot of Rounded N(0,1)")

A 'marked point process' {explicit 'number' argument}:
sunflowerplot(rnorm(100), rnorm(100), number = rpois(n=100,lambda=2),

main="Sunflower plot (marked point process)",
rotate=TRUE, col = "blue4")

symbols Draw Symbols (Circles, Squares, Stars, Thermometers, Boxplots) on a
Plot

Description

This function draws symbols on a plot. One of six symbols; circles, squares, rectangles, stars,
thermometers, and boxplots, can be plotted at a specified set of x and y coordinates. Specific
aspects of the symbols, such as relative size, can be customized by additional parameters.

symbols 771

Usage

symbols(x, y = NULL, circles, squares, rectangles, stars,
thermometers, boxplots, inches = TRUE, add = FALSE,
fg = par("col"), bg = NA,
xlab = NULL, ylab = NULL, main = NULL,
xlim = NULL, ylim = NULL, ...)

Arguments

x, y the x and y co-ordinates for the centres of the symbols. They can be specified in
any way which is accepted by xy.coords.

circles a vector giving the radii of the circles.

squares a vector giving the length of the sides of the squares.

rectangles a matrix with two columns. The first column gives widths and the second the
heights of rectangles.

stars a matrix with three or more columns giving the lengths of the rays from the
center of the stars. NA values are replaced by zeroes.

thermometers a matrix with three or four columns. The first two columns give the width and
height of the thermometer symbols. If there are three columns, the third is taken
as a proportion: the thermometers are filled (using colour fg) from their base
to this proportion of their height. If there are four columns, the third and fourth
columns are taken as proportions and the thermometers are filled between these
two proportions of their heights. The part of the box not filled in fg will be
filled in the background colour (default transparent) given by bg.

boxplots a matrix with five columns. The first two columns give the width and height of
the boxes, the next two columns give the lengths of the lower and upper whiskers
and the fifth the proportion (with a warning if not in [0,1]) of the way up the box
that the median line is drawn.

inches TRUE, FALSE or a positive number. See ‘Details’.

add if add is TRUE, the symbols are added to an existing plot, otherwise a new plot
is created.

fg colour(s) the symbols are to be drawn in.

bg if specified, the symbols are filled with colour(s), the vector bg being recycled
to the number of symbols. The default is to leave the symbols unfilled.

xlab the x label of the plot if add is not true. Defaults to the deparsed expression
used for x.

ylab the y label of the plot. Unused if add = TRUE.

main a main title for the plot. Unused if add = TRUE.

xlim numeric vector of length 2 giving the x limits for the plot. Unused if add =
TRUE.

ylim numeric vector of length 2 giving the y limits for the plot. Unused if add =
TRUE.

... graphics parameters can also be passed to this function, as can the plot aspect
ratio asp (see plot.window).

772 symbols

Details

Observations which have missing coordinates or missing size parameters are not plotted. The ex-
ception to this is stars. In that case, the length of any ray which is NA is reset to zero.

Argument inches controls the sizes of the symbols. If TRUE (the default), the symbols are scaled
so that the largest dimension of any symbol is one inch. If a positive number is given the symbols
are scaled to make largest dimension this size in inches (so TRUE and 1 are equivalent). If inches
is FALSE, the units are taken to be those of the appropriate axes. (For circles, squares and stars the
units of the x axis are used. For boxplots, the lengths of the whiskers are regarded as dimensions
alongside width and height when scaling by inches, and are otherwise interpreted in the units of
the y axis.)

Circles of radius zero are plotted at radius one pixel (which is device-dependent).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

W. S. Cleveland (1985) The Elements of Graphing Data. Monterey, California: Wadsworth.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

stars for drawing stars with a bit more flexibility.

If you are thinking about doing ‘bubble plots’ by symbols(*, circles=*), you should really
consider using sunflowerplot instead.

Examples

require(stats); require(grDevices)
x <- 1:10
y <- sort(10*runif(10))
z <- runif(10)
z3 <- cbind(z, 2*runif(10), runif(10))
symbols(x, y, thermometers=cbind(.5, 1, z), inches=.5, fg = 1:10)
symbols(x, y, thermometers = z3, inches=FALSE)
text(x,y, apply(format(round(z3, digits=2)), 1, paste, collapse = ","),

adj = c(-.2,0), cex = .75, col = "purple", xpd=NA)

Note that example(trees) shows more sensible plots!
N <- nrow(trees)
with(trees, {
Girth is diameter in inches
symbols(Height, Volume, circles=Girth/24, inches=FALSE,

main="Trees' Girth")# xlab and ylab automatically
Colours too:
palette(rainbow(N, end = 0.9))
symbols(Height, Volume, circles=Girth/16, inches=FALSE, bg = 1:N,

fg="gray30", main="symbols(*, circles=Girth/16, bg = 1:N)")
palette("default")
})

text 773

text Add Text to a Plot

Description

text draws the strings given in the vector labels at the coordinates given by x and y. y may be
missing since xy.coords(x,y) is used for construction of the coordinates.

Usage

text(x, ...)

Default S3 method:
text (x, y = NULL, labels = seq_along(x), adj = NULL,

pos = NULL, offset = 0.5, vfont = NULL,
cex = 1, col = NULL, font = NULL, ...)

Arguments

x, y numeric vectors of coordinates where the text labels should be written. If the
length of x and y differs, the shorter one is recycled.

labels a character vector or expression specifying the text to be written. An attempt
is made to coerce other language objects (names and calls) to expressions, and
vectors and other classed objects to character vectors by as.character. If
labels is longer than x and y, the coordinates are recycled to the length of
labels.

adj one or two values in [0, 1] which specify the x (and optionally y) adjustment of
the labels. On most devices values outside that interval will also work.

pos a position specifier for the text. If specified this overrides any adj value given.
Values of 1, 2, 3 and 4, respectively indicate positions below, to the left of,
above and to the right of the specified coordinates.

offset when pos is specified, this value gives the offset of the label from the specified
coordinate in fractions of a character width.

vfont NULL for the current font family, or a character vector of length 2 for Hershey
vector fonts. The first element of the vector selects a typeface and the second
element selects a style. Ignored if labels is an expression.

cex numeric character expansion factor; multiplied by par("cex") yields the fi-
nal character size. NULL and NA are equivalent to 1.0.

col, font the color and (if vfont = NULL) font to be used, possibly vectors. These
default to the values of the global graphical parameters in par().

... further graphical parameters (from par), such as srt, family and xpd.

Details

labels must be of type character or expression (or be coercible to such a type). In the
latter case, quite a bit of mathematical notation is available such as sub- and superscripts, greek
letters, fractions, etc.

adj allows adjustment of the text with respect to (x,y). Values of 0, 0.5, and 1 specify
left/bottom, middle and right/top alignment, respectively. The default is for centered text, i.e., adj

774 text

= c(0.5, 0.5). Accurate vertical centering needs character metric information on individual
characters which is only available on some devices. Vertical alignment is done slightly differently
for character strings and for expressions: adj=c(0,0) means to left-justify and to align on the
baseline for strings but on the bottom of the bounding box for expressions. This also affects vertical
centering: for strings the centering excludes any descenders whereas for expressions it includes
them.

The pos and offset arguments can be used in conjunction with values returned by identify
to recreate an interactively labelled plot.

Text can be rotated by using graphical parameters srt (see par); this rotates about the centre set
by adj.

Graphical parameters col, cex and font can be vectors and will then be applied cyclically to the
labels (and extra values will be ignored). NA values of font are replaced by par("font").

Labels whose x, y, labels, cex or col value is NA are omitted from the plot.

What happens when font = 5 (the symbol font) is selected can be both device- and locale-
dependent. Most often labels will be interpreted in the Adobe symbol encoding, so e.g. "d" is
delta, and "\300" is aleph.

Euro symbol

The Euro symbol was introduced relatively recently and may not be available in older fonts. In
recent versions of Adobe symbol fonts it is character 160, so text(x, y, "\xA0", font =
5) may work. People using Western European locales on Unix-alikes can probably select ISO-
8895-15 (Latin-9) which has the Euro as character 165: this can also be used for postscript
and pdf. It is \u20ac in Unicode, which can be used in UTF-8 locales.

The Euro should be rendered correctly by X11 in UTF-8 locales, but the corresponding single-byte
encoding in postscript and pdf will need to be selected as ISOLatin9.enc.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

See Also

mtext, title, Hershey for details on Hershey vector fonts, plotmath for details and more
examples on mathematical annotation.

Examples

plot(-1:1,-1:1, type = "n", xlab = "Re", ylab = "Im")
K <- 16; text(exp(1i * 2 * pi * (1:K) / K), col = 2)

The following two examples use latin1 characters: these may not
appear correctly (or be omitted entirely).
plot(1:10, 1:10, main = "text(...) examples\n~~~~~~~~~~~~~~",

sub = "R is GNU ©, but not ® ...")
mtext("«Latin-1 accented chars»: éè øØ å<Å æ<Æ", side=3)
points(c(6,2), c(2,1), pch = 3, cex = 4, col = "red")
text(6, 2, "the text is CENTERED around (x,y) = (6,2) by default",

cex = .8)
text(2, 1, "or Left/Bottom - JUSTIFIED at (2,1) by 'adj = c(0,0)'",

title 775

adj = c(0,0))
text(4, 9, expression(hat(beta) == (X^t * X)^{-1} * X^t * y))
text(4, 8.4, "expression(hat(beta) == (X^t * X)^{-1} * X^t * y)",

cex = .75)
text(4, 7, expression(bar(x) == sum(frac(x[i], n), i==1, n)))

Two more latin1 examples
text(5,10.2,

"Le français, c'est façile: Règles, Liberté, Egalité, Fraternité...")
text(5,9.8,

"Jetz no chli züritüütsch: (noch ein bißchen Zürcher deutsch)")

title Plot Annotation

Description

This function can be used to add labels to a plot. Its first four principal arguments can also be
used as arguments in most high-level plotting functions. They must be of type character or
expression. In the latter case, quite a bit of mathematical notation is available such as sub- and
superscripts, greek letters, fractions, etc: see plotmath

Usage

title(main = NULL, sub = NULL, xlab = NULL, ylab = NULL,
line = NA, outer = FALSE, ...)

Arguments

main The main title (on top) using font and size (character expansion)
par("font.main") and color par("col.main").

sub Sub-title (at bottom) using font and size par("font.sub") and color
par("col.sub").

xlab X axis label using font and character expansion par("font.lab") and color
par("col.lab").

ylab Y axis label, same font attributes as xlab.

line specifying a value for line overrides the default placement of labels, and places
them this many lines outwards from the plot edge.

outer a logical value. If TRUE, the titles are placed in the outer margins of the plot.

... further graphical parameters from par. Use e.g., col.main or cex.sub
instead of just col or cex. adj controls the justification of the titles. xpd
can be used to set the clipping region: this defaults to the figure region unless
outer = TRUE, otherwise the device region and can only be increased. mgp
controls the default placing of the axis titles.

776 units

Details

The labels passed to title can be character strings or language objects (names, calls or expres-
sions), or a list containing the string to be plotted, and a selection of the optional modifying graphi-
cal parameters cex=, col= and font=. Other objects will be coerced by as.graphicsAnnot.

The position of main defaults to being vertically centered in (outer) margin 3 and justified horizon-
tally according to par("adj") on the plot region (device region for outer=TRUE).

The positions of xlab, ylab and sub are line (default for xlab and ylab being
par("mgp")[1] and increased by 1 for sub) lines (of height par("mex")) into the appro-
priate margin, justified in the text direction according to par("adj") on the plot/device region.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

mtext, text; plotmath for details on mathematical annotation.

Examples

plot(cars, main = "") # here, could use main directly
title(main = "Stopping Distance versus Speed")

plot(cars, main = "")
title(main = list("Stopping Distance versus Speed", cex=1.5,

col="red", font=3))

Specifying "..." :
plot(1, col.axis = "sky blue", col.lab = "thistle")
title("Main Title", sub = "sub title",

cex.main = 2, font.main= 4, col.main= "blue",
cex.sub = 0.75, font.sub = 3, col.sub = "red")

x <- seq(-4, 4, len = 101)
y <- cbind(sin(x), cos(x))
matplot(x, y, type = "l", xaxt = "n",

main = expression(paste(plain(sin) * phi, " and ",
plain(cos) * phi)),

ylab = expression("sin" * phi, "cos" * phi), # only 1st is taken
xlab = expression(paste("Phase Angle ", phi)),
col.main = "blue")

axis(1, at = c(-pi, -pi/2, 0, pi/2, pi),
labels = expression(-pi, -pi/2, 0, pi/2, pi))

abline(h = 0, v = pi/2 * c(-1,1), lty = 2, lwd = .1, col = "gray70")

units Graphical Units

xspline 777

Description

xinch and yinch convert the specified number of inches given as their arguments into the correct
units for plotting with graphics functions. Usually, this only makes sense when normal coordinates
are used, i.e., no log scale (see the log argument to par).

xyinch does the same for a pair of numbers xy, simultaneously.

Usage

xinch(x = 1, warn.log = TRUE)
yinch(y = 1, warn.log = TRUE)
xyinch(xy = 1, warn.log = TRUE)

Arguments

x,y numeric vector

xy numeric of length 1 or 2.

warn.log logical; if TRUE, a warning is printed in case of active log scale.

Examples

all(c(xinch(),yinch()) == xyinch()) # TRUE
xyinch()
xyinch #- to see that is really delta{"usr"} / "pin"

plot labels offset 0.12 inches to the right
of plotted symbols in a plot
with(mtcars, {

plot(mpg, disp, pch=19, main= "Motor Trend Cars")
text(mpg + xinch(0.12), disp, row.names(mtcars),

adj = 0, cex = .7, col = 'blue')
})

xspline Draw an X-spline

Description

Draw an X-spline, a curve drawn relative to control points.

Usage

xspline(x, y = NULL, shape = 0, open = TRUE, repEnds = TRUE, draw = TRUE,
border = par("fg"), col = NA, ...)

Arguments

x,y vectors containing the coordinates of the vertices of the polygon. See
xy.coords for alternatives.

shape A numeric vector of values between -1 and 1, which control the shape of the
spline relative to the control points.

open A logical value indicating whether the spline is an open or a closed shape.

778 xspline

repEnds For open X-splines, a logical value indicating whether the first and last control
points should be replicated for drawing the curve. Ignored for closed X-splines.

draw logical: should the X-spline be drawn? If false, a set of line segments to draw
the curve is returned, and nothing is drawn.

border the color to draw the curve. Use border = NA to omit borders.

col the color for filling the shape. The default, NA, is to leave unfilled.

... graphical parameters such as lty, xpd, lend, ljoin and lmitre can be
given as arguments.

Details

An X-spline is a line drawn relative to control points. For each control point, the line may pass
through (interpolate) the control point or it may only approach (approximate) the control point; the
behaviour is determined by a shape parameter for each control point.

If the shape parameter is greater than zero, the spline approximates the control points (and is very
similar to a cubic B-spline when the shape is 1). If the shape parameter is less than zero, the spline
interpolates the control points (and is very similar to a Catmull-Rom spline when the shape is -1).
If the shape parameter is 0, the spline forms a sharp corner at that control point.

For open X-splines, the start and end control points must have a shape of 0 (and non-zero values are
silently converted to zero).

For open X-splines, by default the start and end control points are replicated before the curve is
drawn. A curve is drawn between (interpolating or approximating) the second and third of each set
of four control points, so this default behaviour ensures that the resulting curve starts at the first
control point you have specified and ends at the last control point. The default behaviour can be
turned off via the repEnds argument.

Value

If draw = TRUE, NULL otherwise a list with elements x and y which could be passed to lines,
polygon and so on.

Invisible in both cases.

Note

Two-dimensional splines need to be created in an isotropic coordinate system. Device coordinates
are used (with an anisotropy correction if needed.)

References

Blanc, C. and Schlick, C. (1995), X-splines : A Spline Model Designed for the End User, in Pro-
ceedings of SIGGRAPH 95, pp. 377–386. http://dept-info.labri.fr/~schlick/
DOC/sig1.html

See Also

polygon.

par for how to specify colors.

http://dept-info.labri.fr/~schlick/DOC/sig1.html
http://dept-info.labri.fr/~schlick/DOC/sig1.html

xspline 779

Examples

based on examples in ?grid.xspline

xsplineTest <- function(s, open = TRUE,
x = c(1,1,3,3)/4,
y = c(1,3,3,1)/4, ...) {

plot(c(0,1), c(0,1), type="n", axes=FALSE, xlab="", ylab="")
points(x, y, pch=19)
xspline(x, y, s, open, ...)
text(x+0.05*c(-1,-1,1,1), y+0.05*c(-1,1,1,-1), s)

}
op <- par(mfrow=c(3,3), mar=rep(0,4), oma=c(0,0,2,0))
xsplineTest(c(0, -1, -1, 0))
xsplineTest(c(0, -1, 0, 0))
xsplineTest(c(0, -1, 1, 0))
xsplineTest(c(0, 0, -1, 0))
xsplineTest(c(0, 0, 0, 0))
xsplineTest(c(0, 0, 1, 0))
xsplineTest(c(0, 1, -1, 0))
xsplineTest(c(0, 1, 0, 0))
xsplineTest(c(0, 1, 1, 0))
title("Open X-splines", outer=TRUE)

par(mfrow=c(3,3), mar=rep(0,4), oma=c(0,0,2,0))
xsplineTest(c(0, -1, -1, 0), FALSE, col="grey80")
xsplineTest(c(0, -1, 0, 0), FALSE, col="grey80")
xsplineTest(c(0, -1, 1, 0), FALSE, col="grey80")
xsplineTest(c(0, 0, -1, 0), FALSE, col="grey80")
xsplineTest(c(0, 0, 0, 0), FALSE, col="grey80")
xsplineTest(c(0, 0, 1, 0), FALSE, col="grey80")
xsplineTest(c(0, 1, -1, 0), FALSE, col="grey80")
xsplineTest(c(0, 1, 0, 0), FALSE, col="grey80")
xsplineTest(c(0, 1, 1, 0), FALSE, col="grey80")
title("Closed X-splines", outer=TRUE)

par(op)

x <- sort(stats::rnorm(5))
y <- sort(stats::rnorm(5))
plot(x, y, pch=19)
res <- xspline(x, y, 1, draw=FALSE)
lines(res)
the end points may be very close together,
so use last few for direction
nr <- length(res$x)
arrows(res$x[1], res$y[1], res$x[4], res$y[4], code=1, length=0.1)
arrows(res$x[nr-3], res$y[nr-3], res$x[nr], res$y[nr],

code = 2, length = 0.1)

780 xspline

Chapter 5

The grid package

grid-package The Grid Graphics Package

Description

A rewrite of the graphics layout capabilities, plus some support for interaction.

Details

This package contains a graphics system which supplements S-style graphics (see the graphics
package).

Further information is available in the following vignettes:

grid Introduction to grid (../doc/grid.pdf)
displaylist Display Lists in grid (../doc/displaylist.pdf)
frame Frames and packing grobs (../doc/frame.pdf)
grobs Working with grid grobs (../doc/grobs.pdf)
interactive Editing grid Graphics (../doc/interactive.pdf)
locndimn Locations versus Dimensions (../doc/locndimn.pdf)
moveline Demonstrating move-to and line-to (../doc/moveline.pdf)
nonfinite How grid responds to non-finite values (../doc/nonfinite.pdf)
plotexample Writing grid Code (../doc/plotexample.pdf)
rotated Rotated Viewports (../doc/rotated.pdf)
saveload Persistent representations (../doc/saveload.pdf)
sharing Modifying multiple grobs simultaneously (../doc/sharing.pdf)
viewports Working with grid viewports (../doc/viewports.pdf)

For a complete list of functions with individual help pages, use library(help="grid").

Author(s)

Paul Murrell 〈paul@stat.auckland.ac.nz〉

Maintainer: R Core Team 〈R-core@r-project.org〉

781

../doc/grid.pdf
../doc/displaylist.pdf
../doc/frame.pdf
../doc/grobs.pdf
../doc/interactive.pdf
../doc/locndimn.pdf
../doc/moveline.pdf
../doc/nonfinite.pdf
../doc/plotexample.pdf
../doc/rotated.pdf
../doc/saveload.pdf
../doc/sharing.pdf
../doc/viewports.pdf

782 absolute.size

References

Murrell, P. (2005) R Graphics. Chapman & Hall/CRC Press.

absolute.size Absolute Size of a Grob

Description

This function converts a unit object into absolute units. Absolute units are unaffected, but non-
absolute units are converted into "null" units.

Usage

absolute.size(unit)

Arguments

unit An object of class "unit".

Details

Absolute units are things like "inches", "cm", and "lines". Non-absolute units are "npc"
and "native".

This function is designed to be used in widthDetails and heightDetails methods.

Value

An object of class "unit".

Author(s)

Paul Murrell

See Also

widthDetails and heightDetails methods.

arrow 783

arrow Describe arrows to add to a line.

Description

Produces a description of what arrows to add to a line. The result can be passed to a function that
draws a line, e.g., grid.lines.

Usage

arrow(angle = 30, length = unit(0.25, "inches"),
ends = "last", type = "open")

Arguments

angle The angle of the arrow head in degrees (smaller numbers produce narrower,
pointier arrows). Essentially describes the width of the arrow head.

length A unit specifying the length of the arrow head (from tip to base).

ends One of "last", "first", or "both", indicating which ends of the line to
draw arrow heads.

type One of "open" or "closed" indicating whether the arrow head should be a
closed triangle.

Examples

arrow()

convertNative Convert a Unit Object to Native units

Description

This function is deprecated in grid version 0.8 and will be made defunct in grid version 1.9

You should use the convertUnit() function or one of its close allies instead.

This function returns a numeric vector containing the specified x or y locations or dimensions,
converted to "user" or "data" units, relative to the current viewport.

Usage

convertNative(unit, dimension="x", type="location")

Arguments

unit A unit object.

dimension Either "x" or "y".

type Either "location" or "dimension".

784 dataViewport

Value

A numeric vector.

WARNING

If you draw objects based on output from these conversion functions, then resize your device, the
objects will be drawn incorrectly – the base R display list will not recalculate these conversions.
This means that you can only rely on the results of these calculations if the size of your device is
fixed.

Author(s)

Paul Murrell

See Also

grid.convert, unit

Examples

grid.newpage()
pushViewport(viewport(width=unit(.5, "npc"),

height=unit(.5, "npc")))
grid.rect()
w <- convertNative(unit(1, "inches"))
h <- convertNative(unit(1, "inches"), "y")
This rectangle starts off life as 1in square, but if you
resize the device it will no longer be 1in square
grid.rect(width=unit(w, "native"), height=unit(h, "native"),

gp=gpar(col="red"))
popViewport(1)

How to use grid.convert(), etc instead
convertNative(unit(1, "inches")) ==
convertX(unit(1, "inches"), "native", valueOnly=TRUE)

convertNative(unit(1, "inches"), "y", "dimension") ==
convertHeight(unit(1, "inches"), "native", valueOnly=TRUE)

dataViewport Create a Viewport with Scales based on Data

Description

This is a convenience function for producing a viewport with x- and/or y-scales based on numeric
values passed to the function.

Usage

dataViewport(xData = NULL, yData = NULL, xscale = NULL,
yscale = NULL, extension = 0.05, ...)

drawDetails 785

Arguments

xData A numeric vector of data.

yData A numeric vector of data.

xscale A numeric vector (length 2).

yscale A numeric vector (length 2).

extension A numeric. If length greater than 1, then first value is used to extend the xscale
and second value is used to extend the yscale.

... All other arguments will be passed to a call to the viewport() function.

Details

If xscale is not specified then the values in x are used to generate an x-scale based on the range
of x, extended by the proportion specified in extension. Similarly for the y-scale.

Value

A grid viewport object.

Author(s)

Paul Murrell

See Also

viewport and plotViewport.

drawDetails Customising grid Drawing

Description

These generic hook functions are called whenever a grid grob is drawn. They provide an opportunity
for customising the drawing of a new class derived from grob (or gTree).

Usage

drawDetails(x, recording)
draw.details(x, recording)
preDrawDetails(x)
postDrawDetails(x)

Arguments

x A grid grob.

recording A logical value indicating whether a grob is being added to the display list or
redrawn from the display list.

786 editDetails

Details

These functions are called by the grid.draw methods for grobs and gTrees.

preDrawDetails is called first during the drawing of a grob. This is where any additional
viewports should be pushed (see, for example, grid:::preDrawDetails.frame). Note that
the default behaviour for grobs is to push any viewports in the vp slot, and for gTrees is to also
push and up any viewports in the childrenvp slot so there is typically nothing to do here.

drawDetails is called next and is where any additional calculations and graphical output should
occur (see, for example, grid:::drawDetails.xaxis. Note that the default behaviour for
gTrees is to draw all grobs in the children slot so there is typically nothing to do here.

postDrawDetails is called last and should reverse anything done in preDrawDetails
(i.e., pop or up any viewports that were pushed; again, see, for example,
grid:::postDrawDetails.frame). Note that the default behaviour for grobs is to
pop any viewports that were pushed so there is typically nothing to do here.

Note that preDrawDetails and postDrawDetails are also called in the calculation of
"grobwidth" and "grobheight" units.

Value

None of these functions are expected to return a value.

Author(s)

Paul Murrell

See Also

grid.draw

editDetails Customising grid Editing

Description

This generic hook function is called whenever a grid grob is edited via grid.edit or editGrob.
This provides an opportunity for customising the editing of a new class derived from grob (or gTree).

Usage

editDetails(x, specs)

Arguments

x A grid grob.

specs A list of named elements. The names indicate the grob slots to modify and the
values are the new values for the slots.

gEdit 787

Details

This function is called by grid.edit and editGrob. A method should be written for classes
derived from grob or gTree if a change in a slot has an effect on other slots in the grob or children
of a gTree (e.g., see grid:::editDetails.xaxis).

Note that the slot already has the new value.

Value

The function MUST return the modified grob.

Author(s)

Paul Murrell

See Also

grid.edit

gEdit Create and Apply Edit Objects

Description

The functions gEdit and gEditList create objects representing an edit operation (essentially a
list of arguments to editGrob).

The functions applyEdit and applyEdits apply one or more edit operations to a graphical
object.

These functions are most useful for developers creating new graphical functions and objects.

Usage

gEdit(...)
gEditList(...)
applyEdit(x, edit)
applyEdits(x, edits)

Arguments

... one or more arguments to the editGrob function (for gEdit) or one or more
"gEdit" objects (for gEditList).

x a grob (grid graphical object).

edit a "gEdit" object.

edits either a "gEdit" object or a "gEditList" object.

Value

gEdit returns an object of class "gEdit".

gEditList returns an object of class "gEditList".

applyEdit and applyEditList return the modified grob.

788 gpar

Author(s)

Paul Murrell

See Also

grob editGrob

Examples

grid.rect(gp=gpar(col="red"))
same thing, but more verbose
grid.draw(applyEdit(rectGrob(), gEdit(gp=gpar(col="red"))))

getNames List the names of grobs on the display list

Description

Returns a character vector containing the names of all top-level grobs on the display list.

Usage

getNames()

Value

A character vector.

Author(s)

Paul Murrell

Examples

grid.grill()
getNames()

gpar Handling Grid Graphical Parameters

Description

gpar() should be used to create a set of graphical parameter settings. It returns an object of class
"gpar". This is basically a list of name-value pairs.

get.gpar() can be used to query the current graphical parameter settings.

Usage

gpar(...)
get.gpar(names = NULL)

gpar 789

Arguments

... Any number of named arguments.

names A character vector of valid graphical parameter names.

Details

All grid viewports and (predefined) graphical objects have a slot called gp, which contains a
"gpar" object. When a viewport is pushed onto the viewport stack and when a graphical ob-
ject is drawn, the settings in the "gpar" object are enforced. In this way, the graphical output is
modified by the gp settings until the graphical object has finished drawing, or until the viewport is
popped off the viewport stack, or until some other viewport or graphical object is pushed or begins
drawing.

Valid parameter names are:

col Colour for lines and borders.
fill Colour for filling rectangles, polygons, ...
alpha Alpha channel for transparency
lty Line type
lwd Line width
lex Multiplier applied to line width
lineend Line end style (round, butt, square)
linejoin Line join style (round, mitre, bevel)
linemitre Line mitre limit (number greater than 1)
fontsize The size of text (in points)
cex Multiplier applied to fontsize
fontfamily The font family
fontface The font face (bold, italic, ...)
lineheight The height of a line as a multiple of the size of text
font Font face (alias for fontface; for backward compatibility)

Colours can be specified in one of the forms returned by rgb, as a name (see colors) or as a pos-
itive integer index into the current palette (with zero or negative values being taken as transparent).

The alpha setting is combined with the alpha channel for individual colours by multiplying (with
both alpha settings normalised to the range 0 to 1).

The size of text is fontsize*cex. The size of a line is fontsize*cex*lineheight.

The cex setting is cumulative; if a viewport is pushed with a cex of 0.5 then another viewport is
pushed with a cex of 0.5, the effective cex is 0.25.

The alpha and lex settings are also cumulative.

Changes to the fontfamily may be ignored by some devices, but is supported by PostScript,
PDF, X11, Windows, and Quartz. The fontfamily may be used to specify one of the Hershey
Font families (e.g., HersheySerif) and this specification will be honoured on all devices.

The specification of fontface can be an integer or a string. If an integer, then it follows the R
base graphics standard: 1 = plain, 2 = bold, 3 = italic, 4 = bold italic. If a string, then valid values
are: "plain", "bold", "italic", "oblique", and "bold.italic". For the special case
of the HersheySerif font family, "cyrillic", "cyrillic.oblique", and "EUC" are also
available.

Specifying the value NULL for a parameter is the same as not specifying any value for that param-
eter, except for col and fill, where NULL indicates not to draw a border or not to fill an area
(respectively).

790 gPath

All parameter values can be vectors of multiple values. (This will not always make sense – for
example, viewports will only take notice of the first parameter value.)

The gamma parameter is defunct since R 2.7.0.

get.gpar() returns all current graphical parameter settings.

Value

An object of class "gpar".

Author(s)

Paul Murrell

See Also

Hershey.

Examples

gp <- get.gpar()
utils::str(gp)
These *do* nothing but produce a "gpar" object:
gpar(col = "red")
gpar(col = "blue", lty = "solid", lwd = 3, fontsize = 16)
get.gpar(c("col", "lty"))
grid.newpage()
vp <- viewport(w = .8, h = .8, gp = gpar(col="blue"))
grid.draw(gTree(children=gList(rectGrob(gp = gpar(col="red")),

textGrob(paste("The rect is its own colour (red)",
"but this text is the colour",
"set by the gTree (green)",
sep = "\n"))),

gp = gpar(col="green"), vp = vp))
grid.text("This text is the colour set by the viewport (blue)",

y = 1, just = c("center", "bottom"),
gp = gpar(fontsize=20), vp = vp)

grid.newpage()
example with multiple values for a parameter
pushViewport(viewport())
grid.points(1:10/11, 1:10/11, gp = gpar(col=1:10))
popViewport()

gPath Concatenate Grob Names

Description

This function can be used to generate a grob path for use in grid.edit and friends.

A grob path is a list of nested grob names.

Usage

gPath(...)

Grid 791

Arguments

... Character values which are grob names.

Details

Grob names must only be unique amongst grobs which share the same parent in a gTree.

This function can be used to generate a specification for a grob that includes the grob’s parent’s
name (and the name of its parent and so on).

For interactive use, it is possible to directly specify a path, but it is strongly recommended that this
function is used otherwise in case the path separator is changed in future versions of grid.

Value

A gPath object.

See Also

grob, editGrob, addGrob, removeGrob, getGrob, setGrob

Examples

gPath("g1", "g2")

Grid Grid Graphics

Description

General information about the grid graphics package.

Details

Grid graphics provides an alternative to the standard R graphics. The user is able to define arbitrary
rectangular regions (called viewports) on the graphics device and define a number of coordinate sys-
tems for each region. Drawing can be specified to occur in any viewport using any of the available
coordinate systems.

Grid graphics and standard R graphics do not mix!

Type library(help = grid) to see a list of (public) Grid graphics functions.

Author(s)

Paul Murrell

See Also

viewport, grid.layout, and unit.

792 Grid Viewports

Examples

Diagram of a simple layout
grid.show.layout(grid.layout(4,2,

heights=unit(rep(1, 4),
c("lines", "lines", "lines", "null")),

widths=unit(c(1, 1), "inches")))
Diagram of a sample viewport
grid.show.viewport(viewport(x=0.6, y=0.6,

w=unit(1, "inches"), h=unit(1, "inches")))
A flash plotting example
grid.multipanel(vp=viewport(0.5, 0.5, 0.8, 0.8))

Grid Viewports Create a Grid Viewport

Description

These functions create viewports, which describe rectangular regions on a graphics device and
define a number of coordinate systems within those regions.

Usage

viewport(x = unit(0.5, "npc"), y = unit(0.5, "npc"),
width = unit(1, "npc"), height = unit(1, "npc"),
default.units = "npc", just = "centre",
gp = gpar(), clip = "inherit",
xscale = c(0, 1), yscale = c(0, 1),
angle = 0,
layout = NULL,
layout.pos.row = NULL, layout.pos.col = NULL,
name = NULL)

vpList(...)
vpStack(...)
vpTree(parent, children)

Arguments

x A numeric vector or unit object specifying x-location.

y A numeric vector or unit object specifying y-location.

width A numeric vector or unit object specifying width.

height A numeric vector or unit object specifying height.
default.units

A string indicating the default units to use if x, y, width, or height are only
given as numeric vectors.

just A string or numeric vector specifying the justification of the viewport relative
to its (x, y) location. If there are two values, the first value specifies horizontal
justification and the second value specifies vertical justification. Possible string
values are: "left", "right", "centre", "center", "bottom", and
"top". For numeric values, 0 means left alignment and 1 means right align-
ment.

Grid Viewports 793

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

clip One of "on", "inherit", or "off", indicating whether to clip to the ex-
tent of this viewport, inherit the clipping region from the parent viewport, or
turn clipping off altogether. For back-compatibility, a logical value of TRUE
corresponds to "on" and FALSE corresponds to "inherit".

xscale A numeric vector of length two indicating the minimum and maximum on the
x-scale.

yscale A numeric vector of length two indicating the minimum and maximum on the
y-scale.

angle A numeric value indicating the angle of rotation of the viewport. Positive values
indicate the amount of rotation, in degrees, anticlockwise from the positive x-
axis.

layout A Grid layout object which splits the viewport into subregions.
layout.pos.row

A numeric vector giving the rows occupied by this viewport in its parent’s lay-
out.

layout.pos.col
A numeric vector giving the columns occupied by this viewport in its parent’s
layout.

name A character value to uniquely identify the viewport once it has been pushed onto
the viewport tree.

... Any number of grid viewport objects.

parent A grid viewport object.

children A vpList object.

Details

The location and size of a viewport are relative to the coordinate systems defined by the view-
port’s parent (either a graphical device or another viewport). The location and size can be specified
in a very flexible way by specifying them with unit objects. When specifying the location of a
viewport, specifying both layout.pos.row and layout.pos.col as NULL indicates that
the viewport ignores its parent’s layout and specifies its own location and size (via its locn). If
only one of layout.pos.row and layout.pos.col is NULL, this means occupy ALL of the
appropriate row(s)/column(s). For example, layout.pos.row = 1 and layout.pos.col
= NULL means occupy all of row 1. Specifying non-NULL values for both layout.pos.row
and layout.pos.col means occupy the intersection of the appropriate rows and columns. If a
vector of length two is specified for layout.pos.row or layout.pos.col, this indicates
a range of rows or columns to occupy. For example, layout.pos.row = c(1, 3) and
layout.pos.col = c(2, 4) means occupy cells in the intersection of rows 1, 2, and 3,
and columns, 2, 3, and 4.

Clipping obeys only the most recent viewport clip setting. For example, if you clip to viewport1,
then clip to viewport2, the clipping region is determined wholly by viewport2, the size and shape
of viewport1 is irrelevant (until viewport2 is popped of course).

If a viewport is rotated (because of its own angle setting or because it is within another viewport
which is rotated) then the clip flag is ignored.

Viewport names need not be unique. When pushed, viewports sharing the same parent must have
unique names, which means that if you push a viewport with the same name as an existing viewport,
the existing viewport will be replaced in the viewport tree. A viewport name can be any string, but

794 Grid Viewports

grid uses the reserved name "ROOT" for the top-level viewport. Also, when specifying a viewport
name in downViewport and seekViewport, it is possible to provide a viewport path, which
consists of several names concatenated using the separator (currently ::). Consequently, it is not
advisable to use this separator in viewport names.

The viewports in a vpList are pushed in parallel. The viewports in a vpStack are pushed
in series. When a vpTree is pushed, the parent is pushed first, then the children are pushed in
parallel.

Value

An R object of class viewport.

Author(s)

Paul Murrell

See Also

Grid, pushViewport, popViewport, downViewport, seekViewport, upViewport,
unit, grid.layout, grid.show.layout.

Examples

Diagram of a sample viewport
grid.show.viewport(viewport(x=0.6, y=0.6,

w=unit(1, "inches"), h=unit(1, "inches")))
Demonstrate viewport clipping
clip.demo <- function(i, j, clip1, clip2) {

pushViewport(viewport(layout.pos.col=i,
layout.pos.row=j))

pushViewport(viewport(width=0.6, height=0.6, clip=clip1))
grid.rect(gp=gpar(fill="white"))
grid.circle(r=0.55, gp=gpar(col="red", fill="pink"))
popViewport()
pushViewport(viewport(width=0.6, height=0.6, clip=clip2))
grid.polygon(x=c(0.5, 1.1, 0.6, 1.1, 0.5, -0.1, 0.4, -0.1),

y=c(0.6, 1.1, 0.5, -0.1, 0.4, -0.1, 0.5, 1.1),
gp=gpar(col="blue", fill="light blue"))

popViewport(2)
}

grid.newpage()
grid.rect(gp=gpar(fill="grey"))
pushViewport(viewport(layout=grid.layout(2, 2)))
clip.demo(1, 1, FALSE, FALSE)
clip.demo(1, 2, TRUE, FALSE)
clip.demo(2, 1, FALSE, TRUE)
clip.demo(2, 2, TRUE, TRUE)
popViewport()
Demonstrate turning clipping off
grid.newpage()
pushViewport(viewport(w=.5, h=.5, clip="on"))
grid.rect()
grid.circle(r=.6, gp=gpar(lwd=10))
pushViewport(viewport(clip="inherit"))
grid.circle(r=.6, gp=gpar(lwd=5, col="grey"))

grid.add 795

pushViewport(viewport(clip="off"))
grid.circle(r=.6)
popViewport(3)
Demonstrate vpList, vpStack, and vpTree
grid.newpage()
tree <- vpTree(viewport(w=0.8, h=0.8, name="A"),

vpList(vpStack(viewport(x=0.1, y=0.1, w=0.5, h=0.5,
just=c("left", "bottom"), name="B"),

viewport(x=0.1, y=0.1, w=0.5, h=0.5,
just=c("left", "bottom"), name="C"),

viewport(x=0.1, y=0.1, w=0.5, h=0.5,
just=c("left", "bottom"), name="D")),

viewport(x=0.5, w=0.4, h=0.9,
just="left", name="E")))

pushViewport(tree)
for (i in LETTERS[1:5]) {
seekViewport(i)
grid.rect()
grid.text(current.vpTree(FALSE),

x=unit(1, "mm"), y=unit(1, "npc") - unit(1, "mm"),
just=c("left", "top"),
gp=gpar(fontsize=8))

}

grid.add Add a Grid Graphical Object

Description

Add a grob to a gTree or a descendant of a gTree.

Usage

grid.add(gPath, child, strict = FALSE, grep = FALSE,
global = FALSE, allDevices = FALSE, redraw = TRUE)

addGrob(gTree, child, gPath = NULL, strict = FALSE, grep = FALSE,
global = FALSE)

setChildren(x, children)

Arguments

gTree, x A gTree object.
gPath A gPath object. For grid.add this specifies a gTree on the display list. For

addGrob this specifies a descendant of the specified gTree.
child A grob object.
children A gList object.
strict A boolean indicating whether the gPath must be matched exactly.
grep A boolean indicating whether the gPath should be treated as a regular ex-

pression. Values are recycled across elements of the gPath (e.g., c(TRUE,
FALSE) means that every odd element of the gPath will be treated as a regu-
lar expression).

796 grid.arrows

global A boolean indicating whether the function should affect just the first match of
the gPath, or whether all matches should be affected.

allDevices A boolean indicating whether all open devices should be searched for matches,
or just the current device. NOT YET IMPLEMENTED.

redraw A logical value to indicate whether to redraw the grob.

Details

addGrob copies the specified grob and returns a modified grob.

grid.add destructively modifies a grob on the display list. If redraw is TRUE it then redraws
everything to reflect the change.

setChildren is a basic function for setting all children of a gTree at once (instead of repeated
calls to addGrob).

Value

addGrob returns a grob object; grid.add returns NULL.

Author(s)

Paul Murrell

See Also

grob, getGrob, addGrob, removeGrob.

grid.arrows Draw Arrows

Description

Functions to create and draw arrows at either end of a line, or at either end of a line.to, lines, or
segments grob.

These functions have been deprecated in favour of arrow arguments to the line-related primitives.

Usage

grid.arrows(x = c(0.25, 0.75), y = 0.5, default.units = "npc",
grob = NULL,
angle = 30, length = unit(0.25, "inches"),
ends = "last", type = "open", name = NULL,
gp = gpar(), draw = TRUE, vp = NULL)

arrowsGrob(x = c(0.25, 0.75), y = 0.5, default.units = "npc",
grob = NULL,
angle = 30, length = unit(0.25, "inches"),
ends = "last", type = "open", name = NULL,
gp = gpar(), vp = NULL)

grid.arrows 797

Arguments

x A numeric vector or unit object specifying x-values.

y A numeric vector or unit object specifying y-values.
default.units

A string indicating the default units to use if x or y are only given as numeric
vectors.

grob A grob to add arrows to; currently can only be a line.to, lines, or segments grob.

angle A numeric specifying (half) the width of the arrow head (in degrees).

length A unit object specifying the length of the arrow head.

ends One of "first", "last", or "both", indicating which end of the line to
add arrow heads.

type Either "open" or "closed" to indicate the type of arrow head.

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

Both functions create an arrows grob (a graphical object describing arrows), but only
grid.arrows() draws the arrows (and then only if draw is TRUE).

If the grob argument is specified, this overrides any x and/or y arguments.

Value

An arrows grob. grid.arrows() returns the value invisibly.

Author(s)

Paul Murrell

See Also

Grid, viewport, grid.line.to, grid.lines, grid.segments

Examples

Not run:
to avoid lots of deprecation warnings
pushViewport(viewport(layout=grid.layout(2, 4)))
pushViewport(viewport(layout.pos.col=1,

layout.pos.row=1))
grid.rect(gp=gpar(col="grey"))
grid.arrows()
popViewport()
pushViewport(viewport(layout.pos.col=2,

layout.pos.row=1))
grid.rect(gp=gpar(col="grey"))
grid.arrows(angle=15, type="closed")

798 grid.arrows

popViewport()
pushViewport(viewport(layout.pos.col=3,

layout.pos.row=1))
grid.rect(gp=gpar(col="grey"))
grid.arrows(angle=5, length=unit(0.1, "npc"),

type="closed", gp=gpar(fill="white"))
popViewport()
pushViewport(viewport(layout.pos.col=4,

layout.pos.row=1))
grid.rect(gp=gpar(col="grey"))
grid.arrows(x=unit(0:80/100, "npc"),

y=unit(1 - (0:80/100)^2, "npc"))
popViewport()
pushViewport(viewport(layout.pos.col=1,

layout.pos.row=2))
grid.rect(gp=gpar(col="grey"))
grid.arrows(ends="both")
popViewport()
pushViewport(viewport(layout.pos.col=2,

layout.pos.row=2))
grid.rect(gp=gpar(col="grey"))
Recycling arguments
grid.arrows(x=unit(1:10/11, "npc"), y=unit(1:3/4, "npc"))
popViewport()
pushViewport(viewport(layout.pos.col=3,

layout.pos.row=2))
grid.rect(gp=gpar(col="grey"))
Drawing arrows on a segments grob
gs <- segmentsGrob(x0=unit(1:4/5, "npc"),

x1=unit(1:4/5, "npc"))
grid.arrows(grob=gs, length=unit(0.1, "npc"),

type="closed", gp=gpar(fill="white"))
popViewport()
pushViewport(viewport(layout.pos.col=4,

layout.pos.row=2))
grid.rect(gp=gpar(col="grey"))
Arrows on a lines grob
Name these because going to grid.edit them later
gl <- linesGrob(name="curve", x=unit(0:80/100, "npc"),

y=unit((0:80/100)^2, "npc"))
grid.arrows(name="arrowOnLine", grob=gl, angle=15, type="closed",

gp=gpar(fill="black"))
popViewport()
pushViewport(viewport(layout.pos.col=1,

layout.pos.row=2))
grid.move.to(x=0.5, y=0.8)
popViewport()
pushViewport(viewport(layout.pos.col=4,

layout.pos.row=1))
Arrows on a line.to grob
glt <- lineToGrob(x=0.5, y=0.2, gp=gpar(lwd=3))
grid.arrows(grob=glt, ends="first", gp=gpar(lwd=3))
popViewport(2)
grid.edit(gPath("arrowOnLine", "curve"), y=unit((0:80/100)^3, "npc"))
End(Not run)

grid.circle 799

grid.circle Draw a Circle

Description

Functions to create and draw a circle.

Usage

grid.circle(x=0.5, y=0.5, r=0.5, default.units="npc", name=NULL,
gp=gpar(), draw=TRUE, vp=NULL)

circleGrob(x=0.5, y=0.5, r=0.5, default.units="npc", name=NULL,
gp=gpar(), vp=NULL)

Arguments

x A numeric vector or unit object specifying x-locations.

y A numeric vector or unit object specifying y-locations.

r A numeric vector or unit object specifying radii.
default.units

A string indicating the default units to use if x, y, width, or height are only
given as numeric vectors.

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

Both functions create a circle grob (a graphical object describing a circle), but only
grid.circle() draws the circle (and then only if draw is TRUE).

The radius may be given in any units; if the units are relative (e.g., "npc" or "native") then
the radius will be different depending on whether it is interpreted as a width or as a height. In such
cases, the smaller of these two values will be the result. To see the effect, type grid.circle()
and adjust the size of the window.

Value

A circle grob. grid.circle() returns the value invisibly.

Warning

Negative values for the radius are silently converted to their absolute value.

Author(s)

Paul Murrell

800 grid.clip

See Also

Grid, viewport

grid.clip Set the Clipping Region

Description

These functions set the clipping region within the current viewport without altering the current
coordinate system.

Usage

grid.clip(...)
clipGrob(x = unit(0.5, "npc"), y = unit(0.5, "npc"),

width = unit(1, "npc"), height = unit(1, "npc"),
just = "centre", hjust = NULL, vjust = NULL,
default.units = "npc", name = NULL, vp = NULL)

Arguments

x A numeric vector or unit object specifying x-location.

y A numeric vector or unit object specifying y-location.

width A numeric vector or unit object specifying width.

height A numeric vector or unit object specifying height.

just The justification of the clip rectangle relative to its (x, y) location. If there are
two values, the first value specifes horizontal justification and the second value
specifies vertical justification. Possible string values are: "left", "right",
"centre", "center", "bottom", and "top". For numeric values, 0
means left alignment and 1 means right alignment.

hjust A numeric vector specifying horizontal justification. If specified, overrides the
just setting.

vjust A numeric vector specifying vertical justification. If specified, overrides the
just setting.

default.units
A string indicating the default units to use if x, y, width, or height are only
given as numeric vectors.

name A character identifier.

vp A Grid viewport object (or NULL).

... Arguments passed to clipGrob.

Details

Both functions create a clip rectangle (a graphical object describing a clip rectangle), but only
grid.clip enforces the clipping.

Pushing or popping a viewport always overrides the clip region set by a clip grob, regardless of
whether that viewport explicitly enforces a clipping region.

grid.collection 801

Value

clipGrob returns a clip grob.

Author(s)

Paul Murrell

See Also

Grid, viewport

Examples

draw across entire viewport, but clipped
grid.clip(x = 0.3, width = 0.1)
grid.lines(gp=gpar(col="green", lwd=5))
draw across entire viewport, but clipped (in different place)
grid.clip(x = 0.7, width = 0.1)
grid.lines(gp=gpar(col="red", lwd=5))
Viewport sets new clip region
pushViewport(viewport(width=0.5, height=0.5, clip=TRUE))
grid.lines(gp=gpar(col="grey", lwd=3))
Return to original viewport; get
clip region from previous grid.clip()
(NOT from previous viewport clip region)
popViewport()
grid.lines(gp=gpar(col="black"))

grid.collection Create a Coherent Group of Grid Graphical Objects

Description

This function is deprecated; please use gTree.

This function creates a graphical object which contains several other graphical objects. When it is
drawn, it draws all of its children.

It may be convenient to name the elements of the collection.

Usage

grid.collection(..., gp=gpar(), draw=TRUE, vp=NULL)

Arguments

... Zero or more objects of class "grob".

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value to indicate whether to produce graphical output.

vp A Grid viewport object (or NULL).

802 grid.convert

Value

A collection grob.

Author(s)

Paul Murrell

See Also

grid.grob.

grid.convert Convert Between Different grid Coordinate Systems

Description

These functions take a unit object and convert it to an equivalent unit object in a different coordinate
system.

Usage

convertX(x, unitTo, valueOnly = FALSE)
convertY(x, unitTo, valueOnly = FALSE)
convertWidth(x, unitTo, valueOnly = FALSE)
convertHeight(x, unitTo, valueOnly = FALSE)
convertUnit(x, unitTo,

axisFrom = "x", typeFrom = "location",
axisTo = axisFrom, typeTo = typeFrom,
valueOnly = FALSE)

grid.convertX(x, unitTo, valueOnly = FALSE)
grid.convertY(x, unitTo, valueOnly = FALSE)
grid.convertWidth(x, unitTo, valueOnly = FALSE)
grid.convertHeight(x, unitTo, valueOnly = FALSE)
grid.convert(x, unitTo,

axisFrom = "x", typeFrom = "location",
axisTo = axisFrom, typeTo = typeFrom,
valueOnly = FALSE)

Arguments

x A unit object.
unitTo The coordinate system to convert the unit to. See the unit function for valid

coordinate systems.
axisFrom Either "x" or "y" to indicate whether the unit object represents a value in the

x- or y-direction.
typeFrom Either "location" or "dimension" to indicate whether the unit object

represents a location or a length.
axisTo Same as axisFrom, but applies to the unit object that is to be created.
typeTo Same as typeFrom, but applies to the unit object that is to be created.
valueOnly A logical indicating. If TRUE then the function does not return a unit object, but

rather only the converted numeric values.

grid.convert 803

Details

The convertUnit function allows for general-purpose conversions. The other four functions are
just more convenient front-ends to it for the most common conversions.

The conversions occur within the current viewport.

It is not currently possible to convert to all valid coordinate systems (e.g., "strwidth" or "grob-
width"). I’m not sure if all of these are impossible, they just seem implausible at this stage.

In normal usage of grid, these functions should not be necessary. If you want to express a location
or dimension in inches rather than user coordinates then you should simply do something like
unit(1, "inches") rather than something like unit(0.134, "native").

In some cases, however, it is necessary for the user to perform calculations on a unit value and this
function becomes necessary. In such cases, please take note of the warning below.

The grid.* versions are just previous incarnations which have been deprecated.

Value

A unit object in the specified coordinate system (unless valueOnly is TRUE in which case the
returned value is a numeric).

Warning

The conversion is only valid for the current device size. If the device is resized then at least
some conversions will become invalid. For example, suppose that I create a unit object as fol-
lows: oneinch <- convertUnit(unit(1, "inches"), "native". Now if I resize
the device, the unit object in oneinch no longer corresponds to a physical length of 1 inch.

Author(s)

Paul Murrell

See Also

unit

Examples

A tautology
convertX(unit(1, "inches"), "inches")
The physical units
convertX(unit(2.54, "cm"), "inches")
convertX(unit(25.4, "mm"), "inches")
convertX(unit(72.27, "points"), "inches")
convertX(unit(1/12*72.27, "picas"), "inches")
convertX(unit(72, "bigpts"), "inches")
convertX(unit(1157/1238*72.27, "dida"), "inches")
convertX(unit(1/12*1157/1238*72.27, "cicero"), "inches")
convertX(unit(65536*72.27, "scaledpts"), "inches")
convertX(unit(1/2.54, "inches"), "cm")
convertX(unit(1/25.4, "inches"), "mm")
convertX(unit(1/72.27, "inches"), "points")
convertX(unit(1/(1/12*72.27), "inches"), "picas")
convertX(unit(1/72, "inches"), "bigpts")
convertX(unit(1/(1157/1238*72.27), "inches"), "dida")
convertX(unit(1/(1/12*1157/1238*72.27), "inches"), "cicero")

804 grid.copy

convertX(unit(1/(65536*72.27), "inches"), "scaledpts")

pushViewport(viewport(width=unit(1, "inches"),
height=unit(2, "inches"),
xscale=c(0, 1),
yscale=c(1, 3)))

Location versus dimension
convertY(unit(2, "native"), "inches")
convertHeight(unit(2, "native"), "inches")
From "x" to "y" (the conversion is via "inches")
convertUnit(unit(1, "native"), "native",

axisFrom="x", axisTo="y")
Convert several values at once
convertX(unit(c(0.5, 2.54), c("npc", "cm")),

c("inches", "native"))
popViewport()
Convert a complex unit
convertX(unit(1, "strwidth", "Hello"), "native")

grid.copy Make a Copy of a Grid Graphical Object

Description

This function is redundant and will disappear in future versions.

Usage

grid.copy(grob)

Arguments

grob A grob object.

Value

A copy of the grob object.

Author(s)

Paul Murrell

See Also

grid.grob.

grid.curve 805

grid.curve Draw a Curve Between Locations

Description

These functions create and draw a curve from one location to another.

Usage

grid.curve(...)
curveGrob(x1, y1, x2, y2, default.units = "npc",

curvature = 1, angle = 90, ncp = 1, shape = 0.5,
square = TRUE, squareShape = 1,
inflect = FALSE, arrow = NULL, open = TRUE,
debug = FALSE,
name = NULL, gp = gpar(), vp = NULL)

arcCurvature(theta)

Arguments

x1 A numeric vector or unit object specifying the x-location of the start point.

y1 A numeric vector or unit object specifying the y-location of the start point.

x2 A numeric vector or unit object specifying the x-location of the end point.

y2 A numeric vector or unit object specifying the y-location of the end point.
default.units

A string indicating the default units to use if x1, y1, x2 or y2 are only given as
numeric values.

curvature A numeric value giving the amount of curvature. Negative values produce left-
hand curves, positive values produce right-hand curves, and zero produces a
straight line.

angle A numeric value between 0 and 180, giving an amount to skew the control points
of the curve. Values less than 90 skew the curve towards the start point and
values greater than 90 skew the curve towards the end point.

ncp The number of control points used to draw the curve. More control points creates
a smoother curve.

shape A numeric vector of values between -1 and 1, which control the shape of the
curve relative to its control points. See grid.xspline for more details.

square A logical value that controls whether control points for the curve are created
city-block fashion or obliquely. When ncp is 1 and angle is 90, this is typ-
ically TRUE, otherwise this should probably be set to FALSE (see Examples
below).

squareShape A shape value to control the behaviour of the curve relative to any additional
control point that is inserted if square is TRUE.

inflect A logical value specifying whether the curve should be cut in half and inverted
(see Examples below).

arrow A list describing arrow heads to place at either end of the curve, as produced by
the arrow function.

806 grid.curve

open A logical value indicating whether to close the curve (connect the start and end
points).

debug A logical value indicating whether debugging information should be drawn.

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

... Arguments to be passed to curveGrob.

theta An angle (in degrees).

Details

Both functions create a curve grob (a graphical object describing an curve), but only grid.curve
draws the curve.

The arcCurvature function can be used to calculate a curvature such that control points are
generated on an arc corresponding to angle theta. This is typically used in conjunction with a
large ncp to produce a curve corresponding to the desired arc.

Value

A grob object.

See Also

Grid, viewport, grid.xspline, arrow

Examples

curveTest <- function(i, j, ...) {
pushViewport(viewport(layout.pos.col=j, layout.pos.row=i))
do.call("grid.curve", c(list(x1=.25, y1=.25, x2=.75, y2=.75),

if (is.null(...)) NULL else list(...)))
grid.text(sub("list", "", deparse(substitute(list(...)))),

y=unit(1, "npc"))
popViewport()

}
grid.newpage()
pushViewport(plotViewport(c(0, 0, 1, 0),

layout=grid.layout(2, 1, heights=c(2, 1))))
pushViewport(viewport(layout.pos.row=1,

layout=grid.layout(3, 3, respect=TRUE)))
curveTest(1, 1, NULL)
curveTest(1, 2, inflect=TRUE)
curveTest(1, 3, angle=135)
curveTest(2, 1, arrow=arrow())
curveTest(2, 2, ncp=8)
curveTest(2, 3, shape=0)
curveTest(3, 1, curvature=-1)
curveTest(3, 2, square=FALSE)
curveTest(3, 3, debug=TRUE)
popViewport()
pushViewport(viewport(layout.pos.row=2,

layout=grid.layout(3, 3)))

grid.display.list 807

curveTest(1, 1, NULL)
curveTest(1, 2, inflect=TRUE)
curveTest(1, 3, angle=135)
curveTest(2, 1, arrow=arrow())
curveTest(2, 2, ncp=8)
curveTest(2, 3, shape=0)
curveTest(3, 1, curvature=-1)
curveTest(3, 2, square=FALSE)
curveTest(3, 3, debug=TRUE)
popViewport(2)

grid.display.list Control the Grid Display List

Description

Turn the Grid display list on or off.

Usage

grid.display.list(on=TRUE)
engine.display.list(on=TRUE)

Arguments

on A logical value to indicate whether the display list should be on or off.

Details

All drawing and viewport-setting operations are (by default) recorded in the Grid display list. This
allows redrawing to occur following an editing operation.

This display list could get very large so it may be useful to turn it off in some cases; this will of
course disable redrawing.

All graphics output is also recorded on the main display list of the R graphics engine (by default).
This supports redrawing following a device resize and allows copying between devices.

Turning off this display list means that grid will redraw from its own display list for device resizes
and copies. This will be slower than using the graphics engine display list.

Value

None.

WARNING

Turning the display list on causes the display list to be erased!

Turning off both the grid display list and the graphics engine display list will result in no redrawing
whatsoever.

Author(s)

Paul Murrell

808 grid.draw

grid.draw Draw a grid grob

Description

Produces graphical output from a graphical object.

Usage

grid.draw(x, recording=TRUE)

Arguments

x An object of class "grob" or NULL.

recording A logical value to indicate whether the drawing operation should be recorded on
the Grid display list.

Details

This is a generic function with methods for grob and gTree objects.

The grob and gTree methods automatically push any viewports in a vp slot and automatically apply
any gpar settings in a gp slot. In addition, the gTree method pushes and ups any viewports in a
childrenvp slot and automatically calls grid.draw for any grobs in a children slot.

The methods for grob and gTree call the generic hook functions preDrawDetails,
drawDetails, and postDrawDetails to allow classes derived from grob or gTree to perform
additional viewport pushing/popping and produce additional output beyond the default behaviour
for grobs and gTrees.

Value

None.

Author(s)

Paul Murrell

See Also

grob.

Examples

grid.newpage()
Create a graphical object, but don't draw it
l <- linesGrob()
Draw it
grid.draw(l)

grid.edit 809

grid.edit Edit the Description of a Grid Graphical Object

Description

Changes the value of one of the slots of a grob and redraws the grob.

Usage

grid.edit(gPath, ..., strict = FALSE, grep = FALSE,
global = FALSE, allDevices = FALSE, redraw = TRUE)

grid.gedit(..., grep = TRUE, global = TRUE)

editGrob(grob, gPath = NULL, ..., strict = FALSE, grep = FALSE,
global = FALSE)

Arguments

grob A grob object.

... Zero or more named arguments specifying new slot values.

gPath A gPath object. For grid.edit this specifies a grob on the display list. For
editGrob this specifies a descendant of the specified grob.

strict A boolean indicating whether the gPath must be matched exactly.

grep A boolean indicating whether the gPath should be treated as a regular ex-
pression. Values are recycled across elements of the gPath (e.g., c(TRUE,
FALSE) means that every odd element of the gPath will be treated as a regu-
lar expression).

global A boolean indicating whether the function should affect just the first match of
the gPath, or whether all matches should be affected.

allDevices A boolean indicating whether all open devices should be searched for matches,
or just the current device. NOT YET IMPLEMENTED.

redraw A logical value to indicate whether to redraw the grob.

Details

editGrob copies the specified grob and returns a modified grob.

grid.edit destructively modifies a grob on the display list. If redraw is TRUE it then redraws
everything to reflect the change.

Both functions call editDetails to allow a grob to perform custom actions and
validDetails to check that the modified grob is still coherent.

grid.gedit (g for global) is just a convenience wrapper for grid.editwith different defaults.

Value

editGrob returns a grob object; grid.edit returns NULL.

810 grid.frame

Author(s)

Paul Murrell

See Also

grob, getGrob, addGrob, removeGrob.

Examples

grid.newpage()
grid.xaxis(name = "xa", vp = viewport(width=.5, height=.5))
grid.edit("xa", gp = gpar(col="red"))
won't work because no ticks (at is NULL)
try(grid.edit(gPath("xa", "ticks"), gp = gpar(col="green")))
grid.edit("xa", at = 1:4/5)
Now it should work
try(grid.edit(gPath("xa", "ticks"), gp = gpar(col="green")))

grid.frame Create a Frame for Packing Objects

Description

These functions, together with grid.pack, grid.place, packGrob, and placeGrob are
part of a GUI-builder-like interface to constructing graphical images. The idea is that you create a
frame with this function then use grid.pack or whatever to pack/place objects into the frame.

Usage

grid.frame(layout=NULL, name=NULL, gp=gpar(), vp=NULL, draw=TRUE)
frameGrob(layout=NULL, name=NULL, gp=gpar(), vp=NULL)

Arguments

layout A Grid layout, or NULL. This can be used to initialise the frame with a number
of rows and columns, with initial widths and heights, etc.

name A character identifier.

vp An object of class viewport, or NULL.

gp An object of class gpar; typically the output from a call to the function gpar.

draw Should the frame be drawn.

Details

Both functions create a frame grob (a graphical object describing a frame), but only
grid.frame() draws the frame (and then only if draw is TRUE). Nothing will actually be
drawn, but it will put the frame on the display list, which means that the output will be dynamically
updated as objects are packed into the frame. Possibly useful for debugging.

Value

A frame grob. grid.frame() returns the value invisibly.

grid.get 811

Author(s)

Paul Murrell

See Also

grid.pack

Examples

grid.newpage()
grid.frame(name="gf", draw=TRUE)
grid.pack("gf", rectGrob(gp=gpar(fill="grey")), width=unit(1, "null"))
grid.pack("gf", textGrob("hi there"), side="right")

grid.get Get a Grid Graphical Object

Description

Retrieve a grob or a descendant of a grob.

Usage

grid.get(gPath, strict = FALSE, grep = FALSE, global = FALSE,
allDevices = FALSE)

grid.gget <- function(..., grep = TRUE, global = TRUE)

getGrob(gTree, gPath, strict = FALSE, grep = FALSE, global = FALSE)

Arguments

gTree A gTree object.

gPath A gPath object. For grid.get this specifyies a grob on the display list. For
getGrob this specifies a descendant of the specified gTree.

strict A boolean indicating whether the gPath must be matched exactly.

grep A boolean indicating whether the gPath should be treated as a regular ex-
pression. Values are recycled across elements of the gPath (e.g., c(TRUE,
FALSE) means that every odd element of the gPath will be treated as a regu-
lar expression).

global A boolean indicating whether the function should affect just the first match of
the gPath, or whether all matches should be affected.

allDevices A boolean indicating whether all open devices should be searched for matches,
or just the current device. NOT YET IMPLEMENTED.

Details

grid.gget (g for global) is just a convenience wrapper for grid.get with different defaults.

812 grid.grab

Value

A grob object.

Author(s)

Paul Murrell

See Also

grob, getGrob, addGrob, removeGrob.

Examples

grid.xaxis(name="xa")
grid.get("xa")
grid.get(gPath("xa", "ticks"))

grid.draw(gTree(name="gt", children=gList(xaxisGrob(name="axis"))))
grid.get(gPath("gt", "axis", "ticks"))

grid.grab Grab the current grid output

Description

Creates a gTree object from the current grid display list or from a scene generated by user-specified
code.

Usage

grid.grab(warn = 2, wrap = FALSE, ...)
grid.grabExpr(expr, warn = 2, wrap = FALSE, ...)

Arguments

expr An expression to be evaluated. Typically, some calls to grid drawing functions.

warn An integer specifying the amount of warnings to emit. 0 means no warnings,
1 means warn when it is certain that the grab will not faithfully represent the
original scene. 2 means warn if there’s any possibility that the grab will not
faithfully represent the original scene.

wrap A logical indicating how the output should be captured. If TRUE, each non-grob
element on the display list is captured by wrapping it in a grob.

... arguments passed to gTree, for example, a name and/or class for the gTree that
is created.

grid.grill 813

Details

There are four ways to capture grid output as a gTree.

There are two functions for capturing output: use grid.grab to capture an existing drawing and
grid.grabExpr to capture the output from an expression (without drawing anything).

For each of these functions, the output can be captured in two ways. One way tries to be clever and
make a gTree with a childrenvp slot containing all viewports on the display list (including those that
are popped) and every grob on the display list as a child of the new gTree; each child has a vpPath
in the vp slot so that it is drawn in the appropriate viewport. In other words, the gTree contains all
elements on the display list, but in a slightly altered form.

The other way, wrap=TRUE, is to create a grob for every element on the display list (and make all
of those grobs children of the gTree).

The first approach creates a more compact and elegant gTree, which is more flexible to work with,
but is not guaranteed to faithfully replicate all possible grid output. The second approach is more
brute force, and harder to work with, but should always faithfully replicate the original output.

Value

A gTree object.

See Also

gTree

Examples

pushViewport(viewport(w=.5, h=.5))
grid.rect()
grid.points(stats::runif(10), stats::runif(10))
popViewport()
grab <- grid.grab()
grid.newpage()
grid.draw(grab)

grid.grill Draw a Grill

Description

This function draws a grill within a Grid viewport.

Usage

grid.grill(h = unit(seq(0.25, 0.75, 0.25), "npc"),
v = unit(seq(0.25, 0.75, 0.25), "npc"),
default.units = "npc", gp=gpar(col = "grey"), vp = NULL)

814 grid.grob

Arguments

h A numeric vector or unit object indicating the horizontal location of the vertical
grill lines.

v A numeric vector or unit object indicating the vertical location of the horizontal
grill lines.

default.units
A string indicating the default units to use if h or v are only given as numeric
vectors.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

vp A Grid viewport object.

Value

None.

Author(s)

Paul Murrell

See Also

Grid, viewport.

grid.grob Create a Grid Graphical Object

Description

These functions create grid graphical objects.

Usage

grid.grob(list.struct, cl = NULL, draw = TRUE)
grob(..., name = NULL, gp = NULL, vp = NULL, cl = NULL)
gTree(..., name = NULL, gp = NULL, vp = NULL, children = NULL,

childrenvp = NULL, cl = NULL)
grobTree(..., name = NULL, gp = NULL, vp = NULL,

childrenvp = NULL, cl = NULL)
childNames(gTree)
gList(...)

Arguments

... For grob and gTree, the named slots describing important features of the
graphical object. For gList and grobTree, a series of grob objects.

list.struct A list (preferably with each element named).

name A character identifier for the grob. Used to find the grob on the display list
and/or as a child of another grob.

grid.grob 815

children A gList object.

childrenvp A viewport object (or NULL).

gp A gpar object, typically the output from a call to the function gpar. This is
basically a list of graphical parameter settings.

vp A viewport object (or NULL).

cl A string giving the class attribute for the list.struct

draw A logical value to indicate whether to produce graphical output.

gTree A gTree object.

Details

These functions can be used to create a basic grob, gTree, or gList object, or a new class derived
from one of these.

A grid graphical object (grob) is a description of a graphical item. These basic classes provide
default behaviour for validating, drawing, and modifying graphical objects. Both call the function
validDetails to check that the object returned is coherent.

A gTree can have other grobs as children; when a gTree is drawn, it draws all of its children.
Before drawing its children, a gTree pushes its childrenvp slot and then navigates back up (calls
upViewport) so that the children can specify their location within the childrenvp via a vpPath.

Grob names need not be unique in general, but all children of a gTree must have different names.
A grob name can be any string, though it is not advisable to use the gPath separator (currently ::)
in grob names.

The function childNames returns the names of the grobs which are children of a gTree.

All grid primitives (grid.lines, grid.rect, ...) and some higher-level grid components (e.g.,
grid.xaxis and grid.yaxis) are derived from these classes.

grobTree is just a convenient wrapper for gTree when the only components of the gTree are
grobs (so all unnamed arguments become children of the gTree).

grid.grob is deprecated.

Value

A grob object.

Author(s)

Paul Murrell

See Also

grid.draw, grid.edit, grid.get.

816 grid.layout

grid.layout Create a Grid Layout

Description

This function returns a Grid layout, which describes a subdivision of a rectangular region.

Usage

grid.layout(nrow = 1, ncol = 1,
widths = unit(rep(1, ncol), "null"),
heights = unit(rep(1, nrow), "null"),
default.units = "null", respect = FALSE,
just="centre")

Arguments

nrow An integer describing the number of rows in the layout.

ncol An integer describing the number of columns in the layout.

widths A numeric vector or unit object describing the widths of the columns in the
layout.

heights A numeric vector or unit object describing the heights of the rows in the layout.

default.units
A string indicating the default units to use if widths or heights are only
given as numeric vectors.

respect A logical value or a numeric matrix. If a logical, this indicates whether row
heights and column widths should respect each other. If a matrix, non-zero
values indicate that the corresponding row and column should be respected (see
examples below).

just A string vector indicating how the layout should be justified if it is not the same
size as its parent viewport. If there are two values, the first value specifies hori-
zontal justification and the second value specifies vertical justification. Possible
values are: "left", "right", "centre", "center", "bottom", and
"top". NOTE that in this context, "left", for example, means align the left
edge of the left-most layout column with the left edge of the parent viewport.

Details

The unit objects given for the widths and heights of a layout may use a special units that
only has meaning for layouts. This is the "null" unit, which indicates what relative fraction of
the available width/height the column/row occupies. See the reference for a better description of
relative widths and heights in layouts.

Value

A Grid layout object.

grid.lines 817

WARNING

This function must NOT be confused with the base R graphics function layout. In particular, do
not use layout in combination with Grid graphics. The documentation for layout may provide
some useful information and this function should behave identically in comparable situations. The
grid.layout function has added the ability to specify a broader range of units for row heights
and column widths, and allows for nested layouts (see viewport).

Author(s)

Paul Murrell

References

Murrell, P. R. (1999), Layouts: A Mechanism for Arranging Plots on a Page, Journal of Computa-
tional and Graphical Statistics, 8, 121–134.

See Also

Grid, grid.show.layout, viewport, layout

Examples

A variety of layouts (some a bit mid-bending ...)
layout.torture()
Demonstration of layout justification
grid.newpage()
testlay <- function(just="centre") {
pushViewport(viewport(layout=grid.layout(1, 1, widths=unit(1, "inches"),

heights=unit(0.25, "npc"),
just=just)))

pushViewport(viewport(layout.pos.col=1, layout.pos.row=1))
grid.rect()
grid.text(paste(just, collapse="-"))
popViewport(2)

}
testlay()
testlay(c("left", "top"))
testlay(c("right", "top"))
testlay(c("right", "bottom"))
testlay(c("left", "bottom"))
testlay(c("left"))
testlay(c("right"))
testlay(c("bottom"))
testlay(c("top"))

grid.lines Draw Lines in a Grid Viewport

Description

These functions create and draw a series of lines.

818 grid.lines

Usage

grid.lines(x = unit(c(0, 1), "npc"),
y = unit(c(0, 1), "npc"),
default.units = "npc",
arrow = NULL, name = NULL,
gp=gpar(), draw = TRUE, vp = NULL)

linesGrob(x = unit(c(0, 1), "npc"),
y = unit(c(0, 1), "npc"),
default.units = "npc",
arrow = NULL, name = NULL,
gp=gpar(), vp = NULL)

grid.polyline(...)
polylineGrob(x = unit(c(0, 1), "npc"),

y = unit(c(0, 1), "npc"),
id=NULL, id.lengths=NULL,
default.units = "npc",
arrow = NULL, name = NULL,
gp=gpar(), vp = NULL)

Arguments

x A numeric vector or unit object specifying x-values.

y A numeric vector or unit object specifying y-values.
default.units

A string indicating the default units to use if x or y are only given as numeric
vectors.

arrow A list describing arrow heads to place at either end of the line, as produced by
the arrow function.

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

id A numeric vector used to separate locations in x and y into multiple lines. All
locations with the same id belong to the same line.

id.lengths A numeric vector used to separate locations in x and y into multiple lines. Spec-
ifies consecutive blocks of locations which make up separate lines.

... Arguments passed to polylineGrob.

Details

The first two functions create a lines grob (a graphical object describing lines), and grid.lines
draws the lines (if draw is TRUE).

The second two functions create or draw a polyline grob, which is just like a lines grob, except that
there can be multiple distinct lines drawn.

Value

A lines grob or a polyline grob. grid.lines returns a lines grob invisibly.

grid.locator 819

Author(s)

Paul Murrell

See Also

Grid, viewport, arrow

Examples

grid.lines()
Using id (NOTE: locations are not in consecutive blocks)
grid.newpage()
grid.polyline(x=c((0:4)/10, rep(.5, 5), (10:6)/10, rep(.5, 5)),

y=c(rep(.5, 5), (10:6/10), rep(.5, 5), (0:4)/10),
id=rep(1:5, 4),
gp=gpar(col=1:5, lwd=3))

Using id.lengths
grid.newpage()
grid.polyline(x=outer(c(0, .5, 1, .5), 5:1/5),

y=outer(c(.5, 1, .5, 0), 5:1/5),
id.lengths=rep(4, 5),
gp=gpar(col=1:5, lwd=3))

grid.locator Capture a Mouse Click

Description

Allows the user to click the mouse once within the current graphics device and returns the location
of the mouse click within the current viewport, in the specified coordinate system.

Usage

grid.locator(unit = "native")

Arguments

unit The coordinate system in which to return the location of the mouse click. See
the unit function for valid coordinate systems.

Details

This function is modal (like the graphics package function locator) so the command line and
graphics drawing is blocked until the use has clicked the mouse in the current device.

Value

A unit object representing the location of the mouse click within the current viewport, in the speci-
fied coordinate system.

If the user did not click mouse button 1, the function (invisibly) returns NULL.

820 grid.ls

Author(s)

Paul Murrell

See Also

viewport, unit, locator in package graphics, and for an application see trellis.focus
and panel.identify in package lattice.

Examples

if (interactive()) {
Need to write a more sophisticated unit as.character method
unittrim <- function(unit) {
sub("^([0-9]+|[0-9]+[.][0-9])[0-9]*", "\\1", as.character(unit))

}
do.click <- function(unit) {
click.locn <- grid.locator(unit)
grid.segments(unit.c(click.locn$x, unit(0, "npc")),

unit.c(unit(0, "npc"), click.locn$y),
click.locn$x, click.locn$y,
gp=gpar(lty="dashed", col="grey"))

grid.points(click.locn$x, click.locn$y, pch=16, size=unit(1, "mm"))
clickx <- unittrim(click.locn$x)
clicky <- unittrim(click.locn$y)
grid.text(paste("(", clickx, ", ", clicky, ")", sep=""),

click.locn$x + unit(2, "mm"), click.locn$y,
just="left")

}
do.click("inches")
pushViewport(viewport(width=0.5, height=0.5,

xscale=c(0, 100), yscale=c(0, 10)))
grid.rect()
grid.xaxis()
grid.yaxis()
do.click("native")
popViewport()

}

grid.ls List the names of grobs or viewports

Description

Returns a listing of the names of grobs or viewports.

This is a generic function with methods for grobs (including gTrees) and viewports (including
vpTrees).

Usage

grid.ls(x=NULL, grobs=TRUE, viewports=FALSE, fullNames=FALSE,
recursive=TRUE, print=TRUE, flatten=TRUE, ...)

nestedListing(x, gindent=" ", vpindent=gindent)

grid.ls 821

pathListing(x, gvpSep=" | ", gAlign=TRUE)
grobPathListing(x, ...)

Arguments

x A grob or viewport or NULL. If NULL, the current grid display list is listed.
For print functions, this should be the result of a call to grid.ls.

grobs A logical value indicating whether to list grobs.

viewports A logical value indicating whether to list viewports.

fullNames A logical value indicating whether to embellish object names with information
about the object type.

recursive A logical value indicating whether recursive structures should also list their chil-
dren.

print A logical indicating whether to print the listing or a function that will print the
listing.

flatten A logical value indicating whether to flatten the listing. Otherwise a more com-
plex hierarchical object is produced.

gindent The indent used to show nesting in the output for grobs.

vpindent The indent used to show nesting in the output for viewports.

gvpSep The string used to separate viewport paths from grob paths.

gAlign Logical indicating whether to align the left hand edge of all grob paths.

... Arguments passed to the print function.

Details

If the argument x is NULL, the current contents of the grid display list are listed (both viewports
and grobs). In other words, all objects representing the current scene are listed.

Otherwise, x should be a grob or a viewport.

The default behaviour of this function is to print information about the grobs in the current scene.
It is also possible to add information about the viewports in the scene. By default, the listing is
recursive, so all children of gTrees and all nested viewports are reported.

The format of the information can be controlled via the print argument, which can be given
a function to perform the formatting. The nestedListing function produces a line per
grob or viewport, with indenting used to show nesting. The pathListing function produces
a line per grob or viewport, with viewport paths and grob paths used to show nesting. The
grobPathListing is a simple derivation that only shows lines for grobs. The user can define
new functions.

Value

The result of this function is either a "gridFlatListing" object (if flatten is TRUE) or a
"gridListing" object.

The former is a simple (flat) list of vectors. This is convenient, for example, for working program-
matically with the list of grob and viewport names, or for writing a new display function for the
listing.

The latter is a more complex heiararchical object (list of lists), but it does contain more detailed
information so may be of use for more advanced customisations.

822 grid.move.to

Author(s)

Paul Murrell

See Also

grob viewport

Examples

A gTree, called "parent", with childrenvp vpTree (vp2 within vp1)
and child grob, called "child", with vp vpPath (down to vp2)
sampleGTree <- gTree(name="parent",

children=gList(grob(name="child", vp="vp1::vp2")),
childrenvp=vpTree(parent=viewport(name="vp1"),

children=vpList(viewport(name="vp2"))))
grid.ls(sampleGTree)
Show viewports too
grid.ls(sampleGTree, view=TRUE)
Only show viewports
grid.ls(sampleGTree, view=TRUE, grob=FALSE)
Alternate displays
nested listing, custom indent
grid.ls(sampleGTree, view=TRUE, print=nestedListing, gindent="--")
path listing
grid.ls(sampleGTree, view=TRUE, print=pathListing)
path listing, without grobs aligned
grid.ls(sampleGTree, view=TRUE, print=pathListing, gAlign=FALSE)
grob path listing
grid.ls(sampleGTree, view=TRUE, print=grobPathListing)
path listing, grobs only
grid.ls(sampleGTree, print=pathListing)
path listing, viewports only
grid.ls(sampleGTree, view=TRUE, grob=FALSE, print=pathListing)
raw flat listing
str(grid.ls(sampleGTree, view=TRUE, print=FALSE))

grid.move.to Move or Draw to a Specified Position

Description

Grid has the notion of a current location. These functions sets that location.

Usage

grid.move.to(x = 0, y = 0, default.units = "npc", name = NULL,
draw = TRUE, vp = NULL)

moveToGrob(x = 0, y = 0, default.units = "npc", name = NULL, vp = NULL)

grid.line.to(x = 1, y = 1, default.units = "npc",
arrow = NULL, name = NULL,
gp = gpar(), draw = TRUE, vp = NULL)

grid.move.to 823

lineToGrob(x = 1, y = 1, default.units = "npc", arrow = NULL,
name = NULL, gp = gpar(), vp = NULL)

Arguments

x A numeric value or a unit object specifying an x-value.

y A numeric value or a unit object specifying a y-value.
default.units

A string indicating the default units to use if x or y are only given as numeric
values.

arrow A list describing arrow heads to place at either end of the line, as produced by
the arrow function.

name A character identifier.

draw A logical value indicating whether graphics output should be produced.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

Details

Both functions create a move.to/line.to grob (a graphical object describing a move-to/line-to), but
only grid.move.to/line.to() draws the move.to/line.to (and then only if draw is TRUE).

Value

A move.to/line.to grob. grid.move.to/line.to() returns the value invisibly.

Author(s)

Paul Murrell

See Also

Grid, viewport, arrow

Examples

grid.newpage()
grid.move.to(0.5, 0.5)
grid.line.to(1, 1)
grid.line.to(0.5, 0)
pushViewport(viewport(x=0, y=0, w=0.25, h=0.25, just=c("left", "bottom")))
grid.rect()
grid.grill()
grid.line.to(0.5, 0.5)
popViewport()

824 grid.null

grid.newpage Move to a New Page on a Grid Device

Description

This function erases the current device or moves to a new page.

Usage

grid.newpage(recording = TRUE)

Arguments

recording A logical value to indicate whether the new-page operation should be saved onto
the Grid display list.

Details

The new page is painted with the fill colour (gpar("fill")), which is often transparent. For
devices with a canvas colour (the on-screen devices X11, windows and quartz), the page is first
painted with the canvas colour and then the background colour.

There is a hook called "grid.newpage" (see setHook) which is used in the testing code to
annotate the new page. The hook function(s) are called with no argument. (If the value is a character
string, get is called on it from within the grid name space.)

Value

None.

Author(s)

Paul Murrell

See Also

Grid

grid.null Null Graphical Object

Description

These functions create a NULL graphical object, which has zero width, zero height, and draw
nothing. It can be used as a place-holder or as an invisible reference point for other drawing.

Usage

nullGrob(x = unit(0.5, "npc"), y = unit(0.5, "npc"),
default.units = "npc",
name = NULL, vp = NULL)

grid.null(...)

grid.pack 825

Arguments

x A numeric vector or unit object specifying x-location.

y A numeric vector or unit object specifying y-location.
default.units

A string indicating the default units to use if x, y, width, or height are only
given as numeric vectors.

name A character identifier.

vp A Grid viewport object (or NULL).

... Arguments passed to nullGrob().

Value

A null grob.

Author(s)

Paul Murrell

See Also

Grid, viewport

Examples

grid.newpage()
grid.null(name="ref")
grid.rect(height=grobHeight("ref"))
grid.segments(0, 0, grobX("ref", 0), grobY("ref", 0))

grid.pack Pack an Object within a Frame

Description

This functions, together with grid.frame and frameGrob are part of a GUI-builder-like inter-
face to constructing graphical images. The idea is that you create a frame with grid.frame or
frameGrob then use this functions to pack objects into the frame.

Usage

grid.pack(gPath, grob, redraw = TRUE, side = NULL,
row = NULL, row.before = NULL, row.after = NULL,
col = NULL, col.before = NULL, col.after = NULL,
width = NULL, height = NULL,
force.width = FALSE, force.height = FALSE, border = NULL,
dynamic = FALSE)

packGrob(frame, grob, side = NULL,
row = NULL, row.before = NULL, row.after = NULL,
col = NULL, col.before = NULL, col.after = NULL,

826 grid.pack

width = NULL, height = NULL,
force.width = FALSE, force.height = FALSE, border = NULL,
dynamic = FALSE)

Arguments

gPath A gPath object, which specifies a frame on the display list.

frame An object of class frame, typically the output from a call to grid.frame.

grob An object of class grob. The object to be packed.

redraw A boolean indicating whether the output should be updated.

side One of "left", "top", "right", "bottom" to indicate which side to pack
the object on.

row Which row to add the object to. Must be between 1 and the-number-of-rows-
currently-in-the-frame + 1, or NULL in which case the object occupies all rows.

row.before Add the object to a new row just before this row.

row.after Add the object to a new row just after this row.

col Which col to add the object to. Must be between 1 and the-number-of-cols-
currently-in-the-frame + 1, or NULL in which case the object occupies all cols.

col.before Add the object to a new col just before this col.

col.after Add the object to a new col just after this col.

width Specifies the width of the column that the object is added to (rather than allowing
the width to be taken from the object).

height Specifies the height of the row that the object is added to (rather than allowing
the height to be taken from the object).

force.width A logical value indicating whether the width of the column that the grob is being
packed into should be EITHER the width specified in the call to grid.pack
OR the maximum of that width and the pre-existing width.

force.height A logical value indicating whether the height of the column that the grob is being
packed into should be EITHER the height specified in the call to grid.pack
OR the maximum of that height and the pre-existing height.

border A unit object of length 4 indicating the borders around the object.

dynamic If the width/height is taken from the grob being packed, this boolean flag in-
dicates whether the grobwidth/height unit refers directly to the grob, or uses a
gPath to the grob. In the latter case, changes to the grob will trigger a recalcula-
tion of the width/height.

Details

packGrob modifies the given frame grob and returns the modified frame grob.

grid.pack destructively modifies a frame grob on the display list (and redraws the display list if
redraw is TRUE).

These are (meant to be) very flexible functions. There are many different ways to specify where the
new object is to be added relative to the objects already in the frame. The function checks that the
specification is not self-contradictory.

NOTE that the width/height of the row/col that the object is added to is taken from the object itself
unless the width/height is specified.

grid.place 827

Value

packGrob returns a frame grob, but grid.pack returns NULL.

Author(s)

Paul Murrell

See Also

grid.frame, grid.place, grid.edit, and gPath.

grid.place Place an Object within a Frame

Description

These functions provide a simpler (and faster) alternative to the grid.pack() and packGrob
functions. They can be used to place objects within the existing rows and columns of a frame
layout. They do not provide the ability to add new rows and columns nor do they affect the heights
and widths of the rows and columns.

Usage

grid.place(gPath, grob, row = 1, col = 1, redraw = TRUE)
placeGrob(frame, grob, row = NULL, col = NULL)

Arguments

gPath A gPath object, which specifies a frame on the display list.

frame An object of class frame, typically the output from a call to grid.frame.

grob An object of class grob. The object to be placed.

row Which row to add the object to. Must be between 1 and the-number-of-rows-
currently-in-the-frame.

col Which col to add the object to. Must be between 1 and the-number-of-cols-
currently-in-the-frame.

redraw A boolean indicating whether the output should be updated.

Details

placeGrob modifies the given frame grob and returns the modified frame grob.

grid.place destructively modifies a frame grob on the display list (and redraws the display list
if redraw is TRUE).

Value

placeGrob returns a frame grob, but grid.place returns NULL.

Author(s)

Paul Murrell

828 grid.points

See Also

grid.frame, grid.pack, grid.edit, and gPath.

grid.plot.and.legend
A Simple Plot and Legend Demo

Description

This function is just a wrapper for a simple demonstration of how a basic plot and legend can be
drawn from scratch using grid.

Usage

grid.plot.and.legend()

Author(s)

Paul Murrell

Examples

grid.plot.and.legend()

grid.points Draw Data Symbols

Description

These functions create and draw data symbols.

Usage

grid.points(x = stats::runif(10),
y = stats::runif(10),
pch = 1, size = unit(1, "char"),
default.units = "native", name = NULL,
gp = gpar(), draw = TRUE, vp = NULL)

pointsGrob(x = stats::runif(10),
y = stats::runif(10),
pch = 1, size = unit(1, "char"),
default.units = "native", name = NULL,
gp = gpar(), vp = NULL)

grid.polygon 829

Arguments

x A numeric vector or unit object specifying x-values.

y A numeric vector or unit object specifying y-values.

pch A numeric or character vector indicating what sort of plotting symbol to use.
See points for the interpretation of these values.

size A unit object specifying the size of the plotting symbols.
default.units

A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

Both functions create a points grob (a graphical object describing points), but only grid.points
draws the points (and then only if draw is TRUE).

Value

A points grob. grid.points returns the value invisibly.

Author(s)

Paul Murrell

See Also

Grid, viewport

grid.polygon Draw a Polygon

Description

These functions create and draw a polygon. The final point will automatically be connected to the
initial point.

Usage

grid.polygon(x=c(0, 0.5, 1, 0.5), y=c(0.5, 1, 0.5, 0),
id=NULL, id.lengths=NULL,
default.units="npc", name=NULL,
gp=gpar(), draw=TRUE, vp=NULL)

polygonGrob(x=c(0, 0.5, 1, 0.5), y=c(0.5, 1, 0.5, 0),
id=NULL, id.lengths=NULL,
default.units="npc", name=NULL,
gp=gpar(), vp=NULL)

830 grid.polygon

Arguments

x A numeric vector or unit object specifying x-locations.

y A numeric vector or unit object specifying y-locations.

id A numeric vector used to separate locations in x and y into multiple polygons.
All locations with the same id belong to the same polygon.

id.lengths A numeric vector used to separate locations in x and y into multiple polygons.
Specifies consecutive blocks of locations which make up separate polygons.

default.units
A string indicating the default units to use if x, y, width, or height are only
given as numeric vectors.

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

Both functions create a polygon grob (a graphical object describing a polygon), but only
grid.polygon draws the polygon (and then only if draw is TRUE).

Value

A grob object.

Author(s)

Paul Murrell

See Also

Grid, viewport

Examples

grid.polygon()
Using id (NOTE: locations are not in consecutive blocks)
grid.newpage()
grid.polygon(x=c((0:4)/10, rep(.5, 5), (10:6)/10, rep(.5, 5)),

y=c(rep(.5, 5), (10:6/10), rep(.5, 5), (0:4)/10),
id=rep(1:5, 4),
gp=gpar(fill=1:5))

Using id.lengths
grid.newpage()
grid.polygon(x=outer(c(0, .5, 1, .5), 5:1/5),

y=outer(c(.5, 1, .5, 0), 5:1/5),
id.lengths=rep(4, 5),
gp=gpar(fill=1:5))

grid.pretty 831

grid.pretty Generate a Sensible Set of Breakpoints

Description

Produces a pretty set of breakpoints within the range given.

Usage

grid.pretty(range)

Arguments

range A numeric vector

Value

A numeric vector of breakpoints.

Author(s)

Paul Murrell

grid.prompt Prompt before New Page

Description

This function can be used to control whether the user is prompted before starting a new page of
output.

Usage

grid.prompt(ask)

Arguments

ask a logical value. If TRUE, the user is prompted before a new page of output is
started.

Details

As from R 2.7.0 this is deprecated in favour of devAskNewPage as a single setting affects both
the base and grid graphics systems.

The default value when a device is opened is taken from the setting of
options("device.ask.default").

Value

The current prompt setting before any new setting is applied.

832 grid.record

Author(s)

Paul Murrell

See Also

grid.newpage

grid.record Encapsulate calculations and drawing

Description

Evaluates an expression that includes both calculations and drawing that depends on the calculations
so that both the calculations and the drawing will be rerun when the scene is redrawn (e.g., device
resize or editing).

Intended only for expert use.

Usage

recordGrob(expr, list, name=NULL, gp=NULL, vp=NULL)
grid.record(expr, list, name=NULL, gp=NULL, vp=NULL)

Arguments

expr object of mode expression or call or an unevaluated expression.

list a list defining the environment in which expr is to be evaluated.

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

Details

A grob is created of special class "recordedGrob" (and drawn, in the case of grid.record).
The drawDetails method for this class evaluates the expression with the list as the evaluation
environment (and the grid Namespace as the parent of that environment).

Note

This function must be used instead of the function recordGraphics; all of the dire warnings
about using recordGraphics responsibly also apply here.

Author(s)

Paul Murrell

See Also

recordGraphics

grid.rect 833

Examples

grid.record({
w <- convertWidth(unit(1, "inches"), "npc")

grid.rect(width=w)
},
list())

grid.rect Draw rectangles

Description

These functions create and draw rectangles.

Usage

grid.rect(x = unit(0.5, "npc"), y = unit(0.5, "npc"),
width = unit(1, "npc"), height = unit(1, "npc"),
just = "centre", hjust = NULL, vjust = NULL,
default.units = "npc", name = NULL,
gp=gpar(), draw = TRUE, vp = NULL)

rectGrob(x = unit(0.5, "npc"), y = unit(0.5, "npc"),
width = unit(1, "npc"), height = unit(1, "npc"),
just = "centre", hjust = NULL, vjust = NULL,
default.units = "npc", name = NULL,
gp=gpar(), vp = NULL)

Arguments

x A numeric vector or unit object specifying x-location.
y A numeric vector or unit object specifying y-location.
width A numeric vector or unit object specifying width.
height A numeric vector or unit object specifying height.
just The justification of the rectangle relative to its (x, y) location. If there are

two values, the first value specifies horizontal justification and the second value
specifies vertical justification. Possible string values are: "left", "right",
"centre", "center", "bottom", and "top". For numeric values, 0
means left alignment and 1 means right alignment.

hjust A numeric vector specifying horizontal justification. If specified, overrides the
just setting.

vjust A numeric vector specifying vertical justification. If specified, overrides the
just setting.

default.units
A string indicating the default units to use if x, y, width, or height are only
given as numeric vectors.

name A character identifier.
gp An object of class gpar, typically the output from a call to the function gpar.

This is basically a list of graphical parameter settings.
draw A logical value indicating whether graphics output should be produced.
vp A Grid viewport object (or NULL).

834 grid.remove

Details

Both functions create a rect grob (a graphical object describing rectangles), but only grid.rect
draws the rectangles (and then only if draw is TRUE).

Value

A rect grob. grid.rect returns the value invisibly.

Author(s)

Paul Murrell

See Also

Grid, viewport

grid.refresh Refresh the current grid scene

Description

Replays the current grid display list.

Usage

grid.refresh()

Author(s)

Paul Murrell

grid.remove Remove a Grid Graphical Object

Description

Remove a grob from a gTree or a descendant of a gTree.

Usage

grid.remove(gPath, warn = TRUE, strict = FALSE, grep = FALSE,
global = FALSE, allDevices = FALSE, redraw = TRUE)

grid.gremove <- function(..., grep = TRUE, global = TRUE)

removeGrob(gTree, gPath, strict = FALSE, grep = FALSE,
global = FALSE, warn = TRUE)

grid.segments 835

Arguments

gTree A gTree object.

gPath A gPath object. For grid.remove this specifies a gTree on the display list.
For removeGrob this specifies a descendant of the specified gTree.

strict A boolean indicating whether the gPath must be matched exactly.

grep A boolean indicating whether the gPath should be treated as a regular ex-
pression. Values are recycled across elements of the gPath (e.g., c(TRUE,
FALSE) means that every odd element of the gPath will be treated as a regu-
lar expression).

global A boolean indicating whether the function should affect just the first match of
the gPath, or whether all matches should be affected.

allDevices A boolean indicating whether all open devices should be searched for matches,
or just the current device. NOT YET IMPLEMENTED.

warn A logical to indicate whether failing to find the specified grob should trigger an
error.

redraw A logical value to indicate whether to redraw the grob.

Details

removeGrob copies the specified grob and returns a modified grob.

grid.remove destructively modifies a grob on the display list. If redraw is TRUE it then
redraws everything to reflect the change.

grid.gremove (g for global) is just a convenience wrapper for grid.remove with different
defaults.

Value

removeGrob returns a grob object; grid.remove returns NULL.

Author(s)

Paul Murrell

See Also

grob, getGrob, removeGrob, removeGrob.

grid.segments Draw Line Segments

Description

These functions create and draw line segments.

836 grid.segments

Usage

grid.segments(x0 = unit(0, "npc"), y0 = unit(0, "npc"),
x1 = unit(1, "npc"), y1 = unit(1, "npc"),
default.units = "npc",
arrow = NULL,
name = NULL, gp = gpar(), draw = TRUE, vp = NULL)

segmentsGrob(x0 = unit(0, "npc"), y0 = unit(0, "npc"),
x1 = unit(1, "npc"), y1 = unit(1, "npc"),
default.units = "npc",
arrow = NULL, name = NULL, gp = gpar(), vp = NULL)

Arguments

x0 Numeric indicating the starting x-values of the line segments.

y0 Numeric indicating the starting y-values of the line segments.

x1 Numeric indicating the stopping x-values of the line segments.

y1 Numeric indicating the stopping y-values of the line segments.

default.units
A string.

arrow A list describing arrow heads to place at either end of the line segments, as
produced by the arrow function.

name A character identifier.

gp An object of class gpar.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

Both functions create a segments grob (a graphical object describing segments), but only
grid.segments draws the segments (and then only if draw is TRUE).

Value

A segments grob. grid.segments returns the value invisibly.

Author(s)

Paul Murrell

See Also

Grid, viewport, arrow

grid.set 837

grid.set Set a Grid Graphical Object

Description

Replace a grob or a descendant of a grob.

Usage

grid.set(gPath, newGrob, strict = FALSE, grep = FALSE,
redraw = TRUE)

setGrob(gTree, gPath, newGrob, strict = FALSE, grep = FALSE)

Arguments

gTree A gTree object.

gPath A gPath object. For grid.set this specifyies a grob on the display list. For
setGrob this specifies a descendant of the specified gTree.

newGrob A grob object.

strict A boolean indicating whether the gPath must be matched exactly.

grep A boolean indicating whether the gPath should be treated as a regular ex-
pression. Values are recycled across elements of the gPath (e.g., c(TRUE,
FALSE) means that every odd element of the gPath will be treated as a regu-
lar expression).

redraw A logical value to indicate whether to redraw the grob.

Details

setGrob copies the specified grob and returns a modified grob.

grid.set destructively replaces a grob on the display list. If redraw is TRUE it then redraws
everything to reflect the change.

These functions should not normally be called by the user.

Value

setGrob returns a grob object; grid.set returns NULL.

Author(s)

Paul Murrell

See Also

grid.grob.

838 grid.show.layout

grid.show.layout Draw a Diagram of a Grid Layout

Description

This function uses Grid graphics to draw a diagram of a Grid layout.

Usage

grid.show.layout(l, newpage=TRUE, bg = "light grey",
cell.border = "blue", cell.fill = "light blue",
cell.label = TRUE, label.col = "blue",
unit.col = "red", vp = NULL)

Arguments

l A Grid layout object.

newpage A logical value indicating whether to move on to a new page before drawing the
diagram.

bg The colour used for the background.

cell.border The colour used to draw the borders of the cells in the layout.

cell.fill The colour used to fill the cells in the layout.

cell.label A logical indicating whether the layout cells should be labelled.

label.col The colour used for layout cell labels.

unit.col The colour used for labelling the widths/heights of columns/rows.

vp A Grid viewport object (or NULL).

Details

A viewport is created within vp to provide a margin for annotation, and the layout is drawn within
that new viewport. The margin is filled with light grey, the new viewport is filled with white and
framed with a black border, and the layout regions are filled with light blue and framed with a blue
border. The diagram is annotated with the widths and heights (including units) of the columns and
rows of the layout using red text. (All colours are defaults and may be customised via function
arguments.)

Value

None.

Author(s)

Paul Murrell

See Also

Grid, viewport, grid.layout

grid.show.viewport 839

Examples

Diagram of a simple layout
grid.show.layout(grid.layout(4,2,

heights=unit(rep(1, 4),
c("lines", "lines", "lines", "null")),

widths=unit(c(1, 1), "inches")))

grid.show.viewport Draw a Diagram of a Grid Viewport

Description

This function uses Grid graphics to draw a diagram of a Grid viewport.

Usage

grid.show.viewport(v, parent.layout = NULL, newpage = TRUE,
border.fill="light grey",
vp.col="blue", vp.fill="light blue",
scale.col="red",
vp = NULL)

Arguments

v A Grid viewport object.
parent.layout

A grid layout object. If this is not NULL and the viewport given in v has its
location specified relative to the layout, then the diagram shows the layout and
which cells v occupies within the layout.

newpage A logical value to indicate whether to move to a new page before drawing the
diagram.

border.fill Colour to fill the border margin.

vp.col Colour for the border of the viewport region.

vp.fill Colour to fill the viewport region.

scale.col Colour to draw the viewport axes.

vp A Grid viewport object (or NULL).

Details

A viewport is created within vp to provide a margin for annotation, and the diagram is drawn within
that new viewport. By default, the margin is filled with light grey, the new viewport is filled with
white and framed with a black border, and the viewport region is filled with light blue and framed
with a blue border. The diagram is annotated with the width and height (including units) of the
viewport, the (x, y) location of the viewport, and the x- and y-scales of the viewport, using red lines
and text.

Value

None.

840 grid.text

Author(s)

Paul Murrell

See Also

Grid, viewport

Examples

Diagram of a sample viewport
grid.show.viewport(viewport(x=0.6, y=0.6,

w=unit(1, "inches"), h=unit(1, "inches")))
grid.show.viewport(viewport(layout.pos.row=2, layout.pos.col=2:3),

grid.layout(3, 4))

grid.text Draw Text

Description

These functions create and draw text and plotmath expressions.

Usage

grid.text(label, x = unit(0.5, "npc"), y = unit(0.5, "npc"),
just = "centre", hjust = NULL, vjust = NULL, rot = 0,
check.overlap = FALSE, default.units = "npc",
name = NULL, gp = gpar(), draw = TRUE, vp = NULL)

textGrob(label, x = unit(0.5, "npc"), y = unit(0.5, "npc"),
just = "centre", hjust = NULL, vjust = NULL, rot = 0,
check.overlap = FALSE, default.units = "npc",
name = NULL, gp = gpar(), vp = NULL)

Arguments

label A character or expression vector. Other objects are coerced by
as.graphicsAnnot.

x A numeric vector or unit object specifying x-values.

y A numeric vector or unit object specifying y-values.

just The justification of the text relative to its (x, y) location. If there are two val-
ues, the first value specifies horizontal justification and the second value spec-
ifies vertical justification. Possible string values are: "left", "right",
"centre", "center", "bottom", and "top". For numeric values, 0
means left alignment and 1 means right alignment.

hjust A numeric vector specifying horizontal justification. If specified, overrides the
just setting.

vjust A numeric vector specifying vertical justification. If specified, overrides the
just setting.

rot The angle to rotate the text.

grid.text 841

check.overlap
A logical value to indicate whether to check for and omit overlapping text.

default.units
A string indicating the default units to use if x or y are only given as numeric
vectors.

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport object (or NULL).

Details

Both functions create a text grob (a graphical object describing text), but only grid.text draws
the text (and then only if draw is TRUE).

If the label argument is an expression, the output is formatted as a mathematical annotation, as
for base graphics text.

Value

A text grob. grid.text returns the value invisibly.

Author(s)

Paul Murrell

See Also

Grid, viewport

Examples

grid.newpage()
x <- stats::runif(20)
y <- stats::runif(20)
rot <- stats::runif(20, 0, 360)
grid.text("SOMETHING NICE AND BIG", x=x, y=y, rot=rot,

gp=gpar(fontsize=20, col="grey"))
grid.text("SOMETHING NICE AND BIG", x=x, y=y, rot=rot,

gp=gpar(fontsize=20), check=TRUE)
grid.newpage()
draw.text <- function(just, i, j) {
grid.text("ABCD", x=x[j], y=y[i], just=just)
grid.text(deparse(substitute(just)), x=x[j], y=y[i] + unit(2, "lines"),

gp=gpar(col="grey", fontsize=8))
}
x <- unit(1:4/5, "npc")
y <- unit(1:4/5, "npc")
grid.grill(h=y, v=x, gp=gpar(col="grey"))
draw.text(c("bottom"), 1, 1)
draw.text(c("left", "bottom"), 2, 1)
draw.text(c("right", "bottom"), 3, 1)
draw.text(c("centre", "bottom"), 4, 1)
draw.text(c("centre"), 1, 2)

842 grid.xaxis

draw.text(c("left", "centre"), 2, 2)
draw.text(c("right", "centre"), 3, 2)
draw.text(c("centre", "centre"), 4, 2)
draw.text(c("top"), 1, 3)
draw.text(c("left", "top"), 2, 3)
draw.text(c("right", "top"), 3, 3)
draw.text(c("centre", "top"), 4, 3)
draw.text(c(), 1, 4)
draw.text(c("left"), 2, 4)
draw.text(c("right"), 3, 4)
draw.text(c("centre"), 4, 4)

grid.xaxis Draw an X-Axis

Description

These functions create and draw an x-axis.

Usage

grid.xaxis(at = NULL, label = TRUE, main = TRUE,
edits = NULL, name = NULL,
gp = gpar(), draw = TRUE, vp = NULL)

xaxisGrob(at = NULL, label = TRUE, main = TRUE,
edits = NULL, name = NULL,
gp = gpar(), vp = NULL)

Arguments

at A numeric vector of x-value locations for the tick marks.

label A logical value indicating whether to draw the labels on the tick marks, or an
expression or character vector which specify the labels to use. If not logical,
must be the same length as the at argument.

main A logical value indicating whether to draw the axis at the bottom (TRUE) or at
the top (FALSE) of the viewport.

edits A gEdit or gEditList containing edit operations to apply (to the children of the
axis) when the axis is first created and during redrawing whenever at is NULL.

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

draw A logical value indicating whether graphics output should be produced.

vp A Grid viewport obect (or NULL).

Details

Both functions create an xaxis grob (a graphical object describing an xaxis), but only grid.xaxis
draws the xaxis (and then only if draw is TRUE).

grid.xspline 843

Value

An xaxis grob. grid.xaxis returns the value invisibly.

Children

If the at slot of an xaxis grob is not NULL then the xaxis will have the following children:

major representing the line at the base of the tick marks.

ticks representing the tick marks.

labels representing the tick labels.

If the at slot is NULL then there are no children and ticks are drawn based on the current viewport
scale.

Author(s)

Paul Murrell

See Also

Grid, viewport, grid.yaxis

grid.xspline Draw an Xspline

Description

These functions create and draw an xspline, a curve drawn relative to control points.

Usage

grid.xspline(...)
xsplineGrob(x = c(0, 0.5, 1, 0.5), y = c(0.5, 1, 0.5, 0),

id = NULL, id.lengths = NULL,
default.units = "npc",
shape = 0, open = TRUE, arrow = NULL, repEnds = TRUE,
name = NULL, gp = gpar(), vp = NULL)

Arguments

x A numeric vector or unit object specifying x-locations of spline control points.

y A numeric vector or unit object specifying y-locations of spline control points.

id A numeric vector used to separate locations in x and y into multiple xsplines.
All locations with the same id belong to the same xspline.

id.lengths A numeric vector used to separate locations in x and y into multiple xspline.
Specifies consecutive blocks of locations which make up separate xsplines.

default.units
A string indicating the default units to use if x or y are only given as numeric
vectors.

844 grid.xspline

shape A numeric vector of values between -1 and 1, which control the shape of the
spline relative to the control points.

open A logical value indicating whether the spline is a line or a closed shape.

arrow A list describing arrow heads to place at either end of the xspline, as produced
by the arrow function.

repEnds A logical value indicating whether the first and last control points should be
replicated for drawing the curve (see Details below).

name A character identifier.

gp An object of class gpar, typically the output from a call to the function gpar.
This is basically a list of graphical parameter settings.

vp A Grid viewport object (or NULL).

... Arguments to be passed to xsplineGrob.

Details

Both functions create an xspline grob (a graphical object describing an xspline), but only
grid.xspline draws the xspline.

An xspline is a line drawn relative to control points. For each control point, the line may pass
through (interpolate) the control point or it may only approach (approximate) the control point; the
behaviour is determined by a shape parameter for each control point.

If the shape parameter is greater than zero, the spline approximates the control points (and is very
similar to a cubic B-spline when the shape is 1). If the shape parameter is less than zero, the spline
interpolates the control points (and is very similar to a Catmull-Rom spline when the shape is -1).
If the shape parameter is 0, the spline forms a sharp corner at that control point.

For open xsplines, the start and end control points must have a shape of 0 (and non-zero values are
silently converted to zero without warning).

For open xsplines, by default the start and end control points are actually replicated before the curve
is drawn. A curve is drawn between (interpolating or approximating) the second and third of each
set of four control points, so this default behaviour ensures that the resulting curve starts at the first
control point you have specified and ends at the last control point. The default behaviour can be
turned off via the repEnds argument, in which case the curve that is drawn starts (approximately)
at the second control point and ends (approximately) at the first and second-to-last control point.

The repEnds argument is ignored for closed xsplines.

Missing values are not allowed for x and y (i.e., it is not valid for a control point to be missing).

For closed xsplines, a curve is automatically drawn between the final control point and the initial
control point.

Value

A grob object.

References

Blanc, C. and Schlick, C. (1995), "X-splines : A Spline Model Designed for the End User", in
Proceedings of SIGGRAPH 95, pp. 377–386. http://dept-info.labri.fr/~schlick/
DOC/sig1.html

http://dept-info.labri.fr/~schlick/DOC/sig1.html
http://dept-info.labri.fr/~schlick/DOC/sig1.html

grid.xspline 845

See Also

Grid, viewport, arrow.

xspline.

Examples

x <- c(0.25, 0.25, 0.75, 0.75)
y <- c(0.25, 0.75, 0.75, 0.25)

xsplineTest <- function(s, i, j, open) {
pushViewport(viewport(layout.pos.col=j, layout.pos.row=i))
grid.points(x, y, default.units="npc", pch=16, size=unit(2, "mm"))
grid.xspline(x, y, shape=s, open=open, gp=gpar(fill="grey"))
grid.text(s, gp=gpar(col="grey"),

x=unit(x, "npc") + unit(c(-1, -1, 1, 1), "mm"),
y=unit(y, "npc") + unit(c(-1, 1, 1, -1), "mm"),
hjust=c(1, 1, 0, 0),
vjust=c(1, 0, 0, 1))

popViewport()
}

pushViewport(viewport(width=.5, x=0, just="left",
layout=grid.layout(3, 3, respect=TRUE)))

pushViewport(viewport(layout.pos.row=1))
grid.text("Open Splines", y=1, just="bottom")
popViewport()
xsplineTest(c(0, -1, -1, 0), 1, 1, TRUE)
xsplineTest(c(0, -1, 0, 0), 1, 2, TRUE)
xsplineTest(c(0, -1, 1, 0), 1, 3, TRUE)
xsplineTest(c(0, 0, -1, 0), 2, 1, TRUE)
xsplineTest(c(0, 0, 0, 0), 2, 2, TRUE)
xsplineTest(c(0, 0, 1, 0), 2, 3, TRUE)
xsplineTest(c(0, 1, -1, 0), 3, 1, TRUE)
xsplineTest(c(0, 1, 0, 0), 3, 2, TRUE)
xsplineTest(c(0, 1, 1, 0), 3, 3, TRUE)
popViewport()
pushViewport(viewport(width=.5, x=1, just="right",

layout=grid.layout(3, 3, respect=TRUE)))
pushViewport(viewport(layout.pos.row=1))
grid.text("Closed Splines", y=1, just="bottom")
popViewport()
xsplineTest(c(-1, -1, -1, -1), 1, 1, FALSE)
xsplineTest(c(-1, -1, 0, -1), 1, 2, FALSE)
xsplineTest(c(-1, -1, 1, -1), 1, 3, FALSE)
xsplineTest(c(0, 0, -1, 0), 2, 1, FALSE)
xsplineTest(c(0, 0, 0, 0), 2, 2, FALSE)
xsplineTest(c(0, 0, 1, 0), 2, 3, FALSE)
xsplineTest(c(1, 1, -1, 1), 3, 1, FALSE)
xsplineTest(c(1, 1, 0, 1), 3, 2, FALSE)
xsplineTest(c(1, 1, 1, 1), 3, 3, FALSE)
popViewport()

846 grid.yaxis

grid.yaxis Draw a Y-Axis

Description

These functions create and draw a y-axis.

Usage

grid.yaxis(at = NULL, label = TRUE, main = TRUE,
edits = NULL, name = NULL,
gp = gpar(), draw = TRUE, vp = NULL)

yaxisGrob(at = NULL, label = TRUE, main = TRUE,
edits = NULL, name = NULL,
gp = gpar(), vp = NULL)

Arguments

at A numeric vector of y-value locations for the tick marks.
label A logical value indicating whether to draw the labels on the tick marks, or an

expression or character vector which specify the labels to use. If not logical,
must be the same length as the at argument.

main A logical value indicating whether to draw the axis at the left (TRUE) or at the
right (FALSE) of the viewport.

edits A gEdit or gEditList containing edit operations to apply (to the children of the
axis) when the axis is first created and during redrawing whenever at is NULL.

name A character identifier.
gp An object of class gpar, typically the output from a call to the function gpar.

This is basically a list of graphical parameter settings.
draw A logical value indicating whether graphics output should be produced.
vp A Grid viewport object (or NULL).

Details

Both functions create a yaxis grob (a graphical object describing a yaxis), but only grid.yaxis
draws the yaxis (and then only if draw is TRUE).

Value

A yaxis grob. grid.yaxis returns the value invisibly.

Children

If the at slot of an xaxis grob is not NULL then the xaxis will have the following children:

major representing the line at the base of the tick marks.
ticks representing the tick marks.
labels representing the tick labels.

If the at slot is NULL then there are no children and ticks are drawn based on the current viewport
scale.

grobName 847

Author(s)

Paul Murrell

See Also

Grid, viewport, grid.xaxis

grobName Generate a Name for a Grob

Description

This function generates a unique (within-session) name for a grob, based on the grob’s class.

Usage

grobName(grob = NULL, prefix = "GRID")

Arguments

grob A grob object or NULL.

prefix The prefix part of the name.

Value

A character string of the form prefix.class(grob).index

Author(s)

Paul Murrell

grobWidth Create a Unit Describing the Width of a Grob

Description

These functions create a unit object describing the width or height of a grob. They are generic.

Usage

grobWidth(x)
grobHeight(x)

Arguments

x A grob object.

Value

A unit object.

848 grobX

Author(s)

Paul Murrell

See Also

unit and stringWidth

grobX Create a Unit Describing a Grob Boundary Location

Description

These functions create a unit object describing a location somewhere on the boundary of a grob.
They are generic.

Usage

grobX(x, theta)
grobY(x, theta)

Arguments

x A grob, or gList, or gTree, or gPath.
theta An angle indicating where the location is on the grob boundary. Can be one of

"east", "north", "west", or "south", which correspond to angles 0, 90,
180, and 270, respectively.

Details

The angle is anti-clockwise with zero corresponding to a line with an origin centred between the
extreme points of the shape, and pointing at 3 o’clock.
If the grob describes a single shape, the boundary value should correspond to the exact edge of the
shape.
If the grob describes multiple shapes, the boundary value will either correspond to the edge of
a bounding box around all of the shapes described by the grob (for multiple rectangles, circles,
xsplines, or text), or to a convex hull around all vertices of all shapes described by the grob (for
multiple polygons, points, lines, polylines, and segments).
Points grobs are currently a special case because the convex hull is based on the data symbol loca-
tions and does not take into account the extent of the data symbols themselves.
The extents of any arrow heads are currently not taken into account.

Value

A unit object.

Author(s)

Paul Murrell

See Also

unit and grobWidth

plotViewport 849

plotViewport Create a Viewport with a Standard Plot Layout

Description

This is a convenience function for producing a viewport with the common S-style plot layout – i.e.,
a central plot region surrounded by margins given in terms of a number of lines of text.

Usage

plotViewport(margins=c(5.1, 4.1, 4.1, 2.1), ...)

Arguments

margins A numeric vector interpreted in the same way as par(mar) in base graphics.

... All other arguments will be passed to a call to the viewport() function.

Value

A grid viewport object.

Author(s)

Paul Murrell

See Also

viewport and dataViewport.

pop.viewport Pop a Viewport off the Grid Viewport Stack

Description

Grid maintains a viewport stack — a list of nested drawing contexts.

This function makes the parent of the specified viewport the new default viewport.

Usage

pop.viewport(n=1, recording=TRUE)

Arguments

n An integer giving the number of viewports to pop. Defaults to 1.

recording A logical value to indicate whether the set-viewport operation should be
recorded on the Grid display list.

Value

None.

850 push.viewport

Warning

This function has been deprecated. Please use popViewport instead.

Author(s)

Paul Murrell

See Also

push.viewport.

push.viewport Push a Viewport onto the Grid Viewport Stack

Description

Grid maintains a viewport stack — a list of nested drawing contexts.

This function makes the specified viewport the default viewport and makes its parent the previous
default viewport (i.e., nests the specified context within the previous default context).

Usage

push.viewport(..., recording=TRUE)

Arguments

... One or more objects of class "viewport", or NULL.

recording A logical value to indicate whether the set-viewport operation should be
recorded on the Grid display list.

Value

None.

Warning

This function has been deprecated. Please use pushViewport instead.

Author(s)

Paul Murrell

See Also

pop.viewport.

Querying the Viewport Tree 851

Querying the Viewport Tree
Get the Current Grid Viewport (Tree)

Description

current.viewport() returns the viewport that Grid is going to draw into.

current.vpTree returns the entire Grid viewport tree.

current.vpPath returns the viewport path to the current viewport.

current.transform returns the transformation matrix for the current viewport.

Usage

current.viewport(vp=NULL)
current.vpTree(all=TRUE)
current.vpPath()
current.transform()

Arguments

vp A Grid viewport object. Use of this argument has been deprecated.

all A logical value indicating whether the entire viewport tree should be returned.

Details

If all is FALSE then current.vpTree only returns the subtree below the current viewport.

Value

A Grid viewport object from current.viewport or current.vpTree.

current.transform returns a 4x4 transformation matrix.

The viewport path returned by current.vpPath is NULL if the current viewport is the ROOT
viewport

Author(s)

Paul Murrell

See Also

viewport

Examples

grid.newpage()
pushViewport(viewport(width=0.8, height=0.8, name="A"))
pushViewport(viewport(x=0.1, width=0.3, height=0.6,
just="left", name="B"))

upViewport(1)
pushViewport(viewport(x=0.5, width=0.4, height=0.8,

just="left", name="C"))

852 unit

pushViewport(viewport(width=0.8, height=0.8, name="D"))
current.vpPath()
upViewport(1)
current.vpPath()
current.vpTree()
current.viewport()
current.vpTree(all=FALSE)
popViewport(0)

stringWidth Create a Unit Describing the Width of a String

Description

These functions create a unit object describing the width or height of a string.

Usage

stringWidth(string)
stringHeight(string)

Arguments

string A character vector.

Value

A unit object.

Author(s)

Paul Murrell

See Also

unit and grobWidth

unit Function to Create a Unit Object

Description

This function creates a unit object — a vector of unit values. A unit value is typically just a single
numeric value with an associated unit.

Usage

unit(x, units, data=NULL)

unit 853

Arguments

x A numeric vector.

units A character vector specifying the units for the corresponding numeric values.

data This argument is used to supply extra information for special unit types.

Details

Unit objects allow the user to specify locations and dimensions in a large number of different coor-
dinate systems. All drawing occurs relative to a viewport and the units specifies what coordinate
system to use within that viewport.

Possible units (coordinate systems) are:

"npc" Normalised Parent Coordinates (the default). The origin of the viewport is (0, 0) and the
viewport has a width and height of 1 unit. For example, (0.5, 0.5) is the centre of the viewport.

"cm" Centimetres.

"inches" Inches. 1 in = 2.54 cm.

"mm" Millimetres. 10 mm = 1 cm.

"points" Points. 72.27 pt = 1 in.

"picas" Picas. 1 pc = 12 pt.

"bigpts" Big Points. 72 bp = 1 in.

"dida" Dida. 1157 dd = 1238 pt.

"cicero" Cicero. 1 cc = 12 dd.

"scaledpts" Scaled Points. 65536 sp = 1 pt.

"lines" Lines of text. Locations and dimensions are in terms of multiples of the default text size
of the viewport (as specified by the viewport’s fontsize and lineheight).

"char" Multiples of nominal font height of the viewport (as specified by the viewport’s
fontsize).

"native" Locations and dimensions are relative to the viewport’s xscale and yscale.

"snpc" Square Normalised Parent Coordinates. Same as Normalised Parent Coordinates, except
gives the same answer for horizontal and vertical locations/dimensions. It uses the lesser of
npc-width and npc-height. This is useful for making things which are a proportion of the
viewport, but have to be square (or have a fixed aspect ratio).

"strwidth" Multiples of the width of the string specified in the data argument. The font size
is determined by the pointsize of the viewport.

"strheight" Multiples of the height of the string specified in the data argument. The font
size is determined by the pointsize of the viewport.

"grobwidth" Multiples of the width of the grob specified in the data argument.

"grobheight" Multiples of the height of the grob specified in the data argument.

A special units value of "null" is also allowed, but only makes sense when used in specifying
widths of columns or heights of rows in grid layouts (see grid.layout).

The data argument must be a list when the unit.length() is greater than 1. For exam-
ple, unit(rep(1, 3), c("npc", "strwidth", "inches"), data=list(NULL,
"my string", NULL)).

It is possible to subset unit objects in the normal way (e.g., unit(1:5, "npc")[2:4]), but a
special function unit.c is provided for combining unit objects.

854 unit.c

Certain arithmetic and summary operations are defined for unit objects. In particular, it is possible
to add and subtract unit objects (e.g., unit(1, "npc") - unit(1, "inches")), and to
specify the minimum or maximum of a list of unit objects (e.g., min(unit(0.5, "npc"),
unit(1, "inches"))).

Value

An object of class "unit".

WARNING

There is a special function unit.c for concatenating several unit objects.

The c function will not give the right answer.

There used to be "mylines", "mychar", "mystrwidth", "mystrheight" units. These
will still be accepted, but work exactly the same as "lines", "char", "strwidth",
"strheight".

Author(s)

Paul Murrell

See Also

unit.c

Examples

unit(1, "npc")
unit(1:3/4, "npc")
unit(1:3/4, "npc") + unit(1, "inches")
min(unit(0.5, "npc"), unit(1, "inches"))
unit.c(unit(0.5, "npc"), unit(2, "inches") + unit(1:3/4, "npc"),

unit(1, "strwidth", "hi there"))

unit.c Combine Unit Objects

Description

This function produces a new unit object by combining the unit objects specified as arguments.

Usage

unit.c(...)

Arguments

... An arbitrary number of unit objects.

Value

An object of class unit.

unit.length 855

Author(s)

Paul Murrell

See Also

unit.

unit.length Length of a Unit Object

Description

The length of a unit object is defined as the number of unit values in the unit object.

This function has been deprecated in favour of a unit method for the generic length function.

Usage

unit.length(unit)

Arguments

unit A unit object.

Value

An integer value.

Author(s)

Paul Murrell

See Also

unit

Examples

length(unit(1:3, "npc"))
length(unit(1:3, "npc") + unit(1, "inches"))
length(max(unit(1:3, "npc") + unit(1, "inches")))
length(max(unit(1:3, "npc") + unit(1, "strwidth", "a"))*4)
length(unit(1:3, "npc") + unit(1, "strwidth", "a")*4)

856 unit.rep

unit.pmin Parallel Unit Minima and Maxima

Description

Returns a unit object whose i’th value is the minimum (or maximum) of the i’th values of the
arguments.

Usage

unit.pmin(...)
unit.pmax(...)

Arguments

... One or more unit objects.

Details

The length of the result is the maximum of the lengths of the arguments; shorter arguments are
recycled in the usual manner.

Value

A unit object.

Author(s)

Paul Murrell

Examples

max(unit(1:3, "cm"), unit(0.5, "npc"))
unit.pmax(unit(1:3, "cm"), unit(0.5, "npc"))

unit.rep Replicate Elements of Unit Objects

Description

Replicates the units according to the values given in times and length.out.

This function has been deprecated in favour of a unit method for the generic rep function.

Usage

unit.rep(x, ...)

Arguments

x An object of class "unit".

... arguments to be passed to rep such as times and length.out.

validDetails 857

Value

An object of class "unit".

Author(s)

Paul Murrell

See Also

rep

Examples

rep(unit(1:3, "npc"), 3)
rep(unit(1:3, "npc"), 1:3)
rep(unit(1:3, "npc") + unit(1, "inches"), 3)
rep(max(unit(1:3, "npc") + unit(1, "inches")), 3)
rep(max(unit(1:3, "npc") + unit(1, "strwidth", "a"))*4, 3)
rep(unit(1:3, "npc") + unit(1, "strwidth", "a")*4, 3)

validDetails Customising grid grob Validation

Description

This generic hook function is called whenever a grid grob is created or edited via grob, gTree,
grid.edit or editGrob. This provides an opportunity for customising the validation of a new
class derived from grob (or gTree).

Usage

validDetails(x)

Arguments

x A grid grob.

Details

This function is called by grob, gTree, grid.edit and editGrob. A method should be
written for classes derived from grob or gTree to validate the values of slots specific to the new
class. (e.g., see grid:::validDetails.axis).

Note that the standard slots for grobs and gTrees are automatically validated (e.g., vp, gp slots for
grobs and, in addition, children, and childrenvp slots for gTrees) so only slots specific to a
new class need to be addressed.

Value

The function MUST return the validated grob.

Author(s)

Paul Murrell

858 vpPath

See Also

grid.edit

vpPath Concatenate Viewport Names

Description

This function can be used to generate a viewport path for use in downViewport or
seekViewport.

A viewport path is a list of nested viewport names.

Usage

vpPath(...)

Arguments

... Character values which are viewport names.

Details

Viewport names must only be unique amongst viewports which share the same parent in the view-
port tree.

This function can be used to generate a specification for a viewport that includes the viewport’s
parent’s name (and the name of its parent and so on).

For interactive use, it is possible to directly specify a path, but it is strongly recommended that this
function is used otherwise in case the path separator is changed in future versions of grid.

Value

A vpPath object.

See Also

viewport, pushViewport, popViewport, downViewport, seekViewport,
upViewport

Examples

vpPath("vp1", "vp2")

widthDetails 859

widthDetails Width and Height of a grid grob

Description

These generic functions are used to determine the size of grid grobs.

Usage

widthDetails(x)
heightDetails(x)

Arguments

x A grid grob.

Details

These functions are called in the calculation of "grobwidth" and "grobheight" units. Meth-
ods should be written for classes derived from grob or gTree where the size of the grob can be
determined (see, for example grid:::widthDetails.frame).

Value

A unit object.

Author(s)

Paul Murrell

See Also

absolute.size.

Working with Viewports
Maintaining and Navigating the Grid Viewport Tree

Description

Grid maintains a tree of viewports — nested drawing contexts.

These functions provide ways to add or remove viewports and to navigate amongst viewports in the
tree.

Usage

pushViewport(..., recording=TRUE)
popViewport(n, recording=TRUE)
downViewport(name, strict=FALSE, recording=TRUE)
seekViewport(name, recording=TRUE)
upViewport(n, recording=TRUE)

860 Working with Viewports

Arguments

... One or more objects of class "viewport".

n An integer value indicating how many viewports to pop or navigate up. The spe-
cial value 0 indicates to pop or navigate viewports right up to the root viewport.

name A character value to identify a viewport in the tree.

strict A boolean indicating whether the vpPath must be matched exactly.

recording A logical value to indicate whether the viewport operation should be recorded
on the Grid display list.

Details

Objects created by the viewport() function are only descriptions of a drawing context. A view-
port object must be pushed onto the viewport tree before it has any effect on drawing.

The viewport tree always has a single root viewport (created by the system) which corresponds to
the entire device (and default graphical parameter settings). Viewports may be added to the tree
using pushViewport() and removed from the tree using popViewport().

There is only ever one current viewport, which is the current position within the viewport tree. All
drawing and viewport operations are relative to the current viewport. When a viewport is pushed it
becomes the current viewport. When a viewport is popped, the parent viewport becomes the current
viewport. Use upViewport to navigate to the parent of the current viewport, without removing
the current viewport from the viewport tree. Use downViewport to navigate to a viewport further
down the viewport tree and seekViewport to navigate to a viewport anywhere else in the tree.

If a viewport is pushed and it has the same name as a viewport at the same level in the tree, then it
replaces the existing viewport in the tree.

Value

downViewport returns the number of viewports it went down.

This can be useful for returning to your starting point by doing something like depth <-
downViewport() then upViewport(depth).

Author(s)

Paul Murrell

See Also

viewport and vpPath.

Examples

push the same viewport several times
grid.newpage()
vp <- viewport(width=0.5, height=0.5)
pushViewport(vp)
grid.rect(gp=gpar(col="blue"))
grid.text("Quarter of the device",
y=unit(1, "npc") - unit(1, "lines"), gp=gpar(col="blue"))

pushViewport(vp)
grid.rect(gp=gpar(col="red"))
grid.text("Quarter of the parent viewport",

Working with Viewports 861

y=unit(1, "npc") - unit(1, "lines"), gp=gpar(col="red"))
popViewport(2)
push several viewports then navigate amongst them
grid.newpage()
grid.rect(gp=gpar(col="grey"))
grid.text("Top-level viewport",

y=unit(1, "npc") - unit(1, "lines"), gp=gpar(col="grey"))
if (interactive()) Sys.sleep(1.0)
pushViewport(viewport(width=0.8, height=0.7, name="A"))
grid.rect(gp=gpar(col="blue"))
grid.text("1. Push Viewport A",

y=unit(1, "npc") - unit(1, "lines"), gp=gpar(col="blue"))
if (interactive()) Sys.sleep(1.0)
pushViewport(viewport(x=0.1, width=0.3, height=0.6,

just="left", name="B"))
grid.rect(gp=gpar(col="red"))
grid.text("2. Push Viewport B (in A)",

y=unit(1, "npc") - unit(1, "lines"), gp=gpar(col="red"))
if (interactive()) Sys.sleep(1.0)
upViewport(1)
grid.text("3. Up from B to A",

y=unit(1, "npc") - unit(2, "lines"), gp=gpar(col="blue"))
if (interactive()) Sys.sleep(1.0)
pushViewport(viewport(x=0.5, width=0.4, height=0.8,

just="left", name="C"))
grid.rect(gp=gpar(col="green"))
grid.text("4. Push Viewport C (in A)",

y=unit(1, "npc") - unit(1, "lines"), gp=gpar(col="green"))
if (interactive()) Sys.sleep(1.0)
pushViewport(viewport(width=0.8, height=0.6, name="D"))
grid.rect()
grid.text("5. Push Viewport D (in C)",

y=unit(1, "npc") - unit(1, "lines"))
if (interactive()) Sys.sleep(1.0)
upViewport(0)
grid.text("6. Up from D to top-level",

y=unit(1, "npc") - unit(2, "lines"), gp=gpar(col="grey"))
if (interactive()) Sys.sleep(1.0)
downViewport("D")
grid.text("7. Down from top-level to D",

y=unit(1, "npc") - unit(2, "lines"))
if (interactive()) Sys.sleep(1.0)
seekViewport("B")
grid.text("8. Seek from D to B",

y=unit(1, "npc") - unit(2, "lines"), gp=gpar(col="red"))
pushViewport(viewport(width=0.9, height=0.5, name="A"))
grid.rect()
grid.text("9. Push Viewport A (in B)",

y=unit(1, "npc") - unit(1, "lines"))
if (interactive()) Sys.sleep(1.0)
seekViewport("A")
grid.text("10. Seek from B to A (in ROOT)",

y=unit(1, "npc") - unit(3, "lines"), gp=gpar(col="blue"))
if (interactive()) Sys.sleep(1.0)
seekViewport(vpPath("B", "A"))
grid.text("11. Seek from\nA (in ROOT)\nto A (in B)")
popViewport(0)

862 xDetails

xDetails Boundary of a grid grob

Description

These generic functions are used to determine a location on the boundary of a grid grob.

Usage

xDetails(x, theta)
yDetails(x, theta)

Arguments

x A grid grob.

theta A numeric angle, in degrees, measured anti-clockwise from the 3 o’clock or one
of the following character strings: "north", "east", "west", "south".

Details

The location on the grob boundary is determined by taking a line from the centre of the grob at the
angle theta and intersecting it with the convex hull of the grob (for the basic grob primitives, the
centre is determined as half way between the minimum and maximum values in x and y directions).

These functions are called in the calculation of "grobx" and "groby" units as produced by the
grobX and grobY functions. Methods should be written for classes derived from grob or gTree
where the boundary of the grob can be determined.

Value

A unit object.

Author(s)

Paul Murrell

See Also

grobX, grobY.

Chapter 6

The methods package

methods-package Formal Methods and Classes

Description

Formally defined methods and classes for R objects, plus other programming tools, as described in
the references.

Details

This package provides the ‘S4’ or ‘S version 4’ approach to methods and classes in a functional
language.

See the documentation entries Classes, Methods, and GenericFunctions for general dis-
cussion of these topics, at a fairly technical level. Links from those pages, and the documentation
of setClass and setMethod cover the main programming tools needed.

For a complete list of functions and classes, use library(help="methods").

Author(s)

R Development Core Team

Maintainer: R Core Team 〈R-core@r-project.org〉

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

863

864 as

.BasicFunsList List of Builtin and Special Functions

Description

A named list providing instructions for turning builtin and special functions into generic functions.

Functions in R that are defined as .Primitive(<name>) are not suitable for formal methods,
because they lack the basic reflectance property. You can’t find the argument list for these functions
by examining the function object itself.

Future versions of R may fix this by attaching a formal argument list to the corresponding function.
While generally the names of arguments are not checked by the internal code implementing the
function, the number of arguments frequently is.

In any case, some definition of a formal argument list is needed if users are to define methods for
these functions. In particular, if methods are to be merged from multiple packages, the different
sets of methods need to agree on the formal arguments.

In the absence of reflectance, this list provides the relevant information via a dummy function
associated with each of the known specials for which methods are allowed.

At the same, the list flags those specials for which methods are meaningless (e.g., for) or just a
very bad idea (e.g., .Primitive).

A generic function created via setMethod, for example, for one of these special functions will
have the argument list from .BasicFunsList. If no entry exists, the argument list (x, ...)
is assumed.

as Force an Object to Belong to a Class

Description

These functions manage the relations that allow coercing an object to a given class.

Usage

as(object, Class, strict=TRUE, ext)

as(object, Class) <- value

setAs(from, to, def, replace, where = topenv(parent.frame()))

Arguments

object any R object.

Class the name of the class to which object should be coerced.

as 865

strict logical flag. If TRUE, the returned object must be strictly from the target class
(unless that class is a virtual class, in which case the object will be from the
closest actual class, in particular the original object, if that class extends the
virtual class directly).

If strict = FALSE, any simple extension of the target class will be returned,
without further change. A simple extension is, roughly, one that just adds slots
to an existing class.

value The value to use to modify object (see the discussion below). You should
supply an object with class Class; some coercion is done, but you’re unwise
to rely on it.

from, to The classes between which the coerce methods def and replace perform
coercion.

def function of one argument. It will get an object from class from and had better
return an object of class to. The convention is that the name of the argument
is from; if another argument name is used, setAs will attempt to substitute
from.

replace if supplied, the function to use as a replacement method, when as is used on the
left of an assignment. Should be a function of two arguments, from, value,
although setAs will attempt to substitute if the arguments differ.

where the position or environment in which to store the resulting methods. For most
applications, it is recommended to omit this argument and to include the call to
setAs in source code that is evaluated at the top level; that is, either in an R
session by something equivalent to a call to source, or as part of the R source
code for a package.

ext the optional object defining how Class is extended by the class of the object
(as returned by possibleExtends). This argument is used internally (to
provide essential information for non-public classes), but you are unlikely to
want to use it directly.

Summary of Functions

as: Returns the version of this object coerced to be the given Class. When used in the replace-
ment form on the left of an assignment, the portion of the object corresponding to Class is
replaced by value.

The operation of as() in either form depends on the definition of coerce methods. Methods
are defined automatically when the two classes are related by inheritance; that is, when one of
the classes is a subclass of the other. See the section on inheritance below for details.

Coerce methods are also predefined for basic classes (including all the types of vectors, func-
tions and a few others). See showMethods(coerce) for a list of these.

Beyond these two sources of methods, further methods are defined by calls to the setAs
function.

setAs: Define methods for coercing an object of class from to be of class to; the def argument
provides for direct coercing and the replace argument, if included, provides for replace-
ment. See the “How” section below for details.

coerce, coerce<-: Coerce from to be of the same class as to.

These functions should not be called explicitly. The function setAs creates methods for them
for the as function to use.

866 as

Inheritance and Coercion

Objects from one class can turn into objects from another class either automatically or by an explicit
call to the as function. Automatic conversion is special, and comes from the designer of one class
of objects asserting that this class extends another class. The most common case is that one or more
class names are supplied in the contains= argument to setClass, in which case the new class
extends each of the earlier classes (in the usual terminology, the earlier classes are superclasses of
the new class and it is a subclass of each of them).

This form of inheritance is called simple inheritance in R. See setClass for details. Inheritance
can also be defined explicitly by a call to setIs. The two versions have slightly different implica-
tions for coerce methods. Simple inheritance implies that inherited slots behave identically in the
subclass and the superclass. Whenever two classes are related by simple inheritance, corresponding
coerce methods are defined for both direct and replacement use of as. In the case of simple inheri-
tance, these methods do the obvious computation: they extract or replace the slots in the object that
correspond to those in the superclass definition.

The implicitly defined coerce methods may be overridden by a call to setAs; note, however, that
the implicit methods are defined for each subclass-superclass pair, so that you must override each
of these explicitly, not rely on inheritance.

When inheritance is defined by a call to setIs, the coerce methods are provided explicitly, not
generated automatically. Inheritance will apply (to the from argument, as described in the section
below). You could also supply methods via setAs for non-inherited relationships, and now these
also can be inherited.

For further on the distinction between simple and explicit inheritance, see setIs.

How Functions ‘as’ and ‘setAs’ Work

The function as turns object into an object of class Class. In doing so, it applies a “co-
erce method”, using S4 classes and methods, but in a somewhat special way. Coerce methods are
methods for the function coerce or, in the replacement case the function ‘coerce<-‘. These
functions have two arguments in method signatures, from and to, corresponding to the class of
the object and the desired coerce class. These functions must not be called directly, but are used
to store tables of methods for the use of as, directly and for replacements. In this section we will
describe the direct case, but except where noted the replacement case works the same way, using
‘coerce<-‘ and the replace argument to setAs, rather than coerce and the def argument.

Assuming the object is not already of the desired class, as first looks for a method in the table
of methods for the function coerce for the signature c(from = class(object), to =
Class), in the same way method selection would do its initial lookup. To be precise, this means
the table of both direct and inherited methods, but inheritance is used specially in this case (see
below).

If no method is found, as looks for one. First, if either Class or class(object) is a superclass
of the other, the class definition will contain the information needed to construct a coerce method.
In the usual case that the subclass contains the superclass (i.e., has all its slots), the method is
constructed either by extracting or replacing the inherited slots. Non-simple extensions (the result
of a call to setIs) will usually contain explicit methods, though possibly not for replacement.

If no subclass/superclass relationship provides a method, as looks for an inherited method, but
applying, inheritance for the argument from only, not for the argument to (if you think about it,
you’ll probably agree that you wouldn’t want the result to be from some class other than the Class
specified). Thus, selectMethod("coerce", sig, useInherited= c(from=TRUE,
to= FALSE)) replicates the method selection used by as().

In nearly all cases the method found in this way will be cached in the table of coerce methods (the
exception being subclass relationships with a test, which are legal but discouraged). So the detailed

as 867

calculations should be done only on the first occurrence of a coerce from class(object) to
Class.

With this explanation as background, the function setAs does a fairly obvious computation: It
constructs and sets a method for the function coerce with signature c(from, to), using the
def argument to define the body of the method. The function supplied as def can have one
argument (interpreted as an object to be coerced) or two arguments (the from object and the to
class). Either way, setAs constructs a function of two arguments, with the second defaulting to
the name of the to class. The method will be called from as with the object as the from argument
and no to argument, with the default for this argument being the name of the intended to class, so
the method can use this information in messages.

The direct version of the as function also has a strict= argument that defaults to TRUE. Calls
during the evaluation of methods for other functions will set this argument to FALSE. The dis-
tinction is relevant when the object being coerced is from a simple subclass of the to class; if
strict=FALSE in this case, nothing need be done. For most user-written coerce methods, when
the two classes have no subclass/superclass, the strict= argument is irrelevant.

The replace argument to setAs provides a method for ‘coerce<-‘. As with all replacement
methods, the last argument of the method must have the name value for the object on the right of
the assignment. As with the coerce method, the first two arguments are from, to; there is no
strict= option for the replace case.

The function coerce exists as a repository for such methods, to be selected as described above
by the as function. Actually dispatching the methods using standardGeneric could produce
incorrect inherited methods, by using inheritance on the to argument; as mentioned, this is not the
logic used for as. To prevent selecting and caching invalid methods, calls to coerce are currently
mapped into calls to as, with a warning message.

Basic Coercion Methods

Methods are pre-defined for coercing any object to one of the basic datatypes. For example, as(x,
"numeric") uses the existing as.numeric function. These built-in methods can be listed by
showMethods("coerce").

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

If you think of using try(as(x, cl)), consider canCoerce(x, cl) instead.

Examples

using the definition of class "track" from Classes

setAs("track", "numeric", function(from) from@y)

t1 <- new("track", x=1:20, y=(1:20)^2)

as(t1, "numeric")

868 BasicClasses

The next example shows:
1. A virtual class to define setAs for several classes at once.
2. as() using inherited information

setClass("ca", representation(a = "character", id = "numeric"))

setClass("cb", representation(b = "character", id = "numeric"))

setClass("id")
setIs("ca", "id")
setIs("cb", "id")

setAs("id", "numeric", function(from) from@id)

CA <- new("ca", a = "A", id = 1)
CB <- new("cb", b = "B", id = 2)

setAs("cb", "ca", function(from, to)new(to, a=from@b, id = from@id))

as(CB, "numeric")

BasicClasses Classes Corresponding to Basic Data Types

Description

Formal classes exist corresponding to the basic R object types, allowing these types to be used in
method signatures, as slots in class definitions, and to be extended by new classes.

Usage

The following are all basic vector classes.
They can appear as class names in method signatures,
in calls to as(), is(), and new().
"character"
"complex"
"double"
"expression"
"integer"
"list"
"logical"
"numeric"
"single"
"raw"

the class
"vector"
is a virtual class, extended by all the above

the class
"S4"

callGeneric 869

is an object type for S4 objects that do not extend
any of the basic vector classes. It is a virtual class.

The following are additional basic classes
"NULL" # NULL objects
"function" # function objects, including primitives
"externalptr" # raw external pointers for use in C code

"ANY" # virtual classes used by the methods package itself
"VIRTUAL"
"missing"

Objects from the Classes

Objects can be created by calls of the form new(Class, ...), where Class is the quoted
class name, and the remaining arguments if any are objects to be interpreted as vectors of this class.
Multiple arguments will be concatenated.

The class "expression" is slightly odd, in that the . . . arguments will not be evaluated; therefore,
don’t enclose them in a call to quote().

Extends

Class "vector", directly.

Methods

coerce Methods are defined to coerce arbitrary objects to these classes, by calling the correspond-
ing basic function, for example, as(x, "numeric") calls as.numeric(x).

callGeneric Call the Current Generic Function from a Method

Description

A call to callGeneric can only appear inside a method definition. It then results in a call to the
current generic function. The value of that call is the value of callGeneric. While it can be
called from any method, it is useful and typically used in methods for group generic functions.

Usage

callGeneric(...)

Arguments

... Optionally, the arguments to the function in its next call.
If no arguments are included in the call to callGeneric, the effect is to call
the function with the current arguments. See the detailed description for what
this really means.

870 callGeneric

Details

The name and package of the current generic function is stored in the environment of the method
definition object. This name is looked up and the corresponding function called.

The statement that passing no arguments to callGeneric causes the generic function to be called
with the current arguments is more precisely as follows. Arguments that were missing in the current
call are still missing (remember that "missing" is a valid class in a method signature). For a
formal argument, say x, that appears in the original call, there is a corresponding argument in the
generated call equivalent to x = x. In effect, this means that the generic function sees the same
actual arguments, but arguments are evaluated only once.

Using callGeneric with no arguments is prone to creating infinite recursion, unless one of the
arguments in the signature has been modified in the current method so that a different method is
selected.

Value

The value returned by the new call.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

GroupGenericFunctions for other information about group generic functions; Methods for
the general behavior of method dispatch

Examples

the method for group generic function Ops
for signature(e1="structure", e2="vector")
function (e1, e2)
{

value <- callGeneric(e1@.Data, e2)
if (length(value) == length(e1)) {

e1@.Data <- value
e1

}
else value

}

For more examples
Not run:
showMethods("Ops", includeDefs = TRUE)
End(Not run)

callNextMethod 871

callNextMethod Call an Inherited Method

Description

A call to callNextMethod can only appear inside a method definition. It then results in a call to
the first inherited method after the current method, with the arguments to the current method passed
down to the next method. The value of that method call is the value of callNextMethod.

Usage

callNextMethod(...)

Arguments

... Optionally, the arguments to the function in its next call (but note that the dis-
patch is as in the detailed description below; the arguments have no effect on
selecting the next method.)
If no arguments are included in the call to callNextMethod, the effect is
to call the method with the current arguments. See the detailed description for
what this really means.
Calling with no arguments is often the natural way to use callNextMethod;
see the examples.

Details

The ‘next’ method (i.e., the first inherited method) is defined to be that method which would have
been called if the current method did not exist. This is more-or-less literally what happens: The
current method (to be precise, the method with signature given by the defined slot of the method
from which callNextMethod is called) is deleted from a copy of the methods for the current
generic, and selectMethod is called to find the next method (the result is cached in a special
object, so the search only typically happens once per session per combination of argument classes).

Note that the preceding definition means that the next method is defined uniquely when
setMethod inserts the method containing the callNextMethod call, given the definitions of
the classes in the signature. The choice does not depend on the path that gets us to that method
(for example, through inheritance or from another callNextMethod call). This definition was
not enforced in versions of R prior to 2.3.0, where the method was selected based on the target
signature, and so could vary depending on the actual arguments.

It is also legal, and often useful, for the method called by callNextMethod to itself have a
call to callNextMethod. This generally works as you would expect, but for completeness be
aware that it is possible to have ambiguous inheritance in the S structure, in the sense that the same
two classes can appear as superclasses in the opposite order in two other class definitions. In this
case the effect of a nested instance of callNextMethod is not well defined. Such inconsistent
class hierarchies are both rare and nearly always the result of bad design, but they are possible, and
currently undetected.

The statement that the method is called with the current arguments is more precisely as follows.
Arguments that were missing in the current call are still missing (remember that "missing" is
a valid class in a method signature). For a formal argument, say x, that appears in the original
call, there is a corresponding argument in the next method call equivalent to x = x. In effect, this
means that the next method sees the same actual arguments, but arguments are evaluated only once.

872 callNextMethod

Value

The value returned by the selected method.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

callGeneric to call the generic function with the current dispatch rules (typically for a group
generic function); Methods for the general behavior of method dispatch

Examples

some class definitions with simple inheritance
setClass("B0" , representation(b0 = "numeric"))

setClass("B1", representation(b1 = "character"), contains = "B0")

setClass("B2", representation(b2 = "logical"), contains = "B1")

and a rather silly function to illustrate callNextMethod

f <- function(x) class(x)

setMethod("f", "B0", function(x) c(x@b0^2, callNextMethod()))
setMethod("f", "B1", function(x) c(paste(x@b1,":"), callNextMethod()))
setMethod("f", "B2", function(x) c(x@b2, callNextMethod()))

b1 <- new("B1", b0 = 2, b1 = "Testing")

b2 <- new("B2", b2 = FALSE, b1 = "More testing", b0 = 10)

f(b2)
stopifnot(identical(f(b2), c(b2@b2, paste(b2@b1,":"), b2@b0^2, "B2")))

f(b1)

a sneakier method: the *changed* x is used:
setMethod("f", "B2", function(x) {x@b0 <- 111; c(x@b2, callNextMethod())})
f(b2)
stopifnot(identical(f(b2), c(b2@b2, paste(b2@b1,":"), 111^2, "B2")))

canCoerce 873

canCoerce Can an Object be Coerced to a Certain S4 Class?

Description

Test if an object can be coerced to a given S4 class. Maybe useful inside if() to ensure that calling
as(object, Class) will find a method.

Usage

canCoerce(object, Class)

Arguments

object any R object, typically of a formal S4 class.

Class an S4 class (see isClass).

Value

a scalar logical, TRUE if there is a coerce method (as defined by setAs, e.g.) for the signature
(from = class(object), to = Class).

See Also

as, setAs, selectMethod, setClass,

Examples

m <- matrix(pi, 2,3)
canCoerce(m, "numeric") # TRUE
canCoerce(m, "array") # TRUE

cbind2 Combine two Objects by Columns or Rows

Description

Combine two matrix-like R objects by columns (cbind2) or rows (rbind2). These are (S4)
generic functions with default methods.

Usage

cbind2(x, y)
rbind2(x, y)

Arguments

x any R object, typically matrix-like.

y any R object, typically similar to x, or missing completely.

874 cbind2

Details

The main use of cbind2 (rbind2) is to be called by cbind() (rbind()) if these are acti-
vated. This allows cbind (rbind) to work for formally classed (aka ‘S4’) objects by providing
S4 methods for these objects. Currently, a call
methods:::bind_activation(TRUE)
is needed to install a cbind2-calling version of cbind (into the base name space) and the same
for rbind.
methods:::bind_activation(FALSE) reverts to the previous internal version of cbind
which does not build on cbind2, see the examples.

Value

A matrix (or matrix like object) combining the columns (or rows) of x and y.

Methods

x = "ANY", y = "ANY" the default method using R’s internal code.

x = "ANY", y = "missing" the default method for one argument using R’s internal code.

See Also

cbind, rbind.

Examples

cbind2(1:3, 4)
m <- matrix(3:8, 2,3, dimnames=list(c("a","b"), LETTERS[1:3]))
cbind2(1:2, m) # keeps dimnames from m

Note: Use the following activation if you want cbind() to work
---- on S4 objects -- be careful otherwise!

methods:::bind_activation(on = TRUE)
trace("cbind2")
cbind(a=1:3)# no call to cbind2()
cbind(a=1:3, four=4, 7:9)# calling cbind2() twice
untrace("cbind2")

The following fails currently,
since cbind() works recursively from the tail:
try(cbind(m, a=1, b=3))

turn off the `special cbind()' :
methods:::bind_activation(FALSE)

Classes 875

Classes Class Definitions

Description

Class definitions are objects that contain the formal definition of a class of R objects, usually re-
ferred to as an S4 class, to distinguish them from the informal S3 classes. This document gives
an overview of S4 classes; for details of the class representation objects, see help for the class
classRepresentation.

Metadata Information

When a class is defined, an object is stored that contains the information about that class. The
object, known as the metadata defining the class, is not stored under the name of the class (to allow
programmers to write generating functions of that name), but under a specially constructed name.
To examine the class definition, call getClass. The information in the metadata object includes:

Slots: The data contained in an object from an S4 class is defined by the slots in the class definition.
Each slot in an object is a component of the object; like components (that is, elements) of a
list, these may be extracted and set, using the function slot() or more often the operator
"@". However, they differ from list components in important ways. First, slots can only be
referred to by name, not by position, and there is no partial matching of names as with list
elements.
All the objects from a particular class have the same set of slot names; specifically, the slot
names that are contained in the class definition. Each slot in each object always is an object of
the class specified for this slot in the definition of the current class. The word “is” corresponds
to the R function of the same name (is), meaning that the class of the object in the slot must
be the same as the class specified in the definition, or some class that extends the one in the
definition (a subclass).
One class name is special, .Data. This stands for the ‘data part’ of the object. Any class
that contains one of the basic object types in R, has implicitly a corresponding .Data slot of
that type, allowing computations to extract or replace the data part while leaving other slots
unchanged. The .Data slot also determines the type of the object; if x has a .Data slot,
the type of the slot is the type of the object (that is, the value of typeof(x)). Extending a
basic type this way allows objects to use old-style code for the corresponding type as well as
S4 methods. Any basic type can be used for .Data, with the exception of a few that do not
behave like ordinary objects; namely, "NULL", environments, and external pointers.
There is one additional use of the data part, which is also an exception to the correspondence
with the object’s type. The exception arises from the special treatment of matrix and array
“classes” in R. Matrix and array objects are managed internally and recognized without regard
to any class attribute; therefore, they can be used as the data part of a new class. In this case,
the object type for the new class depends on the type of the data in the matrix or array.
If the new class does not have a data part as described above, the type of objects from the new
class is "S4".

Superclasses: The definition of a class includes the superclasses —the classes that this class ex-
tends. A class Fancy, say, extends a class Simple if an object from the Fancy class has
all the capabilities of the Simple class (and probably some more as well). In particular, and
very usefully, any method defined to work for a Simple object can be applied to a Fancy
object as well.

876 Classes

This relationship is expressed equivalently by saying that Simple is a superclass of Fancy,
or that Fancy is a subclass of Simple.
The direct superclasses of a class are those superclasses explicitly defined. Direct superclasses
can be defined in three ways. Most commonly, the superclasses are listed in the contains=
argument in the call to setClass that creates the subclass. In this case the subclass will
contain all the slots of the superclass, and the relation between the class is called simple, as
it in fact is. Superclasses can also be defined explicitly by a call to setIs; in this case, the
relation requires methods to be specified to go from subclass to superclass. Thirdly, a class
union is a superclass of all the members of the union. In this case too the relation is simple,
but notice that the relation is defined when the superclass is created, not when the subclass is
created as with the contains= mechanism.
The definition of a superclass will also potentially contain its own direct superclasses. These
are considered (and shown) as superclasses at distance 2 from the original class; their direct
superclasses are at distance 3, and so on. All these are legitimate superclasses for purposes
such as method selection.
When superclasses are defined by including the names of superclasses in the contains=
argument to setClass, an object from the class will have all the slots defined for its own
class and all the slots defined for all its superclasses as well.
The information about the relation between a class and a particular superclass is encoded
as an object of class SClassExtension. A list of such objects for the superclasses (and
sometimes for the subclasses) is included in the metadata object defining the class. If you
need to compute with these objects (for example, to compare the distances), call the function
extends with argument fullInfo=TRUE.

Prototype: The objects from a class, typically created by a call to new or by assigning another
object from the class, are defined by the prototype object for the class and by additional ar-
guments in the call to new, which are passed to a method for that class for the function
initialize.
Each class definition contains a prototype object for the class. This must have values for all
the slots defined by the class definition. By default, these are the prototypes of all the slot
classes, if those are not virtual classes. However, the definition of the class can specify any
valid object for any of the slots.

Virtual classes; Basic classes

Classes exist for which there are no actual objects, the virtual classes, in fact a very important
programming tool. They are used to group together ordinary classes that want to share some pro-
gramming behavior, without necessarily restricting how the behavior is implemented. Virtual class
definitions may if you want include slots (to provide some common behavior without fully defining
the object—see the class traceable for an example).

A simple and useful form of virtual class is the class union, a virtual class that is defined in a call to
setClassUnion by listing one or more of subclasses (classes that extend the class union). Class
unions can include as subclasses basic data types (whose definition is otherwise sealed).

There are a number of ‘basic’ classes, corresponding to the ordinary kinds of data occurring in R.
For example, "numeric" is a class corresponding to numeric vectors. The other vector basic
classes are "logical", "integer", "complex", "character", "raw", code"list" and
code"expression". The prototypes for the vector classes are vectors of length 0 of the corresponding
type. Notice that basic classes are unusual in that the prototype object is from the class itself.

In addition to the vector classes there are also basic classes corresponding to objects in the lan-
guage, such as "function" and "call". These classes are subclasses of the virtual class
"language". Finally, there are basic classes for specialized objects, such as "environment"

Classes 877

and "externalptr". The vector and language basic classes can be used as slots or as super-
classes for any other class definitions. The classes corresponding to other object types can be used
as slots but not always as superclasses, since many of them do not follow the functional behavior of
the language; in particular, they are not copied and so cannot have attributes or slots defined locally.

S3 Classes

Earlier, informal classes of objects (usually referred to as ‘S3’ classes) are used by many R func-
tions. It is natural to consider including them as the class for a slot in a formal class, or even as
a class to be extended by the new class. This isn’t prohibited but there are some disadvantages,
and if you do want to include S3 classes, they should be declared by including them in a call to
setOldClass. Here are some considerations:

• Using S3 classes somewhat defeats the purpose of defining a formal class: An important
advantage to your users is that a formal class provides guarantees of what the object contains
(minimally, the classes of the slots and therfore what data they contain; optionally, any other
requirements imposed by a validity method).
But there is no guarantee whatever about the data in an object from an S3 class. It’s entirely up
to the functions that create or modify such objects. If you want to provide guarantees to your
users, you will need a valdity method that explicitly checks the contents of S3-class objects.

• To get the minimal guarantee (that the object in a slot has, or extends, the class for the slot)
you should ensure that the S3 classes are known to be S3 classes, possibly with S inheritance.
To do this, include a call to setOldClass for the S3 classes used.
Otherwise, the S3 class is undefined (and the code used by setClass will issue a warning).
Slot assignments, for example, will not then check for possible errors.

• Current versions of R (beginning with 2.8.0) try to accommodate S4 classes that extend S3
classes, that is, those including an S3 class in the contains= argument to setClass
. Specifically, objects from such classes will contain the S3 class as a slot, and some
S3 computations will recognize the S3 class, including method dispatch and the function
inherits. See S3Class for details. The S3 classes must have been registered by a call to
setOldClass. The basic caution remains true however: There is no guarantee that all S3
computations will be compatible, and some are known not to be.

• These caveats apply to S3 classes; that is, objects with a class assigned by some R function
but without a formal class definition. In contrast, the built-in vector types (numeric, list,
etc.) are generally fine as slots or for contains= classes. These object types don’t have
formal slots, but the base code in the system essentially forces them to contain the type of data
they claim to have.
Objects with a “class” of matrix or array are somewhat in between. They do not have an
explicit S3 class, but do have one or two attributes. There is no general problem in having
these as slots, but because there is no guarantee of a dimnames slot, they don’t work as formal
classes. The ts class, although also ancient in the S language, is implemented in R essentially
as an S3 class, with the implications noted above—not suitable for a contains= argument—
but with a few S4 methods defined. See the documentation for class structure for more
details.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

Chambers, John M. and Hastie, Trevor J. eds (1992) Statistical Models in S. Wadsworth &
Brooks/Cole (Appendix A for S3 classes.)

878 classRepresentation-class

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (Out of print.) (The description of vectors, matrix, array and time-series objects.)

See Also

Methods for analogous discussion of methods, setClass for details of specifying class defini-
tions, is, as, new, slot

classRepresentation-class
Class Objects

Description

These are the objects that hold the definition of classes of objects. They are constructed and stored
as meta-data by calls to the function setClass. Don’t manipulate them directly, except perhaps
to look at individual slots.

Details

Class definitions are stored as metadata in various packages. Additional metadata supplies infor-
mation on inheritance (the result of calls to setIs). Inheritance information implied by the class
definition itself (because the class contains one or more other classes) is also constructed automati-
cally.

When a class is to be used in an R session, this information is assembled to complete the class
definition. The completion is a second object of class "classRepresentation", cached for
the session or until something happens to change the information. A call to getClass returns
the completed definition of a class; a call to getClassDef returns the stored definition (uncom-
pleted).

In particular, completion fills in the upward- and downward-pointing inheritance information for
the class, in slots contains and subclasses respectively. It’s in principle important to note
that this information can depend on which packages are installed, since these may define additional
subclasses or superclasses.

Slots

slots: A named list of the slots in this class; the elements of the list are the classes to which the
slots must belong (or extend), and the names of the list gives the corresponding slot names.

contains: A named list of the classes this class ‘contains’; the elements of the list are objects of
SClassExtension. The list may be only the direct extensions or all the currently known
extensions (see the details).

virtual: Logical flag, set to TRUE if this is a virtual class.

prototype: The object that represents the standard prototype for this class; i.e., the data and
slots returned by a call to new for this class with no special arguments. Don’t mess with the
prototype object directly.

validity: Optionally, a function to be used to test the validity of objects from this class. See
validObject.

access: Access control information. Not currently used.

className: The character string name of the class.

Documentation 879

package: The character string name of the package to which the class belongs. Nearly always the
package on which the metadata for the class is stored, but in operations such as constructing
inheritance information, the internal package name rules.

subclasses: A named list of the classes known to extend this class’; the elements of the list are
objects of class SClassExtension. The list is currently only filled in when completing
the class definition (see the details).

versionKey: Object of class "externalptr"; eventually will perhaps hold some versioning
information, but not currently used.

sealed: Object of class "logical"; is this class sealed? If so, no modifications are allowed.

See Also

See function setClass to supply the information in the class definition. See Classes for a more
basic discussion of class information.

Documentation Using and Creating On-line Documentation for Classes and Methods

Description

Special documentation can be supplied to describe the classes and methods that are created by the
software in the methods package. Techniques to access this documentation and to create it in R help
files are described here.

Getting documentation on classes and methods

You can ask for on-line help for class definitions, for specific methods for a generic function, and
for general discussion of methods for a generic function. These requests use the ? operator (see
help for a general description of the operator). Of course, you are at the mercy of the implementer
as to whether there is any documentation on the corresponding topics.

Documentation on a class uses the argument class on the left of the ?, and the name of the class
on the right; for example,

class ? genericFunction

to ask for documentation on the class "genericFunction".

When you want documentation for the methods defined for a particular function, you can ask either
for a general discussion of the methods or for documentation of a particular method (that is, the
method that would be selected for a particular set of actual arguments).

Overall methods documentation is requested by calling the ? operator with methods as the left-
side argument and the name of the function as the right-side argument. For example,

methods ? initialize

asks for documentation on the methods for the initialize function.

Asking for documentation on a particular method is done by giving a function call expression as the
right-hand argument to the "?" operator. There are two forms, depending on whether you prefer to
give the class names for the arguments or expressions that you intend to use in the actual call.

If you planned to evaluate a function call, say myFun(x, sqrt(wt)) and wanted to find out
something about the method that would be used for this call, put the call on the right of the "?"
operator:

880 Documentation

?myFun(x, sqrt(wt))

A method will be selected, as it would be for the call itself, and documentation for that method will
be requested. If myFun is not a generic function, ordinary documentation for the function will be
requested.

If you know the actual classes for which you would like method documentation, you can supply
these explicitly in place of the argument expressions. In the example above, if you want method
documentation for the first argument having class "maybeNumber" and the second "logical",
call the "?" operator, this time with a left-side argument method, and with a function call on the
right using the class names as arguments:

method ? myFun("maybeNumber", "logical")

Once again, a method will be selected, this time corresponding to the specified classes, and method
documentation will be requested. This version only works with generic functions.

The two forms each have advantages. The version with actual arguments doesn’t require you to
figure out (or guess at) the classes of the arguments. On the other hand, evaluating the arguments
may take some time, depending on the example. The version with class names does require you to
pick classes, but it’s otherwise unambiguous. It has a subtler advantage, in that the classes supplied
may be virtual classes, in which case no actual argument will have specifically this class. The class
"maybeNumber", for example, might be a class union (see the example for setClassUnion).

In either form, methods will be selected as they would be in actual computation, including use
of inheritance and group generic functions. See selectMethod for the details, since it is the
function used to find the appropriate method.

Writing Documentation for Methods

The on-line documentation for methods and classes uses some extensions to the R documentation
format to implement the requests for class and method documentation described above. See the
document Writing R Extensions for the available markup commands (you should have consulted
this document already if you are at the stage of documenting your software).

In addition to the specific markup commands to be described, you can create an initial, overall file
with a skeleton of documentation for the methods defined for a particular generic function:

promptMethods("myFun")

will create a file, ‘myFun-methods.Rd’ with a skeleton of documentation for the methods defined
for function myFun. The output from promptMethods is suitable if you want to describe all or
most of the methods for the function in one file, separate from the documentation of the generic
function itself. Once the file has been filled in and moved to the ‘man’ subdirectory of your source
package, requests for methods documentation will use that file, both for specific methods documen-
tation as described above, and for overall documentation requested by

methods ? myFun

You are not required to use promptMethods, and if you do, you may not want to use the entire
file created:

• If you want to document the methods in the file containing the documentation for the generic
function itself, you can cut-and-paste to move the \alias lines and the Methods section
from the file created by promptMethods to the existing file.

• On the other hand, if these are auxiliary methods, and you only want to document the added
or modified software, you should strip out all but the relevant \alias lines for the meth-
ods of interest, and remove all but the corresponding \item entries in the Methods sec-
tion. Note that in this case you will usually remove the first \alias line as well, since
that is the marker for general methods documentation on this function (in the example,
\alias{myfun-methods}).

dotsMethods 881

If you simply want to direct documentation for one or more methods to a particular R documentation
file, insert the appropriate alias.

dotsMethods The Use of "..." in Method Signatures

Description

The “. . . ” argument in R functions is treated specially, in that it matches zero, one or more actual
arguments (and so, objects). A mechanism has been added to R to allow “. . . ” as the signature
of a generic function. Methods defined for such functions will be selected and called when all the
arguments matching “. . . ” are from the specified class or from some subclass of that class.

Using "..." in a Signature

Beginning with version 2.8.0 of R, S4 methods can be dispatched (selected and called) correspond-
ing to the special argument “. . . ”. Currently, “. . . ” cannot be mixed with other formal arguments:
either the signature of the generic function is “. . . ” only, or it does not contain “. . . ”. (This restric-
tion may be lifted in a future version.)

Given a suitable generic function, methods are specified in the usual way by a call to setMethod.
The method definition must be written expecting all the arguments corresponding to “. . . ” to be
from the class specified in the method’s signature, or from a class that extends that class (i.e., a
subclass of that class).

Typically the methods will pass “. . . ” down to another function or will create a list of the arguments
and iterate over that. See the examples below.

When you have a computation that is suitable for more than one existing class, a convenient ap-
proach may be to define a union of these classes by a call to setClassUnion. See the example
below.

Method Selection and Dispatch for "..."

See Methods for a general discussion. The following assumes you have read the “Method Selection
and Dispatch” section of that documentation.

A method selecting on “. . . ” is specified by a single class in the call to setMethod. If all the actual
arguments corresponding to “. . . ” have this class, the corresponding method is selected directly.

Otherwise, the class of each argument and that class’ superclasses are computed, beginning with the
first “. . . ” argument. For the first argument, eligible methods are those for any of the classes. For
each succeeding argument that introduces a class not considered previously, the eligible methods
are further restricted to those matching the argument’s class or superclasses. If no further eligible
classes exist, the iteration breaks out and the default method, if any, is selected.

At the end of the iteration, one or more methods may be eligible. If more than one, the selection
looks for the method with the least distance to the actual arguments. For each argument, any inher-
ited method corresponds to a distance, available from the contains slot of the class definition.
Since the same class can arise for more than one argument, there may be several distances associ-
ated with it. Combining them is inevitably arbitrary: the current computation uses the minimum
distance. Thus, for example, if a method matched one argument directly, one as first generation
superclass and another as a second generation superclass, the distances are 0, 1 and 2. The current
selection computation would use distance 0 for this method. In particular, this selection criterion
tends to use a method that matches exactly one or more of the arguments’ class.

882 dotsMethods

As with ordinary method selection, there may be multiple methods with the same distance. A
warning message is issued and one of the methods is chosen (the first encountered, which in this
case is rather arbitrary).

Notice that, while the computation examines all arguments, the essential cost of dispatch goes up
with the number of distinct classes among the arguments, likely to be much smaller than the number
of arguments when the latter is large.

Implementation Details

Methods dispatching on “. . . ” were introduced in version 2.8.0 of R. The initial implementation of
the corresponding selection and dispatch is in an R function, for flexibility while the new mechanism
is being studied. In this implementation, a local version of setGeneric is inserted in the generic
function’s environment. The local version selects a method according to the criteria above and
calls that method, from the environment of the generic function. This is slightly different from the
action taken by the C implementation when “. . . ” is not involved. Aside from the extra computing
time required, the method is evaluated in a true function call, as opposed to the special context
constructed by the C version (which cannot be exactly replicated in R code.) However, situations
in which different computational results would be obtained have not been encountered so far, and
seem very unlikely.

Methods dispatching on arguments other than “. . . ” are cached by storing the inherited method in
the table of all methods, where it will be found on the next selection with the same combination of
classes in the actual arguments (but not used for inheritance searches). Methods based on “. . . ” are
also cached, but not found quite as immediately. As noted, the selected method depends only on the
set of classes that occur in the “. . . ” arguments. Each of these classes can appear one or more times,
so many combinations of actual argument classes will give rise to the same effective signature. The
selection computation first computes and sorts the distinct classes encountered. This gives a label
that will be cached in the table of all methods, avoiding any further search for inherited classes after
the first occurrence. A call to showMethods will expose such inherited methods.

The intention is that the “. . . ” features will be added to the standard C code when enough experience
with them has been obtained. It is possible that at the same time, combinations of “. . . ” with other
arguments in signatures may be supported.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

For the general discussion of methods, see Methods and links from there.

Examples

cc <- function(...)c(...)

setGeneric("cc")

setMethod("cc", "character", function(...)paste(...))

setClassUnion("Number", c("numeric", "complex"))

setMethod("cc", "Number", function(...) sum(...))

environment-class 883

setClass("cdate", contains = "character", representation(date = "Date"))

setClass("vdate", contains = "vector", representation(date = "Date"))

cd1 = new("cdate", "abcdef", date = Sys.Date())

cd2 = new("vdate", "abcdef", date = Sys.Date())

stopifnot(identical(cc(letters, character(), cd1), paste(letters, character(), cd1))) # the "character" method

stopifnot(identical(cc(letters, character(), cd2), c(letters, character(), cd2))) # the default, because "vdate" doesn't extend "character"

stopifnot(identical(cc(1:10, 1+1i), sum(1:10, 1+1i))) # the "Number" method

stopifnot(identical(cc(1:10, 1+1i, TRUE), c(1:10, 1+1i, TRUE))) # the default

stopifnot(identical(cc(), c())) # no arguments implies the default method

setGeneric("numMax", function(...)standardGeneric("numMax"))

setMethod("numMax", "numeric", function(...)max(...)) # won't work for complex data
setMethod("numMax", "Number", function(...) paste(...)) # should not be selecte w/o clomplex args

stopifnot(identical(numMax(1:10, pi, 1+1i), paste(1:10, pi, 1+1i)))
stopifnot(identical(numMax(1:10, pi, 1), max(1:10, pi, 1)))

try(numMax(1:10, pi, TRUE)) # should be an error: no default method

A generic version of paste(), dispatching on the "..." argument:
setGeneric("paste", signature = "...")

setMethod("paste", "Number", function(..., sep, collapse) c(...))

stopifnot(identical(paste(1:10, pi, 1), c(1:10, pi, 1)))

environment-class Class "environment"

Description

A formal class for R environments.

Objects from the Class

Objects can be created by calls of the form new("environment", ...). The arguments in
. . . , if any, should be named and will be assigned to the newly created environment.

Methods

coerce signature(from = "ANY", to = "environment"): calls
as.environment.

884 findClass

initialize signature(object = "environment"): Implements the assignments in the
new environment. Note that the object argument is ignored; a new environment is always
created, since environments are not protected by copying.

See Also

new.env

findClass Computations with Classes

Description

Functions to find and manipulate class definitions.

Usage

removeClass(Class, where)

isClass(Class, formal=TRUE, where)

getClasses(where, inherits = missing(where))

findClass(Class, where, unique = "")

resetClass(Class, classDef, where)

sealClass(Class, where)

Arguments

Class character string name for the class. The functions will usually take a class def-
inition instead of the string. To restrict the class to those defined in a particular
package, set the packageSlot of the character string.

where The environment in which to modify or remove the definition. Defaults to the
top-level environment of the calling function (the global environment for or-
dinary computations, but the environment or name space of a package in the
source for a package).
When searching for class definitions, where defines where to do the search,
and the default is to search from the top-level environment or name space of the
caller to this function.

unique if findClass expects a unique location for the class, unique is a character
string explaining the purpose of the search (and is used in warning and error
messages). By default, multiple locations are possible and the function always
returns a list.

inherits in a call to getClasses, should the value returned include all parent envi-
ronments of where, or that environment only? Defaults to TRUE if where is
omitted, and to FALSE otherwise.

formal Should a formal definition be required?
classDef For removeClass, the optional class definition (but usually it’s better for

Class to be the class definition, and to omit classDef).

findClass 885

Details

These are the functions that test and manipulate formal class definitions. Brief documentation is
provided below. See the references for an introduction and for more details.

removeClass: Remove the definition of this class, from the environment where if this argu-
ment is supplied; if not, removeClass will search for a definition, starting in the top-level
environment of the call to removeClass, and remove the (first) definition found.

isClass: Is this the name of a formally defined class? (Argument formal is for compatibility
and is ignored.)

getClasses: The names of all the classes formally defined on where. If called with no ar-
gument, all the classes visible from the calling function (if called from the top-level, all the
classes in any of the environments on the search list). The inherits argument can be used
to search a particular environment and all its parents, but usually the default setting is what
you want.

findClass: The list of environments or positions on the search list in which a class definition of
Class is found. If where is supplied, this is an environment (or name space) from which
the search takes place; otherwise the top-level environment of the caller is used. If unique
is supplied as a character string, findClass returns a single environment or position. By
default, it always returns a list. The calling function should select, say, the first element as a
position or environment for functions such as get.

If unique is supplied as a character string, findClass will warn if there is more than one
definition visible (using the string to identify the purpose of the call), and will generate an
error if no definition can be found.

resetClass: Reset the internal definition of a class. Causes the complete definition of the class
to be re-computed, from the representation and superclasses specified in the original call to
setClass.

This function is called when aspects of the class definition are changed. You would need to
call it explicitly if you changed the definition of a class that this class extends (but doing that
in the middle of a session is living dangerously, since it may invalidate existing objects).

sealClass: Seal the current definition of the specified class, to prevent further changes. It is
possible to seal a class in the call to setClass, but sometimes further changes have to be
made (e.g., by calls to setIs). If so, call sealClass after all the relevant changes have
been made.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

setClassUnion, Methods, makeClassRepresentation

886 findMethods

findMethods Descriptions of the Methods Defined for a Generic Function

Description

These functions convert the methods defined in a table for a generic function (as used for selection
of methods) into a list, for study or display, or provide other information summarizing the methods.

The function findMethods returns a list of the method definitions currently existing for generic
function f, limited to the methods defined in environment where if that argument is supplied and
possibly limited to those including one or more of the specified classes in the method signature.

The function findMethodSignatures returns a character matrix whose rows are the class
names from the signature of the corresponding methods; it operates either from a list returned by
findMethods, or by computing such a list itself, given the same arguments as findMethods .

The function hasMethods returns TRUE or FALSE according to whether there is a non-empty
table of methods for function f in the environment or search position where (or anywhere on the
search list if where is missing).

The function getMethods is an older alternative to findMethods , returning information in
the form of an object of class MethodsList, previously used for method dispatch. It is not rec-
ommended, since the object returned is usually less convenient than the value of findMethods.

Usage

findMethods(f, where, classes = character(), inherited = FALSE)
findMethodSignatures(..., target = TRUE, methods =)

hasMethods(f, where, package)

getMethods(f, where)

Arguments

f A generic function or the character-string name of one.

where Optionally, an environment or position on the search list to look for methods
metadata.
If where is missing, findMethods uses the current table of methods in the
generic function itself, and hasMethods looks for metadata anywhere in the
search list.

classes If supplied, only methods whose signatures contain at least one of the supplied
classes will be included in the value returned.

inherited Logical flag; if TRUE, the table of all methods, inherited or defined directly,
will be used; otherwise, only the methods explicitly defined. Option TRUE is
meaningful only if where is missing.

... In the call to findMethodSignatures, any arguments that might be given
to findMethods.

target Optional flag to findMethodSignatures; if TRUE, the signatures used
are the target signatures (the classes for which the method will be selected);
if FALSE, they will be the signatures are defined. The difference is only mean-
ingful if inherited is TRUE.

fixPre1.8 887

methods In the call to findMethodSignatures, an optional list of methods, presum-
ably returned by a previous call to findMethods. If missing, that function
will be call with the . . . arguments.

package In a call to hasMethods, the package name for the generic function (e.g.,
"base" for primitives). If missing this will be inferred either from the
"package" attribute of the function name, if any, or from the package slot
of the generic function. See details below.

Details

The functions obtain a table of the defined methods, either from the generic function or from the
stored metadata object in the environment specified by where. The information in the table is
converted as described above to produce the returned value.

Note that the list returned may contain the primitive function itself, when the generic corre-
sponds to a primitive. (Basically, because primitive functions are abnormal R objects, which
cannot currently be extended as method definitions.) Computations that use the returned list
to derive other information need to take account of this possibility. See the implementation of
findMethodSignatures for an example.

Note that hasMethods, but not the other functions, can be used even if no generic function of this
name is currently found. In this case package must either be supplied as an argument or included
as an attribute of f, since the package name is part of the identification of the methods tables.

These functions should be used in searching for or summarizing methods, rather than using infor-
mation about how the metadata for methods is stored.

See Also

showMethods, MethodsList-class

Examples

mm <- findMethods("Ops")
findMethodSignatures(methods = mm)

fixPre1.8 Fix Objects Saved from R Versions Previous to 1.8

Description

Beginning with R version 1.8.0, the class of an object contains the identification of the package
in which the class is defined. The function fixPre1.8 fixes and re-assigns objects missing that
information (typically because they were loaded from a file saved with a previous version of R.)

Usage

fixPre1.8(names, where)

Arguments

names Character vector of the names of all the objects to be fixed and re-assigned.
where The environment from which to look for the objects, and for class definitions.

Defaults to the top environment of the call to fixPre1.8, the global environ-
ment if the function is used interactively.

888 genericFunction-class

Details

The named object will be saved where it was found. Its class attribute will be changed to the full
form required by R 1.8; otherwise, the contents of the object should be unchanged.

Objects will be fixed and re-assigned only if all the following conditions hold:

1. The named object exists.

2. It is from a defined class (not a basic datatype which has no actual class attribute).

3. The object appears to be from an earlier version of R.

4. The class is currently defined.

5. The object is consistent with the current class definition.

If any condition except the second fails, a warning message is generated.

Note that fixPre1.8 currently fixes only the change in class attributes. In particular, it will not fix
binary versions of packages installed with earlier versions of R if these use incompatible features.
Such packages must be re-installed from source, which is the wise approach always when major
version changes occur in R.

Value

The names of all the objects that were in fact re-assigned.

genericFunction-class
Generic Function Objects

Description

Generic functions (objects from or extending class genericFunction) are extended function
objects, containing information used in creating and dispatching methods for this function. They
also identify the package associated with the function and its methods.

Objects from the Class

Generic functions are created and assigned by setGeneric or setGroupGeneric and, indi-
rectly, by setMethod.

As you might expect setGeneric and setGroupGeneric create objects of class
"genericFunction" and "groupGenericFunction" respectively.

Slots

.Data: Object of class "function", the function definition of the generic, usually created au-
tomatically as a call to standardGeneric.

generic: Object of class "character", the name of the generic function.

package: Object of class "character", the name of the package to which the function def-
inition belongs (and not necessarily where the generic function is stored). If the package is
not specified explicitly in the call to setGeneric, it is usually the package on which the
corresponding non-generic function exists.

group: Object of class "list", the group or groups to which this generic function belongs.
Empty by default.

GenericFunctions 889

valueClass: Object of class "character"; if not an empty character vector, identifies one or
more classes. It is asserted that all methods for this function return objects from these class
(or from classes that extend them).

signature: Object of class "character", the vector of formal argument names that can ap-
pear in the signature of methods for this generic function. By default, it is all the formal
arguments, except for Order matters for efficiency: the most commonly used arguments
in specifying methods should come first.

default: Object of class "OptionalMethods", the default method for this function. Gener-
ated automatically and used to initialize method dispatch.

skeleton: Object of class "call", a slot used internally in method dispatch. Don’t expect to
use it directly.

Extends

Class "function", from data part.
Class "OptionalMethods", by class "function".
Class "PossibleMethod", by class "function".

Methods

Generic function objects are used in the creation and dispatch of formal methods; information from
the object is used to create methods list objects and to merge or update the existing methods for this
generic.

GenericFunctions Tools for Managing Generic Functions

Description

The functions documented here manage collections of methods associated with a generic function,
as well as providing information about the generic functions themselves.

Usage

isGeneric(f, where, fdef, getName = FALSE)
isGroup(f, where, fdef)
removeGeneric(f, where)

dumpMethod(f, signature, file, where, def)
findFunction(f, generic = TRUE, where = topenv(parent.frame()))
dumpMethods(f, file, signature, methods, where)
signature(...)

removeMethods(f, where = topenv(parent.frame()), all = missing(where))
setReplaceMethod(f, ..., where = topenv(parent.frame()))

getGenerics(where, searchForm = FALSE)

890 GenericFunctions

Arguments

f The character string naming the function.

where The environment, namespace, or search-list position from which to search for
objects. By default, start at the top-level environment of the calling function,
typically the global environment (i.e., use the search list), or the namespace of a
package from which the call came. It is important to supply this argument when
calling any of these functions indirectly. With package namespaces, the default
is likely to be wrong in such calls.

signature The class signature of the relevant method. A signature is a named or unnamed
vector of character strings. If named, the names must be formal argument names
for the generic function. If signature is unnamed, the default is to use the
first length(signature) formal arguments of the function.

file The file or connection on which to dump method definitions.

def The function object defining the method; if omitted, the current method defini-
tion corresponding to the signature.

... Named or unnamed arguments to form a signature.

generic In testing or finding functions, should generic functions be included. Supply as
FALSE to get only non-generic functions.

fdef Optional, the generic function definition.
Usually omitted in calls to isGeneric

getName If TRUE, isGeneric returns the name of the generic. By default, it returns
TRUE.

methods The methods object containing the methods to be dumped. By default, the meth-
ods defined for this generic (optionally on the specified where location).

all in removeMethods, logical indicating if all (default) or only the first method
found should be removed.

searchForm In getGenerics, if TRUE, the package slot of the returned result is in
the form used by search(), otherwise as the simple package name (e.g,
"package:base" vs "base").

Summary of Functions

isGeneric: Is there a function named f, and if so, is it a generic?
The getName argument allows a function to find the name from a function definition. If it
is TRUE then the name of the generic is returned, or FALSE if this is not a generic function
definition.
The behavior of isGeneric and getGeneric for primitive functions is slightly different.
These functions don’t exist as formal function objects (for efficiency and historical reasons),
regardless of whether methods have been defined for them. A call to isGeneric tells you
whether methods have been defined for this primitive function, anywhere in the current search
list, or in the specified position where. In contrast, a call to getGeneric will return what
the generic for that function would be, even if no methods have been currently defined for it.

removeGeneric, removeMethods: Remove all the methods for the generic function of this
name. In addition, removeGeneric removes the function itself; removeMethods re-
stores the non-generic function which was the default method. If there was no default method,
removeMethods leaves a generic function with no methods.

GenericFunctions 891

standardGeneric: Dispatches a method from the current function call for the generic function
f. It is an error to call standardGeneric anywhere except in the body of the correspond-
ing generic function.
Note that standardGeneric is a primitive function in the base package for efficiency
reasons, but rather documented here where it belongs naturally.

dumpMethod: Dump the method for this generic function and signature.

findFunction: return a list of either the positions on the search list, or the current top-level
environment, on which a function object for name exists. The returned value is always a list,
use the first element to access the first visible version of the function. See the example.
NOTE: Use this rather than find with mode="function", which is not as meaningful,
and has a few subtle bugs from its use of regular expressions. Also, findFunction works
correctly in the code for a package when attaching the package via a call to library.

dumpMethods: Dump all the methods for this generic.

signature: Returns a named list of classes to be matched to arguments of a generic function.

getGenerics: returns the names of the generic functions that have methods defined on where;
this argument can be an environment or an index into the search list. By default, the whole
search list is used. (allGenerics() is a deprecated alias for getGenerics.)
The methods definitions are stored with package qualifiers; for example, methods for function
"initialize" might refer to two different functions of that name, on different packages.
The package names corresponding to the method list object are contained in the slot package
of the returned object. The form of the returned name can be plain (e.g., "base"), or in the
form used in the search list ("package:base") according to the value of searchForm

Details

setGeneric: If there is already a non-generic function of this name, it will be used to define the
generic unless def is supplied, and the current function will become the default method for
the generic.
If def is supplied, this defines the generic function, and no default method will exist (often a
good feature, if the function should only be available for a meaningful subset of all objects).
Arguments group and valueClass are retained for consistency with S-Plus, but are cur-
rently not used.

isGeneric: If the fdef argument is supplied, take this as the definition of the generic, and test
whether it is really a generic, with f as the name of the generic. (This argument is not available
in S-Plus.)

removeGeneric: If where supplied, just remove the version on this element of the search list;
otherwise, removes the first version encountered.

standardGeneric: Generic functions should usually have a call to standardGeneric as
their entire body. They can, however, do any other computations as well.
The usual setGeneric (directly or through calling setMethod) creates a function with a
call to standardGeneric.

dumpMethod: The resulting source file will recreate the method.

findFunction: If generic is FALSE, ignore generic functions.

dumpMethods: If signature is supplied only the methods matching this initial signature are
dumped. (This feature is not found in S-Plus: don’t use it if you want compatibility.)

signature: The advantage of using signature is to provide a check on which arguments
you meant, as well as clearer documentation in your method specification. In addition,
signature checks that each of the elements is a single character string.

892 GenericFunctions

removeMethods: Returns TRUE if f was a generic function, FALSE (silently) otherwise.
If there is a default method, the function will be re-assigned as a simple function with this
definition. Otherwise, the generic function remains but with no methods (so any call to it
will generate an error). In either case, a following call to setMethod will consistently re-
establish the same generic function as before.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

getMethod (also for selectMethod), setGeneric, setClass, showMethods

Examples

require(stats) # for lm

get the function "myFun" -- throw an error if 0 or > 1 versions visible:
findFuncStrict <- function(fName) {
allF <- findFunction(fName)
if(length(allF) == 0)
stop("No versions of ",fName," visible")

else if(length(allF) > 1)
stop(fName," is ambiguous: ", length(allF), " versions")

else
get(fName, allF[[1]])

}

try(findFuncStrict("myFun"))# Error: no version
lm <- function(x) x+1
try(findFuncStrict("lm"))# Error: 2 versions
findFuncStrict("findFuncStrict")# just 1 version
rm(lm)

method dumping ------------------------------------

setClass("A", representation(a="numeric"))
setMethod("plot", "A", function(x,y,...){ cat("A meth\n") })
dumpMethod("plot","A", file="")
Not run:
setMethod("plot", "A",
function (x, y, ...)
{

cat("AAAAA\n")
}
)
End(Not run)
tmp <- tempfile()
dumpMethod("plot","A", file=tmp)
now remove, and see if we can parse the dump
stopifnot(removeMethod("plot", "A"))

getClass 893

source(tmp)
stopifnot(is(getMethod("plot", "A"), "MethodDefinition"))

same with dumpMethods() :
setClass("B", contains="A")
setMethod("plot", "B", function(x,y,...){ cat("B ...\n") })
dumpMethods("plot", file=tmp)
stopifnot(removeMethod("plot", "A"),

removeMethod("plot", "B"))
source(tmp)
stopifnot(is(getMethod("plot", "A"), "MethodDefinition"),

is(getMethod("plot", "B"), "MethodDefinition"))

getClass Get Class Definition

Description

Get the definition of a class.

Usage

getClass(Class, .Force = FALSE, where)
getClassDef(Class, where, package)

Arguments

Class the character-string name of the class.

.Force if TRUE, return NULL if the class is undefined; otherwise, an undefined class
results in an error.

where environment from which to begin the search for the definition; by default, start
at the top-level (global) environment and proceed through the search list.

package the name of the package asserted to hold the definition. Supplied instead of
where, with the distinction that the package need not be currently attached.

Details

A call to getClass returns the complete definition of the class supplied as a string, including all
slots, etc. in classes that this class extends. A call to getClassDef returns the definition of the
class from the environment where, unadorned. It’s usually getClass you want.

If you really want to know whether a class is formally defined, call isClass.

Value

The object defining the class. This is an object of class classRepresentation. However, do
not deal with the contents of the object directly unless you are very sure you know what you’re
doing. Even then, it is nearly always better practice to use functions such as setClass and
setIs. Messing up a class object will cause great confusion.

894 getMethod

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

Classes, setClass, isClass.

Examples

getClass("numeric") ## a built in class

cld <- getClass("thisIsAnUndefinedClass", .Force = TRUE)
cld ## a NULL prototype
If you are really curious:
utils::str(cld)
Whereas these generate errors:
try(getClass("thisIsAnUndefinedClass"))
try(getClassDef("thisIsAnUndefinedClass"))

getMethod Get or Test for the Definition of a Method

Description

Functions to look for a method corresponding to a given generic function and signature. The func-
tions getMethod and selectMethod return the method; the functions existsMethod and
hasMethod test for its existence. In both cases the first function only gets direct definitions and
the second uses inheritance. In all cases, the search is in the generic function itself or in the pack-
age/environment specified by argument where.

The function findMethod returns the package(s) in the search list (or in the packages specified
by the where argument) that contain a method for this function and signature.

Usage

getMethod(f, signature=character(), where, optional = FALSE,
mlist, fdef)

existsMethod(f, signature = character(), where)

findMethod(f, signature, where)

selectMethod(f, signature, optional = FALSE, useInherited =,
mlist = , fdef = , verbose =)

hasMethod(f, signature=character(), where)

getMethod 895

Arguments

f A generic function or the character-string name of one.

signature the signature of classes to match to the arguments of f. See the details below.

where The position or environment in which to look for the method(s): by default, the
table of methods defined in the generic function itself is used.

optional If the selection in selectMethod does find a valid method an error is gener-
ated, unless this argument is TRUE. In that case, the value returned is NULL if
no method matches.

mlist, fdef, useInherited, verbose
Optional arguments to getMethod and selectMethod. Avoid these: some
will work and others will not, and none of them is required for normal use of the
functions.

Details

The signature argument specifies classes, corresponding to formal arguments of the generic
function; to be precise, to the signature slot of the generic function object. The argument may
be a vector of strings identifying classes, and may be named or not. Names, if supplied, match
the names of those formal arguments included in the signature of the generic. That signature is
normally all the arguments except However, generic functions can be specified with only a
subset of the arguments permitted, or with the signature taking the arguments in a different order.

It’s a good idea to name the arguments in the signature to avoid confusion, if you’re dealing with
a generic that does something special with its signature. In any case, the elements of the signature
are matched to the formal signature by the same rules used in matching arguments in function calls
(see match.call).

The strings in the signature may be class names, "missing" or "ANY". See Methods for the
meaning of these in method selection. Arguments not supplied in the signature implicitly cor-
respond to class "ANY"; in particular, giving an empty signature means to look for the default
method.

A call to getMethod returns the method for a particular function and signature. As with other
get functions, argument where controls where the function looks (by default anywhere in the
search list) and argument optional controls whether the function returns NULL or generates an
error if the method is not found. The search for the method makes no use of inheritance.

The function selectMethod also looks for a method given the function and signature, but makes
full use of the method dispatch mechanism; i.e., inherited methods and group generics are taken into
account just as they would be in dispatching a method for the corresponding signature, with the one
exception that conditional inheritance is not used. Like getMethod, selectMethod returns
NULL or generates an error if the method is not found, depending on the argument optional.

The functions existsMethod and hasMethod return TRUE or FALSE according to whether
a method is found, the first corresponding to getMethod (no inheritance) and the second to
selectMethod.

Value

The call to selectMethod or getMethod returns the selected method, if one is found. (This
class extends function, so you can use the result directly as a function if that is what you want.)
Otherwise an error is thrown if optional is FALSE and NULL is returned if optional is TRUE.

The returned method object is a MethodDefinition object, except that the default method for
a primitive function is required to be the primitive itself. Note therefore that the only reliable test
that the search failed is is.null().

896 getPackageName

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

Methods for the details of method selection; GenericFunctions for other functions manip-
ulating methods and generic function objects; MethodDefinition for the class that represents
method definitions.

Examples

setGeneric("testFun", function(x)standardGeneric("testFun"))
setMethod("testFun", "numeric", function(x)x+1)
hasMethod("testFun", "numeric")
Not run: [1] TRUE
hasMethod("testFun", "integer") #inherited
Not run: [1] TRUE
existsMethod("testFun", "integer")
Not run: [1] FALSE
hasMethod("testFun") # default method
Not run: [1] FALSE
hasMethod("testFun", "ANY")
Not run: [1] FALSE

getPackageName The Name associated with a Given Package

Description

The functions below produce the package associated with a particular environment or position on
the search list, or of the package containing a particular function. They are primarily used to support
computations that need to differentiate objects on multiple packages.

Usage

getPackageName(where, create = TRUE)
setPackageName(pkg, env)

packageSlot(object)
packageSlot(object) <- value

Arguments

where the environment or position on the search list associated with the desired pack-
age.

object object providing a character string name, plus the package in which this object
is to be found.

value the name of the package.

hasArg 897

create flag, should a package name be created if none can be inferred? If TRUE and
no non-empty package name is found, the current date and time are used as
a package name, and a warning is issued. The created name is stored in the
environment if that environment is not locked.

pkg, env make the string in pkg the internal package name for all computations that set
class and method definitions in environment env.

Details

Package names are normally installed during loading of the package, by the INSTALL script or by
the library function. (Currently, the name is stored as the object .packageName but don’t
trust this for the future.)

Value

packageName returns the character-string name of the package (without the extraneous
"package:" found in the search list).

packageSlot returns or sets the package name slot (currently an attribute, not a formal slot, but
this may change someday).

setPackageName can be used to establish a package name in an environment that would oth-
erwise not have one. This allows you to create classes and/or methods in an arbitrary envi-
ronment, but it is usually preferable to create packages by the standard R programming tools
(package.skeleton, etc.)

See Also

search

Examples

all the following usually return "base"
getPackageName(length(search()))
getPackageName(baseenv())
getPackageName(asNamespace("base"))
getPackageName("package:base")

hasArg Look for an Argument in the Call

Description

Returns TRUE if name corresponds to an argument in the call, either a formal argument to the
function, or a component of ..., and FALSE otherwise.

Usage

hasArg(name)

Arguments

name The unquoted name of a potential argument.

898 implicitGeneric

Details

The expression hasArg(x), for example, is similar to !missing(x), with two exceptions.
First, hasArg will look for an argument named x in the call if x is not a formal argument to the
calling function, but ... is. Second, hasArg never generates an error if given a name as an
argument, whereas missing(x) generates an error if x is not a formal argument.

Value

Always TRUE or FALSE as described above.

See Also

missing

Examples

ftest <- function(x1, ...) c(hasArg(x1), hasArg(y2))

ftest(1) ## c(TRUE, FALSE)
ftest(1, 2) ## c(TRUE, FALSE)
ftest(y2=2) ## c(FALSE, TRUE)
ftest(y=2) ## c(FALSE, FALSE) (no partial matching)
ftest(y2 = 2, x=1) ## c(TRUE, TRUE) partial match x1

implicitGeneric Manage Implicit Versions of Generic Functions

Description

Create or access implicit generic functions, used to enforce consistent generic versions of func-
tions that are not currently generic. Function implicitGeneric() returns the implicit generic
version, setGenericImplicit() turns a generic implicit, prohibitGeneric() prevents
your function from being made generic, and registerImplicitGenerics() saves a set of
implicit generic definitions in the cached table of the current session.

Usage

implicitGeneric(name, where, generic)
setGenericImplicit(name, where, restore = TRUE)
prohibitGeneric(name, where)
registerImplicitGenerics(what, where)

Arguments

name Character string name of the function.

where Package or environment in which to register the implicit generics. When using
the functions from the top level of your own package source, this argument can
usually be omitted (and should be).

generic Optionally, the generic function definition to be cached, but usually omitted. See
Details section.

implicitGeneric 899

restore Should the non-generic version of the function be restored after the current.

what For registerImplicitGenerics(), Optional table of the implicit gener-
ics to register, but nearly always omitted. See Details section.

Details

Multiple packages may define methods for the same function, using the version of a function stored
in one package. All these methods should be marshaled and dispatched consistently when a user
calls the function. For consistency, the generic version of the function must have a unique definition
(the same arguments allowed in methods signatures, the same values for optional slots such as the
value class, and the same standard or non-standard definition of the function itself).

If the original function is already an S4 generic, there is no problem. The implicit generic mecha-
nism enforces consistency when the version in the package owning the function is not generic. If a
call to setGeneric() attempts to turn a function in another package into a generic, the mecha-
nism compares the proposed new generic function to the implicit generic version of that function.
If the two agree, all is well. If not, and if the function belongs to another package, then the new
generic will not be associated with that package. Instead, a warning is issued and a separate generic
function is created, with its package slot set to the current package, not the one that owns the non-
generic version of the function. The effect is that the new package can still define methods for this
function, but it will not share the methods in other packages, since it is forcing a different definition
of the generic function.

The right way to proceed in nearly all cases is to call setGeneric("foo"), giving only the
name of the function; this will automatically use the implicit generic version. If you don’t like that
version, the best solution is to convince the owner of the other package to agree with you and to
insert code to define the non-default properties of the function (even if the owner does not want
foo() to be a generic by default).

For any function, the implicit generic form is a standard generic in which all formal arguments,
except for ..., are allowed in the signature of methods. If that is the suitable generic for a function,
no action is needed. If not, the best mechanism is to set up the generic in the code of the package
owning the function, and to then call setGenericImplicit() to record the implicit generic
and restore the non-generic version. See the example.

Note that the package can define methods for the implicit generic as well; when the implicit generic
is made a real generic, those methods will be included.

Other than predefining methods, the usual reason for having a non-default implicit generic is to
provide a non-default signature, and the usual reason for that is to allow lazy evaluation of some
arguments. See the example. All arguments in the signature of a generic function must be evaluated
at the time the function needs to select a method. (But those arguments can be missing, with
or without a default expression being defined; you can always examine missing(x) even for
arguments in the signature.)

If you want to completely prohibit anyone from turning your function into a generic, call
prohibitGeneric().

Value

Function implicitGeneric() returns the implicit generic definition (and caches that definition
the first time if it has to construct it).

The other functions exist for their side effect and return nothing useful.

See Also

setGeneric

900 initialize-methods

Examples

How we would make the function with() into a generic:

Since the second argument, 'expr' is used literally, we want
with() to only have "data" in the signature.

Note that 'methods'-internal code now has already extended with()
to do the equivalent of the following
Not run:
setGeneric("with", signature = "data")
Now we could predefine methods for "with" if we wanted to.

When ready, we store the generic as implicit, and restore the original
setGenericImplicit("with")

(This example would only work if we "owned" function with(),
but it is in base.)## End(Not run)

implicitGeneric("with")

initialize-methods Methods to Initialize New Objects from a Class

Description

The arguments to function new to create an object from a particular class can be interpreted spe-
cially for that class, by the definition of a method for function initialize for the class. This
documentation describes some existing methods, and also outlines how to write new ones.

Methods

.Object = "ANY" The default method for initialize takes either named or unnamed argu-
ments. Argument names must be the names of slots in this class definition, and the corre-
sponding arguments must be valid objects for the slot (that is, have the same class as specified
for the slot, or some superclass of that class). If the object comes from a superclass, it is
not coerced strictly, so normally it will retain its current class (specifically, as(object,
Class, strict = FALSE)).
Unnamed arguments must be objects of this class, of one of its superclasses, or one of its
subclasses (from the class, from a class this class extends, or from a class that extends this
class). If the object is from a superclass, this normally defines some of the slots in the object.
If the object is from a subclass, the new object is that argument, coerced to the current class.
Unnamed arguments are processed first, in the order they appear. Then named arguments
are processed. Therefore, explicit values for slots always override any values inferred from
superclass or subclass arguments.

.Object = "traceable" Objects of a class that extends traceable are used to implement debug
tracing (see class traceable and trace).
The initialize method for these classes takes special arguments def, tracer,
exit, at, print. The first of these is the object to use as the original definition (e.g., a
function). The others correspond to the arguments to trace.

is 901

.Object = "environment" The initialize method for environments takes a named list of ob-
jects to be used to initialize the environment.

.Object = "signature" This is a method for internal use only. It takes an optional functionDef
argument to provide a generic function with a signature slot to define the argument names.
See Methods for details.

Writing Initialization Methods

Initialization methods provide a general mechanism corresponding to generator functions in other
languages.

The arguments to initialize are .Object and Nearly always, initialize is called
from new, not directly. The .Object argument is then the prototype object from the class.

Two techniques are often appropriate for initialize methods: special argument names and
callNextMethod.

You may want argument names that are more natural to your users than the (default) slot names.
These will be the formal arguments to your method definition, in addition to .Object (always)
and . . . (optionally). For example, the method for class "traceable" documented above would
be created by a call to setMethod of the form:

setMethod("initialize", "traceable",
function(.Object, def, tracer, exit, at, print) ...

)

In this example, no other arguments are meaningful, and the resulting method will throw an error if
other names are supplied.

When your new class extends another class, you may want to call the initialize method for this
superclass (either a special method or the default). For example, suppose you want to define a
method for your class, with special argument x, but you also want users to be able to set slots
specifically. If you want x to override the slot information, the beginning of your method definition
might look something like this:

function(.Object, x, ...) {
Object <- callNextMethod(.Object, ...)
if(!missing(x)) { # do something with x

You could also choose to have the inherited method override, by first interpreting x, and then calling
the next method.

is Is an Object from a Class

Description

Functions to test inheritance relationships between an object and a class (is) or between two classes
(extends), and to establish such relationships (setIs, an explicit alternative to the contains=
argument to setClass).

902 is

Usage

is(object, class2)

extends(class1, class2, maybe=TRUE, fullInfo = FALSE)

setIs(class1, class2, test=NULL, coerce=NULL, replace=NULL,
by = character(), where = topenv(parent.frame()), classDef =,
extensionObject = NULL, doComplete = TRUE)

Arguments

object any R object.
class1, class2

the names of the classes between which is relations are to be examined defined,
or (more efficiently) the class definition objects for the classes.

maybe, fullInfo
In a call to extends, maybe is the value returned if a relation is conditional.
In a call with class2 missing, fullInfo is a flag, which if TRUE causes a
list of objects of class classExtension to be returned, rather than just the
names of the classes.

test, coerce, replace
In a call to setIs, functions optionally supplied to test whether the relation
is defined, to coerce the object to class2, and to alter the object so that
is(object, class2) is identical to value. See the details section be-
low.
The remaining arguments are for internal use and/or usually omitted.

extensionObject
alternative to the test, coerce, replace, by arguments; an object
from class SClassExtension describing the relation. (Used in internal
calls.)

doComplete when TRUE, the class definitions will be augmented with indirect relations as
well. (Used in internal calls.)

by In a call to setIs, the name of an intermediary class. Coercion will proceed by
first coercing to this class and from there to the target class. (The intermediate
coercions have to be valid.)

where In a call to setIs, where to store the metadata defining the relationship. Default
is the global environment for calls from the top level of the session or a source
file evaluated there. When the call occurs in the top level of a file in the source
of a package, the default will be the namespace or environment of the package.
Other uses are tricky and not usually a good idea, unless you really know what
you are doing.

classDef Optional class definition for class , required internally when setIs is called
during the initial definition of the class by a call to setClass. Don’t use this
argument, unless you really know why you’re doing so.

Summary of Functions

is: With two arguments, tests whether object can be treated as from class2.
With one argument, returns all the super-classes of this object’s class.

is 903

extends: Does the first class extend the second class? The call returns maybe if the extension
includes a test.
When called with one argument, the value is a vector of the superclasses of class1.
If argument fullInfo is TRUE, the call returns a named list of objects of class
SClassExtension; otherwise, just the names of the superclasses.

setIs: Defines class1 to be an extension (subclass) of class2. If class2 is an existing
virtual class, such as a class union, then only the two classes need to be supplied in the call, if
the implied inherited methods work for class1. See the details section below.
Alternatively, arguments coerce and replace should be supplied, defining methods to co-
erce to the superclass and to replace the part corresponding to the superclass. As discussed in
the details and other sections below, this form is often less recommended than the correspond-
ing call to setAs, to which it is an alternative.

Details

Arranging for a class to inherit from another class is a key tool in programming. In R, there are
three basic techniques, the first two providing what is called “simple” inheritance, the preferred
form:

1. By the contains= argument in a call to setClass. This is and should be the most com-
mon mechanism. It arranges that the new class contains all the structure of the existing class,
and in particular all the slots with the same class specified. The resulting class extension is
defined to be simple, with important implications for method definition (see the section on
this topic below).

2. Making class1 a subclass of a virtual class either by a call to setClassUnion to make
the subclass a member of a new class union, or by a call to setIs to add a class to an existing
class union or as a new subclass of an existing virtual class. In either case, the implication
should be that methods defined for the class union or other superclass all work correctly for
the subclass. This may depend on some similarity in the structure of the subclasses or simply
indicate that the superclass methods are defined in terms of generic functions that apply to all
the subclasses. These relationships are also generally simple.

3. Supplying coerce and replace arguments to setAs. R allows arbitrary inheritance re-
lationships, using the same mechanism for defining coerce methods by a call to setAs. The
difference between the two is simply that setAs will require a call to as for a conversion
to take place, whereas after the call to setIs, objects will be automatically converted to the
superclass.
The automatic feature is the dangerous part, mainly because it results in the subclass poten-
tially inheriting methods that do not work. See the section on inheritance below. If the two
classes involved do not actually inherit a large collection of methods, as in the first example
below, the danger may be relatively slight.
If the superclass inherits methods where the subclass has only a default or remotely inherited
method, problems are more likely. In this case, a general recommendation is to use the setAs
mechanism instead, unless there is a strong counter reason. Otherwise, be prepared to override
some of the methods inherited.

With this caution given, the rest of this section describes what happens when coerce= and
replace= argument are supplied to setIs.

The coerce and replace arguments are functions that define how to coerce a class1 object
to class2, and how to replace the part of the subclass object that corresponds to class2. The
first of these is a function of one argument (conventionally from) and the second of two arguments
(from, value). For details, see the section on coerce functions below .

904 is

When by is specified, the coerce process first coerces to this class and then to class2. It’s unlikely
you would use the by argument directly, but it is used in defining cached information about classes.

The value returned (invisibly) by setIs is the revised class definition of class1.

Coerce, replace, and test functions

The coerce argument is a function that turns a class1 object into a class2 object. The
replace argument is a function of two arguments that modifies a class1 object (the first ar-
gument) to replace the part of it that corresponds to class2 (supplied as value, the second
argument). It then returns the modified object as the value of the call. In other words, it acts as a
replacement method to implement the expression as(object, class2) <- value.

The easiest way to think of the coerce and replace functions is by thinking of the case that
class1 contains class2 in the usual sense, by including the slots of the second class. (To repeat,
in this situation you would not call setIs, but the analogy shows what happens when you do.)

The coerce function in this case would just make a class2 object by extracting the correspond-
ing slots from the class1 object. The replace function would replace in the class1 object
the slots corresponding to class2, and return the modified object as its value.

For additional discussion of these functions, see the documentation of the setAs function. (Un-
fortunately, argument def to that function corresponds to argument coerce here.)

The inheritance relationship can also be conditional, if a function is supplied as the test argu-
ment. This should be a function of one argument that returns TRUE or FALSE according to whether
the object supplied satisfies the relation is(object, class2). Conditional relations between
classes are slightly deprecated because they cannot be implemented as efficiently as ordinary re-
lations and because they sometimes can lead to confusion (in thinking about what methods are
dispatched for a particular function, for example). But they can correspond to distinctions such as
two classes that have the same representation, but with only one of them obeying certain additional
constraints.

Inherited methods

A method written for a particular signature (classes matched to one or more formal arguments to
the function) naturally assumes that the objects corresponding to the arguments can be treated as
coming from the corresponding classes. The objects will have all the slots and available methods
for the classes.

The code that selects and dispatches the methods ensures that this assumption is correct. If the
inheritance was “simple”, that is, defined by one or more uses of the contains= argument in a
call to setClass, no extra work is generally needed. Classes are inherited from the superclass,
with the same definition.

When inheritance is defined by a general call to setIs, extra computations are required. This form
of inheritance implies that the subclass does not just contain the slots of the superclass, but instead
requires the explicit call to the coerce and/or replace method. To ensure correct computation, the
inherited method is supplemented by calls to as before the body of the method is evaluated.

The calls to as generated in this case have the argument strict = FALSE, meaning that extra
information can be left in the converted object, so long as it has all the appropriate slots. (It’s this
option that allows simple subclass objects to be used without any change.) When you are writing
your coerce method, you may want to take advantage of that option.

Methods inherited through non-simple extensions can result in ambiguities or unexpected selec-
tions. If class2 is a specialized class with just a few applicable methods, creating the inheritance
relation may have little effect on the behavior of class1. But if class2 is a class with many
methods, you may find that you now inherit some undesirable methods for class1, in some cases,

is 905

fail to inherit expected methods. In the second example below, the non-simple inheritance from
class "factor" might be assumed to inherit S3 methods via that class. But the S3 class is am-
biguous, and in fact is "character" rather than "factor".

For some generic functions, methods inherited by non-simple extensions are either known to be
invalid or sufficiently likely to be so that the generic function has been defined to exclude such
inheritance. For example initialize methods must return an object of the target class; this is
straightforward if the extension is simple, because no change is made to the argument object, but
is essentially impossible. For this reason, the generic function insists on only simple extensions for
inheritance. See the simpleInheritanceOnly argument to setGeneric for the mechanism.
You can use this mechanism when defining new generic functions.

If you get into problems with functions that do allow non-simple inheritance, there are two basic
choices. Either back off from the setIs call and settle for explicit coercing defined by a call to
setAs; or, define explicit methods involving class1 to override the bad inherited methods. The
first choice is the safer, when there are serious problems.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

Examples

Two examples of setIs() with coerce= and replace= arguments
The first one works fairly well, because neither class has many
inherited methods do be disturbed by the new inheritance

The second example does NOT work well, because the new superclass,
"factor", causes methods to be inherited that should not be.

First example:
a class definition (see setClass for class "track")
setClass("trackCurve", contains = "track",

representation(smooth = "numeric"))
A class similar to "trackCurve", but with different structure
allowing matrices for the "y" and "smooth" slots
setClass("trackMultiCurve",

representation(x="numeric", y="matrix", smooth="matrix"),
prototype = structure(list(), x=numeric(), y=matrix(0,0,0),

smooth= matrix(0,0,0)))
Automatically convert an object from class "trackCurve" into
"trackMultiCurve", by making the y, smooth slots into 1-column matrices
setIs("trackCurve",

"trackMultiCurve",
coerce = function(obj) {
new("trackMultiCurve",

x = obj@x,
y = as.matrix(obj@y),
smooth = as.matrix(obj@smooth))

},
replace = function(obj, value) {
obj@y <- as.matrix(value@y)
obj@x <- value@x

906 isSealedMethod

obj@smooth <- as.matrix(value@smooth)
obj})

Second Example:
A class that adds a slot to "character"
setClass("stringsDated", contains = "character", representation(stamp="POSIXt"))

Convert automatically to a factor by explicit coerce
setIs("stringsDated", "factor",

coerce = function(from){factor(from@.Data)},
replace=function(from, value){

from@.Data<- as.character(value); from})

ll <- sample(letters, 10, replace = TRUE)
ld <- new("stringsDated", ll, stamp = Sys.time())

levels(as(ld, "factor"))

levels(ld) # will be NULL--see comment in section on inheritance above.

In contrast, a class that simply extends "factor" has no such amiguities

setClass("factorDated", contains = "factor", representation(stamp="POSIXt"))

fd = new("factorDated", factor(ll), stamp = Sys.time())

identical(levels(fd), levels(as(fd, "factor")))

isSealedMethod Check for a Sealed Method or Class

Description

These functions check for either a method or a class that has been sealed when it was defined, and
which therefore cannot be re-defined.

Usage

isSealedMethod(f, signature, fdef, where)
isSealedClass(Class, where)

Arguments

f The quoted name of the generic function.

signature The class names in the method’s signature, as they would be supplied to
setMethod.

fdef Optional, and usually omitted: the generic function definition for f.

Class The quoted name of the class.

language-class 907

where where to search for the method or class definition. By default, searches from
the top environment of the call to isSealedMethod or isSealedClass,
typically the global environment or the namespace of a package containing a
call to one of the functions.

Details

In the R implementation of classes and methods, it is possible to seal the definition of either a class
or a method. The basic classes (numeric and other types of vectors, matrix and array data) are
sealed. So also are the methods for the primitive functions on those data types. The effect is that
programmers cannot re-define the meaning of these basic data types and computations. More pre-
cisely, for primitive functions that depend on only one data argument, methods cannot be specified
for basic classes. For functions (such as the arithmetic operators) that depend on two arguments,
methods can be specified if one of those arguments is a basic class, but not if both are.

Programmers can seal other class and method definitions by using the sealed argument to
setClass or setMethod.

Value

The functions return FALSE if the method or class is not sealed (including the case that it is not
defined); TRUE if it is.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

Examples

these are both TRUE
isSealedMethod("+", c("numeric", "character"))
isSealedClass("matrix")

setClass("track",
representation(x="numeric", y="numeric"))

but this is FALSE
isSealedClass("track")
and so is this
isSealedClass("A Name for an undefined Class")
and so are these, because only one of the two arguments is basic
isSealedMethod("+", c("track", "numeric"))
isSealedMethod("+", c("numeric", "track"))

language-class Classes to Represent Unevaluated Language Objects

Description

The virtual class "language" and the specific classes that extend it represent unevaluated objects,
as produced for example by the parser or by functions such as quote.

908 LinearMethodsList-class

Usage

each of these classes corresponds to an unevaluated object
in the S language.
The class name can appear in method signatures,
and in a few other contexts (such as some calls to as()).

"("
"<-"
"call"
"for"
"if"
"repeat"
"while"
"name"
"{"

Each of the classes above extends the virtual class

"language"

Objects from the Class

"language" is a virtual class; no objects may be created from it.

Objects from the other classes can be generated by a call to new(Class, ...), where Class
is the quoted class name, and the . . . arguments are either empty or a single object that is from this
class (or an extension).

Methods

coerce signature(from = "ANY", to = "call"). A method exists for as(object,
"call"), calling as.call().

LinearMethodsList-class
Class "LinearMethodsList"

Description

A version of methods lists that has been ‘linearized’ for producing summary information. The
actual objects from class "MethodsList" used for method dispatch are defined recursively over
the arguments involved.

Objects from the Class

The function linearizeMlist converts an ordinary methods list object into the linearized form.

makeClassRepresentation 909

Slots

methods: Object of class "list", the method definitions.

arguments: Object of class "list", the corresponding formal arguments, namely as many of
the arguments in the signature of the generic function as are active in the relevant method
table.

classes: Object of class "list", the corresponding classes in the signatures.

generic: Object of class "genericFunction"; the generic function to which the methods
correspond.

Future Note

The current version of linearizeMlist does not take advantage of the MethodDefinition
class, and therefore does more work for less effect than it could. In particular, we may move to
redefine both the function and the class to take advantage of the stored signatures. Don’t write code
depending precisely on the present form, although all the current information will be obtainable in
the future.

See Also

Function linearizeMlist for the computation, and class MethodsList for the original, re-
cursive form.

makeClassRepresentation
Create a Class Definition

Description

Constructs an object of class classRepresentation to describe a particular class. Mostly a
utility function, but you can call it to create a class definition without assigning it, as setClass
would do.

Usage

makeClassRepresentation(name, slots=list(), superClasses=character(),
prototype=NULL, package, validity, access,
version, sealed, virtual=NA, where)

Arguments

name character string name for the class

slots named list of slot classes as would be supplied to setClass, but without the
unnamed arguments for superClasses if any.

superClasses what classes does this class extend

prototype an object providing the default data for the class, e.g, the result of a call to
prototype.

package The character string name for the package in which the class will be stored; see
getPackageName.

910 method.skeleton

validity Optional validity method. See validObject, and the discussion of validity
methods in the reference.

access Access information. Not currently used.

version Optional version key for version control. Currently generated, but not used.

sealed Is the class sealed? See setClass.

virtual Is this known to be a virtual class?

where The environment from which to look for class definitions needed (e.g., for slots
or superclasses). See the discussion of this argument under GenericFunctions.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

setClass

method.skeleton Create a Skeleton File for a New Method

Description

This function writes a source file containing a call to setMethod to define a method for the generic
function and signature supplied. By default the method definition is in line in the call, but can be
made an external (previously assigned) function.

Usage

method.skeleton(generic, signature, file, external = FALSE, where)

Arguments

generic the character string name of the generic function, or the generic function itself.
In the first case, the function need not currently be a generic, as it would not for
the resulting call to setMethod.

signature the method signature, as it would be given to setMethod

file a character string name for the output file, or a writable connection. By default
the generic function name and the classes in the signature are concatenated, with
separating underscore characters. The file name should normally end in ".R".

external flag to control whether the function definition for the method should be a sepa-
rate external object assigned in the source file, or included in line in the call to
setMethod. If supplied as a character string, this will be used as the name for
the external function; by default the name concatenates the generic and signature
names, with separating underscores.

where The environment in which to look for the function; by default, the top-level
environment of the call to method.skeleton.

MethodDefinition-class 911

Value

The file argument, invisibly, but the function is used for its side effect.

See Also

setMethod, package.skeleton

Examples

setClass("track", representation(x ="numeric", y="numeric"))
method.skeleton("show", "track") ## writes show_track.R
method.skeleton("Ops", c("track", "track")) ## writes "Ops_track_track.R"

write multiple method skeletons to one file
con <- file("./Math_track.R", "w")
method.skeleton("Math", "track", con)
method.skeleton("exp", "track", con)
method.skeleton("log", "track", con)
close(con)

MethodDefinition-class
Classes to Represent Method Definitions

Description

These classes extend the basic class "function" when functions are to be stored and used as
method definitions.

Details

Method definition objects are functions with additional information defining how the function is
being used as a method. The target slot is the class signature for which the method will be
dispatched, and the defined slot the signature for which the method was originally specified (that
is, the one that appeared in some call to setMethod).

Objects from the Class

The action of setting a method by a call to setMethod creates an object of this class. It’s unwise
to create them directly.

The class "SealedMethodDefinition" is created by a call to setMethod with argument
sealed = TRUE. It has the same representation as "MethodDefinition".

Slots

.Data: Object of class "function"; the data part of the definition.
target: Object of class "signature"; the signature for which the method was wanted.
defined: Object of class "signature"; the signature for which a method was found. If the

method was inherited, this will not be identical to target.
generic: Object of class "character"; the function for which the method was created.

912 Methods

Extends

Class "function", from data part.
Class "PossibleMethod", directly.
Class "OptionalMethods", by class "function".

See Also

class MethodsList for the objects defining sets of methods associated with a particular
generic function. The individual method definitions stored in these objects are from class
MethodDefinition, or an extension. Class MethodWithNext for an extension used by
callNextMethod.

Methods General Information on Methods

Description

This documentation section covers some general topics on how methods work and how the methods
package interacts with the rest of R. The information is usually not needed to get started with
methods and classes, but may be helpful for moderately ambitious projects, or when something
doesn’t work as expected.

The section “How Methods Work” describes the underlying mechanism; “Method Selection and
Dispatch” provides more details on how class definitions determine which methods are used;
“Generic Functions” discusses generic functions as objects. For additional information specifically
about class definitions, see Classes.

How Methods Work

A generic function has associated with it a collection of other functions (the methods), all of which
have the same formal arguments as the generic. See the “Generic Functions” section below for
more on generic functions themselves.

Each R package will include methods metadata objects corresponding to each generic function
for which methods have been defined in that package. When the package is loaded into an R
session, the methods for each generic function are cached, that is, stored in the environment of the
generic function along with the methods from previously loaded packages. This merged table of
methods is used to dispatch or select methods from the generic, using class inheritance and possibly
group generic functions (see GroupGenericFunctions) to find an applicable method. See
the “Method Selection and Dispatch” section below. The caching computations ensure that only
one version of each generic function is visible globally; although different attached packages may
contain a copy of the generic function, these behave identically with respect to method selection.
In contrast, it is possible for the same function name to refer to more than one generic function,
when these have different package slots. In the latter case, R considers the functions unrelated: A
generic function is defined by the combination of name and package. See the “Generic Functions”
section below.

The methods for a generic are stored according to the corresponding signature in the call to
setMethod that defined the method. The signature associates one class name with each of a
subset of the formal arguments to the generic function. Which formal arguments are available, and
the order in which they appear, are determined by the "signature" slot of the generic function
itself. By default, the signature of the generic consists of all the formal arguments except . . . , in the
order they appear in the function definition.

Methods 913

Trailing arguments in the signature of the generic will be inactive if no method has yet been specified
that included those arguments in its signature. Inactive arguments are not needed or used in labeling
the cached methods. (The distinction does not change which methods are dispatched, but ignoring
inactive arguments improves the efficiency of dispatch.)

All arguments in the signature of the generic function will be evaluated when the function is called,
rather than using the traditional lazy evaluation rules of S. Therefore, it’s important to exclude from
the signature any arguments that need to be dealt with symbolically (such as the first argument to
function substitute). Note that only actual arguments are evaluated, not default expressions. A
missing argument enters into the method selection as class "missing".

The cached methods are stored in an environment object. The names used for assignment are a
concatenation of the class names for the active arguments in the method signature.

Method Selection and Dispatch

When a call to a generic function is evaluated, a method is selected corresponding to the classes
of the actual arguments in the signature. First, the cached methods table is searched for an exact
match; that is, a method stored under the signature defined by the string value of class(x) for
each non-missing argument, and "missing" for each missing argument. If no method is found
directly for the actual arguments in a call to a generic function, an attempt is made to match the
available methods to the arguments by using the superclass information about the actual classes.

Each class definition may include a list of one or more superclasses of the new class. The simplest
and most common specification is by the contains= argument in the call to setClass. Each
class named in this argument is a superclass of the new class. The S language has two additional
mechanisms for defining superclasses. A call to setIs can create an inheritance relationship that is
not the simple one of containing the superclass representation in the new class. In this case, explicit
methods are defined to relate the subclass and the superclass. Also, a call to setClassUnion
creates a union class that is a superclass of each of the members of the union. All three mechanisms
are treated equivalently for purposes of method selection: they define the direct superclasses of a
particular class. For more details on the mechanisms, see Classes.

The direct superclasses themselves may have superclasses, defined by any of the same mechanisms,
and similarly for further generations. Putting all this information together produces the full list
of superclasses for this class. The superclass list is included in the definition of the class that is
cached during the R session. Each element of the list describes the nature of the relationship (see
SClassExtension for details). Included in the element is a distance slot giving a numeric
distance between the two classes. The distance currently is the path length for the relationship: 1 for
direct superclasses (regardless of which mechanism defined them), then 2 for the direct superclasses
of those classes, and so on. In addition, any class implicitly has class "ANY" as a superclass. The
distance to "ANY" is treated as larger than the distance to any actual class. The special class
"missing" corresponding to missing arguments has only "ANY" as a superclass, while "ANY"
has no superclasses.

The information about superclasses is summarized when a class definition is printed.

When a method is to be selected by inheritance, a search is made in the table for all methods directly
corresponding to a combination of either the direct class or one of its superclasses, for each argu-
ment in the active signature. For an example, suppose there is only one argument in the signature
and that the class of the corresponding object was "dgeMatrix" (from the Matrix package on
CRAN). This class has two direct superclasses and through these 4 additional superclasses. Method
selection finds all the methods in the table of directly specified methods labeled by one of these
classes, or by "ANY".

When there are multiple arguments in the signature, each argument will generate a similar list of
inherited classes. The possible matches are now all the combinations of classes from each argument
(think of the function outer generating an array of all possible combinations). The search now

914 Methods

finds all the methods matching any of this combination of classes. The computation of distances
also has to combine distances for the individual arguments. There are many ways to combine the
distances; the current implementation simply adds them. The result of the search is then a list of
zero, one, or more methods, and a parallel vector of distances between the target signature and the
available methods.

If the list has more than one matching method, only those corresponding to the minimum distance
are considered. There may still be multiple best methods. The dispatch software considers this an
ambiguous case and warns the user (only on the first call for this selection). The method occurring
first in the list of superclasses is selected. By the mechanism of producing the extension information,
this orders the direct superclasses by the order they appeared in the original call to setClass.
Classes specified in setIs and setClassUnion calls, and by the superclasses of these classes.
(Note that only the ordering of classes within a particular generation of superclasses counts, because
only these will have the same distance). It is generally a very bad idea to count on any observed
ordering, other than of the simple superclasses, since both circumstances and future changes to the
computations could alter such orderings.

All this detail about selection is less important than the realization that having ambiguous method
selection usually means that you need to be more specific about intentions. It is likely that some
consideration other than the ordering of superclasses in the class definition is more important in
determining which method should be selected, and the preference may well be different for differ-
ent generic functions. Where ambiguities arise, the best approach is usually to provide a specific
method for the subclass.

When the inherited method has been selected, the selection is cached in the generic function so that
future calls with the same class will not require repeating the search. Cached inherited selections are
not themselves used in future inheritance searches, since that could result in invalid selections. If
you want inheritance computations to be done again (for example, because a newly loaded package
has a more direct method than one that has already been used in this session), call resetGeneric.
Because classes and methods involving them tend to come from the same package, the current
implementation does not reset all generics every time a new package is loaded.

Besides being initiated through calls to the generic function, method selection can be done explicitly
by calling the function selectMethod.

Once a method has been selected, the evaluator creates a new context in which a call to the method
is evaluated. The context is initialized with the arguments from the call to the generic function.
These arguments are not rematched. All the arguments in the signature of the generic will have
been evaluated (including any that are currently inactive); arguments that are not in the signature
will obey the usual lazy evaluation rules of the language. If an argument was missing in the call,
its default expression if any will not have been evaluated, since method dispatch always uses class
missing for such arguments.

A call to a generic function therefore has two contexts: one for the function and a second for the
method. The argument objects will be copied to the second context, but not any local objects created
in a nonstandard generic function. The other important distinction is that the parent (“enclosing”)
environment of the second context is the environment of the method as a function, so that all R pro-
gramming techniques using such environments apply to method definitions as ordinary functions.

For further discussion of method selection and dispatch, see the first reference.

Generic Functions

In principle, a generic function could be any function that evaluates a call to
standardGeneric(), the internal function that selects a method and evaluates a call to
the selected method. In practice, generic functions are special objects that in addition to being
from a subclass of class "function" also extend the class genericFunction. Such objects

Methods 915

have slots to define information needed to deal with their methods. They also have specialized
environments, containing the tables used in method selection.

The slots "generic" and "package" in the object are the character string names of the generic
function itself and of the package from which the function is defined. As with classes, generic
functions are uniquely defined in R by the combination of the two names. There can be generic
functions of the same name associated with different packages (although inevitably keeping such
functions cleanly distinguished is not always easy). On the other hand, R will enforce that only
one definition of a generic function can be associated with a particular combination of function and
package name, in the current session or other active version of R.

Tables of methods for a particular generic function, in this sense, will often be spread over several
other packages. The total set of methods for a given generic function may change during a session,
as additional packages are loaded. Each table must be consistent in the signature assumed for the
generic function.

R distinguishes standard and nonstandard generic functions, with the former having a function
body that does nothing but dispatch a method. For the most part, the distinction is just one of
simplicity: knowing that a generic function only dispatches a method call allows some efficiencies
and also removes some uncertainties.

In most cases, the generic function is the visible function corresponding to that name, in the corre-
sponding package. There are two exceptions, implicit generic functions and the special computa-
tions required to deal with R’s primitive functions. Packages can contain a table of implicit generic
versions of functions in the package, if the package wishes to leave a function non-generic but to
constrain what the function would be like if it were generic. Such implicit generic functions are
created during the installation of the package, essentially by defining the generic function and pos-
sibly methods for it, and then reverting the function to its non-generic form. (See implicitGeneric
for how this is done.) The mechanism is mainly used for functions in the older packages in R,
which may prefer to ignore S4 methods. Even in this case, the actual mechanism is only needed if
something special has to be specified. All functions have a corresponding implicit generic version
defined automatically (an implicit, implicit generic function one might say). This function is a stan-
dard generic with the same arguments as the non-generic function, with the non-generic version as
the default (and only) method, and with the generic signature being all the formal arguments except
. . . .

The implicit generic mechanism is needed only to override some aspect of the default definition.
One reason to do so would be to remove some arguments from the signature. Arguments that
may need to be interpreted literally, or for which the lazy evaluation mechanism of the language
is needed, must not be included in the signature of the generic function, since all arguments in the
signature will be evaluated in order to select a method. For example, the argument expr to the
function with is treated literally and must therefore be excluded from the signature.

One would also need to define an implicit generic if the existing non-generic function were not
suitable as the default method. Perhaps the function only applies to some classes of objects, and
the package designer prefers to have no general default method. In the other direction, the pack-
age designer might have some ideas about suitable methods for some classes, if the function were
generic. With reasonably modern packages, the simple approach in all these cases is just to define
the function as a generic. The implicit generic mechanism is mainly attractive for older packages
that do not want to require the methods package to be available.

Generic functions will also be defined but not obviously visible for functions implemented as prim-
itive functions in the base package. Primitive functions look like ordinary functions when printed
but are in fact not function objects but objects of two types interpreted by the R evaluator to call
underlying C code directly. Since their entire justification is efficiency, R refuses to hide primitives
behind a generic function object. Methods may be defined for most primitives, and corresponding
metadata objects will be created to store them. Calls to the primitive still go directly to the C code,

916 MethodsList-class

which will sometimes check for applicable methods. The definition of “sometimes” is that methods
must have been detected for the function in some package loaded in the session and isS4(x) is
TRUE for the first argument (or for the second argument, in the case of binary operators). You
can test whether methods have been detected by calling isGeneric for the relevant function and
you can examine the generic function by calling getGeneric, whether or not methods have been
detected. For more on generic functions, see the first reference and also section 2 of R Internals.

Method Definitions

All method definitions are stored as objects from the MethodDefinition class. Like the class of
generic functions, this class extends ordinary R functions with some additional slots: "generic",
containing the name and package of the generic function, and two signature slots, "defined"
and "target", the first being the signature supplied when the method was defined by a call to
setMethod. The "target" slot starts off equal to the "defined" slot. When an inherited
method is cached after being selected, as described above, a copy is made with the appropriate
"target" signature. Output from showMethods, for example, includes both signatures.

Method definitions are required to have the same formal arguments as the generic function, since
the method dispatch mechanism does not rematch arguments, for reasons of both efficiency and
consistency.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version: see section 10.6 for method selection and section 10.5 for generic functions).

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

For more specific information, see setGeneric, setMethod, and setClass.

For the use of . . . in methods, see dotsMethods.

MethodsList-class Class MethodsList, Representation of Methods for a Generic Function

Description

Objects from this class are generated and revised by the definition of methods for a generic function.

Details

Suppose a function f has formal arguments x and y. The methods list object for that function has
the object as.name("x") as its argument slot. An element of the methods named "track"
is selected if the actual argument corresponding to x is an object of class "track". If there is such
an element, it can generally be either a function or another methods list object.

In the first case, the function defines the method to use for any call in which x is of class "track".
In the second case, the new methods list object defines the available methods depending on the
remaining formal arguments, in this example, y.

Each method corresponds conceptually to a signature; that is a named list of classes, with names
corresponding to some or all of the formal arguments. In the previous example, if selecting
class "track" for x, finding that the selection was another methods list and then selecting class

MethodWithNext-class 917

"numeric" for y would produce a method associated with the signature x = "track", y =
"numeric".

You can see the methods arranged by signature by calling the function showMethods, A methods
list can be converted into an ordinary list with the methods arranged this way (in two different
forms) by calling the functions listFromMlist and linearizeMlist.

Slots

argument: Object of class "name". The name of the argument being used for dispatch at this
level.

methods: A named list of the methods (and method lists) defined explicitly for this argument.
The names are the names of classes, and the corresponding element defines the method or
methods to be used if the corresponding argument has that class. See the details below.

allMethods: A named list, contains all the directly defined methods from the methods slot,
plus any inherited methods. Ignored when methods tables are used for dispatch (see Methods

Extends

Class "OptionalMethods", directly.

MethodWithNext-class
Class MethodWithNext

Description

Class of method definitions set up for callNextMethod

Objects from the Class

Objects from this class are generated as a side-effect of calls to callNextMethod.

Slots

.Data: Object of class "function"; the actual function definition.

nextMethod: Object of class "PossibleMethod" the method to use in response to a
callNextMethod() call.

excluded: Object of class "list"; one or more signatures excluded in finding the next method.

target: Object of class "signature", from class "MethodDefinition"

defined: Object of class "signature", from class "MethodDefinition"

generic: Object of class "character"; the function for which the method was created.

Extends

Class "MethodDefinition", directly.
Class "function", from data part.
Class "PossibleMethod", by class "MethodDefinition".
Class "OptionalMethods", by class "MethodDefinition".

918 new

Methods

findNextMethod signature(method = "MethodWithNext"): used internally by
method dispatch.

loadMethod signature(method = "MethodWithNext"): used internally by method
dispatch.

show signature(object = "MethodWithNext")

See Also

callNextMethod, and class MethodDefinition.

new Generate an Object from a Class

Description

Given the name or the definition of a class, plus optionally data to be included in the object, new
returns an object from that class.

Usage

new(Class, ...)

initialize(.Object, ...)

Arguments

Class Either the name of a class (the usual case) or the object describing the class (e.g.,
the value returned by getClass).

... Data to include in the new object. Named arguments correspond to slots in the
class definition. Unnamed arguments must be objects from classes that this class
extends.

.Object An object: see the Details section.

Details

The function new begins by copying the prototype object from the class definition. Then informa-
tion is inserted according to the ... arguments, if any. As of version 2.4 of R, the type of the
prototype object, and therefore of all objects returned by new(), is "S4" except for classes that
extend one of the basic types, where the prototype has that basic type. User functions that depend
on typeof(object) should be careful to handle "S4" as a possible type.

The interpretation of the ... arguments can be specialized to particular classes, if an appro-
priate method has been defined for the generic function "initialize". The new function
calls initialize with the object generated from the prototype as the .Object argument to
initialize.

By default, unnamed arguments in the ... are interpreted as objects from a superclass, and named
arguments are interpreted as objects to be assigned into the correspondingly named slots. Thus,
explicit slots override inherited information for the same slot, regardless of the order in which the
arguments appear.

new 919

The initialize methods do not have to have ... as their second argument (see the examples).
Initialize methods are often written when the natural parameters describing the new object are not
the names of the slots. If you do define such a method, note the implications for future subclasses
of your class. If these have additional slots, and your initialize method has ... as a formal
argument, then your method should pass such arguments along via callNextMethod. If your
method does not have this argument, then either a subclass must have its own method or else the
added slots must be specified by users in some way other than as arguments to new.

For examples of initialize methods, see initialize-methods for existing methods for
classes "traceable" and "environment", among others.

Methods for initialize can be inherited only by simple inheritance, since it is a requirement
that the method return an object from the target class. See the simpleInheritanceOnly
argument to setGeneric and the discussion in setIs for the general concept.

Note that the basic vector classes, "numeric", etc. are implicitly defined, so one can use new for
these classes.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

Classes for an overview of defining class, and setOldClass for the relation to S3 classes.

Examples

using the definition of class "track" from Classes

a new object with two slots specified
t1 <- new("track", x = seq_along(ydata), y = ydata)

a new object including an object from a superclass, plus a slot
t2 <- new("trackCurve", t1, smooth = ysmooth)

define a method for initialize, to ensure that new objects have
equal-length x and y slots.

setMethod("initialize",
"track",
function(.Object, x = numeric(0), y = numeric(0)) {
if(nargs() > 1) {
if(length(x) != length(y))
stop("specified x and y of different lengths")

.Object@x <- x

.Object@y <- y
}
.Object

})

the next example will cause an error (x will be numeric(0)),
because we didn't build in defaults for x,

920 ObjectsWithPackage-class

although we could with a more elaborate method for initialize

try(new("track", y = sort(stats::rnorm(10))))

a better way to implement the previous initialize method.
Why? By using callNextMethod to call the default initialize method
we don't inhibit classes that extend "track" from using the general
form of the new() function. In the previous version, they could only
use x and y as arguments to new, unless they wrote their own
initialize method.

setMethod("initialize", "track", function(.Object, ...) {
.Object <- callNextMethod()
if(length(.Object@x) != length(.Object@y))
stop("specified x and y of different lengths")

.Object
})

ObjectsWithPackage-class
A Vector of Object Names, with associated Package Names

Description

This class of objects is used to represent ordinary character string object names, extended with a
package slot naming the package associated with each object.

Objects from the Class

The function getGenerics returns an object of this class.

Slots

.Data: Object of class "character": the object names.

package: Object of class "character" the package names.

Extends

Class "character", from data part.
Class "vector", by class "character".

See Also

Methods for general background.

promptClass 921

promptClass Generate a Shell for Documentation of a Formal Class

Description

Assembles all relevant slot and method information for a class, with minimal markup for Rd pro-
cessing; no QC facilities at present.

Usage

promptClass(clName, filename = NULL, type = "class",
keywords = "classes", where = topenv(parent.frame()))

Arguments

clName a character string naming the class to be documented.

filename usually, a connection or a character string giving the name of the file to which
the documentation shell should be written. The default corresponds to a file
whose name is the topic name for the class documentation, followed by ".Rd".
Can also be NA (see below).

type the documentation type to be declared in the output file.

keywords the keywords to include in the shell of the documentation. The keyword
"classes" should be one of them.

where where to look for the definition of the class and of methods that use it.

Details

The class definition is found on the search list. Using that definition, information about classes
extended and slots is determined.

In addition, the currently available generics with methods for this class are found (using
getGenerics). Note that these methods need not be in the same environment as the class defini-
tion; in particular, this part of the output may depend on which packages are currently in the search
list.

As with other prompt-style functions, unless filename is NA, the documentation shell is written
to a file, and a message about this is given. The file will need editing to give information about
the meaning of the class. The output of promptClass can only contain information from the
metadata about the formal definition and how it is used.

If filename is NA, a list-style representation of the documentation shell is created and re-
turned. Writing the shell to a file amounts to cat(unlist(x), file = filename, sep
= "\n"), where x is the list-style representation.

Value

If filename is NA, a list-style representation of the documentation shell. Otherwise, the name of
the file written to is returned invisibly.

Author(s)

VJ Carey 〈stvjc@channing.harvard.edu〉 and John Chambers

922 promptMethods

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

prompt for documentation of functions, promptMethods for documentation of method defini-
tions.

For processing of the edited documentation, either use R CMD Rdconv, or include the edited file
in the ‘man’ subdirectory of a package.

Examples

Not run:
> promptClass("track")
A shell of class documentation has been written to the
file "track-class.Rd".
End(Not run)

promptMethods Generate a Shell for Documentation of Formal Methods

Description

Generates a shell of documentation for the methods of a generic function.

Usage

promptMethods(f, filename = NULL, methods)

Arguments

f a character string naming the generic function whose methods are to be docu-
mented.

filename usually, a connection or a character string giving the name of the file to which
the documentation shell should be written. The default corresponds to the coded
topic name for these methods (currently, f followed by "-methods.Rd").
Can also be FALSE or NA (see below).

methods Optional methods list object giving the methods to be documented. By default,
the first methods object for this generic is used (for example, if the current global
environment has some methods for f, these would be documented).
If this argument is supplied, it is likely to be getMethods(f, where), with
where some package containing methods for f.

representation 923

Details

If filename is FALSE, the text created is returned, presumably to be inserted some other docu-
mentation file, such as the documentation of the generic function itself (see prompt).

If filename is NA, a list-style representation of the documentation shell is created and re-
turned. Writing the shell to a file amounts to cat(unlist(x), file = filename, sep
= "\n"), where x is the list-style representation.

Otherwise, the documentation shell is written to the file specified by filename.

Value

If filename is FALSE, the text generated; if filename is NA, a list-style representation of the
documentation shell. Otherwise, the name of the file written to is returned invisibly.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

prompt and promptClass

representation Construct a Representation or a Prototype for a Class Definition

Description

In calls to setClass, these two functions construct, respectively, the representation and
prototype arguments. They do various checks and handle special cases. You’re encouraged
to use them when defining classes that, for example, extend other classes as a data part or have
multiple superclasses, or that combine extending a class and slots.

Usage

representation(...)
prototype(...)

Arguments

... The call to representation takes arguments that are single character strings. Un-
named arguments are classes that a newly defined class extends; named argu-
ments name the explicit slots in the new class, and specify what class each slot
should have.
In the call to prototype, if an unnamed argument is supplied, it uncondition-
ally forms the basis for the prototype object. Remaining arguments are taken to
correspond to slots of this object. It is an error to supply more than one unnamed
argument.

924 representation

Details

The representation function applies tests for the validity of the arguments. Each must specify
the name of a class.

The classes named don’t have to exist when representation is called, but if they do, then the
function will check for any duplicate slot names introduced by each of the inherited classes.

The arguments to prototype are usually named initial values for slots, plus an optional first
argument that gives the object itself. The unnamed argument is typically useful if there is a data
part to the definition (see the examples below).

Value

The value pf representation is just the list of arguments, after these have been checked for
validity.

The value of prototype is the object to be used as the prototype. Slots will have been set
consistently with the arguments, but the construction does not use the class definition to test validity
of the contents (it hardly can, since the prototype object is usually supplied to create the definition).

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

setClass

Examples

representation for a new class with a directly define slot "smooth"
which should be a "numeric" object, and extending class "track"
representation("track", smooth ="numeric")

setClass("Character",representation("character"))
setClass("TypedCharacter",representation("Character",type="character"),

prototype(character(0),type="plain"))
ttt <- new("TypedCharacter", "foo", type = "character")

setClass("num1", representation(comment = "character"),
contains = "numeric",
prototype = prototype(pi, comment = "Start with pi"))

S3 925

S3 S3-style Objects and S4-class Objects

Description

Old-style (S3) classes may be registered as S4 classes (by calling setOldClass, and many have
been. These classes can then be contained in (that is, superclasses of) regular S4 classes, allowing
formal methods and slots to be added to the S3 behavior. The function S3Part extracts or replaces
the S3 part of such an object and S3Class extracts or replaces the S3-style class. Most computa-
tions that need to deal with the S3 aspects can coerce the objects automatically, without direct calls
to these functions. The functions also work for classes that extend basic vector or matrix object
types. See the details below.

Also discussed are S3 <-> S4 coercion; see the section “S3 and S4 objects”

Usage

S3Part(object, strictS3 = FALSE, S3Class)

S3Part(object, strictS3 = FALSE, needClass =) <- value

S3Class(object)

S3Class(object) <- value

isXS3Class(classDef)

slotsFromS3(object)

Arguments

object An object from some class that extends a registered S3 class, usually because
the class has as one of its superclasses an S3 class registered by a call to
setOldClass, or from a class that extends a basic vector, matrix or array
object type. See the details.
For most of the functions, an S3 object can also be supplied, with the interpre-
tation that it is its own S3 part.

strictS3 If TRUE, the value returned by S3Part will be an S3 object, with all the S4
slots removed. Otherwise, an S4 object will always be returned; for example,
from the S4 class created by setOldClass as a proxy for an S3 class, rather
than the underlying S3 object.

S3Class The character vector to be stored as the S3 class slot in the object returned.
Usually, and by default, retains the slot from object.

needClass Require that the replacement value be this class or a subclass of it.
value For S3Part<-, the replacement value for the S3 part of the object. This does

not need to be an S4 object; in fact, the usual way to create objects from these
classes is by giving an S3 object of the right class as an argument to new.
For S3Class<-, the character vector to assign as the S3 class.

classDef A class definition object, as returned by getClass.

926 S3

Details

Classes that register S3 classes by a call to setOldClass have slot ".S3Class" to hold the
corresponding S3 vector of class strings. The prototype of such a class has the value for this slot
determined by the argument to setOldClass.

As a result, new S4 classes that extend (contain) such registered S3 classes also have the same slot,
and by default the prototype has the value determined by the contains= argument to setClass.
Individual objects from the S4 class may have an S3 class corresponding to the value in the proto-
type or to an (S3) subclass of that value. See the examples below.

S3Part() with strictS3 = TRUE constructs the underlying S3 object by eliminating all the
formally defined slots and turning off the S4 bit of the object. With strictS3 = FALSE the
object returned is from the corresponding S4 class. For consistency and generality, S3Part()
works also for classes that extend the basic vector, matrix and array classes. Since R is somewhat
arbitrary about what it treats as an S3 class ("ts" is, but "matrix" is not), S3Part() tries to
return an S3 (that is, non-S4) object whenever the S4 class has a suitable superclass, of either S3 or
basic object type.

One general application that relies on this generality is to use S3Part() to get a superclass object
that is guaranteed not to be an S4 object. If you are calling some function that checks for S4 objects,
you need to be careful not to end up in a closed loop (fooS4 calls fooS3, which checks for an S4
object and calls fooS4 again, maybe indirectly). Using S3Part() with strictS3 = TRUE is
a mechanism to avoid such loops.

Because the contents of S3 class objects have no definition or guarantee, the computations involving
S3 parts do not| check for slot validity. Slots are implemented internally in R as attributes, which
are copied when present in the S3 part. For this reason, grave problems can occur if an S4 class
extending an S3 class uses the name of an S3 attribute as the name of an S4 slot. It’s tempting to
“promote” an attribute to a slot, but the resulting confusion between slot and attribute is hard to
handle.

Frequently, S3Part can and should be avoided by simply coercing objects to the desired class;
methods are automatically defined to deal correctly with the slots when as is called to extract or
replace superclass objects.

The function slotsFromS3() is a generic function used internally to access the slots associ-
ated with the S3 part of the object. Methods for this function are created automatically when
setOldClass is called with the S4Class argument. Usually, there is only one S3 slot, con-
taining the S3 class, but the S4Class argument may provide additional slots, in the case that the
S3 class has some guaranteed attributes that can be used as formal S4 slots. See the corresponding
section in the documentation of setOldClass.

Value

S3Part: Returns or sets the S3 information (and possibly some S4 slots as well, depending on
arguments S3Class and keepSlots). See the discussion of argument strict above. If it is
TRUE the value returned is an S3 object.

S3Class: For an object from a class extending S3 classes, returns or sets the character vector of
class(es) stored in the object. Note that S3Class on any other object returns the value of class.

isXS3Class: Returns TRUE or FALSE according to whether the class defined by ClassDef
extends S3 classes (specifically, whether it has the slot for holding the S3 class).

slotsFromS3: returns a list of the relevant slot classes, or an empty list for any other object.

S3 927

S3 and S4 Objects: Conversion Mechanisms

Objects in R have an internal bit that indicates whether or not to treat the object as coming from an
S4 class. This bit is tested by isS4 and can be set on or off by asS4. The latter function, however,
does no checking or interpretation; you should only use it if you are very certain every detail has
been handled correctly.

As a friendlier alternative, methods have been defined for coercing to the virtual classes "S3"
and "S4". The expressions as(object, "S3") and as(object, "S4") return S3 and S4
objects, respectively. In addition, they attempt to do conversions in a valid way, and also check
validity when coercing to S4.

The expression as(object, "S3") can be used in two ways. For objects from one of the
registered S3 classes, the expression will ensure that the class attribute is the full multi-string S3
class implied by class(object). If the registered class has known attribute/slots, these will
also be provided.

Another use of as(object, "S3") is to take an S4 object and turn it into an S3 object with
corresponding attributes. This is only meaningful with S4 classes that have a data part. If you want
to operate on the object without invoking S4 methods, this conversion is usually the safest way.

The expression as(object, "S4") will use the attributes in the object to create an object from
the S4 definition of class(object). This is a general mechanism to create partially defined
version of S4 objects via S3 computations (not much different from invoking new with correspond-
ing arguments, but usable in this form even if the S4 object has an initialize method with different
arguments).

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version).

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

setOldClass

Examples

two examples extending S3 class "lm", class "xlm" directly and "ylm" indirectly
setClass("xlm", representation(eps = "numeric"), contains = "lm")
setClass("ylm", representation(header = "character"), contains = "xlm")

lm.D9 is as computed in the example for stats::lm
y1 = new("ylm", lm.D9, header = "test", eps = .1)
xx = new("xlm", lm.D9, eps =.1)
y2 = new("ylm", xx, header = "test")
stopifnot(inherits(y2, "lm"))
stopifnot(identical(y1, y2))
stopifnot(identical(S3Part(y1, strict = TRUE), lm.D9))

note the these classes can insert an S3 subclass of "lm" as the S3 part:
myData <- data.frame(time = 1:10, y = (1:10)^.5)
myLm <- lm(cbind(y, y^3) ~ time, myData) # S3 class: c("mlm", "lm")
ym1 = new("ylm", myLm, header = "Example", eps = 0.)

##similar classes to "xlm" and "ylm", but extending S3 class c("mlm", "lm")
setClass("xmm", representation(eps = "numeric"), contains = "mlm")

928 S4groupGeneric

setClass("ymm", representation(header="character"), contains = "xmm")

ym2 <- new("ymm", myLm, header = "Example2", eps = .001)

but for class "ymm", an S3 part of class "lm" is an error:
try(new("ymm", lm.D9, header = "Example2", eps = .001))

setClass("dataFrameD", representation(date = "Date"), contains = "data.frame")
myDD <- new("dataFrameD", myData, date = Sys.Date())

S3Part() applied to classes with a data part (.Data slot)

setClass("NumX", contains="numeric", representation(id="character"))
nn = new("NumX", 1:10, id="test")
stopifnot(identical(1:10, S3Part(nn, strict = TRUE)))

m1 = cbind(group, weight)
setClass("MatX", contains = "matrix", representation(date = "Date"))
mx1 = new("MatX", m1, date = Sys.Date())
stopifnot(identical(m1, S3Part(mx1, strict = TRUE)))

S4groupGeneric Group Generic Functions

Description

Methods can be defined for group generic functions. Each group generic function has a number of
member generic functions associated with it.

Methods defined for a group generic function cause the same method to be defined for each member
of the group, but a method explicitly defined for a member of the group takes precedence over a
method defined, with the same signature, for the group generic.

The functions shown in this documentation page all reside in the methods package, but the mecha-
nism is available to any programmer, by calling setGroupGeneric.

Usage

S4 group generics:
Arith(e1, e2)
Compare(e1, e2)
Ops(e1, e2)
Logic(e1, e2)
Math(x)
Math2(x, digits)
Summary(x, ..., na.rm = FALSE)
Complex(z)

Arguments

x, z, e1, e2 objects.

digits number of digits to be used in round or signif.

S4groupGeneric 929

... further arguments passed to or from methods.

na.rm logical: should missing values be removed?

Details

Methods can be defined for the group generic functions by calls to setMethod in the usual way.
Note that the group generic functions should never be called directly – a suitable error message
will result if they are. When metadata for a group generic is loaded, the methods defined become
methods for the members of the group, but only if no method has been specified directly for the
member function for the same signature. The effect is that group generic definitions are selected
before inherited methods but after directly specified methods. For more on method selection, see
Methods.

There are also S3 groups Math, Ops, Summary and Complex, see ?S3groupGeneric, with
no corresponding R objects, but these are irrelevant for S4 group generic functions.

The members of the group defined by a particular generic can be obtained by calling
getGroupMembers. For the group generic functions currently defined in this package the mem-
bers are as follows:

Arith "+", "-", "*", "^", "%%", "%/%", "/"

Compare "==", ">", "<", "!=", "<=", ">="

Logic "&", "|".

Ops "Arith", "Compare", "Logic"

Math "abs", "sign", "sqrt", "ceiling", "floor", "trunc", "cummax",
"cummin", "cumprod", "cumsum", "log", "log10", "log2", "log1p", "acos",
"acosh", "asin", "asinh", "atan", "atanh", "exp", "expm1", "cos",
"cosh", "sin", "sinh", "tan", "tanh", "gamma", "lgamma", "digamma",
"trigamma"

Math2 "round", "signif"

Summary "max", "min", "range", "prod", "sum", "any", "all"

Complex "Arg", "Conj", "Im", "Mod", "Re"

Note that Ops merely consists of three sub groups.

All the functions in these groups (other than the group generics themselves) are basic functions in R.
They are not by default S4 generic functions, and many of them are defined as primitives. However,
you can still define formal methods for them, both individually and via the group generics. It all
works more or less as you might expect, admittedly via a bit of trickery in the background. See
Methods for details.

Note that two members of the Math group, log and trunc, have . . . as an extra formal argument.
Since methods for Math will have only one formal argument, you must set a specific method for
these functions in order to call them with the extra argument(s).

For further details about group generic functions see section 10.5 of Software for Data Analysis.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version).

930 SClassExtension-class

See Also

The function callGeneric is nearly always relevant when writing a method for a group generic.
See the examples below and in section 10.5 of Software for Data Analysis.

See S3groupGeneric for S3 group generics.

Examples

setClass("testComplex", representation(zz = "complex"))
method for whole group "Complex"
setMethod("Complex", "testComplex",

function(z) c("groupMethod", callGeneric(z@zz)))
exception for Arg() :
setMethod("Arg", "testComplex",

function(z) c("ArgMethod", Arg(z@zz)))
z1 <- 1+2i
z2 <- new("testComplex", zz = z1)
stopifnot(identical(Mod(z2), c("groupMethod", Mod(z1))))
stopifnot(identical(Arg(z2), c("ArgMethod", Arg(z1))))

SClassExtension-class
Class to Represent Inheritance (Extension) Relations

Description

An object from this class represents a single ‘is’ relationship; lists of these objects are used to
represent all the extensions (superclasses) and subclasses for a given class. The object contains
information about how the relation is defined and methods to coerce, test, and replace correspond-
ingly.

Objects from the Class

Objects from this class are generated by setIs, from direct calls and from the contains= in-
formation in a call to setClass, and from class unions created by setClassUnion. In the
last case, the information is stored in defining the subclasses of the union class (allowing unions to
contain sealed classes).

Slots

subClass,superClass: The classes being extended: corresponding to the from, and to
arguments to setIs.

package: The package to which that class belongs.

coerce: A function to carry out the as() computation implied by the relation. Note that these
functions should not be used directly. They only deal with the strict=TRUE calls to the as
function, with the full method constructed from this mechanically.

test: The function that would test whether the relation holds. Except for explicitly specified
test arguments to setIs, this function is trivial.

replace: The method used to implement as(x, Class) <- value.

setClass 931

simple: A "logical" flag, TRUE if this is a simple relation, either because one class is con-
tained in the definition of another, or because a class has been explicitly stated to extend a
virtual class. For simple extensions, the three methods are generated automatically.

by: If this relation has been constructed transitively, the first intermediate class from the subclass.

dataPart: A "logical" flag, TRUE if the extended class is in fact the data part of the subclass.
In this case the extended class is a basic class (i.e., a type).

distance: The distance between the two classes, 1 for directly contained classes, plus the num-
ber of generations between otherwise.

Methods

No methods defined with class "SClassExtension" in the signature.

See Also

is, as, and the classRepresentation class.

setClass Create a Class Definition

Description

Create a class definition, specifying the representation (the slots) and/or the classes contained in this
one (the superclasses), plus other optional details.

Usage

setClass(Class, representation, prototype, contains=character(),
validity, access, where, version, sealed, package)

Arguments

Class character string name for the class.
representation

a named list of the slots that the new class should have, the names giving the
names of the slots and the corresponding elements being the character string
names of the corresponding classes. Usually a call to the representation
function.
Backward compatibility and compatibility with S-Plus allows unnamed ele-
ments for superclasses, but the recommended style is to use the contains=
argument instead.

prototype an object providing the default data for the slots in this class. Usually and prefer-
ably the result of a call to \llink{prototype}.

contains what classes does this class extend? (These are called superclasses in some
languages.) When these classes have slots, all their slots will be contained in the
new class as well.

where the environment in which to store or remove the definition. Defaults to the top-
level environment of the calling function (the global environment for ordinary
computations, and the environment or name space of a package in the source
code for that package).

932 setClass

validity if supplied, should be a validity-checking method for objects from this class (a
function that returns TRUE if its argument is a valid object of this class and
one or more strings describing the failures otherwise). See validObject for
details.

access, version
access and version, included for compatibility with S-Plus, but currently ig-
nored.

sealed if TRUE, the class definition will be sealed, so that another call to setClass
will fail on this class name.

package an optional package name for the class. By default (and usually) the name of the
package in which the class definition is assigned.

Basic Use: Slots and Inheritance

The two essential arguments, other than the class name are representation and contains,
defining the explicit slots and the inheritance (superclasses). Together, these arguments define all
the information in an object from this class; that is, the names of all the slots and the classes required
for each of them.

The name of the class determines which methods apply directly to objects from this class. The in-
heritance information specifies which methods apply indirectly, through inheritance. See Methods.

The slots in a class definition will be the union of all the slots specified directly by
representation and all the slots in all the contained classes. There can only be one slot
with a given name; specifically, the direct and inherited slot names must be unique. That does
not, however, prevent the same class from being inherited via more than one path.

One kind of element in the contains= argument is special, specifying one of the R vector types
or one of a few other special R types (matrix and array). A class can contain at most one of
these, directly or indirectly. When it does, that contained class determines the “data part” of the
class, and objects from the new class inherit all the built in behavior of the contained type. Two
direct consequences are: for any object x from the class, typeof(x) will be the contained basic
type; and a special pseudo-slot, .Data, will be shown with the corresponding class.

For an object from any class that does not contain such a type, typeof(x) will be "S4" and the
class will have no .Data slot.

Prototypes

Defining new classes that inherit from (‘extend’) other classes is a powerful technique, but has to be
used carefully and not over-used. Otherwise, you will often get unintended results when you start
to compute with objects from the new class.

As shown in the examples below, the simplest and safest form of inheritance is to start with an
explicit class, with some slots, that does not extend anything else. It only does what we say it does.

Then extensions will add some new slots and new behavior.

Another variety of extension starts with one of the built-in objects, perhaps with the intention of
modifying R’s standard behavior for that class. In this case, the new class inherits the built-in data
type as its ‘data’ part. See the "numWithId" example below.

When such a class definition is printed, the data part shows up as a pseudo-slot named .Data.

Classes and Packages

Class definitions normally belong to packages (but can be defined in the global environment
as well, by evaluating the expression on the command line or in a file sourced from the com-
mand line). The corresponding package name is part of the class definition; that is, part of the

setClass 933

classRepresentation object holding that definition. Thus, two classes with the same name
can exist in different packages, for most purposes.

When a class name is supplied for a slot or a superclass, a corresponding class definition will be
found, looking from the namespace or environment of the current package, assuming the call to
setClass in question appears directly in the source for the package. That’s where it should
appear, to avoid ambiguity.

In particular, if the current package has a namespace then the class must be found in the current
package itself, in the imports defined by that namespace, or in the base package.

When this rule does not identify a class uniquely (because it appears in more than one imported
package) then the packageSlot of the character string name needs to be supplied with the name.
This should be a rare occurrence.

Note

Certain slot names are not allowed in the current implementation, as they correspond to attributes
which are treated specially. These are class, comment, dim, dimnames, names, row.names
and tsp.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

Classes for a general discussion of classes, Methods for an analogous discussion of methods,
makeClassRepresentation

Examples

A simple class with two slots
setClass("track",

representation(x="numeric", y="numeric"))
A class extending the previous, adding one more slot
setClass("trackCurve",

representation(smooth = "numeric"),
contains = "track")

A class similar to "trackCurve", but with different structure
allowing matrices for the "y" and "smooth" slots
setClass("trackMultiCurve",

representation(x="numeric", y="matrix", smooth="matrix"),
prototype = list(x=numeric(), y=matrix(0,0,0),

smooth= matrix(0,0,0)))
##
Suppose we want trackMultiCurve to be like trackCurve when there's
only one column.
First, the wrong way.
try(setIs("trackMultiCurve", "trackCurve",

test = function(obj) {ncol(slot(obj, "y")) == 1}))

Why didn't that work? You can only override the slots "x", "y",
and "smooth" if you provide an explicit coerce function to correct

934 setClassUnion

any inconsistencies:

setIs("trackMultiCurve", "trackCurve",
test = function(obj) {ncol(slot(obj, "y")) == 1},
coerce = function(obj) {

new("trackCurve",
x = slot(obj, "x"),
y = as.numeric(slot(obj,"y")),
smooth = as.numeric(slot(obj, "smooth")))

})

A class that extends the built-in data type "numeric"

setClass("numWithId", representation(id = "character"),
contains = "numeric")

new("numWithId", 1:3, id = "An Example")

setClassUnion Classes Defined as the Union of Other Classes

Description

A class may be defined as the union of other classes; that is, as a virtual class defined as a superclass
of several other classes. Class unions are useful in method signatures or as slots in other classes,
when we want to allow one of several classes to be supplied.

Usage

setClassUnion(name, members, where)
isClassUnion(Class)

Arguments

name the name for the new union class.

members the classes that should be members of this union.

where where to save the new class definition; by default, the environment of the pack-
age in which the setClassUnion call appears, or the global environment if
called outside of the source of a package.

Class the name or definition of a class.

Details

The classes in members must be defined before creating the union. However, members can be
added later on to an existing union, as shown in the example below. Class unions can be members
of other class unions.

Class unions are the only way to create a class that is extended by a class whose definition is sealed
(for example, the basic datatypes or other classes defined in the base or methods package in R are
sealed). You cannot say setIs("function", "other") unless "other" is a class union.

setGeneric 935

In general, a setIs call of this form changes the definition of the first class mentioned (adding
"other" to the list of superclasses contained in the definition of "function").

Class unions get around this by not modifying the first class definition, relying instead on storing
information in the subclasses slot of the class union. In order for this technique to work, the internal
computations for expressions such as extends(class1, class2) work differently for class
unions than for regular classes; specifically, they test whether any class is in common between the
superclasses of class1 and the subclasses of class2.

The different behavior for class unions is made possible because the class definition object for
class unions has itself a special class, "ClassUnionRepresentation", an extension of class
classRepresentation.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

Examples

a class for either numeric or logical data
setClassUnion("maybeNumber", c("numeric", "logical"))

use the union as the data part of another class
setClass("withId", representation("maybeNumber", id = "character"))

w1 <- new("withId", 1:10, id = "test 1")
w2 <- new("withId", sqrt(w1)%%1 < .01, id = "Perfect squares")

add class "complex" to the union "maybeNumber"
setIs("complex", "maybeNumber")

w3 <- new("withId", complex(real = 1:10, imaginary = sqrt(1:10)))

a class union containing the existing class union "OptionalFunction"
setClassUnion("maybeCode",

c("expression", "language", "OptionalFunction"))

is(quote(sqrt(1:10)), "maybeCode") ## TRUE

setGeneric Define a New Generic Function

Description

Create a new generic function of the given name, that is, a function that dispatches methods accord-
ing to the classes of the arguments, from among the formal methods defined for this function.

936 setGeneric

Usage

setGeneric(name, def= , group=list(), valueClass=character(),
where= , package= , signature= , useAsDefault= ,
genericFunction= , simpleInheritanceOnly =)

setGroupGeneric(name, def= , group=list(), valueClass=character(),
knownMembers=list(), package= , where=)

Arguments

name The character string name of the generic function. The simplest (and recom-
mended) call, setGeneric(name), looks for a function with this name and
creates a corresponding generic function, if the function found was not generic.

def An optional function object, defining the generic. Don’t supply this argument if
you want an existing non-generic function to supply the arguments. Do supply it
if there is no current function of this name, or if you want the generic function to
have different arguments. In that case, the formal arguments and default values
for the generic are taken from def. You can also supply this argument if you
want the generic function to do something other than just dispatch methods.
Note that def is not the default method; use argument useAsDefault if you
want to specify the default separately.

group Optionally, a character string giving the name of the group generic function to
which this function belongs. See Methods for details of group generic functions
in method selection.

valueClass An optional character vector of one or more class names. The value returned
by the generic function must have (or extend) this class, or one of the classes;
otherwise, an error is generated.

package The name of the package with which this function is associated. Usually deter-
mined automatically (as the package containing the non-generic version if there
is one, or else the package where this generic is to be saved).

where Where to store the resulting initial methods definition, and possibly the generic
function; by default, stored into the top-level environment.

signature Optionally, the vector of names, from among the formal arguments to the func-
tion, that can appear in the signature of methods for this function, in calls to
setMethod. If . . . is one of the formal arguments, it is treated specially. Start-
ing with version 2.8.0 of R, . . . may be signature of the generic function. Meth-
ods will then be selected if their signature matches all the . . . arguments. See the
documentation for topic dotsMethods for details. In the present version, it is not
possible to mix . . . and other arguments in the signature (this restriction may be
lifted in later versions).
By default, the signature is inferred from the implicit generic function corre-
sponding to a non-generic function. If no implicit generic function has been
defined, the default is all the formal arguments except . . . , in the order they ap-
pear in the function definition. In the case that . . . is the only formal argument,
that is also the default signature. To use . . . as the signature in a function that has
any other arguments, you must supply the signature argument explicitly. See the
“Implicit Generic” section below for more details.

useAsDefault Override the usual choice of default argument (an existing non-generic function
or no default if there is no such function). Argument useAsDefault can be
supplied, either as a function to use for the default, or as a logical value. FALSE

setGeneric 937

says not to have a default method at all, so that an error occurs if there is not an
explicit or inherited method for a call. TRUE says to use the existing function as
default, unconditionally (hardly ever needed as an explicit argument). See the
section on details.

simpleInheritanceOnly
Supply this argument as TRUE to require that methods selected be inherited
through simple inheritance only; that is, from superclasses specified in the
contains= argument to setClass, or by simple inheritance to a class union
or other virtual class. Generic functions should require simple inheritance if
they need to be assured that they get the complete original object, not one that
has been transformed. Examples of functions requiring simple inheritance are
initialize, because by definition it must return an object from the same
class as its argument, and show, because it claims to give a full description of
the object provided as its argument.

genericFunction
Don’t use; for (possible) internal use only.

knownMembers (For setGroupGeneric only.) The names of functions that are known to be
members of this group. This information is used to reset cached definitions of
the member generics when information about the group generic is changed.

Value

The setGeneric function exists for its side effect: saving the generic function to allow methods
to be specified later. It returns name.

Basic Use

The setGeneric function is called to initialize a generic function as preparation for defining
some methods for that function.

The simplest and most common situation is that name is already an ordinary non-generic non-
primitive function, and you now want to turn this function into a generic. In this case you will most
often supply only name, for example:

setGeneric("colSums")

There must be an existing function of this name, on some attached package (in this case package
"base"). A generic version of this function will be created in the current package (or in the
global environment if the call to setGeneric() is from an ordinary source file or is entered on
the command line). The existing function becomes the default method, and the package slot of
the new generic function is set to the location of the original function ("base" in the example).
It’s an important feature that the same generic function definition is created each time, depending
in the example only on the definition of print and where it is found. The signature of the
generic function, defining which of the formal arguments can be used in specifying methods, is set
by default to all the formal arguments except

Note that calling setGeneric() in this form is not strictly necessary before calling
setMethod() for the same function. If the function specified in the call to setMethod is not
generic, setMethod will execute the call to setGeneric itself. Declaring explicitly that you
want the function to be generic can be considered better programming style; the only difference
in the result, however, is that not doing so produces a message noting the creation of the generic
function.

You cannot (and never need to) create an explicit generic version of the primitive functions in
the base package. Those which can be treated as generic functions have methods selected and

938 setGeneric

dispatched from the internal C code, to satisfy concerns for efficiency, and the others cannot be
made generic. See the section on Primitive Functions below.

The description above is the effect when the package that owns the non-generic function has not
created an implicit generic version. Otherwise, it is this implicit generic function that is used. See
the section on Implicit Generic Functions below. Either way, the essential result is that the same
version of the generic function will be created each time.

The second common use of setGeneric() is to create a new generic function, unrelated to any
existing function, and frequently having no default method. In this case, you need to supply a
skeleton of the function definition, to define the arguments for the function. The body of a generic
function is usually a standard form, standardGeneric(name)where name is the quoted name
of the generic function. When calling setGeneric in this form, you would normally supply the
def argument as a function of this form. See the second and third examples below.

The useAsDefault argument controls the default method for the new generic. If not told other-
wise, setGeneric will try to find a non-generic version of the function to use as a default. So,
if you do have a suitable default method, it is often simpler to first set this up as a non-generic
function, and then use the one-argument call to setGeneric at the beginning of this section. See
the first example in the Examples section below.

If you don’t want the existing function to be taken as default, supply the argument
useAsDefault. That argument can be the function you want to be the default method, or FALSE
to force no default (i.e., to cause an error if there is no direct or inherited method selected for a call
to the function).

Details

If you want to change the behavior of an existing function (typically, one in another package)
when you create a generic version, you must supply arguments to setGeneric correspondingly.
Whatever changes are made, the new generic function will be assigned with a package slot set to
the current package, not the one in which the non-generic version of the function is found. This
step is required because the version you are creating is no longer the same as that implied by the
function in the other package. A message will be printed to indicate that this has taken place and
noting one of the differences between the two functions.

The body of a generic function usually does nothing except for dispatching methods by a call
to standardGeneric. Under some circumstances you might just want to do some addi-
tional computation in the generic function itself. As long as your function eventually calls
standardGeneric that is permissible (though perhaps not a good idea, in that it may make
the behavior of your function less easy to understand). If your explicit definition of the generic
function does not call standardGeneric you are in trouble, because none of the methods for
the function will ever be dispatched.

By default, the generic function can return any object. If valueClass is supplied, it should be
a vector of class names; the value returned by a method is then required to satisfy is(object,
Class) for one of the specified classes. An empty (i.e., zero length) vector of classes means any-
thing is allowed. Note that more complicated requirements on the result can be specified explicitly,
by defining a non-standard generic function.

The setGroupGeneric function behaves like setGeneric except that it constructs a group
generic function, differing in two ways from an ordinary generic function. First, this function cannot
be called directly, and the body of the function created will contain a stop call with this information.
Second, the group generic function contains information about the known members of the group,
used to keep the members up to date when the group definition changes, through changes in the
search list or direct specification of methods, etc.

setGeneric 939

Implicit Generic Functions

Saying that a non-generic function “is converted to a generic” is more precisely state that the func-
tion is converted to the corresponding implicit generic function. If no special action has been taken,
any function corresponds implicitly to a generic function with the same arguments, in which all
arguments other than . . . can be used. The signature of this generic function is the vector of formal
arguments, in order, except for

The source code for a package can define an implicit generic function version of any function in
that package (see implicitGeneric for the mechanism). You can not, generally, define an implicit
generic function in someone else’s package. The usual reason for defining an implicit generic is
to prevent certain arguments from appearing in the signature, which you must do if you want the
arguments to be used literally or if you want to enforce lazy evaluation for any reason. An implicit
generic can also contain some methods that you want to be predefined; in fact, the implicit generic
can be any generic version of the non-generic function. The implicit generic mechanism can also
be used to prohibit a generic version (see prohibitGeneric).

Whether defined or inferred automatically, the implicit generic will be compared with the generic
function that setGeneric creates, when the implicit generic is in another package. If the two
functions are identical, then the package slot of the created generic will have the name of the
package containing the implicit generic. Otherwise, the slot will be the name of the package in
which the generic is assigned.

The purpose of this rule is to ensure that all methods defined for a particular combination of generic
function and package names correspond to a single, consistent version of the generic function.
Calling setGeneric with only name and possibly package as arguments guarantees getting
the implicit generic version, if one exists.

Including any of the other arguments can force a new, local version of the generic function. If you
don’t want to create a new version, don’t use the extra arguments.

Generic Functions and Primitive Functions

A number of the basic R functions are specially implemented as primitive functions, to be evaluated
directly in the underlying C code rather than by evaluating an R language definition. Most have
implicit generics (see implicitGeneric), and become generic as soon as methods (including
group methods) are defined on them. Others cannot be made generic.

Even when methods are defined for such functions, the generic version is not visible on the search
list, in order that the C version continues to be called. Method selection will be initiated in the C
code. Note, however, that the result is to restrict methods for primitive functions to signatures in
which at least one of the classes in the signature is a formal S4 class.

To see the generic version of a primitive function, use getGeneric(name). The function
isGeneric will tell you whether methods are defined for the function in the current session.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

Methods and the links there for a general discussion, dotsMethods for methods that dispatch
on “. . . ”, and setMethod for method definitions.

940 setMethod

Examples

create a new generic function, with a default method
props <- function(object) attributes(object)
setGeneric("props")

A new generic function with no default method
setGeneric("increment",
function(object, step, ...)
standardGeneric("increment")

)

A non-standard generic function. It insists that the methods
return a non-empty character vector (a stronger requirement than
valueClass = "character" in the call to setGeneric)

setGeneric("authorNames",
function(text) {
value <- standardGeneric("authorNames")
if(!(is(value, "character") && any(nchar(value)>0)))
stop("authorNames methods must return non-empty strings")

value
})

An example of group generic methods, using the class
"track"; see the documentation of setClass for its definition

define a method for the Arith group

setMethod("Arith", c("track", "numeric"),
function(e1, e2) {
e1@y <- callGeneric(e1@y , e2)
e1

})

setMethod("Arith", c("numeric", "track"),
function(e1, e2) {
e2@y <- callGeneric(e1, e2@y)
e2

})

now arithmetic operators will dispatch methods:

t1 <- new("track", x=1:10, y=sort(stats::rnorm(10)))

t1 - 100
1/t1

setMethod Create and Save a Method

setMethod 941

Description

Create and save a formal method for a given function and list of classes.

Usage

setMethod(f, signature=character(), definition,
where = topenv(parent.frame()),
valueClass = NULL, sealed = FALSE)

removeMethod(f, signature, where)

Arguments

f A generic function or the character-string name of the function.

signature A match of formal argument names for f with the character-string names of cor-
responding classes. See the details below; however, if the signature is not trivial,
you should use method.skeleton to generate a valid call to setMethod.

definition A function definition, which will become the method called when the arguments
in a call to f match the classes in signature, directly or through inheritance.

where the environment in which to store the definition of the method. For
setMethod, it is recommended to omit this argument and to include the call
in source code that is evaluated at the top level; that is, either in an R session by
something equivalent to a call to source, or as part of the R source code for a
package.
For removeMethod, the default is the location of the (first) instance of the
method for this signature.

valueClass Obsolete and unused, but see the same argument for setGeneric.

sealed If TRUE, the method so defined cannot be redefined by another call to
setMethod (although it can be removed and then re-assigned).

Details

The call to setMethod stores the supplied method definition in the metadata table for this generic
function in the environment, typically the global environment or the namespace of a package. In the
case of a package, the table object becomes part of the namespace or environment of the package.
When the package is loaded into a later session, the methods will be merged into the table of
methods in the corresponding generic function object.

Generic functions are referenced by the combination of the function name and the package name;
for example, the function "show" from the package "methods". Metadata for methods is iden-
tified by the two strings; in particular, the generic function object itself has slots containing its name
and its package name. The package name of a generic is set according to the package from which
it originally comes; in particular, and frequently, the package where a non-generic version of the
function originated. For example, generic functions for all the functions in package base will have
"base" as the package name, although none of them is an S4 generic on that package.

Multiple packages can have methods for the same generic function; that is, for the same combination
of generic function name and package name. Even though the methods are stored in separate tables
in separate environments, loading the corresponding packages adds the methods to the table in the
generic function itself, for the duration of the session.

The class names in the signature can be any formal class, including basic classes such as
"numeric", "character", and "matrix". Two additional special class names can appear:

942 setMethod

"ANY", meaning that this argument can have any class at all; and "missing", meaning that
this argument must not appear in the call in order to match this signature. Don’t confuse these
two: if an argument isn’t mentioned in a signature, it corresponds implicitly to class "ANY", not
to "missing". See the example below. Old-style (‘S3’) classes can also be used, if you need
compatibility with these, but you should definitely declare these classes by calling setOldClass
if you want S3-style inheritance to work.

Method definitions can have default expressions for arguments, but a current limitation is that the
generic function must have some default expression for the same argument in order for the method’s
defaults to be used. If so, and if the corresponding argument is missing in the call to the generic
function, the default expression in the method is used. If the method definition has no default for
the argument, then the expression supplied in the definition of the generic function itself is used, but
note that this expression will be evaluated using the enclosing environment of the method, not of
the generic function. Note also that specifying class "missing" in the signature does not require
any default expressions, and method selection does not evaluate default expressions. All actual
(non-missing) arguments in the signature of the generic function will be evaluated when a method
is selected—when the call to standardGeneric(f) occurs.

It is possible to have some differences between the formal arguments to a method supplied to
setMethod and those of the generic. Roughly, if the generic has . . . as one of its arguments, then
the method may have extra formal arguments, which will be matched from the arguments matching
. . . in the call to f. (What actually happens is that a local function is created inside the method, with
the modified formal arguments, and the method is re-defined to call that local function.)

Method dispatch tries to match the class of the actual arguments in a call to the available methods
collected for f. If there is a method defined for the exact same classes as in this call, that method
is used. Otherwise, all possible signatures are considered corresponding to the actual classes or
to superclasses of the actual classes (including "ANY"). The method having the least distance
from the actual classes is chosen; if more than one method has minimal distance, one is chosen
(the lexicographically first in terms of superclasses) but a warning is issued. All inherited methods
chosen are stored in another table, so that the inheritance calculations only need to be done once
per session per sequence of actual classes. See Methods for more details.

The function removeMethod removes the specified method from the metadata table in the corre-
sponding environment. It’s not a function that is used much, since one normally wants to redefine a
method rather than leave no definition.

Value

These functions exist for their side-effect, in setting or removing a method in the object defining
methods for the specified generic.

The value returned by removeMethod is TRUE if a method was found to be removed.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

method.skeleton, which is the recommended way to generate a skeleton of the call to
setMethod, with the correct formal arguments and other details.

Methods and the links there for a general discussion, dotsMethods for methods that dispatch on
“. . . ”, and setGeneric for generic functions.

setMethod 943

Examples

require(graphics)
methods for plotting track objects (see the example for setClass)
##
First, with only one object as argument:
setMethod("plot", signature(x="track", y="missing"),
function(x, y, ...) plot(slot(x, "x"), slot(x, "y"), ...)

)
Second, plot the data from the track on the y-axis against anything
as the x data.
setMethod("plot", signature(y = "track"),
function(x, y, ...) plot(x, slot(y, "y"), ...)

)
and similarly with the track on the x-axis (using the short form of
specification for signatures)
setMethod("plot", "track",
function(x, y, ...) plot(slot(x, "y"), y, ...)

)
t1 <- new("track", x=1:20, y=(1:20)^2)
tc1 <- new("trackCurve", t1)
slot(tc1, "smooth") <- smooth.spline(slot(tc1, "x"), slot(tc1, "y"))$y #$
plot(t1)
plot(qnorm(ppoints(20)), t1)
An example of inherited methods, and of conforming method arguments
(note the dotCurve argument in the method, which will be pulled out
of ... in the generic.
setMethod("plot", c("trackCurve", "missing"),
function(x, y, dotCurve = FALSE, ...) {

plot(as(x, "track"))
if(length(slot(x, "smooth") > 0))
lines(slot(x, "x"), slot(x, "smooth"),

lty = if(dotCurve) 2 else 1)
}

)
the plot of tc1 alone has an added curve; other uses of tc1
are treated as if it were a "track" object.
plot(tc1, dotCurve = TRUE)
plot(qnorm(ppoints(20)), tc1)

defining methods for a special function.
Although "[" and "length" are not ordinary functions
methods can be defined for them.
setMethod("[", "track",

function(x, i, j, ..., drop) {
x@x <- x@x[i]; x@y <- x@y[i]
x

})
plot(t1[1:15])

setMethod("length", "track", function(x)length(x@y))
length(t1)

methods can be defined for missing arguments as well
setGeneric("summary") ## make the function into a generic

944 setOldClass

A method for summary()
The method definition can include the arguments, but
if they're omitted, class "missing" is assumed.

setMethod("summary", "missing", function() "<No Object>")

setOldClass Register Old-Style (S3) Classes and Inheritance

Description

Register an old-style (a.k.a. ‘S3’) class as a formally defined class. The Classes argument is the
character vector used as the class attribute; in particular, if there is more than one string, old-
style class inheritance is mimicked. Registering via setOldClass allows S3 classes to appear in
method signatures, as a slot in an S4 class, or as a superclass of an S4 class.

Usage

setOldClass(Classes, prototype, where, test = FALSE, S4Class)

Arguments

Classes A character vector, giving the names for old-style classes, as they would appear
on the right side of an assignment of the class attribute in S3 computations.

prototype An optional object to use as the prototype. This should be provided as the default
S3 object for the class. If omitted, the S4 class created to register the S3 class is
VIRTUAL. See the details.

where Where to store the class definitions, the global or top-level environment by de-
fault. (When either function is called in the source for a package, the class
definitions will be included in the package’s environment by default.)

test flag, if TRUE, arrange to test inheritance explicitly for each object, needed if the
S3 class can have a different set of class strings, with the same first string. This
is a different mechanism in implementation and should be specified separately
for each pair of classes that have an optional inheritance. See the details below.

S4Class optionally, the class definition or the class name of an S4 class. The new class
will have all the slots and other properties of this class, plus its S3 inheritance
as defined by the Classses argument. Arguments prototype and test
must not be supplied in this case. See the section on “S3 classes with known
attributes” below.

Details

Each of the names will be defined as an S4 class, extending the remaining classes in Classes,
and the class oldClass, which is the ‘root’ of all old-style classes. S3 classes have no formal
definition, and therefore no formally defined slots. If a prototype argument is supplied in the
call to setOldClass(), objects from the class can be generated, by a call to new; however,
this usually not as relevant as generating objects from subclasses (see the section on extending S3
classes below). If a prototype is not provided, the class will be created as a virtual S4 class. The

setOldClass 945

main disadvantage is that the prototype object in an S4 class that uses this class as a slot will have
a NULL object in that slot, which can sometimes lead to confusion.

Beginning with version 2.8.0 of R, support is provided for using a (registered) S3 class as a super
class of a new S4 class. See the section on extending S3 classes below, and the examples.

See Methods for the details of method dispatch and inheritance.

Some S3 classes cannot be represented as an ordinary combination of S4 classes and superclasses,
because objects from the S3 class can have a variable set of strings in the class. It is still possible
to register such classes as S4 classes, but now the inheritance has to be verified for each object, and
you must call setOldClass with argument test=TRUE once for each superclass.

For example, ordered factors always have the S3 class c("ordered", "factor"). This is
proper behavior, and maps simply into two S4 classes, with "ordered" extending "factor".

But objects whose class attribute has "POSIXt" as the first string may have either (or neither) of
"POSIXct" or "POSIXlt" as the second string. This behavior can be mapped into S4 classes
but now to evaluate is(x, "POSIXlt"), for example, requires checking the S3 class attribute
on each object. Supplying the test=TRUE argument to setOldClass causes an explicit test to
be included in the class definitions. It’s never wrong to have this test, but since it adds significant
overhead to methods defined for the inherited classes, you should only supply this argument if it’s
known that object-specific tests are needed.

The list .OldClassesList contains the old-style classes that are defined by the methods pack-
age. Each element of the list is an old-style list, with multiple character strings if inheritance is
included. Each element of the list was passed to setOldClass when creating the methods pack-
age; therefore, these classes can be used in setMethod calls, with the inheritance as implied by
the list.

Extending S3 classes

A call to setOldClass creates formal classes corresponding to S3 classes, allows these to be
used as slots in other classes or in a signature in setMethod, and mimics the S3 inheritance.

In documentation for the initial implementation of S4 classes in R, users were warned against
defining S4 classes that contained S3 classes, even if those had been registered. The warning was
based mainly on two points. 1: The S3 behavior of the objects would fail because the S3 class
would not be visible, for example, when S3 methods are dispatched. 2: Because S3 classes have
no formal definition, nothing can be asserted in general about the S3 part of an object from such a
class. (The warning was repeated as recently as the first reference below.)

Nevertheless, defining S4 classes to contain an S3 class and extend its behavior is attractive in many
applications. The alternative is to be stuck with S3 programming, without the flexibility and security
of formal class and method definitions.

Beginning with version 2.8.0, R provides support for extending registered S3 classes; that is, for
new classes defined by a call to setClass in which the contains= argument includes an S3
class. See the examples below. The support is aimed primarily at providing the S3 class information
for all classes that extend class oldClass, in particular by ensuring that all objects from such classes
contain the S3 class in a special slot.

There are three different ways to indicate an extension to an existing S3 class: setOldClass(),
setClass() and setIs(). In most cases, calling setOldClass is the best approach, but the
alternatives may be preferred in the special circumstances described below.

Suppose "A" is any class extending "oldClass". then

setOldClass(c("B", "A"))

creates a new class "B" whose S3 class concatenates "B" with S3Class("A"). The new class
is a virtual class. If "A" was defined with known attribute/slots, then "B" has these slots also;

946 setOldClass

therefore, you must believe that the corresponding S3 objects from class "B" do indeed have the
claimed attributes. Notice that you can supply an S4 definition for the new class to specify additional
attributes (as described in the next section.) The first alternative call produces a non-virtual class.

"setClass("B", contains = "A")

This creates a non-virtual class with the same slots and superclasses as class "A". However, class
"B" is not included in the S3 class slot of the new class, unless you provide it explicitly in the
prototype.

setClass("B"); setIs("B", "A",)

This creates a virtual class that extends "A", but does not contain the slots of "A". The additional
arguments to setIs should provide a coerce and replacement method. In order for the new class to
inherit S3 methods, the coerce method must ensure that the class "A" object produced has a suitable
S3 class. The only likely reason to prefer this third approach is that class "B" is not consistent with
known attributes in class "A".

S3 Classes with known attributes

A further specification of an S3 class can be made if the class is guaranteed to have some attributes
of known class (where as with slots, “known” means that the attribute is an object of a specified
class, or a subclass of that class).

In this case, the call to setOldClass() can supply an S4 class definition representing the known
structure. Since S4 slots are implemented as attributes (largely for just this reason), the know
attributes can be specified in the representation of the S4 class. The usual technique will be to
create an S4 class with the desired structure, and then supply the class name or definition as the
argument S4Class to setOldClass().

See the definition of class "ts" in the examples below. The call to setClass to create the S4
class can use the same class name, as here, so long as the class definition is not sealed. In the
example, we define "ts" as a vector structure with a numeric slot for "tsp". The validity of this
definition relies on an assertion that all the S3 code for this class is consistent with that definition;
specifically, that all "ts" objects will behave as vector structures and will have a numeric "tsp"
attribute. We believe this to be true of all the base code in R, but as always with S3 classes, no
guarantee is possible.

The S4 class definition can have virtual superclasses (as in the "ts" case) if the S3 class is asserted
to behave consistently with these (in the example, time-series objects are asserted to be consistent
with the structure class).

For another example, look at the S4 class definition for "data.frame".

Be warned that failures of the S3 class to live up to its asserted behavior will usually go uncorrected,
since S3 classes inherently have no definition, and the resulting invalid S4 objects can cause all sorts
of grief. Many S3 classes are not candidates for known slots, either because the presence or class
of the attributes are not guaranteed (e.g., dimnames in arrays, although these are not even S3
classes), or because the class uses named components of a list rather than attributes (e.g., "lm").
An attribute that is sometimes missing cannot be represented as a slot, not even by pretending that
it is present with class "NULL", because attributes unlike slots can not have value NULL.

One irregularity that is usually tolerated, however, is to optionally add other attributes to those guar-
anteed to exist (for example, "terms" in data.frame" objects returned by model.frame).
As of version 2.8.0, validity checks by validObject ignore extra attributes; even if this check
is tightened in the future, classes extending S3 classes would likely be exempted because extra
attributes are so common.

setOldClass 947

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version: see section 10.6 for method selection and section 13.4 for generic functions).

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

setClass, setMethod

Examples

require(stats)
setOldClass(c("mlm", "lm"))
setGeneric("dfResidual", function(model)standardGeneric("dfResidual"))
setMethod("dfResidual", "lm", function(model)model$df.residual)

dfResidual will work on mlm objects as well as lm objects
myData <- data.frame(time = 1:10, y = (1:10)^.5)
myLm <- lm(cbind(y, y^3) ~ time, myData)

two examples extending S3 class "lm", class "xlm" directly and "ylm" indirectly
setClass("xlm", representation(eps = "numeric"), contains = "lm")
setClass("ylm", representation(header = "character"), contains = "xlm")
ym1 = new("ylm", myLm, header = "Example", eps = 0.)
for more examples, see ?S3Class.

Examples of S3 classes with guaranteed attributes
an S3 class "stamped" with a vector and a "date" attribute
Here is a generator function and an S3 print method.
NOTE: it's essential that the generator checks the attribute classes
stamped <- function(x, date = Sys.time()) {

if(!inherits(date, "POSIXt"))
stop("bad date argument")

if(!is.vector(x))
stop("x must be a vector")

attr(x, "date") <- date
class(x) <- "stamped"
x

}

print.stamped <- function(x, ...) {
print(as.vector(x))
cat("Date: ", format(attr(x,"date")), "\n")

}

Now, an S4 class with the same structure:
setClass("stamped4", contains = "vector", representation(date = "POSIXt"))

We can use the S4 class to register "stamped", with its attributes:
setOldClass("stamped", S4Class = "stamped4")
selectMethod("show", "stamped")
and then remove "stamped4" to clean up
removeClass("stamped4")

948 show

someLetters <- stamped(sample(letters, 10), ISOdatetime(2008, 10, 15, 12, 0, 0))

st <- new("stamped", someLetters)
st # show() method prints the object's class, then calls the S3 print method.

stopifnot(identical(S3Part(st, TRUE), someLetters))

creating the S4 object directly from its data part and slots
new("stamped", 1:10, date = ISOdatetime(1976, 5, 5, 15, 10, 0))

Not run:
The code in R that defines "ts" as an S4 class
setClass("ts", contains = "structure",

representation(tsp = "numeric"),
prototype(NA, tsp = rep(1,3))) # prototype to be a legal S3 time-series

and now registers it as an S3 class
setOldClass("ts", S4Class = "ts", where = envir)

End(Not run)

show Show an Object

Description

Display the object, by printing, plotting or whatever suits its class. This function exists to be
specialized by methods. The default method calls showDefault.

Formal methods for show will usually be invoked for automatic printing (see the details).

Usage

show(object)

Arguments

object Any R object

Details

Objects from an S4 class (a class defined by a call to setClass) will be displayed automatically
is if by a call to show. S4 objects that occur as attributes of S3 objects will also be displayed in
this form; conversely, S3 objects encountered as slots in S4 objects will be printed using the S3
convention, as if by a call to print.

Methods defined for show will only be inherited by simple inheritance, since otherwise the
method would not receive the complete, original object, with misleading results. See the
simpleInheritanceOnly argument to setGeneric and the discussion in setIs for the
general concept.

showMethods 949

Value

show returns an invisible NULL.

See Also

showMethods prints all the methods for one or more functions; showMlist prints individual
methods lists; showClass prints class definitions. Neither of the latter two normally needs to be
called directly.

Examples

following the example shown in the setMethod documentation ...
setClass("track",

representation(x="numeric", y="numeric"))
setClass("trackCurve",

representation("track", smooth = "numeric"))

t1 <- new("track", x=1:20, y=(1:20)^2)

tc1 <- new("trackCurve", t1)

setMethod("show", "track",
function(object)print(rbind(x = object@x, y=object@y))

)
The method will now be used for automatic printing of t1

t1

Not run:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

x 1 2 3 4 5 6 7 8 9 10 11 12
y 1 4 9 16 25 36 49 64 81 100 121 144

[,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]
x 13 14 15 16 17 18 19 20
y 169 196 225 256 289 324 361 400
End(Not run)
and also for tc1, an object of a class that extends "track"
tc1

Not run:
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

x 1 2 3 4 5 6 7 8 9 10 11 12
y 1 4 9 16 25 36 49 64 81 100 121 144

[,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]
x 13 14 15 16 17 18 19 20
y 169 196 225 256 289 324 361 400
End(Not run)

showMethods Show all the methods for the specified function(s)

Description

Show a summary of the methods for one or more generic functions, possibly restricted to those
involving specified classes.

950 showMethods

Usage

showMethods(f = character(), where = topenv(parent.frame()),
classes = NULL, includeDefs = FALSE,
inherited = !includeDefs,
showEmpty, printTo = stdout(), fdef =)

Arguments

f one or more function names. If omitted, all functions will be shown that match
the other arguments.

where Where to find the generic function, if not supplied as an argument. When
f is missing, or length 0, this also determines which generic functions to
examine. If where is supplied, only the generic functions returned by
getGenerics(where) are eligible for printing. If where is also missing,
all the cached generic functions are considered.

classes If argument classes is supplied, it is a vector of class names that restricts
the displayed results to those methods whose signatures include one or more of
those classes.

includeDefs If includeDefs is TRUE, include the definitions of the individual methods in
the printout.

inherited logical indicating if methods that have been found by inheritance, so far in
the session, will be included and marked as inherited. Note that an inherited
method will not usually appear until it has been used in this session. See
selectMethod if you want to know what method would be dispatched for
particular classes of arguments.

showEmpty logical indicating whether methods with no defined methods matching the other
criteria should be shown at all. By default, TRUE if and only if argument f is
not missing.

printTo The connection on which the information will be shown; by default, on standard
output.

fdef Optionally, the generic function definition to use; if missing, one is found, look-
ing in where if that is specified. See also comment in ‘Details’.

Details

The name and package of the generic are followed by the list of signatures for which methods
are currently defined, according to the criteria determined by the various arguments. Note that the
package refers to the source of the generic function. Individual methods for that generic can come
from other packages as well.

When more than one generic function is involved, either as specified or because f was missing, the
functions are found and showMethods is recalled for each, including the generic as the argument
fdef. In complicated situations, this can avoid some anomalous results.

Value

If printTo is FALSE, the character vector that would have been printed is returned; otherwise the
value is the connection or filename, via invisible.

signature-class 951

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

setMethod, and GenericFunctions for other tools involving methods; selectMethod
will show you the method dispatched for a particular function and signature of classes for the
arguments.

Examples

require(graphics)

Assuming the methods for plot
are set up as in the example of help(setMethod),
print (without definitions) the methods that involve class "track":
showMethods("plot", classes = "track")
Not run:
Function "plot":
x = ANY, y = track
x = track, y = missing
x = track, y = ANY

require("Matrix")# a CRAN package with much S4 functionality
showMethods("%*%")# many!

methods(class = "Matrix")# nothing
showMethods(class = "Matrix")# everything
End(Not run)

not.there <- !any("package:stats4" == search())
if(not.there) library(stats4)
showMethods(classes = "mle")
if(not.there) detach("package:stats4")

signature-class Class "signature" For Method Definitions

Description

This class represents the mapping of some of the formal arguments of a function onto the names of
some classes. It is used as one of two slots in the MethodDefinition class.

Objects from the Class

Objects can be created by calls of the form new("signature", functionDef, ...). The
functionDef argument, if it is supplied as a function object, defines the formal names. The other
arguments define the classes.

952 slot

Slots

.Data: Object of class "character" the classes.

names: Object of class "character" the corresponding argument names.

Extends

Class "character", from data part. Class "vector", by class "character".

Methods

initialize signature(object = "signature"): see the discussion of objects from the
class, above.

See Also

class MethodDefinition for the use of this class.

slot The Slots in an Object from a Formal Class

Description

These functions return or set information about the individual slots in an object.

Usage

object@name
object@name <- value

slot(object, name)
slot(object, name, check = TRUE) <- value

slotNames(x)
getSlots(x)

Arguments

object An object from a formally defined class.

name The name of the slot. The operator takes a fixed name, which can be unquoted
if it is syntactically a name in the language. A slot name can be any non-empty
string, but if the name is not made up of letters, numbers, and ., it needs to be
quoted (by backticks or single or double quotes).
In the case of the slot function, name can be any expression that evaluates to
a valid slot in the class definition. Generally, the only reason to use the func-
tional form rather than the simpler operator is because the slot name has to be
computed.

value A new value for the named slot. The value must be valid for this slot in this
object’s class.

slot 953

check In the replacement version of slot, a flag. If TRUE, check the assigned value
for validity as the value of this slot. User’s coded should not set this to FALSE
in normal use, since the resulting object can be invalid.

x Either the name of a class or a class definition. If given an argument that
is neither a character string nor a class definition, slotNames (only) uses
class(x) instead.

Details

The definition of the class specifies all slots directly and indirectly defined for that class. Each slot
has a name and an associated class. Extracting a slot returns an object from that class. Setting a slot
first coerces the value to the specified slot and then stores it.

Unlike general attributes, slots are not partially matched, and asking for (or trying to set) a slot with
an invalid name for that class generates an error.

The @ extraction operator and slot function themselves do no checking against the class definition,
simply matching the name in the object itself. The replacement forms do check (except for slot
in the case check=FALSE). So long as slots are set without cheating, the extracted slots will be
valid.

Be aware that there are two ways to cheat, both to be avoided but with no guarantees. The obvious
way is to assign a slot with check=FALSE. Also, slots in R are implemented as attributes, for
the sake of some back compatibility. The current implementation does not prevent attributes being
assigned, via attr<-, and such assignments are not checked for legitimate slot names.

Value

The "@" operator and the slot function extract or replace the formally defined slots for the object.

Functions slotNames and getSlots return respectively the names of the slots and the classes
associated with the slots in the specified class definition. Except for its extended interpretation of x
(above), slotNames(x) is just names(getSlots(x)).

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

@, Classes, Methods, getClass

Examples

setClass("track", representation(x="numeric", y="numeric"))
myTrack <- new("track", x = -4:4, y = exp(-4:4))
slot(myTrack, "x")
slot(myTrack, "y") <- log(slot(myTrack, "y"))
utils::str(myTrack)

getSlots("track") # or
getSlots(getClass("track"))
slotNames(class(myTrack)) # is the same as

954 StructureClasses

slotNames(myTrack)

StructureClasses Classes Corresponding to Basic Structures

Description

The virtual class structure and classes that extend it are formal classes analogous to S language
structures such as arrays and time-series.

Usage

The following class names can appear in method signatures,
as the class in as() and is() expressions, and, except for
the classes commented as VIRTUAL, in calls to new()

"matrix"
"array"
"ts"

"structure" ## VIRTUAL

Objects from the Classes

Objects can be created by calls of the form new(Class, ...), where Class is the quoted
name of the specific class (e.g., "matrix"), and the other arguments, if any, are interpreted as
arguments to the corresponding function, e.g., to function matrix(). There is no particular ad-
vantage over calling those functions directly, unless you are writing software designed to work for
multiple classes, perhaps with the class name and the arguments passed in.

Objects created from the classes "matrix" and "array" are unusual, to put it mildly, and have
been for some time. Although they may appear to be objects from these classes, they do not have the
internal structure of either an S3 or S4 class object. In particular, they have no "class" attribute
and are not recognized as objects with classes (that is, both is.object and isS4 will return
FALSE for such objects).

That the objects still behave as if they came from the corresponding class (most of the time, anyway)
results from special code recognizing such objects being built into the base code of R. For most
purposes, treating the classes in the usual way will work, fortunately. One consequence of the
special treatment is that these two classesmay be used as the data part of an S4 class; for example,
you can get away with contains = "matrix" in a call to setGeneric to create an S4 class
that is a subclass of "matrix". There is no guarantee that everything will work perfectly, but a
number of classes have been written in this form successfully.

The class "ts" is basically an S3 class that has been registered with S4, using the setOldClass
mechanism. Versions of R through 2.7.0 treated this class as a pure S4 class, which was in principal
a good idea, but in practice did not allow subclasses to be defined and had other intrinsic problems.
(For example, setting the "tsp" parameters as a slot often fails because the built-in implementation
does not allow the slot to be temporarily inconsistent with the length of the data. Also, the S4 class
prevented the correct specification of the S3 inheritance for class "mts".)

TraceClasses 955

The current behavior (beginning with version 2.8.0 of R) registers "ts" as an S3 class, using
an S4-style definition (see the documentation for setOldClass in the examples section for an
abbreviated listing of how this is done. The S3 inheritance of "mts" in package stats is also
registered. These classes, as well as "matrix" and "array" should be valid in most examples
as superclasses for new S4 class definitions.

Extends

The specific classes all extend class "structure", directly, and class "vector", by class
"structure".

Methods

coerce Methods are defined to coerce arbitrary objects to these classes, by calling the correspond-
ing basic function, for example, as(x, "matrix") calls as.matrix(x).

Ops, Math Group methods (see, e.g., S4groupGeneric) are defined for combinations of struc-
tures and vectors (including special cases for array and matrix), implementing the concept of
vector structures as in the reference.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole (for the original vector structures).

Examples

showClass("structure")

explore a bit :
showClass("ts")
(ts0 <- new("ts"))
str(ts0)

showMethods("Ops") # six methods from these classes, but maybe many more

TraceClasses Classes Used Internally to Control Tracing

Description

The classes described here are used by the R function trace to create versions of functions and
methods including browser calls, etc., and also to untrace the same objects.

956 validObject

Usage

Objects from the following classes are generated
by calling trace() on an object from the corresponding
class without the "WithTrace" in the name.

"functionWithTrace"
"MethodDefinitionWithTrace"
"MethodWithNextWithTrace"
"genericFunctionWithTrace"
"groupGenericFunctionWithTrace"

the following is a virtual class extended by each of the
classes above

"traceable"

Objects from the Class

Objects will be created from these classes by calls to trace. (There is an initialize method
for class "traceable", but you are unlikely to need it directly.)

Slots

.Data: The data part, which will be "function" for class "functionWithTrace", and
similarly for the other classes.

original: Object of the original class; e.g., "function" for class
"functionWithTrace".

Extends

Each of the classes extends the corresponding untraced class, from the data part; e.g.,
"functionWithTrace" extends "function". Each of the specific classes extends
"traceable", directly, and class "VIRTUAL", by class "traceable".

Methods

The point of the specific classes is that objects generated from them, by function trace(), remain
callable or dispatchable, in addition to their new trace information.

See Also

function trace

validObject Test the Validity of an Object

validObject 957

Description

The validity of object related to its class definition is tested. If the object is valid, TRUE is
returned; otherwise, either a vector of strings describing validity failures is returned, or an error
is generated (according to whether test is TRUE). Optionally, all slots in the object can also be
validated.

The function setValidity sets the validity method of a class (but more normally, this method
will be supplied as the validity argument to setClass). The method should be a function of
one object that returns TRUE or a description of the non-validity.

Usage

validObject(object, test = FALSE, complete = FALSE)

setValidity(Class, method, where = topenv(parent.frame()))

getValidity(ClassDef)

Arguments

object any object, but not much will happen unless the object’s class has a formal defi-
nition.

test logical; if TRUE and validity fails, the function returns a vector of strings de-
scribing the problems. If test is FALSE (the default) validity failure generates
an error.

complete logical; if TRUE, validity methods will be applied recursively to any of the slots
that have such methods.

Class the name or class definition of the class whose validity method is to be set.
ClassDef a class definition object, as from getClassDef.
method a validity method; that is, either NULL or a function of one argument (object).

Like validObject, the function should return TRUE if the object is valid,
and one or more descriptive strings if any problems are found. Unlike
validObject, it should never generate an error.

where the modified class definition will be stored in this environment.

Note that validity methods do not have to check validity of superclasses: the logic of
validObject ensures these tests are done once only. As a consequence, if one validity method
wants to use another, it should extract and call the method from the other definition of the other
class by calling getValidity(): it should not call validObject.

Details

Validity testing takes place ‘bottom up’: Optionally, if complete=TRUE, the validity of the ob-
ject’s slots, if any, is tested. Then, in all cases, for each of the classes that this class extends (the
‘superclasses’), the explicit validity method of that class is called, if one exists. Finally, the validity
method of object’s class is called, if there is one.

Testing generally stops at the first stage of finding an error, except that all the slots will be examined
even if a slot has failed its validity test.

The standard validity test (with complete=FALSE) is applied when an object is created via new
with any optional arguments (without the extra arguments the result is just the class prototype
object).

An attempt is made to fix up the definition of a validity method if its argument is not object.

958 validObject

Value

validObject returns TRUE if the object is valid. Otherwise a vector of strings describing prob-
lems found, except that if test is FALSE, validity failure generates an error, with the correspond-
ing strings in the error message.

References

Chambers, John M. (2008) Software for Data Analysis: Programming with R Springer. (For the R
version.)

Chambers, John M. (1998) Programming with Data Springer (For the original S4 version.)

See Also

setClass; class classRepresentation.

Examples

setClass("track",
representation(x="numeric", y = "numeric"))

t1 <- new("track", x=1:10, y=sort(stats::rnorm(10)))
A valid "track" object has the same number of x, y values
validTrackObject <- function(object) {

if(length(object@x) == length(object@y)) TRUE
else paste("Unequal x,y lengths: ", length(object@x), ", ",

length(object@y), sep="")
}
assign the function as the validity method for the class
setValidity("track", validTrackObject)
t1 should be a valid "track" object
validObject(t1)
Now we do something bad
t2 <- t1
t2@x <- 1:20
This should generate an error
Not run: try(validObject(t2))

setClass("trackCurve",
representation("track", smooth = "numeric"))

all superclass validity methods are used when validObject
is called from initialize() with arguments, so this fails
Not run: trynew("trackCurve", t2)

setClass("twoTrack", representation(tr1 = "track", tr2 ="track"))

validity tests are not applied recursively by default,
so this object is created (invalidly)
tT <- new("twoTrack", tr2 = t2)

A stricter test detects the problem
Not run: try(validObject(tT, complete = TRUE))

Chapter 7

The stats package

stats-package The R Stats Package

Description

R statistical functions

Details

This package contains functions for statistical calculations and random number generation.

For a complete list of functions, use library(help="stats").

Author(s)

R Development Core Team and contributors worldwide

Maintainer: R Core Team 〈R-core@r-project.org〉

.checkMFClasses Functions to Check the Type of Variables passed to Model Frames

Description

.checkMFClasses checks if the variables used in a predict method agree in type with those used
for fitting.

.MFclass categorizes variables for this purpose.

Usage

.checkMFClasses(cl, m, ordNotOK = FALSE)

.MFclass(x)

.getXlevels(Terms, m)

959

960 acf

Arguments

cl a character vector of class descriptions to match.

m a model frame.

x any R object.

ordNotOK logical: are ordered factors different?

Terms a terms object.

Details

For applications involving model.matrix such as linear models we do not need to differentiate
between ordered factors and factors as although these affect the coding, the coding used in the fit
is already recorded and imposed during prediction. However, other applications may treat ordered
factors differently: rpart does, for example.

Value

.MFclass returns a character string, one of "logical", "ordered", "factor",
"numeric", "nmatrix.*" (a numeric matrix with a number of columns appended) or
"other".

.getXlevels returns a named character vector, or NULL.

acf Auto- and Cross- Covariance and -Correlation Function Estimation

Description

The function acf computes (and by default plots) estimates of the autocovariance or autocorrela-
tion function. Function pacf is the function used for the partial autocorrelations. Function ccf
computes the cross-correlation or cross-covariance of two univariate series.

Usage

acf(x, lag.max = NULL,
type = c("correlation", "covariance", "partial"),
plot = TRUE, na.action = na.fail, demean = TRUE, ...)

pacf(x, lag.max, plot, na.action, ...)

Default S3 method:
pacf(x, lag.max = NULL, plot = TRUE, na.action = na.fail,

...)

ccf(x, y, lag.max = NULL, type = c("correlation", "covariance"),
plot = TRUE, na.action = na.fail, ...)

S3 method for class 'acf':
x[i, j]

acf 961

Arguments

x, y a univariate or multivariate (not ccf) numeric time series object or a numeric
vector or matrix, or an "acf" object.

lag.max maximum lag at which to calculate the acf. Default is 10 log10(N/m) where N
is the number of observations andm the number of series. Will be automatically
limited to one less than the number of observations in the series.

type character string giving the type of acf to be computed. Allowed values are
"correlation" (the default), "covariance" or "partial".

plot logical. If TRUE (the default) the acf is plotted.

na.action function to be called to handle missing values. na.pass can be used.

demean logical. Should the covariances be about the sample means?

... further arguments to be passed to plot.acf.

i a set of lags (time differences) to retain.

j a set of series (names or numbers) to retain.

Details

For type = "correlation" and "covariance", the estimates are based on the sample co-
variance. (The lag 0 autocorrelation is fixed at 1 by convention.)

By default, no missing values are allowed. If the na.action function passes through missing
values (as na.pass does), the covariances are computed from the complete cases. This means
that the estimate computed may well not be a valid autocorrelation sequence, and may contain
missing values. Missing values are not allowed when computing the PACF of a multivariate time
series.

The partial correlation coefficient is estimated by fitting autoregressive models of successively
higher orders up to lag.max.

The generic function plot has a method for objects of class "acf".

The lag is returned and plotted in units of time, and not numbers of observations.

There are print and subsetting methods for objects of class "acf".

Value

An object of class "acf", which is a list with the following elements:

lag A three dimensional array containing the lags at which the acf is estimated.

acf An array with the same dimensions as lag containing the estimated acf.

type The type of correlation (same as the type argument).

n.used The number of observations in the time series.

series The name of the series x.

snames The series names for a multivariate time series.

The lag k value returned by ccf(x,y) estimates the correlation between x[t+k] and y[t].

The result is returned invisibly if plot is TRUE.

Author(s)

Original: Paul Gilbert, Martyn Plummer. Extensive modifications and univariate case of pacf by
B. D. Ripley.

962 acf2AR

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Fourth Edition.
Springer-Verlag.

(This contains the exact definitions used.)

See Also

plot.acf, ARMAacf for the exact autocorrelations of a given ARMA process.

Examples

require(graphics)

Examples from Venables & Ripley
acf(lh)
acf(lh, type = "covariance")
pacf(lh)

acf(ldeaths)
acf(ldeaths, ci.type = "ma")
acf(ts.union(mdeaths, fdeaths))
ccf(mdeaths, fdeaths, ylab = "cross-correlation")
(just the cross-correlations)

presidents # contains missing values
acf(presidents, na.action = na.pass)
pacf(presidents, na.action = na.pass)

acf2AR Compute an AR Process Exactly Fitting an ACF

Description

Compute an AR process exactly fitting an autocorrelation function.

Usage

acf2AR(acf)

Arguments

acf An autocorrelation or autocovariance sequence.

Value

A matrix, with one row for the computed AR(p) coefficients for 1 <= p <= length(acf).

See Also

ARMAacf, ar.yw which does this from an empirical ACF.

add1 963

Examples

(Acf <- ARMAacf(c(0.6, 0.3, -0.2)))
acf2AR(Acf)

add1 Add or Drop All Possible Single Terms to a Model

Description

Compute all the single terms in the scope argument that can be added to or dropped from the
model, fit those models and compute a table of the changes in fit.

Usage

add1(object, scope, ...)

Default S3 method:
add1(object, scope, scale = 0, test = c("none", "Chisq"),

k = 2, trace = FALSE, ...)

S3 method for class 'lm':
add1(object, scope, scale = 0, test = c("none", "Chisq", "F"),

x = NULL, k = 2, ...)

S3 method for class 'glm':
add1(object, scope, scale = 0, test = c("none", "Chisq", "F"),

x = NULL, k = 2, ...)

drop1(object, scope, ...)

Default S3 method:
drop1(object, scope, scale = 0, test = c("none", "Chisq"),

k = 2, trace = FALSE, ...)

S3 method for class 'lm':
drop1(object, scope, scale = 0, all.cols = TRUE,

test = c("none", "Chisq", "F"), k = 2, ...)

S3 method for class 'glm':
drop1(object, scope, scale = 0, test = c("none", "Chisq", "F"),

k = 2, ...)

Arguments

object a fitted model object.

scope a formula giving the terms to be considered for adding or dropping.

scale an estimate of the residual mean square to be used in computing Cp. Ignored if
0 or NULL.

964 add1

test should the results include a test statistic relative to the original model? The F
test is only appropriate for lm and aov models or perhaps for glm fits with esti-
mated dispersion. The χ2 test can be an exact test (lmmodels with known scale)
or a likelihood-ratio test or a test of the reduction in scaled deviance depending
on the method.

k the penalty constant in AIC / Cp.

trace if TRUE, print out progress reports.

x a model matrix containing columns for the fitted model and all terms in the upper
scope. Useful if add1 is to be called repeatedly. Warning: no checks are done
on its validity.

all.cols (Provided for compatibility with S.) Logical to specify whether all columns of
the design matrix should be used. If FALSE then non-estimable columns are
dropped, but the result is not usually statistically meaningful.

... further arguments passed to or from other methods.

Details

For drop1 methods, a missing scope is taken to be all terms in the model. The hierarchy is
respected when considering terms to be added or dropped: all main effects contained in a second-
order interaction must remain, and so on.

In a scope formula . means ‘what is already there’.

The methods for lm and glm are more efficient in that they do not recompute the model matrix and
call the fit methods directly.

The default output table gives AIC, defined as minus twice log likelihood plus 2pwhere p is the rank
of the model (the number of effective parameters). This is only defined up to an additive constant
(like log-likelihoods). For linear Gaussian models with fixed scale, the constant is chosen to give
Mallows’ Cp, RSS/scale + 2p − n. Where Cp is used, the column is labelled as Cp rather than
AIC.

The F tests for the "glm" methods are based on analysis of deviance tests, so if the dispersion is
estimated it is based on the residual deviance, unlike the F tests of anova.glm.

Value

An object of class "anova" summarizing the differences in fit between the models.

Warning

The model fitting must apply the models to the same dataset. Most methods will attempt to use a
subset of the data with no missing values for any of the variables if na.action=na.omit, but
this may give biased results. Only use these functions with data containing missing values with
great care.

Note

These are not fully equivalent to the functions in S. There is no keep argument, and the methods
used are not quite so computationally efficient.

Their authors’ definitions of Mallows’ Cp and Akaike’s AIC are used, not those of the authors of
the models chapter of S.

addmargins 965

Author(s)

The design was inspired by the S functions of the same names described in Chambers (1992).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

step, aov, lm, extractAIC, anova

Examples

require(graphics); require(utils)
example(step)#-> swiss
add1(lm1, ~ I(Education^2) + .^2)
drop1(lm1, test="F") # So called 'type II' anova

example(glm)
drop1(glm.D93, test="Chisq")
drop1(glm.D93, test="F")

addmargins Puts Arbitrary Margins on Multidimensional Tables or Arrays

Description

For a given table one can specify which of the classifying factors to expand by one or more levels to
hold margins to be calculated. One may for example form sums and means over the first dimension
and medians over the second. The resulting table will then have two extra levels for the first dimen-
sion and one extra level for the second. The default is to sum over all margins in the table. Other
possibilities may give results that depend on the order in which the margins are computed. This is
flagged in the printed output from the function.

Usage

addmargins(A, margin = 1:length(dim(A)), FUN = sum, quiet = FALSE)

Arguments

A table or array. The function uses the presence of the "dim" and "dimnames"
attributes of A.

margin vector of dimensions over which to form margins. Margins are formed in the
order in which dimensions are specified in margin.

FUN list of the same length as margin, each element of the list being either a func-
tion or a list of functions. Names of the list elements will appear as levels in
dimnames of the result. Unnamed list elements will have names constructed:
the name of a function or a constructed name based on the position in the table.

quiet logical which suppresses the message telling the order in which the margins
were computed.

966 addmargins

Details

If the functions used to form margins are not commutative the result depends on the order in which
margins are computed. Annotation of margins is done via naming the FUN list.

Value

A table or array with the same number of dimensions as A, but with extra levels of the dimensions
mentioned in margin. The number of levels added to each dimension is the length of the entries
in FUN. A message with the order of computation of margins is printed.

Author(s)

Bendix Carstensen, Steno Diabetes Center & Department of Biostatistics, University of Copen-
hagen, http://www.biostat.ku.dk/~bxc, autumn 2003. Margin naming enhanced by
Duncan Murdoch.

See Also

table, ftable, margin.table.

Examples

Aye <- sample(c("Yes", "Si", "Oui"), 177, replace = TRUE)
Bee <- sample(c("Hum", "Buzz"), 177, replace = TRUE)
Sea <- sample(c("White", "Black", "Red", "Dead"), 177, replace = TRUE)
(A <- table(Aye, Bee, Sea))
addmargins(A)

ftable(A)
ftable(addmargins(A))

Non-commutative functions - note differences between resulting tables:
ftable(addmargins(A, c(1,3),

FUN = list(Sum = sum, list(Min = min, Max = max))))
ftable(addmargins(A, c(3,1),

FUN = list(list(Min = min, Max = max), Sum = sum)))

Weird function needed to return the N when computing percentages
sqsm <- function(x) sum(x)^2/100
B <- table(Sea, Bee)
round(sweep(addmargins(B, 1, list(list(All = sum, N = sqsm))), 2,

apply(B, 2, sum)/100, "/"), 1)
round(sweep(addmargins(B, 2, list(list(All = sum, N = sqsm))), 1,

apply(B, 1, sum)/100, "/"), 1)

A total over Bee requires formation of the Bee-margin first:
mB <- addmargins(B, 2, FUN = list(list(Total = sum)))
round(ftable(sweep(addmargins(mB, 1, list(list(All = sum, N = sqsm))), 2,

apply(mB,2,sum)/100, "/")), 1)

Zero.Printing table+margins:
set.seed(1)
x <- sample(1:7, 20, replace=TRUE)
y <- sample(1:7, 20, replace=TRUE)
tx <- addmargins(table(x, y))
print(tx, zero.print = ".")

http://www.biostat.ku.dk/~bxc

aggregate 967

aggregate Compute Summary Statistics of Data Subsets

Description

Splits the data into subsets, computes summary statistics for each, and returns the result in a conve-
nient form.

Usage

aggregate(x, ...)

Default S3 method:
aggregate(x, ...)

S3 method for class 'data.frame':
aggregate(x, by, FUN, ...)

S3 method for class 'ts':
aggregate(x, nfrequency = 1, FUN = sum, ndeltat = 1,

ts.eps = getOption("ts.eps"), ...)

Arguments

x an R object.

by a list of grouping elements, each as long as the variables in x.

FUN a scalar function to compute the summary statistics which can be applied to all
data subsets.

nfrequency new number of observations per unit of time; must be a divisor of the frequency
of x.

ndeltat new fraction of the sampling period between successive observations; must be a
divisor of the sampling interval of x.

ts.eps tolerance used to decide if nfrequency is a sub-multiple of the original fre-
quency.

... further arguments passed to or used by methods.

Details

aggregate is a generic function with methods for data frames and time series.

The default method aggregate.default uses the time series method if x is a time series, and
otherwise coerces x to a data frame and calls the data frame method.

aggregate.data.frame is the data frame method. If x is not a data frame, it is coerced to
one. Then, each of the variables (columns) in x is split into subsets of cases (rows) of identical
combinations of the components of by, and FUN is applied to each such subset with further argu-
ments in ... passed to it. (I.e., tapply(VAR, by, FUN, ..., simplify = FALSE) is
done for each variable VAR in x, conveniently wrapped into one call to lapply().) Empty subsets
are removed, and the result is reformatted into a data frame containing the variables in by and x.
The ones arising from by contain the unique combinations of grouping values used for determining
the subsets, and the ones arising from x the corresponding summary statistics for the subset of the

968 aggregate

respective variables in x. Rows with missing values in any of the by variables will be omitted from
the result.

aggregate.ts is the time series method. If x is not a time series, it is coerced to one. Then, the
variables in x are split into appropriate blocks of length frequency(x) / nfrequency, and
FUN is applied to each such block, with further (named) arguments in ... passed to it. The result
returned is a time series with frequency nfrequency holding the aggregated values. Note that
this make most sense for a quarterly or yearly result when the original series covers a whole number
of quarters or years: in particular aggregating a monthly series to quarters starting in February does
not give a conventional quarterly series.

Value

For the time series method, a time series of class "ts" or class c("mts", "ts").

For the data frame method, a data frame with columns corresponding to the grouping variables in
by followed by aggregated columns from x. If the by has names, the non-empty times are used
to label the columns in the results, with unnamed grouping variables being named Group.i for
by[[i]].

Note: prior to R 2.6.0 the grouping variables were reported as factors with levels in alphabetical
order in the current locale. Now the variable in the result is found by subsetting the original variable.

Author(s)

Kurt Hornik

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

apply, lapply, tapply.

Examples

Compute the averages for the variables in 'state.x77', grouped
according to the region (Northeast, South, North Central, West) that
each state belongs to.
aggregate(state.x77, list(Region = state.region), mean)

Compute the averages according to region and the occurrence of more
than 130 days of frost.
aggregate(state.x77,

list(Region = state.region,
Cold = state.x77[,"Frost"] > 130),

mean)
(Note that no state in 'South' is THAT cold.)

example with character variables and NAs
testDF <- data.frame(v1 = c(1,3,5,7,8,3,5,NA,4,5,7,9),

v2 = c(11,33,55,77,88,33,55,NA,44,55,77,99))
by1 <- c("red","blue",1,2,NA,"big",1,2,"red",1,NA,12)
by2 <- c("wet","dry",99,95,NA,"damp",95,99,"red",99,NA,NA)
aggregate(x = testDF, by = list(by1, by2), FUN = "mean")

AIC 969

and if you want to treat NAs as a group
fby1 <- factor(by1, exclude = "")
fby2 <- factor(by2, exclude = "")
aggregate(x = testDF, by = list(fby1, fby2), FUN = "mean")

Compute the average annual approval ratings for American presidents.
aggregate(presidents, nfrequency = 1, FUN = mean)
Give the summer less weight.
aggregate(presidents, nfrequency = 1,

FUN = weighted.mean, w = c(1, 1, 0.5, 1))

AIC Akaike’s An Information Criterion

Description

Generic function calculating the Akaike information criterion for one or several fitted model objects
for which a log-likelihood value can be obtained, according to the formula −2log-likelihood +
knpar, where npar represents the number of parameters in the fitted model, and k = 2 for the
usual AIC, or k = log(n) (n the number of observations) for the so-called BIC or SBC (Schwarz’s
Bayesian criterion).

Usage

AIC(object, ..., k = 2)

Arguments

object a fitted model object, for which there exists a logLik method to extract the
corresponding log-likelihood, or an object inheriting from class logLik.

... optionally more fitted model objects.

k numeric, the penalty per parameter to be used; the default k = 2 is the classical
AIC.

Details

The default method for AIC, AIC.default() entirely relies on the existence of a logLik
method computing the log-likelihood for the given class.

When comparing fitted objects, the smaller the AIC, the better the fit.

The log-likelihood and hence the AIC is only defined up to an additive constant. Different con-
stants have conventionally be used for different purposes and so extractAIC and AIC may give
different values (and do for models of class "lm": see the help for extractAIC).

Value

If just one object is provided, returns a numeric value with the corresponding AIC (or BIC, or . . . ,
depending on k); if multiple objects are provided, returns a data.framewith rows corresponding
to the objects and columns representing the number of parameters in the model (df) and the AIC.

970 alias

Author(s)

Jose Pinheiro and Douglas Bates

References

Sakamoto, Y., Ishiguro, M., and Kitagawa G. (1986). Akaike Information Criterion Statistics. D.
Reidel Publishing Company.

See Also

extractAIC, logLik.

Examples

lm1 <- lm(Fertility ~ . , data = swiss)
AIC(lm1)
stopifnot(all.equal(AIC(lm1),

AIC(logLik(lm1))))
a version of BIC or Schwarz' BC :
AIC(lm1, k = log(nrow(swiss)))

alias Find Aliases (Dependencies) in a Model

Description

Find aliases (linearly dependent terms) in a linear model specified by a formula.

Usage

alias(object, ...)

S3 method for class 'formula':
alias(object, data, ...)

S3 method for class 'lm':
alias(object, complete = TRUE, partial = FALSE,

partial.pattern = FALSE, ...)

Arguments

object A fitted model object, for example from lm or aov, or a formula for
alias.formula.

data Optionally, a data frame to search for the objects in the formula.

complete Should information on complete aliasing be included?

partial Should information on partial aliasing be included?
partial.pattern

Should partial aliasing be presented in a schematic way? If this is done, the
results are presented in a more compact way, usually giving the deciles of the
coefficients.

... further arguments passed to or from other methods.

anova 971

Details

Although the main method is for class "lm", alias is most useful for experimental designs and
so is used with fits from aov. Complete aliasing refers to effects in linear models that cannot be
estimated independently of the terms which occur earlier in the model and so have their coefficients
omitted from the fit. Partial aliasing refers to effects that can be estimated less precisely because of
correlations induced by the design.

Value

A list (of class "listof") containing components

Model Description of the model; usually the formula.

Complete A matrix with columns corresponding to effects that are linearly dependent on
the rows.

Partial The correlations of the estimable effects, with a zero diagonal. An object of
class "mtable" which has its own print method.

Note

The aliasing pattern may depend on the contrasts in use: Helmert contrasts are probably most useful.

The defaults are different from those in S.

Author(s)

The design was inspired by the S function of the same name described in Chambers et al. (1992).

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992) Analysis of variance; designed experi-
ments. Chapter 5 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth &
Brooks/Cole.

Examples

From Venables and Ripley (2002) p.165.
utils::data(npk, package="MASS")

op <- options(contrasts=c("contr.helmert", "contr.poly"))
npk.aov <- aov(yield ~ block + N*P*K, npk)
alias(npk.aov)
options(op)# reset

anova Anova Tables

Description

Compute analysis of variance (or deviance) tables for one or more fitted model objects.

Usage

anova(object, ...)

972 anova.glm

Arguments

object an object containing the results returned by a model fitting function (e.g., lm or
glm).

... additional objects of the same type.

Value

This (generic) function returns an object of class anova. These objects represent analysis-of-
variance and analysis-of-deviance tables. When given a single argument it produces a table which
tests whether the model terms are significant.

When given a sequence of objects, anova tests the models against one another in the order speci-
fied.

The print method for anova objects prints tables in a ‘pretty’ form.

Warning

The comparison between two or more models will only be valid if they are fitted to the same dataset.
This may be a problem if there are missing values and R’s default of na.action = na.omit
is used.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S, Wadsworth & Brooks/Cole.

See Also

coefficients, effects, fitted.values, residuals, summary, drop1, add1.

anova.glm Analysis of Deviance for Generalized Linear Model Fits

Description

Compute an analysis of deviance table for one or more generalized linear model fits.

Usage

S3 method for class 'glm':
anova(object, ..., dispersion = NULL, test = NULL)

Arguments

object, ... objects of class glm, typically the result of a call to glm, or a list of objects
for the "glmlist" method.

dispersion the dispersion parameter for the fitting family. By default it is obtained from the
object(s).

test a character string, (partially) matching one of "Chisq", "F" or "Cp". See
stat.anova.

anova.glm 973

Details

Specifying a single object gives a sequential analysis of deviance table for that fit. That is, the
reductions in the residual deviance as each term of the formula is added in turn are given in as the
rows of a table, plus the residual deviances themselves.

If more than one object is specified, the table has a row for the residual degrees of freedom and
deviance for each model. For all but the first model, the change in degrees of freedom and deviance
is also given. (This only makes statistical sense if the models are nested.) It is conventional to list
the models from smallest to largest, but this is up to the user.

The table will optionally contain test statistics (and P values) comparing the reduction in deviance
for the row to the residuals. For models with known dispersion (e.g., binomial and Poisson fits)
the chi-squared test is most appropriate, and for those with dispersion estimated by moments (e.g.,
gaussian, quasibinomial and quasipoisson fits) the F test is most appropriate. Mal-
lows’ Cp statistic is the residual deviance plus twice the estimate of σ2 times the residual degrees
of freedom, which is closely related to AIC (and a multiple of it if the dispersion is known).

The dispersion estimate will be taken from the largest model, using the value returned by
summary.glm. As this will in most cases use a Chisquared-based estimate, the F tests are not
based on the residual deviance in the analysis of deviance table shown.

Value

An object of class "anova" inheriting from class "data.frame".

Warning

The comparison between two or more models by anova or anova.glmlist will only be valid if
they are fitted to the same dataset. This may be a problem if there are missing values and R’s default
of na.action = na.omit is used, and anova.glmlist will detect this with an error.

References

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical Models in
S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

glm, anova.

drop1 for so-called ‘type II’ anova where each term is dropped one at a time respecting their
hierarchy.

Examples

--- Continuing the Example from '?glm':

anova(glm.D93)
anova(glm.D93, test = "Cp")
anova(glm.D93, test = "Chisq")

974 anova.lm

anova.lm ANOVA for Linear Model Fits

Description

Compute an analysis of variance table for one or more linear model fits.

Usage

S3 method for class 'lm':
anova(object, ...)

anova.lmlist(object, ..., scale = 0, test = "F")

Arguments

object, ... objects of class lm, usually, a result of a call to lm.

test a character string specifying the test statistic to be used. Can be one of "F",
"Chisq" or "Cp", with partial matching allowed, or NULL for no test.

scale numeric. An estimate of the noise variance σ2. If zero this will be estimated
from the largest model considered.

Details

Specifying a single object gives a sequential analysis of variance table for that fit. That is, the
reductions in the residual sum of squares as each term of the formula is added in turn are given in
as the rows of a table, plus the residual sum of squares.

The table will contain F statistics (and P values) comparing the mean square for the row to the
residual mean square.

If more than one object is specified, the table has a row for the residual degrees of freedom and sum
of squares for each model. For all but the first model, the change in degrees of freedom and sum of
squares is also given. (This only make statistical sense if the models are nested.) It is conventional
to list the models from smallest to largest, but this is up to the user.

Optionally the table can include test statistics. Normally the F statistic is most appropriate, which
compares the mean square for a row to the residual sum of squares for the largest model considered.
If scale is specified chi-squared tests can be used. Mallows’ Cp statistic is the residual sum of
squares plus twice the estimate of σ2 times the residual degrees of freedom.

Value

An object of class "anova" inheriting from class "data.frame".

Warning

The comparison between two or more models will only be valid if they are fitted to the same dataset.
This may be a problem if there are missing values and R’s default of na.action = na.omit
is used, and anova.lmlist will detect this with an error.

anova.mlm 975

Note

Versions of R prior to 1.2.0 based F tests on pairwise comparisons, and this behaviour can still be
obtained by a direct call to anovalist.lm.

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

The model fitting function lm, anova.

drop1 for so-called ‘type II’ anova where each term is dropped one at a time respecting their
hierarchy.

Examples

sequential table
fit <- lm(sr ~ ., data = LifeCycleSavings)
anova(fit)

same effect via separate models
fit0 <- lm(sr ~ 1, data = LifeCycleSavings)
fit1 <- update(fit0, . ~ . + pop15)
fit2 <- update(fit1, . ~ . + pop75)
fit3 <- update(fit2, . ~ . + dpi)
fit4 <- update(fit3, . ~ . + ddpi)
anova(fit0, fit1, fit2, fit3, fit4, test="F")

anova(fit4, fit2, fit0, test="F") # unconventional order

anova.mlm Comparisons between Multivariate Linear Models

Description

Compute a (generalized) analysis of variance table for one or more multivariate linear models.

Usage

S3 method for class 'mlm':
anova(object, ...,

test =
c("Pillai", "Wilks", "Hotelling-Lawley", "Roy", "Spherical"),

Sigma = diag(nrow = p), T = Thin.row(proj(M) - proj(X)),
M = diag(nrow = p), X = ~0,

idata = data.frame(index = seq_len(p)), tol = 1e-7)

976 anova.mlm

Arguments

object an object of class "mlm".

... further objects of class "mlm".

test choice of test statistic (see below).

Sigma (only relevant if test == "Spherical"). Covariance matrix assumed pro-
portional to Sigma.

T transformation matrix. By default computed from M and X.

M formula or matrix describing the outer projection (see below).

X formula or matrix describing the inner projection (see below).

idata data frame describing intra-block design.

tol tolerance to be used in deciding if the residuals are rank-deficient: see qr.

Details

The anova.mlm method uses either a multivariate test statistic for the summary table, or a test
based on sphericity assumptions (i.e. that the covariance is proportional to a given matrix).

For the multivariate test, Wilks’ statistic is most popular in the literature, but the default Pillai–
Bartlett statistic is recommended by Hand and Taylor (1987). See summary.manova for further
details.

For the "Spherical" test, proportionality is usually with the identity matrix but a different matrix
can be specified using Sigma). Corrections for asphericity known as the Greenhouse–Geisser,
respectively Huynh–Feldt, epsilons are given and adjusted F tests are performed.

It is common to transform the observations prior to testing. This typically involves transformation
to intra-block differences, but more complicated within-block designs can be encountered, making
more elaborate transformations necessary. A transformation matrix T can be given directly or spec-
ified as the difference between two projections onto the spaces spanned by M and X, which in turn
can be given as matrices or as model formulas with respect to idata (the tests will be invariant to
parametrization of the quotient space M/X).

As with anova.lm, all test statistics use the SSD matrix from the largest model considered as the
(generalized) denominator.

Contrary to other anova methods, the intercept is not excluded from the display in the single-
model case. When contrast transformations are involved, it often makes good sense to test for a
zero intercept.

Value

An object of class "anova" inheriting from class "data.frame"

Note

The Huynh–Feldt epsilon differs from that calculated by SAS (as of v. 8.2) except when the DF is
equal to the number of observations minus one. This is believed to be a bug in SAS, not in R.

References

Hand, D. J. and Taylor, C. C. (1987) Multivariate Analysis of Variance and Repeated Measures.
Chapman and Hall.

ansari.test 977

See Also

summary.manova

Examples

require(graphics)
utils::example(SSD) # Brings in the mlmfit and reacttime objects

mlmfit0 <- update(mlmfit, ~0)

Traditional tests of intrasubj. contrasts
Using MANOVA techniques on contrasts:
anova(mlmfit, mlmfit0, X=~1)

Assuming sphericity
anova(mlmfit, mlmfit0, X=~1, test="Spherical")

tests using intra-subject 3x2 design
idata <- data.frame(deg=gl(3,1,6,labels=c(0,4,8)),

noise=gl(2,3,6,labels=c("A","P")))

anova(mlmfit, mlmfit0, X = ~ deg + noise,
idata = idata, test = "Spherical")

anova(mlmfit, mlmfit0, M = ~ deg + noise, X = ~ noise,
idata = idata, test="Spherical")

anova(mlmfit, mlmfit0, M = ~ deg + noise, X = ~ deg,
idata = idata, test="Spherical")

f <- factor(rep(1:2,5)) # bogus, just for illustration
mlmfit2 <- update(mlmfit, ~f)
anova(mlmfit2, mlmfit, mlmfit0, X = ~1, test = "Spherical")
anova(mlmfit2, X = ~1, test = "Spherical")
one-model form, eqiv. to previous

There seems to be a strong interaction in these data
plot(colMeans(reacttime))

ansari.test Ansari-Bradley Test

Description

Performs the Ansari-Bradley two-sample test for a difference in scale parameters.

Usage

ansari.test(x, ...)

Default S3 method:
ansari.test(x, y,

alternative = c("two.sided", "less", "greater"),
exact = NULL, conf.int = FALSE, conf.level = 0.95,
...)

978 ansari.test

S3 method for class 'formula':
ansari.test(formula, data, subset, na.action, ...)

Arguments

x numeric vector of data values.

y numeric vector of data values.

alternative indicates the alternative hypothesis and must be one of "two.sided",
"greater" or "less". You can specify just the initial letter.

exact a logical indicating whether an exact p-value should be computed.

conf.int a logical,indicating whether a confidence interval should be computed.

conf.level confidence level of the interval.

formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the
data values and rhs a factor with two levels giving the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

Suppose that x and y are independent samples from distributions with densities f((t − m)/s)/s
and f(t −m), respectively, where m is an unknown nuisance parameter and s, the ratio of scales,
is the parameter of interest. The Ansari-Bradley test is used for testing the null that s equals 1, the
two-sided alternative being that s 6= 1 (the distributions differ only in variance), and the one-sided
alternatives being s > 1 (the distribution underlying x has a larger variance, "greater") or s < 1
("less").

By default (if exact is not specified), an exact p-value is computed if both samples contain less
than 50 finite values and there are no ties. Otherwise, a normal approximation is used.

Optionally, a nonparametric confidence interval and an estimator for s are computed. If exact p-
values are available, an exact confidence interval is obtained by the algorithm described in Bauer
(1972), and the Hodges-Lehmann estimator is employed. Otherwise, the returned confidence inter-
val and point estimate are based on normal approximations.

Note that mid-ranks are used in the case of ties rather than average scores as employed in Hollander
& Wolfe (1973). See, e.g., Hajek, Sidak and Sen (1999), pages 131ff, for more information.

Value

A list with class "htest" containing the following components:

statistic the value of the Ansari-Bradley test statistic.

p.value the p-value of the test.

null.value the ratio of scales s under the null, 1.

alternative a character string describing the alternative hypothesis.

ansari.test 979

method the string "Ansari-Bradley test".

data.name a character string giving the names of the data.

conf.int a confidence interval for the scale parameter. (Only present if argument
conf.int = TRUE.)

estimate an estimate of the ratio of scales. (Only present if argument conf.int =
TRUE.)

Note

To compare results of the Ansari-Bradley test to those of the F test to compare two variances (under
the assumption of normality), observe that s is the ratio of scales and hence s2 is the ratio of
variances (provided they exist), whereas for the F test the ratio of variances itself is the parameter
of interest. In particular, confidence intervals are for s in the Ansari-Bradley test but for s2 in the F
test.

References

David F. Bauer (1972), Constructing confidence sets using rank statistics. Journal of the American
Statistical Association 67, 687–690.

Jaroslav Hajek, Zbynek Sidak & Pranab K. Sen (1999), Theory of Rank Tests. San Diego, London:
Academic Press.

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric Statistical Methods. New York: John
Wiley & Sons. Pages 83–92.

See Also

fligner.test for a rank-based (nonparametric) k-sample test for homogeneity of vari-
ances; mood.test for another rank-based two-sample test for a difference in scale parameters;
var.test and bartlett.test for parametric tests for the homogeneity in variance.

ansari_test in package coin for exact and approximate conditional p-values for the Ansari-
Bradley test, as well as different methods for handling ties.

Examples

Hollander & Wolfe (1973, p. 86f):
Serum iron determination using Hyland control sera
ramsay <- c(111, 107, 100, 99, 102, 106, 109, 108, 104, 99,

101, 96, 97, 102, 107, 113, 116, 113, 110, 98)
jung.parekh <- c(107, 108, 106, 98, 105, 103, 110, 105, 104,

100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99)
ansari.test(ramsay, jung.parekh)

ansari.test(rnorm(10), rnorm(10, 0, 2), conf.int = TRUE)

try more points - failed in 2.4.1
ansari.test(rnorm(100), rnorm(100, 0, 2), conf.int = TRUE)

980 aov

aov Fit an Analysis of Variance Model

Description

Fit an analysis of variance model by a call to lm for each stratum.

Usage

aov(formula, data = NULL, projections = FALSE, qr = TRUE,
contrasts = NULL, ...)

Arguments

formula A formula specifying the model.

data A data frame in which the variables specified in the formula will be found. If
missing, the variables are searched for in the standard way.

projections Logical flag: should the projections be returned?

qr Logical flag: should the QR decomposition be returned?

contrasts A list of contrasts to be used for some of the factors in the formula. These are
not used for any Error term, and supplying contrasts for factors only in the
Error term will give a warning.

... Arguments to be passed to lm, such as subset or na.action.

Details

This provides a wrapper to lm for fitting linear models to balanced or unbalanced experimental
designs.

The main difference from lm is in the way print, summary and so on handle the fit: this is
expressed in the traditional language of the analysis of variance rather than that of linear models.

If the formula contains a single Error term, this is used to specify error strata, and appropriate
models are fitted within each error stratum.

The formula can specify multiple responses.

Weights can be specified by a weights argument, but should not be used with an Error term,
and are incompletely supported (e.g., not by model.tables).

Value

An object of class c("aov", "lm") or for multiple responses of class c("maov", "aov",
"mlm", "lm") or for multiple error strata of class "aovlist". There are print and
summary methods available for these.

Note

aov is designed for balanced designs, and the results can be hard to interpret without balance:
beware that missing values in the response(s) will likely lose the balance. If there are two or more
error strata, the methods used are statistically inefficient without balance, and it may be better to
use lme.

approxfun 981

Balance can be checked with the replications function.

The default ‘contrasts’ in R are not orthogonal contrasts, and aov and its helper functions will work
better with such contrasts: see the examples for how to select these.

Author(s)

The design was inspired by the S function of the same name described in Chambers et al. (1992).

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992) Analysis of variance; designed experi-
ments. Chapter 5 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth &
Brooks/Cole.

See Also

lm, summary.aov, replications, alias, proj, model.tables, TukeyHSD

Examples

From Venables and Ripley (2002) p.165.
utils::data(npk, package="MASS")

Set orthogonal contrasts.
op <- options(contrasts=c("contr.helmert", "contr.poly"))
(npk.aov <- aov(yield ~ block + N*P*K, npk))
summary(npk.aov)
coefficients(npk.aov)

to show the effects of re-ordering terms contrast the two fits
aov(yield ~ block + N * P + K, npk)
aov(terms(yield ~ block + N * P + K, keep.order=TRUE), npk)

as a test, not particularly sensible statistically
npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)
npk.aovE
summary(npk.aovE)
options(op)# reset to previous

approxfun Interpolation Functions

Description

Return a list of points which linearly interpolate given data points, or a function performing the
linear (or constant) interpolation.

Usage

approx (x, y = NULL, xout, method="linear", n=50,
yleft, yright, rule = 1, f = 0, ties = mean)

approxfun(x, y = NULL, method="linear",
yleft, yright, rule = 1, f = 0, ties = mean)

982 approxfun

Arguments

x, y vectors giving the coordinates of the points to be interpolated. Alternatively a
single plotting structure can be specified: see xy.coords.

xout an optional set of values specifying where interpolation is to take place.

method specifies the interpolation method to be used. Choices are "linear" or
"constant".

n If xout is not specified, interpolation takes place at n equally spaced points
spanning the interval [min(x), max(x)].

yleft the value to be returned when input x values are less than min(x). The default
is defined by the value of rule given below.

yright the value to be returned when input x values are greater than max(x). The
default is defined by the value of rule given below.

rule an integer describing how interpolation is to take place outside the interval
[min(x), max(x)]. If rule is 1 then NAs are returned for such points and if
it is 2, the value at the closest data extreme is used.

f For method="constant" a number between 0 and 1 inclusive, indicating a
compromise between left- and right-continuous step functions. If y0 and y1 are
the values to the left and right of the point then the value is y0*(1-f)+y1*f
so that f=0 is right-continuous and f=1 is left-continuous.

ties Handling of tied x values. Either a function with a single vector argument re-
turning a single number result or the string "ordered".

Details

The inputs can contain missing values which are deleted, so at least two complete (x, y) pairs
are required (for method = "linear", one otherwise). If there are duplicated (tied) x values
and ties is a function it is applied to the y values for each distinct x value. Useful functions in
this context include mean, min, and max. If ties="ordered" the x values are assumed to
be already ordered. The first y value will be used for interpolation to the left and the last one for
interpolation to the right.

Value

approx returns a list with components x and y, containing n coordinates which interpolate the
given data points according to the method (and rule) desired.

The function approxfun returns a function performing (linear or constant) interpolation of the
given data points. For a given set of x values, this function will return the corresponding interpolated
values. This is often more useful than approx.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

spline and splinefun for spline interpolation.

ar 983

Examples

require(graphics)

x <- 1:10
y <- rnorm(10)
par(mfrow = c(2,1))
plot(x, y, main = "approx(.) and approxfun(.)")
points(approx(x, y), col = 2, pch = "*")
points(approx(x, y, method = "constant"), col = 4, pch = "*")

f <- approxfun(x, y)
curve(f(x), 0, 10, col = "green")
points(x, y)
is.function(fc <- approxfun(x, y, method = "const")) # TRUE
curve(fc(x), 0, 10, col = "darkblue", add = TRUE)

Show treatment of 'ties' :

x <- c(2,2:4,4,4,5,5,7,7,7)
y <- c(1:6, 5:4, 3:1)
approx(x,y, xout=x)$y # warning
(ay <- approx(x,y, xout=x, ties = "ordered")$y)
stopifnot(ay == c(2,2,3,6,6,6,4,4,1,1,1))
approx(x,y, xout=x, ties = min)$y
approx(x,y, xout=x, ties = max)$y

ar Fit Autoregressive Models to Time Series

Description

Fit an autoregressive time series model to the data, by default selecting the complexity by AIC.

Usage

ar(x, aic = TRUE, order.max = NULL,
method=c("yule-walker", "burg", "ols", "mle", "yw"),
na.action, series, ...)

ar.burg(x, ...)
Default S3 method:
ar.burg(x, aic = TRUE, order.max = NULL,

na.action = na.fail, demean = TRUE, series,
var.method = 1, ...)

S3 method for class 'mts':
ar.burg(x, aic = TRUE, order.max = NULL,

na.action = na.fail, demean = TRUE, series,
var.method = 1, ...)

ar.yw(x, ...)
Default S3 method:

984 ar

ar.yw(x, aic = TRUE, order.max = NULL,
na.action = na.fail, demean = TRUE, series, ...)

S3 method for class 'mts':
ar.yw(x, aic = TRUE, order.max = NULL,

na.action = na.fail, demean = TRUE, series,
var.method = 1, ...)

ar.mle(x, aic = TRUE, order.max = NULL, na.action = na.fail,
demean = TRUE, series, ...)

S3 method for class 'ar':
predict(object, newdata, n.ahead = 1, se.fit = TRUE, ...)

Arguments

x A univariate or multivariate time series.

aic Logical flag. If TRUE then the Akaike Information Criterion is used to
choose the order of the autoregressive model. If FALSE, the model of order
order.max is fitted.

order.max Maximum order (or order) of model to fit. Defaults to the smaller of
N − 1 and 10 log10(N) where N is the number of observations except for
method="mle" where it is the minimum of this quantity and 12.

method Character string giving the method used to fit the model. Must be one of the
strings in the default argument (the first few characters are sufficient). Defaults
to "yule-walker".

na.action function to be called to handle missing values.

demean should a mean be estimated during fitting?

series names for the series. Defaults to deparse(substitute(x)).

var.method the method to estimate the innovations variance (see ‘Details’).

... additional arguments for specific methods.

object a fit from ar.

newdata data to which to apply the prediction.

n.ahead number of steps ahead at which to predict.

se.fit logical: return estimated standard errors of the prediction error?

Details

For definiteness, note that the AR coefficients have the sign in

xt − µ = a1(xt−1 − µ) + · · ·+ ap(xt−p − µ) + et

ar is just a wrapper for the functions ar.yw, ar.burg, ar.ols and ar.mle.

Order selection is done by AIC if aic is true. This is problematic, as of the methods here only
ar.mle performs true maximum likelihood estimation. The AIC is computed as if the variance
estimate were the MLE, omitting the determinant term from the likelihood. Note that this is not
the same as the Gaussian likelihood evaluated at the estimated parameter values. In ar.yw the
variance matrix of the innovations is computed from the fitted coefficients and the autocovariance
of x.

ar 985

ar.burg allows two methods to estimate the innovations variance and hence AIC. Method 1 is
to use the update given by the Levinson-Durbin recursion (Brockwell and Davis, 1991, (8.2.6) on
page 242), and follows S-PLUS. Method 2 is the mean of the sum of squares of the forward and
backward prediction errors (as in Brockwell and Davis, 1996, page 145). Percival and Walden
(1998) discuss both. In the multivariate case the estimated coefficients will depend (slightly) on the
variance estimation method.

Remember that ar includes by default a constant in the model, by removing the overall mean of x
before fitting the AR model, or (ar.mle) estimating a constant to subtract.

Value

For ar and its methods a list of class "ar" with the following elements:

order The order of the fitted model. This is chosen by minimizing the AIC if
aic=TRUE, otherwise it is order.max.

ar Estimated autoregression coefficients for the fitted model.

var.pred The prediction variance: an estimate of the portion of the variance of the time
series that is not explained by the autoregressive model.

x.mean The estimated mean of the series used in fitting and for use in prediction.

x.intercept (ar.ols only.) The intercept in the model for x - x.mean.

aic The value of the aic argument.

n.used The number of observations in the time series.

order.max The value of the order.max argument.

partialacf The estimate of the partial autocorrelation function up to lag order.max.

resid residuals from the fitted model, conditioning on the first order observations.
The first order residuals are set to NA. If x is a time series, so is resid.

method The value of the method argument.

series The name(s) of the time series.

frequency The frequency of the time series.

call The matched call.

asy.var.coef (univariate case, order > 0.) The asymptotic-theory variance matrix of the
coefficient estimates.

For predict.ar, a time series of predictions, or if se.fit = TRUE, a list with components
pred, the predictions, and se, the estimated standard errors. Both components are time series.

Note

Only the univariate case of ar.mle is implemented.

Fitting by method="mle" to long series can be very slow.

Author(s)

Martyn Plummer. Univariate case of ar.yw, ar.mle and C code for univariate case of ar.burg
by B. D. Ripley.

986 ar.ols

References

Brockwell, P. J. and Davis, R. A. (1991) Time Series and Forecasting Methods. Second edition.
Springer, New York. Section 11.4.

Brockwell, P. J. and Davis, R. A. (1996) Introduction to Time Series and Forecasting. Springer,
New York. Sections 5.1 and 7.6.

Percival, D. P. and Walden, A. T. (1998) Spectral Analysis for Physical Applications. Cambridge
University Press.

Whittle, P. (1963) On the fitting of multivariate autoregressions and the approximate canonical
factorization of a spectral density matrix. Biometrika 40, 129–134.

See Also

ar.ols, arima0 for ARMA models; acf2AR, for AR construction from the ACF.

Examples

ar(lh)
ar(lh, method="burg")
ar(lh, method="ols")
ar(lh, FALSE, 4) # fit ar(4)

(sunspot.ar <- ar(sunspot.year))
predict(sunspot.ar, n.ahead=25)
try the other methods too

ar(ts.union(BJsales, BJsales.lead))
Burg is quite different here, as is OLS (see ar.ols)
ar(ts.union(BJsales, BJsales.lead), method="burg")

ar.ols Fit Autoregressive Models to Time Series by OLS

Description

Fit an autoregressive time series model to the data by ordinary least squares, by default selecting
the complexity by AIC.

Usage

ar.ols(x, aic = TRUE, order.max = NULL, na.action = na.fail,
demean = TRUE, intercept = demean, series, ...)

Arguments

x A univariate or multivariate time series.

aic Logical flag. If TRUE then the Akaike Information Criterion is used to
choose the order of the autoregressive model. If FALSE, the model of order
order.max is fitted.

order.max Maximum order (or order) of model to fit. Defaults to 10 log10(N) where N is
the number of observations.

ar.ols 987

na.action function to be called to handle missing values.

demean should the AR model be for x minus its mean?

intercept should a separate intercept term be fitted?

series names for the series. Defaults to deparse(substitute(x)).

... further arguments to be passed to or from methods.

Details

ar.ols fits the general AR model to a possibly non-stationary and/or multivariate system of series
x. The resulting unconstrained least squares estimates are consistent, even if some of the series are
non-stationary and/or co-integrated. For definiteness, note that the AR coefficients have the sign in

xt − µ = a0 + a1(xt−1 − µ) + · · ·+ ap(xt−p − µ) + et

where a0 is zero unless intercept is true, and µ is the sample mean if demean is true, zero
otherwise.

Order selection is done by AIC if aic is true. This is problematic, as ar.ols does not perform
true maximum likelihood estimation. The AIC is computed as if the variance estimate (computed
from the variance matrix of the residuals) were the MLE, omitting the determinant term from the
likelihood. Note that this is not the same as the Gaussian likelihood evaluated at the estimated
parameter values.

Some care is needed if intercept is true and demean is false. Only use this is the series are
roughly centred on zero. Otherwise the computations may be inaccurate or fail entirely.

Value

A list of class "ar" with the following elements:

order The order of the fitted model. This is chosen by minimizing the AIC if
aic=TRUE, otherwise it is order.max.

ar Estimated autoregression coefficients for the fitted model.

var.pred The prediction variance: an estimate of the portion of the variance of the time
series that is not explained by the autoregressive model.

x.mean The estimated mean (or zero if demean is false) of the series used in fitting and
for use in prediction.

x.intercept The intercept in the model for x - x.mean, or zero if intercept is false.

aic The value of the aic argument.

n.used The number of observations in the time series.

order.max The value of the order.max argument.

partialacf NULL. For compatibility with ar.

resid residuals from the fitted model, conditioning on the first order observations.
The first order residuals are set to NA. If x is a time series, so is resid.

method The character string "Unconstrained LS".

series The name(s) of the time series.

frequency The frequency of the time series.

call The matched call.

asy.se.coef The asymptotic-theory standard errors of the coefficient estimates.

988 arima

Author(s)

Adrian Trapletti, Brian Ripley.

References

Luetkepohl, H. (1991): Introduction to Multiple Time Series Analysis. Springer Verlag, NY, pp.
368–370.

See Also

ar

Examples

ar(lh, method="burg")
ar.ols(lh)
ar.ols(lh, FALSE, 4) # fit ar(4)

ar.ols(ts.union(BJsales, BJsales.lead))

x <- diff(log(EuStockMarkets))
ar.ols(x, order.max=6, demean=FALSE, intercept=TRUE)

arima ARIMA Modelling of Time Series

Description

Fit an ARIMA model to a univariate time series.

Usage

arima(x, order = c(0, 0, 0),
seasonal = list(order = c(0, 0, 0), period = NA),
xreg = NULL, include.mean = TRUE,
transform.pars = TRUE,
fixed = NULL, init = NULL,
method = c("CSS-ML", "ML", "CSS"),
n.cond, optim.control = list(), kappa = 1e6)

Arguments

x a univariate time series

order A specification of the non-seasonal part of the ARIMA model: the three com-
ponents (p, d, q) are the AR order, the degree of differencing, and the MA order.

seasonal A specification of the seasonal part of the ARIMA model, plus the period (which
defaults to frequency(x)). This should be a list with components order
and period, but a specification of just a numeric vector of length 3 will be
turned into a suitable list with the specification as the order.

xreg Optionally, a vector or matrix of external regressors, which must have the same
number of rows as x.

arima 989

include.mean Should the ARMA model include a mean/intercept term? The default is TRUE
for undifferenced series, and it is ignored for ARIMA models with differencing.

transform.pars
Logical. If true, the AR parameters are transformed to ensure that they remain
in the region of stationarity. Not used for method = "CSS".

fixed optional numeric vector of the same length as the total number of parameters.
If supplied, only NA entries in fixed will be varied. transform.pars =
TRUEwill be overridden (with a warning) if any AR parameters are fixed. It may
be wise to set transform.pars = FALSE when fixing MA parameters,
especially near non-invertibility.

init optional numeric vector of initial parameter values. Missing values will be filled
in, by zeroes except for regression coefficients. Values already specified in
fixed will be ignored.

method Fitting method: maximum likelihood or minimize conditional sum-of-squares.
The default (unless there are missing values) is to use conditional-sum-of-
squares to find starting values, then maximum likelihood.

n.cond Only used if fitting by conditional-sum-of-squares: the number of initial obser-
vations to ignore. It will be ignored if less than the maximum lag of an AR
term.

optim.control
List of control parameters for optim.

kappa the prior variance (as a multiple of the innovations variance) for the past obser-
vations in a differenced model. Do not reduce this.

Details

Different definitions of ARMA models have different signs for the AR and/or MA coefficients. The
definition used here has

Xt = a1Xt−1 + · · ·+ apXt−p + et + b1et−1 + . . .+ bqet−q

and so the MA coefficients differ in sign from those of S-PLUS. Further, if include.mean is
true (the default for an ARMA model), this formula applies to X −m rather than X . For ARIMA
models with differencing, the differenced series follows a zero-mean ARMA model. If am xreg
term is included, a linear regression (with a constant term if include.mean is true and there is
no differencing) is fitted with an ARMA model for the error term.

The variance matrix of the estimates is found from the Hessian of the log-likelihood, and so may
only be a rough guide.

Optimization is done by optim. It will work best if the columns in xreg are roughly scaled to
zero mean and unit variance, but does attempt to estimate suitable scalings.

Value

A list of class "Arima" with components:

coef a vector of AR, MA and regression coefficients, which can be extracted by the
coef method.

sigma2 the MLE of the innovations variance.

var.coef the estimated variance matrix of the coefficients coef, which can be extracted
by the vcov method.

990 arima

loglik the maximized log-likelihood (of the differenced data), or the approximation to
it used.

arma A compact form of the specification, as a vector giving the number of AR, MA,
seasonal AR and seasonal MA coefficients, plus the period and the number of
non-seasonal and seasonal differences.

aic the AIC value corresponding to the log-likelihood. Only valid for method =
"ML" fits.

residuals the fitted innovations.

call the matched call.

series the name of the series x.

code the convergence value returned by optim.

n.cond the number of initial observations not used in the fitting.

model A list representing the Kalman Filter used in the fitting. See KalmanLike.

Fitting methods

The exact likelihood is computed via a state-space representation of the ARIMA process, and the
innovations and their variance found by a Kalman filter. The initialization of the differenced ARMA
process uses stationarity and is based on Gardner et al. (1980). For a differenced process the non-
stationary components are given a diffuse prior (controlled by kappa). Observations which are still
controlled by the diffuse prior (determined by having a Kalman gain of at least 1e4) are excluded
from the likelihood calculations. (This gives comparable results to arima0 in the absence of
missing values, when the observations excluded are precisely those dropped by the differencing.)

Missing values are allowed, and are handled exactly in method "ML".

If transform.pars is true, the optimization is done using an alternative parametrization which
is a variation on that suggested by Jones (1980) and ensures that the model is stationary. For
an AR(p) model the parametrization is via the inverse tanh of the partial autocorrelations: the
same procedure is applied (separately) to the AR and seasonal AR terms. The MA terms are not
constrained to be invertible during optimization, but they will be converted to invertible form after
optimization if transform.pars is true.

Conditional sum-of-squares is provided mainly for expositional purposes. This computes the sum
of squares of the fitted innovations from observation n.cond on, (where n.cond is at least the
maximum lag of an AR term), treating all earlier innovations to be zero. Argument n.cond can
be used to allow comparability between different fits. The ‘part log-likelihood’ is the first term,
half the log of the estimated mean square. Missing values are allowed, but will cause many of the
innovations to be missing.

When regressors are specified, they are orthogonalized prior to fitting unless any of the coefficients
is fixed. It can be helpful to roughly scale the regressors to zero mean and unit variance.

Note

The results are likely to be different from S-PLUS’s arima.mle, which computes a conditional
likelihood and does not include a mean in the model. Further, the convention used by arima.mle
reverses the signs of the MA coefficients.

arima is very similar to arima0 for ARMA models or for differenced models without missing
values, but handles differenced models with missing values exactly. It is somewhat slower than
arima0, particularly for seasonally differenced models.

arima.sim 991

References

Brockwell, P. J. and Davis, R. A. (1996) Introduction to Time Series and Forecasting. Springer,
New York. Sections 3.3 and 8.3.

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford Uni-
versity Press.

Gardner, G, Harvey, A. C. and Phillips, G. D. A. (1980) Algorithm AS154. An algorithm for exact
maximum likelihood estimation of autoregressive-moving average models by means of Kalman
filtering. Applied Statistics 29, 311–322.

Harvey, A. C. (1993) Time Series Models, 2nd Edition, Harvester Wheatsheaf, sections 3.3 and 4.4.

Jones, R. H. (1980) Maximum likelihood fitting of ARMA models to time series with missing
observations. Technometrics 20 389–395.

See Also

predict.Arima, arima.sim for simulating from an ARIMA model, tsdiag, arima0, ar

Examples

arima(lh, order = c(1,0,0))
arima(lh, order = c(3,0,0))
arima(lh, order = c(1,0,1))

arima(lh, order = c(3,0,0), method = "CSS")

arima(USAccDeaths, order = c(0,1,1), seasonal = list(order=c(0,1,1)))
arima(USAccDeaths, order = c(0,1,1), seasonal = list(order=c(0,1,1)),

method = "CSS") # drops first 13 observations.
for a model with as few years as this, we want full ML

arima(LakeHuron, order = c(2,0,0), xreg = time(LakeHuron)-1920)

presidents contains NAs
graphs in example(acf) suggest order 1 or 3
require(graphics)
(fit1 <- arima(presidents, c(1, 0, 0)))
tsdiag(fit1)
(fit3 <- arima(presidents, c(3, 0, 0))) # smaller AIC
tsdiag(fit3)

arima.sim Simulate from an ARIMA Model

Description

Simulate from an ARIMA model.

Usage

arima.sim(model, n, rand.gen = rnorm, innov = rand.gen(n, ...),
n.start = NA, start.innov = rand.gen(n.start, ...),
...)

992 arima.sim

Arguments

model A list with component ar and/or ma giving the AR and MA coefficients respec-
tively. Optionally a component order can be used. An empty list gives an
ARIMA(0, 0, 0) model, that is white noise.

n length of output series, before un-differencing.

rand.gen optional: a function to generate the innovations.

innov an optional times series of innovations. If not provided, rand.gen is used.

n.start length of ‘burn-in’ period. If NA, the default, a reasonable value is computed.

start.innov an optional times series of innovations to be used for the burn-in period. If
supplied there must be at least n.start values (and n.start is by default
computed inside the function).

... additional arguments for rand.gen. Most usefully, the standard deviation of
the innovations generated by rnorm can be specified by sd.

Details

See arima for the precise definition of an ARIMA model.

The ARMA model is checked for stationarity.

ARIMA models are specified via the order component of model, in the same way as for arima.
Other aspects of the order component are ignored, but inconsistent specifications of the MA and
AR orders are detected. The un-differencing assumes previous values of zero, and to remind the
user of this, those values are returned.

Random inputs for the ‘burn-in’ period are generated by calling rand.gen.

Value

A time-series object of class "ts".

See Also

arima

Examples

require(graphics)

arima.sim(n = 63, list(ar = c(0.8897, -0.4858), ma = c(-0.2279, 0.2488)),
sd = sqrt(0.1796))

mildly long-tailed
arima.sim(n = 63, list(ar=c(0.8897, -0.4858), ma=c(-0.2279, 0.2488)),

rand.gen = function(n, ...) sqrt(0.1796) * rt(n, df = 5))

An ARIMA simulation
ts.sim <- arima.sim(list(order = c(1,1,0), ar = 0.7), n = 200)
ts.plot(ts.sim)

arima0 993

arima0 ARIMA Modelling of Time Series – Preliminary Version

Description

Fit an ARIMA model to a univariate time series, and forecast from the fitted model.

Usage

arima0(x, order = c(0, 0, 0),
seasonal = list(order = c(0, 0, 0), period = NA),
xreg = NULL, include.mean = TRUE, delta = 0.01,
transform.pars = TRUE, fixed = NULL, init = NULL,
method = c("ML", "CSS"), n.cond, optim.control = list())

S3 method for class 'arima0':
predict(object, n.ahead = 1, newxreg, se.fit = TRUE, ...)

Arguments

x a univariate time series

order A specification of the non-seasonal part of the ARIMA model: the three com-
ponents (p, d, q) are the AR order, the degree of differencing, and the MA order.

seasonal A specification of the seasonal part of the ARIMA model, plus the period (which
defaults to frequency(x)). This should be a list with components order
and period, but a specification of just a numeric vector of length 3 will be
turned into a suitable list with the specification as the order.

xreg Optionally, a vector or matrix of external regressors, which must have the same
number of rows as x.

include.mean Should the ARIMA model include a mean term? The default is TRUE for un-
differenced series, FALSE for differenced ones (where a mean would not affect
the fit nor predictions).

delta A value to indicate at which point ‘fast recursions’ should be used. See the
‘Details’ section.

transform.pars
Logical. If true, the AR parameters are transformed to ensure that they remain
in the region of stationarity. Not used for method = "CSS".

fixed optional numeric vector of the same length as the total number of parameters.
If supplied, only NA entries in fixed will be varied. transform.pars =
TRUE will be overridden (with a warning) if any ARMA parameters are fixed.

init optional numeric vector of initial parameter values. Missing values will be filled
in, by zeroes except for regression coefficients. Values already specified in
fixed will be ignored.

method Fitting method: maximum likelihood or minimize conditional sum-of-squares.

n.cond Only used if fitting by conditional-sum-of-squares: the number of initial obser-
vations to ignore. It will be ignored if less than the maximum lag of an AR
term.

994 arima0

optim.control
List of control parameters for optim.

object The result of an arima0 fit.

newxreg New values of xreg to be used for prediction. Must have at least n.ahead
rows.

n.ahead The number of steps ahead for which prediction is required.

se.fit Logical: should standard errors of prediction be returned?

... arguments passed to or from other methods.

Details

Different definitions of ARMA models have different signs for the AR and/or MA coefficients. The
definition here has

Xt = a1Xt−1 + · · ·+ apXt−p + et + b1et−1 + . . .+ bqet−q

and so the MA coefficients differ in sign from those of S-PLUS. Further, if include.mean is
true, this formula applies to X − m rather than X . For ARIMA models with differencing, the
differenced series follows a zero-mean ARMA model.

The variance matrix of the estimates is found from the Hessian of the log-likelihood, and so may
only be a rough guide, especially for fits close to the boundary of invertibility.

Optimization is done by optim. It will work best if the columns in xreg are roughly scaled to
zero mean and unit variance, but does attempt to estimate suitable scalings.

Finite-history prediction is used. This is only statistically efficient if the MA part of the fit is
invertible, so predict.arima0 will give a warning for non-invertible MA models.

Value

For arima0, a list of class "arima0" with components:

coef a vector of AR, MA and regression coefficients,

sigma2 the MLE of the innovations variance.

var.coef the estimated variance matrix of the coefficients coef.

loglik the maximized log-likelihood (of the differenced data), or the approximation to
it used.

arma A compact form of the specification, as a vector giving the number of AR, MA,
seasonal AR and seasonal MA coefficients, plus the period and the number of
non-seasonal and seasonal differences.

aic the AIC value corresponding to the log-likelihood. Only valid for method =
"ML" fits.

residuals the fitted innovations.

call the matched call.

series the name of the series x.

convergence the value returned by optim.

n.cond the number of initial observations not used in the fitting.

For predict.arima0, a time series of predictions, or if se.fit = TRUE, a list with com-
ponents pred, the predictions, and se, the estimated standard errors. Both components are time
series.

arima0 995

Fitting methods

The exact likelihood is computed via a state-space representation of the ARMA process, and the
innovations and their variance found by a Kalman filter based on Gardner et al. (1980). This has the
option to switch to ‘fast recursions’ (assume an effectively infinite past) if the innovations variance
is close enough to its asymptotic bound. The argument delta sets the tolerance: at its default
value the approximation is normally negligible and the speed-up considerable. Exact computations
can be ensured by setting delta to a negative value.

If transform.pars is true, the optimization is done using an alternative parametrization which
is a variation on that suggested by Jones (1980) and ensures that the model is stationary. For
an AR(p) model the parametrization is via the inverse tanh of the partial autocorrelations: the
same procedure is applied (separately) to the AR and seasonal AR terms. The MA terms are also
constrained to be invertible during optimization by the same transformation if transform.pars
is true. Note that the MLE for MA terms does sometimes occur for MA polynomials with unit
roots: such models can be fitted by using transform.pars = FALSE and specifying a good
set of initial values (often obtainable from a fit with transform.pars = TRUE).

As from R 1.5.0 missing values are allowed, but any missing values will force delta to be ig-
nored and full recursions used. Note that missing values will be propagated by differencing, so the
procedure used in this function is not fully efficient in that case.

Conditional sum-of-squares is provided mainly for expositional purposes. This computes the sum
of squares of the fitted innovations from observation n.cond on, (where n.cond is at least the
maximum lag of an AR term), treating all earlier innovations to be zero. Argument n.cond can
be used to allow comparability between different fits. The ‘part log-likelihood’ is the first term,
half the log of the estimated mean square. Missing values are allowed, but will cause many of the
innovations to be missing.

When regressors are specified, they are orthogonalized prior to fitting unless any of the coefficients
is fixed. It can be helpful to roughly scale the regressors to zero mean and unit variance.

Note

This is a preliminary version, and will be replaced by arima.

The standard errors of prediction exclude the uncertainty in the estimation of the ARMA model and
the regression coefficients.

The results are likely to be different from S-PLUS’s arima.mle, which computes a conditional
likelihood and does not include a mean in the model. Further, the convention used by arima.mle
reverses the signs of the MA coefficients.

References

Brockwell, P. J. and Davis, R. A. (1996) Introduction to Time Series and Forecasting. Springer,
New York. Sections 3.3 and 8.3.

Gardner, G, Harvey, A. C. and Phillips, G. D. A. (1980) Algorithm AS154. An algorithm for exact
maximum likelihood estimation of autoregressive-moving average models by means of Kalman
filtering. Applied Statistics 29, 311–322.

Harvey, A. C. (1993) Time Series Models, 2nd Edition, Harvester Wheatsheaf, sections 3.3 and 4.4.

Harvey, A. C. and McKenzie, C. R. (1982) Algorithm AS182. An algorithm for finite sample
prediction from ARIMA processes. Applied Statistics 31, 180–187.

Jones, R. H. (1980) Maximum likelihood fitting of ARMA models to time series with missing
observations. Technometrics 20 389–395.

996 ARMAacf

See Also

arima, ar, tsdiag

Examples

Not run: arima0(lh, order = c(1,0,0))
arima0(lh, order = c(3,0,0))
arima0(lh, order = c(1,0,1))
predict(arima0(lh, order = c(3,0,0)), n.ahead = 12)

arima0(lh, order = c(3,0,0), method = "CSS")

for a model with as few years as this, we want full ML
(fit <- arima0(USAccDeaths, order = c(0,1,1),

seasonal = list(order=c(0,1,1)), delta = -1))
predict(fit, n.ahead = 6)

arima0(LakeHuron, order = c(2,0,0), xreg = time(LakeHuron)-1920)
Not run:
presidents contains NAs
graphs in example(acf) suggest order 1 or 3
(fit1 <- arima0(presidents, c(1, 0, 0), delta = -1)) # avoid warning
tsdiag(fit1)
(fit3 <- arima0(presidents, c(3, 0, 0), delta = -1)) # smaller AIC
tsdiag(fit3)
End(Not run)

ARMAacf Compute Theoretical ACF for an ARMA Process

Description

Compute the theoretical autocorrelation function or partial autocorrelation function for an ARMA
process.

Usage

ARMAacf(ar = numeric(0), ma = numeric(0), lag.max = r, pacf = FALSE)

Arguments

ar numeric vector of AR coefficients

ma numeric vector of MA coefficients

lag.max integer. Maximum lag required. Defaults to max(p, q+1), where p, q are
the numbers of AR and MA terms respectively.

pacf logical. Should the partial autocorrelations be returned?

Details

The methods used follow Brockwell & Davis (1991, section 3.3). Their equations (3.3.8) are solved
for the autocovariances at lags 0, . . . ,max(p, q + 1), and the remaining autocorrelations are given
by a recursive filter.

ARMAtoMA 997

Value

A vector of (partial) autocorrelations, named by the lags.

References

Brockwell, P. J. and Davis, R. A. (1991) Time Series: Theory and Methods, Second Edition.
Springer.

See Also

arima, ARMAtoMA, acf2AR for inverting part of ARMAacf; further filter.

Examples

ARMAacf(c(1.0, -0.25), 1.0, lag.max = 10)

Example from Brockwell & Davis (1991, pp.92-4)
answer 2^(-n) * (32/3 + 8 * n) /(32/3)
n <- 1:10; 2^(-n) * (32/3 + 8 * n) /(32/3)
ARMAacf(c(1.0, -0.25), 1.0, lag.max = 10, pacf = TRUE)
ARMAacf(c(1.0, -0.25), lag.max = 10, pacf = TRUE)

Cov-Matrix of length-7 sub-sample of AR(1) example:
toeplitz(ARMAacf(0.8, lag.max = 7))

ARMAtoMA Convert ARMA Process to Infinite MA Process

Description

Convert ARMA process to infinite MA process.

Usage

ARMAtoMA(ar = numeric(0), ma = numeric(0), lag.max)

Arguments

ar numeric vector of AR coefficients

ma numeric vector of MA coefficients

lag.max Largest MA(Inf) coefficient required.

Value

A vector of coefficients.

References

Brockwell, P. J. and Davis, R. A. (1991) Time Series: Theory and Methods, Second Edition.
Springer.

998 as.hclust

See Also

arima, ARMAacf.

Examples

ARMAtoMA(c(1.0, -0.25), 1.0, 10)
Example from Brockwell & Davis (1991, p.92)
answer (1 + 3*n)*2^(-n)
n <- 1:10; (1 + 3*n)*2^(-n)

as.hclust Convert Objects to Class hclust

Description

Converts objects from other hierarchical clustering functions to class "hclust".

Usage

as.hclust(x, ...)

Arguments

x Hierarchical clustering object

... further arguments passed to or from other methods.

Details

Currently there is only support for converting objects of class "twins" as produced by the func-
tions diana and agnes from the package cluster. The default method throws an error unless
passed an "hclust" object.

Value

An object of class "hclust".

See Also

hclust, diana, agnes

Examples

x <- matrix(rnorm(30), ncol=3)
hc <- hclust(dist(x), method="complete")

if(require(cluster, quietly=TRUE)) {# is a recommended package
ag <- agnes(x, method="complete")
hcag <- as.hclust(ag)
The dendrograms order slightly differently:
op <- par(mfrow=c(1,2))
plot(hc) ; mtext("hclust", side=1)
plot(hcag); mtext("agnes", side=1)

}

asOneSidedFormula 999

asOneSidedFormula Convert to One-Sided Formula

Description

Names, expressions, numeric values, and character strings are converted to one-sided formulae. If
object is a formula, it must be one-sided, in which case it is returned unaltered.

Usage

asOneSidedFormula(object)

Arguments

object a one-sided formula, an expression, a numeric value, or a character string.

Value

a one-sided formula representing object

Author(s)

Jose Pinheiro and Douglas Bates

See Also

formula

Examples

asOneSidedFormula("age")
asOneSidedFormula(~ age)

ave Group Averages Over Level Combinations of Factors

Description

Subsets of x[] are averaged, where each subset consist of those observations with the same factor
levels.

Usage

ave(x, ..., FUN = mean)

Arguments

x A numeric.

... Grouping variables, typically factors, all of the same length as x.

FUN Function to apply for each factor level combination.

1000 bandwidth

Value

A numeric vector, say y of length length(x). If ... is g1,g2, e.g., y[i] is equal to
FUN(x[j], for all j with g1[j] == g1[i] and g2[j] == g2[i]).

See Also

mean, median.

Examples

require(graphics)

ave(1:3)# no grouping -> grand mean

attach(warpbreaks)
ave(breaks, wool)
ave(breaks, tension)
ave(breaks, tension, FUN = function(x)mean(x, trim=.1))
plot(breaks, main =

"ave(Warpbreaks) for wool x tension combinations")
lines(ave(breaks, wool, tension), type='s', col = "blue")
lines(ave(breaks, wool, tension, FUN=median), type='s', col = "green")
legend(40,70, c("mean","median"), lty=1,col=c("blue","green"), bg="gray90")
detach()

bandwidth Bandwidth Selectors for Kernel Density Estimation

Description

Bandwidth selectors for gaussian windows in density.

Usage

bw.nrd0(x)

bw.nrd(x)

bw.ucv(x, nb = 1000, lower = 0.1 * hmax, upper = hmax)

bw.bcv(x, nb = 1000, lower = 0.1 * hmax, upper = hmax)

bw.SJ(x, nb = 1000, lower = 0.1 * hmax, upper = hmax,
method = c("ste", "dpi"))

Arguments

x A data vector.

nb number of bins to use.

lower, upper Range over which to minimize. The default is almost always satisfactory. hmax
is calculated internally from a normal reference bandwidth.

method Either "ste" ("solve-the-equation") or "dpi" ("direct plug-in").

bandwidth 1001

Details

bw.nrd0 implements a rule-of-thumb for choosing the bandwidth of a Gaussian kernel density
estimator. It defaults to 0.9 times the minimum of the standard deviation and the interquartile range
divided by 1.34 times the sample size to the negative one-fifth power (= Silverman’s ‘rule of thumb’,
Silverman (1986, page 48, eqn (3.31)) unless the quartiles coincide when a positive result will be
guaranteed.

bw.nrd is the more common variation given by Scott (1992), using factor 1.06.

bw.ucv and bw.bcv implement unbiased and biased cross-validation respectively.

bw.SJ implements the methods of Sheather & Jones (1991) to select the bandwidth using pilot
estimation of derivatives.
The algorithm solves an equation (via uniroot) and because of that, enlarges the interval
c(lower,upper) when the boundaries were not user-specified and do not bracket the root.

Value

A bandwidth on a scale suitable for the bw argument of density.

References

Scott, D. W. (1992) Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley.

Sheather, S. J. and Jones, M. C. (1991) A reliable data-based bandwidth selection method for kernel
density estimation. Journal of the Royal Statistical Society series B, 53, 683–690.

Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. Springer.

See Also

density.

bandwidth.nrd, ucv, bcv and width.SJ in package MASS, which are all scaled to the
width argument of density and so give answers four times as large.

Examples

require(graphics)

plot(density(precip, n = 1000))
rug(precip)
lines(density(precip, bw="nrd"), col = 2)
lines(density(precip, bw="ucv"), col = 3)
lines(density(precip, bw="bcv"), col = 4)
lines(density(precip, bw="SJ-ste"), col = 5)
lines(density(precip, bw="SJ-dpi"), col = 6)
legend(55, 0.035,

legend = c("nrd0", "nrd", "ucv", "bcv", "SJ-ste", "SJ-dpi"),
col = 1:6, lty = 1)

1002 bartlett.test

bartlett.test Bartlett Test of Homogeneity of Variances

Description

Performs Bartlett’s test of the null that the variances in each of the groups (samples) are the same.

Usage

bartlett.test(x, ...)

Default S3 method:
bartlett.test(x, g, ...)

S3 method for class 'formula':
bartlett.test(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors representing the
respective samples, or fitted linear model objects (inheriting from class "lm").

g a vector or factor object giving the group for the corresponding elements of x.
Ignored if x is a list.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs
the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

If x is a list, its elements are taken as the samples or fitted linear models to be compared for
homogeneity of variances. In this case, the elements must either all be numeric data vectors or
fitted linear model objects, g is ignored, and one can simply use bartlett.test(x) to perform
the test. If the samples are not yet contained in a list, use bartlett.test(list(x, ...)).

Otherwise, x must be a numeric data vector, and g must be a vector or factor object of the same
length as x giving the group for the corresponding elements of x.

Value

A list of class "htest" containing the following components:

statistic Bartlett’s K-squared test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

Beta 1003

p.value the p-value of the test.

method the character string "Bartlett test of homogeneity of
variances".

data.name a character string giving the names of the data.

References

Bartlett, M. S. (1937). Properties of sufficiency and statistical tests. Proceedings of the Royal
Society of London Series A 160, 268–282.

See Also

var.test for the special case of comparing variances in two samples from normal distributions;
fligner.test for a rank-based (nonparametric) k-sample test for homogeneity of variances;
ansari.test and mood.test for two rank based two-sample tests for difference in scale.

Examples

require(graphics)

plot(count ~ spray, data = InsectSprays)
bartlett.test(InsectSprays$count, InsectSprays$spray)
bartlett.test(count ~ spray, data = InsectSprays)

Beta The Beta Distribution

Description

Density, distribution function, quantile function and random generation for the Beta distribution
with parameters shape1 and shape2 (and optional non-centrality parameter ncp).

Usage

dbeta(x, shape1, shape2, ncp = 0, log = FALSE)
pbeta(q, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE)
qbeta(p, shape1, shape2, ncp = 0, lower.tail = TRUE, log.p = FALSE)
rbeta(n, shape1, shape2, ncp = 0)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

shape1, shape2
positive parameters of the Beta distribution.

ncp non-centrality parameter.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

1004 Beta

Details

The Beta distribution with parameters shape1 = a and shape2 = b has density

f(x) =
Γ(a+ b)
Γ(a)Γ(b)

xa(1− x)b

for a > 0, b > 0 and 0 ≤ x ≤ 1 where the boundary values at x = 0 or x = 1 are defined as by
continuity (as limits).
The mean is a/(a+ b) and the variance is ab/((a+ b)2(a+ b+ 1)).

pbeta is closely related to the incomplete beta function. As defined by Abramowitz and Stegun
6.6.1

Bx(a, b) =
∫ x

0

ta−1(1− t)b−1dt,

and 6.6.2 Ix(a, b) = Bx(a, b)/B(a, b) where B(a, b) = B1(a, b) is the Beta function (beta).

Ix(a, b) is pbeta(x,a,b).

The noncentral Beta distribution (with ncp = λ) is defined (Johnson et al, 1995, pp. 502) as the
distribution of X/(X + Y) where X ∼ χ2

2a(λ) and Y ∼ χ2
2b.

Value

dbeta gives the density, pbeta the distribution function, qbeta the quantile function, and
rbeta generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

Source

The central dbeta is based on a binomial probability, using code contributed by Catherine Loader
(see dbinom) if either shape parameter is larger than one, otherwise directly from the definition.
The non-central case is based on the derivation as a Poisson mixture of betas (Johnson et al, 1995,
pp. 502–3).

The central pbeta uses a C translation (and enhancement for log_p=TRUE) of

Didonato, A. and Morris, A., Jr, (1992) Algorithm 708: Significant digit computation of the incom-
plete beta function ratios, ACM Transactions on Mathematical Software, 18, 360–373. (See also
Brown, B. and Lawrence Levy, L. (1994) Certification of algorithm 708: Significant digit compu-
tation of the incomplete beta, ACM Transactions on Mathematical Software, 20, 393–397.)

The non-central pbeta uses a C translation of

Lenth, R. V. (1987) Algorithm AS226: Computing noncentral beta probabilities. Appl. Statist, 36,
241–244, incorporating
Frick, H. (1990)’s AS R84, Appl. Statist, 39, 311–2, and
Lam, M.L. (1995)’s AS R95, Appl. Statist, 44, 551–2.

qbeta is based on a C translation of

Cran, G. W., K. J. Martin and G. E. Thomas (1977). Remark AS R19 and Algorithm AS 109,
Applied Statistics, 26, 111–114, and subsequent remarks (AS83 and correction).

rbeta is based on a C translation of

R. C. H. Cheng (1978). Generating beta variates with nonintegral shape parameters. Communica-
tions of the ACM, 21, 317–322.

binom.test 1005

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover.
Chapter 6: Gamma and Related Functions.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume
2, especially chapter 25. Wiley, New York.

See Also

beta for the Beta function, and dgamma for the Gamma distribution.

Examples

x <- seq(0, 1, length=21)
dbeta(x, 1, 1)
pbeta(x, 1, 1)

binom.test Exact Binomial Test

Description

Performs an exact test of a simple null hypothesis about the probability of success in a Bernoulli
experiment.

Usage

binom.test(x, n, p = 0.5,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95)

Arguments

x number of successes, or a vector of length 2 giving the numbers of successes
and failures, respectively.

n number of trials; ignored if x has length 2.

p hypothesized probability of success.

alternative indicates the alternative hypothesis and must be one of "two.sided",
"greater" or "less". You can specify just the initial letter.

conf.level confidence level for the returned confidence interval.

Details

Confidence intervals are obtained by a procedure first given in Clopper and Pearson (1934). This
guarantees that the confidence level is at least conf.level, but in general does not give the
shortest-length confidence intervals.

1006 Binomial

Value

A list with class "htest" containing the following components:

statistic the number of successes.

parameter the number of trials.

p.value the p-value of the test.

conf.int a confidence interval for the probability of success.

estimate the estimated probability of success.

null.value the probability of success under the null, p.

alternative a character string describing the alternative hypothesis.

method the character string "Exact binomial test".

data.name a character string giving the names of the data.

References

Clopper, C. J. & Pearson, E. S. (1934). The use of confidence or fiducial limits illustrated in the
case of the binomial. Biometrika, 26, 404–413.

William J. Conover (1971), Practical nonparametric statistics. New York: John Wiley & Sons.
Pages 97–104.

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric Statistical Methods. New York: John
Wiley & Sons. Pages 15–22.

See Also

prop.test for a general (approximate) test for equal or given proportions.

Examples

Conover (1971), p. 97f.
Under (the assumption of) simple Mendelian inheritance, a cross
between plants of two particular genotypes produces progeny 1/4 of
which are "dwarf" and 3/4 of which are "giant", respectively.
In an experiment to determine if this assumption is reasonable, a
cross results in progeny having 243 dwarf and 682 giant plants.
If "giant" is taken as success, the null hypothesis is that p =
3/4 and the alternative that p != 3/4.
binom.test(c(682, 243), p = 3/4)
binom.test(682, 682 + 243, p = 3/4) # The same.
=> Data are in agreement with the null hypothesis.

Binomial The Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the binomial distribution
with parameters size and prob.

Binomial 1007

Usage

dbinom(x, size, prob, log = FALSE)
pbinom(q, size, prob, lower.tail = TRUE, log.p = FALSE)
qbinom(p, size, prob, lower.tail = TRUE, log.p = FALSE)
rbinom(n, size, prob)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

size number of trials (zero or more).

prob probability of success on each trial.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

The binomial distribution with size = n and prob = p has density

p(x) =
(
n

x

)
px(1− p)n−x

for x = 0, . . . , n.

If an element of x is not integer, the result of dbinom is zero, with a warning. p(x) is computed
using Loader’s algorithm, see the reference below.

The quantile is defined as the smallest value x such that F (x) ≥ p, where F is the distribution
function.

Value

dbinom gives the density, pbinom gives the distribution function, qbinom gives the quantile
function and rbinom generates random deviates.

If size is not an integer, NaN is returned.

Source

For dbinom a saddle-point expansion is used: see

Catherine Loader (2000). Fast and Accurate Computation of Binomial Probabilities; available from
http://www.herine.net/stat/software/dbinom.html.

pbinom uses pbeta.

qbinom uses the Cornish–Fisher Expansion to include a skewness correction to a normal approxi-
mation, followed by a search.

rbinom (for size < .Machine$integer.max) is based on

Kachitvichyanukul, V. and Schmeiser, B. W. (1988) Binomial random variate generation. Commu-
nications of the ACM, 31, 216–222.

http://www.herine.net/stat/software/dbinom.html

1008 biplot

See Also

dnbinom for the negative binomial, and dpois for the Poisson distribution.

Examples

require(graphics)
Compute P(45 < X < 55) for X Binomial(100,0.5)
sum(dbinom(46:54, 100, 0.5))

Using "log = TRUE" for an extended range :
n <- 2000
k <- seq(0, n, by = 20)
plot (k, dbinom(k, n, pi/10, log=TRUE), type='l', ylab="log density",

main = "dbinom(*, log=TRUE) is better than log(dbinom(*))")
lines(k, log(dbinom(k, n, pi/10)), col='red', lwd=2)
extreme points are omitted since dbinom gives 0.
mtext("dbinom(k, log=TRUE)", adj=0)
mtext("extended range", adj=0, line = -1, font=4)
mtext("log(dbinom(k))", col="red", adj=1)

biplot Biplot of Multivariate Data

Description

Plot a biplot on the current graphics device.

Usage

biplot(x, ...)

Default S3 method:
biplot(x, y, var.axes = TRUE, col, cex = rep(par("cex"), 2),

xlabs = NULL, ylabs = NULL, expand = 1,
xlim = NULL, ylim = NULL, arrow.len = 0.1,
main = NULL, sub = NULL, xlab = NULL, ylab = NULL, ...)

Arguments

x The biplot, a fitted object. For biplot.default, the first set of points (a
two-column matrix), usually associated with observations.

y The second set of points (a two-column matrix), usually associated with vari-
ables.

var.axes If TRUE the second set of points have arrows representing them as (unscaled)
axes.

col A vector of length 2 giving the colours for the first and second set of points
respectively (and the corresponding axes). If a single colour is specified it will be
used for both sets. If missing the default colour is looked for in the palette: if
there it and the next colour as used, otherwise the first two colours of the palette
are used.

biplot.princomp 1009

cex The character expansion factor used for labelling the points. The labels can be
of different sizes for the two sets by supplying a vector of length two.

xlabs A vector of character strings to label the first set of points: the default is to use
the row dimname of x, or 1:n is the dimname is NULL.

ylabs A vector of character strings to label the second set of points: the default is to
use the row dimname of y, or 1:n is the dimname is NULL.

expand An expansion factor to apply when plotting the second set of points relative to
the first. This can be used to tweak the scaling of the two sets to a physically
comparable scale.

arrow.len The length of the arrow heads on the axes plotted in var.axes is true. The
arrow head can be suppressed by arrow.len = 0.

xlim, ylim Limits for the x and y axes in the units of the first set of variables.

main, sub, xlab, ylab, ...
graphical parameters.

Details

A biplot is plot which aims to represent both the observations and variables of a matrix of multivari-
ate data on the same plot. There are many variations on biplots (see the references) and perhaps the
most widely used one is implemented by biplot.princomp. The function biplot.default
merely provides the underlying code to plot two sets of variables on the same figure.

Graphical parameters can also be given to biplot: the size of xlabs and ylabs is controlled
by cex.

Side Effects

a plot is produced on the current graphics device.

References

K. R. Gabriel (1971). The biplot graphical display of matrices with application to principal compo-
nent analysis. Biometrika 58, 453–467.

J.C. Gower and D. J. Hand (1996). Biplots. Chapman & Hall.

See Also

biplot.princomp, also for examples.

biplot.princomp Biplot for Principal Components

Description

Produces a biplot (in the strict sense) from the output of princomp or prcomp

1010 biplot.princomp

Usage

S3 method for class 'prcomp':
biplot(x, choices = 1:2, scale = 1, pc.biplot = FALSE, ...)

S3 method for class 'princomp':
biplot(x, choices = 1:2, scale = 1, pc.biplot = FALSE, ...)

Arguments

x an object of class "princomp".

choices length 2 vector specifying the components to plot. Only the default is a biplot in
the strict sense.

scale The variables are scaled by lambda ^ scale and the observations are scaled
by lambda ^ (1-scale) where lambda are the singular values as com-
puted by princomp. Normally 0 <= scale <= 1, and a warning will be
issued if the specified scale is outside this range.

pc.biplot If true, use what Gabriel (1971) refers to as a "principal component biplot", with
lambda = 1 and observations scaled up by sqrt(n) and variables scaled down
by sqrt(n). Then inner products between variables approximate covariances and
distances between observations approximate Mahalanobis distance.

... optional arguments to be passed to biplot.default.

Details

This is a method for the generic function biplot. There is considerable confusion over the precise
definitions: those of the original paper, Gabriel (1971), are followed here. Gabriel and Odoroff
(1990) use the same definitions, but their plots actually correspond to pc.biplot = TRUE.

Side Effects

a plot is produced on the current graphics device.

References

Gabriel, K. R. (1971). The biplot graphical display of matrices with applications to principal com-
ponent analysis. Biometrika, 58, 453–467.

Gabriel, K. R. and Odoroff, C. L. (1990). Biplots in biomedical research. Statistics in Medicine, 9,
469–485.

See Also

biplot, princomp.

Examples

require(graphics)
biplot(princomp(USArrests))

birthday 1011

birthday Probability of coincidences

Description

Computes approximate answers to a generalised birthday paradox problem. pbirthday com-
putes the probability of a coincidence and qbirthday computes the number of observations
needed to have a specified probability of coincidence.

Usage

qbirthday(prob = 0.5, classes = 365, coincident = 2)
pbirthday(n, classes = 365, coincident = 2)

Arguments

classes How many distinct categories the people could fall into

prob The desired probability of coincidence

n The number of people

coincident The number of people to fall in the same category

Details

The birthday paradox is that a very small number of people, 23, suffices to have a 50-50 chance that
two of them have the same birthday. This function generalises the calculation to probabilities other
than 0.5, numbers of coincident events other than 2, and numbers of classes other than 365.

This formula is approximate, as the example below shows. For coincident=2 the exact compu-
tation is straightforward and may be preferable.

Value

qbirthday Number of people needed for a probability prob that k of them have the same
one out of classes equiprobable labels.

pbirthday Probability of the specified coincidence

References

Diaconis, P. and Mosteller F. (1989) Methods for studying coincidences. J. American Statistical
Association, 84, 853-861.

Examples

require(graphics)

the standard version
qbirthday()
same 4-digit PIN number

qbirthday(classes=10^4)
0.9 probability of three coincident birthdays

qbirthday(coincident=3, prob=0.9)
Chance of 4 coincident birthdays in 150 people

1012 Box.test

pbirthday(150,coincident=4)
100 coincident birthdays in 1000 people: *very* rare:
pbirthday(1000, coincident=100)

Accuracy compared to exact calculation
x1<- sapply(10:100, pbirthday)
x2<- 1-sapply(10:100, function(n)prod((365:(365-n+1))/rep(365,n)))
par(mfrow=c(2,2))
plot(x1, x2, xlab="approximate", ylab="exact")
abline(0,1)
plot(x1, x1-x2, xlab="approximate", ylab="error")
abline(h=0)
plot(x1, x2, log="xy", xlab="approximate", ylab="exact")
abline(0,1)
plot(1-x1, 1-x2, log="xy", xlab="approximate", ylab="exact")
abline(0,1)

Box.test Box-Pierce and Ljung-Box Tests

Description

Compute the Box–Pierce or Ljung–Box test statistic for examining the null hypothesis of indepen-
dence in a given time series.

Usage

Box.test(x, lag = 1, type = c("Box-Pierce", "Ljung-Box"), fitdf = 0)

Arguments

x a numeric vector or univariate time series.

lag the statistic will be based on lag autocorrelation coefficients.

type test to be performed: partial matching is used.

fitdf number of degrees of freedom to be subtracted if x is a series of residuals.

Details

These tests are sometimes applied to the residuals from an ARMA(p, q) fit, in which case the
references suggest a better approximation to the null-hypothesis distribution is obtained by setting
fitdf = p+q, provided of course that lag > fitdf.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

p.value the p-value of the test.

method a character string indicating which type of test was performed.

data.name a character string giving the name of the data.

C 1013

Note

Missing values are not handled.

Author(s)

A. Trapletti

References

Box, G. E. P. and Pierce, D. A. (1970), Distribution of residual correlations in autoregressive-
integrated moving average time series models. Journal of the American Statistical Association, 65,
1509–1526.

Ljung, G. M. and Box, G. E. P. (1978), On a measure of lack of fit in time series models. Biometrika
65, 553–564.

Harvey, A. C. (1993) Time Series Models. 2nd Edition, Harvester Wheatsheaf, NY, pp. 44, 45.

Examples

x <- rnorm (100)
Box.test (x, lag = 1)
Box.test (x, lag = 1, type="Ljung")

C Sets Contrasts for a Factor

Description

Sets the "contrasts" attribute for the factor.

Usage

C(object, contr, how.many, ...)

Arguments

object a factor or ordered factor

contr which contrasts to use. Can be a matrix with one row for each level of the factor
or a suitable function like contr.poly or a character string giving the name
of the function

how.many the number of contrasts to set, by default one less than nlevels(object).

... additional arguments for the function contr.

Details

For compatibility with S, contr can be treatment, helmert, sum or poly (without quotes)
as shorthand for contr.treatment and so on.

Value

The factor object with the "contrasts" attribute set.

1014 cancor

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models in S eds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

contrasts, contr.sum, etc.

Examples

reset contrasts to defaults
options(contrasts=c("contr.treatment", "contr.poly"))
tens <- with(warpbreaks, C(tension, poly, 1))
attributes(tens)
tension SHOULD be an ordered factor, but as it is not we can use
aov(breaks ~ wool + tens + tension, data=warpbreaks)

show the use of ... The default contrast is contr.treatment here
summary(lm(breaks ~ wool + C(tension, base=2), data=warpbreaks))

following on from help(esoph)
model3 <- glm(cbind(ncases, ncontrols) ~ agegp + C(tobgp, , 1) +

C(alcgp, , 1), data = esoph, family = binomial())
summary(model3)

cancor Canonical Correlations

Description

Compute the canonical correlations between two data matrices.

Usage

cancor(x, y, xcenter = TRUE, ycenter = TRUE)

Arguments

x numeric matrix (n× p1), containing the x coordinates.

y numeric matrix (n× p2), containing the y coordinates.

xcenter logical or numeric vector of length p1, describing any centering to be done on
the x values before the analysis. If TRUE (default), subtract the column means.
If FALSE, do not adjust the columns. Otherwise, a vector of values to be sub-
tracted from the columns.

ycenter analogous to xcenter, but for the y values.

Details

The canonical correlation analysis seeks linear combinations of the y variables which are well ex-
plained by linear combinations of the x variables. The relationship is symmetric as ‘well explained’
is measured by correlations.

case/variable.names 1015

Value

A list containing the following components:

cor correlations.

xcoef estimated coefficients for the x variables.

ycoef estimated coefficients for the y variables.

xcenter the values used to adjust the x variables.

ycenter the values used to adjust the x variables.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Hotelling H. (1936). Relations between two sets of variables. Biometrika, 28, 321–327.

Seber, G. A. F. (1984). Multivariate Observations. New York: Wiley, p. 506f.

See Also

qr, svd.

Examples

pop <- LifeCycleSavings[, 2:3]
oec <- LifeCycleSavings[, -(2:3)]
cancor(pop, oec)

x <- matrix(rnorm(150), 50, 3)
y <- matrix(rnorm(250), 50, 5)
(cxy <- cancor(x, y))
all(abs(cor(x %*% cxy$xcoef,

y %*% cxy$ycoef)[,1:3] - diag(cxy $ cor)) < 1e-15)
all(abs(cor(x %*% cxy$xcoef) - diag(3)) < 1e-15)
all(abs(cor(y %*% cxy$ycoef) - diag(5)) < 1e-15)

case/variable.names
Case and Variable Names of Fitted Models

Description

Simple utilities returning (non-missing) case names, and (non-eliminated) variable names.

Usage

case.names(object, ...)
S3 method for class 'lm':
case.names(object, full = FALSE, ...)

variable.names(object, ...)
S3 method for class 'lm':
variable.names(object, full = FALSE, ...)

1016 Cauchy

Arguments

object an R object, typically a fitted model.
full logical; if TRUE, all names (including zero weights, . . .) are returned.
... further arguments passed to or from other methods.

Value

A character vector.

See Also

lm; further, all.names, all.vars for functions with a similar name but only slightly related
purpose.

Examples

x <- 1:20
y <- x + (x/4 - 2)^3 + rnorm(20, sd=3)
names(y) <- paste("O",x,sep=".")
ww <- rep(1,20); ww[13] <- 0
summary(lmxy <- lm(y ~ x + I(x^2)+I(x^3) + I((x-10)^2),

weights = ww), cor = TRUE)
variable.names(lmxy)
variable.names(lmxy, full= TRUE)# includes the last
case.names(lmxy)
case.names(lmxy, full = TRUE)# includes the 0-weight case

Cauchy The Cauchy Distribution

Description

Density, distribution function, quantile function and random generation for the Cauchy distribution
with location parameter location and scale parameter scale.

Usage

dcauchy(x, location = 0, scale = 1, log = FALSE)
pcauchy(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qcauchy(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rcauchy(n, location = 0, scale = 1)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the

number required.
location, scale

location and scale parameters.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

chisq.test 1017

Details

If location or scale are not specified, they assume the default values of 0 and 1 respectively.

The Cauchy distribution with location l and scale s has density

f(x) =
1
πs

(
1 +

(
x− l
s

)2
)−1

for all x.

Value

dcauchy, pcauchy, and qcauchy are respectively the density, distribution function and quan-
tile function of the Cauchy distribution. rcauchy generates random deviates from the Cauchy.

Source

dcauchy, pcauchy and qcauchy are all calculated from numerically stable versions of the
definitions.

rcauchy uses inversion.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume
1, chapter 16. Wiley, New York.

See Also

dt for the t distribution which generalizes dcauchy(*, l = 0, s = 1).

Examples

dcauchy(-1:4)

chisq.test Pearson’s Chi-squared Test for Count Data

Description

chisq.test performs chi-squared contingency table tests and goodness-of-fit tests.

Usage

chisq.test(x, y = NULL, correct = TRUE,
p = rep(1/length(x), length(x)), rescale.p = FALSE,
simulate.p.value = FALSE, B = 2000)

1018 chisq.test

Arguments

x a vector or matrix.

y a vector; ignored if x is a matrix.

correct a logical indicating whether to apply continuity correction when computing the
test statistic for 2x2 tables: one half is subtracted from all |O − E| differences.
No correction is done if simulate.p.value = TRUE.

p a vector of probabilities of the same length of x. An error is given if any entry
of p is negative.

rescale.p a logical scalar; if TRUE then p is rescaled (if necessary) to sum to 1. If
rescale.p is FALSE, and p does not sum to 1, an error is given.

simulate.p.value
a logical indicating whether to compute p-values by Monte Carlo simulation.

B an integer specifying the number of replicates used in the Monte Carlo test.

Details

If x is a matrix with one row or column, or if x is a vector and y is not given, then a goodness-of-fit
test is performed (x is treated as a one-dimensional contingency table). The entries of x must be
non-negative integers. In this case, the hypothesis tested is whether the population probabilities
equal those in p, or are all equal if p is not given.

If x is a matrix with at least two rows and columns, it is taken as a two-dimensional contingency
table. Again, the entries of x must be non-negative integers. Otherwise, x and y must be vectors
or factors of the same length; incomplete cases are removed, the objects are coerced into factor
objects, and the contingency table is computed from these. Then, Pearson’s chi-squared test of the
null hypothesis that the joint distribution of the cell counts in a 2-dimensional contingency table is
the product of the row and column marginals is performed.

If simulate.p.value is FALSE, the p-value is computed from the asymptotic chi-squared
distribution of the test statistic; continuity correction is only used in the 2-by-2 case (if correct
is TRUE, the default). Otherwise the p-value is computed for a Monte Carlo test (Hope, 1968) with
B replicates.

In the contingency table case simulation is done by random sampling from the set of all contingency
tables with given marginals, and works only if the marginals are strictly positive. (A C translation
of the algorithm of Patefield (1981) is used.) Continuity correction is never used, and the statistic
is quoted without it. Note that this is not the usual sampling situation for the chi-squared test but
rather that for Fisher’s exact test.

In the goodness-of-fit case simulation is done by random sampling from the discrete distribution
specified by p, each sample being of size n = sum(x). This simulation is done in R and may be
slow.

Value

A list with class "htest" containing the following components:

statistic the value the chi-squared test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic, NA if the p-value is computed by Monte Carlo simulation.

p.value the p-value for the test.

method a character string indicating the type of test performed, and whether Monte Carlo
simulation or continuity correction was used.

chisq.test 1019

data.name a character string giving the name(s) of the data.

observed the observed counts.

expected the expected counts under the null hypothesis.

residuals the Pearson residuals, (observed - expected) /
sqrt(expected).

References

Hope, A. C. A. (1968) A simplified Monte Carlo significance test procedure. J. Roy, Statist. Soc. B
30, 582–598.

Patefield, W. M. (1981) Algorithm AS159. An efficient method of generating r x c tables with given
row and column totals. Applied Statistics 30, 91–97.

Examples

Not really a good example
chisq.test(InsectSprays$count > 7, InsectSprays$spray)

Prints test summary
chisq.test(InsectSprays$count > 7, InsectSprays$spray)$observed

Counts observed
chisq.test(InsectSprays$count > 7, InsectSprays$spray)$expected

Counts expected under the null

Effect of simulating p-values
x <- matrix(c(12, 5, 7, 7), ncol = 2)
chisq.test(x)$p.value # 0.4233
chisq.test(x, simulate.p.value = TRUE, B = 10000)$p.value

around 0.29!

Testing for population probabilities
Case A. Tabulated data
x <- c(A = 20, B = 15, C = 25)
chisq.test(x)
chisq.test(as.table(x)) # the same
x <- c(89,37,30,28,2)
p <- c(40,20,20,15,5)
try(
chisq.test(x, p = p) # gives an error
)
chisq.test(x, p = p, rescale.p = TRUE)

works
p <- c(0.40,0.20,0.20,0.19,0.01)

Expected count in category 5
is 1.86 < 5 ==> chi square approx.

chisq.test(x, p = p) # maybe doubtful, but is ok!
chisq.test(x, p = p,simulate.p.value = TRUE)

Case B. Raw data
x <- trunc(5 * runif(100))
chisq.test(table(x)) # NOT 'chisq.test(x)'!

1020 Chisquare

Chisquare The (non-central) Chi-Squared Distribution

Description

Density, distribution function, quantile function and random generation for the chi-squared (χ2)
distribution with df degrees of freedom and optional non-centrality parameter ncp.

Usage

dchisq(x, df, ncp=0, log = FALSE)
pchisq(q, df, ncp=0, lower.tail = TRUE, log.p = FALSE)
qchisq(p, df, ncp=0, lower.tail = TRUE, log.p = FALSE)
rchisq(n, df, ncp=0)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

df degrees of freedom (non-negative, but can be non-integer).

ncp non-centrality parameter (non-negative).

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

The chi-squared distribution with df= n ≥ 0 degrees of freedom has density

fn(x) =
1

2n/2Γ(n/2)
xn/2−1e−x/2

for x > 0. The mean and variance are n and 2n.

The non-central chi-squared distribution with df= n degrees of freedom and non-centrality param-
eter ncp = λ has density

f(x) = e−λ/2
∞∑
r=0

(λ/2)r

r!
fn+2r(x)

for x ≥ 0. For integer n, this is the distribution of the sum of squares of n normals each with
variance one, λ being the sum of squares of the normal means; further,
E(X) = n+ λ, V ar(X) = 2(n+ 2 ∗ λ), and E((X − E(X))3) = 8(n+ 3 ∗ λ).

Note that the degrees of freedom df= n, can be non-integer, and also n = 0 which is relevant for
non-centrality λ > 0, see Johnson et al. (1995, chapter 29).

Note that ncp values larger than about 1e5 may give inaccurate results with many warnings for
pchisq and qchisq.

Chisquare 1021

Value

dchisq gives the density, pchisq gives the distribution function, qchisq gives the quantile
function, and rchisq generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

Source

The central cases are computed via the gamma distribution.

The non-central dchisq and rchisq are computed as a Poisson mixture central of chi-squares
(Johnson et al, 1995, p.436).

The non-central pchisq is for ncp < 80 computed from the Poisson mixture of central chi-
squares and for larger ncp based on a C translation of

Ding, C. G. (1992) Algorithm AS275: Computing the non-central chi-squared distribution function.
Appl.Statist., 41 478–482.

which computes the lower tail only (so the upper tail suffers from cancellation).

The non-central qchisq is based on inversion of pchisq.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, chapters
18 (volume 1) and 29 (volume 2). Wiley, New York.

See Also

A central chi-squared distribution with n degrees of freedom is the same as a Gamma distribution
with shape α = n/2 and scale σ = 2. Hence, see dgamma for the Gamma distribution.

Examples

require(graphics)

dchisq(1, df=1:3)
pchisq(1, df= 3)
pchisq(1, df= 3, ncp = 0:4)# includes the above

x <- 1:10
Chi-squared(df = 2) is a special exponential distribution
all.equal(dchisq(x, df=2), dexp(x, 1/2))
all.equal(pchisq(x, df=2), pexp(x, 1/2))

non-central RNG -- df=0 with ncp > 0: Z0 has point mass at 0!
Z0 <- rchisq(100, df = 0, ncp = 2.)
graphics::stem(Z0)

Not run:
visual testing
do P-P plots for 1000 points at various degrees of freedom
L <- 1.2; n <- 1000; pp <- ppoints(n)
op <- par(mfrow = c(3,3), mar= c(3,3,1,1)+.1, mgp= c(1.5,.6,0),

oma = c(0,0,3,0))

1022 clearNames

for(df in 2^(4*rnorm(9))) {
plot(pp, sort(pchisq(rr <- rchisq(n,df=df, ncp=L), df=df, ncp=L)),

ylab="pchisq(rchisq(.),.)", pch=".")
mtext(paste("df = ",formatC(df, digits = 4)), line= -2, adj=0.05)
abline(0,1,col=2)

}
mtext(expression("P-P plots : Noncentral "*

chi^2 *"(n=1000, df=X, ncp= 1.2)"),
cex = 1.5, font = 2, outer=TRUE)

par(op)
End(Not run)

"analytical" test
lam <- seq(0,100, by=.25)
p00 <- pchisq(0, df=0, ncp=lam)
p.0 <- pchisq(1e-300, df=0, ncp=lam)
stopifnot(all.equal(p00, exp(-lam/2)),

all.equal(p.0, exp(-lam/2)))

clearNames Remove the Names from an Object

Description

This function sets the names attribute of object to NULL and returns the object.

Usage

clearNames(object)

Arguments

object an object that may have a names attribute

Value

An object similar to object but without names.

Author(s)

Douglas Bates and Saikat DebRoy

See Also

setNames

Examples

lapply(women, mean) # has a names attribute
clearNames(lapply(women, mean)) # removes the names

cmdscale 1023

cmdscale Classical (Metric) Multidimensional Scaling

Description

Classical multidimensional scaling of a data matrix. Also known as principal coordinates analysis
(Gower, 1966).

Usage

cmdscale(d, k = 2, eig = FALSE, add = FALSE, x.ret = FALSE)

Arguments

d a distance structure such as that returned by dist or a full symmetric matrix
containing the dissimilarities.

k the dimension of the space which the data are to be represented in; must be in
{1, 2, . . . , n− 1}.

eig indicates whether eigenvalues should be returned.

add logical indicating if an additive constant c∗ should be computed, and added to
the non-diagonal dissimilarities such that all n−1 eigenvalues are non-negative.

x.ret indicates whether the doubly centred symmetric distance matrix should be re-
turned.

Details

Multidimensional scaling takes a set of dissimilarities and returns a set of points such that the
distances between the points are approximately equal to the dissimilarities.

The functions isoMDS and sammon in package MASS provide alternative ordination techniques.

When add = TRUE, an additive constant c∗ is computed, and the dissimilarities dij + c∗ are used
instead of the original dij’s.

Whereas S (Becker et al., 1988) computes this constant using an approximation suggested by Torg-
erson, R uses the analytical solution of Cailliez (1983), see also Cox and Cox (1994).

Value

If eig = FALSE and x.ret = FALSE (default), a matrix with k columns whose rows give the
coordinates of the points chosen to represent the dissimilarities.

Otherwise, a list containing the following components.

points a matrix with k columns whose rows give the coordinates of the points chosen
to represent the dissimilarities.

eig the n− 1 eigenvalues computed during the scaling process if eig is true.

x the doubly centered distance matrix if x.ret is true.

GOF a numeric vector of length 2, equal to say (g1, g2), where gi =
(
∑k
j=1 λj)/(

∑n
j=1 Ti(λj)), where λj are the eigenvalues (sorted decreasingly),

T1(v) = |v|, and T2(v) = max(v, 0).

1024 coef

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Cailliez, F. (1983) The analytical solution of the additive constant problem. Psychometrika 48,
343–349.

Cox, T. F. and Cox, M. A. A. (1994) Multidimensional Scaling. Chapman and Hall.

Gower, J. C. (1966) Some distance properties of latent root and vector methods used in multivariate
analysis. Biometrika 53, 325–328.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979). Chapter 14 of Multivariate Analysis, London:
Academic Press.

Seber, G. A. F. (1984). Multivariate Observations. New York: Wiley.

Torgerson, W. S. (1958). Theory and Methods of Scaling. New York: Wiley.

See Also

dist. Also isoMDS and sammon in package MASS.

Examples

require(graphics)

loc <- cmdscale(eurodist)
x <- loc[,1]
y <- -loc[,2]
plot(x, y, type="n", xlab="", ylab="", main="cmdscale(eurodist)")
text(x, y, rownames(loc), cex=0.8)

cmdsE <- cmdscale(eurodist, k=20, add = TRUE, eig = TRUE, x.ret = TRUE)
utils::str(cmdsE)

coef Extract Model Coefficients

Description

coef is a generic function which extracts model coefficients from objects returned by modeling
functions. coefficients is an alias for it.

Usage

coef(object, ...)
coefficients(object, ...)

Arguments

object an object for which the extraction of model coefficients is meaningful.

... other arguments.

complete.cases 1025

Details

All object classes which are returned by model fitting functions should provide a coef method or
use the default one. (Note that the method is for coef and not coefficients.)

Class "aov" has a coef method that does not report aliased coefficients (see alias).

Value

Coefficients extracted from the model object object.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

fitted.values and residuals for related methods; glm, lm for model fitting.

Examples

x <- 1:5; coef(lm(c(1:3,7,6) ~ x))

complete.cases Find Complete Cases

Description

Return a logical vector indicating which cases are complete, i.e., have no missing values.

Usage

complete.cases(...)

Arguments

... a sequence of vectors, matrices and data frames.

Value

A logical vector specifying which observations/rows have no missing values across the entire se-
quence.

See Also

is.na, na.omit, na.fail.

1026 confint

Examples

x <- airquality[, -1] # x is a regression design matrix
y <- airquality[, 1] # y is the corresponding response

stopifnot(complete.cases(y) != is.na(y))
ok <- complete.cases(x,y)
sum(!ok) # how many are not "ok" ?
x <- x[ok,]
y <- y[ok]

confint Confidence Intervals for Model Parameters

Description

Computes confidence intervals for one or more parameters in a fitted model. There is a default and
a method for objects inheriting from class "lm".

Usage

confint(object, parm, level = 0.95, ...)

Arguments

object a fitted model object.

parm a specification of which parameters are to be given confidence intervals, either
a vector of numbers or a vector of names. If missing, all parameters are consid-
ered.

level the confidence level required.

... additional argument(s) for methods.

Details

confint is a generic function. The default method assumes asymptotic normality, and needs
suitable coef and vcov methods to be available. The default method can be called directly for
comparison with other methods.

For objects of class "lm" the direct formulae based on t values are used.

There are stub methods for classes "glm" and "nls"which invoke those in package MASS which
are based on profile likelihoods.

Value

A matrix (or vector) with columns giving lower and upper confidence limits for each parameter.
These will be labelled as (1-level)/2 and 1 - (1-level)/2 in % (by default 2.5% and 97.5%).

See Also

confint.glm and confint.nls in package MASS.

constrOptim 1027

Examples

fit <- lm(100/mpg ~ disp + hp + wt + am, data=mtcars)
confint(fit)
confint(fit, "wt")

from example(glm) (needs MASS to be present on the system)
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9); treatment <- gl(3,3)
glm.D93 <- glm(counts ~ outcome + treatment, family=poisson())
confint(glm.D93)
confint.default(glm.D93) # based on asymptotic normality

constrOptim Linearly constrained optimisation

Description

Minimise a function subject to linear inequality constraints using an adaptive barrier algorithm.

Usage

constrOptim(theta, f, grad, ui, ci, mu = 1e-04, control = list(),
method = if(is.null(grad)) "Nelder-Mead" else "BFGS",
outer.iterations = 100, outer.eps = 1e-05, ...)

Arguments

theta Starting value: must be in the feasible region.

f Function to minimise (see below).

grad Gradient of f, or NULL (see below).

ui Constraints (see below).

ci Constraints (see below).

mu (Small) tuning parameter.

control Passed to optim.

method Passed to optim.
outer.iterations

Iterations of the barrier algorithm.

outer.eps Criterion for relative convergence of the barrier algorithm.

... Other arguments passed to optim, which will pass them to f and grad if it
does not use them.

Details

The feasible region is defined by ui %*% theta - ci >= 0. The starting value must be in
the interior of the feasible region, but the minimum may be on the boundary.

A logarithmic barrier is added to enforce the constraints and then optim is called. The barrier
function is chosen so that the objective function should decrease at each outer iteration. Minima
in the interior of the feasible region are typically found quite quickly, but a substantial number of
outer iterations may be needed for a minimum on the boundary.

1028 constrOptim

The tuning parameter mu multiplies the barrier term. Its precise value is often relatively unimpor-
tant. As mu increases the augmented objective function becomes closer to the original objective
function but also less smooth near the boundary of the feasible region.

Any optim method that permits infinite values for the objective function may be used (currently
all but "L-BFGS-B").

The objective function f takes as first argument the vector of parameters over which minimisation
is to take place. It should return a scalar result. Optional arguments ... will be passed to optim
and then (if not used by optim) to f. As with optim, the default is to minimise, but maximisation
can be performed by setting control$fnscale to a negative value.

The gradient function grad must be supplied except with method="Nelder-Mead". It should
take arguments matching those of f and return a vector containing the gradient.

Value

As for optim, but with two extra components: barrier.value giving the value of the barrier
function at the optimum and outer.iterations gives the number of outer iterations (calls to
optim)

References

K. Lange Numerical Analysis for Statisticians. Springer 2001, p185ff

See Also

optim, especially method="L-BFGS-B" which does box-constrained optimisation.

Examples

from optim
fr <- function(x) { ## Rosenbrock Banana function

x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
grr <- function(x) { ## Gradient of 'fr'

x1 <- x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),

200 * (x2 - x1 * x1))
}

optim(c(-1.2,1), fr, grr)
#Box-constraint, optimum on the boundary
constrOptim(c(-1.2,0.9), fr, grr, ui=rbind(c(-1,0),c(0,-1)), ci=c(-1,-1))
x<=0.9, y-x>0.1
constrOptim(c(.5,0), fr, grr, ui=rbind(c(-1,0),c(1,-1)), ci=c(-0.9,0.1))

Solves linear and quadratic programming problems
but needs a feasible starting value
#
from example(solve.QP) in 'quadprog'
no derivative
fQP <- function(b) {-sum(c(0,5,0)*b)+0.5*sum(b*b)}
Amat <- matrix(c(-4,-3,0,2,1,0,0,-2,1),3,3)
bvec <- c(-8,2,0)

contrast 1029

constrOptim(c(2,-1,-1), fQP, NULL, ui=t(Amat),ci=bvec)
derivative
gQP <- function(b) {-c(0,5,0)+b}
constrOptim(c(2,-1,-1), fQP, gQP, ui=t(Amat), ci=bvec)

Now with maximisation instead of minimisation
hQP <- function(b) {sum(c(0,5,0)*b)-0.5*sum(b*b)}
constrOptim(c(2,-1,-1), hQP, NULL, ui=t(Amat), ci=bvec,

control=list(fnscale=-1))

contrast Contrast Matrices

Description

Return a matrix of contrasts.

Usage

contr.helmert(n, contrasts = TRUE)
contr.poly(n, scores = 1:n, contrasts = TRUE)
contr.sum(n, contrasts = TRUE)
contr.treatment(n, base = 1, contrasts = TRUE)
contr.SAS(n, contrasts = TRUE)

Arguments

n a vector of levels for a factor, or the number of levels.

contrasts a logical indicating whether contrasts should be computed.

scores the set of values over which orthogonal polynomials are to be computed.

base an integer specifying which group is considered the baseline group. Ignored if
contrasts is FALSE.

Details

These functions are used for creating contrast matrices for use in fitting analysis of variance and
regression models. The columns of the resulting matrices contain contrasts which can be used
for coding a factor with n levels. The returned value contains the computed contrasts. If the
argument contrasts is FALSE a square indicator matrix (the dummy coding) is returned except
for contr.poly (which include the 0-degree, i.e. constant, polynomial when contrasts =
FALSE).

cont.helmert returns Helmert contrasts, which contrast the second level with the first, the third
with the average of the first two, and so on. contr.poly returns contrasts based on orthogonal
polynomials. contr.sum uses ‘sum to zero contrasts’.

contr.treatment contrasts each level with the baseline level (specified by base): the baseline
level is omitted. Note that this does not produce ‘contrasts’ as defined in the standard theory for
linear models as they are not orthogonal to the intercept.

contr.SAS is a wrapper for contr.treatment that sets the base level to be the last level
of the factor. The coefficients produced when using these contrasts should be equivalent to those
produced by many (but not all) SAS procedures.

1030 contrasts

Value

A matrix with n rows and k columns, with k=n-1 if contrasts is TRUE and k=n if
contrasts is FALSE.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models in S eds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

contrasts, C, and aov, glm, lm.

Examples

(cH <- contr.helmert(4))
apply(cH, 2,sum) # column sums are 0!
crossprod(cH) # diagonal -- columns are orthogonal
contr.helmert(4, contrasts = FALSE) # just the 4 x 4 identity matrix

(cT <- contr.treatment(5))
all(crossprod(cT) == diag(4)) # TRUE: even orthonormal

(cT. <- contr.SAS(5))
all(crossprod(cT.) == diag(4))# TRUE

(cP <- contr.poly(3)) # Linear and Quadratic
zapsmall(crossprod(cP), digits=15) # orthonormal up to fuzz

contrasts Get and Set Contrast Matrices

Description

Set and view the contrasts associated with a factor.

Usage

contrasts(x, contrasts = TRUE)
contrasts(x, how.many) <- value

Arguments

x a factor or a logical variable.

contrasts logical. See ‘Details’.

how.many How many contrasts should be made. Defaults to one less than the number of
levels of x. This need not be the same as the number of columns of value.

value either a numeric matrix whose columns give coefficients for contrasts in the
levels of x, or the (quoted) name of a function which computes such matrices.

convolve 1031

Details

If contrasts are not set for a factor the default functions from options("contrasts") are used.

A logical vector x is converted into a two-level factor with levels c(FALSE, TRUE) (regardless
of which levels occur in the variable).

The argument contrasts is ignored if x has a matrix contrasts attribute set. Otherwise if
contrasts = TRUE it is passed to a contrasts function such as contr.treatment and if
contrasts = FALSE an identity matrix is returned.

If value supplies more than how.many contrasts, the first how.many are used. If too few are
supplied, a suitable contrast matrix is created by extending value after ensuring its columns are
contrasts (orthogonal to the constant term) and not collinear.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models in S eds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

C, contr.helmert, contr.poly, contr.sum, contr.treatment; glm, aov, lm.

Examples

utils::example(factor)
fff <- ff[, drop=TRUE] # reduce to 5 levels.
contrasts(fff) # treatment contrasts by default
contrasts(C(fff, sum))
contrasts(fff, contrasts = FALSE) # the 5x5 identity matrix

contrasts(fff) <- contr.sum(5); contrasts(fff) # set sum contrasts
contrasts(fff, 2) <- contr.sum(5); contrasts(fff) # set 2 contrasts
supply 2 contrasts, compute 2 more to make full set of 4.
contrasts(fff) <- contr.sum(5)[,1:2]; contrasts(fff)

convolve Fast Convolution

Description

Use the Fast Fourier Transform to compute the several kinds of convolutions of two sequences.

Usage

convolve(x, y, conj = TRUE, type = c("circular", "open", "filter"))

Arguments

x,y numeric sequences of the same length to be convolved.

conj logical; if TRUE, take the complex conjugate before back-transforming (default,
and used for usual convolution).

1032 convolve

type character; one of "circular", "open", "filter" (beginning of word is
ok). For circular, the two sequences are treated as circular, i.e., periodic.
For open and filter, the sequences are padded with 0s (from left and right)
first; "filter" returns the middle sub-vector of "open", namely, the result
of running a weighted mean of x with weights y.

Details

The Fast Fourier Transform, fft, is used for efficiency.

The input sequences x and y must have the same length if circular is true.

Note that the usual definition of convolution of two sequences x and y is given by convolve(x,
rev(y), type = "o").

Value

If r <- convolve(x,y, type = "open") and n <- length(x), m <-
length(y), then

rk =
∑
i

xk−m+iyi

where the sum is over all valid indices i, for k = 1, . . . , n+m− 1

If type == "circular", n = m is required, and the above is true for i, k = 1, . . . , n when
xj := xn+j for j < 1.

References

Brillinger, D. R. (1981) Time Series: Data Analysis and Theory, Second Edition. San Francisco:
Holden-Day.

See Also

fft, nextn, and particularly filter (from the stats package) which may be more appropriate.

Examples

require(graphics)

x <- c(0,0,0,100,0,0,0)
y <- c(0,0,1, 2 ,1,0,0)/4
zapsmall(convolve(x,y)) # *NOT* what you first thought.
zapsmall(convolve(x, y[3:5], type="f")) # rather
x <- rnorm(50)
y <- rnorm(50)
Circular convolution *has* this symmetry:
all.equal(convolve(x,y, conj = FALSE), rev(convolve(rev(y),x)))

n <- length(x <- -20:24)
y <- (x-10)^2/1000 + rnorm(x)/8

Han <- function(y) # Hanning
convolve(y, c(1,2,1)/4, type = "filter")

plot(x,y, main="Using convolve(.) for Hanning filters")
lines(x[-c(1 , n)], Han(y), col="red")
lines(x[-c(1:2, (n-1):n)], Han(Han(y)), lwd=2, col="dark blue")

cophenetic 1033

cophenetic Cophenetic Distances for a Hierarchical Clustering

Description

Computes the cophenetic distances for a hierarchical clustering.

Usage

cophenetic(x)
Default S3 method:
cophenetic(x)
S3 method for class 'dendrogram':
cophenetic(x)

Arguments

x an R object representing a hierarchical clustering. For the default method, an
object of class hclust or with a method for as.hclust() such as agnes.

Details

The cophenetic distance between two observations that have been clustered is defined to be the
intergroup dissimilarity at which the two observations are first combined into a single cluster. Note
that this distance has many ties and restrictions.

It can be argued that a dendrogram is an appropriate summary of some data if the correlation be-
tween the original distances and the cophenetic distances is high. Otherwise, it should simply be
viewed as the description of the output of the clustering algorithm.

cophenetic is a generic function. Support for classes which represent hierarchical cluster-
ings (total indexed hierarchies) can be added by providing an as.hclust() or, more directly,
a cophenetic() method for such a class.

The method for objects of class "dendrogram" requires that all leaves of the dendrogram object
have non-null labels.

Value

An object of class dist.

Author(s)

Robert Gentleman

References

Sneath, P.H.A. and Sokal, R.R. (1973) Numerical Taxonomy: The Principles and Practice of Nu-
merical Classification, p. 278 ff; Freeman, San Francisco.

See Also

dist, hclust

1034 cor

Examples

require(graphics)

d1 <- dist(USArrests)
hc <- hclust(d1, "ave")
d2 <- cophenetic(hc)
cor(d1,d2) # 0.7659

Example from Sneath & Sokal, Fig. 5-29, p.279
d0 <- c(1,3.8,4.4,5.1, 4,4.2,5, 2.6,5.3, 5.4)
attributes(d0) <- list(Size = 5, diag=TRUE)
class(d0) <- "dist"
names(d0) <- letters[1:5]
d0
utils::str(upgma <- hclust(d0, method = "average"))
plot(upgma, hang = -1)
#
(d.coph <- cophenetic(upgma))
cor(d0, d.coph) # 0.9911

cor Correlation, Variance and Covariance (Matrices)

Description

var, cov and cor compute the variance of x and the covariance or correlation of x and y if these
are vectors. If x and y are matrices then the covariances (or correlations) between the columns of
x and the columns of y are computed.

cov2cor scales a covariance matrix into the corresponding correlation matrix efficiently.

Usage

var(x, y = NULL, na.rm = FALSE, use)

cov(x, y = NULL, use = "everything",
method = c("pearson", "kendall", "spearman"))

cor(x, y = NULL, use = "everything",
method = c("pearson", "kendall", "spearman"))

cov2cor(V)

Arguments

x a numeric vector, matrix or data frame.
y NULL (default) or a vector, matrix or data frame with compatible dimensions to

x. The default is equivalent to y = x (but more efficient).
na.rm logical. Should missing values be removed?
use an optional character string giving a method for computing covariances

in the presence of missing values. This must be (an abbreviation of)
one of the strings "everything", "all.obs", "complete.obs",
"na.or.complete", or "pairwise.complete.obs".

cor 1035

method a character string indicating which correlation coefficient (or covariance) is to
be computed. One of "pearson" (default), "kendall", or "spearman",
can be abbreviated.

V symmetric numeric matrix, usually positive definite such as a covariance matrix.

Details

For cov and cor one must either give a matrix or data frame for x or give both x and y.

var is just another interface to cov, where na.rm is used to determine the default for
use when that is unspecified. If na.rm is TRUE then the complete observations (rows) are
used (use = "na.or.complete") to compute the variance. Otherwise, by default use =
"everything".

If use is "everything", NAs will propagate conceptually, i.e., a resulting value will be NA
whenever one of its contributing observations is NA.
If use is "all.obs", then the presence of missing observations will produce an error. If use
is "complete.obs" then missing values are handled by casewise deletion (and if there are no
complete cases, that gives an error).
"na.or.complete" is the same unless there are no complete cases, that gives NA. Finally,
if use has the value "pairwise.complete.obs" then the correlation or covariance be-
tween each pair of variables is computed using all complete pairs of observations on those vari-
ables. This can result in covariance or correlation matrices which are not positive semi-definite,
as well as NA entries if there are no complete pairs for that pair of variables. For cov and
var, "pairwise.complete.obs" only works with the "pearson" method. Note that
(the equivalent of) var(double(0), use=*) gives NA for use = "everything" and
"na.or.complete", and gives an error in the other cases.

The denominator n − 1 is used which gives an unbiased estimator of the (co)variance for i.i.d.
observations. These functions return NA when there is only one observation (whereas S-PLUS has
been returning NaN), and fail if x has length zero.

For cor(), if method is "kendall" or "spearman", Kendall’s τ or Spearman’s ρ statistic is
used to estimate a rank-based measure of association. These are more robust and have been recom-
mended if the data do not necessarily come from a bivariate normal distribution.
For cov(), a non-Pearson method is unusual but available for the sake of completeness. Note
that "spearman" basically computes cor(R(x), R(y)) (or cov(.,.)) where R(u) :=
rank(u, na.last="keep"). In the case of missing values, the ranks are calculated depend-
ing on the value of use, either based on complete observations, or based on pairwise completeness
with reranking for each pair.

Scaling a covariance matrix into a correlation one can be achieved in many ways, mathematically
most appealing by multiplication with a diagonal matrix from left and right, or more efficiently by
using sweep(.., FUN = "/") twice. The cov2cor function is even a bit more efficient, and
provided mostly for didactical reasons.

Value

For r <- cor(*, use = "all.obs"), it is now guaranteed that all(r <= 1).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

1036 cor.test

See Also

cor.test for confidence intervals (and tests).

cov.wt for weighted covariance computation.

sd for standard deviation (vectors).

Examples

var(1:10)# 9.166667

var(1:5,1:5)# 2.5

Two simple vectors
cor(1:10,2:11)# == 1

Correlation Matrix of Multivariate sample:
(Cl <- cor(longley))
Graphical Correlation Matrix:
symnum(Cl) # highly correlated

Spearman's rho and Kendall's tau
symnum(clS <- cor(longley, method = "spearman"))
symnum(clK <- cor(longley, method = "kendall"))
How much do they differ?
i <- lower.tri(Cl)
cor(cbind(P = Cl[i], S = clS[i], K = clK[i]))

cov2cor() scales a covariance matrix by its diagonal
to become the correlation matrix.
cov2cor # see the function definition {and learn ..}
stopifnot(all.equal(Cl, cov2cor(cov(longley))),

all.equal(cor(longley, method="kendall"),
cov2cor(cov(longley, method="kendall"))))

##--- Missing value treatment:
C1 <- cov(swiss)
range(eigen(C1, only.values=TRUE)$values) # 6.19 1921
swM <- swiss
swM[1,2] <- swM[7,3] <- swM[25,5] <- NA # create 3 "missing"
try(cov(swM)) # Error: missing obs...
C2 <- cov(swM, use = "complete")
range(eigen(C2, only.values=TRUE)$values) # 6.46 1930
C3 <- cov(swM, use = "pairwise")
range(eigen(C3, only.values=TRUE)$values) # 6.19 1938

symnum(cor(swM, method = "kendall", use = "complete"))
Kendall's tau doesn't change much:
symnum(cor(swiss, method = "kendall"))

cor.test Test for Association/Correlation Between Paired Samples

cor.test 1037

Description

Test for association between paired samples, using one of Pearson’s product moment correlation
coefficient, Kendall’s τ or Spearman’s ρ.

Usage

cor.test(x, ...)

Default S3 method:
cor.test(x, y,

alternative = c("two.sided", "less", "greater"),
method = c("pearson", "kendall", "spearman"),
exact = NULL, conf.level = 0.95, ...)

S3 method for class 'formula':
cor.test(formula, data, subset, na.action, ...)

Arguments

x, y numeric vectors of data values. x and y must have the same length.

alternative indicates the alternative hypothesis and must be one of "two.sided",
"greater" or "less". You can specify just the initial letter. "greater"
corresponds to positive association, "less" to negative association.

method a character string indicating which correlation coefficient is to be used for the
test. One of "pearson", "kendall", or "spearman", can be abbreviated.

exact a logical indicating whether an exact p-value should be computed. Used for
Kendall’s τ and Spearman’s ρ. See ‘Details’ for the meaning of NULL (the
default).

conf.level confidence level for the returned confidence interval. Currently only used for the
Pearson product moment correlation coefficient if there are at least 4 complete
pairs of observations.

formula a formula of the form ~ u + v, where each of u and v are numeric variables
giving the data values for one sample. The samples must be of the same length.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

The three methods each estimate the association between paired samples and compute a test of
the value being zero. They use different measures of association, all in the range [−1, 1] with 0
indicating no association. These are sometimes referred to as tests of no correlation, but that term
is often confined to the default method.

If method is "pearson", the test statistic is based on Pearson’s product moment correlation co-
efficient cor(x, y) and follows a t distribution with length(x)-2 degrees of freedom if the

1038 cor.test

samples follow independent normal distributions. If there are at least 4 complete pairs of observa-
tion, an asymptotic confidence interval is given based on Fisher’s Z transform.

If method is "kendall" or "spearman", Kendall’s τ or Spearman’s ρ statistic is used to
estimate a rank-based measure of association. These tests may be used if the data do not necessarily
come from a bivariate normal distribution.

For Kendall’s test, by default (if exact is NULL), an exact p-value is computed if there are less
than 50 paired samples containing finite values and there are no ties. Otherwise, the test statistic is
the estimate scaled to zero mean and unit variance, and is approximately normally distributed.

For Spearman’s test, p-values are computed using algorithm AS 89.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

parameter the degrees of freedom of the test statistic in the case that it follows a t distribu-
tion.

p.value the p-value of the test.

estimate the estimated measure of association, with name "cor", "tau", or "rho"
corresponding to the method employed.

null.value the value of the association measure under the null hypothesis, always 0.

alternative a character string describing the alternative hypothesis.

method a character string indicating how the association was measured.

data.name a character string giving the names of the data.

conf.int a confidence interval for the measure of association. Currently only given for
Pearson’s product moment correlation coefficient in case of at least 4 complete
pairs of observations.

References

D. J. Best & D. E. Roberts (1975), Algorithm AS 89: The Upper Tail Probabilities of Spearman’s
ρ. Applied Statistics, 24, 377–379.

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric Statistical Methods. New York: John
Wiley & Sons. Pages 185–194 (Kendall and Spearman tests).

Examples

Hollander & Wolfe (1973), p. 187f.
Assessment of tuna quality. We compare the Hunter L measure of
lightness to the averages of consumer panel scores (recoded as
integer values from 1 to 6 and averaged over 80 such values) in
9 lots of canned tuna.

x <- c(44.4, 45.9, 41.9, 53.3, 44.7, 44.1, 50.7, 45.2, 60.1)
y <- c(2.6, 3.1, 2.5, 5.0, 3.6, 4.0, 5.2, 2.8, 3.8)

The alternative hypothesis of interest is that the
Hunter L value is positively associated with the panel score.

cor.test(x, y, method = "kendall", alternative = "greater")
=> p=0.05972

cov.wt 1039

cor.test(x, y, method = "kendall", alternative = "greater",
exact = FALSE) # using large sample approximation

=> p=0.04765

Compare this to
cor.test(x, y, method = "spearm", alternative = "g")
cor.test(x, y, alternative = "g")

Formula interface.
require(graphics)
pairs(USJudgeRatings)
cor.test(~ CONT + INTG, data = USJudgeRatings)

cov.wt Weighted Covariance Matrices

Description

Returns a list containing estimates of the weighted covariance matrix and the mean of the data, and
optionally of the (weighted) correlation matrix.

Usage

cov.wt(x, wt = rep(1/nrow(x), nrow(x)), cor = FALSE, center = TRUE,
method = c("unbiased", "ML"))

Arguments

x a matrix or data frame. As usual, rows are observations and columns are vari-
ables.

wt a non-negative and non-zero vector of weights for each observation. Its length
must equal the number of rows of x.

cor a logical indicating whether the estimated correlation weighted matrix will be
returned as well.

center either a logical or a numeric vector specifying the centers to be used when com-
puting covariances. If TRUE, the (weighted) mean of each variable is used, if
FALSE, zero is used. If center is numeric, its length must equal the number
of columns of x.

method string specifying how the result is scaled, see ‘Details’ below.

Details

By default, method = "unbiased", The covariance matrix is divided by one minus the sum of
squares of the weights, so if the weights are the default (1/n) the conventional unbiased estimate of
the covariance matrix with divisor (n− 1) is obtained. This differs from the behaviour in S-PLUS
which corresponds to method = "ML" and does not divide.

1040 cpgram

Value

A list containing the following named components:

cov the estimated (weighted) covariance matrix

center an estimate for the center (mean) of the data.

n.obs the number of observations (rows) in x.

wt the weights used in the estimation. Only returned if given as an argument.

cor the estimated correlation matrix. Only returned if cor is TRUE.

See Also

cov and var.

Examples

(xy <- cbind(x = 1:10, y = c(1:3, 8:5, 8:10)))
w1 <- c(0,0,0,1,1,1,1,1,0,0)
cov.wt(xy, wt = w1) # i.e. method = "unbiased"
cov.wt(xy, wt = w1, method = "ML", cor = TRUE)

cpgram Plot Cumulative Periodogram

Description

Plots a cumulative periodogram.

Usage

cpgram(ts, taper = 0.1,
main = paste("Series: ", deparse(substitute(ts))),
ci.col = "blue")

Arguments

ts a univariate time series

taper proportion tapered in forming the periodogram

main main title

ci.col colour for confidence band.

Value

None.

Side Effects

Plots the cumulative periodogram in a square plot.

Note

From package MASS.

cutree 1041

Author(s)

B.D. Ripley

Examples

require(graphics)

par(pty = "s", mfrow = c(1,2))
cpgram(lh)
lh.ar <- ar(lh, order.max = 9)
cpgram(lh.ar$resid, main = "AR(3) fit to lh")

cpgram(ldeaths)

cutree Cut a tree into groups of data

Description

Cuts a tree, e.g., as resulting from hclust, into several groups either by specifying the desired
number(s) of groups or the cut height(s).

Usage

cutree(tree, k = NULL, h = NULL)

Arguments

tree a tree as produced by hclust. cutree() only expects a list with components
merge, height, and labels, of appropriate content each.

k an integer scalar or vector with the desired number of groups

h numeric scalar or vector with heights where the tree should be cut.

At least one of k or h must be specified, k overrides h if both are given.

Value

cutree returns a vector with group memberships if k or h are scalar, otherwise a matrix with group
memberships is returned where each column corresponds to the elements of k or h, respectively
(which are also used as column names).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

hclust, dendrogram for cutting trees themselves.

1042 decompose

Examples

hc <- hclust(dist(USArrests))

cutree(hc, k=1:5)#k = 1 is trivial
cutree(hc, h=250)

Compare the 2 and 3 grouping:
g24 <- cutree(hc, k = c(2,4))
table(g24[,"2"], g24[,"4"])

decompose Classical Seasonal Decomposition by Moving Averages

Description

Decompose a time series into seasonal, trend and irregular components using moving averages.
Deals with additive or multiplicative seasonal component.

Usage

decompose(x, type = c("additive", "multiplicative"), filter = NULL)

Arguments

x A time series.
type The type of seasonal component. Can be abbreviated.
filter A vector of filter coefficients in reverse time order (as for AR or MA coeffi-

cients), used for filtering out the seasonal component. If NULL, a moving aver-
age with symmetric window is performed.

Details

The additive model used is:
Yt = Tt + St + et

The multiplicative model used is:
Yt = Tt St et

The function first determines the trend component using a moving average (if filter is NULL,
a symmetric window with equal weights is used), and removes it from the time series. Then, the
seasonal figure is computed by averaging, for each time unit, over all periods. The seasonal figure
is then centered. Finally, the error component is determined by removing trend and seasonal figure
(recycled as needed) from the orginal time series.

Value

An object of class "decomposed.ts" with following components:

seasonal The seasonal component (i.e., the repeated seasonal figure)
figure The estimated seasonal figure only
trend The trend component
random The remainder part
type The value of type

delete.response 1043

Note

The function stl provides a much more sophisticated decomposition.

Author(s)

David Meyer 〈David.Meyer@wu-wien.ac.at〉

See Also

stl

Examples

require(graphics)

m <- decompose(co2)
m$figure
plot(m)

delete.response Modify Terms Objects

Description

delete.response returns a terms object for the same model but with no response variable.

drop.terms removes variables from the right-hand side of the model. There is also a
"[.terms" method to perform the same function (with keep.response=TRUE).

reformulate creates a formula from a character vector.

Usage

delete.response(termobj)

reformulate(termlabels, response = NULL)

drop.terms(termobj, dropx = NULL, keep.response = FALSE)

Arguments

termobj A terms object

termlabels character vector giving the right-hand side of a model formula. Cannot be zero-
length.

response character string, symbol or call giving the left-hand side of a model formula, or
NULL.

dropx vector of positions of variables to drop from the right-hand side of the model.
keep.response

Keep the response in the resulting object?

1044 dendrapply

Value

delete.response and drop.terms return a terms object.

reformulate returns a formula.

See Also

terms

Examples

ff <- y ~ z + x + w
tt <- terms(ff)
tt
delete.response(tt)
drop.terms(tt, 2:3, keep.response = TRUE)
tt[-1]
tt[2:3]
reformulate(attr(tt, "term.labels"))

keep LHS :
reformulate("x*w", ff[[2]])
fS <- surv(ft, case) ~ a + b
reformulate(c("a", "b*f"), fS[[2]])

stopifnot(identical(~ var, reformulate("var")),
identical(~ a + b + c, reformulate(letters[1:3])),
identical(y ~ a + b, reformulate(letters[1:2], "y"))

)

dendrapply Apply a Function to All Nodes of a Dendrogram

Description

Apply function FUN to each node of a dendrogram recursively. When y <- dendrapply(x,
fn), then y is a dendrogram of the same graph structure as x and for each node, y.node[j] <-
FUN(x.node[j], ...) (where y.node[j] is an (invalid!) notation for the j-th node of y.

Usage

dendrapply(X, FUN, ...)

Arguments

X an object of class "dendrogram".

FUN an R function to be applied to each dendrogram node, typically working on its
attributes alone, returning an altered version of the same node.

... potential further arguments passed to FUN.

dendrapply 1045

Value

Usually a dendrogram of the same (graph) structure as X. For that, the function must be conceptually
of the form FUN <- function(X) { attributes(X) <-; X }, i.e. returning
the node with some attributes added or changed.

Note

this is still somewhat experimental, and suggestions for enhancements (or nice examples of usage)
are very welcome.

Author(s)

Martin Maechler

See Also

as.dendrogram, lapply for applying a function to each component of a list, rapply for
doing so to each non-list component of a nested list.

Examples

require(graphics)

a smallish simple dendrogram
dhc <- as.dendrogram(hc <- hclust(dist(USArrests), "ave"))
(dhc21 <- dhc[[2]][[1]])

too simple:
dendrapply(dhc21, function(n) utils::str(attributes(n)))

toy example to set colored leaf labels :
local({
colLab <<- function(n) {

if(is.leaf(n)) {
a <- attributes(n)
i <<- i+1
attr(n, "nodePar") <-

c(a$nodePar, list(lab.col = mycols[i], lab.font= i%%3))
}
n

}
mycols <- grDevices::rainbow(attr(dhc21,"members"))
i <- 0

})
dL <- dendrapply(dhc21, colLab)
op <- par(mfrow=2:1)
plot(dhc21)
plot(dL) ## --> colored labels!

par(op)

1046 dendrogram

dendrogram General Tree Structures

Description

Class "dendrogram" provides general functions for handling tree-like structures. It is intended
as a replacement for similar functions in hierarchical clustering and classification/regression trees,
such that all of these can use the same engine for plotting or cutting trees.

The code is still in testing stage and the API may change in the future.

Usage

as.dendrogram(object, ...)
S3 method for class 'hclust':
as.dendrogram(object, hang = -1, ...)

S3 method for class 'dendrogram':
plot(x, type = c("rectangle", "triangle"),

center = FALSE,
edge.root = is.leaf(x) || !is.null(attr(x,"edgetext")),
nodePar = NULL, edgePar = list(),
leaflab = c("perpendicular", "textlike", "none"),
dLeaf = NULL, xlab = "", ylab = "", xaxt = "n", yaxt = "s",
horiz = FALSE, frame.plot = FALSE, xlim, ylim, ...)

S3 method for class 'dendrogram':
cut(x, h, ...)

S3 method for class 'dendrogram':
print(x, digits, ...)

S3 method for class 'dendrogram':
rev(x)

S3 method for class 'dendrogram':
str(object, max.level = NA, digits.d = 3,

give.attr = FALSE, wid = getOption("width"),
nest.lev = 0, indent.str = "", stem = "--", ...)

is.leaf(object)

Arguments

object any R object that can be made into one of class "dendrogram".

x object of class "dendrogram".

hang numeric scalar indicating how the height of leaves should be computed from the
heights of their parents; see plot.hclust.

type type of plot.

center logical; if TRUE, nodes are plotted centered with respect to the leaves in the
branch. Otherwise (default), plot them in the middle of all direct child nodes.

dendrogram 1047

edge.root logical; if true, draw an edge to the root node.

nodePar a list of plotting parameters to use for the nodes (see points) or NULL
by default which does not draw symbols at the nodes. The list may contain
components named pch, cex, col, and/or bg each of which can have length
two for specifying separate attributes for inner nodes and leaves.

edgePar a list of plotting parameters to use for the edge segments and labels (if
there’s an edgetext). The list may contain components named col, lty and
lwd (for the segments), p.col, p.lwd, and p.lty (for the polygon around
the text) and t.col for the text color. As with nodePar, each can have length
two for differentiating leaves and inner nodes.

leaflab a string specifying how leaves are labeled. The default "perpendicular"
write text vertically (by default).
"textlike" writes text horizontally (in a rectangle), and
"none" suppresses leaf labels.

dLeaf a number specifying the distance in user coordinates between the tip of a leaf
and its label. If NULL as per default, 3/4 of a letter width or height is used.

horiz logical indicating if the dendrogram should be drawn horizontally or not.

frame.plot logical indicating if a box around the plot should be drawn, see
plot.default.

h height at which the tree is cut.

xlim, ylim optional x- and y-limits of the plot, passed to plot.default. The defaults
for these show the full dendrogram.

..., xlab, ylab, xaxt, yaxt
graphical parameters, or arguments for other methods.

digits integer specifying the precision for printing, see print.default.
max.level, digits.d, give.attr, wid, nest.lev, indent.str

arguments to str, see str.default(). Note that give.attr = FALSE
still shows height and members attributes for each node.

stem a string used for str() specifying the stem to use for each dendrogram branch.

Details

Warning: This documentation is preliminary.

The dendrogram is directly represented as a nested list where each component corresponds to a
branch of the tree. Hence, the first branch of tree z is z[[1]], the second branch of the corre-
sponding subtree is z[[1]][[2]] etc.. Each node of the tree carries some information needed for
efficient plotting or cutting as attributes, of which only members, height and leaf for leaves
are compulsory:

members total number of leaves in the branch

height numeric non-negative height at which the node is plotted.

midpoint numeric horizontal distance of the node from the left border (the leftmost leaf) of the
branch (unit 1 between all leaves). This is used for plot(*, center=FALSE).

label character; the label of the node

x.member for cut()$upper, the number of former members; more generally a substitute for
the members component used for ‘horizontal’ (when horiz = FALSE, else ‘vertical’)
alignment.

edgetext character; the label for the edge leading to the node

1048 dendrogram

nodePar a named list (of length-1 components) specifying node-specific attributes for points
plotting, see the nodePar argument above.

edgePar a named list (of length-1 components) specifying attributes for segments plotting of
the edge leading to the node, and drawing of the edgetext if available, see the edgePar
argument above.

leaf logical, if TRUE, the node is a leaf of the tree.

cut.dendrogram() returns a list with components $upper and $lower, the first is a trun-
cated version of the original tree, also of class dendrogram, the latter a list with the branches
obtained from cutting the tree, each a dendrogram.

There are [[, print, and str methods for "dendrogram" objects where the first one (extrac-
tion) ensures that selecting sub-branches keeps the class.

Objects of class "hclust" can be converted to class "dendrogram" using method
as.dendrogram.

rev.dendrogram simply returns the dendrogram x with reversed nodes, see also
reorder.dendrogram.

is.leaf(object) is logical indicating if object is a leaf (the most simple dendrogram).
plotNode() and plotNodeLimit() are helper functions.

Warning

Some operations on dendrograms (including plotting) make use of recursion. For very deep trees It
may be necessary to increase options("expressions"): if you do you are likely to need to
set the C stack size larger than the OS default if possible (which it is not on Windows).

Note

When using type = "triangle", center = TRUE often looks better.

See Also

order.dendrogram also on the labels method for dendrograms.

Examples

require(graphics); require(utils)

hc <- hclust(dist(USArrests), "ave")
(dend1 <- as.dendrogram(hc)) # "print()" method
str(dend1) # "str()" method
str(dend1, max = 2) # only the first two sub-levels

op <- par(mfrow= c(2,2), mar = c(5,2,1,4))
plot(dend1)
"triangle" type and show inner nodes:
plot(dend1, nodePar=list(pch = c(1,NA), cex=0.8, lab.cex = 0.8),

type = "t", center=TRUE)
plot(dend1, edgePar=list(col = 1:2, lty = 2:3),

dLeaf=1, edge.root = TRUE)
plot(dend1, nodePar=list(pch = 2:1,cex=.4*2:1, col = 2:3),

horiz=TRUE)

dend2 <- cut(dend1, h=70)

density 1049

plot(dend2$upper)
leafs are wrong horizontally:
plot(dend2$upper, nodePar=list(pch = c(1,7), col = 2:1))
dend2$lower is *NOT* a dendrogram, but a list of .. :
plot(dend2$lower[[3]], nodePar=list(col=4), horiz = TRUE, type = "tr")
"inner" and "leaf" edges in different type & color :
plot(dend2$lower[[2]], nodePar=list(col=1),# non empty list

edgePar = list(lty=1:2, col=2:1), edge.root=TRUE)
par(op)
str(d3 <- dend2$lower[[2]][[2]][[1]])

"Zoom" in to the first dendrogram :
plot(dend1, xlim = c(1,20), ylim = c(1,50))

nP <- list(col=3:2, cex=c(2.0, 0.75), pch= 21:22,
bg= c("light blue", "pink"),
lab.cex = 0.75, lab.col = "tomato")

plot(d3, nodePar= nP, edgePar = list(col="gray", lwd=2), horiz = TRUE)
addE <- function(n) {

if(!is.leaf(n)) {
attr(n, "edgePar") <- list(p.col="plum")
attr(n, "edgetext") <- paste(attr(n,"members"),"members")

}
n

}
d3e <- dendrapply(d3, addE)
plot(d3e, nodePar= nP)
plot(d3e, nodePar= nP, leaflab = "textlike")

density Kernel Density Estimation

Description

The (S3) generic function density computes kernel density estimates. Its default method does so
with the given kernel and bandwidth for univariate observations.

Usage

density(x, ...)
Default S3 method:
density(x, bw = "nrd0", adjust = 1,

kernel = c("gaussian", "epanechnikov", "rectangular",
"triangular", "biweight",
"cosine", "optcosine"),

weights = NULL, window = kernel, width,
give.Rkern = FALSE,
n = 512, from, to, cut = 3, na.rm = FALSE, ...)

Arguments

x the data from which the estimate is to be computed.

1050 density

bw the smoothing bandwidth to be used. The kernels are scaled such that this is the
standard deviation of the smoothing kernel. (Note this differs from the reference
books cited below, and from S-PLUS.)
bw can also be a character string giving a rule to choose the bandwidth. See
bw.nrd.
The specified (or computed) value of bw is multiplied by adjust.

adjust the bandwidth used is actually adjust*bw. This makes it easy to specify
values like ‘half the default’ bandwidth.

kernel, window
a character string giving the smoothing kernel to be used. This must be one of
"gaussian", "rectangular", "triangular", "epanechnikov",
"biweight", "cosine" or "optcosine", with default "gaussian",
and may be abbreviated to a unique prefix (single letter).
"cosine" is smoother than "optcosine", which is the usual ‘cosine’ ker-
nel in the literature and almost MSE-efficient. However, "cosine" is the ver-
sion used by S.

weights numeric vector of non-negative observation weights, hence of same length as x.
The default NULL is equivalent to weights = rep(1/nx, nx) where nx
is the length of (the finite entries of) x[].

width this exists for compatibility with S; if given, and bw is not, will set bw to width
if this is a character string, or to a kernel-dependent multiple of width if this is
numeric.

give.Rkern logical; if true, no density is estimated, and the ‘canonical bandwidth’ of the
chosen kernel is returned instead.

n the number of equally spaced points at which the density is to be estimated.
When n > 512, it is rounded up to the next power of 2 for efficiency reasons
(fft).

from,to the left and right-most points of the grid at which the density is to be estimated;
the defaults are cut * bw outside of range(x).

cut by default, the values of from and to are cut bandwidths beyond the extremes
of the data. This allows the estimated density to drop to approximately zero at
the extremes.

na.rm logical; if TRUE, missing values are removed from x. If FALSE any missing
values cause an error.

... further arguments for (non-default) methods.

Details

The algorithm used in density.default disperses the mass of the empirical distribution func-
tion over a regular grid of at least 512 points and then uses the fast Fourier transform to convolve
this approximation with a discretized version of the kernel and then uses linear approximation to
evaluate the density at the specified points.

The statistical properties of a kernel are determined by σ2
K =

∫
t2K(t)dt which is always

= 1 for our kernels (and hence the bandwidth bw is the standard deviation of the kernel) and
R(K) =

∫
K2(t)dt.

MSE-equivalent bandwidths (for different kernels) are proportional to σKR(K) which is scale in-
variant and for our kernels equal to R(K). This value is returned when give.Rkern = TRUE.
See the examples for using exact equivalent bandwidths.

Infinite values in x are assumed to correspond to a point mass at +/-Inf and the density estimate
is of the sub-density on (-Inf, +Inf).

density 1051

Value

If give.Rkern is true, the number R(K), otherwise an object with class "density" whose
underlying structure is a list containing the following components.

x the n coordinates of the points where the density is estimated.

y the estimated density values. These will be non-negative, but can be zero.

bw the bandwidth used.

n the sample size after elimination of missing values.

call the call which produced the result.

data.name the deparsed name of the x argument.

has.na logical, for compatibility (always FALSE).

The print method reports summary values on the x and y components.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole (for S version).

Scott, D. W. (1992) Multivariate Density Estimation. Theory, Practice and Visualization. New
York: Wiley.

Sheather, S. J. and Jones M. C. (1991) A reliable data-based bandwidth selection method for kernel
density estimation. J. Roy. Statist. Soc. B, 683–690.

Silverman, B. W. (1986) Density Estimation. London: Chapman and Hall.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York: Springer.

See Also

bw.nrd, plot.density, hist.

Examples

require(graphics)

plot(density(c(-20,rep(0,98),20)), xlim = c(-4,4))# IQR = 0

The Old Faithful geyser data
d <- density(faithful$eruptions, bw = "sj")
d
plot(d)

plot(d, type = "n")
polygon(d, col = "wheat")

Missing values:
x <- xx <- faithful$eruptions
x[i.out <- sample(length(x), 10)] <- NA
doR <- density(x, bw = 0.15, na.rm = TRUE)
lines(doR, col = "blue")
points(xx[i.out], rep(0.01, 10))

Weighted observations:
fe <- sort(faithful$eruptions) # has quite a few non-unique values

1052 deriv

use 'counts / n' as weights:
dw <- density(unique(fe), weights = table(fe)/length(fe), bw = d$bw)
utils::str(dw) ## smaller n: only 126, but identical estimate:
stopifnot(all.equal(d[1:3], dw[1:3]))

simulation from a density() fit:
a kernel density fit is an equally-weighted mixture.
fit <- density(xx)
N <- 1e6
x.new <- rnorm(N, sample(xx, size = N, replace = TRUE), fit$bw)
plot(fit)
lines(density(x.new), col="blue")

(kernels <- eval(formals(density.default)$kernel))

show the kernels in the R parametrization
plot (density(0, bw = 1), xlab = "",

main="R's density() kernels with bw = 1")
for(i in 2:length(kernels))

lines(density(0, bw = 1, kernel = kernels[i]), col = i)
legend(1.5,.4, legend = kernels, col = seq(kernels),

lty = 1, cex = .8, y.intersp = 1)

show the kernels in the S parametrization
plot(density(0, from=-1.2, to=1.2, width=2, kernel="gaussian"), type="l",

ylim = c(0, 1), xlab="", main="R's density() kernels with width = 1")
for(i in 2:length(kernels))

lines(density(0, width = 2, kernel = kernels[i]), col = i)
legend(0.6, 1.0, legend = kernels, col = seq(kernels), lty = 1)

##-------- Semi-advanced theoretic from here on -------------

(RKs <- cbind(sapply(kernels,
function(k) density(kernel = k, give.Rkern = TRUE))))

100*round(RKs["epanechnikov",]/RKs, 4) ## Efficiencies

bw <- bw.SJ(precip) ## sensible automatic choice
plot(density(precip, bw = bw),

main = "same sd bandwidths, 7 different kernels")
for(i in 2:length(kernels))

lines(density(precip, bw = bw, kernel = kernels[i]), col = i)

Bandwidth Adjustment for "Exactly Equivalent Kernels"
h.f <- sapply(kernels, function(k)density(kernel = k, give.Rkern = TRUE))
(h.f <- (h.f["gaussian"] / h.f)^ .2)
-> 1, 1.01, .995, 1.007,... close to 1 => adjustment barely visible..

plot(density(precip, bw = bw),
main = "equivalent bandwidths, 7 different kernels")

for(i in 2:length(kernels))
lines(density(precip, bw = bw, adjust = h.f[i], kernel = kernels[i]),

col = i)
legend(55, 0.035, legend = kernels, col = seq(kernels), lty = 1)

deriv Symbolic and Algorithmic Derivatives of Simple Expressions

deriv 1053

Description

Compute derivatives of simple expressions, symbolically.

Usage

D (expr, name)
deriv(expr, ...)

deriv3(expr, ...)

Default S3 method:
deriv(expr, namevec, function.arg = NULL, tag = ".expr",

hessian = FALSE, ...)
S3 method for class 'formula':
deriv(expr, namevec, function.arg = NULL, tag = ".expr",

hessian = FALSE, ...)

Default S3 method:
deriv3(expr, namevec, function.arg = NULL, tag = ".expr",

hessian = TRUE, ...)
S3 method for class 'formula':
deriv3(expr, namevec, function.arg = NULL, tag = ".expr",

hessian = TRUE, ...)

Arguments

expr A expression or call or (except D) a formula with no lhs.
name,namevec character vector, giving the variable names (only one for D()) with respect to

which derivatives will be computed.
function.arg If specified and non-NULL, a character vector of arguments for a function return,

or a function (with empty body) or TRUE, the latter indicating that a function
with argument names namevec should be used.

tag character; the prefix to be used for the locally created variables in result.
hessian a logical value indicating whether the second derivatives should be calculated

and incorporated in the return value.
... arguments to tbe passed to or from methods.

Details

D is modelled after its S namesake for taking simple symbolic derivatives.

deriv is a generic function with a default and a formula method. It returns a call for comput-
ing the expr and its (partial) derivatives, simultaneously. It uses so-called algorithmic derivatives.
If function.arg is a function, its arguments can have default values, see the fx example below.

Currently, deriv.formula just calls deriv.default after extracting the expression to the
right of ~.

deriv3 and its methods are equivalent to deriv and its methods except that hessian defaults
to TRUE for deriv3.

The internal code knows about the arithmetic operators +, -, *, / and ^, and the single-variable
functions exp, log, sin, cos, tan, sinh, cosh, sqrt, pnorm, dnorm, asin, acos, atan,
gamma, lgamma, digamma and trigamma, as well as psigamma for one or two arguments
(but derivative only with respect to the first). (Note that only the standard normal distribution is
considered.)

1054 deriv

Value

D returns a call and therefore can easily be iterated for higher derivatives.

deriv and deriv3 normally return an expression object whose evaluation returns the func-
tion values with a "gradient" attribute containing the gradient matrix. If hessian is TRUE
the evaluation also returns a "hessian" attribute containing the Hessian array.

If function.arg is not NULL, deriv and deriv3 return a function with those arguments
rather than an expression.

References

Griewank, A. and Corliss, G. F. (1991) Automatic Differentiation of Algorithms: Theory, Implemen-
tation, and Application. SIAM proceedings, Philadelphia.

Bates, D. M. and Chambers, J. M. (1992) Nonlinear models. Chapter 10 of Statistical Models in S
eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

nlm and optim for numeric minimization which could make use of derivatives,

Examples

formula argument :
dx2x <- deriv(~ x^2, "x") ; dx2x
Not run:
expression({

.value <- x^2

.grad <- array(0, c(length(.value), 1), list(NULL, c("x")))

.grad[, "x"] <- 2 * x
attr(.value, "gradient") <- .grad
.value

})
End(Not run)
mode(dx2x)
x <- -1:2
eval(dx2x)

Something 'tougher':
trig.exp <- expression(sin(cos(x + y^2)))
(D.sc <- D(trig.exp, "x"))
all.equal(D(trig.exp[[1]], "x"), D.sc)

(dxy <- deriv(trig.exp, c("x", "y")))
y <- 1
eval(dxy)
eval(D.sc)

function returned:
deriv((y ~ sin(cos(x) * y)), c("x","y"), func = TRUE)

function with defaulted arguments:
(fx <- deriv(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"),

function(b0, b1, th, x = 1:7){}))
fx(2,3,4)

deviance 1055

Higher derivatives
deriv3(y ~ b0 + b1 * 2^(-x/th), c("b0", "b1", "th"),

c("b0", "b1", "th", "x"))

Higher derivatives:
DD <- function(expr,name, order = 1) {

if(order < 1) stop("'order' must be >= 1")
if(order == 1) D(expr,name)
else DD(D(expr, name), name, order - 1)

}
DD(expression(sin(x^2)), "x", 3)
showing the limits of the internal "simplify()" :
Not run:
-sin(x^2) * (2 * x) * 2 + ((cos(x^2) * (2 * x) * (2 * x) + sin(x^2) *

2) * (2 * x) + sin(x^2) * (2 * x) * 2)
End(Not run)

deviance Model Deviance

Description

Returns the deviance of a fitted model object.

Usage

deviance(object, ...)

Arguments

object an object for which the deviance is desired.

... additional optional argument.

Details

This is a generic function which can be used to extract deviances for fitted models. Consult the
individual modeling functions for details on how to use this function.

Value

The value of the deviance extracted from the object object.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

df.residual, extractAIC, glm, lm.

1056 diffinv

df.residual Residual Degrees-of-Freedom

Description

Returns the residual degrees-of-freedom extracted from a fitted model object.

Usage

df.residual(object, ...)

Arguments

object an object for which the degrees-of-freedom are desired.

... additional optional arguments.

Details

This is a generic function which can be used to extract residual degrees-of-freedom for fitted models.
Consult the individual modeling functions for details on how to use this function.

The default method just extracts the df.residual component.

Value

The value of the residual degrees-of-freedom extracted from the object x.

See Also

deviance, glm, lm.

diffinv Discrete Integration: Inverse of Differencing

Description

Computes the inverse function of the lagged differences function diff.

Usage

diffinv(x, ...)

Default S3 method:
diffinv(x, lag = 1, differences = 1, xi, ...)
S3 method for class 'ts':
diffinv(x, lag = 1, differences = 1, xi, ...)

dist 1057

Arguments

x a numeric vector, matrix, or time series.

lag a scalar lag parameter.

differences an integer representing the order of the difference.

xi a numeric vector, matrix, or time series containing the initial values for the inte-
grals. If missing, zeros are used.

... arguments passed to or from other methods.

Details

diffinv is a generic function with methods for class "ts" and default for vectors and matri-
ces.

Missing values are not handled.

Value

A numeric vector, matrix, or time series (the latter for the "ts" method) representing the discrete
integral of x.

Author(s)

A. Trapletti

See Also

diff

Examples

s <- 1:10
d <- diff(s)
diffinv(d, xi = 1)

dist Distance Matrix Computation

Description

This function computes and returns the distance matrix computed by using the specified distance
measure to compute the distances between the rows of a data matrix.

Usage

dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2)

as.dist(m, diag = FALSE, upper = FALSE)
Default S3 method:
as.dist(m, diag = FALSE, upper = FALSE)

S3 method for class 'dist':

1058 dist

print(x, diag = NULL, upper = NULL,
digits = getOption("digits"), justify = "none",
right = TRUE, ...)

S3 method for class 'dist':
as.matrix(x, ...)

Arguments

x a numeric matrix, data frame or "dist" object.

method the distance measure to be used. This must be one of "euclidean",
"maximum", "manhattan", "canberra", "binary" or
"minkowski". Any unambiguous substring can be given.

diag logical value indicating whether the diagonal of the distance matrix should be
printed by print.dist.

upper logical value indicating whether the upper triangle of the distance matrix should
be printed by print.dist.

p The power of the Minkowski distance.

m An object with distance information to be converted to a "dist" object. For
the default method, a "dist" object, or a matrix (of distances) or an object
which can be coerced to such a matrix using as.matrix(). (Only the lower
triangle of the matrix is used, the rest is ignored).

digits, justify
passed to format inside of print().

right, ... further arguments, passed to other methods.

Details

Available distance measures are (written for two vectors x and y):

euclidean: Usual square distance between the two vectors (2 norm).

maximum: Maximum distance between two components of x and y (supremum norm)

manhattan: Absolute distance between the two vectors (1 norm).

canberra:
∑
i |xi−yi|/|xi+yi|. Terms with zero numerator and denominator are omitted from

the sum and treated as if the values were missing.

binary: (aka asymmetric binary): The vectors are regarded as binary bits, so non-zero elements
are ‘on’ and zero elements are ‘off’. The distance is the proportion of bits in which only one
is on amongst those in which at least one is on.

minkowski: The p norm, the pth root of the sum of the pth powers of the differences of the
components.

Missing values are allowed, and are excluded from all computations involving the rows within
which they occur. Further, when Inf values are involved, all pairs of values are excluded when
their contribution to the distance gave NaN or NA.
If some columns are excluded in calculating a Euclidean, Manhattan, Canberra or Minkowski dis-
tance, the sum is scaled up proportionally to the number of columns used. If all pairs are excluded
when calculating a particular distance, the value is NA.

The "dist" method of as.matrix() and as.dist() can be used for conversion between
objects of class "dist" and conventional distance matrices.

dist 1059

as.dist() is a generic function. Its default method handles objects inheriting from class
"dist", or coercible to matrices using as.matrix(). Support for classes representing distances
(also known as dissimilarities) can be added by providing an as.matrix() or, more directly, an
as.dist method for such a class.

Value

dist returns an object of class "dist".

The lower triangle of the distance matrix stored by columns in a vector, say do. If n is the number of
observations, i.e., n <- attr(do, "Size"), then for i < j <= n, the dissimilarity between
(row) i and j is do[n*(i-1) - i*(i-1)/2 + j-i]. The length of the vector is n∗(n−1)/2,
i.e., of order n2.

The object has the following attributes (besides "class" equal to "dist"):

Size integer, the number of observations in the dataset.

Labels optionally, contains the labels, if any, of the observations of the dataset.

Diag, Upper logicals corresponding to the arguments diag and upper above, specifying
how the object should be printed.

call optionally, the call used to create the object.

method optionally, the distance method used; resulting from dist(), the
(match.arg()ed) method argument.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Mardia, K. V., Kent, J. T. and Bibby, J. M. (1979) Multivariate Analysis. Academic Press.

Borg, I. and Groenen, P. (1997) Modern Multidimensional Scaling. Theory and Applications.
Springer.

See Also

daisy in the cluster package with more possibilities in the case of mixed (continuous / categorical)
variables. hclust.

Examples

require(graphics)

x <- matrix(rnorm(100), nrow=5)
dist(x)
dist(x, diag = TRUE)
dist(x, upper = TRUE)
m <- as.matrix(dist(x))
d <- as.dist(m)
stopifnot(d == dist(x))

Use correlations between variables "as distance"
dd <- as.dist((1 - cor(USJudgeRatings))/2)
round(1000 * dd) # (prints more nicely)
plot(hclust(dd)) # to see a dendrogram of clustered variables

1060 dummy.coef

example of binary and canberra distances.
x <- c(0, 0, 1, 1, 1, 1)
y <- c(1, 0, 1, 1, 0, 1)
dist(rbind(x,y), method= "binary")
answer 0.4 = 2/5
dist(rbind(x,y), method= "canberra")
answer 2 * (6/5)

To find the names
labels(eurodist)

Examples involving "Inf" :
1)
x[6] <- Inf
(m2 <- rbind(x,y))
dist(m2, method="binary")# warning, answer 0.5 = 2/4
These all give "Inf":
stopifnot(Inf == dist(m2, method= "euclidean"),

Inf == dist(m2, method= "maximum"),
Inf == dist(m2, method= "manhattan"))

"Inf" is same as very large number:
x1 <- x; x1[6] <- 1e100
stopifnot(dist(cbind(x ,y), method="canberra") ==

print(dist(cbind(x1,y), method="canberra")))

2)
y[6] <- Inf #-> 6-th pair is excluded
dist(rbind(x,y), method="binary") # warning; 0.5
dist(rbind(x,y), method="canberra") # 3
dist(rbind(x,y), method="maximum") # 1
dist(rbind(x,y), method="manhattan")# 2.4

dummy.coef Extract Coefficients in Original Coding

Description

This extracts coefficients in terms of the original levels of the coefficients rather than the coded
variables.

Usage

dummy.coef(object, ...)

S3 method for class 'lm':
dummy.coef(object, use.na = FALSE, ...)

S3 method for class 'aovlist':
dummy.coef(object, use.na = FALSE, ...)

Arguments

object a linear model fit.

ecdf 1061

use.na logical flag for coefficients in a singular model. If use.na is true, undeter-
mined coefficients will be missing; if false they will get one possible value.

... arguments passed to or from other methods.

Details

A fitted linear model has coefficients for the contrasts of the factor terms, usually one less in num-
ber than the number of levels. This function re-expresses the coefficients in the original coding;
as the coefficients will have been fitted in the reduced basis, any implied constraints (e.g., zero
sum for contr.helmert or contr.sum will be respected. There will be little point in using
dummy.coef for contr.treatment contrasts, as the missing coefficients are by definition
zero.

The method used has some limitations, and will give incomplete results for terms such as poly(x,
2)). However, it is adequate for its main purpose, aov models.

Value

A list giving for each term the values of the coefficients. For a multistratum aov model, such a list
for each stratum.

Warning

This function is intended for human inspection of the output: it should not be used for calculations.
Use coded variables for all calculations.

The results differ from S for singular values, where S can be incorrect.

See Also

aov, model.tables

Examples

options(contrasts=c("contr.helmert", "contr.poly"))
From Venables and Ripley (2002) p.165.
utils::data(npk, package="MASS")
npk.aov <- aov(yield ~ block + N*P*K, npk)
dummy.coef(npk.aov)

npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)
dummy.coef(npk.aovE)

ecdf Empirical Cumulative Distribution Function

Description

Compute or plot an empirical cumulative distribution function.

1062 ecdf

Usage

ecdf(x)

S3 method for class 'ecdf':
plot(x, ..., ylab="Fn(x)", verticals = FALSE,

col.01line = "gray70", pch = 19)

S3 method for class 'ecdf':
print(x, digits= getOption("digits") - 2, ...)

S3 method for class 'ecdf':
summary(object, ...)

Arguments

x, object numeric vector of the observations for ecdf; for the methods, an object inher-
iting from class "ecdf".

... arguments to be passed to subsequent methods, e.g., plot.stepfun for the
plot method.

ylab label for the y-axis.

verticals see plot.stepfun.

col.01line numeric or character specifying the color of the horizontal lines at y = 0 and 1,
see colors.

pch plotting character.

digits number of significant digits to use, see print.

Details

The e.c.d.f. (empirical cumulative distribution function) Fn is a step function with jumps i/n at
observation values, where i is the number of tied observations at that value. Missing values are
ignored.

For observations x= (x1, x2, . . .xn), Fn is the fraction of observations less or equal to t, i.e.,

Fn(t) = #{xi ≤ t} /n =
1
n

n∑
i=1

1[xi≤t].

The function plot.ecdf which implements the plot method for ecdf objects, is implemented
via a call to plot.stepfun; see its documentation.

Value

For ecdf, a function of class "ecdf", inheriting from the "stepfun" class.

For the summary method, a summary of the knots of object with a "header" attribute.

Author(s)

Martin Maechler, 〈maechler@stat.math.ethz.ch〉.
Corrections by R-core.

ecdf 1063

See Also

stepfun, the more general class of step functions, approxfun and splinefun.

Examples

##-- Simple didactical ecdf example :
x <- rnorm(12)
Fn <- ecdf(x)
Fn # a *function*
Fn(x) # returns the percentiles for x
tt <- seq(-2,2, by = 0.1)
12 * Fn(tt) # Fn is a 'simple' function {with values k/12}
summary(Fn)
##--> see below for graphics
knots(Fn)# the unique data values {12 of them if there were no ties}

y <- round(rnorm(12),1); y[3] <- y[1]
Fn12 <- ecdf(y)
Fn12
knots(Fn12)# unique values (always less than 12!)
summary(Fn12)
summary.stepfun(Fn12)

Advanced: What's inside the function closure?
print(ls.Fn12 <- ls(environment(Fn12)))
##[1] "f" "method" "n" "x" "y" "yleft" "yright"
utils::ls.str(environment(Fn12))

###----------------- Plotting --------------------------
require(graphics)

op <- par(mfrow=c(3,1), mgp=c(1.5, 0.8,0), mar= .1+c(3,3,2,1))

F10 <- ecdf(rnorm(10))
summary(F10)

plot(F10)
plot(F10, verticals= TRUE, do.points = FALSE)

plot(Fn12 , lwd = 2) ; mtext("lwd = 2", adj=1)
xx <- unique(sort(c(seq(-3, 2, length=201), knots(Fn12))))
lines(xx, Fn12(xx), col='blue')
abline(v=knots(Fn12),lty=2,col='gray70')

plot(xx, Fn12(xx), type='o', cex=.1)#- plot.default {ugly}
plot(Fn12, col.hor='red', add= TRUE) #- plot method
abline(v=knots(Fn12),lty=2,col='gray70')
luxury plot
plot(Fn12, verticals=TRUE, col.points='blue',

col.hor='red', col.vert='bisque')

##-- this works too (automatic call to ecdf(.)):
plot.ecdf(rnorm(24))
title("via simple plot.ecdf(x)", adj=1)

par(op)

1064 eff.aovlist

eff.aovlist Compute Efficiencies of Multistratum Analysis of Variance

Description

Computes the efficiencies of fixed-effect terms in an analysis of variance model with multiple strata.

Usage

eff.aovlist(aovlist)

Arguments

aovlist The result of a call to aov with an Error term.

Details

Fixed-effect terms in an analysis of variance model with multiple strata may be estimable in more
than one stratum, in which case there is less than complete information in each. The efficiency for a
term is the fraction of the maximum possible precision (inverse variance) obtainable by estimating
in just that stratum. Under the assumption of balance, this is the same for all contrasts involving
that term.

This function is used to pick strata in which to estimate terms in model.tables.aovlist and
se.contrast.aovlist.

In many cases terms will only occur in one stratum, when all the efficiencies will be one: this is
detected and no further calculations are done.

The calculation used requires orthogonal contrasts for each term, and will throw an error if non-
orthogonal contrasts (e.g. treatment contrasts or an unbalanced design) are detected.

Value

A matrix giving for each non-pure-error stratum (row) the efficiencies for each fixed-effect term in
the model.

References

Heiberger, R. M. (1989) Computation for the Analysis of Designed Experiments. Wiley.

See Also

aov, model.tables.aovlist, se.contrast.aovlist

Examples

An example from Yates (1932),
a 2^3 design in 2 blocks replicated 4 times

Block <- gl(8, 4)
A <- factor(c(0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,

0,1,0,1,0,1,0,1,0,1,0,1))
B <- factor(c(0,0,1,1,0,0,1,1,0,1,0,1,1,0,1,0,0,0,1,1,

0,0,1,1,0,0,1,1,0,0,1,1))

effects 1065

C <- factor(c(0,1,1,0,1,0,0,1,0,0,1,1,0,0,1,1,0,1,0,1,
1,0,1,0,0,0,1,1,1,1,0,0))

Yield <- c(101, 373, 398, 291, 312, 106, 265, 450, 106, 306, 324, 449,
272, 89, 407, 338, 87, 324, 279, 471, 323, 128, 423, 334,
131, 103, 445, 437, 324, 361, 302, 272)

aovdat <- data.frame(Block, A, B, C, Yield)

old <- getOption("contrasts")
options(contrasts=c("contr.helmert", "contr.poly"))
(fit <- aov(Yield ~ A*B*C + Error(Block), data = aovdat))
eff.aovlist(fit)
options(contrasts = old)

effects Effects from Fitted Model

Description

Returns (orthogonal) effects from a fitted model, usually a linear model. This is a generic function,
but currently only has a methods for objects inheriting from classes "lm" and "glm".

Usage

effects(object, ...)

S3 method for class 'lm':
effects(object, set.sign = FALSE, ...)

Arguments

object an R object; typically, the result of a model fitting function such as lm.

set.sign logical. If TRUE, the sign of the effects corresponding to coefficients in the
model will be set to agree with the signs of the corresponding coefficients, oth-
erwise the sign is arbitrary.

... arguments passed to or from other methods.

Details

For a linear model fitted by lm or aov, the effects are the uncorrelated single-degree-of-freedom
values obtained by projecting the data onto the successive orthogonal subspaces generated by the
QR decomposition during the fitting process. The first r (the rank of the model) are associated with
coefficients and the remainder span the space of residuals (but are not associated with particular
residuals).

Empty models do not have effects.

Value

A (named) numeric vector of the same length as residuals, or a matrix if there were multiple
responses in the fitted model, in either case of class "coef".

The first r rows are labelled by the corresponding coefficients, and the remaining rows are unla-
belled. Note that in rank-deficient models the corresponding coefficients will be in a different order
if pivoting occurred.

1066 embed

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

coef

Examples

y <- c(1:3,7,5)
x <- c(1:3,6:7)
(ee <- effects(lm(y ~ x)))
c(round(ee - effects(lm(y+10 ~ I(x-3.8))), 3))
just the first is different

embed Embedding a Time Series

Description

Embeds the time series x into a low-dimensional Euclidean space.

Usage

embed (x, dimension = 1)

Arguments

x a numeric vector, matrix, or time series.

dimension a scalar representing the embedding dimension.

Details

Each row of the resulting matrix consists of sequences x[t], x[t-1], . . . , x[t-
dimension+1], where t is the original index of x. If x is a matrix, i.e., x contains more than
one variable, then x[t] consists of the tth observation on each variable.

Value

A matrix containing the embedded time series x.

Author(s)

A. Trapletti, B.D. Ripley

Examples

x <- 1:10
embed (x, 3)

expand.model.frame 1067

expand.model.frame Add new variables to a model frame

Description

Evaluates new variables as if they had been part of the formula of the specified model. This ensures
that the same na.action and subset arguments are applied and allows, for example, x to be
recovered for a model using sin(x) as a predictor.

Usage

expand.model.frame(model, extras,
envir = environment(formula(model)),
na.expand = FALSE)

Arguments

model a fitted model

extras one-sided formula or vector of character strings describing new variables to be
added

envir an environment to evaluate things in

na.expand logical; see below

Details

If na.expand=FALSE then NA values in the extra variables will be passed to the na.action
function used in model. This may result in a shorter data frame (with na.omit) or an error (with
na.fail). If na.expand=TRUE the returned data frame will have precisely the same rows as
model.frame(model), but the columns corresponding to the extra variables may contain NA.

Value

A data frame.

See Also

model.frame,predict

Examples

model <- lm(log(Volume) ~ log(Girth) + log(Height), data=trees)
expand.model.frame(model, ~ Girth) # prints data.frame like

dd <- data.frame(x=1:5, y=rnorm(5), z=c(1,2,NA,4,5))
model <- glm(y ~ x, data=dd, subset=1:4, na.action=na.omit)
expand.model.frame(model, "z", na.expand=FALSE) # = default
expand.model.frame(model, "z", na.expand=TRUE)

1068 Exponential

Exponential The Exponential Distribution

Description

Density, distribution function, quantile function and random generation for the exponential distri-
bution with rate rate (i.e., mean 1/rate).

Usage

dexp(x, rate = 1, log = FALSE)
pexp(q, rate = 1, lower.tail = TRUE, log.p = FALSE)
qexp(p, rate = 1, lower.tail = TRUE, log.p = FALSE)
rexp(n, rate = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

rate vector of rates.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

If rate is not specified, it assumes the default value of 1.

The exponential distribution with rate λ has density

f(x) = λe−λx

for x ≥ 0.

Value

dexp gives the density, pexp gives the distribution function, qexp gives the quantile function,
and rexp generates random deviates.

Note

The cumulative hazard H(t) = − log(1−F (t)) is -pexp(t, r, lower = FALSE, log =
TRUE).

Source

dexp, pexp and qexp are all calculated from numerically stable versions of the definitions.

rexp uses

Ahrens, J. H. and Dieter, U. (1972). Computer methods for sampling from the exponential and
normal distributions. Communications of the ACM, 15, 873–882.

extractAIC 1069

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume
1, chapter 19. Wiley, New York.

See Also

exp for the exponential function, dgamma for the gamma distribution and dweibull for the
Weibull distribution, both of which generalize the exponential.

Examples

dexp(1) - exp(-1) #-> 0

extractAIC Extract AIC from a Fitted Model

Description

Computes the (generalized) Akaike An Information Criterion for a fitted parametric model.

Usage

extractAIC(fit, scale, k = 2, ...)

Arguments

fit fitted model, usually the result of a fitter like lm.

scale optional numeric specifying the scale parameter of the model, see scale in
step. Currently only used in the "lm" method, where scale specifies the es-
timate of the error variance, and scale = 0 indicates that it is to be estimated
by maximum likelihood.

k numeric specifying the ‘weight’ of the equivalent degrees of freedom (≡ edf)
part in the AIC formula.

... further arguments (currently unused in base R).

Details

This is a generic function, with methods in base R for "aov", "coxph", "glm", "lm",
"negbin" and "survreg" classes.

The criterion used is
AIC = −2 logL+ k × edf,

where L is the likelihood and edf the equivalent degrees of freedom (i.e., the number of free
parameters for usual parametric models) of fit.

For linear models with unknown scale (i.e., for lm and aov), −2 logL is computed from the
deviance and uses a different additive constant to logLik and hence AIC. If RSS denotes the
(weighted) residual sum of squares then extractAIC uses for−2 logL the formulae RSS/s−n
(corresponding to Mallows’Cp) in the case of known scale s and n log(RSS/n) for unknown scale.

1070 factanal

AIC only handles unknown scale and uses the formula n log(RSS/n) − n + n log 2π −
∑

logw
where w are the weights.

For glm fits the family’s aic() function to compute the AIC: see the note under logLik about
the assumptions this makes.

k = 2 corresponds to the traditional AIC, using k = log(n) provides the BIC (Bayesian IC)
instead.

Value

A numeric vector of length 2, giving

edf the ‘equivalent degrees of freedom’ for the fitted model fit.

AIC the (generalized) Akaike Information Criterion for fit.

Note

This function is used in add1, drop1 and step and similar functions in package MASS from
which it was adopted.

Author(s)

B. D. Ripley

References

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York: Springer
(4th ed).

See Also

AIC, deviance, add1, step

Examples

utils::example(glm)
extractAIC(glm.D93)#>> 5 15.129

factanal Factor Analysis

Description

Perform maximum-likelihood factor analysis on a covariance matrix or data matrix.

Usage

factanal(x, factors, data = NULL, covmat = NULL, n.obs = NA,
subset, na.action, start = NULL,
scores = c("none", "regression", "Bartlett"),
rotation = "varimax", control = NULL, ...)

factanal 1071

Arguments

x A formula or a numeric matrix or an object that can be coerced to a numeric
matrix.

factors The number of factors to be fitted.

data An optional data frame (or similar: see model.frame), used only if x is a
formula. By default the variables are taken from environment(formula).

covmat A covariance matrix, or a covariance list as returned by cov.wt. Of course,
correlation matrices are covariance matrices.

n.obs The number of observations, used if covmat is a covariance matrix.

subset A specification of the cases to be used, if x is used as a matrix or formula.

na.action The na.action to be used if x is used as a formula.

start NULL or a matrix of starting values, each column giving an initial set of unique-
nesses.

scores Type of scores to produce, if any. The default is none, "regression"
gives Thompson’s scores, "Bartlett" given Bartlett’s weighted least-squares
scores. Partial matching allows these names to be abbreviated.

rotation character. "none" or the name of a function to be used to rotate the factors:
it will be called with first argument the loadings matrix, and should return a
list with component loadings giving the rotated loadings, or just the rotated
loadings.

control A list of control values,

nstart The number of starting values to be tried if start = NULL. Default
1.

trace logical. Output tracing information? Default FALSE.
lower The lower bound for uniquenesses during optimization. Should be > 0.

Default 0.005.
opt A list of control values to be passed to optim’s control argument.
rotate a list of additional arguments for the rotation function.

... Components of control can also be supplied as named arguments to
factanal.

Details

The factor analysis model is
x = Λf + e

for a p–element row-vector x, a p × k matrix of loadings, a k–element vector of scores and a p–
element vector of errors. None of the components other than x is observed, but the major restriction
is that the scores be uncorrelated and of unit variance, and that the errors be independent with
variances Φ, the uniquenesses. Thus factor analysis is in essence a model for the covariance matrix
of x,

Σ = Λ′Λ + Ψ

There is still some indeterminacy in the model for it is unchanged if Λ is replaced by GΛ for any
orthogonal matrix G. Such matrices G are known as rotations (although the term is applied also to
non-orthogonal invertible matrices).

If covmat is supplied it is used. Otherwise x is used if it is a matrix, or a formula x is used with
data to construct a model matrix, and that is used to construct a covariance matrix. (It makes no
sense for the formula to have a response, and all the variables must be numeric.) Once a covariance

1072 factanal

matrix is found or calculated from x, it is converted to a correlation matrix for analysis. The
correlation matrix is returned as component correlation of the result.

The fit is done by optimizing the log likelihood assuming multivariate normality over the unique-
nesses. (The maximizing loadings for given uniquenesses can be found analytically: Lawley &
Maxwell (1971, p. 27).) All the starting values supplied in start are tried in turn and the best fit
obtained is used. If start = NULL then the first fit is started at the value suggested by Jöreskog
(1963) and given by Lawley & Maxwell (1971, p. 31), and then control$nstart - 1 other
values are tried, randomly selected as equal values of the uniquenesses.

The uniquenesses are technically constrained to lie in [0, 1], but near-zero values are problematical,
and the optimization is done with a lower bound of control$lower, default 0.005 (Lawley &
Maxwell, 1971, p. 32).

Scores can only be produced if a data matrix is supplied and used. The first method is the regression
method of Thomson (1951), the second the weighted least squares method of Bartlett (1937, 8).
Both are estimates of the unobserved scores f . Thomson’s method regresses (in the population) the
unknown f on x to yield

f̂ = Λ′Σ−1x

and then substitutes the sample estimates of the quantities on the right-hand side. Bartlett’s method
minimizes the sum of squares of standardized errors over the choice of f , given (the fitted) Λ.

If x is a formula then the standard NA-handling is applied to the scores (if requested): see
napredict.

Value

An object of class "factanal" with components

loadings A matrix of loadings, one column for each factor. The factors are ordered in
decreasing order of sums of squares of loadings, and given the sign that will
make the sum of the loadings positive.

uniquenesses The uniquenesses computed.
correlation The correlation matrix used.
criteria The results of the optimization: the value of the negative log-likelihood and

information on the iterations used.
factors The argument factors.
dof The number of degrees of freedom of the factor analysis model.
method The method: always "mle".
scores If requested, a matrix of scores. napredict is applied to handle the treatment

of values omitted by the na.action.
n.obs The number of observations if available, or NA.
call The matched call.
na.action If relevant.
STATISTIC, PVAL

The significance-test statistic and P value, if if can be computed.

Note

There are so many variations on factor analysis that it is hard to compare output from different
programs. Further, the optimization in maximum likelihood factor analysis is hard, and many other
examples we compared had less good fits than produced by this function. In particular, solutions
which are Heywood cases (with one or more uniquenesses essentially zero) are much often common
than most texts and some other programs would lead one to believe.

factor.scope 1073

References

Bartlett, M. S. (1937) The statistical conception of mental factors. British Journal of Psychology,
28, 97–104.

Bartlett, M. S. (1938) Methods of estimating mental factors. Nature, 141, 609–610.

Jöreskog, K. G. (1963) Statistical Estimation in Factor Analysis. Almqvist and Wicksell.

Lawley, D. N. and Maxwell, A. E. (1971) Factor Analysis as a Statistical Method. Second edition.
Butterworths.

Thomson, G. H. (1951) The Factorial Analysis of Human Ability. London University Press.

See Also

print.loadings, varimax, princomp, ability.cov, Harman23.cor,
Harman74.cor

Examples

A little demonstration, v2 is just v1 with noise,
and same for v4 vs. v3 and v6 vs. v5
Last four cases are there to add noise
and introduce a positive manifold (g factor)
v1 <- c(1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,5,6)
v2 <- c(1,2,1,1,1,1,2,1,2,1,3,4,3,3,3,4,6,5)
v3 <- c(3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,5,4,6)
v4 <- c(3,3,4,3,3,1,1,2,1,1,1,1,2,1,1,5,6,4)
v5 <- c(1,1,1,1,1,3,3,3,3,3,1,1,1,1,1,6,4,5)
v6 <- c(1,1,1,2,1,3,3,3,4,3,1,1,1,2,1,6,5,4)
m1 <- cbind(v1,v2,v3,v4,v5,v6)
cor(m1)
factanal(m1, factors=3) # varimax is the default
factanal(m1, factors=3, rotation="promax")
The following shows the g factor as PC1
prcomp(m1)

formula interface
factanal(~v1+v2+v3+v4+v5+v6, factors = 3,

scores = "Bartlett")$scores

a realistic example from Barthlomew (1987, pp. 61-65)
utils::example(ability.cov)

factor.scope Compute Allowed Changes in Adding to or Dropping from a Formula

Description

add.scope and drop.scope compute those terms that can be individually added to or dropped
from a model while respecting the hierarchy of terms.

1074 family

Usage

add.scope(terms1, terms2)

drop.scope(terms1, terms2)

factor.scope(factor, scope)

Arguments

terms1 the terms or formula for the base model.

terms2 the terms or formula for the upper (add.scope) or lower (drop.scope)
scope. If missing for drop.scope it is taken to be the null formula, so all
terms (except any intercept) are candidates to be dropped.

factor the "factor" attribute of the terms of the base object.

scope a list with one or both components drop and add giving the "factor" at-
tribute of the lower and upper scopes respectively.

Details

factor.scope is not intended to be called directly by users.

Value

For add.scope and drop.scope a character vector of terms labels. For factor.scope, a
list with components drop and add, character vectors of terms labels.

See Also

add1, drop1, aov, lm

Examples

add.scope(~ a + b + c + a:b, ~ (a + b + c)^3)
[1] "a:c" "b:c"
drop.scope(~ a + b + c + a:b)
[1] "c" "a:b"

family Family Objects for Models

Description

Family objects provide a convenient way to specify the details of the models used by functions such
as glm. See the documentation for glm for the details on how such model fitting takes place.

family 1075

Usage

family(object, ...)

binomial(link = "logit")
gaussian(link = "identity")
Gamma(link = "inverse")
inverse.gaussian(link = "1/mu^2")
poisson(link = "log")
quasi(link = "identity", variance = "constant")
quasibinomial(link = "logit")
quasipoisson(link = "log")

Arguments

link a specification for the model link function. This can be a name/expression, a lit-
eral character string, a length-one character vector or an object of class "link-
glm" (such as generated by make.link) provided it is not specified via one
of the standard names given next.

The gaussian family accepts the links "identity", "log" and
"inverse"; the binomial family the links "logit", "probit",
"cauchit", (corresponding to logistic, normal and Cauchy CDFs respec-
tively) "log" and "cloglog" (complementary log-log); the Gamma fam-
ily the links "inverse", "identity" and "log"; the poisson family
the links "log", "identity", and "sqrt" and the inverse.gaussian
family the links "1/mu^2", "inverse", "identity" and "log".

The quasi family accepts the links "logit", "probit", "cloglog",
"identity", "inverse", "log", "1/mu^2" and "sqrt", and the func-
tion power can be used to create a power link function.

variance for all families other than quasi, the variance function is determined by the
family. The quasi family will accept the literal character string (or un-
quoted as a name/expression) specifications "constant", "mu(1-mu)",
"mu", "mu^2" and "mu^3", a length-one character vector taking one of those
values, or a list containing components varfun, validmu, dev.resids,
initialize and name.

object the function family accesses the family objects which are stored within
objects created by modelling functions (e.g., glm).

... further arguments passed to methods.

Details

family is a generic function with methods for classes "glm" and "lm" (the latter returning
gaussian()).

The quasibinomial and quasipoisson families differ from the binomial and poisson
families only in that the dispersion parameter is not fixed at one, so they can model over-dispersion.
For the binomial case see McCullagh and Nelder (1989, pp. 124–8). Although they show that there
is (under some restrictions) a model with variance proportional to mean as in the quasi-binomial
model, note that glm does not compute maximum-likelihood estimates in that model. The be-
haviour of S is closer to the quasi- variants.

1076 family

Value

An object of class "family" (which has a concise print method). This is a list with elements

family character: the family name.

link character: the link name.

linkfun function: the link.

linkinv function: the inverse of the link function.

variance function: the variance as a function of the mean.

dev.resids function giving the deviance residuals as a function of (y, mu, wt).

aic function giving the AIC value if appropriate (but NA for the quasi- families). See
logLik for the assumptions made about the dispersion parameter.

mu.eta function: derivative function(eta) dµ/dη.

initialize expression. This needs to set up whatever data objects are needed for the family
as well as n (needed for AIC in the binomial family) and mustart (see glm.

valid.mu logical function. Returns TRUE if a mean vector mu is within the domain of
variance.

valid.eta logical function. Returns TRUE if a linear predictor eta is within the domain
of linkinv.

Note

The link and variance arguments have rather awkward semantics for back-compatibility. The
recommended way is to supply them is as quoted character strings, but they can also be supplied
unquoted (as names or expressions). In addition, they can also be supplied as a length-one character
vector giving the name of one of the options, or as a list (for link, of class "link-glm").

This is potentially ambiguous: supplying link=logit could mean the unquoted name of a link
or the value of object logit. It is interpreted if possible as the name of an allowed link, then as an
object. (You can force the interpretation to always be the value of an object via logit[1].)

Author(s)

The design was inspired by S functions of the same names described in Hastie & Pregibon (1992)
(except quasibinomial and quasipoisson).

References

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and Hall.

Dobson, A. J. (1983) An Introduction to Statistical Modelling. London: Chapman and Hall.

Cox, D. R. and Snell, E. J. (1981). Applied Statistics; Principles and Examples. London: Chapman
and Hall.

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical Models in
S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

glm, power, make.link.

family 1077

Examples

require(utils) # for str

nf <- gaussian()# Normal family
nf
str(nf)# internal STRucture

gf <- Gamma()
gf
str(gf)
gf$linkinv
gf$variance(-3:4) #- == (.)^2

quasipoisson. compare with example(glm)
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
d.AD <- data.frame(treatment, outcome, counts)
glm.qD93 <- glm(counts ~ outcome + treatment, family=quasipoisson())
glm.qD93
anova(glm.qD93, test="F")
summary(glm.qD93)
for Poisson results use
anova(glm.qD93, dispersion = 1, test="Chisq")
summary(glm.qD93, dispersion = 1)

Example of user-specified link, a logit model for p^days
See Shaffer, T. 2004. Auk 121(2): 526-540.
logexp <- function(days = 1)
{

linkfun <- function(mu) qlogis(mu^(1/days))
linkinv <- function(eta) plogis(eta)^days
mu.eta <- function(eta) days * plogis(eta)^(days-1) *
.Call("logit_mu_eta", eta, PACKAGE = "stats")

valideta <- function(eta) TRUE
link <- paste("logexp(", days, ")", sep="")
structure(list(linkfun = linkfun, linkinv = linkinv,

mu.eta = mu.eta, valideta = valideta, name = link),
class = "link-glm")

}
binomial(logexp(3))
in practice this would be used with a vector of 'days', in
which case use an offset of 0 in the corresponding formula
to get the null deviance right.

Binomial with identity link: often not a good idea.
Not run: binomial(link=make.link("identity"))

tests of quasi
x <- rnorm(100)
y <- rpois(100, exp(1+x))
glm(y ~x, family=quasi(variance="mu", link="log"))
which is the same as
glm(y ~x, family=poisson)
glm(y ~x, family=quasi(variance="mu^2", link="log"))
Not run: glm(y ~x, family=quasi(variance="mu^3", link="log")) # fails

1078 FDist

y <- rbinom(100, 1, plogis(x))
needs to set a starting value for the next fit
glm(y ~x, family=quasi(variance="mu(1-mu)", link="logit"), start=c(0,1))

FDist The F Distribution

Description

Density, distribution function, quantile function and random generation for the F distribution with
df1 and df2 degrees of freedom (and optional non-centrality parameter ncp).

Usage

df(x, df1, df2, ncp, log = FALSE)
pf(q, df1, df2, ncp, lower.tail = TRUE, log.p = FALSE)
qf(p, df1, df2, ncp, lower.tail = TRUE, log.p = FALSE)
rf(n, df1, df2, ncp)

Arguments

x, q vector of quantiles.
p vector of probabilities.
n number of observations. If length(n) > 1, the length is taken to be the

number required.
df1, df2 degrees of freedom. Inf is allowed.
ncp non-centrality parameter. If omitted the central F is assumed.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

The F distribution with df1 = n1 and df2 = n2 degrees of freedom has density

f(x) =
Γ(n1/2 + n2/2)
Γ(n1/2)Γ(n2/2)

(
n1

n2

)n1/2

xn1/2−1

(
1 +

n1x

n2

)−(n1+n2)/2

for x > 0.

It is the distribution of the ratio of the mean squares of n1 and n2 independent standard normals, and
hence of the ratio of two independent chi-squared variates each divided by its degrees of freedom.
Since the ratio of a normal and the root mean-square of m independent normals has a Student’s tm
distribution, the square of a tm variate has a F distribution on 1 and m degrees of freedom.

The non-central F distribution is again the ratio of mean squares of independent normals of unit
variance, but those in the numerator are allowed to have non-zero means and ncp is the sum of
squares of the means. See Chisquare for further details on non-central distributions.

Value

df gives the density, pf gives the distribution function qf gives the quantile function, and rf
generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

fft 1079

Source

For df, and ncp == 0, computed via a binomial probability, code contributed by Catherine
Loader (see dbinom); for ncp != 0, computed via a dbeta, code contributed by Peter Ruck-
deschel.

For pf, via pbeta (or for large df2, via pchisq).

For qf, via qchisq for large df2, else via qbeta.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume
2, chapters 27 and 30. Wiley, New York.

See Also

dchisq for chi-squared and dt for Student’s t distributions.

Examples

the density of the square of a t_m is 2*dt(x, m)/(2*x)
check this is the same as the density of F_{1,m}
x <- seq(0.001, 5, len=100)
all.equal(df(x^2, 1, 5), dt(x, 5)/x)

Identity: qf(2*p - 1, 1, df)) == qt(p, df)^2) for p >= 1/2
p <- seq(1/2, .99, length=50); df <- 10
rel.err <- function(x,y) ifelse(x==y,0, abs(x-y)/mean(abs(c(x,y))))
quantile(rel.err(qf(2*p - 1, df1=1, df2=df), qt(p, df)^2), .90)# ~= 7e-9

fft Fast Discrete Fourier Transform

Description

Performs the Fast Fourier Transform of an array.

Usage

fft(z, inverse = FALSE)
mvfft(z, inverse = FALSE)

Arguments

z a real or complex array containing the values to be transformed.

inverse if TRUE, the unnormalized inverse transform is computed (the inverse has a + in
the exponent of e, but here, we do not divide by 1/length(x)).

1080 filter

Value

When z is a vector, the value computed and returned by fft is the unnormalized univariate
Fourier transform of the sequence of values in z. When z contains an array, fft computes and
returns the multivariate (spatial) transform. If inverse is TRUE, the (unnormalized) inverse
Fourier transform is returned, i.e., if y <- fft(z), then z is fft(y, inverse = TRUE)
/ length(y).

By contrast, mvfft takes a real or complex matrix as argument, and returns a similar shaped matrix,
but with each column replaced by its discrete Fourier transform. This is useful for analyzing vector-
valued series.

The FFT is fastest when the length of the series being transformed is highly composite (i.e., has
many factors). If this is not the case, the transform may take a long time to compute and will use a
large amount of memory.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Singleton, R. C. (1979) Mixed Radix Fast Fourier Transforms, in Programs for Digital Signal Pro-
cessing, IEEE Digital Signal Processing Committee eds. IEEE Press.

See Also

convolve, nextn.

Examples

x <- 1:4
fft(x)
fft(fft(x), inverse = TRUE)/length(x)

filter Linear Filtering on a Time Series

Description

Applies linear filtering to a univariate time series or to each series separately of a multivariate time
series.

Usage

filter(x, filter, method = c("convolution", "recursive"),
sides = 2, circular = FALSE, init)

Arguments

x a univariate or multivariate time series.

filter a vector of filter coefficients in reverse time order (as for AR or MA coefficients).

method Either "convolution" or "recursive" (and can be abbreviated). If
"convolution" a moving average is used: if "recursive" an autore-
gression is used.

filter 1081

sides for convolution filters only. If sides=1 the filter coefficients are for past values
only; if sides=2 they are centred around lag 0. In this case the length of the
filter should be odd, but if it is even, more of the filter is forward in time than
backward.

circular for convolution filters only. If TRUE, wrap the filter around the ends of the series,
otherwise assume external values are missing (NA).

init for recursive filters only. Specifies the initial values of the time series just prior
to the start value, in reverse time order. The default is a set of zeros.

Details

Missing values are allowed in x but not in filter (where they would lead to missing values
everywhere in the output).

Note that there is an implied coefficient 1 at lag 0 in the recursive filter, which gives

yi = xi + f1yi−1 + · · ·+ fpyi−p

No check is made to see if recursive filter is invertible: the output may diverge if it is not.

The convolution filter is

yi = f1xi+o + · · ·+ fpxi+o−(p−1)

where o is the offset: see sides for how it is determined.

Value

A time series object.

Note

convolve(, type="filter") uses the FFT for computations and so may be faster for long
filters on univariate series, but it does not return a time series (and so the time alignment is unclear),
nor does it handle missing values. filter is faster for a filter of length 100 on a series of length
1000, for example.

See Also

convolve, arima.sim

Examples

x <- 1:100
filter(x, rep(1, 3))
filter(x, rep(1, 3), sides = 1)
filter(x, rep(1, 3), sides = 1, circular = TRUE)

filter(presidents, rep(1,3))

1082 fisher.test

fisher.test Fisher’s Exact Test for Count Data

Description

Performs Fisher’s exact test for testing the null of independence of rows and columns in a contin-
gency table with fixed marginals.

Usage

fisher.test(x, y = NULL, workspace = 200000, hybrid = FALSE,
control = list(), or = 1, alternative = "two.sided",
conf.int = TRUE, conf.level = 0.95,
simulate.p.value = FALSE, B = 2000)

Arguments

x either a two-dimensional contingency table in matrix form, or a factor object.

y a factor object; ignored if x is a matrix.

workspace an integer specifying the size of the workspace used in the network algorithm. In
units of 4 bytes. Only used for non-simulated p-values larger than 2× 2 tables.

hybrid a logical. Only used for larger than 2 × 2 tables, in which cases it indi-
cated whether the exact probabilities (default) or a hybrid approximation thereof
should be computed. See ‘Details’.

control a list with named components for low level algorithm control. At present the
only one used is "mult", a positive integer >= 2 with default 30 used only for
larger than 2 × 2 tables. This says how many times as much space should be
allocated to paths as to keys: see file ‘fexact.c’ in the sources of this package.

or the hypothesized odds ratio. Only used in the 2× 2 case.

alternative indicates the alternative hypothesis and must be one of "two.sided",
"greater" or "less". You can specify just the initial letter. Only used
in the 2× 2 case.

conf.int logical indicating if a confidence interval should be computed (and returned).

conf.level confidence level for the returned confidence interval. Only used in the 2×2 case
if conf.int = TRUE.

simulate.p.value
a logical indicating whether to compute p-values by Monte Carlo simulation, in
larger than 2× 2 tables.

B an integer specifying the number of replicates used in the Monte Carlo test.

Details

If x is a matrix, it is taken as a two-dimensional contingency table, and hence its entries should be
nonnegative integers. Otherwise, both x and ymust be vectors of the same length. Incomplete cases
are removed, the vectors are coerced into factor objects, and the contingency table is computed from
these.

fisher.test 1083

For 2 × 2 cases, p-values are obtained directly using the (central or non-central) hypergeomet-
ric distribution. Otherwise, computations are based on a C version of the FORTRAN subrou-
tine FEXACT which implements the network developed by Mehta and Patel (1986) and im-
proved by Clarkson, Fan and Joe (1993). The FORTRAN code can be obtained from http:
//www.netlib.org/toms/643. Note this fails (with an error message) when the entries of
the table are too large. (It transposes the table if necessary so it has no more rows than columns.
One constraint is that the product of the row marginals be less than 231 − 1.)

For 2 × 2 tables, the null of conditional independence is equivalent to the hypothesis that the odds
ratio equals one. ‘Exact’ inference can be based on observing that in general, given all marginal
totals fixed, the first element of the contingency table has a non-central hypergeometric distribution
with non-centrality parameter given by the odds ratio (Fisher, 1935). The alternative for a one-sided
test is based on the odds ratio, so alternative = "greater" is a test of the odds ratio being
bigger than or.

Two-sided tests are based on the probabilities of the tables, and take as ‘more extreme’ all tables
with probabilities less than or equal to that of the observed table, the p-value being the sum of such
probabilities.

For larger than 2 × 2 tables and hybrid = TRUE, asymptotic chi-squared probabilities are only
used if the ‘Cochran conditions’ are satisfied, that is if no cell has count zero, and more than 80%
of the cells have counts at least 5.

Simulation is done conditional on the row and column marginals, and works only if the marginals
are strictly positive. (A C translation of the algorithm of Patefield (1981) is used.)

Value

A list with class "htest" containing the following components:

p.value the p-value of the test.

conf.int a confidence interval for the odds ratio. Only present in the 2×2 case if argument
conf.int = TRUE.

estimate an estimate of the odds ratio. Note that the conditional Maximum Likelihood
Estimate (MLE) rather than the unconditional MLE (the sample odds ratio) is
used. Only present in the 2× 2 case.

null.value the odds ratio under the null, or. Only present in the 2× 2 case.

alternative a character string describing the alternative hypothesis.

method the character string "Fisher’s Exact Test for Count Data".

data.name a character string giving the names of the data.

References

Agresti, A. (1990) Categorical data analysis. New York: Wiley. Pages 59–66.

Fisher, R. A. (1935) The logic of inductive inference. Journal of the Royal Statistical Society Series
A 98, 39–54.

Fisher, R. A. (1962) Confidence limits for a cross-product ratio. Australian Journal of Statistics 4,
41.

Fisher, R. A. (1970) Statistical Methods for Research Workers. Oliver & Boyd.

Mehta, C. R. and Patel, N. R. (1986) Algorithm 643. FEXACT: A Fortran subroutine for Fisher’s
exact test on unordered r ∗ c contingency tables. ACM Transactions on Mathematical Software, 12,
154–161.

http://www.netlib.org/toms/643
http://www.netlib.org/toms/643

1084 fitted

Clarkson, D. B., Fan, Y. and Joe, H. (1993) A Remark on Algorithm 643: FEXACT: An Algorithm
for Performing Fisher’s Exact Test in r×cContingency Tables. ACM Transactions on Mathematical
Software, 19, 484–488.

Patefield, W. M. (1981) Algorithm AS159. An efficient method of generating r x c tables with given
row and column totals. Applied Statistics 30, 91–97.

See Also

chisq.test

Examples

Agresti (1990), p. 61f, Fisher's Tea Drinker
A British woman claimed to be able to distinguish whether milk or
tea was added to the cup first. To test, she was given 8 cups of
tea, in four of which milk was added first. The null hypothesis
is that there is no association between the true order of pouring
and the woman's guess, the alternative that there is a positive
association (that the odds ratio is greater than 1).
TeaTasting <-
matrix(c(3, 1, 1, 3),

nrow = 2,
dimnames = list(Guess = c("Milk", "Tea"),

Truth = c("Milk", "Tea")))
fisher.test(TeaTasting, alternative = "greater")
=> p=0.2429, association could not be established

Fisher (1962, 1970), Criminal convictions of like-sex twins
Convictions <-
matrix(c(2, 10, 15, 3),

nrow = 2,
dimnames =
list(c("Dizygotic", "Monozygotic"),

c("Convicted", "Not convicted")))
Convictions
fisher.test(Convictions, alternative = "less")
fisher.test(Convictions, conf.int = FALSE)
fisher.test(Convictions, conf.level = 0.95)$conf.int
fisher.test(Convictions, conf.level = 0.99)$conf.int

A r x c table Agresti (2002, p. 57) Job Satisfaction
Job <- matrix(c(1,2,1,0, 3,3,6,1, 10,10,14,9, 6,7,12,11), 4, 4,
dimnames = list(income=c("< 15k", "15-25k", "25-40k", "> 40k"),

satisfaction=c("VeryD", "LittleD", "ModerateS", "VeryS")))
fisher.test(Job)
fisher.test(Job, simulate.p.value=TRUE, B=1e5)

fitted Extract Model Fitted Values

fivenum 1085

Description

fitted is a generic function which extracts fitted values from objects returned by modeling func-
tions. fitted.values is an alias for it.

All object classes which are returned by model fitting functions should provide a fitted method.
(Note that the generic is fitted and not fitted.values.)

Methods can make use of napredict methods to compensate for the omission of missing values.
The default and nls methods do.

Usage

fitted(object, ...)
fitted.values(object, ...)

Arguments

object an object for which the extraction of model fitted values is meaningful.

... other arguments.

Value

Fitted values extracted from the object x.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

coefficients, glm, lm, residuals.

fivenum Tukey Five-Number Summaries

Description

Returns Tukey’s five number summary (minimum, lower-hinge, median, upper-hinge, maximum)
for the input data.

Usage

fivenum(x, na.rm = TRUE)

Arguments

x numeric, maybe including NAs and ±Infs.

na.rm logical; if TRUE, all NA and NaNs are dropped, before the statistics are com-
puted.

1086 fligner.test

Value

A numeric vector of length 5 containing the summary information. See boxplot.stats for
more details.

See Also

IQR, boxplot.stats, median, quantile, range.

Examples

fivenum(c(rnorm(100),-1:1/0))

fligner.test Fligner-Killeen Test of Homogeneity of Variances

Description

Performs a Fligner-Killeen (median) test of the null that the variances in each of the groups (sam-
ples) are the same.

Usage

fligner.test(x, ...)

Default S3 method:
fligner.test(x, g, ...)

S3 method for class 'formula':
fligner.test(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

g a vector or factor object giving the group for the corresponding elements of x.
Ignored if x is a list.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs
the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

fligner.test 1087

Details

If x is a list, its elements are taken as the samples to be compared for homogeneity of variances,
and hence have to be numeric data vectors. In this case, g is ignored, and one can simply use
fligner.test(x) to perform the test. If the samples are not yet contained in a list, use
fligner.test(list(x, ...)).

Otherwise, x must be a numeric data vector, and g must be a vector or factor object of the same
length as x giving the group for the corresponding elements of x.

The Fligner-Killeen (median) test has been determined in a simulation study as one of the many
tests for homogeneity of variances which is most robust against departures from normality, see
Conover, Johnson & Johnson (1981). It is a k-sample simple linear rank which uses the ranks of the
absolute values of the centered samples and weights a(i) = qnorm((1+i/(n+1))/2). The version
implemented here uses median centering in each of the samples (F-K:med X2 in the reference).

Value

A list of class "htest" containing the following components:

statistic the Fligner-Killeen:med X2 test statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

p.value the p-value of the test.

method the character string "Fligner-Killeen test of homogeneity of
variances".

data.name a character string giving the names of the data.

References

William J. Conover & Mark E. Johnson & Myrle M. Johnson (1981). A comparative study of
tests for homogeneity of variances, with applications to the outer continental shelf bidding data.
Technometrics 23, 351–361.

See Also

ansari.test and mood.test for rank-based two-sample test for a difference in scale param-
eters; var.test and bartlett.test for parametric tests for the homogeneity of variances.

Examples

require(graphics)

plot(count ~ spray, data = InsectSprays)
fligner.test(InsectSprays$count, InsectSprays$spray)
fligner.test(count ~ spray, data = InsectSprays)
Compare this to bartlett.test()

1088 formula

formula Model Formulae

Description

The generic function formula and its specific methods provide a way of extracting formulae
which have been included in other objects.

as.formula is almost identical, additionally preserving attributes when object already inherits
from "formula". The default value of the env argument is used only when the formula would
otherwise lack an environment.

Usage

formula(x, ...)
as.formula(object, env = parent.frame())

Arguments

x, object R object.

... further arguments passed to or from other methods.

env the environment to associate with the result.

Details

The models fit by, e.g., the lm and glm functions are specified in a compact symbolic form. The
~ operator is basic in the formation of such models. An expression of the form y ~ model is
interpreted as a specification that the response y is modelled by a linear predictor specified symbol-
ically by model. Such a model consists of a series of terms separated by + operators. The terms
themselves consist of variable and factor names separated by : operators. Such a term is interpreted
as the interaction of all the variables and factors appearing in the term.

In addition to + and :, a number of other operators are useful in model formulae. The * operator
denotes factor crossing: a*b interpreted as a+b+a:b. The ^ operator indicates crossing to the
specified degree. For example (a+b+c)^2 is identical to (a+b+c)*(a+b+c) which in turn
expands to a formula containing the main effects for a, b and c together with their second-order
interactions. The %in% operator indicates that the terms on its left are nested within those on the
right. For example a + b %in% a expands to the formula a + a:b. The - operator removes
the specified terms, so that (a+b+c)^2 - a:b is identical to a + b + c + b:c + a:c. It
can also used to remove the intercept term: y ~ x - 1 is a line through the origin. A model with
no intercept can be also specified as y ~ x + 0 or y ~ 0 + x.

While formulae usually involve just variable and factor names, they can also involve arithmetic
expressions. The formula log(y) ~ a + log(x) is quite legal. When such arithmetic expres-
sions involve operators which are also used symbolically in model formulae, there can be confusion
between arithmetic and symbolic operator use.

To avoid this confusion, the function I() can be used to bracket those portions of a model formula
where the operators are used in their arithmetic sense. For example, in the formula y ~ a +
I(b+c), the term b+c is to be interpreted as the sum of b and c.

Variable names can be quoted by backticks ‘like this‘ in formulae, although there is no guar-
antee that all code using formulae will accept such non-syntactic names.

formula 1089

Most model-fitting functions accept formulae with right-hand-side including the function offset
to indicate terms with a fixed coefficient of one. Some functions accept other ‘specials’ such as
strata or cluster (see the specials argument of terms.formula).

There are two special interpretations of . in a formula. The usual one is in the context of a data
argument of model fitting functions and means ‘all columns not otherwise in the formula’: see
terms.formula. In the context of update.formula, only, it means ‘what was previously in
this part of the formula’.

When formula is called on a fitted model object, either a specific method is used (such as that for
class "nls") or the default method. The default first looks for a "formula" component of the
object (and evaluates it), then a "terms" component, then a formula parameter of the call (and
evaluates its value) and finally a "formula" attribute.

There is a method for data frames. If there is only one column this forms the RHS with an empty
LHS. For more columns, the first column is the LHS of the formula and the remaining columns
separated by + form the RHS.

Value

All the functions above produce an object of class "formula" which contains a symbolic model
formula.

Environments

A formula object has an associated environment, and this environment (rather than the parent envi-
ronment) is used by model.frame to evaluate variables that are not found in the supplied data
argument.

Formulas created with the ~ operator use the environment in which they were created. Formulas
created with as.formulawill use the env argument for their environment. Pre-existing formulas
extracted with as.formula will only have their environment changed if env is given explicitly.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models in S eds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

I, offset.

For formula manipulation: terms, and all.vars; for typical use: lm, glm, and coplot.

Examples

class(fo <- y ~ x1*x2) # "formula"
fo
typeof(fo)# R internal : "language"
terms(fo)

environment(fo)
environment(as.formula("y ~ x"))
environment(as.formula("y ~ x", env=new.env()))

Create a formula for a model with a large number of variables:
xnam <- paste("x", 1:25, sep="")
(fmla <- as.formula(paste("y ~ ", paste(xnam, collapse= "+"))))

1090 friedman.test

formula.nls Extract Model Formula from nls Object

Description

Returns the model used to fit object.

Usage

S3 method for class 'nls':
formula(x, ...)

Arguments

x an object inheriting from class "nls", representing a nonlinear least squares
fit.

... further arguments passed to or from other methods.

Value

a formula representing the model used to obtain object.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, formula

Examples

fm1 <- nls(circumference ~ A/(1+exp((B-age)/C)), Orange,
start = list(A=160, B=700, C = 350))

formula(fm1)

friedman.test Friedman Rank Sum Test

Description

Performs a Friedman rank sum test with unreplicated blocked data.

Usage

friedman.test(y, ...)

Default S3 method:
friedman.test(y, groups, blocks, ...)

S3 method for class 'formula':
friedman.test(formula, data, subset, na.action, ...)

friedman.test 1091

Arguments

y either a numeric vector of data values, or a data matrix.

groups a vector giving the group for the corresponding elements of y if this is a vector;
ignored if y is a matrix. If not a factor object, it is coerced to one.

blocks a vector giving the block for the corresponding elements of y if this is a vector;
ignored if y is a matrix. If not a factor object, it is coerced to one.

formula a formula of the form a ~ b | c, where a, b and c give the data values and
corresponding groups and blocks, respectively.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

friedman.test can be used for analyzing unreplicated complete block designs (i.e., there is
exactly one observation in y for each combination of levels of groups and blocks) where the
normality assumption may be violated.

The null hypothesis is that apart from an effect of blocks, the location parameter of y is the same
in each of the groups.

If y is a matrix, groups and blocks are obtained from the column and row indices, respectively.
NA’s are not allowed in groups or blocks; if y contains NA’s, corresponding blocks are removed.

Value

A list with class "htest" containing the following components:

statistic the value of Friedman’s chi-squared statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

p.value the p-value of the test.

method the character string "Friedman rank sum test".

data.name a character string giving the names of the data.

References

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric Statistical Methods. New York: John
Wiley & Sons. Pages 139–146.

See Also

quade.test.

1092 ftable

Examples

Hollander & Wolfe (1973), p. 140ff.
Comparison of three methods ("round out", "narrow angle", and
"wide angle") for rounding first base. For each of 18 players
and the three method, the average time of two runs from a point on
the first base line 35ft from home plate to a point 15ft short of
second base is recorded.
RoundingTimes <-
matrix(c(5.40, 5.50, 5.55,

5.85, 5.70, 5.75,
5.20, 5.60, 5.50,
5.55, 5.50, 5.40,
5.90, 5.85, 5.70,
5.45, 5.55, 5.60,
5.40, 5.40, 5.35,
5.45, 5.50, 5.35,
5.25, 5.15, 5.00,
5.85, 5.80, 5.70,
5.25, 5.20, 5.10,
5.65, 5.55, 5.45,
5.60, 5.35, 5.45,
5.05, 5.00, 4.95,
5.50, 5.50, 5.40,
5.45, 5.55, 5.50,
5.55, 5.55, 5.35,
5.45, 5.50, 5.55,
5.50, 5.45, 5.25,
5.65, 5.60, 5.40,
5.70, 5.65, 5.55,
6.30, 6.30, 6.25),

nrow = 22,
byrow = TRUE,
dimnames = list(1 : 22,

c("Round Out", "Narrow Angle", "Wide Angle")))
friedman.test(RoundingTimes)
=> strong evidence against the null that the methods are equivalent
with respect to speed

wb <- aggregate(warpbreaks$breaks,
by = list(w = warpbreaks$wool,

t = warpbreaks$tension),
FUN = mean)

wb
friedman.test(wbx, wbw, wb$t)
friedman.test(x ~ w | t, data = wb)

ftable Flat Contingency Tables

Description

Create ‘flat’ contingency tables.

ftable 1093

Usage

ftable(x, ...)

Default S3 method:
ftable(..., exclude = c(NA, NaN), row.vars = NULL,

col.vars = NULL)

Arguments

x, ... R objects which can be interpreted as factors (including character strings), or a
list (or data frame) whose components can be so interpreted, or a contingency
table object of class "table" or "ftable".

exclude values to use in the exclude argument of factor when interpreting non-factor
objects.

row.vars a vector of integers giving the numbers of the variables, or a character vector
giving the names of the variables to be used for the rows of the flat contingency
table.

col.vars a vector of integers giving the numbers of the variables, or a character vector giv-
ing the names of the variables to be used for the columns of the flat contingency
table.

Details

ftable creates ‘flat’ contingency tables. Similar to the usual contingency tables, these contain
the counts of each combination of the levels of the variables (factors) involved. This information
is then re-arranged as a matrix whose rows and columns correspond to unique combinations of the
levels of the row and column variables (as specified by row.vars and col.vars, respectively).
The combinations are created by looping over the variables in reverse order (so that the levels of
the left-most variable vary the slowest). Displaying a contingency table in this flat matrix form (via
print.ftable, the print method for objects of class "ftable") is often preferable to showing
it as a higher-dimensional array.

ftable is a generic function. Its default method, ftable.default, first creates a contingency
table in array form from all arguments except row.vars and col.vars. If the first argument
is of class "table", it represents a contingency table and is used as is; if it is a flat table of
class "ftable", the information it contains is converted to the usual array representation using
as.ftable. Otherwise, the arguments should be R objects which can be interpreted as factors
(including character strings), or a list (or data frame) whose components can be so interpreted,
which are cross-tabulated using table. Then, the arguments row.vars and col.vars are used
to collapse the contingency table into flat form. If neither of these two is given, the last variable is
used for the columns. If both are given and their union is a proper subset of all variables involved,
the other variables are summed out.

When the arguments are R expressions interpreted as factors, additional arguments will be passed
to table to control how the variable names are displayed; see the last example below.

Function ftable.formula provides a formula method for creating flat contingency tables.

There are methods for as.table and as.data.frame.

Value

ftable returns an object of class "ftable", which is a matrix with counts of each combina-
tion of the levels of variables with information on the names and levels of the (row and columns)
variables stored as attributes "row.vars" and "col.vars".

1094 ftable.formula

See Also

ftable.formula for the formula interface (which allows a data = . argument);
read.ftable for information on reading, writing and coercing flat contingency tables; table
for ordinary cross-tabulation; xtabs for formula-based cross-tabulation.

Examples

Start with a contingency table.
ftable(Titanic, row.vars = 1:3)
ftable(Titanic, row.vars = 1:2, col.vars = "Survived")
ftable(Titanic, row.vars = 2:1, col.vars = "Survived")

Start with a data frame.
x <- ftable(mtcars[c("cyl", "vs", "am", "gear")])
x
ftable(x, row.vars = c(2, 4))

Start with expressions, use table()'s "dnn" to change labels
ftable(mtcars$cyl, mtcars$vs, mtcars$am, mtcars$gear, row.vars = c(2, 4),

dnn = c("Cylinders", "V/S", "Transmission", "Gears"))

ftable.formula Formula Notation for Flat Contingency Tables

Description

Produce or manipulate a flat contingency table using formula notation.

Usage

S3 method for class 'formula':
ftable(formula, data = NULL, subset, na.action, ...)

Arguments

formula a formula object with both left and right hand sides specifying the column and
row variables of the flat table.

data a data frame, list or environment (or similar: see model.frame) containing
the variables to be cross-tabulated, or a contingency table (see below).

subset an optional vector specifying a subset of observations to be used. Ignored if
data is a contingency table.

na.action a function which indicates what should happen when the data contain NAs. Ig-
nored if data is a contingency table.

... further arguments to the default ftable method may also be passed as arguments,
see ftable.default.

GammaDist 1095

Details

This is a method of the generic function ftable.

The left and right hand side of formula specify the column and row variables, respectively, of the
flat contingency table to be created. Only the + operator is allowed for combining the variables. A
. may be used once in the formula to indicate inclusion of all the remaining variables.

If data is an object of class "table" or an array with more than 2 dimensions, it is taken as
a contingency table, and hence all entries should be nonnegative. Otherwise, if it is not a flat
contingency table (i.e., an object of class "ftable"), it should be a data frame or matrix, list or
environment containing the variables to be cross-tabulated. In this case, na.action is applied to
the data to handle missing values, and, after possibly selecting a subset of the data as specified by
the subset argument, a contingency table is computed from the variables.

The contingency table is then collapsed to a flat table, according to the row and column variables
specified by formula.

Value

A flat contingency table which contains the counts of each combination of the levels of the variables,
collapsed into a matrix for suitably displaying the counts.

See Also

ftable, ftable.default; table.

Examples

Titanic
x <- ftable(Survived ~ ., data = Titanic)
x
ftable(Sex ~ Class + Age, data = x)

GammaDist The Gamma Distribution

Description

Density, distribution function, quantile function and random generation for the Gamma distribution
with parameters shape and scale.

Usage

dgamma(x, shape, rate = 1, scale = 1/rate, log = FALSE)
pgamma(q, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,

log.p = FALSE)
qgamma(p, shape, rate = 1, scale = 1/rate, lower.tail = TRUE,

log.p = FALSE)
rgamma(n, shape, rate = 1, scale = 1/rate)

1096 GammaDist

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

rate an alternative way to specify the scale.

shape, scale shape and scale parameters. Must be positive, scale strictly.

log, log.p logical; if TRUE, probabilities/densities p are returned as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

If scale is omitted, it assumes the default value of 1.

The Gamma distribution with parameters shape = α and scale = σ has density

f(x) =
1

σαΓ(α)
xα−1e−x/σ

for x ≥ 0, α > 0 and σ > 0. (Here Γ(α) is the function implemented by R’s gamma() and defined
in its help. Note that a = 0 corresponds to the trivial distribution with all mass at point 0.)

The mean and variance are E(X) = ασ and V ar(X) = ασ2.

The cumulative hazard H(t) = − log(1 − F (t)) is -pgamma(t, ..., lower = FALSE,
log = TRUE).

Note that for smallish values of shape (and moderate scale) a large parts of the mass of the
Gamma distribution is on values of x so near zero that they will be represented as zero in computer
arithmetic. So rgamma can well return values which will be represented as zero. (This will also
happen for very large values of scale since the actual generation is done for scale=1.) Similarly,
qgamma has a very hard job for small scale, and warns of potential unreliability for scale <
1e-10.

Value

dgamma gives the density, pgamma gives the distribution function, qgamma gives the quantile
function, and rgamma generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

Note

The S parametrization is via shape and rate: S has no scale parameter.

pgamma is closely related to the incomplete gamma function. As defined by Abramowitz and
Stegun 6.5.1 (and by ‘Numerical Recipes’) this is

P (a, x) =
1

Γ(a)

∫ x

0

ta−1e−tdt

P (a, x) is pgamma(x, a). Other authors (for example Karl Pearson in his 1922 tables) omit the
normalizing factor, defining the incomplete gamma function as pgamma(x, a) * gamma(a).
A few use the ‘upper’ incomplete gamma function, the integral from x to ∞ which can be com-
puted by pgamma(x, a, lower=FALSE) * gamma(a), or its normalized version. See also
http://en.wikipedia.org/wiki/Incomplete_gamma_function.

http://en.wikipedia.org/wiki/Incomplete_gamma_function

GammaDist 1097

Source

dgamma is computed via the Poisson density, using code contributed by Catherine Loader (see
dbinom).

pgamma uses an unpublished (and not otherwise documented) algorithm ‘mainly by Morten Welin-
der’.

qgamma is based on a C translation of

Best, D. J. and D. E. Roberts (1975). Algorithm AS91. Percentage points of the chi-squared
distribution. Applied Statistics, 24, 385–388.

plus a final Newton step to improve the approximation.

rgamma for shape >= 1 uses

Ahrens, J. H. and Dieter, U. (1982). Generating gamma variates by a modified rejection technique.
Communications of the ACM, 25, 47–54,

and for 0 < shape < 1 uses

Ahrens, J. H. and Dieter, U. (1974). Computer methods for sampling from gamma, beta, Poisson
and binomial distributions. Computing, 12, 223–246.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Shea, B. L. (1988) Algorithm AS 239, Chi-squared and incomplete Gamma integral, Applied Statis-
tics (JRSS C) 37, 466–473.

Abramowitz, M. and Stegun, I. A. (1972) Handbook of Mathematical Functions. New York: Dover.
Chapter 6: Gamma and Related Functions.

See Also

gamma for the gamma function, dbeta for the Beta distribution and dchisq for the chi-squared
distribution which is a special case of the Gamma distribution.

Examples

-log(dgamma(1:4, shape=1))
p <- (1:9)/10
pgamma(qgamma(p,shape=2), shape=2)
1 - 1/exp(qgamma(p, shape=1))

even for shape = 0.001 about half the mass is on numbers
that cannot be represented accurately (and most of those as zero)
pgamma(.Machine$double.xmin, 0.001)
pgamma(5e-324, 0.001) # on most machines this is the smallest

representable non-zero number
table(rgamma(1e4, 0.001) == 0)/1e4

1098 Geometric

Geometric The Geometric Distribution

Description

Density, distribution function, quantile function and random generation for the geometric distribu-
tion with parameter prob.

Usage

dgeom(x, prob, log = FALSE)
pgeom(q, prob, lower.tail = TRUE, log.p = FALSE)
qgeom(p, prob, lower.tail = TRUE, log.p = FALSE)
rgeom(n, prob)

Arguments

x, q vector of quantiles representing the number of failures in a sequence of Bernoulli
trials before success occurs.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

prob probability of success in each trial. 0 < prob <= 1.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

The geometric distribution with prob = p has density

p(x) = p(1− p)x

for x = 0, 1, 2, . . ., 0 < p ≤ 1.

If an element of x is not integer, the result of pgeom is zero, with a warning.

The quantile is defined as the smallest value x such that F (x) ≥ p, where F is the distribution
function.

Value

dgeom gives the density, pgeom gives the distribution function, qgeom gives the quantile function,
and rgeom generates random deviates.

Invalid prob will result in return value NaN, with a warning.

Source

dgeom computes via dbinom, using code contributed by Catherine Loader (see dbinom).

pgeom and qgeom are based on the closed-form formulae.

rgeom uses the derivation as an exponential mixture of Poissons, see

Devroye, L. (1986) Non-Uniform Random Variate Generation. Springer-Verlag, New York. Page
480.

getInitial 1099

See Also

dnbinom for the negative binomial which generalizes the geometric distribution.

Examples

qgeom((1:9)/10, prob = .2)
Ni <- rgeom(20, prob = 1/4); table(factor(Ni, 0:max(Ni)))

getInitial Get Initial Parameter Estimates

Description

This function evaluates initial parameter estimates for a nonlinear regression model. If data is a
parameterized data frame or pframe object, its parameters attribute is returned. Otherwise the
object is examined to see if it contains a call to a selfStart object whose initial attribute
can be evaluated.

Usage

getInitial(object, data, ...)

Arguments

object a formula or a selfStart model that defines a nonlinear regression model

data a data frame in which the expressions in the formula or arguments to the
selfStart model can be evaluated

... optional additional arguments

Value

A named numeric vector or list of starting estimates for the parameters. The construction of many
selfStart models is such that these "starting" estimates are, in fact, the converged parameter
estimates.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart, selfStart.default, selfStart.formula

Examples

PurTrt <- Puromycin[Puromycin$state == "treated",]
getInitial(rate ~ SSmicmen(conc, Vm, K), PurTrt)

1100 glm

glm Fitting Generalized Linear Models

Description

glm is used to fit generalized linear models, specified by giving a symbolic description of the linear
predictor and a description of the error distribution.

Usage

glm(formula, family = gaussian, data, weights, subset,
na.action, start = NULL, etastart, mustart,
offset, control = glm.control(...), model = TRUE,
method = "glm.fit", x = FALSE, y = TRUE, contrasts = NULL,
...)

glm.fit(x, y, weights = rep(1, nobs),
start = NULL, etastart = NULL, mustart = NULL,
offset = rep(0, nobs), family = gaussian(),
control = glm.control(), intercept = TRUE)

S3 method for class 'glm':
weights(object, type = c("prior", "working"), ...)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a
symbolic description of the model to be fitted. The details of model specification
are given under ‘Details’.

family a description of the error distribution and link function to be used in the model.
This can be a character string naming a family function, a family function or
the result of a call to a family function. (See family for details of family
functions.)

data an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model. If
not found in data, the variables are taken from environment(formula),
typically the environment from which glm is called.

weights an optional vector of weights to be used in the fitting process. Should be NULL
or a numeric vector.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that
is unset. The ‘factory-fresh’ default is na.omit. Another possible value is
NULL, no action. Value na.exclude can be useful.

start starting values for the parameters in the linear predictor.

etastart starting values for the linear predictor.

mustart starting values for the vector of means.

glm 1101

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. This should be NULL or a numeric vector of
length either one or equal to the number of cases. One or more offset terms
can be included in the formula instead or as well, and if both are specified their
sum is used. See model.offset.

control a list of parameters for controlling the fitting process. See the documentation for
glm.control for details.

model a logical value indicating whether model frame should be included as a compo-
nent of the returned value.

method the method to be used in fitting the model. The default method "glm.fit"
uses iteratively reweighted least squares (IWLS). The only current alternative is
"model.frame" which returns the model frame and does no fitting.

x, y For glm: logical values indicating whether the response vector and model ma-
trix used in the fitting process should be returned as components of the returned
value.
For glm.fit: x is a design matrix of dimension n * p, and y is a vector of
observations of length n.

contrasts an optional list. See the contrasts.arg of model.matrix.default.
intercept logical. Should an intercept be included in the null model?
object an object inheriting from class "glm".
type character, partial matching allowed. Type of weights to extract from the fitted

model object.
... For glm: arguments to be passed by default to glm.control: see argument

control.
For weights: further arguments passed to or from other methods.

Details

A typical predictor has the form response ~ terms where response is the (numeric) re-
sponse vector and terms is a series of terms which specifies a linear predictor for response.
For binomial and quasibinomial families the response can also be specified as a factor
(when the first level denotes failure and all others success) or as a two-column matrix with the
columns giving the numbers of successes and failures. A terms specification of the form first +
second indicates all the terms in first together with all the terms in second with duplicates
removed. The terms in the formula will be re-ordered so that main effects come first, followed by
the interactions, all second-order, all third-order and so on: to avoid this pass a terms object as the
formula.

A specification of the form first:second indicates the the set of terms obtained by tak-
ing the interactions of all terms in first with all terms in second. The specification
first*second indicates the cross of first and second. This is the same as first +
second + first:second.

glm.fit is the workhorse function.

If more than one of etastart, start and mustart is specified, the first in the list will be used.
It is often advisable to supply starting values for a quasi family, and also for families with unusual
links such as gaussian("log").

All of weights, subset, offset, etastart and mustart are evaluated in the same way as
variables in formula, that is first in data and then in the environment of formula.

For the background to warning messages about ‘fitted probabilities numerically 0 or 1 occurred’ for
binomial GLMs, see Venables & Ripley (2002, pp. 197–8).

1102 glm

Value

glm returns an object of class inheriting from "glm" which inherits from the class "lm". See later
in this section.

The function summary (i.e., summary.glm) can be used to obtain or print a summary of the
results and the function anova (i.e., anova.glm) to produce an analysis of variance table.

The generic accessor functions coefficients, effects, fitted.values and
residuals can be used to extract various useful features of the value returned by glm.

weights extracts a vector of weights, one for each case in the fit (after subsetting and
na.action).

An object of class "glm" is a list containing at least the following components:

coefficients a named vector of coefficients

residuals the working residuals, that is the residuals in the final iteration of the IWLS fit.
Since cases with zero weights are omitted, their working residuals are NA.

fitted.values
the fitted mean values, obtained by transforming the linear predictors by the
inverse of the link function.

rank the numeric rank of the fitted linear model.

family the family object used.
linear.predictors

the linear fit on link scale.

deviance up to a constant, minus twice the maximized log-likelihood. Where sensible, the
constant is chosen so that a saturated model has deviance zero.

aic Akaike’s An Information Criterion, minus twice the maximized log-likelihood
plus twice the number of coefficients (so assuming that the dispersion is known).

null.deviance
The deviance for the null model, comparable with deviance. The null model
will include the offset, and an intercept if there is one in the model. Note that
this will be incorrect if the link function depends on the data other than through
the fitted mean: specify a zero offset to force a correct calculation.

iter the number of iterations of IWLS used.

weights the working weights, that is the weights in the final iteration of the IWLS fit.
prior.weights

the case weights initially supplied.

df.residual the residual degrees of freedom.

df.null the residual degrees of freedom for the null model.

y if requested (the default) the y vector used. (It is a vector even for a binomial
model.)

x (if requested, the model matrix.

model (if requested (the default), the model frame.

converged logical. Was the IWLS algorithm judged to have converged?

boundary logical. Is the fitted value on the boundary of the attainable values?

call the matched call.

formula the formula supplied.

terms the terms object used.

glm 1103

data the data argument.

offset the offset vector used.

control the value of the control argument used.

method the name of the fitter function used, currently always "glm.fit".

contrasts (where relevant) the contrasts used.

xlevels (where relevant) a record of the levels of the factors used in fitting.

na.action (where relevant) information returned by model.frame on the special han-
dling of NAs.

In addition, non-empty fits will have components qr, R and effects relating to the final weighted
linear fit.

Objects of class "glm" are normally of class c("glm", "lm"), that is inherit from class "lm",
and well-designed methods for class "lm" will be applied to the weighted linear model at the
final iteration of IWLS. However, care is needed, as extractor functions for class "glm" such as
residuals and weights do not just pick out the component of the fit with the same name.

If a binomial glm model was specified by giving a two-column response, the weights returned
by prior.weights are the total numbers of cases (factored by the supplied case weights) and
the component y of the result is the proportion of successes.

Author(s)

The original R implementation of glm was written by Simon Davies working for Ross Ihaka at the
University of Auckland, but has since been extensively re-written by members of the R Core team.

The design was inspired by the S function of the same name described in Hastie & Pregibon (1992).

References

Dobson, A. J. (1990) An Introduction to Generalized Linear Models. London: Chapman and Hall.

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical Models in
S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and Hall.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York: Springer.

See Also

anova.glm, summary.glm, etc. for glm methods, and the generic functions anova,
summary, effects, fitted.values, and residuals.

lm for non-generalized linear models (which SAS calls GLMs, for ‘general’ linear models).

loglin and loglm for fitting log-linear models (which binomial and Poisson GLMs are) to con-
tingency tables.

bigglm in package biglm for an alternative way to fit GLMs to large datasets (especially those
with many cases).

esoph, infert and predict.glm have examples of fitting binomial glms.

1104 glm.control

Examples

Dobson (1990) Page 93: Randomized Controlled Trial :
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
print(d.AD <- data.frame(treatment, outcome, counts))
glm.D93 <- glm(counts ~ outcome + treatment, family=poisson())
anova(glm.D93)
summary(glm.D93)

an example with offsets from Venables & Ripley (2002, p.189)
utils::data(anorexia, package="MASS")

anorex.1 <- glm(Postwt ~ Prewt + Treat + offset(Prewt),
family = gaussian, data = anorexia)

summary(anorex.1)

A Gamma example, from McCullagh & Nelder (1989, pp. 300-2)
clotting <- data.frame(

u = c(5,10,15,20,30,40,60,80,100),
lot1 = c(118,58,42,35,27,25,21,19,18),
lot2 = c(69,35,26,21,18,16,13,12,12))

summary(glm(lot1 ~ log(u), data=clotting, family=Gamma))
summary(glm(lot2 ~ log(u), data=clotting, family=Gamma))

Not run:
for an example of the use of a terms object as a formula
demo(glm.vr)
End(Not run)

glm.control Auxiliary for Controlling GLM Fitting

Description

Auxiliary function as user interface for glm fitting. Typically only used when calling glm or
glm.fit.

Usage

glm.control(epsilon = 1e-8, maxit = 25, trace = FALSE)

Arguments

epsilon positive convergence tolerance ε; the iterations converge when |dev −
devold|/(|dev|+ 0.1) < ε.

maxit integer giving the maximal number of IWLS iterations.
trace logical indicating if output should be produced for each iteration.

Details

If epsilon is small, it is also used as the tolerance for the least squares solution.

When trace is true, calls to cat produce the output for each IWLS iteration. Hence,
options(digits = *) can be used to increase the precision, see the example.

glm.summaries 1105

Value

A list with the arguments as components.

References

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical Models in
S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

glm.fit, the fitting procedure used by glm.

Examples

A variation on example(glm) :

Annette Dobson's example ...
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
oo <- options(digits = 12) # to see more when tracing :
glm.D93X <- glm(counts ~ outcome + treatment, family=poisson(),

trace = TRUE, epsilon = 1e-14)
options(oo)
coef(glm.D93X) # the last two are closer to 0 than in ?glm's glm.D93

glm.summaries Accessing Generalized Linear Model Fits

Description

These functions are all methods for class glm or summary.glm objects.

Usage

S3 method for class 'glm':
family(object, ...)

S3 method for class 'glm':
residuals(object, type = c("deviance", "pearson", "working",

"response", "partial"), ...)

Arguments

object an object of class glm, typically the result of a call to glm.

type the type of residuals which should be returned. The alternatives are:
"deviance" (default), "pearson", "working", "response", and
"partial".

... further arguments passed to or from other methods.

1106 hclust

Details

The references define the types of residuals: Davison & Snell is a good reference for the usages of
each.

The partial residuals are a matrix of working residuals, with each column formed by omitting a term
from the model.

How residuals treats cases with missing values in the original fit is determined by the
na.action argument of that fit. If na.action = na.omit omitted cases will not appear
in the residuals, whereas if na.action = na.exclude they will appear, with residual value
NA. See also naresid.

For fits done with y = FALSE the response values are computed from other components.

References

Davison, A. C. and Snell, E. J. (1991) Residuals and diagnostics. In: Statistical Theory and Mod-
elling. In Honour of Sir David Cox, FRS, eds. Hinkley, D. V., Reid, N. and Snell, E. J., Chapman
& Hall.

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical Models in
S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

McCullagh P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and Hall.

See Also

glm for computing glm.obj, anova.glm; the corresponding generic functions,
summary.glm, coef, deviance, df.residual, effects, fitted, residuals.

influence.measures for deletion diagnostics, including standardized (rstandard) and studentized
(rstudent) residuals.

hclust Hierarchical Clustering

Description

Hierarchical cluster analysis on a set of dissimilarities and methods for analyzing it.

Usage

hclust(d, method = "complete", members=NULL)

S3 method for class 'hclust':
plot(x, labels = NULL, hang = 0.1,

axes = TRUE, frame.plot = FALSE, ann = TRUE,
main = "Cluster Dendrogram",
sub = NULL, xlab = NULL, ylab = "Height", ...)

plclust(tree, hang = 0.1, unit = FALSE, level = FALSE, hmin = 0,
square = TRUE, labels = NULL, plot. = TRUE,
axes = TRUE, frame.plot = FALSE, ann = TRUE,
main = "", sub = NULL, xlab = NULL, ylab = "Height")

hclust 1107

Arguments

d a dissimilarity structure as produced by dist.

method the agglomeration method to be used. This should be (an unambiguous ab-
breviation of) one of "ward", "single", "complete", "average",
"mcquitty", "median" or "centroid".

members NULL or a vector with length size of d. See the ‘Details’ section.

x,tree an object of the type produced by hclust.

hang The fraction of the plot height by which labels should hang below the rest of the
plot. A negative value will cause the labels to hang down from 0.

labels A character vector of labels for the leaves of the tree. By default the row names
or row numbers of the original data are used. If labels=FALSE no labels at
all are plotted.

axes, frame.plot, ann
logical flags as in plot.default.

main, sub, xlab, ylab
character strings for title. sub and xlab have a non-NULL default when
there’s a tree$call.

... Further graphical arguments.

unit logical. If true, the splits are plotted at equally-spaced heights rather than at the
height in the object.

hmin numeric. All heights less than hmin are regarded as being hmin: this can be
used to suppress detail at the bottom of the tree.

level, square, plot.
as yet unimplemented arguments of plclust for S-PLUS compatibility.

Details

This function performs a hierarchical cluster analysis using a set of dissimilarities for the n objects
being clustered. Initially, each object is assigned to its own cluster and then the algorithm pro-
ceeds iteratively, at each stage joining the two most similar clusters, continuing until there is just
a single cluster. At each stage distances between clusters are recomputed by the Lance–Williams
dissimilarity update formula according to the particular clustering method being used.

A number of different clustering methods are provided. Ward’s minimum variance method aims at
finding compact, spherical clusters. The complete linkage method finds similar clusters. The single
linkage method (which is closely related to the minimal spanning tree) adopts a ‘friends of friends’
clustering strategy. The other methods can be regarded as aiming for clusters with characteristics
somewhere between the single and complete link methods. Note however, that methods "median"
and "centroid" are not leading to a monotone distance measure, or equivalently the resulting
dendrograms can have so called inversions (which are hard to interpret).

If members!=NULL, then d is taken to be a dissimilarity matrix between clusters instead of dis-
similarities between singletons and members gives the number of observations per cluster. This
way the hierarchical cluster algorithm can be ‘started in the middle of the dendrogram’, e.g., in order
to reconstruct the part of the tree above a cut (see examples). Dissimilarities between clusters can
be efficiently computed (i.e., without hclust itself) only for a limited number of distance/linkage
combinations, the simplest one being squared Euclidean distance and centroid linkage. In this case
the dissimilarities between the clusters are the squared Euclidean distances between cluster means.

In hierarchical cluster displays, a decision is needed at each merge to specify which subtree should
go on the left and which on the right. Since, for n observations there are n − 1 merges, there are

1108 hclust

2(n−1) possible orderings for the leaves in a cluster tree, or dendrogram. The algorithm used in
hclust is to order the subtree so that the tighter cluster is on the left (the last, i.e., most recent,
merge of the left subtree is at a lower value than the last merge of the right subtree). Single observa-
tions are the tightest clusters possible, and merges involving two observations place them in order
by their observation sequence number.

Value

An object of class hclust which describes the tree produced by the clustering process. The object is
a list with components:

merge an n−1 by 2 matrix. Row i of merge describes the merging of clusters at step i
of the clustering. If an element j in the row is negative, then observation−j was
merged at this stage. If j is positive then the merge was with the cluster formed
at the (earlier) stage j of the algorithm. Thus negative entries in merge indicate
agglomerations of singletons, and positive entries indicate agglomerations of
non-singletons.

height a set of n − 1 non-decreasing real values. The clustering height: that is, the
value of the criterion associated with the clustering method for the particular
agglomeration.

order a vector giving the permutation of the original observations suitable for plotting,
in the sense that a cluster plot using this ordering and matrix merge will not
have crossings of the branches.

labels labels for each of the objects being clustered.
call the call which produced the result.
method the cluster method that has been used.
dist.method the distance that has been used to create d (only returned if the distance object

has a "method" attribute).

There are print, plot and identify (see identify.hclust) methods and the
rect.hclust() function for hclust objects. The plclust() function is basically the same
as the plot method, plot.hclust, primarily for back compatibility with S-plus. Its extra argu-
ments are not yet implemented.

Author(s)

The hclust function is based on Fortran code contributed to STATLIB by F. Murtagh.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (S version.)

Everitt, B. (1974). Cluster Analysis. London: Heinemann Educ. Books.

Hartigan, J. A. (1975). Clustering Algorithms. New York: Wiley.

Sneath, P. H. A. and R. R. Sokal (1973). Numerical Taxonomy. San Francisco: Freeman.

Anderberg, M. R. (1973). Cluster Analysis for Applications. Academic Press: New York.

Gordon, A. D. (1999). Classification. Second Edition. London: Chapman and Hall / CRC

Murtagh, F. (1985). “Multidimensional Clustering Algorithms”, in COMPSTAT Lectures 4.
Wuerzburg: Physica-Verlag (for algorithmic details of algorithms used).

McQuitty, L.L. (1966). Similarity Analysis by Reciprocal Pairs for Discrete and Continuous Data.
Educational and Psychological Measurement, 26, 825–831.

heatmap 1109

See Also

identify.hclust, rect.hclust, cutree, dendrogram, kmeans.

For the Lance–Williams formula and methods that apply it generally, see agnes from package
cluster.

Examples

require(graphics)

hc <- hclust(dist(USArrests), "ave")
plot(hc)
plot(hc, hang = -1)

Do the same with centroid clustering and squared Euclidean distance,
cut the tree into ten clusters and reconstruct the upper part of the
tree from the cluster centers.
hc <- hclust(dist(USArrests)^2, "cen")
memb <- cutree(hc, k = 10)
cent <- NULL
for(k in 1:10){
cent <- rbind(cent, colMeans(USArrests[memb == k, , drop = FALSE]))

}
hc1 <- hclust(dist(cent)^2, method = "cen", members = table(memb))
opar <- par(mfrow = c(1, 2))
plot(hc, labels = FALSE, hang = -1, main = "Original Tree")
plot(hc1, labels = FALSE, hang = -1, main = "Re-start from 10 clusters")
par(opar)

heatmap Draw a Heat Map

Description

A heat map is a false color image (basically image(t(x))) with a dendrogram added to the left
side and to the top. Typically, reordering of the rows and columns according to some set of values
(row or column means) within the restrictions imposed by the dendrogram is carried out.

Usage

heatmap(x, Rowv=NULL, Colv=if(symm)"Rowv" else NULL,
distfun = dist, hclustfun = hclust,
reorderfun = function(d,w) reorder(d,w),
add.expr, symm = FALSE, revC = identical(Colv, "Rowv"),
scale=c("row", "column", "none"), na.rm = TRUE,
margins = c(5, 5), ColSideColors, RowSideColors,
cexRow = 0.2 + 1/log10(nr), cexCol = 0.2 + 1/log10(nc),
labRow = NULL, labCol = NULL, main = NULL,
xlab = NULL, ylab = NULL,
keep.dendro = FALSE, verbose = getOption("verbose"), ...)

1110 heatmap

Arguments

x numeric matrix of the values to be plotted.

Rowv determines if and how the row dendrogram should be computed and reordered.
Either a dendrogram or a vector of values used to reorder the row dendrogram
or NA to suppress any row dendrogram (and reordering) or by default, NULL, see
‘Details’ below.

Colv determines if and how the column dendrogram should be reordered. Has the
same options as the Rowv argument above and additionally when x is a square
matrix, Colv = "Rowv" means that columns should be treated identically to
the rows.

distfun function used to compute the distance (dissimilarity) between both rows and
columns. Defaults to dist.

hclustfun function used to compute the hierarchical clustering when Rowv or Colv are
not dendrograms. Defaults to hclust. Should take as argument a result of
distfun and return an object to which as.dendrogram can be applied.

reorderfun function(d,w) of dendrogram and weights for reordering the row and column
dendrograms. The default uses reorder.dendrogram.

add.expr expression that will be evaluated after the call to image. Can be used to add
components to the plot.

symm logical indicating if x should be treated symmetrically; can only be true when
x is a square matrix.

revC logical indicating if the column order should be reversed for plotting, such that
e.g., for the symmetric case, the symmetry axis is as usual.

scale character indicating if the values should be centered and scaled in either the row
direction or the column direction, or none. The default is "row" if symm false,
and "none" otherwise.

na.rm logical indicating whether NA’s should be removed.

margins numeric vector of length 2 containing the margins (see par(mar= *)) for
column and row names, respectively.

ColSideColors
(optional) character vector of length ncol(x) containing the color names for
a horizontal side bar that may be used to annotate the columns of x.

RowSideColors
(optional) character vector of length nrow(x) containing the color names for
a vertical side bar that may be used to annotate the rows of x.

cexRow, cexCol
positive numbers, used as cex.axis in for the row or column axis labeling.
The defaults currently only use number of rows or columns, respectively.

labRow, labCol
character vectors with row and column labels to use; these default to
rownames(x) or colnames(x), respectively.

main, xlab, ylab
main, x- and y-axis titles; defaults to none.

keep.dendro logical indicating if the dendrogram(s) should be kept as part of the result (when
Rowv and/or Colv are not NA).

verbose logical indicating if information should be printed.

... additional arguments passed on to image, e.g., col specifying the colors.

heatmap 1111

Details

If either Rowv or Colv are dendrograms they are honored (and not reordered). Otherwise, dendro-
grams are computed as dd <- as.dendrogram(hclustfun(distfun(X))) where X is
either x or t(x).

If either is a vector (of ‘weights’) then the appropriate dendrogram is reordered according to the sup-
plied values subject to the constraints imposed by the dendrogram, by reorder(dd, Rowv), in
the row case. If either is missing, as by default, then the ordering of the corresponding dendrogram
is by the mean value of the rows/columns, i.e., in the case of rows, Rowv <- rowMeans(x,
na.rm=na.rm). If either is NULL, no reordering will be done for the corresponding side.

By default (scale = "row") the rows are scaled to have mean zero and standard deviation one.
There is some empirical evidence from genomic plotting that this is useful.

The default colors are not pretty. Consider using enhancements such as the RColorBrewer pack-
age, http://cran.r-project.org/package=RColorBrewer.

Value

Invisibly, a list with components

rowInd row index permutation vector as returned by order.dendrogram.

colInd column index permutation vector.

Rowv the row dendrogram; only if input Rowv was not NA and keep.dendro is
true.

Colv the column dendrogram; only if input Colv was not NA and keep.dendro
is true.

Note

Unless Rowv = NA (or Colw = NA), the original rows and columns are reordered in any case
to match the dendrogram, e.g., the rows by order.dendrogram(Rowv) where Rowv is the
(possibly reorder()ed) row dendrogram.

heatmap() uses layout and draws the image in the lower right corner of a 2x2 layout. Con-
sequentially, it can not be used in a multi column/row layout, i.e., when par(mfrow= *) or
(mfcol= *) has been called.

Author(s)

Andy Liaw, original; R. Gentleman, M. Maechler, W. Huber, revisions.

See Also

image, hclust

Examples

require(graphics); require(grDevices)
x <- as.matrix(mtcars)
rc <- rainbow(nrow(x), start=0, end=.3)
cc <- rainbow(ncol(x), start=0, end=.3)
hv <- heatmap(x, col = cm.colors(256), scale="column",

RowSideColors = rc, ColSideColors = cc, margins=c(5,10),
xlab = "specification variables", ylab= "Car Models",
main = "heatmap(<Mtcars data>, ..., scale = \"column\")")

http://cran.r-project.org/package=RColorBrewer

1112 HoltWinters

utils::str(hv) # the two re-ordering index vectors

no column dendrogram (nor reordering) at all:
heatmap(x, Colv = NA, col = cm.colors(256), scale="column",

RowSideColors = rc, margins=c(5,10),
xlab = "specification variables", ylab= "Car Models",
main = "heatmap(<Mtcars data>, ..., scale = \"column\")")

"no nothing"
heatmap(x, Rowv = NA, Colv = NA, scale="column",

main = "heatmap(*, NA, NA) ~= image(t(x))")

round(Ca <- cor(attitude), 2)
symnum(Ca) # simple graphic
heatmap(Ca, symm = TRUE, margins=c(6,6))# with reorder()
heatmap(Ca, Rowv=FALSE, symm = TRUE, margins=c(6,6))# _NO_ reorder()

For variable clustering, rather use distance based on cor():
symnum(cU <- cor(USJudgeRatings))

hU <- heatmap(cU, Rowv = FALSE, symm = TRUE, col = topo.colors(16),
distfun = function(c) as.dist(1 - c), keep.dendro = TRUE)

The Correlation matrix with same reordering:
round(100 * cU[hU[[1]], hU[[2]]])
The column dendrogram:
utils::str(hU$Colv)

HoltWinters Holt-Winters Filtering

Description

Computes Holt-Winters Filtering of a given time series. Unknown parameters are determined by
minimizing the squared prediction error.

Usage

HoltWinters(x, alpha = NULL, beta = NULL, gamma = NULL,
seasonal = c("additive", "multiplicative"),
start.periods = 2, l.start = NULL, b.start = NULL,
s.start = NULL,
optim.start = c(alpha = 0.3, beta = 0.1, gamma = 0.1),
optim.control = list())

Arguments

x An object of class ts

alpha alpha parameter of Holt-Winters Filter.

beta beta parameter of Holt-Winters Filter. If set to 0, the function will do exponen-
tial smoothing.

gamma gamma parameter used for the seasonal component. If set to 0, an non-seasonal
model is fitted.

HoltWinters 1113

seasonal Character string to select an "additive" (the default) or
"multiplicative" seasonal model. The first few characters are suf-
ficient. (Only takes effect if gamma is non-zero).

start.periods
Start periods used in the autodetection of start values. Must be at least 2.

l.start Start value for level (a[0]).

b.start Start value for trend (b[0]).

s.start Vector of start values for the seasonal component (s1[0]...sp[0])

optim.start Vector with named components alpha, beta, and gamma containing the start-
ing values for the optimizer. Only the values needed must be specified. Ignored
in the one-parameter case.

optim.control
Optional list with additional control parameters passed to optim if this is used.
Ignored in the one-parameter case.

Details

The additive Holt-Winters prediction function (for time series with period length p) is

Ŷ [t+ h] = a[t] + hb[t] + s[t+ 1 + (h− 1) mod p],

where a[t], b[t] and s[t] are given by

a[t] = α(Y [t]− s[t− p]) + (1− α)(a[t− 1] + b[t− 1])

b[t] = β(a[t]− a[t− 1]) + (1− β)b[t− 1]

s[t] = γ(Y [t]− a[t]) + (1− γ)s[t− p]

The multiplicative Holt-Winters prediction function (for time series with period length p) is

Ŷ [t+ h] = (a[t] + hb[t])× s[t+ 1 + (h− 1) mod p].

where a[t], b[t] and s[t] are given by

a[t] = α(Y [t]/s[t− p]) + (1− α)(a[t− 1] + b[t− 1])

b[t] = β(a[t]− a[t− 1]) + (1− β)b[t− 1]

s[t] = γ(Y [t]/a[t]) + (1− γ)s[t− p]

The function tries to find the optimal values of α and/or β and/or γ by minimizing the squared
one-step prediction error if they are omitted. optimize will be used for the univariate case, and
optim else.

For seasonal models, start values for a, b and s are detected by performing a simple decompo-
sition in trend and seasonal component using moving averages (see function decompose) on the
start.periods first periods (a simple linear regression on the trend component is used for start-
ing level and trend.). For level/trend-models (no seasonal component), start values for a and b are
x[2] and x[2] - x[1], respectively. For level-only models (ordinary exponential smoothing), the start
value for a is x[1].

1114 HoltWinters

Value

An object of class "HoltWinters", a list with components:

fitted A multiple time series with one column for the filtered series as well as for the
level, trend and seasonal components, estimated contemporaneously (that is at
time t and not at the end of the series).

x The original series

alpha alpha used for filtering

beta beta used for filtering

coefficients A vector with named components a, b, s1, ..., sp containing the esti-
mated values for the level, trend and seasonal components

seasonal The specified seasonal-parameter

SSE The final sum of squared errors achieved in optimizing

call The call used

Author(s)

David Meyer 〈David.Meyer@wu-wien.ac.at〉

References

C. C. Holt (1957) Forecasting seasonals and trends by exponentially weighted moving averages,
ONR Research Memorandum, Carnigie Institute 52.

P. R. Winters (1960) Forecasting sales by exponentially weighted moving averages, Management
Science 6, 324–342.

See Also

predict.HoltWinters,optim

Examples

require(graphics)

Seasonal Holt-Winters
(m <- HoltWinters(co2))
plot(m)
plot(fitted(m))

(m <- HoltWinters(AirPassengers, seasonal = "mult"))
plot(m)

Non-Seasonal Holt-Winters
x <- uspop + rnorm(uspop, sd = 5)
m <- HoltWinters(x, gamma = 0)
plot(m)

Exponential Smoothing
m2 <- HoltWinters(x, gamma = 0, beta = 0)
lines(fitted(m2)[,1], col = 3)

Hypergeometric 1115

Hypergeometric The Hypergeometric Distribution

Description

Density, distribution function, quantile function and random generation for the hypergeometric dis-
tribution.

Usage

dhyper(x, m, n, k, log = FALSE)
phyper(q, m, n, k, lower.tail = TRUE, log.p = FALSE)
qhyper(p, m, n, k, lower.tail = TRUE, log.p = FALSE)
rhyper(nn, m, n, k)

Arguments

x, q vector of quantiles representing the number of white balls drawn without re-
placement from an urn which contains both black and white balls.

m the number of white balls in the urn.

n the number of black balls in the urn.

k the number of balls drawn from the urn.

p probability, it must be between 0 and 1.

nn number of observations. If length(nn) > 1, the length is taken to be the
number required.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

The hypergeometric distribution is used for sampling without replacement. The density of this
distribution with parameters m, n and k (named Np, N −Np, and n, respectively in the reference
below) is given by

p(x) =
(
m

x

)(
n

k − x

)/(
m+ n

k

)
for x = 0, . . . , k.

Value

dhyper gives the density, phyper gives the distribution function, qhyper gives the quantile
function, and rhyper generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

1116 identify.hclust

Source

dhyper computes via binomial probabilities, using code contributed by Catherine Loader (see
dbinom).

phyper is based on calculating dhyper and phyper(...)/dhyper(...) (as a summation),
based on ideas of Ian Smith and Morten Welinder.

qhyper is based on inversion.

rhyper is based on a corrected version of

Kachitvichyanukul, V. and Schmeiser, B. (1985). Computer generation of hypergeometric random
variates. Journal of Statistical Computation and Simulation, 22, 127–145.

References

Johnson, N. L., Kotz, S., and Kemp, A. W. (1992) Univariate Discrete Distributions, Second Edi-
tion. New York: Wiley.

Examples

m <- 10; n <- 7; k <- 8
x <- 0:(k+1)
rbind(phyper(x, m, n, k), dhyper(x, m, n, k))
all(phyper(x, m, n, k) == cumsum(dhyper(x, m, n, k)))# FALSE
but error is very small:
signif(phyper(x, m, n, k) - cumsum(dhyper(x, m, n, k)), digits=3)

identify.hclust Identify Clusters in a Dendrogram

Description

identify.hclust reads the position of the graphics pointer when the (first) mouse button is
pressed. It then cuts the tree at the vertical position of the pointer and highlights the cluster con-
taining the horizontal position of the pointer. Optionally a function is applied to the index of data
points contained in the cluster.

Usage

S3 method for class 'hclust':
identify(x, FUN = NULL, N = 20, MAXCLUSTER = 20, DEV.FUN = NULL,

...)

Arguments

x an object of the type produced by hclust.
FUN (optional) function to be applied to the index numbers of the data points in a

cluster (see ‘Details’ below).
N the maximum number of clusters to be identified.
MAXCLUSTER the maximum number of clusters that can be produced by a cut (limits the effec-

tive vertical range of the pointer).
DEV.FUN (optional) integer scalar. If specified, the corresponding graphics device is made

active before FUN is applied.
... further arguments to FUN.

influence.measures 1117

Details

By default clusters can be identified using the mouse and an invisible list of indices of the
respective data points is returned.

If FUN is not NULL, then the index vector of data points is passed to this function as first argument,
see the examples below. The active graphics device for FUN can be specified using DEV.FUN.

The identification process is terminated by pressing any mouse button other than the first, see also
identify.

Value

Either a list of data point index vectors or a list of return values of FUN.

See Also

hclust, rect.hclust

Examples

Not run:
require(graphics)

hca <- hclust(dist(USArrests))
plot(hca)
(x <- identify(hca)) ## Terminate with 2nd mouse button !!

hci <- hclust(dist(iris[,1:4]))
plot(hci)
identify(hci, function(k) print(table(iris[k,5])))

open a new device (one for dendrogram, one for bars):
get(getOption("device"))() # << make that narrow (& small)

and *beside* 1st one
nD <- dev.cur() # to be for the barplot
dev.set(dev.prev())# old one for dendrogram
plot(hci)
select subtrees in dendrogram and "see" the species distribution:
identify(hci, function(k) barplot(table(iris[k,5]),col=2:4), DEV.FUN = nD)
End(Not run)

influence.measures Regression Deletion Diagnostics

Description

This suite of functions can be used to compute some of the regression (leave-one-out deletion)
diagnostics for linear and generalized linear models discussed in Belsley, Kuh and Welsch (1980),
Cook and Weisberg (1982), etc.

1118 influence.measures

Usage

influence.measures(model)

rstandard(model, ...)
S3 method for class 'lm':
rstandard(model, infl = lm.influence(model, do.coef = FALSE),

sd = sqrt(deviance(model)/df.residual(model)), ...)
S3 method for class 'glm':
rstandard(model, infl = lm.influence(model, do.coef = FALSE),

...)

rstudent(model, ...)
S3 method for class 'lm':
rstudent(model, infl = lm.influence(model, do.coef = FALSE),

res = infl$wt.res, ...)
S3 method for class 'glm':
rstudent(model, infl = influence(model, do.coef = FALSE), ...)

dffits(model, infl = , res =)

dfbeta(model, ...)
S3 method for class 'lm':
dfbeta(model, infl = lm.influence(model, do.coef = TRUE), ...)

dfbetas(model, ...)
S3 method for class 'lm':
dfbetas(model, infl = lm.influence(model, do.coef = TRUE), ...)

covratio(model, infl = lm.influence(model, do.coef = FALSE),
res = weighted.residuals(model))

cooks.distance(model, ...)
S3 method for class 'lm':
cooks.distance(model, infl = lm.influence(model, do.coef = FALSE),

res = weighted.residuals(model),
sd = sqrt(deviance(model)/df.residual(model)),
hat = infl$hat, ...)

S3 method for class 'glm':
cooks.distance(model, infl = influence(model, do.coef = FALSE),

res = infl$pear.res,
dispersion = summary(model)$dispersion,
hat = infl$hat, ...)

hatvalues(model, ...)
S3 method for class 'lm':
hatvalues(model, infl = lm.influence(model, do.coef = FALSE), ...)

hat(x, intercept = TRUE)

Arguments

model an R object, typically returned by lm or glm.

influence.measures 1119

infl influence structure as returned by lm.influence or influence (the latter
only for the glm method of rstudent and cooks.distance).

res (possibly weighted) residuals, with proper default.

sd standard deviation to use, see default.

dispersion dispersion (for glm objects) to use, see default.

hat hat values Hii, see default.

x the X or design matrix.

intercept should an intercept column be prepended to x?

... further arguments passed to or from other methods.

Details

The primary high-level function is influence.measures which produces a class "infl"
object tabular display showing the DFBETAS for each model variable, DFFITS, covariance ratios,
Cook’s distances and the diagonal elements of the hat matrix. Cases which are influential with
respect to any of these measures are marked with an asterisk.

The functions dfbetas, dffits, covratio and cooks.distance provide direct access to
the corresponding diagnostic quantities. Functions rstandard and rstudent give the standard-
ized and Studentized residuals respectively. (These re-normalize the residuals to have unit variance,
using an overall and leave-one-out measure of the error variance respectively.)

Values for generalized linear models are approximations, as described in Williams (1987) (except
that Cook’s distances are scaled as F rather than as chi-square values). The approximations can be
poor when some cases have large influence.

The optional infl, res and sd arguments are there to encourage the use of these di-
rect access functions, in situations where, e.g., the underlying basic influence measures (from
lm.influence or the generic influence) are already available.

Note that cases with weights == 0 are dropped from all these functions, but that if a linear
model has been fitted with na.action = na.exclude, suitable values are filled in for the
cases excluded during fitting.

The function hat() exists mainly for S (version 2) compatibility; we recommend using
hatvalues() instead.

Note

For hatvalues, dfbeta, and dfbetas, the method for linear models also works for general-
ized linear models.

Author(s)

Several R core team members and John Fox, originally in his ‘car’ package.

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

Cook, R. D. and Weisberg, S. (1982) Residuals and Influence in Regression. London: Chapman
and Hall.

Williams, D. A. (1987) Generalized linear model diagnostics using the deviance and single case
deletions. Applied Statistics 36, 181–191.

Fox, J. (1997) Applied Regression, Linear Models, and Related Methods. Sage.

1120 integrate

Fox, J. (2002) An R and S-Plus Companion to Applied Regression. Sage Publ.; http://www.
socsci.mcmaster.ca/jfox/Books/Companion/.

See Also

influence (containing lm.influence).

‘plotmath’ for the use of hat in plot annotation.

Examples

require(graphics)

Analysis of the life-cycle savings data
given in Belsley, Kuh and Welsch.
lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings)

inflm.SR <- influence.measures(lm.SR)
which(apply(inflm.SR$is.inf, 1, any))
which observations 'are' influential
summary(inflm.SR) # only these
inflm.SR # all
plot(rstudent(lm.SR) ~ hatvalues(lm.SR)) # recommended by some

The 'infl' argument is not needed, but avoids recomputation:
rs <- rstandard(lm.SR)
iflSR <- influence(lm.SR)
identical(rs, rstandard(lm.SR, infl = iflSR))
to "see" the larger values:
1000 * round(dfbetas(lm.SR, infl = iflSR), 3)

Huber's data [Atkinson 1985]
xh <- c(-4:0, 10)
yh <- c(2.48, .73, -.04, -1.44, -1.32, 0)
summary(lmH <- lm(yh ~ xh))
(im <- influence.measures(lmH))
plot(xh,yh, main = "Huber's data: L.S. line and influential obs.")
abline(lmH); points(xh[im$is.inf], yh[im$is.inf], pch=20, col=2)

Irwin's data [Williams 1987]
xi <- 1:5
yi <- c(0,2,14,19,30) # number of mice responding to does xi
mi <- rep(40, 5) # number of mice exposed
summary(lmI <- glm(cbind(yi, mi -yi) ~ xi, family = binomial))
signif(cooks.distance(lmI), 3)# ~= Ci in Table 3, p.184
(imI <- influence.measures(lmI))
stopifnot(all.equal(imI$infmat[,"cook.d"],

cooks.distance(lmI)))

integrate Integration of One-Dimensional Functions

Description

Adaptive quadrature of functions of one variable over a finite or infinite interval.

http://www.socsci.mcmaster.ca/jfox/Books/Companion/
http://www.socsci.mcmaster.ca/jfox/Books/Companion/

integrate 1121

Usage

integrate(f, lower, upper, ..., subdivisions=100,
rel.tol = .Machine$double.eps^0.25, abs.tol = rel.tol,
stop.on.error = TRUE, keep.xy = FALSE, aux = NULL)

Arguments

f an R function taking a numeric first argument and returning a numeric vector of
the same length. Returning a non-finite element will generate an error.

lower, upper the limits of integration. Can be infinite.

... additional arguments to be passed to f.

subdivisions the maximum number of subintervals.

rel.tol relative accuracy requested.

abs.tol absolute accuracy requested.
stop.on.error

logical. If true (the default) an error stops the function. If false some errors will
give a result with a warning in the message component.

keep.xy unused. For compatibility with S.

aux unused. For compatibility with S.

Details

Note that arguments after ... must be matched exactly.

If one or both limits are infinite, the infinite range is mapped onto a finite interval.

For a finite interval, globally adaptive interval subdivision is used in connection with extrapolation
by the Epsilon algorithm.

rel.tol cannot be less than max(50*.Machine$double.eps, 0.5e-28) if abs.tol
<= 0.

Value

A list of class "integrate" with components

value the final estimate of the integral.

abs.error estimate of the modulus of the absolute error.

subdivisions the number of subintervals produced in the subdivision process.

message "OK" or a character string giving the error message.

call the matched call.

Note

Like all numerical integration routines, these evaluate the function on a finite set of points. If the
function is approximately constant (in particular, zero) over nearly all its range it is possible that the
result and error estimate may be seriously wrong.

When integrating over infinite intervals do so explicitly, rather than just using a large number as
the endpoint. This increases the chance of a correct answer – any function whose integral over an
infinite interval is finite must be near zero for most of that interval.

f must accept a vector of inputs and produce a vector of function evaluations at those points. The
Vectorize function may be helpful to convert f to this form.

1122 interaction.plot

References

Based on QUADPACK routines dqags and dqagi by R. Piessens and E. deDoncker-Kapenga,
available from Netlib.

See
R. Piessens, E. deDoncker-Kapenga, C. Uberhuber, D. Kahaner (1983) Quadpack: a Subroutine
Package for Automatic Integration; Springer Verlag.

See Also

The function adapt in the adapt package on CRAN, for multivariate integration.

Examples

integrate(dnorm, -1.96, 1.96)
integrate(dnorm, -Inf, Inf)

a slowly-convergent integral
integrand <- function(x) {1/((x+1)*sqrt(x))}
integrate(integrand, lower = 0, upper = Inf)

don't do this if you really want the integral from 0 to Inf
integrate(integrand, lower = 0, upper = 10)
integrate(integrand, lower = 0, upper = 100000)
integrate(integrand, lower = 0, upper = 1000000, stop.on.error = FALSE)

some functions do not handle vector input properly
f <- function(x) 2
try(integrate(f, 0, 1))
integrate(Vectorize(f), 0, 1) ## correct
integrate(function(x) rep(2, length(x)), 0, 1) ## correct

integrate can fail if misused
integrate(dnorm,0,2)
integrate(dnorm,0,20)
integrate(dnorm,0,200)
integrate(dnorm,0,2000)
integrate(dnorm,0,20000) ## fails on many systems
integrate(dnorm,0,Inf) ## works

interaction.plot Two-way Interaction Plot

Description

Plots the mean (or other summary) of the response for two-way combinations of factors, thereby
illustrating possible interactions.

Usage

interaction.plot(x.factor, trace.factor, response, fun = mean,
type = c("l", "p", "b"), legend = TRUE,
trace.label = deparse(substitute(trace.factor)),
fixed = FALSE,

interaction.plot 1123

xlab = deparse(substitute(x.factor)),
ylab = ylabel,
ylim = range(cells, na.rm=TRUE),
lty = nc:1, col = 1, pch = c(1:9, 0, letters),
xpd = NULL, leg.bg = par("bg"), leg.bty = "n",
xtick = FALSE, xaxt = par("xaxt"), axes = TRUE,
...)

Arguments

x.factor a factor whose levels will form the x axis.

trace.factor another factor whose levels will form the traces.

response a numeric variable giving the response

fun the function to compute the summary. Should return a single real value.

type the type of plot: lines or points.

legend logical. Should a legend be included?

trace.label overall label for the legend.

fixed logical. Should the legend be in the order of the levels of trace.factor or
in the order of the traces at their right-hand ends?

xlab,ylab the x and y label of the plot each with a sensible default.

ylim numeric of length 2 giving the y limits for the plot.

lty line type for the lines drawn, with sensible default.

col the color to be used for plotting.

pch a vector of plotting symbols or characters, with sensible default.

xpd determines clipping behaviour for the legend used, see par(xpd). Per de-
fault, the legend is not clipped at the figure border.

leg.bg, leg.bty
arguments passed to legend().

xtick logical. Should tick marks be used on the x axis?
xaxt, axes, ...

graphics parameters to be passed to the plotting routines.

Details

By default the levels of x.factor are plotted on the x axis in their given order, with extra space
left at the right for the legend (if specified). If x.factor is an ordered factor and the levels are
numeric, these numeric values are used for the x axis.

The response and hence its summary can contain missing values. If so, the missing values and the
line segments joining them are omitted from the plot (and this can be somewhat disconcerting).

The graphics parameters xlab, ylab, ylim, lty, col and pch are given suitable defaults (and
xlim and xaxs are set and cannot be overridden). The defaults are to cycle through the line types,
use the foreground colour, and to use the symbols 1:9, 0, and the capital letters to plot the traces.

Note

Some of the argument names and the precise behaviour are chosen for S-compatibility.

1124 IQR

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992) Analysis of variance; designed experi-
ments. Chapter 5 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth &
Brooks/Cole.

Examples

require(graphics)

with(ToothGrowth, {
interaction.plot(dose, supp, len, fixed=TRUE)
dose <- ordered(dose)
interaction.plot(dose, supp, len, fixed=TRUE, col = 2:3, leg.bty = "o")
interaction.plot(dose, supp, len, fixed=TRUE, col = 2:3, type = "p")
})

with(OrchardSprays, {
interaction.plot(treatment, rowpos, decrease)
interaction.plot(rowpos, treatment, decrease, cex.axis=0.8)
order the rows by their mean effect
rowpos <- factor(rowpos,

levels = sort.list(tapply(decrease, rowpos, mean)))
interaction.plot(rowpos, treatment, decrease, col = 2:9, lty = 1)

})

with(esoph, {
interaction.plot(agegp, alcgp, ncases/ncontrols, main = "'esoph' Data")
interaction.plot(agegp, tobgp, ncases/ncontrols, trace.label="tobacco",

fixed=TRUE, xaxt = "n")
})
deal with NAs:
esoph[66,] # second to last age group: 65-74
esophNA <- esoph; esophNA$ncases[66] <- NA
with(esophNA, {

interaction.plot(agegp, alcgp, ncases/ncontrols, col= 2:5)
doesn't show *last* group either

interaction.plot(agegp, alcgp, ncases/ncontrols, col= 2:5, type = "b")
alternative take non-NA's {"cheating"}
interaction.plot(agegp, alcgp, ncases/ncontrols, col= 2:5,

fun = function(x) mean(x, na.rm=TRUE),
sub = "function(x) mean(x, na.rm=TRUE)")

})
rm(esophNA) # to clear up

IQR The Interquartile Range

Description

computes interquartile range of the x values.

Usage

IQR(x, na.rm = FALSE)

is.empty.model 1125

Arguments

x a numeric vector.
na.rm logical. Should missing values be removed?

Details

Note that this function computes the quartiles using the quantile function rather than following
Tukey’s recommendations, i.e., IQR(x) = quantile(x,3/4) - quantile(x,1/4).

For normally N(m, 1) distributed X , the expected value of IQR(X) is 2*qnorm(3/4) =
1.3490, i.e., for a normal-consistent estimate of the standard deviation, use IQR(x) / 1.349.

References

Tukey, J. W. (1977). Exploratory Data Analysis. Reading: Addison-Wesley.

See Also

fivenum, mad which is more robust, range, quantile.

Examples

IQR(rivers)

is.empty.model Check if a Model is Empty

Description

R model notation allows models with no intercept and no predictors. These require special handling
internally. is.empty.model() checks whether an object describes an empty model.

Usage

is.empty.model(x)

Arguments

x A terms object or an object with a terms method.

Value

TRUE if the model is empty

See Also

lm,glm

Examples

y <- rnorm(20)
is.empty.model(y ~ 0)
is.empty.model(y ~ -1)
is.empty.model(lm(y ~ 0))

1126 isoreg

isoreg Isotonic / Monotone Regression

Description

Compute the isotonic (monotonely increasing nonparametric) least squares regression which is
piecewise constant.

Usage

isoreg(x, y = NULL)

Arguments

x, y coordinate vectors of the regression points. Alternatively a single plotting struc-
ture can be specified: see xy.coords.

Details

The algorithm determines the convex minorant m(x) of the cumulative data (i.e., cumsum(y))
which is piecewise linear and the result is m′(x), a step function with level changes at locations
where the convex m(x) touches the cumulative data polygon and changes slope.
as.stepfun() returns a stepfun object which can be more parsimonious.

Value

isoreg() returns an object of class isoreg which is basically a list with components

x original (constructed) abscissa values x.

y corresponding y values.

yf fitted values corresponding to ordered x values.

yc cumulative y values corresponding to ordered x values.

iKnots integer vector giving indices where the fitted curve jumps, i.e., where the convex
minorant has kinks.

isOrd logical indicating if original x values were ordered increasingly already.

ord if(!isOrd): integer permutation order(x) of original x.

call the call to isoreg() used.

Note

The code should be improved to accept weights additionally and solve the corresponding weighted
least squares problem.
‘Patches are welcome!’

References

Barlow, R. E., Bartholomew, D. J., Bremner, J. M., and Brunk, H. D. (1972) Statistical inference
under order restrictions; Wiley, London.

Robertson, T., Wright,F. T. and Dykstra, R. L. (1988) Order Restricted Statistical Inference; Wiley,
New York.

KalmanLike 1127

See Also

the plotting method plot.isoreg with more examples; isoMDS() from the MASS package
internally uses isotonic regression.

Examples

require(graphics)

(ir <- isoreg(c(1,0,4,3,3,5,4,2,0)))
plot(ir, plot.type = "row")

(ir3 <- isoreg(y3 <- c(1,0,4,3,3,5,4,2, 3)))# last "3", not "0"
(fi3 <- as.stepfun(ir3))
(ir4 <- isoreg(1:10, y4 <- c(5, 9, 1:2, 5:8, 3, 8)))
cat(sprintf("R^2 = %.2f\n",

1 - sum(residuals(ir4)^2) / ((10-1)*var(y4))))

If you are interested in the knots alone :
with(ir4, cbind(iKnots, yf[iKnots]))

Example of unordered x[] with ties:
x <- sample((0:30)/8)
y <- exp(x)
x. <- round(x) # ties!
plot(m <- isoreg(x., y))
stopifnot(all.equal(with(m, yf[iKnots]),

as.vector(tapply(y, x., mean))))

KalmanLike Kalman Filtering

Description

Use Kalman Filtering to find the (Gaussian) log-likelihood, or for forecasting or smoothing.

Usage

KalmanLike(y, mod, nit = 0, fast=TRUE)
KalmanRun(y, mod, nit = 0, fast=TRUE)
KalmanSmooth(y, mod, nit = 0)
KalmanForecast(n.ahead = 10, mod, fast=TRUE)
makeARIMA(phi, theta, Delta, kappa = 1e6)

Arguments

y a univariate time series.

mod A list describing the state-space model: see ‘Details’.

nit The time at which the initialization is computed. nit = 0 implies that the
initialization is for a one-step prediction, so Pn should not be computed at the
first step.

n.ahead The number of steps ahead for which prediction is required.

1128 KalmanLike

phi, theta numeric vectors of length ≥ 0 giving AR and MA parameters.

Delta vector of differencing coefficients, so an ARMA model is fitted to y[t] -
Delta[1]*y[t-1] -

kappa the prior variance (as a multiple of the innovations variance) for the past obser-
vations in a differenced model.

fast If TRUE the mod object may be modified.

Details

These functions work with a general univariate state-space model with state vector a, transitions a
<- T a + R e, e ∼ N (0, κQ) and observation equation y = Z’a + eta, (eta ≡ η), η ∼
N (0, κh). The likelihood is a profile likelihood after estimation of κ.

The model is specified as a list with at least components

T the transition matrix

Z the observation coefficients

h the observation variance

V RQR’

a the current state estimate

P the current estimate of the state uncertainty matrix

Pn the estimate at time t− 1 of the state uncertainty matrix

KalmanSmooth is the workhorse function for tsSmooth.

makeARIMA constructs the state-space model for an ARIMA model.

Value

For KalmanLike, a list with components Lik (the log-likelihood less some constants) and s2,
the estimate of of κ.

For KalmanRun, a list with components values, a vector of length 2 giving the output of
KalmanLike, resid (the residuals) and states, the contemporaneous state estimates, a matrix
with one row for each time.

For KalmanSmooth, a list with two components. Component smooth is a n by p matrix of state
estimates based on all the observations, with one row for each time. Component var is a n by p by
p array of variance matrices.

For KalmanForecast, a list with components pred, the predictions, and var, the unscaled
variances of the prediction errors (to be multiplied by s2).

For makeARIMA, a model list including components for its arguments.

Warning

These functions are designed to be called from other functions which check the validity of the
arguments passed, so very little checking is done.

In particular, KalmanLike alters the objects passed as the elements a, P and Pn of mod, so these
should not be shared. Use fast=FALSE to prevent this.

References

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford Uni-
versity Press.

kernapply 1129

See Also

arima, StructTS. tsSmooth.

kernapply Apply Smoothing Kernel

Description

kernapply computes the convolution between an input sequence and a specific kernel.

Usage

kernapply(x, ...)

Default S3 method:
kernapply(x, k, circular = FALSE, ...)
S3 method for class 'ts':
kernapply(x, k, circular = FALSE, ...)
S3 method for class 'vector':
kernapply(x, k, circular = FALSE, ...)

S3 method for class 'tskernel':
kernapply(x, k, ...)

Arguments

x an input vector, matrix, time series or kernel to be smoothed.

k smoothing "tskernel" object.

circular a logical indicating whether the input sequence to be smoothed is treated as
circular, i.e., periodic.

... arguments passed to or from other methods.

Value

A smoothed version of the input sequence.

Author(s)

A. Trapletti

See Also

kernel, convolve, filter, spectrum

Examples

see 'kernel' for examples

1130 kernel

kernel Smoothing Kernel Objects

Description

The "tskernel" class is designed to represent discrete symmetric normalized smoothing kernels.
These kernels can be used to smooth vectors, matrices, or time series objects.

There are print, plot and [methods for these kernel objects.

Usage

kernel(coef, m, r, name)

df.kernel(k)
bandwidth.kernel(k)
is.tskernel(k)
S3 method for class 'tskernel':
plot(x, type = "h", xlab = "k", ylab = "W[k]",

main = attr(x,"name"), ...)

Arguments

coef the upper half of the smoothing kernel coefficients (including coefficient zero)
or the name of a kernel (currently "daniell", "dirichlet", "fejer" or
"modified.daniell".

m the kernel dimension(s). When m has length larger than one, it means the con-
volution of kernels of dimension m[j], for j in 1:length(m). Currently
this is supported only for the named "*daniell" kernels.

name the name the kernel will be called.

r the kernel order for a Fejer kernel.

k,x a "tskernel" object.
type, xlab, ylab, main, ...

arguments passed to plot.default.

Details

kernel is used to construct a general kernel or named specific kernels. The modified Daniell
kernel halves the end coefficients (as used by S-PLUS).

The [method allows natural indexing of kernel objects with indices in (-m) : m. The normal-
ization is such that for k <- kernel(*), sum(k[-k$m : k$m]) is one.

df.kernel returns the ‘equivalent degrees of freedom’ of a smoothing kernel as defined in Brock-
well and Davis (1991), page 362, and bandwidth.kernel returns the equivalent bandwidth as
defined in Bloomfield (1976), p. 201, with a continuity correction.

Value

kernel() returns an object of class "tskernel" which is basically a list with the two compo-
nents coef and the kernel dimension m. An additional attribute is "name".

kmeans 1131

Author(s)

A. Trapletti; modifications by B.D. Ripley

References

Bloomfield, P. (1976) Fourier Analysis of Time Series: An Introduction. Wiley.

Brockwell, P.J. and Davis, R.A. (1991) Time Series: Theory and Methods. Second edition. Springer,
pp. 350–365.

See Also

kernapply

Examples

require(graphics)

Demonstrate a simple trading strategy for the
financial time series German stock index DAX.
x <- EuStockMarkets[,1]
k1 <- kernel("daniell", 50) # a long moving average
k2 <- kernel("daniell", 10) # and a short one
plot(k1)
plot(k2)
x1 <- kernapply(x, k1)
x2 <- kernapply(x, k2)
plot(x)
lines(x1, col = "red") # go long if the short crosses the long upwards
lines(x2, col = "green") # and go short otherwise

More interesting kernels
kd <- kernel("daniell", c(3,3))
kd # note the unusual indexing
kd[-2:2]
plot(kernel("fejer", 100, r=6))
plot(kernel("modified.daniell", c(7,5,3)))

Reproduce example 10.4.3 from Brockwell and Davis (1991)
spectrum(sunspot.year, kernel=kernel("daniell", c(11,7,3)), log="no")

kmeans K-Means Clustering

Description

Perform k-means clustering on a data matrix.

Usage

kmeans(x, centers, iter.max = 10, nstart = 1,
algorithm = c("Hartigan-Wong", "Lloyd", "Forgy",

"MacQueen"))

1132 kmeans

Arguments

x A numeric matrix of data, or an object that can be coerced to such a matrix (such
as a numeric vector or a data frame with all numeric columns).

centers Either the number of clusters or a set of initial (distinct) cluster centres. If a
number, a random set of (distinct) rows in x is chosen as the initial centres.

iter.max The maximum number of iterations allowed.

nstart If centers is a number, how many random sets should be chosen?

algorithm character: may be abbreviated.

Details

The data given by x is clustered by the k-means method, which aims to partition the points into k
groups such that the sum of squares from points to the assigned cluster centres is minimized. At the
minimum, all cluster centres are at the mean of their Voronoi sets (the set of data points which are
nearest to the cluster centre).

The algorithm of Hartigan and Wong (1979) is used by default. Note that some authors use k-means
to refer to a specific algorithm rather than the general method: most commonly the algorithm given
by MacQueen (1967) but sometimes that given by Lloyd (1957) and Forgy (1965). The Hartigan–
Wong algorithm generally does a better job than either of those, but trying several random starts is
often recommended.

Except for the Lloyd–Forgy method, k clusters will always be returned if a number is specified. If
an initial matrix of centres is supplied, it is possible that no point will be closest to one or more
centres, which is currently an error for the Hartigan–Wong method.

Value

An object of class "kmeans" which is a list with components:

cluster A vector of integers indicating the cluster to which each point is allocated.

centers A matrix of cluster centres.

withinss The within-cluster sum of squares for each cluster.

size The number of points in each cluster.

There is a print method for this class.

References

Forgy, E. W. (1965) Cluster analysis of multivariate data: efficiency vs interpretability of classifica-
tions. Biometrics 21, 768–769.

Hartigan, J. A. and Wong, M. A. (1979). A K-means clustering algorithm. Applied Statistics 28,
100–108.

Lloyd, S. P. (1957, 1982) Least squares quantization in PCM. Technical Note, Bell Laboratories.
Published in 1982 in IEEE Transactions on Information Theory 28, 128–137.

MacQueen, J. (1967) Some methods for classification and analysis of multivariate observations. In
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, eds L. M.
Le Cam & J. Neyman, 1, pp. 281–297. Berkeley, CA: University of California Press.

kruskal.test 1133

Examples

require(graphics)

a 2-dimensional example
x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),

matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))
colnames(x) <- c("x", "y")
(cl <- kmeans(x, 2))
plot(x, col = cl$cluster)
points(cl$centers, col = 1:2, pch = 8, cex=2)

random starts do help here with too many clusters
(cl <- kmeans(x, 5, nstart = 25))
plot(x, col = cl$cluster)
points(cl$centers, col = 1:5, pch = 8)

kruskal.test Kruskal-Wallis Rank Sum Test

Description

Performs a Kruskal-Wallis rank sum test.

Usage

kruskal.test(x, ...)

Default S3 method:
kruskal.test(x, g, ...)

S3 method for class 'formula':
kruskal.test(formula, data, subset, na.action, ...)

Arguments

x a numeric vector of data values, or a list of numeric data vectors.

g a vector or factor object giving the group for the corresponding elements of x.
Ignored if x is a list.

formula a formula of the form lhs ~ rhs where lhs gives the data values and rhs
the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

1134 kruskal.test

Details

kruskal.test performs a Kruskal-Wallis rank sum test of the null that the location parameters
of the distribution of x are the same in each group (sample). The alternative is that they differ in at
least one.

If x is a list, its elements are taken as the samples to be compared, and hence have to be numeric
data vectors. In this case, g is ignored, and one can simply use kruskal.test(x) to perform
the test. If the samples are not yet contained in a list, use kruskal.test(list(x, ...)).

Otherwise, x must be a numeric data vector, and g must be a vector or factor object of the same
length as x giving the group for the corresponding elements of x.

Value

A list with class "htest" containing the following components:

statistic the Kruskal-Wallis rank sum statistic.
parameter the degrees of freedom of the approximate chi-squared distribution of the test

statistic.
p.value the p-value of the test.
method the character string "Kruskal-Wallis rank sum test".
data.name a character string giving the names of the data.

References

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric Statistical Methods. New York: John
Wiley & Sons. Pages 115–120.

See Also

The Wilcoxon rank sum test (wilcox.test) as the special case for two samples; lm together with
anova for performing one-way location analysis under normality assumptions; with Student’s t test
(t.test) as the special case for two samples.

Examples

Hollander & Wolfe (1973), 116.
Mucociliary efficiency from the rate of removal of dust in normal
subjects, subjects with obstructive airway disease, and subjects
with asbestosis.
x <- c(2.9, 3.0, 2.5, 2.6, 3.2) # normal subjects
y <- c(3.8, 2.7, 4.0, 2.4) # with obstructive airway disease
z <- c(2.8, 3.4, 3.7, 2.2, 2.0) # with asbestosis
kruskal.test(list(x, y, z))
Equivalently,
x <- c(x, y, z)
g <- factor(rep(1:3, c(5, 4, 5)),

labels = c("Normal subjects",
"Subjects with obstructive airway disease",
"Subjects with asbestosis"))

kruskal.test(x, g)

Formula interface.
require(graphics)
boxplot(Ozone ~ Month, data = airquality)
kruskal.test(Ozone ~ Month, data = airquality)

ks.test 1135

ks.test Kolmogorov-Smirnov Tests

Description

Performs one or two sample Kolmogorov-Smirnov tests.

Usage

ks.test(x, y, ...,
alternative = c("two.sided", "less", "greater"),
exact = NULL)

Arguments

x a numeric vector of data values.

y either a numeric vector of data values, or a character string naming a cumula-
tive distribution function or an actual cumulative distribtution function such as
pnorm.

... parameters of the distribution specified (as a character string) by y.

alternative indicates the alternative hypothesis and must be one of "two.sided" (de-
fault), "less", or "greater". You can specify just the initial letter of the
value, but the argument name must be give in full. See ‘Details’ for the meanings
of the possible values.

exact NULL or a logical indicating whether an exact p-value should be computed. See
‘Details’ for the meaning of NULL. Not used for the one-sided two-sample case.

Details

If y is numeric, a two-sample test of the null hypothesis that x and y were drawn from the same
continuous distribution is performed.

Alternatively, y can be a character string naming a continuous (cumulative) distribution function, or
such a function. In this case, a one-sample test is carried out of the null that the distribution function
which generated x is distribution y with parameters specified by

The presence of ties generates a warning, since continuous distributions do not generate them.

The possible values "two.sided", "less" and "greater" of alternative specify the
null hypothesis that the true distribution function of x is equal to, not less than or not greater than
the hypothesized distribution function (one-sample case) or the distribution function of y (two-
sample case), respectively. This is a comparison of cumulative distribution functions, and the test
statistic is the maximum difference in value, with the statistic in the "greater" alternative being
D+ = maxu[Fx(u) − Fy(u)]. Thus in the two-sample case alternative="greater" in-
cludes distributions for which x is stochastically smaller than y (the CDF of x lies above and hence
to the left of that for y), in contrast to t.test or wilcox.test.

Exact p-values are not available for the one-sided two-sample case, or in the case of ties. If exact
= NULL (the default), an exact p-value is computed if the sample size is less than 100 in the one-
sample case, and if the product of the sample sizes is less than 10000 in the two-sample case.
Otherwise, asymptotic distributions are used whose approximations may be inaccurate in small
samples. In the one-sample two-sided case, exact p-values are obtained as described in Marsaglia,

1136 ks.test

Tsang & Wang (2003). The formula of Birnbaum & Tingey (1951) is used for the one-sample
one-sided case.

If a single-sample test is used, the parameters specified in ... must be pre-specified and not esti-
mated from the data. There is some more refined distribution theory for the KS test with estimated
parameters (see Durbin, 1973), but that is not implemented in ks.test.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

p.value the p-value of the test.

alternative a character string describing the alternative hypothesis.

method a character string indicating what type of test was performed.

data.name a character string giving the name(s) of the data.

References

Z. W. Birnbaum & Fred H. Tingey (1951), One-sided confidence contours for probability distribu-
tion functions. The Annals of Mathematical Statistics, 22/4, 592–596.

William J. Conover (1971), Practical Nonparametric Statistics. New York: John Wiley & Sons.
Pages 295–301 (one-sample Kolmogorov test), 309–314 (two-sample Smirnov test).

Durbin, J. (1973) Distribution theory for tests based on the sample distribution function. SIAM.

George Marsaglia, Wai Wan Tsang & Jingbo Wang (2003), Evaluating Kolmogorov’s distribution.
Journal of Statistical Software, 8/18. http://www.jstatsoft.org/v08/i18/.

See Also

shapiro.test which performs the Shapiro-Wilk test for normality.

Examples

require(graphics)

x <- rnorm(50)
y <- runif(30)
Do x and y come from the same distribution?
ks.test(x, y)
Does x come from a shifted gamma distribution with shape 3 and rate 2?
ks.test(x+2, "pgamma", 3, 2) # two-sided, exact
ks.test(x+2, "pgamma", 3, 2, exact = FALSE)
ks.test(x+2, "pgamma", 3, 2, alternative = "gr")

test if x is stochastically larger than x2
x2 <- rnorm(50, -1)
plot(ecdf(x), xlim=range(c(x, x2)))
plot(ecdf(x2), add=TRUE, lty="dashed")
t.test(x, x2, alternative="g")
wilcox.test(x, x2, alternative="g")
ks.test(x, x2, alternative="l")

http://www.jstatsoft.org/v08/i18/

ksmooth 1137

ksmooth Kernel Regression Smoother

Description

The Nadaraya–Watson kernel regression estimate.

Usage

ksmooth(x, y, kernel = c("box", "normal"), bandwidth = 0.5,
range.x = range(x),
n.points = max(100, length(x)), x.points)

Arguments

x input x values

y input y values

kernel the kernel to be used.

bandwidth the bandwidth. The kernels are scaled so that their quartiles (viewed as proba-
bility densities) are at ± 0.25*bandwidth.

range.x the range of points to be covered in the output.

n.points the number of points at which to evaluate the fit.

x.points points at which to evaluate the smoothed fit. If missing, n.points are chosen
uniformly to cover range.x.

Value

A list with components

x values at which the smoothed fit is evaluated. Guaranteed to be in increasing
order.

y fitted values corresponding to x.

Note

This function is implemented purely for compatibility with S, although it is nowhere near as slow
as the S function. Better kernel smoothers are available in other packages.

Examples

require(graphics)

with(cars, {
plot(speed, dist)
lines(ksmooth(speed, dist, "normal", bandwidth=2), col=2)
lines(ksmooth(speed, dist, "normal", bandwidth=5), col=3)

})

1138 lag

lag Lag a Time Series

Description

Compute a lagged version of a time series, shifting the time base back by a given number of obser-
vations.

Usage

lag(x, ...)

Default S3 method:
lag(x, k = 1, ...)

Arguments

x A vector or matrix or univariate or multivariate time series

k The number of lags (in units of observations).

... further arguments to be passed to or from methods.

Details

Vector or matrix arguments x are coerced to time series.

lag is a generic function; this page documents its default method.

Value

A time series object.

Note

Note the sign of k: a series lagged by a positive k starts earlier.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

diff, deltat

Examples

lag(ldeaths, 12) # starts one year earlier

lag.plot 1139

lag.plot Time Series Lag Plots

Description

Plot time series against lagged versions of themselves. Helps visualizing ‘auto-dependence’ even
when auto-correlations vanish.

Usage

lag.plot(x, lags = 1, layout = NULL, set.lags = 1:lags,
main = NULL, asp = 1,
diag = TRUE, diag.col = "gray", type = "p", oma = NULL,
ask = NULL, do.lines = (n <= 150), labels = do.lines,
...)

Arguments

x time-series (univariate or multivariate)

lags number of lag plots desired, see arg set.lags.

layout the layout of multiple plots, basically the mfrow par() argument. The default
uses about a square layout (see n2mfrow such that all plots are on one page.

set.lags vector of positive integers allowing specification of the set of lags used; defaults
to 1:lags.

main character with a main header title to be done on the top of each page.

asp Aspect ratio to be fixed, see plot.default.

diag logical indicating if the x=y diagonal should be drawn.

diag.col color to be used for the diagonal if(diag).

type plot type to be used, but see plot.ts about its restricted meaning.

oma outer margins, see par.

ask logical or NULL; if true, the user is asked to confirm before a new page is started.

do.lines logical indicating if lines should be drawn.

labels logical indicating if labels should be used.

... Further arguments to plot.ts. Several graphical parameters are set in
this function and so cannot be changed: these include xlab, ylab, mgp,
col.lab and font.lab: this also applies to the arguments xy.labels
and xy.lines.

Details

If just one plot is produced, this is a conventional plot. If more than one plot is to be produced,
par(mfrow) and several other graphics parameters will be set, so it is not (easily) possible to mix
such lag plots with other plots on the same page.

If ask = NULL, par(ask = TRUE) will be called if more than one page of plots is to be
produced and the device is interactive.

1140 line

Note

It is more flexible and has different default behaviour than the S version. We use main = instead
of head = for internal consistency.

Author(s)

Martin Maechler

See Also

plot.ts which is the basic work horse.

Examples

require(graphics)

lag.plot(nhtemp, 8, diag.col = "forest green")
lag.plot(nhtemp, 5, main="Average Temperatures in New Haven")
ask defaults to TRUE when we have more than one page:
lag.plot(nhtemp, 6, layout = c(2,1), asp = NA,

main = "New Haven Temperatures", col.main = "blue")

Multivariate (but non-stationary! ...)
lag.plot(freeny.x, lags = 3)
Not run:
no lines for long series :
lag.plot(sqrt(sunspots), set = c(1:4, 9:12), pch = ".", col = "gold")
End(Not run)

line Robust Line Fitting

Description

Fit a line robustly as recommended in Exploratory Data Analysis.

Usage

line(x, y)

Arguments

x,y the arguments can be any way of specifying x-y pairs.

Value

An object of class "tukeyline".

Methods are available for the generic functions coef, residuals, fitted, and print.

References

Tukey, J. W. (1977). Exploratory Data Analysis, Reading Massachusetts: Addison-Wesley.

lm 1141

See Also

lm.

Examples

require(graphics)

plot(cars)
(z <- line(cars))
abline(coef(z))
Tukey-Anscombe Plot :
plot(residuals(z) ~ fitted(z), main = deparse(z$call))

lm Fitting Linear Models

Description

lm is used to fit linear models. It can be used to carry out regression, single stratum analysis of
variance and analysis of covariance (although aov may provide a more convenient interface for
these).

Usage

lm(formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset, ...)

Arguments

formula an object of class "formula" (or one that can be coerced to that class): a
symbolic description of the model to be fitted. The details of model specification
are given under ‘Details’.

data an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model. If
not found in data, the variables are taken from environment(formula),
typically the environment from which lm is called.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional vector of weights to be used in the fitting process. Should be
NULL or a numeric vector. If non-NULL, weighted least squares is used with
weights weights (that is, minimizing sum(w*e^2)); otherwise ordinary
least squares is used.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that
is unset. The ‘factory-fresh’ default is na.omit. Another possible value is
NULL, no action. Value na.exclude can be useful.

method the method to be used; for fitting, currently only method = "qr" is sup-
ported; method = "model.frame" returns the model frame (the same as
with model = TRUE, see below).

1142 lm

model, x, y, qr
logicals. If TRUE the corresponding components of the fit (the model frame, the
model matrix, the response, the QR decomposition) are returned.

singular.ok logical. If FALSE (the default in S but not in R) a singular fit is an error.

contrasts an optional list. See the contrasts.arg of model.matrix.default.

offset this can be used to specify an a priori known component to be included in the
linear predictor during fitting. This should be NULL or a numeric vector of
length either one or equal to the number of cases. One or more offset terms
can be included in the formula instead or as well, and if both are specified their
sum is used. See model.offset.

... additional arguments to be passed to the low level regression fitting functions
(see below).

Details

Models for lm are specified symbolically. A typical model has the form response ~ terms
where response is the (numeric) response vector and terms is a series of terms which specifies a
linear predictor for response. A terms specification of the form first + second indicates all
the terms in first together with all the terms in secondwith duplicates removed. A specification
of the form first:second indicates the set of terms obtained by taking the interactions of all
terms in first with all terms in second. The specification first*second indicates the cross
of first and second. This is the same as first + second + first:second.

If the formula includes an offset, this is evaluated and subtracted from the response.

If response is a matrix a linear model is fitted separately by least-squares to each column of the
matrix.

See model.matrix for some further details. The terms in the formula will be re-ordered so that
main effects come first, followed by the interactions, all second-order, all third-order and so on: to
avoid this pass a terms object as the formula (see aov and demo(glm.vr) for an example).

A formula has an implied intercept term. To remove this use either y ~ x - 1 or y ~ 0 + x.
See formula for more details of allowed formulae.

lm calls the lower level functions lm.fit, etc, see below, for the actual numerical computations.
For programming only, you may consider doing likewise.

All of weights, subset and offset are evaluated in the same way as variables in formula,
that is first in data and then in the environment of formula.

Value

lm returns an object of class "lm" or for multiple responses of class c("mlm", "lm").

The functions summary and anova are used to obtain and print a summary and analysis
of variance table of the results. The generic accessor functions coefficients, effects,
fitted.values and residuals extract various useful features of the value returned by lm.

An object of class "lm" is a list containing at least the following components:

coefficients a named vector of coefficients

residuals the residuals, that is response minus fitted values.
fitted.values

the fitted mean values.

rank the numeric rank of the fitted linear model.

weights (only for weighted fits) the specified weights.

lm 1143

df.residual the residual degrees of freedom.

call the matched call.

terms the terms object used.

contrasts (only where relevant) the contrasts used.

xlevels (only where relevant) a record of the levels of the factors used in fitting.

offset the offset used (missing if none were used).

y if requested, the response used.

x if requested, the model matrix used.

model if requested (the default), the model frame used.

na.action (where relevant) information returned by model.frame on the special han-
dling of NAs.

In addition, non-null fits will have components assign, effects and (unless not requested) qr
relating to the linear fit, for use by extractor functions such as summary and effects.

Using time series

Considerable care is needed when using lm with time series.

Unless na.action = NULL, the time series attributes are stripped from the variables before the
regression is done. (This is necessary as omitting NAs would invalidate the time series attributes,
and if NAs are omitted in the middle of the series the result would no longer be a regular time series.)

Even if the time series attributes are retained, they are not used to line up series, so that the time
shift of a lagged or differenced regressor would be ignored. It is good practice to prepare a data
argument by ts.intersect(..., dframe = TRUE), then apply a suitable na.action
to that data frame and call lm with na.action = NULL so that residuals and fitted values are
time series.

Note

Offsets specified by offset will not be included in predictions by predict.lm, whereas those
specified by an offset term in the formula will be.

Author(s)

The design was inspired by the S function of the same name described in Chambers (1992). The
implementation of model formula by Ross Ihaka was based on Wilkinson & Rogers (1973).

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

Wilkinson, G. N. and Rogers, C. E. (1973) Symbolic descriptions of factorial models for analysis
of variance. Applied Statistics, 22, 392–9.

1144 lm.fit

See Also

summary.lm for summaries and anova.lm for the ANOVA table; aov for a different interface.

The generic functions coef, effects, residuals, fitted, vcov.

predict.lm (via predict) for prediction, including confidence and prediction intervals;
confint for confidence intervals of parameters.

lm.influence for regression diagnostics, and glm for generalized linear models.

The underlying low level functions, lm.fit for plain, and lm.wfit for weighted regression
fitting.

More lm() examples are available e.g., in anscombe, attitude, freeny,
LifeCycleSavings, longley, stackloss, swiss.

biglm in package biglm for an alternative way to fit linear models to large datasets (especially
those with many cases).

Examples

require(graphics)

Annette Dobson (1990) "An Introduction to Generalized Linear Models".
Page 9: Plant Weight Data.
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2,10,20, labels=c("Ctl","Trt"))
weight <- c(ctl, trt)
anova(lm.D9 <- lm(weight ~ group))
summary(lm.D90 <- lm(weight ~ group - 1))# omitting intercept
summary(resid(lm.D9) - resid(lm.D90)) #- residuals almost identical

opar <- par(mfrow = c(2,2), oma = c(0, 0, 1.1, 0))
plot(lm.D9, las = 1) # Residuals, Fitted, ...
par(opar)

model frame :
stopifnot(identical(lm(weight ~ group, method = "model.frame"),

model.frame(lm.D9)))

less simple examples in "See Also" above

lm.fit Fitter Functions for Linear Models

Description

These are the basic computing engines called by lm used to fit linear models. These should usually
not be used directly unless by experienced users.

Usage

lm.fit (x, y, offset = NULL, method = "qr", tol = 1e-7,
singular.ok = TRUE, ...)

lm.wfit(x, y, w, offset = NULL, method = "qr", tol = 1e-7,
singular.ok = TRUE, ...)

lm.fit 1145

Arguments

x design matrix of dimension n * p.

y vector of observations of length n, or a matrix with n rows.

w vector of weights (length n) to be used in the fitting process for the wfit func-
tions. Weighted least squares is used with weights w, i.e., sum(w * e^2) is
minimized.

offset numeric of length n). This can be used to specify an a priori known component
to be included in the linear predictor during fitting.

method currently, only method="qr" is supported.

tol tolerance for the qr decomposition. Default is 1e-7.

singular.ok logical. If FALSE, a singular model is an error.

... currently disregarded.

Value

a list with components

coefficients p vector

residuals n vector or matrix
fitted.values

n vector or matrix

effects (not null fits)n vector of orthogonal single-df effects. The first rank of them
correspond to non-aliased coeffcients, and are named accordingly.

weights n vector — only for the *wfit* functions.

rank integer, giving the rank

df.residual degrees of freedom of residuals

qr (not null fits) the QR decomposition, see qr.

See Also

lm which you should use for linear least squares regression, unless you know better.

Examples

require(utils)
set.seed(129)
n <- 7 ; p <- 2
X <- matrix(rnorm(n * p), n,p) # no intercept!
y <- rnorm(n)
w <- rnorm(n)^2

str(lmw <- lm.wfit(x=X, y=y, w=w))

str(lm. <- lm.fit (x=X, y=y))

1146 lm.influence

lm.influence Regression Diagnostics

Description

This function provides the basic quantities which are used in forming a wide variety of diagnostics
for checking the quality of regression fits.

Usage

influence(model, ...)
S3 method for class 'lm':
influence(model, do.coef = TRUE, ...)
S3 method for class 'glm':
influence(model, do.coef = TRUE, ...)

lm.influence(model, do.coef = TRUE)

Arguments

model an object as returned by lm or glm.

do.coef logical indicating if the changed coefficients (see below) are desired.
These need O(n2p) computing time.

... further arguments passed to or from other methods.

Details

The influence.measures() and other functions listed in See Also provide a more user ori-
ented way of computing a variety of regression diagnostics. These all build on lm.influence.
Note that for GLMs (other than the Gaussian family with identity link) these are based on one-step
approximations which may be inadequate if a case has high influence.

An attempt is made to ensure that computed hat values that are probably one are treated as one, and
the corresponding rows in sigma and coefficients are NaN. (Dropping such a case would
normally result in a variable being dropped, so it is not possible to give simple drop-one diagnos-
tics.)

naresid is applied to the results and so will fill in with NAs it the fit had na.action =
na.exclude.

Value

A list containing the following components of the same length or number of rows n, which is the
number of non-zero weights. Cases omitted in the fit are omitted unless a na.action method
was used (such as na.exclude) which restores them.

hat a vector containing the diagonal of the ‘hat’ matrix.

coefficients (unless do.coef is false) a matrix whose i-th row contains the change in the
estimated coefficients which results when the i-th case is dropped from the re-
gression. Note that aliased coefficients are not included in the matrix.

lm.summaries 1147

sigma a vector whose i-th element contains the estimate of the residual standard devi-
ation obtained when the i-th case is dropped from the regression. (The approxi-
mations needed for GLMs can result in this being NaN.)

wt.res a vector of weighted (or for class glm rather deviance) residuals.

Note

The coefficients returned by the R version of lm.influence differ from those computed
by S. Rather than returning the coefficients which result from dropping each case, we return the
changes in the coefficients. This is more directly useful in many diagnostic measures.
Since these need O(n2p) computing time, they can be omitted by do.coef = FALSE.

Note that cases with weights == 0 are dropped (contrary to the situation in S).

If a model has been fitted with na.action=na.exclude (see na.exclude), cases excluded
in the fit are considered here.

References

See the list in the documentation for influence.measures.

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

summary.lm for summary and related methods;
influence.measures,
hat for the hat matrix diagonals,
dfbetas, dffits, covratio, cooks.distance, lm.

Examples

Analysis of the life-cycle savings data
given in Belsley, Kuh and Welsch.
summary(lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi,

data = LifeCycleSavings),
corr = TRUE)

utils::str(lmI <- lm.influence(lm.SR))

For more "user level" examples, use example(influence.measures)

lm.summaries Accessing Linear Model Fits

Description

All these functions are methods for class "lm" objects.

1148 lm.summaries

Usage

S3 method for class 'lm':
family(object, ...)

S3 method for class 'lm':
formula(x, ...)

S3 method for class 'lm':
residuals(object,

type = c("working", "response", "deviance", "pearson",
"partial"),

...)

S3 method for class 'lm':
labels(object, ...)

weights(object, ...)

Arguments

object, x an object inheriting from class lm, usually the result of a call to lm or aov.

... further arguments passed to or from other methods.

type the type of residuals which should be returned.

Details

The generic accessor functions coef, effects, fitted and residuals can be used to extract
various useful features of the value returned by lm.

The working and response residuals are ‘observed - fitted’. The deviance and pearson residu-
als are weighted residuals, scaled by the square root of the weights used in fitting. The partial
residuals are a matrix with each column formed by omitting a term from the model. In all these,
zero weight cases are never omitted (as opposed to the standardized rstudent residuals, and the
weighted.residuals).

How residuals treats cases with missing values in the original fit is determined by the
na.action argument of that fit. If na.action = na.omit omitted cases will not appear
in the residuals, whereas if na.action = na.exclude they will appear, with residual value
NA. See also naresid.

The "lm"method for generic labels returns the term labels for estimable terms, that is the names
of the terms with an least one estimable coefficient.

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

The model fitting function lm, anova.lm.

coef, deviance, df.residual, effects, fitted, glm for generalized linear mod-
els, influence (etc on that page) for regression diagnostics, weighted.residuals,
residuals, residuals.glm, summary.lm.

loadings 1149

influence.measures for deletion diagnostics, including standardized (rstandard) and studentized
(rstudent) residuals.

Examples

##-- Continuing the lm(.) example:
coef(lm.D90)# the bare coefficients

The 2 basic regression diagnostic plots [plot.lm(.) is preferred]
plot(resid(lm.D90), fitted(lm.D90))# Tukey-Anscombe's
abline(h=0, lty=2, col = 'gray')

qqnorm(residuals(lm.D90))

loadings Print Loadings in Factor Analysis

Description

Extract or print loadings in factor analysis (or principal components analysis).

Usage

loadings(x)

S3 method for class 'loadings':
print(x, digits = 3, cutoff = 0.1, sort = FALSE, ...)

S3 method for class 'factanal':
print(x, digits = 3, ...)

Arguments

x an object of class "factanal" or "princomp" or the loadings compo-
nent of such an object.

digits number of decimal places to use in printing uniquenesses and loadings.

cutoff loadings smaller than this (in absolute value) are suppressed.

sort logical. If true, the variables are sorted by their importance on each factor. Each
variable with any loading larger than 0.5 (in modulus) is assigned to the factor
with the largest loading, and the variables are printed in the order of the factor
they are assigned to, then those unassigned.

... further arguments for other methods, such as cutoff and sort for
print.factanal.

See Also

factanal, princomp

1150 loess

loess Local Polynomial Regression Fitting

Description

Fit a polynomial surface determined by one or more numerical predictors, using local fitting.

Usage

loess(formula, data, weights, subset, na.action, model = FALSE,
span = 0.75, enp.target, degree = 2,
parametric = FALSE, drop.square = FALSE, normalize = TRUE,
family = c("gaussian", "symmetric"),
method = c("loess", "model.frame"),
control = loess.control(...), ...)

Arguments

formula a formula specifying the numeric response and one to four numeric predictors
(best specified via an interaction, but can also be specified additively). Will be
coerced to a formula if necessary.

data an optional data frame, list or environment (or object coercible by
as.data.frame to a data frame) containing the variables in the model. If
not found in data, the variables are taken from environment(formula),
typically the environment from which loess is called.

weights optional weights for each case.
subset an optional specification of a subset of the data to be used.
na.action the action to be taken with missing values in the response or predictors. The

default is given by getOption("na.action").
model should the model frame be returned?
span the parameter α which controls the degree of smoothing.
enp.target an alternative way to specify span, as the approximate equivalent number of

parameters to be used.
degree the degree of the polynomials to be used, up to 2.
parametric should any terms be fitted globally rather than locally? Terms can be specified

by name, number or as a logical vector of the same length as the number of
predictors.

drop.square for fits with more than one predictor and degree=2, should the quadratic term
(and cross-terms) be dropped for particular predictors? Terms are specified in
the same way as for parametric.

normalize should the predictors be normalized to a common scale if there is more than one?
The normalization used is to set the 10% trimmed standard deviation to one. Set
to false for spatial coordinate predictors and others know to be a common scale.

family if "gaussian" fitting is by least-squares, and if "symmetric" a re-
descending M estimator is used with Tukey’s biweight function.

method fit the model or just extract the model frame.
control control parameters: see loess.control.
... control parameters can also be supplied directly.

loess 1151

Details

Fitting is done locally. That is, for the fit at point x, the fit is made using points in a neighbourhood
of x, weighted by their distance from x (with differences in ‘parametric’ variables being ignored
when computing the distance). The size of the neighbourhood is controlled by α (set by span or
enp.target). For α < 1, the neighbourhood includes proportion α of the points, and these have
tricubic weighting (proportional to (1 − (dist/maxdist)3)3. For α > 1, all points are used, with
the ‘maximum distance’ assumed to be α1/p times the actual maximum distance for p explanatory
variables.

For the default family, fitting is by (weighted) least squares. For family="symmetric" a few
iterations of an M-estimation procedure with Tukey’s biweight are used. Be aware that as the initial
value is the least-squares fit, this need not be a very resistant fit.

It can be important to tune the control list to achieve acceptable speed. See loess.control for
details.

Value

An object of class "loess".

Note

As this is based on the cloess package available at netlib, it is similar to but not identical to
the loess function of S. In particular, conditioning is not implemented.

The memory usage of this implementation of loess is roughly quadratic in the number of points,
with 1000 points taking about 10Mb.

Author(s)

B. D. Ripley, based on the cloess package of Cleveland, Grosse and Shyu available at http:
//www.netlib.org/a/.

References

W. S. Cleveland, E. Grosse and W. M. Shyu (1992) Local regression models. Chapter 8 of Statistical
Models in S eds J.M. Chambers and T.J. Hastie, Wadsworth & Brooks/Cole.

See Also

loess.control, predict.loess.

lowess, the ancestor of loess (with different defaults!).

Examples

cars.lo <- loess(dist ~ speed, cars)
predict(cars.lo, data.frame(speed = seq(5, 30, 1)), se = TRUE)
to allow extrapolation
cars.lo2 <- loess(dist ~ speed, cars,
control = loess.control(surface = "direct"))

predict(cars.lo2, data.frame(speed = seq(5, 30, 1)), se = TRUE)

http://www.netlib.org/a/
http://www.netlib.org/a/

1152 loess.control

loess.control Set Parameters for Loess

Description

Set control parameters for loess fits.

Usage

loess.control(surface = c("interpolate", "direct"),
statistics = c("approximate", "exact"),
trace.hat = c("exact", "approximate"),
cell = 0.2, iterations = 4, ...)

Arguments

surface should be fitted surface be computed exactly or via interpolation from a kd tree?

statistics should the statistics be computed exactly or approximately? Exact computation
can be very slow.

trace.hat should the trace of the smoother matrix be computed exactly or approximately?
It is recommended to use the approximation for more than about 1000 data
points.

cell if interpolation is used this controls the accuracy of the approximation via the
maximum number of points in a cell in the kd tree. Cells with more than
floor(n*span*cell) points are subdivided.

iterations the number of iterations used in robust fitting.

... further arguments which are ignored.

Value

A list with components

surface

statistics

trace.hat

cell

iterations

with meanings as explained under ‘Arguments’.

See Also

loess

Logistic 1153

Logistic The Logistic Distribution

Description

Density, distribution function, quantile function and random generation for the logistic distribution
with parameters location and scale.

Usage

dlogis(x, location = 0, scale = 1, log = FALSE)
plogis(q, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
qlogis(p, location = 0, scale = 1, lower.tail = TRUE, log.p = FALSE)
rlogis(n, location = 0, scale = 1)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

location, scale
location and scale parameters.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

If location or scale are omitted, they assume the default values of 0 and 1 respectively.

The Logistic distribution with location = µ and scale = σ has distribution function

F (x) =
1

1 + e−(x−µ)/σ

and density

f(x) =
1
σ

e(x−µ)/σ

(1 + e(x−µ)/σ)2

It is a long-tailed distribution with mean µ and variance π2/3σ2.

Value

dlogis gives the density, plogis gives the distribution function, qlogis gives the quantile
function, and rlogis generates random deviates.

Note

qlogis(p) is the same as the well known ‘logit’ function, logit(p) = log(p/(1 − p)), and
plogis(x) has consequently been called the ‘inverse logit’.

The distribution function is a rescaled hyperbolic tangent, plogis(x) == (1+
tanh(x/2))/2, and it is called a sigmoid function in contexts such as neural networks.

1154 logLik

Source

[dpr]logis are calculated directly from the definitions.

rlogis uses inversion.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume
2, chapter 23. Wiley, New York.

Examples

var(rlogis(4000, 0, scale = 5))# approximately (+/- 3)
pi^2/3 * 5^2

logLik Extract Log-Likelihood

Description

This function is generic; method functions can be written to handle specific classes of objects.
Classes which already have methods for this function include: glm, lm, nls, Arima and gls,
lme and others in package nlme.

Usage

logLik(object, ...)

S3 method for class 'lm':
logLik(object, REML = FALSE, ...)

Arguments

object any object from which a log-likelihood value, or a contribution to a log-
likelihood value, can be extracted.

... some methods for this generic function require additional arguments.
REML an optional logical value. If TRUE the restricted log-likelihood is returned, else,

if FALSE, the log-likelihood is returned. Defaults to FALSE.

Details

For a "glm" fit the family does not have to specify how to calculate the log-likelihood, so this
is based on the family’s aic() function to compute the AIC. For the gaussian, Gamma and
inverse.gaussian families it assumed that the dispersion of the GLM is estimated has been
counted as a parameter in the AIC value, and for all other families it is assumed that the dispersion
is known.

Note that this procedure is not completely accurate for the gamma and inverse gaussian families, as
the estimate of dispersion used is not the MLE.

For "lm" fits it is assumed that the scale has been estimated (by maximum likelihood or REML),
and all the constants in the log-likelihood are included.

loglin 1155

Value

Returns an object, say r, of class logLik which is a number with attributes, attr(r, "df")
(degrees of freedom) giving the number of (estimated) parameters in the model. There is a simple
print method for logLik objects.

The details depend on the method function used; see the appropriate documentation.

Author(s)

Jose Pinheiro and Douglas Bates

References

For logLik.lm:

Harville, D.A. (1974). Bayesian inference for variance components using only error contrasts.
Biometrika, 61, 383–385.

See Also

logLik.gls, logLik.lme, in package nlme, etc.

Examples

x <- 1:5
lmx <- lm(x ~ 1)
logLik(lmx) # using print.logLik() method
utils::str(logLik(lmx))

lm method
(fm1 <- lm(rating ~ ., data = attitude))
logLik(fm1)
logLik(fm1, REML = TRUE)

res <- try(utils::data(Orthodont, package="nlme"))
if(!inherits(res, "try-error")) {
fm1 <- lm(distance ~ Sex * age, Orthodont)
print(logLik(fm1))
print(logLik(fm1, REML = TRUE))

}

loglin Fitting Log-Linear Models

Description

loglin is used to fit log-linear models to multidimensional contingency tables by Iterative Pro-
portional Fitting.

Usage

loglin(table, margin, start = rep(1, length(table)), fit = FALSE,
eps = 0.1, iter = 20, param = FALSE, print = TRUE)

1156 loglin

Arguments

table a contingency table to be fit, typically the output from table.

margin a list of vectors with the marginal totals to be fit.
(Hierarchical) log-linear models can be specified in terms of these marginal to-
tals which give the ‘maximal’ factor subsets contained in the model. For exam-
ple, in a three-factor model, list(c(1, 2), c(1, 3)) specifies a model
which contains parameters for the grand mean, each factor, and the 1-2 and 1-3
interactions, respectively (but no 2-3 or 1-2-3 interaction), i.e., a model where
factors 2 and 3 are independent conditional on factor 1 (sometimes represented
as ‘[12][13]’).
The names of factors (i.e., names(dimnames(table))) may be used rather
than numeric indices.

start a starting estimate for the fitted table. This optional argument is important for
incomplete tables with structural zeros in table which should be preserved in
the fit. In this case, the corresponding entries in start should be zero and the
others can be taken as one.

fit a logical indicating whether the fitted values should be returned.

eps maximum deviation allowed between observed and fitted margins.

iter maximum number of iterations.

param a logical indicating whether the parameter values should be returned.

print a logical. If TRUE, the number of iterations and the final deviation are printed.

Details

The Iterative Proportional Fitting algorithm as presented in Haberman (1972) is used for fitting the
model. At most iter iterations are performed, convergence is taken to occur when the maximum
deviation between observed and fitted margins is less than eps. All internal computations are done
in double precision; there is no limit on the number of factors (the dimension of the table) in the
model.

Assuming that there are no structural zeros, both the Likelihood Ratio Test and Pearson test statistics
have an asymptotic chi-squared distribution with df degrees of freedom.

Note that the IPF steps are applied to the factors in the order given in margin. Hence if the model
is decomposable and the order given in margin is a running intersection property ordering then
IPF will converge in one iteration.

Package MASS contains loglm, a front-end to loglin which allows the log-linear model to be
specified and fitted in a formula-based manner similar to that of other fitting functions such as lm
or glm.

Value

A list with the following components.

lrt the Likelihood Ratio Test statistic.

pearson the Pearson test statistic (X-squared).

df the degrees of freedom for the fitted model. There is no adjustment for structural
zeros.

margin list of the margins that were fit. Basically the same as the input margin, but
with numbers replaced by names where possible.

Lognormal 1157

fit An array like table containing the fitted values. Only returned if fit is TRUE.

param A list containing the estimated parameters of the model. The ‘standard’ con-
straints of zero marginal sums (e.g., zero row and column sums for a two factor
parameter) are employed. Only returned if param is TRUE.

Author(s)

Kurt Hornik

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Haberman, S. J. (1972) Log-linear fit for contingency tables—Algorithm AS51. Applied Statistics,
21, 218–225.

Agresti, A. (1990) Categorical data analysis. New York: Wiley.

See Also

table.

loglm in package MASS for a user-friendly wrapper.

glm for another way to fit log-linear models.

Examples

Model of joint independence of sex from hair and eye color.
fm <- loglin(HairEyeColor, list(c(1, 2), c(1, 3), c(2, 3)))
fm
1 - pchisq(fmlrt, fmdf)
Model with no three-factor interactions fits well.

Lognormal The Log Normal Distribution

Description

Density, distribution function, quantile function and random generation for the log normal distribu-
tion whose logarithm has mean equal to meanlog and standard deviation equal to sdlog.

Usage

dlnorm(x, meanlog = 0, sdlog = 1, log = FALSE)
plnorm(q, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
qlnorm(p, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE)
rlnorm(n, meanlog = 0, sdlog = 1)

1158 Lognormal

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

meanlog, sdlog
mean and standard deviation of the distribution on the log scale with default
values of 0 and 1 respectively.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

The log normal distribution has density

f(x) =
1√

2πσx
e−(log(x)−µ)2/2σ2

where µ and σ are the mean and standard deviation of the logarithm. The mean isE(X) = exp(µ+
1/2σ2), the median ismed(X) = exp(µ), and the variance V ar(X) = exp(2µ+σ2)(exp(σ2)−1)
and hence the coefficient of variation is

√
exp(σ2)− 1 which is approximately σ when that is small

(e.g., σ < 1/2).

Value

dlnorm gives the density, plnorm gives the distribution function, qlnorm gives the quantile
function, and rlnorm generates random deviates.

Note

The cumulative hazard H(t) = − log(1−F (t)) is -plnorm(t, r, lower = FALSE, log
= TRUE).

Source

dlnorm is calculated from the definition (in ‘Details’). [pqr]lnorm are based on the relation-
ship to the normal.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume
1, chapter 14. Wiley, New York.

See Also

dnorm for the normal distribution.

Examples

dlnorm(1) == dnorm(0)

lowess 1159

lowess Scatter Plot Smoothing

Description

This function performs the computations for the LOWESS smoother which uses locally-weighted
polynomial regression (see the references).

Usage

lowess(x, y = NULL, f = 2/3, iter = 3,
delta = 0.01 * diff(range(xy$x[o])))

Arguments

x, y vectors giving the coordinates of the points in the scatter plot. Alternatively a
single plotting structure can be specified – see xy.coords.

f the smoother span. This gives the proportion of points in the plot which influ-
ence the smooth at each value. Larger values give more smoothness.

iter the number of ‘robustifying’ iterations which should be performed. Using
smaller values of iter will make lowess run faster.

delta See ‘Details’. Defaults to 1/100th of the range of x.

Details

lowess is defined by a complex algorithm, the Ratfor original of which (by W. S. Cleveland) can
be found in the R sources as file ‘src/appl/lowess.doc’. Normally a local linear polynomial fit
is used, but under some circumstances (see the file) a local constant fit can be used. ‘Local’ is
defined by the distance to the floor(f*n)th nearest neighbour, and tricubic weighting is used
for x which fall within the neighbourhood.

The initial fit is done using weighted least squares. If iter > 0, further weighted fits are done
using the product of the weights from the proximity of the x values and case weights derived from
the residuals at the previous iteration. Specifically, the case weight is Tukey’s biweight, with cutoff
6 times the MAD of the residuals. (The current R implementation differs from the original in
stopping iteration if the MAD is effectively zero since the algorithm is highly unstable in that case.)

delta is used to speed up computation: instead of computing the local polynomial fit at each data
point it is not computed for points within delta of the last computed point, and linear interpolation
is used to fill in the fitted values for the skipped points.

Value

lowess returns a list containing components x and y which give the coordinates of the smooth.
The smooth can be added to a plot of the original points with the function lines: see the examples.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Cleveland, W. S. (1979) Robust locally weighted regression and smoothing scatterplots. J. Amer.
Statist. Assoc. 74, 829–836.

1160 ls.diag

Cleveland, W. S. (1981) LOWESS: A program for smoothing scatterplots by robust locally weighted
regression. The American Statistician, 35, 54.

See Also

loess, a newer formula based version of lowess (with different defaults!).

Examples

require(graphics)

plot(cars, main = "lowess(cars)")
lines(lowess(cars), col = 2)
lines(lowess(cars, f=.2), col = 3)
legend(5, 120, c(paste("f = ", c("2/3", ".2"))), lty = 1, col = 2:3)

ls.diag Compute Diagnostics for ‘lsfit’ Regression Results

Description

Computes basic statistics, including standard errors, t- and p-values for the regression coefficients.

Usage

ls.diag(ls.out)

Arguments

ls.out Typically the result of lsfit()

Value

A list with the following numeric components.

std.dev The standard deviation of the errors, an estimate of σ.

hat diagonal entries hii of the hat matrix H

std.res standardized residuals

stud.res studentized residuals

cooks Cook’s distances

dfits DFITS statistics

correlation correlation matrix

std.err standard errors of the regression coefficients

cov.scaled Scaled covariance matrix of the coefficients

cov.unscaled Unscaled covariance matrix of the coefficients

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

ls.print 1161

See Also

hat for the hat matrix diagonals, ls.print, lm.influence, summary.lm, anova.

Examples

##-- Using the same data as the lm(.) example:
lsD9 <- lsfit(x = as.numeric(gl(2, 10, 20)), y = weight)
dlsD9 <- ls.diag(lsD9)
utils::str(dlsD9, give.attr=FALSE)
abs(1 - sum(dlsD9$hat) / 2) < 10*.Machine$double.eps # sum(h.ii) = p
plot(dlsD9$hat, dlsD9$stud.res, xlim=c(0,0.11))
abline(h = 0, lty = 2, col = "lightgray")

ls.print Print ‘lsfit’ Regression Results

Description

Computes basic statistics, including standard errors, t- and p-values for the regression coefficients
and prints them if print.it is TRUE.

Usage

ls.print(ls.out, digits = 4, print.it = TRUE)

Arguments

ls.out Typically the result of lsfit()

digits The number of significant digits used for printing

print.it a logical indicating whether the result should also be printed

Value

A list with the components

summary The ANOVA table of the regression

coef.table matrix with regression coefficients, standard errors, t- and p-values

Note

Usually, you’d rather use summary(lm(...)) and anova(lm(...)) for obtaining similar
output.

See Also

ls.diag, lsfit, also for examples; lm, lm.influence which usually are preferable.

1162 lsfit

lsfit Find the Least Squares Fit

Description

The least squares estimate of β in the model

Y = Xβ + ε

is found.

Usage

lsfit(x, y, wt = NULL, intercept = TRUE, tolerance = 1e-07,
yname = NULL)

Arguments

x a matrix whose rows correspond to cases and whose columns correspond to
variables.

y the responses, possibly a matrix if you want to fit multiple left hand sides.

wt an optional vector of weights for performing weighted least squares.

intercept whether or not an intercept term should be used.

tolerance the tolerance to be used in the matrix decomposition.

yname names to be used for the response variables.

Details

If weights are specified then a weighted least squares is performed with the weight given to the jth
case specified by the jth entry in wt.

If any observation has a missing value in any field, that observation is removed before the analysis
is carried out. This can be quite inefficient if there is a lot of missing data.

The implementation is via a modification of the LINPACK subroutines which allow for multiple
left-hand sides.

Value

A list with the following named components:

coef the least squares estimates of the coefficients in the model (β as stated above).

residuals residuals from the fit.

intercept indicates whether an intercept was fitted.

qr the QR decomposition of the design matrix.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

mad 1163

See Also

lm which usually is preferable; ls.print, ls.diag.

Examples

##-- Using the same data as the lm(.) example:
lsD9 <- lsfit(x = unclass(gl(2,10)), y = weight)
ls.print(lsD9)

mad Median Absolute Deviation

Description

Compute the median absolute deviation, i.e., the (lo-/hi-) median of the absolute deviations from
the median, and (by default) adjust by a factor for asymptotically normal consistency.

Usage

mad(x, center = median(x), constant = 1.4826, na.rm = FALSE,
low = FALSE, high = FALSE)

Arguments

x a numeric vector.

center Optionally, the centre: defaults to the median.

constant scale factor.

na.rm if TRUE then NA values are stripped from x before computation takes place.

low if TRUE, compute the ‘lo-median’, i.e., for even sample size, do not average the
two middle values, but take the smaller one.

high if TRUE, compute the ‘hi-median’, i.e., take the larger of the two middle values
for even sample size.

Details

The actual value calculated is constant * cMedian(abs(x - center)) with the default
value of center being median(x), and cMedian being the usual, the ‘low’ or ‘high’ median,
see the arguments description for low and high above.

The default constant = 1.4826 (approximately 1/Φ−1(3
4) = 1/qnorm(3/4)) ensures con-

sistency, i.e.,
E[mad(X1, . . . , Xn)] = σ

for Xi distributed as N(µ, σ2) and large n.

If na.rm is TRUE then NA values are stripped from x before computation takes place. If this is not
done then an NA value in x will cause mad to return NA.

See Also

IQR which is simpler but less robust, median, var.

1164 mahalanobis

Examples

mad(c(1:9))
print(mad(c(1:9), constant=1)) ==

mad(c(1:8,100), constant=1) # = 2 ; TRUE
x <- c(1,2,3, 5,7,8)
sort(abs(x - median(x)))
c(mad(x, constant=1),

mad(x, constant=1, low = TRUE),
mad(x, constant=1, high = TRUE))

mahalanobis Mahalanobis Distance

Description

Returns the squared Mahalanobis distance of all rows in x and the vector µ =center with respect
to Σ =cov. This is (for vector x) defined as

D2 = (x− µ)′Σ−1(x− µ)

Usage

mahalanobis(x, center, cov, inverted=FALSE, ...)

Arguments

x vector or matrix of data with, say, p columns.

center mean vector of the distribution or second data vector of length p.

cov covariance matrix (p× p) of the distribution.

inverted logical. If TRUE, cov is supposed to contain the inverse of the covariance ma-
trix.

... passed to solve for computing the inverse of the covariance matrix (if
inverted is false).

See Also

cov, var

Examples

require(graphics)

ma <- cbind(1:6, 1:3)
(S <- var(ma))
mahalanobis(c(0,0), 1:2, S)

x <- matrix(rnorm(100*3), ncol = 3)
stopifnot(mahalanobis(x, 0, diag(ncol(x))) == rowSums(x*x))

##- Here, D^2 = usual squared Euclidean distances

Sx <- cov(x)
D2 <- mahalanobis(x, colMeans(x), Sx)

make.link 1165

plot(density(D2, bw=.5),
main="Squared Mahalanobis distances, n=100, p=3") ; rug(D2)

qqplot(qchisq(ppoints(100), df=3), D2,
main = expression("Q-Q plot of Mahalanobis" * ~D^2 *

" vs. quantiles of" * ~ chi[3]^2))
abline(0, 1, col = 'gray')

make.link Create a Link for GLM Families

Description

This function is used with the family functions in glm(). Given the name of a link, it returns a
link function, an inverse link function, the derivative dµ/dη and a function for domain checking.

Usage

make.link(link)

Arguments

link character or numeric; one of "logit", "probit", "cloglog",
"identity", "log", "sqrt", "1/mu^2", "inverse", or (deprecated)
a non-negative number, say λ resulting in power link = µλ. Also (deprecated)
a string like "power(0.5)" to indicate a call to power.

Value

A object of class "link-glm", a list with components

linkfun Link function function(mu)

linkinv Inverse link function function(eta)

mu.eta Derivative function(eta) dµ/dη

valideta function(eta){ TRUE if eta is in the domain of linkinv }.

name a name to be used for the link

.

See Also

power, glm, family.

Examples

utils::str(make.link("logit"))

1166 makepredictcall

makepredictcall Utility Function for Safe Prediction

Description

A utility to help model.frame.default create the right matrices when predicting from models
with terms like poly or ns.

Usage

makepredictcall(var, call)

Arguments

var A variable.

call The term in the formula, as a call.

Details

This is a generic function with methods for poly, bs and ns: the default method handles scale.
If model.frame.default encounters such a term when creating a model frame, it modifies the
predvars attribute of the terms supplied to replace the term with one that will work for predicting
new data. For example makepredictcall.ns adds arguments for the knots and intercept.

To make use of this, have your model-fitting function return the terms attribute of the model frame,
or copy the predvars attribute of the terms attribute of the model frame to your terms object.

To extend this, make sure the term creates variables with a class, and write a suitable method for
that class.

Value

A replacement for call for the predvars attribute of the terms.

See Also

model.frame, poly, scale; bs and ns in package splines, cars

Examples

require(graphics)

using poly: this did not work in R < 1.5.0
fm <- lm(weight ~ poly(height, 2), data = women)
plot(women, xlab = "Height (in)", ylab = "Weight (lb)")
ht <- seq(57, 73, len = 200)
lines(ht, predict(fm, data.frame(height=ht)))

see also example(cars)

see bs and ns for spline examples.

manova 1167

manova Multivariate Analysis of Variance

Description

A class for the multivariate analysis of variance.

Usage

manova(...)

Arguments

... Arguments to be passed to aov.

Details

Class "manova" differs from class "aov" in selecting a different summary method. Function
manova calls aov and then add class "manova" to the result object for each stratum.

Value

See aov and the comments in ‘Details’ here.

Note

manova does not support multistratum analysis of variance, so the formula should not include an
Error term.

References

Krzanowski, W. J. (1988) Principles of Multivariate Analysis. A User’s Perspective. Oxford.

Hand, D. J. and Taylor, C. C. (1987) Multivariate Analysis of Variance and Repeated Measures.
Chapman and Hall.

See Also

aov, summary.manova, the latter containing examples.

1168 mantelhaen.test

mantelhaen.test Cochran-Mantel-Haenszel Chi-Squared Test for Count Data

Description

Performs a Cochran-Mantel-Haenszel chi-squared test of the null that two nominal variables are
conditionally independent in each stratum, assuming that there is no three-way interaction.

Usage

mantelhaen.test(x, y = NULL, z = NULL,
alternative = c("two.sided", "less", "greater"),
correct = TRUE, exact = FALSE, conf.level = 0.95)

Arguments

x either a 3-dimensional contingency table in array form where each dimension is
at least 2 and the last dimension corresponds to the strata, or a factor object with
at least 2 levels.

y a factor object with at least 2 levels; ignored if x is an array.

z a factor object with at least 2 levels identifying to which stratum the correspond-
ing elements in x and y belong; ignored if x is an array.

alternative indicates the alternative hypothesis and must be one of "two.sided",
"greater" or "less". You can specify just the initial letter. Only used
in the 2 by 2 by K case.

correct a logical indicating whether to apply continuity correction when computing the
test statistic. Only used in the 2 by 2 by K case.

exact a logical indicating whether the Mantel-Haenszel test or the exact conditional
test (given the strata margins) should be computed. Only used in the 2 by 2 by
K case.

conf.level confidence level for the returned confidence interval. Only used in the 2 by 2 by
K case.

Details

If x is an array, each dimension must be at least 2, and the entries should be nonnegative integers.
NA’s are not allowed. Otherwise, x, y and z must have the same length. Triples containing NA’s
are removed. All variables must take at least two different values.

Value

A list with class "htest" containing the following components:

statistic Only present if no exact test is performed. In the classical case of a 2 by 2 by
K table (i.e., of dichotomous underlying variables), the Mantel-Haenszel chi-
squared statistic; otherwise, the generalized Cochran-Mantel-Haenszel statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic (1 in the classical case). Only present if no exact test is performed.

p.value the p-value of the test.

mantelhaen.test 1169

conf.int a confidence interval for the common odds ratio. Only present in the 2 by 2 by
K case.

estimate an estimate of the common odds ratio. If an exact test is performed, the condi-
tional Maximum Likelihood Estimate is given; otherwise, the Mantel-Haenszel
estimate. Only present in the 2 by 2 by K case.

null.value the common odds ratio under the null of independence, 1. Only present in the 2
by 2 by K case.

alternative a character string describing the alternative hypothesis. Only present in the 2 by
2 by K case.

method a character string indicating the method employed, and whether or not continuity
correction was used.

data.name a character string giving the names of the data.

Note

The asymptotic distribution is only valid if there is no three-way interaction. In the classical 2
by 2 by K case, this is equivalent to the conditional odds ratios in each stratum being identical.
Currently, no inference on homogeneity of the odds ratios is performed.

See also the example below.

References

Alan Agresti (1990). Categorical data analysis. New York: Wiley. Pages 230–235.

Alan Agresti (2002). Categorical data analysis (second edition). New York: Wiley.

Examples

Agresti (1990), pages 231--237, Penicillin and Rabbits
Investigation of the effectiveness of immediately injected or 1.5
hours delayed penicillin in protecting rabbits against a lethal
injection with beta-hemolytic streptococci.
Rabbits <-
array(c(0, 0, 6, 5,

3, 0, 3, 6,
6, 2, 0, 4,
5, 6, 1, 0,
2, 5, 0, 0),

dim = c(2, 2, 5),
dimnames = list(

Delay = c("None", "1.5h"),
Response = c("Cured", "Died"),
Penicillin.Level = c("1/8", "1/4", "1/2", "1", "4")))

Rabbits
Classical Mantel-Haenszel test
mantelhaen.test(Rabbits)
=> p = 0.047, some evidence for higher cure rate of immediate
injection
Exact conditional test
mantelhaen.test(Rabbits, exact = TRUE)
=> p - 0.040
Exact conditional test for one-sided alternative of a higher
cure rate for immediate injection
mantelhaen.test(Rabbits, exact = TRUE, alternative = "greater")

1170 mauchly.test

=> p = 0.020

UC Berkeley Student Admissions
mantelhaen.test(UCBAdmissions)
No evidence for association between admission and gender
when adjusted for department. However,
apply(UCBAdmissions, 3, function(x) (x[1,1]*x[2,2])/(x[1,2]*x[2,1]))
This suggests that the assumption of homogeneous (conditional)
odds ratios may be violated. The traditional approach would be
using the Woolf test for interaction:
woolf <- function(x) {
x <- x + 1 / 2
k <- dim(x)[3]
or <- apply(x, 3, function(x) (x[1,1]*x[2,2])/(x[1,2]*x[2,1]))
w <- apply(x, 3, function(x) 1 / sum(1 / x))
1 - pchisq(sum(w * (log(or) - weighted.mean(log(or), w)) ^ 2), k - 1)

}
woolf(UCBAdmissions)
=> p = 0.003, indicating that there is significant heterogeneity.
(And hence the Mantel-Haenszel test cannot be used.)

Agresti (2002), p. 287f and p. 297.
Job Satisfaction example.
Satisfaction <-

as.table(array(c(1, 2, 0, 0, 3, 3, 1, 2,
11, 17, 8, 4, 2, 3, 5, 2,
1, 0, 0, 0, 1, 3, 0, 1,
2, 5, 7, 9, 1, 1, 3, 6),

dim = c(4, 4, 2),
dimnames =
list(Income =

c("<5000", "5000-15000",
"15000-25000", ">25000"),

"Job Satisfaction" =
c("V_D", "L_S", "M_S", "V_S"),
Gender = c("Female", "Male"))))

(Satisfaction categories abbreviated for convenience.)
ftable(. ~ Gender + Income, Satisfaction)
Table 7.8 in Agresti (2002), p. 288.
mantelhaen.test(Satisfaction)
See Table 7.12 in Agresti (2002), p. 297.

mauchly.test Mauchly’s Test of Sphericity

Description

Tests whether a Wishart-distributed covariance matrix (or transformation thereof) is proportional to
a given matrix.

Usage

mauchly.test(object, ...)
S3 method for class 'mlm':

mauchly.test 1171

mauchly.test(object,...)
S3 method for class 'SSD':
mauchly.test(object, Sigma = diag(nrow = p),

T = Thin.row(proj(M) - proj(X)), M = diag(nrow = p), X = ~0,
idata = data.frame(index = seq_len(p)), ...)

Arguments

object object of class SSD or mlm.

Sigma matrix to be proportional to.

T transformation matrix. By default computed from M and X.

M formula or matrix describing the outer projection (see below).

X formula or matrix describing the inner projection (see below).

idata data frame describing intra-block design.

... arguments to be passed to or from other methods.

Details

Mauchly’s test test for whether a covariance matrix can be assumed to be proportional to a given
matrix.

This is a generic function with methods for classes "mlm" and "SSD".

The basic method is for objects of class SSD the method for mlm objects just extracts the SSD
matrix and invokes the corresponding method with the same options and arguments.

The T argument is used to transform the observations prior to testing. This typically involves
transformation to intra-block differences, but more complicated within-block designs can be en-
countered, making more elaborate transformations necessary. A matrix T can be given directly or
specified as the difference between two projections onto the spaces spanned by M and X, which in
turn can be given as matrices or as model formulas with respect to idata (the tests will be invariant
to parametrization of the quotient space M/X).

The common use of this test is in repeated measurements designs, with X=~1. This is almost, but
not quite the same as testing for compound symmetry in the untransformed covariance matrix.

Notice that the defaults involve p, which is calculated internally as the dimension of the SSD ma-
trix, and a couple of hidden functions in the stats namespace, namely proj which calculates
projection matrices from design matrices or model formulas and Thin.row which removes lin-
early dependent rows from a matrix until it has full row rank.

Value

An object of class "htest"

Note

The p-value differs slightly from that of SAS because a second order term is included in the asymp-
totic approximation in R.

References

T. W. Anderson (1958). An Introduction to Multivariate Statistical Analysis. Wiley.

1172 mcnemar.test

See Also

SSD, anova.mlm

Examples

utils::example(SSD) # Brings in the mlmfit and reacttime objects

traditional test of intrasubj. contrasts
mauchly.test(mlmfit, X=~1)

tests using intra-subject 3x2 design
idata <- data.frame(deg=gl(3,1,6, labels=c(0,4,8)),

noise=gl(2,3,6, labels=c("A","P")))
mauchly.test(mlmfit, X = ~ deg + noise, idata = idata)
mauchly.test(mlmfit, M = ~ deg + noise, X = ~ noise, idata=idata)

mcnemar.test McNemar’s Chi-squared Test for Count Data

Description

Performs McNemar’s chi-squared test for symmetry of rows and columns in a two-dimensional
contingency table.

Usage

mcnemar.test(x, y = NULL, correct = TRUE)

Arguments

x either a two-dimensional contingency table in matrix form, or a factor object.

y a factor object; ignored if x is a matrix.

correct a logical indicating whether to apply continuity correction when computing the
test statistic.

Details

The null is that the probabilities of being classified into cells [i,j] and [j,i] are the same.

If x is a matrix, it is taken as a two-dimensional contingency table, and hence its entries should be
nonnegative integers. Otherwise, both x and ymust be vectors of the same length. Incomplete cases
are removed, the vectors are coerced into factor objects, and the contingency table is computed from
these.

Continuity correction is only used in the 2-by-2 case if correct is TRUE.

median 1173

Value

A list with class "htest" containing the following components:

statistic the value of McNemar’s statistic.

parameter the degrees of freedom of the approximate chi-squared distribution of the test
statistic.

p.value the p-value of the test.

method a character string indicating the type of test performed, and whether continuity
correction was used.

data.name a character string giving the name(s) of the data.

References

Alan Agresti (1990). Categorical data analysis. New York: Wiley. Pages 350–354.

Examples

Agresti (1990), p. 350.
Presidential Approval Ratings.
Approval of the President's performance in office in two surveys,
one month apart, for a random sample of 1600 voting-age Americans.
Performance <-
matrix(c(794, 86, 150, 570),

nrow = 2,
dimnames = list("1st Survey" = c("Approve", "Disapprove"),

"2nd Survey" = c("Approve", "Disapprove")))
Performance
mcnemar.test(Performance)
=> significant change (in fact, drop) in approval ratings

median Median Value

Description

Compute the sample median.

Usage

median(x, na.rm = FALSE)

Arguments

x an object for which a method has been defined, or a numeric vector containing
the values whose median is to be computed.

na.rm a logical value indicating whether NA values should be stripped before the com-
putation proceeds.

1174 medpolish

Details

This is a generic function for which methods can be written. However, the default method makes
use of sort and mean, both of which are generic, and so the default method will work for most
classes (e.g. "Date") for which a median is a reasonable concept.

Value

The default method returns a length-one object of the same type as x, except when x is integer of
even length, when the result will be double.

If there are no values or if na.rm = FALSE and there are NA values the result is NA of the same
type as x (or more generally the result of x[FALSE][NA]).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

quantile for general quantiles.

Examples

median(1:4)# = 2.5 [even number]
median(c(1:3,100,1000))# = 3 [odd, robust]

medpolish Median Polish of a Matrix

Description

Fits an additive model using Tukey’s median polish procedure.

Usage

medpolish(x, eps = 0.01, maxiter = 10, trace.iter = TRUE,
na.rm = FALSE)

Arguments

x a numeric matrix.

eps real number greater than 0. A tolerance for convergence: see ‘Details’.

maxiter the maximum number of iterations

trace.iter logical. Should progress in convergence be reported?

na.rm logical. Should missing values be removed?

medpolish 1175

Details

The model fitted is additive (constant + rows + columns). The algorithm works by alternately
removing the row and column medians, and continues until the proportional reduction in the sum
of absolute residuals is less than eps or until there have been maxiter iterations. The sum of
absolute residuals is printed at each iteration of the fitting process, if trace.iter is TRUE. If
na.rm is FALSE the presence of any NA value in x will cause an error, otherwise NA values are
ignored.

medpolish returns an object of class medpolish (see below). There are printing and plotting
methods for this class, which are invoked via by the generics print and plot.

Value

An object of class medpolish with the following named components:

overall the fitted constant term.

row the fitted row effects.

col the fitted column effects.

residuals the residuals.

name the name of the dataset.

References

Tukey, J. W. (1977). Exploratory Data Analysis, Reading Massachusetts: Addison-Wesley.

See Also

median; aov for a mean instead of median decomposition.

Examples

require(graphics)

Deaths from sport parachuting; from ABC of EDA, p.224:
deaths <-

rbind(c(14,15,14),
c(7, 4, 7),
c(8, 2,10),
c(15, 9,10),
c(0, 2, 0))

dimnames(deaths) <- list(c("1-24", "25-74", "75-199", "200++", "NA"),
paste(1973:1975))

deaths
(med.d <- medpolish(deaths))
plot(med.d)
Check decomposition:
all(deaths ==

med.d$overall + outer(med.d$row,med.d$col, "+") + med.d$residuals)

1176 model.extract

model.extract Extract Components from a Model Frame

Description

Returns the response, offset, subset, weights or other special components of a model frame passed
as optional arguments to model.frame.

Usage

model.extract(frame, component)
model.offset(x)
model.response(data, type = "any")
model.weights(x)

Arguments

frame, x, data
A model frame.

component literal character string or name. The name of a component to extract, such as
"weights", "subset".

type One of "any", "numeric", "double". Using either of latter two coerces
the result to have storage mode "double".

Details

model.extract is provided for compatibility with S, which does not have the more specific
functions. It is also useful to extract e.g. the etastart and mustart components of a glm fit.

model.offset and model.response are equivalent to model.extract(, "offset")
and model.extract(, "response") respectively. model.offset sums any terms spec-
ified by offset terms in the formula or by offset arguments in the call producing the model
frame: it does check that the offset is numeric.

model.weights is slightly different from model.frame(, "weights") in not naming the
vector it returns.

Value

The specified component of the model frame, usually a vector.

See Also

model.frame, offset

Examples

a <- model.frame(cbind(ncases,ncontrols) ~ agegp+tobgp+alcgp, data=esoph)
model.extract(a, "response")
stopifnot(model.extract(a, "response") == model.response(a))

a <- model.frame(ncases/(ncases+ncontrols) ~ agegp+tobgp+alcgp,
data = esoph, weights = ncases+ncontrols)

model.frame 1177

model.response(a)
model.extract(a, "weights")

a <- model.frame(cbind(ncases,ncontrols) ~ agegp,
something = tobgp, data = esoph)

names(a)
stopifnot(model.extract(a, "something") == esoph$tobgp)

model.frame Extracting the “Environment” of a Model Formula

Description

model.frame (a generic function) and its methods return a data.frame with the variables
needed to use formula and any ... arguments.

Usage

model.frame(formula, ...)

Default S3 method:
model.frame(formula, data = NULL,

subset = NULL, na.action = na.fail,
drop.unused.levels = FALSE, xlev = NULL, ...)

S3 method for class 'aovlist':
model.frame(formula, data = NULL, ...)

S3 method for class 'glm':
model.frame(formula, ...)

S3 method for class 'lm':
model.frame(formula, ...)

get_all_vars(formula, data, ...)

Arguments

formula a model formula or terms object or an R object.

data a data.frame, list or environment (or object coercible by as.data.frame to
a data.frame), containing the variables in formula. Neither a matrix nor an
array will be accepted.

subset a specification of the rows to be used: defaults to all rows. This can be any valid
indexing vector (see [.data.frame) for the rows of data or if that is not
supplied, a data frame made up of the variables used in formula.

na.action how NAs are treated. The default is first, any na.action attribute of data,
second a na.action setting of options, and third na.fail if that is unset.
The ‘factory-fresh’ default is na.omit. Another possible value is NULL.

drop.unused.levels
should factors have unused levels dropped? Defaults to FALSE.

1178 model.frame

xlev a named list of character vectors giving the full set of levels to be assumed for
each factor.

... further arguments such as data, na.action, subset. Any additional argu-
ments such as offset and weights which reach the default method are used
to create further columns in the model frame, with parenthesised names such as
"(offset)".

Details

Exactly what happens depends on the class and attributes of the object formula. If this is an object
of fitted-model class such as "lm", the method will either return the saved model frame used when
fitting the model (if any, often selected by argument model = TRUE) or pass the call used when
fitting on to the default method. The default method itself can cope with rather standard model
objects such as those of class "lqs" from package MASS if no other arguments are supplied.

The rest of this section applies only to the default method.

If either formula or data is already a model frame (a data frame with a "terms" attribute)
and the other is missing, the model frame is returned. Unless formula is a terms object,
as.formula and then terms is called on it. (If you wish to use the keep.order argument of
terms.formula, pass a terms object rather than a formula.)

Row names for the model frame are taken from the data argument if present, then from the names
of the response in the formula (or rownames if it is a matrix), if there is one.

All the variables in formula, subset and in ... are looked for first in data and then in the
environment of formula (see the help for formula() for further details) and collected into a
data frame. Then the subset expression is evaluated, and it is used as a row index to the data
frame. Then the na.action function is applied to the data frame (and may well add attributes).
The levels of any factors in the data frame are adjusted according to the drop.unused.levels
and xlev arguments.

Unless na.action = NULL, time-series attributes will be removed from the variables found
(since they will be wrong if NAs are removed).

Note that all the variables in the formula are included in the data frame, even those preceded by -.

Only variables whose type is raw, logical, integer, real, complex or character can be included in a
model frame: this includes classed variables such as factors (whose underlying type is integer), but
excludes lists.

get_all_vars returns a data.frame containing the variables used in formula plus those
specified Unlike model.frame.default, it returns the input variables and not those
resulting from function calls in formula.

Value

A data.frame containing the variables used in formula plus those specified in It will
have additional attributes, including "terms" for an object of class "terms" derived from
formula, and possibly "na.action" giving information on the handling of NAs (which will
not be present if no special handling was done, e.g. by na.pass).

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

model.matrix 1179

See Also

model.matrix for the ‘design matrix’, formula for formulas and expand.model.frame
for model.frame manipulation.

Examples

data.class(model.frame(dist ~ speed, data = cars))

model.matrix Construct Design Matrices

Description

model.matrix creates a design matrix.

Usage

model.matrix(object, ...)

Default S3 method:
model.matrix(object, data = environment(object),

contrasts.arg = NULL, xlev = NULL, ...)

Arguments

object an object of an appropriate class. For the default method, a model formula or
terms object.

data a data frame created with model.frame. If another sort of object,
model.frame is called first.

contrasts.arg
A list, whose entries are contrasts suitable for input to the contrasts replace-
ment function and whose names are the names of columns of data containing
factors.

xlev to be used as argument of model.frame if data has no "terms" attribute.

... further arguments passed to or from other methods.

Details

model.matrix creates a design matrix from the description given in terms(object), using
the data in data which must contain variables with the same names as would be created by a
call to model.frame(object) or, more precisely, by evaluating attr(terms(object),
"variables"). If it is a data frame, there may be other columns and the order of columns is not
important. Any character variables are coerced to factors, with a warning. After coercion, all the
variables used in RHD of the formula must be logical, integer, numeric or factor.

If contrasts.arg is specified for a factor it overrides the default factor coding for that variable
and any "contrasts" attribute set by C or contrasts.

In an interaction term, the variable whose levels vary fastest is the first one to appear in the formula
(and not in the term), so in ~ a + b + b:a the interaction will have a varying fastest.

By convention, if the response variable also appears on the right-hand side of the formula it is
dropped (with a warning), although interactions involving the term are retained.

1180 model.tables

Value

The design matrix for a regression model with the specified formula and data.

There is an attribute "assign", an integer vector with an entry for each column in the matrix
giving the term in the formula which gave rise to the column. Value 0 corresponds to the intercept
(if any), and positive values to terms in the order given by the terms.labels attribute of the
terms structure corresponding to object.

If there are any factors in terms in the model, there is an attribute "contrasts", a named list
with an entry for each factor. This specifies the contrasts that would be used in terms in which the
factor is coded by contrasts (in some terms dummy coding may be used), either as a character vector
naming a function or as a numeric matrix.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

model.frame, model.extract, terms

Examples

ff <- log(Volume) ~ log(Height) + log(Girth)
utils::str(m <- model.frame(ff, trees))
mat <- model.matrix(ff, m)

dd <- data.frame(a = gl(3,4), b = gl(4,1,12))# balanced 2-way
options("contrasts")
model.matrix(~ a + b, dd)
model.matrix(~ a + b, dd, contrasts = list(a="contr.sum"))
model.matrix(~ a + b, dd, contrasts = list(a="contr.sum", b="contr.poly"))
m.orth <- model.matrix(~a+b, dd, contrasts = list(a="contr.helmert"))
crossprod(m.orth)# m.orth is ALMOST orthogonal

model.tables Compute Tables of Results from an Aov Model Fit

Description

Computes summary tables for model fits, especially complex aov fits.

Usage

model.tables(x, ...)

S3 method for class 'aov':
model.tables(x, type = "effects", se = FALSE, cterms, ...)

S3 method for class 'aovlist':
model.tables(x, type = "effects", se = FALSE, ...)

model.tables 1181

Arguments

x a model object, usually produced by aov

type type of table: currently only "effects" and "means" are implemented.

se should standard errors be computed?

cterms A character vector giving the names of the terms for which tables should be
computed. The default is all tables.

... further arguments passed to or from other methods.

Details

For type = "effects" give tables of the coefficients for each term, optionally with standard
errors.

For type = "means" give tables of the mean response for each combinations of levels of the
factors in a term.

The "aov" method cannot be applied to components of a "aovlist" fit.

Value

An object of class "tables.aov", as list which may contain components

tables A list of tables for each requested term.

n The replication information for each term.

se Standard error information.

Warning

The implementation is incomplete, and only the simpler cases have been tested thoroughly.

Weighted aov fits are not supported.

See Also

aov, proj, replications, TukeyHSD, se.contrast

Examples

From Venables and Ripley (2002) p.165.
N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,
55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),
K=factor(K), yield=yield)

options(contrasts=c("contr.helmert", "contr.treatment"))
npk.aov <- aov(yield ~ block + N*P*K, npk)
model.tables(npk.aov, "means", se = TRUE)

as a test, not particularly sensible statistically
npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)
model.tables(npk.aovE, se=TRUE)
model.tables(npk.aovE, "means")

1182 monthplot

monthplot Plot a Seasonal or other Subseries from a Time Series

Description

These functions plot seasonal (or other) subseries of a time series. For each season (or other cate-
gory), a time series is plotted.

Usage

monthplot(x, ...)

S3 method for class 'stl':
monthplot(x, labels = NULL, ylab = choice, choice = "seasonal",

...)

S3 method for class 'StructTS':
monthplot(x, labels = NULL, ylab = choice, choice = "sea", ...)

S3 method for class 'ts':
monthplot(x, labels = NULL, times = time(x), phase = cycle(x),

ylab = deparse(substitute(x)), ...)

Default S3 method:
monthplot(x, labels = 1:12,

ylab = deparse(substitute(x)),
times = 1:length(x),
phase = (times - 1)%%length(labels) + 1, base = mean,
axes = TRUE, type = c("l", "h"), box = TRUE,
add = FALSE, ...)

Arguments

x Time series or related object.

labels Labels to use for each ‘season’.

ylab y label.

times Time of each observation.

phase Indicator for each ‘season’.

base Function to use for reference line for subseries.

choice Which series of an stl or StructTS object?

... Arguments to be passed to the default method or graphical parameters.

axes Should axes be drawn (ignored if add=TRUE)?

type Type of plot. The default is to join the points with lines, and "h" is for
histogram-like vertical lines.

box Should a box be drawn (ignored if add=TRUE?

add Should thus just add on an existing plot.

monthplot 1183

Details

These functions extract subseries from a time series and plot them all in one frame. The ts, stl,
and StructTS methods use the internally recorded frequency and start and finish times to set the
scale and the seasons. The default method assumes observations come in groups of 12 (though this
can be changed).

If the labels are not given but the phase is given, then the labels default to the unique values
of the phase. If both are given, then the phase values are assumed to be indices into the labels
array, i.e., they should be in the range from 1 to length(labels).

Value

These functions are executed for their side effect of drawing a seasonal subseries plot on the current
graphical window.

Author(s)

Duncan Murdoch

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

ts, stl, StructTS

Examples

require(graphics)

The CO2 data
fit <- stl(log(co2), s.window = 20, t.window = 20)
plot(fit)
op <- par(mfrow = c(2,2))
monthplot(co2, ylab = "data", cex.axis = 0.8)
monthplot(fit, choice = "seasonal", cex.axis = 0.8)
monthplot(fit, choice = "trend", cex.axis = 0.8)
monthplot(fit, choice = "remainder", type = "h", cex.axis = 0.8)
par(op)

The CO2 data, grouped quarterly
quarter <- (cycle(co2) - 1) %/% 3
monthplot(co2, phase = quarter)

see also JohnsonJohnson

1184 mood.test

mood.test Mood Two-Sample Test of Scale

Description

Performs Mood’s two-sample test for a difference in scale parameters.

Usage

mood.test(x, ...)

Default S3 method:
mood.test(x, y,

alternative = c("two.sided", "less", "greater"), ...)

S3 method for class 'formula':
mood.test(formula, data, subset, na.action, ...)

Arguments

x, y numeric vectors of data values.
alternative indicates the alternative hypothesis and must be one of "two.sided" (de-

fault), "greater" or "less" all of which can be abbreviated.
formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the

data values and rhs a factor with two levels giving the corresponding groups.
data an optional matrix or data frame (or similar: see model.frame) containing

the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. De-

faults to getOption("na.action").
... further arguments to be passed to or from methods.

Details

The underlying model is that the two samples are drawn from f(x− l) and f((x− l)/s)/s, respec-
tively, where l is a common location parameter and s is a scale parameter.

The null hypothesis is s = 1.

There are more useful tests for this problem.

In the case of ties, the formulation of Mielke (1967) is employed.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.
p.value the p-value of the test.
alternative a character string describing the alternative hypothesis.
method the character string "Mood two-sample test of scale".
data.name a character string giving the names of the data.

Multinomial 1185

References

William J. Conover (1971), Practical nonparametric statistics. New York: John Wiley & Sons.
Pages 234f.

Paul W. Mielke, Jr. (1967), Note on some squared rank tests with existing ties. Technometrics, 9/2,
312–314.

See Also

fligner.test for a rank-based (nonparametric) k-sample test for homogeneity of variances;
ansari.test for another rank-based two-sample test for a difference in scale parameters;
var.test and bartlett.test for parametric tests for the homogeneity in variance.

Examples

Same data as for the Ansari-Bradley test:
Serum iron determination using Hyland control sera
ramsay <- c(111, 107, 100, 99, 102, 106, 109, 108, 104, 99,

101, 96, 97, 102, 107, 113, 116, 113, 110, 98)
jung.parekh <- c(107, 108, 106, 98, 105, 103, 110, 105, 104,

100, 96, 108, 103, 104, 114, 114, 113, 108, 106, 99)
mood.test(ramsay, jung.parekh)
Compare this to ansari.test(ramsay, jung.parekh)

Multinomial The Multinomial Distribution

Description

Generate multinomially distributed random number vectors and compute multinomial probabilities.

Usage

rmultinom(n, size, prob)
dmultinom(x, size = NULL, prob, log = FALSE)

Arguments

x vector of length K of integers in 0:size.

n number of random vectors to draw.

size integer, say N , specifying the total number of objects that are put into K boxes
in the typical multinomial experiment. For dmultinom, it defaults to sum(x).

prob numeric non-negative vector of length K, specifying the probability for the K
classes; is internally normalized to sum 1.

log logical; if TRUE, log probabilities are computed.

1186 na.action

Details

If x is a K-component vector, dmultinom(x, prob) is the probability

P (X1 = x1, . . . , XK = xk) = C ×
K∏
j=1

π
xj

j

where C is the ‘multinomial coefficient’ C = N !/(x1! · · ·xK !) and N =
∑K
j=1 xj .

By definition, each component Xj is binomially distributed as Bin(size, prob[j]) for j =
1, . . . ,K.

The rmultinom() algorithm draws binomials from Bin(nj , Pj) sequentially, where n1 = N (N
:= size), P1 = π1 (π is prob scaled to sum 1), and for j ≥ 2, recursively nj = N −

∑j−1
k=1 nk

and Pj = πj/(1−
∑j−1
k=1 πk).

Value

For rmultinom(), an integer K x n matrix where each column is a random vector generated
according to the desired multinomial law, and hence summing to size. Whereas the transposed
result would seem more natural at first, the returned matrix is more efficient because of columnwise
storage.

Note

dmultinom is currently not vectorized at all and has no C interface (API); this may be amended
in the future.

See Also

rbinom which is a special case conceptually.

Examples

rmultinom(10, size = 12, prob=c(0.1,0.2,0.8))

pr <- c(1,3,6,10) # normalization not necessary for generation
rmultinom(10, 20, prob = pr)

all possible outcomes of Multinom(N = 3, K = 3)
X <- t(as.matrix(expand.grid(0:3, 0:3))); X <- X[, colSums(X) <= 3]
X <- rbind(X, 3:3 - colSums(X)); dimnames(X) <- list(letters[1:3], NULL)
X
round(apply(X, 2, function(x) dmultinom(x, prob = c(1,2,5))), 3)

na.action NA Action

Description

Extract information on the NA action used to create an object.

Usage

na.action(object, ...)

na.contiguous 1187

Arguments

object any object whose NA action is given.

... further arguments special methods could require.

Details

na.action is a generic function, and na.action.default its default method. The latter
extracts the "na.action" component of a list if present, otherwise the "na.action" attribute.

When model.frame is called, it records any information on NA handling in a "na.action"
attribute. Most model-fitting functions return this as a component of their result.

Value

Information from the action which was applied to object if NAs were handled specially, or NULL.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

options("na.action"), na.omit, na.fail, also for na.exclude, na.pass.

Examples

na.action(na.omit(c(1, NA)))

na.contiguous Find Longest Contiguous Stretch of non-NAs

Description

Find the longest consecutive stretch of non-missing values in a time series object. (In the event of a
tie, the first such stretch.)

Usage

na.contiguous(object, ...)

Arguments

object a univariate or multivariate time series.

... further arguments passed to or from other methods.

Value

A time series without missing values. The class of object will be preserved.

See Also

na.omit and na.omit.ts; na.fail

1188 na.fail

Examples

na.contiguous(presidents)

na.fail Handle Missing Values in Objects

Description

These generic functions are useful for dealing with NAs in e.g., data frames. na.fail returns the
object if it does not contain any missing values, and signals an error otherwise. na.omit returns
the object with incomplete cases removed. na.pass returns the object unchanged.

Usage

na.fail(object, ...)
na.omit(object, ...)
na.exclude(object, ...)
na.pass(object, ...)

Arguments

object an R object, typically a data frame

... further arguments special methods could require.

Details

At present these will handle vectors, matrices and data frames comprising vectors and matrices
(only).

If na.omit removes cases, the row numbers of the cases form the "na.action" attribute of the
result, of class "omit".

na.exclude differs from na.omit only in the class of the "na.action" attribute of the
result, which is "exclude". This gives different behaviour in functions making use of naresid
and napredict: when na.exclude is used the residuals and predictions are padded to the
correct length by inserting NAs for cases omitted by na.exclude.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

na.action; options with argument na.action for setting NA actions; and lm and glm for
functions using these. na.contiguous as alternative for time series.

naprint 1189

Examples

DF <- data.frame(x = c(1, 2, 3), y = c(0, 10, NA))
na.omit(DF)
m <- as.matrix(DF)
na.omit(m)
stopifnot(all(na.omit(1:3) == 1:3)) # does not affect objects with no NA's
try(na.fail(DF))#> Error: missing values in ...

options("na.action")

naprint Adjust for Missing Values

Description

Use missing value information to report the effects of an na.action.

Usage

naprint(x, ...)

Arguments

x An object produced by an na.action function.

... further arguments passed to or from other methods.

Details

This is a generic function, and the exact information differs by method. naprint.omit reports
the number of rows omitted: naprint.default reports an empty string.

Value

A character string providing information on missing values, for example the number.

naresid Adjust for Missing Values

Description

Use missing value information to adjust residuals and predictions.

Usage

naresid(omit, x, ...)
napredict(omit, x, ...)

1190 NegBinomial

Arguments

omit an object produced by an na.action function, typically the "na.action"
attribute of the result of na.omit or na.exclude.

x a vector, data frame, or matrix to be adjusted based upon the missing value
information.

... further arguments passed to or from other methods.

Details

These are utility functions used to allow predict, fitted and residuals methods for mod-
elling functions to compensate for the removal of NAs in the fitting process. They are used by the
default, "lm", "glm" and "nls" methods, and by further methods in packages MASS, rpart and
survival. Also used for the scores returned by factanal, prcomp and princomp.

The default methods do nothing. The default method for the na.exclude action is to pad the
object with NAs in the correct positions to have the same number of rows as the original data frame.

Currently naresid and napredict are identical, but future methods need not be. naresid is
used for residuals, and napredict for fitted values and predictions.

Value

These return a similar object to x.

Note

Packages rpart and survival5 used to contain versions of these functions that had an
na.omit action equivalent to that now used for na.exclude.

NegBinomial The Negative Binomial Distribution

Description

Density, distribution function, quantile function and random generation for the negative binomial
distribution with parameters size and prob.

Usage

dnbinom(x, size, prob, mu, log = FALSE)
pnbinom(q, size, prob, mu, lower.tail = TRUE, log.p = FALSE)
qnbinom(p, size, prob, mu, lower.tail = TRUE, log.p = FALSE)
rnbinom(n, size, prob, mu)

Arguments

x vector of (non-negative integer) quantiles.

q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

NegBinomial 1191

size target for number of successful trials, or dispersion parameter (the shape param-
eter of the gamma mixing distribution). Must be strictly positive.

prob probability of success in each trial. 0 < prob <= 1.

mu alternative parametrization via mean: see ‘Details’.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

The negative binomial distribution with size = n and prob = p has density

p(x) =
Γ(x+ n)
Γ(n)x!

pn(1− p)x

for x = 0, 1, 2, . . ., n > 0 and 0 < p ≤ 1.

This represents the number of failures which occur in a sequence of Bernoulli trials before a target
number of successes is reached.

A negative binomial distribution can arise as a mixture of Poisson distributions with mean dis-
tributed as a Γ (pgamma) distribution with scale parameter (1 - prob)/prob and shape pa-
rameter size. (This definition allows non-integer values of size.) In this model prob =
scale/(1+scale), and the mean is size * (1 - prob)/prob.

The alternative parametrization (often used in ecology) is by the mean mu, and size, the disper-
sion parameter, where prob = size/(size+mu). The variance is mu + mu^2/size in this
parametrization or n(1− p)/p2 in the first one.

If an element of x is not integer, the result of dnbinom is zero, with a warning.

The quantile is defined as the smallest value x such that F (x) ≥ p, where F is the distribution
function.

Value

dnbinom gives the density, pnbinom gives the distribution function, qnbinom gives the quantile
function, and rnbinom generates random deviates.

Invalid size or prob will result in return value NaN, with a warning.

Source

dnbinom computes via binomial probabilities, using code contributed by Catherine Loader (see
dbinom).

pnbinom uses pbeta.

qnbinom uses the Cornish–Fisher Expansion to include a skewness correction to a normal approx-
imation, followed by a search.

rnbinom uses the derivation as a gamma mixture of Poissons, see

Devroye, L. (1986) Non-Uniform Random Variate Generation. Springer-Verlag, New York. Page
480.

See Also

dbinom for the binomial, dpois for the Poisson and dgeom for the geometric distribution, which
is a special case of the negative binomial.

1192 nextn

Examples

require(graphics)
x <- 0:11
dnbinom(x, size = 1, prob = 1/2) * 2^(1 + x) # == 1
126 / dnbinom(0:8, size = 2, prob = 1/2) #- theoretically integer

Cumulative ('p') = Sum of discrete prob.s ('d'); Relative error :
summary(1 - cumsum(dnbinom(x, size = 2, prob = 1/2)) /

pnbinom(x, size = 2, prob = 1/2))

x <- 0:15
size <- (1:20)/4
persp(x,size, dnb <- outer(x, size, function(x,s) dnbinom(x,s, prob= 0.4)),

xlab = "x", ylab = "s", zlab="density", theta = 150)
title(tit <- "negative binomial density(x,s, pr = 0.4) vs. x & s")

image (x,size, log10(dnb), main= paste("log [",tit,"]"))
contour(x,size, log10(dnb),add=TRUE)

Alternative parametrization
x1 <- rnbinom(500, mu = 4, size = 1)
x2 <- rnbinom(500, mu = 4, size = 10)
x3 <- rnbinom(500, mu = 4, size = 100)
h1 <- hist(x1, breaks = 20, plot = FALSE)
h2 <- hist(x2, breaks = h1$breaks, plot = FALSE)
h3 <- hist(x3, breaks = h1$breaks, plot = FALSE)
barplot(rbind(h1$counts, h2$counts, h3$counts),

beside = TRUE, col = c("red","blue","cyan"),
names.arg = round(h1$breaks[-length(h1$breaks)]))

nextn Highly Composite Numbers

Description

nextn returns the smallest integer, greater than or equal to n, which can be obtained as a product
of powers of the values contained in factors. nextn is intended to be used to find a suitable
length to zero-pad the argument of fft to so that the transform is computed quickly. The default
value for factors ensures this.

Usage

nextn(n, factors = c(2,3,5))

Arguments

n an integer.

factors a vector of positive integer factors.

See Also

convolve, fft.

nlm 1193

Examples

nextn(1001) # 1024
table(sapply(599:630, nextn))

nlm Non-Linear Minimization

Description

This function carries out a minimization of the function f using a Newton-type algorithm. See the
references for details.

Usage

nlm(f, p, ..., hessian = FALSE, typsize = rep(1, length(p)),
fscale = 1, print.level = 0, ndigit = 12, gradtol = 1e-6,
stepmax = max(1000 * sqrt(sum((p/typsize)^2)), 1000),
steptol = 1e-6, iterlim = 100, check.analyticals = TRUE)

Arguments

f the function to be minimized. If the function value has an attribute called
gradient or both gradient and hessian attributes, these will be used
in the calculation of updated parameter values. Otherwise, numerical deriva-
tives are used. deriv returns a function with suitable gradient attribute.
This should be a function of a vector of the length of p followed by any other
arguments specified by the ... argument.

p starting parameter values for the minimization.

... additional arguments to f.

hessian if TRUE, the hessian of f at the minimum is returned.

typsize an estimate of the size of each parameter at the minimum.

fscale an estimate of the size of f at the minimum.

print.level this argument determines the level of printing which is done during the mini-
mization process. The default value of 0 means that no printing occurs, a value
of 1 means that initial and final details are printed and a value of 2 means that
full tracing information is printed.

ndigit the number of significant digits in the function f.

gradtol a positive scalar giving the tolerance at which the scaled gradient is considered
close enough to zero to terminate the algorithm. The scaled gradient is a measure
of the relative change in f in each direction p[i] divided by the relative change
in p[i].

stepmax a positive scalar which gives the maximum allowable scaled step length.
stepmax is used to prevent steps which would cause the optimization func-
tion to overflow, to prevent the algorithm from leaving the area of interest in
parameter space, or to detect divergence in the algorithm. stepmax would be
chosen small enough to prevent the first two of these occurrences, but should be
larger than any anticipated reasonable step.

steptol A positive scalar providing the minimum allowable relative step length.

1194 nlm

iterlim a positive integer specifying the maximum number of iterations to be performed
before the program is terminated.

check.analyticals
a logical scalar specifying whether the analytic gradients and Hessians, if they
are supplied, should be checked against numerical derivatives at the initial pa-
rameter values. This can help detect incorrectly formulated gradients or Hes-
sians.

Details

Note that arguments after ... must be matched exactly.

If a gradient or hessian is supplied but evaluates to the wrong mode or length, it will be ignored if
check.analyticals = TRUE (the default) with a warning. The hessian is not even checked
unless the gradient is present and passes the sanity checks.

From the three methods available in the original source, we always use method “1” which is line
search.

The functions supplied must always return finite (including not NA and not NaN) values.

Value

A list containing the following components:

minimum the value of the estimated minimum of f.
estimate the point at which the minimum value of f is obtained.
gradient the gradient at the estimated minimum of f.
hessian the hessian at the estimated minimum of f (if requested).
code an integer indicating why the optimization process terminated.

1: relative gradient is close to zero, current iterate is probably solution.
2: successive iterates within tolerance, current iterate is probably solution.
3: last global step failed to locate a point lower than estimate. Either

estimate is an approximate local minimum of the function or steptol
is too small.

4: iteration limit exceeded.
5: maximum step size stepmax exceeded five consecutive times. Either the

function is unbounded below, becomes asymptotic to a finite value from
above in some direction or stepmax is too small.

iterations the number of iterations performed.

References

Dennis, J. E. and Schnabel, R. B. (1983) Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ.

Schnabel, R. B., Koontz, J. E. and Weiss, B. E. (1985) A modular system of algorithms for uncon-
strained minimization. ACM Trans. Math. Software, 11, 419–440.

See Also

optim and nlminb.

constrOptim for constrained optimization, optimize for one-dimensional minimization and
uniroot for root finding. deriv to calculate analytical derivatives.

For nonlinear regression, nls may be better.

nlminb 1195

Examples

f <- function(x) sum((x-1:length(x))^2)
nlm(f, c(10,10))
nlm(f, c(10,10), print.level = 2)
utils::str(nlm(f, c(5), hessian = TRUE))

f <- function(x, a) sum((x-a)^2)
nlm(f, c(10,10), a=c(3,5))
f <- function(x, a)
{

res <- sum((x-a)^2)
attr(res, "gradient") <- 2*(x-a)
res

}
nlm(f, c(10,10), a=c(3,5))

more examples, including the use of derivatives.
Not run: demo(nlm)

nlminb Optimization using PORT routines

Description

Unconstrained and constrained optimization using PORT routines.

Usage

nlminb(start, objective, gradient = NULL, hessian = NULL, ...,
scale = 1, control = list(), lower = -Inf, upper = Inf)

Arguments

start numeric vector, initial values for the parameters to be optimized.

objective Function to be minimized. Must return a scalar value (possibly NA/Inf). The
first argument to objective is the vector of parameters to be optimized,
whose initial values are supplied through start. Further arguments (fixed dur-
ing the course of the optimization) to objective may be specified as well
(see ...).

gradient Optional function that takes the same arguments as objective and evaluates
the gradient of objective at its first argument. Must return a vector as long
as start.

hessian Optional function that takes the same arguments as objective and evaluates
the hessian of objective at its first argument. Must return a square matrix of
order length(start). Only the lower triangle is used.

... Further arguments to be supplied to objective.

scale See PORT documentation (or leave alone).

control A list of control parameters. See below for details.

lower, upper vectors of lower and upper bounds, replicated to be as long as start. If un-
specified, all parameters are assumed to be unconstrained.

1196 nlminb

Details

The PORT documentation is at http://netlib.bell-labs.com/cm/cs/cstr/153.
pdf.

Value

A list with components:

par The best set of parameters found.

objective The value of objective corresponding to par.

convergence An integer code. 0 indicates successful convergence.

message A character string giving any additional information returned by the optimizer,
or NULL. For details, see PORT documentation.

iterations Number of iterations performed.

evaluations Number of objective function and gradient function evaluations

Control parameters

Possible names in the control list and their default values are:

eval.max Maximum number of evaluations of the objective function allowed. Defaults to 200.

iter.max Maximum number of iterations allowed. Defaults to 150.

trace The value of the objective function and the parameters is printed every trace’th iteration.
Defaults to 0 which indicates no trace information is to be printed.

abs.tol Absolute tolerance. Defaults to 1e-20.

rel.tol Relative tolerance. Defaults to 1e-10.

x.tol X tolerance. Defaults to 1.5e-8.

step.min Minimum step size. Defaults to 2.2e-14.

Author(s)

(of R port) Douglas Bates and Deepayan Sarkar.

References

http://netlib.bell-labs.com/netlib/port/

See Also

optim and nlm.

optimize for one-dimensional minimization and constrOptim for constrained optimization.

Examples

x <- rnbinom(100, mu = 10, size = 10)
hdev <- function(par) {

-sum(dnbinom(x, mu = par[1], size = par[2], log = TRUE))
}
nlminb(c(9, 12), hdev)
nlminb(c(20, 20), hdev, lower = 0, upper = Inf)
nlminb(c(20, 20), hdev, lower = 0.001, upper = Inf)

http://netlib.bell-labs.com/cm/cs/cstr/153.pdf
http://netlib.bell-labs.com/cm/cs/cstr/153.pdf
http://netlib.bell-labs.com/netlib/port/

nls 1197

slightly modified from the S-PLUS help page for nlminb
this example minimizes a sum of squares with known solution y
sumsq <- function(x, y) {sum((x-y)^2)}
y <- rep(1,5)
x0 <- rnorm(length(y))
nlminb(start = x0, sumsq, y = y)
now use bounds with a y that has some components outside the bounds
y <- c(0, 2, 0, -2, 0)
nlminb(start = x0, sumsq, lower = -1, upper = 1, y = y)
try using the gradient
sumsq.g <- function(x,y) 2*(x-y)
nlminb(start = x0, sumsq, sumsq.g,

lower = -1, upper = 1, y = y)
now use the hessian, too
sumsq.h <- function(x,y) diag(2, nrow = length(x))
nlminb(start = x0, sumsq, sumsq.g, sumsq.h,

lower = -1, upper = 1, y = y)

Rest lifted from optim help page

fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
grr <- function(x) { ## Gradient of 'fr'

x1 <- x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),

200 * (x2 - x1 * x1))
}
nlminb(c(-1.2,1), fr)
nlminb(c(-1.2,1), fr, grr)

flb <- function(x)
{ p <- length(x); sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) }

25-dimensional box constrained
par[24] is *not* at boundary
nlminb(rep(3, 25), flb,

lower=rep(2, 25),
upper=rep(4, 25))

nls Nonlinear Least Squares

Description

Determine the nonlinear (weighted) least-squares estimates of the parameters of a nonlinear model.

Usage

nls(formula, data, start, control, algorithm,
trace, subset, weights, na.action, model,
lower, upper, ...)

1198 nls

Arguments

formula a nonlinear model formula including variables and parameters. Will be coerced
to a formula if necessary.

data an optional data frame in which to evaluate the variables in formula and
weights. Can also be a list or an environment, but not a matrix.

start a named list or named numeric vector of starting estimates. When start
is missing, a very cheap guess for start is tried (if algorithm !=
"plinear").

control an optional list of control settings. See nls.control for the names of the
settable control values and their effect.

algorithm character string specifying the algorithm to use. The default algorithm is a
Gauss-Newton algorithm. Other possible values are "plinear" for the Golub-
Pereyra algorithm for partially linear least-squares models and "port" for the
‘nl2sol’ algorithm from the Port library – see the references.

trace logical value indicating if a trace of the iteration progress should be printed. De-
fault is FALSE. If TRUE the residual (weighted) sum-of-squares and the parame-
ter values are printed at the conclusion of each iteration. When the "plinear"
algorithm is used, the conditional estimates of the linear parameters are printed
after the nonlinear parameters. When the "port" algorithm is used the objec-
tive function value printed is half the residual (weighted) sum-of-squares.

subset an optional vector specifying a subset of observations to be used in the fitting
process.

weights an optional numeric vector of (fixed) weights. When present, the objective func-
tion is weighted least squares.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that
is unset. The ‘factory-fresh’ default is na.omit. Value na.exclude can be
useful.

model logical. If true, the model frame is returned as part of the object. Default is
FALSE.

lower, upper vectors of lower and upper bounds, replicated to be as long as start. If un-
specified, all parameters are assumed to be unconstrained. Bounds can only be
used with the "port" algorithm. They are ignored, with a warning, if given for
other algorithms.

... Additional optional arguments. None are used at present.

Details

An nls object is a type of fitted model object. It has methods for the generic functions anova,
coef, confint, deviance, df.residual, fitted, formula, logLik, predict,
print, profile, residuals, summary, vcov and weights.

Variables in formula (and weights if not missing) are looked for first in data, then the envi-
ronment of formula and finally along the search path. Functions in formula are searched for
first in the environment of formula and then along the search path.

Arguments subset and na.action are supported only when all the variables in the formula
taken from data are of the same length: other cases give a warning.

Note that the anova method does not check that the models are nested: this cannot easily be done
automatically, so use with care.

nls 1199

Value

A list of

m an nlsModel object incorporating the model.

data the expression that was passed to nls as the data argument. The actual data
values are present in the environment of the m component.

call the matched call with several components, notably algorithm.

na.action the "na.action" attribute (if any) of the model frame.

dataClasses the "dataClasses" attribute (if any) of the "terms" attribute of the model
frame.

model if model = TRUE, the model frame.

weights if weights is supplied, the weights.

convInfo when algorithm is not "port", a list with convergence information.

control the control list used, see the control argument.
convergence, message

for an algorithm = "port" fit only, a convergence code (0 for conver-
gence) and message.

Note that setting warnOnly = TRUE in the control argument (see nls.control) returns a
non-converged object (since R version 2.5.0) which might be useful for further convergence analy-
sis, but not for inference.

Warning

Do not use nls on artificial "zero-residual" data.

The nls function uses a relative-offset convergence criterion that compares the numerical impreci-
sion at the current parameter estimates to the residual sum-of-squares. This performs well on data
of the form

y = f(x, θ) + ε

(with var(eps) > 0). It fails to indicate convergence on data of the form

y = f(x, θ)

because the criterion amounts to comparing two components of the round-off error. If you wish to
test nls on artificial data please add a noise component, as shown in the example below.

The algorithm = "port" code appears unfinished, and does not even check that the starting
value is within the bounds. Use with caution, especially where bounds are supplied.

Author(s)

Douglas M. Bates and Saikat DebRoy

References

Bates, D. M. and Watts, D. G. (1988) Nonlinear Regression Analysis and Its Applications, Wiley

Bates, D. M. and Chambers, J. M. (1992) Nonlinear models. Chapter 10 of Statistical Models in S
eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

http://www.netlib.org/port/ for the Port library documentation.

http://www.netlib.org/port/

1200 nls

See Also

summary.nls, predict.nls, profile.nls.

Examples

require(graphics)

DNase1 <- subset(DNase, Run == 1)

using a selfStart model
fm1DNase1 <- nls(density ~ SSlogis(log(conc), Asym, xmid, scal), DNase1)
summary(fm1DNase1)
the coefficients only:
coef(fm1DNase1)
including their SE, etc:
coef(summary(fm1DNase1))

using conditional linearity
fm2DNase1 <- nls(density ~ 1/(1 + exp((xmid - log(conc))/scal)),

data = DNase1,
start = list(xmid = 0, scal = 1),
algorithm = "plinear", trace = TRUE)

summary(fm2DNase1)

without conditional linearity
fm3DNase1 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),

data = DNase1,
start = list(Asym = 3, xmid = 0, scal = 1),
trace = TRUE)

summary(fm3DNase1)

using Port's nl2sol algorithm
fm4DNase1 <- nls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),

data = DNase1,
start = list(Asym = 3, xmid = 0, scal = 1),
trace = TRUE, algorithm = "port")

summary(fm4DNase1)

weighted nonlinear regression
Treated <- Puromycin[Puromycin$state == "treated",]
weighted.MM <- function(resp, conc, Vm, K)
{

Purpose: exactly as white book p. 451 -- RHS for nls()
Weighted version of Michaelis-Menten model
--
Arguments: 'y', 'x' and the two parameters (see book)
--
Author: Martin Maechler, Date: 23 Mar 2001

pred <- (Vm * conc)/(K + conc)
(resp - pred) / sqrt(pred)

}

Pur.wt <- nls(~ weighted.MM(rate, conc, Vm, K), data = Treated,
start = list(Vm = 200, K = 0.1),
trace = TRUE)

nls 1201

summary(Pur.wt)

Passing arguments using a list that can not be coerced to a data.frame
lisTreat <- with(Treated,

list(conc1 = conc[1], conc.1 = conc[-1], rate = rate))

weighted.MM1 <- function(resp, conc1, conc.1, Vm, K)
{

conc <- c(conc1, conc.1)
pred <- (Vm * conc)/(K + conc)
(resp - pred) / sqrt(pred)

}
Pur.wt1 <- nls(~ weighted.MM1(rate, conc1, conc.1, Vm, K),

data = lisTreat, start = list(Vm = 200, K = 0.1))
stopifnot(all.equal(coef(Pur.wt), coef(Pur.wt1)))

Chambers and Hastie (1992) Statistical Models in S (p. 537):
If the value of the right side [of formula] has an attribute called
'gradient' this should be a matrix with the number of rows equal
to the length of the response and one column for each parameter.

weighted.MM.grad <- function(resp, conc1, conc.1, Vm, K)
{
conc <- c(conc1, conc.1)

K.conc <- K+conc
dy.dV <- conc/K.conc
dy.dK <- -Vm*dy.dV/K.conc
pred <- Vm*dy.dV
pred.5 <- sqrt(pred)
dev <- (resp - pred) / pred.5
Ddev <- -0.5*(resp+pred)/(pred.5*pred)
attr(dev, "gradient") <- Ddev * cbind(Vm = dy.dV, K = dy.dK)
dev

}

Pur.wt.grad <- nls(~ weighted.MM.grad(rate, conc1, conc.1, Vm, K),
data = lisTreat, start = list(Vm = 200, K = 0.1))

rbind(coef(Pur.wt), coef(Pur.wt1), coef(Pur.wt.grad))

In this example, there seems no advantage to providing the gradient.
In other cases, there might be.

The two examples below show that you can fit a model to
artificial data with noise but not to artificial data
without noise.
x <- 1:10
y <- 2*x + 3 # perfect fit
yeps <- y + rnorm(length(y), sd = 0.01) # added noise
nls(yeps ~ a + b*x, start = list(a = 0.12345, b = 0.54321),

trace = TRUE)
Not run:
terminates in an error, because convergence cannot be confirmed:
nls(y ~ a + b*x, start = list(a = 0.12345, b = 0.54321),

trace = TRUE)
End(Not run)

1202 nls.control

the nls() internal cheap guess for starting values can be sufficient:

x <- -(1:100)/10
y <- 100 + 10 * exp(x / 2) + rnorm(x)/10
nlmod <- nls(y ~ Const + A * exp(B * x), trace=TRUE)

plot(x,y, main = "nls(*), data, true function and fit, n=100")
curve(100 + 10 * exp(x / 2), col=4, add = TRUE)
lines(x, predict(nlmod), col=2)

The muscle dataset in MASS is from an experiment on muscle
contraction on 21 animals. The observed variables are Strip
(identifier of muscle), Conc (Cacl concentration) and Length
(resulting length of muscle section).
utils::data(muscle, package = "MASS")

The non linear model considered is
Length = alpha + beta*exp(-Conc/theta) + error
where theta is constant but alpha and beta may vary with Strip.

with(muscle, table(Strip)) # 2,3 or 4 obs per strip

We first use the plinear algorithm to fit an overall model,
ignoring that alpha and beta might vary with Strip.

musc.1 <- nls(Length ~ cbind(1, exp(-Conc/th)), muscle,
start = list(th=1), algorithm="plinear")

summary(musc.1)

Then we use nls' indexing feature for parameters in non-linear
models to use the convential algorithm to fit a model in which
alpha and beta vary with Strip. The starting values are provided
by the previously fitted model.
Note that with indexed parameters, the starting values must be
given in a list (with names):
b <- coef(musc.1)
musc.2 <- nls(Length ~ a[Strip] + b[Strip]*exp(-Conc/th),

muscle,
start = list(a=rep(b[2],21), b=rep(b[3],21), th=b[1]))

summary(musc.2)

nls.control Control the Iterations in nls

Description

Allow the user to set some characteristics of the nls nonlinear least squares algorithm.

Usage

nls.control(maxiter = 50, tol = 1e-05, minFactor = 1/1024,
printEval = FALSE, warnOnly = FALSE)

nls.control 1203

Arguments

maxiter A positive integer specifying the maximum number of iterations allowed.

tol A positive numeric value specifying the tolerance level for the relative offset
convergence criterion.

minFactor A positive numeric value specifying the minimum step-size factor allowed on
any step in the iteration. The increment is calculated with a Gauss-Newton
algorithm and successively halved until the residual sum of squares has been
decreased or until the step-size factor has been reduced below this limit.

printEval a logical specifying whether the number of evaluations (steps in the gradient
direction taken each iteration) is printed.

warnOnly a logical specifying whether nls() should return instead of signalling an error
in the case of termination before convergence. Termination before convergence
happens upon completion of maxiter iterations, in the case of a singular gra-
dient, and in the case that the step-size factor is reduced below minFactor.

Value

A list with exactly five components:

maxiter

tol

minFactor

printEval

warnOnly

with meanings as explained under ‘Arguments’.

Author(s)

Douglas Bates and Saikat DebRoy

References

Bates and Watts (1988), Nonlinear Regression Analysis and Its Applications, Wiley.

See Also

nls

Examples

nls.control(minFactor = 1/2048)

1204 NLSstClosestX

NLSstAsymptotic Fit the Asymptotic Regression Model

Description

Fits the asymptotic regression model, in the form b0 + b1*(1-exp(-exp(lrc) * x) to the
xy data. This can be used as a building block in determining starting estimates for more complicated
models.

Usage

NLSstAsymptotic(xy)

Arguments

xy a sortedXyData object

Value

A numeric value of length 3 with components labelled b0, b1, and lrc. b0 is the estimated
intercept on the y-axis, b1 is the estimated difference between the asymptote and the y-intercept,
and lrc is the estimated logarithm of the rate constant.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

SSasymp

Examples

Lob.329 <- Loblolly[Loblolly$Seed == "329",]
NLSstAsymptotic(sortedXyData(expression(age), expression(height), Lob.329))

NLSstClosestX Inverse Interpolation

Description

Use inverse linear interpolation to approximate the x value at which the function represented by xy
is equal to yval.

Usage

NLSstClosestX(xy, yval)

NLSstLfAsymptote 1205

Arguments

xy a sortedXyData object

yval a numeric value on the y scale

Value

A single numeric value on the x scale.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

sortedXyData, NLSstLfAsymptote, NLSstRtAsymptote, selfStart

Examples

DNase.2 <- DNase[DNase$Run == "2",]
DN.srt <- sortedXyData(expression(log(conc)), expression(density), DNase.2)
NLSstClosestX(DN.srt, 1.0)

NLSstLfAsymptote Horizontal Asymptote on the Left Side

Description

Provide an initial guess at the horizontal asymptote on the left side (i.e., small values of x) of the
graph of y versus x from the xy object. Primarily used within initial functions for self-starting
nonlinear regression models.

Usage

NLSstLfAsymptote(xy)

Arguments

xy a sortedXyData object

Value

A single numeric value estimating the horizontal asymptote for small x.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

sortedXyData, NLSstClosestX, NLSstRtAsymptote, selfStart

1206 NLSstRtAsymptote

Examples

DNase.2 <- DNase[DNase$Run == "2",]
DN.srt <- sortedXyData(expression(log(conc)), expression(density), DNase.2)
NLSstLfAsymptote(DN.srt)

NLSstRtAsymptote Horizontal Asymptote on the Right Side

Description

Provide an initial guess at the horizontal asymptote on the right side (i.e., large values of x) of the
graph of y versus x from the xy object. Primarily used within initial functions for self-starting
nonlinear regression models.

Usage

NLSstRtAsymptote(xy)

Arguments

xy a sortedXyData object

Value

A single numeric value estimating the horizontal asymptote for large x.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

sortedXyData, NLSstClosestX, NLSstRtAsymptote, selfStart

Examples

DNase.2 <- DNase[DNase$Run == "2",]
DN.srt <- sortedXyData(expression(log(conc)), expression(density), DNase.2)
NLSstRtAsymptote(DN.srt)

Normal 1207

Normal The Normal Distribution

Description

Density, distribution function, quantile function and random generation for the normal distribution
with mean equal to mean and standard deviation equal to sd.

Usage

dnorm(x, mean = 0, sd = 1, log = FALSE)
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean = 0, sd = 1)

Arguments

x,q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

mean vector of means.

sd vector of standard deviations.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

If mean or sd are not specified they assume the default values of 0 and 1, respectively.

The normal distribution has density

f(x) =
1√
2πσ

e−(x−µ)2/2σ2

where µ is the mean of the distribution and σ the standard deviation.

qnorm is based on Wichura’s algorithm AS 241 which provides precise results up to about 16
digits.

Value

dnorm gives the density, pnorm gives the distribution function, qnorm gives the quantile function,
and rnorm generates random deviates.

1208 Normal

Source

For pnorm, based on

Cody, W. D. (1993) Algorithm 715: SPECFUN – A portable FORTRAN package of special function
routines and test drivers. ACM Transactions on Mathematical Software 19, 22–32.

For qnorm, the code is a C translation of

Wichura, M. J. (1988) Algorithm AS 241: The Percentage Points of the Normal Distribution. Ap-
plied Statistics, 37, 477–484.

For rnorm, see RNG for how to select the algorithm and for references to the supplied methods.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume
1, chapter 13. Wiley, New York.

See Also

runif and .Random.seed about random number generation, and dlnorm for the Lognormal
distribution.

Examples

require(graphics)

dnorm(0) == 1/ sqrt(2*pi)
dnorm(1) == exp(-1/2)/ sqrt(2*pi)
dnorm(1) == 1/ sqrt(2*pi*exp(1))

Using "log = TRUE" for an extended range :
par(mfrow=c(2,1))
plot(function(x) dnorm(x, log=TRUE), -60, 50,

main = "log { Normal density }")
curve(log(dnorm(x)), add=TRUE, col="red",lwd=2)
mtext("dnorm(x, log=TRUE)", adj=0)
mtext("log(dnorm(x))", col="red", adj=1)

plot(function(x) pnorm(x, log.p=TRUE), -50, 10,
main = "log { Normal Cumulative }")

curve(log(pnorm(x)), add=TRUE, col="red",lwd=2)
mtext("pnorm(x, log=TRUE)", adj=0)
mtext("log(pnorm(x))", col="red", adj=1)

if you want the so-called 'error function'
erf <- function(x) 2 * pnorm(x * sqrt(2)) - 1
(see Abramowitz and Stegun 29.2.29)
and the so-called 'complementary error function'
erfc <- function(x) 2 * pnorm(x * sqrt(2), lower = FALSE)
and the inverses
erfinv <- function (x) qnorm((1 + x)/2)/sqrt(2)
erfcinv <- function (x) qnorm(x/2, lower = FALSE)/sqrt(2)

numericDeriv 1209

numericDeriv Evaluate derivatives numerically

Description

numericDeriv numerically evaluates the gradient of an expression.

Usage

numericDeriv(expr, theta, rho = parent.frame(), dir = 1)

Arguments

expr The expression to be differentiated. The value of this expression should be a
numeric vector.

theta A character vector of names of numeric variables used in expr.

rho An environment containing all the variables needed to evaluate expr.

dir A numeric vector of directions to use for the finite differences.

Details

This is a front end to the C function numeric_deriv, which is described in Writing R Extensions.

The numeric variables must be of type real and not integer.

Value

The value of eval(expr, envir = rho) plus a matrix attribute called gradient. The
columns of this matrix are the derivatives of the value with respect to the variables listed in theta.

Author(s)

Saikat DebRoy 〈saikat@stat.wisc.edu〉

Examples

myenv <- new.env()
assign("mean", 0., envir = myenv)
assign("sd", 1., envir = myenv)
assign("x", seq(-3., 3., len = 31), envir = myenv)
numericDeriv(quote(pnorm(x, mean, sd)), c("mean", "sd"), myenv)

1210 oneway.test

offset Include an Offset in a Model Formula

Description

An offset is a term to be added to a linear predictor, such as in a generalised linear model, with
known coefficient 1 rather than an estimated coefficient.

Usage

offset(object)

Arguments

object An offset to be included in a model frame

Details

There can be more than one offset in a model formula, but - is not supported for offset terms
(and is equivalent to +).

Value

The input value.

See Also

model.offset, model.frame.

For examples see glm and Insurance in package MASS.

oneway.test Test for Equal Means in a One-Way Layout

Description

Test whether two or more samples from normal distributions have the same means. The variances
are not necessarily assumed to be equal.

Usage

oneway.test(formula, data, subset, na.action, var.equal = FALSE)

oneway.test 1211

Arguments

formula a formula of the form lhs ~ rhswhere lhs gives the sample values and rhs
the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

var.equal a logical variable indicating whether to treat the variances in the samples as
equal. If TRUE, then a simple F test for the equality of means in a one-way
analysis of variance is performed. If FALSE, an approximate method of Welch
(1951) is used, which generalizes the commonly known 2-sample Welch test to
the case of arbitrarily many samples.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

parameter the degrees of freedom of the exact or approximate F distribution of the test
statistic.

p.value the p-value of the test.

method a character string indicating the test performed.

data.name a character string giving the names of the data.

References

B. L. Welch (1951), On the comparison of several mean values: an alternative approach.
Biometrika, 38, 330–336.

See Also

The standard t test (t.test) as the special case for two samples; the Kruskal-Wallis test
kruskal.test for a nonparametric test for equal location parameters in a one-way layout.

Examples

Not assuming equal variances
oneway.test(extra ~ group, data = sleep)
Assuming equal variances
oneway.test(extra ~ group, data = sleep, var.equal = TRUE)
which gives the same result as
anova(lm(extra ~ group, data = sleep))

1212 optim

optim General-purpose Optimization

Description

General-purpose optimization based on Nelder–Mead, quasi-Newton and conjugate-gradient algo-
rithms. It includes an option for box-constrained optimization and simulated annealing.

Usage

optim(par, fn, gr = NULL, ...,
method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN"),
lower = -Inf, upper = Inf,
control = list(), hessian = FALSE)

Arguments

par Initial values for the parameters to be optimized over.

fn A function to be minimized (or maximized), with first argument the vector of
parameters over which minimization is to take place. It should return a scalar
result.

gr A function to return the gradient for the "BFGS", "CG" and "L-BFGS-B"
methods. If it is NULL, a finite-difference approximation will be used.
For the "SANN" method it specifies a function to generate a new candidate
point. If it is NULL a default Gaussian Markov kernel is used.

... Further arguments to be passed to fn and gr.

method The method to be used. See ‘Details’.

lower, upper Bounds on the variables for the "L-BFGS-B" method.

control A list of control parameters. See ‘Details’.

hessian Logical. Should a numerically differentiated Hessian matrix be returned?

Details

Note that arguments after ... must be matched exactly.

By default this function performs minimization, but it will maximize if control$fnscale is
negative.

The default method is an implementation of that of Nelder and Mead (1965), that uses only func-
tion values and is robust but relatively slow. It will work reasonably well for non-differentiable
functions.

Method "BFGS" is a quasi-Newton method (also known as a variable metric algorithm), specifi-
cally that published simultaneously in 1970 by Broyden, Fletcher, Goldfarb and Shanno. This uses
function values and gradients to build up a picture of the surface to be optimized.

Method "CG" is a conjugate gradients method based on that by Fletcher and Reeves (1964) (but
with the option of Polak–Ribiere or Beale–Sorenson updates). Conjugate gradient methods will
generally be more fragile than the BFGS method, but as they do not store a matrix they may be
successful in much larger optimization problems.

Method "L-BFGS-B" is that of Byrd et. al. (1995) which allows box constraints, that is each
variable can be given a lower and/or upper bound. The initial value must satisfy the constraints.

optim 1213

This uses a limited-memory modification of the BFGS quasi-Newton method. If non-trivial bounds
are supplied, this method will be selected, with a warning.

Nocedal and Wright (1999) is a comprehensive reference for the previous three methods.

Method "SANN" is by default a variant of simulated annealing given in Belisle (1992). Simulated-
annealing belongs to the class of stochastic global optimization methods. It uses only function
values but is relatively slow. It will also work for non-differentiable functions. This implementation
uses the Metropolis function for the acceptance probability. By default the next candidate point
is generated from a Gaussian Markov kernel with scale proportional to the actual temperature. If
a function to generate a new candidate point is given, method "SANN" can also be used to solve
combinatorial optimization problems. Temperatures are decreased according to the logarithmic
cooling schedule as given in Belisle (1992, p. 890); specifically, the temperature is set to temp
/ log(((t-1) %/% tmax)*tmax + exp(1)), where t is the current iteration step and
temp and tmax are specifiable via control, see below. Note that the "SANN" method depends
critically on the settings of the control parameters. It is not a general-purpose method but can be
very useful in getting to a good value on a very rough surface.

Function fn can return NA or Inf if the function cannot be evaluated at the supplied value, but the
initial value must have a computable finite value of fn. (Except for method "L-BFGS-B" where
the values should always be finite.)

optim can be used recursively, and for a single parameter as well as many. It also accepts a
zero-length par, and just evaluates the function with that argument.

The control argument is a list that can supply any of the following components:

trace Non-negative integer. If positive, tracing information on the progress of the optimization is
produced. Higher values may produce more tracing information: for method "L-BFGS-B"
there are six levels of tracing. (To understand exactly what these do see the source code:
higher levels give more detail.)

fnscale An overall scaling to be applied to the value of fn and gr during optimization. If
negative, turns the problem into a maximization problem. Optimization is performed on
fn(par)/fnscale.

parscale A vector of scaling values for the parameters. Optimization is performed on
par/parscale and these should be comparable in the sense that a unit change in any ele-
ment produces about a unit change in the scaled value.

ndeps A vector of step sizes for the finite-difference approximation to the gradient, on
par/parscale scale. Defaults to 1e-3.

maxit The maximum number of iterations. Defaults to 100 for the derivative-based methods,
and 500 for "Nelder-Mead". For "SANN" maxit gives the total number of function
evaluations. There is no other stopping criterion. Defaults to 10000.

abstol The absolute convergence tolerance. Only useful for non-negative functions, as a toler-
ance for reaching zero.

reltol Relative convergence tolerance. The algorithm stops if it is unable to reduce the
value by a factor of reltol * (abs(val) + reltol) at a step. Defaults to
sqrt(.Machine$double.eps), typically about 1e-8.

alpha, beta, gamma Scaling parameters for the "Nelder-Mead" method. alpha is the re-
flection factor (default 1.0), beta the contraction factor (0.5) and gamma the expansion factor
(2.0).

REPORT The frequency of reports for the "BFGS", "L-BFGS-B" and "SANN" methods
if control$trace is positive. Defaults to every 10 iterations for "BFGS" and
"L-BFGS-B", or every 100 temperatures for "SANN".

1214 optim

type for the conjugate-gradients method. Takes value 1 for the Fletcher–Reeves update, 2 for
Polak–Ribiere and 3 for Beale–Sorenson.

lmm is an integer giving the number of BFGS updates retained in the "L-BFGS-B" method, It
defaults to 5.

factr controls the convergence of the "L-BFGS-B" method. Convergence occurs when the
reduction in the objective is within this factor of the machine tolerance. Default is 1e7, that
is a tolerance of about 1e-8.

pgtol helps control the convergence of the "L-BFGS-B" method. It is a tolerance on the pro-
jected gradient in the current search direction. This defaults to zero, when the check is sup-
pressed.

temp controls the "SANN" method. It is the starting temperature for the cooling schedule. De-
faults to 10.

tmax is the number of function evaluations at each temperature for the "SANN" method. Defaults
to 10.

Any names given to par will be copied to the vectors passed to fn and gr. Note that no other
attributes of par are copied over.

Value

A list with components:

par The best set of parameters found.

value The value of fn corresponding to par.

counts A two-element integer vector giving the number of calls to fn and gr respec-
tively. This excludes those calls needed to compute the Hessian, if requested,
and any calls to fn to compute a finite-difference approximation to the gradient.

convergence An integer code. 0 indicates successful convergence. Error codes are

1 indicates that the iteration limit maxit had been reached.

10 indicates degeneracy of the Nelder–Mead simplex.

51 indicates a warning from the "L-BFGS-B" method; see component
message for further details.

52 indicates an error from the "L-BFGS-B" method; see component
message for further details.

message A character string giving any additional information returned by the optimizer,
or NULL.

hessian Only if argument hessian is true. A symmetric matrix giving an estimate of
the Hessian at the solution found. Note that this is the Hessian of the uncon-
strained problem even if the box constraints are active.

Note

optim will work with one-dimensional pars, but the default method does not work well (and will
warn). Use optimize instead.

optim 1215

Source

The code for methods "Nelder-Mead", "BFGS" and "CG" was based originally on Pascal code
in Nash (1990) that was translated by p2c and then hand-optimized. Dr Nash has agreed that the
code can be made freely available.

The code for method "L-BFGS-B" is based on Fortran code by Zhu, Byrd, Lu-Chen and Nocedal
obtained from Netlib (file ‘opt/lbfgs_bcm.shar’: another version is in ‘toms/778’).

The code for method "SANN" was contributed by A. Trapletti.

References

Belisle, C. J. P. (1992) Convergence theorems for a class of simulated annealing algorithms on Rd.
J Applied Probability, 29, 885–895.

Byrd, R. H., Lu, P., Nocedal, J. and Zhu, C. (1995) A limited memory algorithm for bound con-
strained optimization. SIAM J. Scientific Computing, 16, 1190–1208.

Fletcher, R. and Reeves, C. M. (1964) Function minimization by conjugate gradients. Computer
Journal 7, 148–154.

Nash, J. C. (1990) Compact Numerical Methods for Computers. Linear Algebra and Function
Minimisation. Adam Hilger.

Nelder, J. A. and Mead, R. (1965) A simplex algorithm for function minimization. Computer
Journal 7, 308–313.

Nocedal, J. and Wright, S. J. (1999) Numerical Optimization. Springer.

See Also

nlm, nlminb.

optimize for one-dimensional minimization and constrOptim for constrained optimization.

Examples

require(graphics)

fr <- function(x) { ## Rosenbrock Banana function
x1 <- x[1]
x2 <- x[2]
100 * (x2 - x1 * x1)^2 + (1 - x1)^2

}
grr <- function(x) { ## Gradient of 'fr'

x1 <- x[1]
x2 <- x[2]
c(-400 * x1 * (x2 - x1 * x1) - 2 * (1 - x1),

200 * (x2 - x1 * x1))
}
optim(c(-1.2,1), fr)
optim(c(-1.2,1), fr, grr, method = "BFGS")
optim(c(-1.2,1), fr, NULL, method = "BFGS", hessian = TRUE)
optim(c(-1.2,1), fr, grr, method = "CG")
optim(c(-1.2,1), fr, grr, method = "CG", control=list(type=2))
optim(c(-1.2,1), fr, grr, method = "L-BFGS-B")

flb <- function(x)
{ p <- length(x); sum(c(1, rep(4, p-1)) * (x - c(1, x[-p])^2)^2) }

25-dimensional box constrained

1216 optim

optim(rep(3, 25), flb, NULL, method = "L-BFGS-B",
lower=rep(2, 25), upper=rep(4, 25)) # par[24] is *not* at boundary

"wild" function , global minimum at about -15.81515
fw <- function (x)

10*sin(0.3*x)*sin(1.3*x^2) + 0.00001*x^4 + 0.2*x+80
plot(fw, -50, 50, n=1000, main = "optim() minimising 'wild function'")

res <- optim(50, fw, method="SANN",
control=list(maxit=20000, temp=20, parscale=20))

res
Now improve locally {typically only by a small bit}:
(r2 <- optim(res$par, fw, method="BFGS"))
points(r2$par, r2$value, pch = 8, col = "red", cex = 2)

Combinatorial optimization: Traveling salesman problem
library(stats) # normally loaded

eurodistmat <- as.matrix(eurodist)

distance <- function(sq) { # Target function
sq2 <- embed(sq, 2)
return(sum(eurodistmat[cbind(sq2[,2],sq2[,1])]))

}

genseq <- function(sq) { # Generate new candidate sequence
idx <- seq(2, NROW(eurodistmat)-1, by=1)
changepoints <- sample(idx, size=2, replace=FALSE)
tmp <- sq[changepoints[1]]
sq[changepoints[1]] <- sq[changepoints[2]]
sq[changepoints[2]] <- tmp
return(sq)

}

sq <- c(1,2:NROW(eurodistmat),1) # Initial sequence
distance(sq)

set.seed(123) # chosen to get a good soln relatively quickly
res <- optim(sq, distance, genseq, method="SANN",

control = list(maxit=30000, temp=2000, trace=TRUE, REPORT=500))
res # Near optimum distance around 12842

loc <- cmdscale(eurodist)
rx <- range(x <- loc[,1])
ry <- range(y <- -loc[,2])
tspinit <- loc[sq,]
tspres <- loc[res$par,]
s <- seq(NROW(tspres)-1)

plot(x, y, type="n", asp=1, xlab="", ylab="",
main="initial solution of traveling salesman problem")

arrows(tspinit[s,1], -tspinit[s,2], tspinit[s+1,1], -tspinit[s+1,2],
angle=10, col="green")

text(x, y, labels(eurodist), cex=0.8)

plot(x, y, type="n", asp=1, xlab="", ylab="",
main="optim() 'solving' traveling salesman problem")

optimize 1217

arrows(tspres[s,1], -tspres[s,2], tspres[s+1,1], -tspres[s+1,2],
angle=10, col="red")

text(x, y, labels(eurodist), cex=0.8)

optimize One Dimensional Optimization

Description

The function optimize searches the interval from lower to upper for a minimum or maximum
of the function f with respect to its first argument.

optimise is an alias for optimize.

Usage

optimize(f = , interval = , ..., lower = min(interval),
upper = max(interval), maximum = FALSE,
tol = .Machine$double.eps^0.25)

optimise(f = , interval = , ..., lower = min(interval),
upper = max(interval), maximum = FALSE,
tol = .Machine$double.eps^0.25)

Arguments

f the function to be optimized. The function is either minimized or maximized
over its first argument depending on the value of maximum.

interval a vector containing the end-points of the interval to be searched for the mini-
mum.

... additional named or unnamed arguments to be passed to f.

lower the lower end point of the interval to be searched.

upper the upper end point of the interval to be searched.

maximum logical. Should we maximize or minimize (the default)?

tol the desired accuracy.

Details

Note that arguments after ... must be matched exactly.

The method used is a combination of golden section search and successive parabolic interpolation,
and was designed for use with continuous functions. Convergence is never much slower than that
for a Fibonacci search. If f has a continuous second derivative which is positive at the minimum
(which is not at lower or upper), then convergence is superlinear, and usually of the order of
about 1.324.

The function f is never evaluated at two points closer together than ε|x0| + (tol/3),
where ε is approximately sqrt(.Machine$double.eps) and x0 is the final abscissa
optimize()$minimum.
If f is a unimodal function and the computed values of f are always unimodal when separated by at
least ε |x|+ (tol/3), then x0 approximates the abscissa of the global minimum of f on the interval
lower,upper with an error less than ε|x0|+ tol.

1218 optimize

If f is not unimodal, then optimize() may approximate a local, but perhaps non-global, mini-
mum to the same accuracy.

The first evaluation of f is always at x1 = a+(1−φ)(b−a) where (a,b) = (lower, upper)
and φ = (

√
5− 1)/2 = 0.61803.. is the golden section ratio. Almost always, the second evaluation

is at x2 = a+ φ(b− a). Note that a local minimum inside [x1, x2] will be found as solution, even
when f is constant in there, see the last example.

f will be called as f(x, ...) for a numeric value of x.

Value

A list with components minimum (or maximum) and objective which give the location of the
minimum (or maximum) and the value of the function at that point.

Source

A C translation of Fortran code http://www.netlib.org/fmm/fmin.f based on the Algol
60 procedure localmin given in the reference.

References

Brent, R. (1973) Algorithms for Minimization without Derivatives. Englewood Cliffs N.J.: Prentice-
Hall.

See Also

nlm, uniroot.

Examples

require(graphics)

f <- function (x,a) (x-a)^2
xmin <- optimize(f, c(0, 1), tol = 0.0001, a = 1/3)
xmin

See where the function is evaluated:
optimize(function(x) x^2*(print(x)-1), lower=0, upper=10)

"wrong" solution with unlucky interval and piecewise constant f():
f <- function(x) ifelse(x > -1, ifelse(x < 4, exp(-1/abs(x - 1)), 10), 10)
fp <- function(x) { print(x); f(x) }

plot(f, -2,5, ylim = 0:1, col = 2)
optimize(fp, c(-4, 20))# doesn't see the minimum
optimize(fp, c(-7, 20))# ok

http://www.netlib.org/fmm/fmin.f

order.dendrogram 1219

order.dendrogram Ordering or Labels of the Leaves in a Dendrogram

Description

Theses functions return the order (index) or the "label" attribute for the leaves in a dendrogram.
These indices can then be used to access the appropriate components of any additional data.

Usage

order.dendrogram(x)

S3 method for class 'dendrogram':
labels(object, ...)

Arguments

x, object a dendrogram (see as.dendrogram).

... additional arguments

Details

The indices or labels for the leaves in left to right order are retrieved.

Value

A vector with length equal to the number of leaves in the dendrogram is returned. From r <-
order.dendrogram(), each element is the index into the original data (from which the den-
drogram was computed).

Author(s)

R. Gentleman (order.dendrogram and Martin Maechler (labels.dendrogram).

See Also

reorder, dendrogram.

Examples

set.seed(123)
x <- rnorm(10)
hc <- hclust(dist(x))
hc$order
dd <- as.dendrogram(hc)
order.dendrogram(dd) ## the same :
stopifnot(hc$order == order.dendrogram(dd))

d2 <- as.dendrogram(hclust(dist(USArrests)))
labels(d2) ## in this case the same as
stopifnot(labels(d2) == rownames(USArrests)[order.dendrogram(d2)])

1220 p.adjust

p.adjust Adjust P-values for Multiple Comparisons

Description

Given a set of p-values, returns p-values adjusted using one of several methods.

Usage

p.adjust(p, method = p.adjust.methods, n = length(p))

p.adjust.methods
c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY",
"fdr", "none")

Arguments

p vector of p-values (possibly with NAs).

method correction method

n number of comparisons, must be at least length(p); only set this (to non-
default) when you know what you are doing!

Details

The adjustment methods include the Bonferroni correction ("bonferroni") in which the p-
values are multiplied by the number of comparisons. Less conservative corrections are also included
by Holm (1979) ("holm"), Hochberg (1988) ("hochberg"), Hommel (1988) ("hommel"),
Benjamini & Hochberg (1995) ("BH"), and Benjamini & Yekutieli (2001) ("BY"), respectively.
A pass-through option ("none") is also included. The set of methods are contained in the
p.adjust.methods vector for the benefit of methods that need to have the method as an option
and pass it on to p.adjust.

The first four methods are designed to give strong control of the family wise error rate. There seems
no reason to use the unmodified Bonferroni correction because it is dominated by Holm’s method,
which is also valid under arbitrary assumptions.

Hochberg’s and Hommel’s methods are valid when the hypothesis tests are independent or when
they are non-negatively associated (Sarkar, 1998; Sarkar and Chang, 1997). Hommel’s method is
more powerful than Hochberg’s, but the difference is usually small and the Hochberg p-values are
faster to compute.

The "BH" and "BY"method of Benjamini, Hochberg, and Yekutieli control the false discovery rate,
the expected proportion of false discoveries amongst the rejected hypotheses. The false discovery
rate is a less stringent condition than the family wise error rate, so these methods are more powerful
than the others.

Note that you can set n larger than length(p) which means the unobserved p-values are assumed
to be greater than all the observed p for "bonferroni" and "holm" methods and equal to 1 for
the other methods.

Value

A vector of corrected p-values (same length as p).

p.adjust 1221

References

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. Journal of the Royal Statistical Society Series B, 57, 289–300.

Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing
under dependency. Annals of Statistics 29, 1165–1188.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of
Statistics, 6, 65–70.

Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni
test. Biometrika, 75, 383–386.

Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika,
75, 800–803.

Shaffer, J. P. (1995). Multiple hypothesis testing. Annual Review of Psychology, 46, 561–576. (An
excellent review of the area.)

Sarkar, S. (1998). Some probability inequalities for ordered MTP2 random variables: a proof of
Simes conjecture. Annals of Statistics, 26, 494–504.

Sarkar, S., and Chang, C. K. (1997). Simes’ method for multiple hypothesis testing with positively
dependent test statistics. Journal of the American Statistical Association, 92, 1601–1608.

Wright, S. P. (1992). Adjusted P-values for simultaneous inference. Biometrics, 48, 1005–1013.
(Explains the adjusted P-value approach.)

See Also

pairwise.* functions such as pairwise.t.test.

Examples

require(graphics)

set.seed(123)
x <- rnorm(50, mean=c(rep(0,25),rep(3,25)))
p <- 2*pnorm(sort(-abs(x)))

round(p, 3)
round(p.adjust(p), 3)
round(p.adjust(p,"BH"), 3)

or all of them at once (dropping the "fdr" alias):
p.adjust.M <- p.adjust.methods[p.adjust.methods != "fdr"]
p.adj <- sapply(p.adjust.M, function(meth) p.adjust(p, meth))
round(p.adj, 3)
or a bit nicer:
noquote(apply(p.adj, 2, format.pval, digits = 3))

and a graphic:
matplot(p, p.adj, ylab="p.adjust(p, meth)", type = "l", asp=1, lty=1:6,

main = "P-value adjustments")
legend(.7,.6, p.adjust.M, col=1:6, lty=1:6)

Can work with NA's:
pN <- p; iN <- c(46,47); pN[iN] <- NA
pN.a <- sapply(p.adjust.M, function(meth) p.adjust(pN, meth))
The smallest 20 P-values all affected by the NA's :

1222 pairwise.t.test

round((pN.a / p.adj)[1:20,] , 4)

pairwise.prop.test Pairwise comparisons for proportions

Description

Calculate pairwise comparisons between pairs of proportions with correction for multiple testing

Usage

pairwise.prop.test(x, n, p.adjust.method = p.adjust.methods, ...)

Arguments

x Vector of counts of successes or a matrix with 2 columns giving the counts of
successes and failures, respectively.

n Vector of counts of trials; ignored if x is a matrix.
p.adjust.method

Method for adjusting p values (see p.adjust)

... Additional arguments to pass to prop.test

Value

Object of class "pairwise.htest"

See Also

prop.test, p.adjust

Examples

smokers <- c(83, 90, 129, 70)
patients <- c(86, 93, 136, 82)
pairwise.prop.test(smokers, patients)

pairwise.t.test Pairwise t tests

Description

Calculate pairwise comparisons between group levels with corrections for multiple testing

Usage

pairwise.t.test(x, g, p.adjust.method = p.adjust.methods,
pool.sd = !paired, paired = FALSE,
alternative = c("two.sided", "less", "greater"), ...)

pairwise.table 1223

Arguments

x response vector.

g grouping vector or factor.
p.adjust.method

Method for adjusting p values (see p.adjust).

pool.sd switch to allow/disallow the use of a pooled SD

paired a logical indicating whether you want paired t-tests.

alternative a character string specifying the alternative hypothesis, must be one of
"two.sided" (default), "greater" or "less".

... additional arguments to pass to t.test.

Details

The pool.SD switch calculates a common SD for all groups and used that for all comparisons
(this can be useful if some groups are small). This method does not actually call t.test, so
extra arguments are ignored. Pooling does not generalize to paired tests so pool.SD and paired
cannot both be TRUE.

Only the lower triangle of the matrix of possible comparisons is being calculated, so setting
alternative to anything other than "two.sided" requires that the levels of g are ordered
sensibly.

Value

Object of class "pairwise.htest"

See Also

t.test, p.adjust

Examples

attach(airquality)
Month <- factor(Month, labels = month.abb[5:9])
pairwise.t.test(Ozone, Month)
pairwise.t.test(Ozone, Month, p.adj = "bonf")
pairwise.t.test(Ozone, Month, pool.sd = FALSE)
detach()

pairwise.table Tabulate p values for pairwise comparisons

Description

Creates table of p values for pairwise comparisons with corrections for multiple testing.

Usage

pairwise.table(compare.levels, level.names, p.adjust.method)

1224 pairwise.wilcox.test

Arguments

compare.levels
Function to compute (raw) p value given indices i and j

level.names Names of the group levels
p.adjust.method

Method for multiple testing adjustment

Details

Functions that do multiple group comparisons create separate compare.levels functions (as-
sumed to be symmetrical in i and j) and passes them to this function.

Value

Table of p values in lower triangular form.

See Also

pairwise.t.test, et al.

pairwise.wilcox.test
Pairwise Wilcoxon rank sum tests

Description

Calculate pairwise comparisons between group levels with corrections for multiple testing.

Usage

pairwise.wilcox.test(x, g, p.adjust.method = p.adjust.methods,
paired=FALSE, ...)

Arguments

x response vector.

g grouping vector or factor.
p.adjust.method

method for adjusting p values (see p.adjust).

paired a logical indicating whether you want a paired test.

... additional arguments to pass to wilcox.test.

Details

Extra arguments that are passed on to wilcox.test may or may not be sensible in this context.
In particular, only the lower triangle of the matrix of possible comparisons is being calculated, so
setting alternative to anything other than "two.sided" requires that the levels of g are
ordered sensibly.

plot.acf 1225

Value

Object of class "pairwise.htest"

See Also

wilcox.test, p.adjust

Examples

attach(airquality)
Month <- factor(Month, labels = month.abb[5:9])
These give warnings because of ties :
pairwise.wilcox.test(Ozone, Month)
pairwise.wilcox.test(Ozone, Month, p.adj = "bonf")
detach()

plot.acf Plot Autocovariance and Autocorrelation Functions

Description

Plot method for objects of class "acf".

Usage

S3 method for class 'acf':
plot(x, ci = 0.95, type = "h", xlab = "Lag", ylab = NULL,

ylim = NULL, main = NULL,
ci.col = "blue", ci.type = c("white", "ma"),
max.mfrow = 6, ask = Npgs > 1 && dev.interactive(),
mar = if(nser > 2) c(3,2,2,0.8) else par("mar"),
oma = if(nser > 2) c(1,1.2,1,1) else par("oma"),
mgp = if(nser > 2) c(1.5,0.6,0) else par("mgp"),
xpd = par("xpd"),
cex.main = if(nser > 2) 1 else par("cex.main"),
verbose = getOption("verbose"),
...)

Arguments

x an object of class "acf".

ci coverage probability for confidence interval. Plotting of the confidence interval
is suppressed if ci is zero or negative.

type the type of plot to be drawn, default to histogram like vertical lines.

xlab the x label of the plot.

ylab the y label of the plot.

ylim numeric of length 2 giving the y limits for the plot.

main overall title for the plot.

ci.col colour to plot the confidence interval lines.

1226 plot.density

ci.type should the confidence limits assume a white noise input or for lag k an MA(k−1)
input?

max.mfrow positive integer; for multivariate x indicating how many rows and columns of
plots should be put on one page, using par(mfrow = c(m,m)).

ask logical; if TRUE, the user is asked before a new page is started.
mar, oma, mgp, xpd, cex.main

graphics parameters as in par(*), by default adjusted to use smaller than de-
fault margins for multivariate x only.

verbose logical. Should R report extra information on progress?

... graphics parameters to be passed to the plotting routines.

Note

The confidence interval plotted in plot.acf is based on an uncorrelated series and should be
treated with appropriate caution. Using ci.type = "ma" may be less potentially misleading.

See Also

acf which calls plot.acf by default.

Examples

require(graphics)

z4 <- ts(matrix(rnorm(400), 100, 4), start=c(1961, 1), frequency=12)
z7 <- ts(matrix(rnorm(700), 100, 7), start=c(1961, 1), frequency=12)
acf(z4)
acf(z7, max.mfrow = 7)# squeeze on 1 page
acf(z7) # multi-page

plot.density Plot Method for Kernel Density Estimation

Description

The plot method for density objects.

Usage

S3 method for class 'density':
plot(x, main = NULL, xlab = NULL, ylab = "Density", type = "l",

zero.line = TRUE, ...)

Arguments

x a "density" object.
main, xlab, ylab, type

plotting parameters with useful defaults.

... further plotting parameters.

zero.line logical; if TRUE, add a base line at y = 0

plot.HoltWinters 1227

Value

None.

See Also

density.

plot.HoltWinters Plot function for HoltWinters objects

Description

Produces a chart of the original time series along with the fitted values. Optionally, predicted values
(and their confidence bounds) can also be plotted.

Usage

S3 method for class 'HoltWinters':
plot(x, predicted.values = NA, intervals = TRUE,

separator = TRUE, col = 1, col.predicted = 2,
col.intervals = 4, col.separator = 1, lty = 1,
lty.predicted = 1, lty.intervals = 1, lty.separator = 3,
ylab = "Observed / Fitted",
main = "Holt-Winters filtering",
ylim = NULL, ...)

Arguments

x Object of class "HoltWinters"
predicted.values

Predicted values as returned by predict.HoltWinters

intervals If TRUE, the prediction intervals are plotted (default).

separator If TRUE, a separating line between fitted and predicted values is plotted (de-
fault).

col, lty Color/line type of original data (default: black solid).
col.predicted, lty.predicted

Color/line type of fitted and predicted values (default: red solid).
col.intervals, lty.intervals

Color/line type of prediction intervals (default: blue solid).
col.separator, lty.separator

Color/line type of observed/predicted values separator (default: black dashed).

ylab Label of the y-axis.

main Main title.

ylim Limits of the y-axis. If NULL, the range is chosen such that the plot contains the
original series, the fitted values, and the predicted values if any.

... Other graphics parameters.

1228 plot.isoreg

Author(s)

David Meyer 〈David.Meyer@wu-wien.ac.at〉

References

C. C. Holt (1957) Forecasting seasonals and trends by exponentially weighted moving averages,
ONR Research Memorandum, Carnigie Institute 52.

P. R. Winters (1960) Forecasting sales by exponentially weighted moving averages, Management
Science 6, 324–342.

See Also

HoltWinters, predict.HoltWinters

plot.isoreg Plot Method for isoreg Objects

Description

The plot and lines method for R objects of class isoreg.

Usage

S3 method for class 'isoreg':
plot(x, plot.type = c("single", "row.wise", "col.wise"),

main = paste("Isotonic regression", deparse(x$call)),
main2 = "Cumulative Data and Convex Minorant",
xlab = "x0", ylab = "x$y",
par.fit = list(col = "red", cex = 1.5, pch = 13, lwd = 1.5),
mar = if (both) 0.1 + c(3.5, 2.5, 1, 1) else par("mar"),
mgp = if (both) c(1.6, 0.7, 0) else par("mgp"),
grid = length(x$x) < 12, ...)

S3 method for class 'isoreg':
lines(x, col = "red", lwd = 1.5,

do.points = FALSE, cex = 1.5, pch = 13, ...)

Arguments

x an isoreg object.

plot.type character indicating which type of plot is desired. The first (default) only draws
the data and the fit, where the others add a plot of the cumulative data and fit.

main main title of plot, see title.

main2 title for second (cumulative) plot.

xlab, ylab x- and y- axis annotation.

par.fit a list of arguments (for points and lines) for drawing the fit.

mar, mgp graphical parameters, see par, mainly for the case of two plots.

plot.lm 1229

grid logical indicating if grid lines should be drawn. If true, grid() is used for the
first plot, where as vertical lines are drawn at ‘touching’ points for the cumula-
tive plot.

do.points for lines(): logical indicating if the step points should be drawn as well (and
as they are drawn in plot()).

col, lwd, cex, pch
graphical arguments for lines(), where cex and pch are only used when
do.points is TRUE.

... further arguments passed to and from methods.

See Also

isoreg for computation of isoreg objects.

Examples

require(graphics)

utils::example(isoreg) # for the examples there

plot(y3, main = "simple plot(.) + lines(<isoreg>)")
lines(ir3)

'same' plot as above, "proving" that only ranks of 'x' are important
plot(isoreg(2^(1:9), c(1,0,4,3,3,5,4,2,0)), plot.type = "row", log = "x")

plot(ir3, plot.type = "row", ylab = "y3")
plot(isoreg(y3 - 4), plot.t="r", ylab = "y3 - 4")
plot(ir4, plot.type = "ro", ylab = "y4", xlab = "x = 1:n")

experiment a bit with these (C-c C-j):
plot(isoreg(sample(9), y3), plot.type="row")
plot(isoreg(sample(9), y3), plot.type="col.wise")

plot(ir <- isoreg(sample(10), sample(10, replace = TRUE)),
plot.type = "r")

plot.lm Plot Diagnostics for an lm Object

Description

Six plots (selectable by which) are currently available: a plot of residuals against fitted values,
a Scale-Location plot of

√
|residuals| against fitted values, a Normal Q-Q plot, a plot of Cook’s

distances versus row labels, a plot of residuals against leverages, and a plot of Cook’s distances
against leverage/(1-leverage). By default, the first three and 5 are provided.

Usage

S3 method for class 'lm':
plot(x, which = c(1:3,5),

caption = list("Residuals vs Fitted", "Normal Q-Q",

1230 plot.lm

"Scale-Location", "Cook's distance",
"Residuals vs Leverage",
expression("Cook's dist vs Leverage " * h[ii] / (1 - h[ii]))),

panel = if(add.smooth) panel.smooth else points,
sub.caption = NULL, main = "",
ask = prod(par("mfcol")) < length(which) && dev.interactive(),
...,
id.n = 3, labels.id = names(residuals(x)), cex.id = 0.75,
qqline = TRUE, cook.levels = c(0.5, 1.0),
add.smooth = getOption("add.smooth"), label.pos = c(4,2),
cex.caption = 1)

Arguments

x lm object, typically result of lm or glm.

which if a subset of the plots is required, specify a subset of the numbers 1:6.

caption captions to appear above the plots; character vector or list of valid graph-
ics annotations, see as.graphicsAnnot. Can be set to "" or NA to suppress
all captions.

panel panel function. The useful alternative to points, panel.smooth can be
chosen by add.smooth = TRUE.

sub.caption common title—above figures if there are multiple; used as sub (s.title)
otherwise. If NULL, as by default, a possible shortened version of
deparse(x$call) is used.

main title to each plot—in addition to the above caption.

ask logical; if TRUE, the user is asked before each plot, see par(ask=.).

... other parameters to be passed through to plotting functions.

id.n number of points to be labelled in each plot, starting with the most extreme.

labels.id vector of labels, from which the labels for extreme points will be chosen. NULL
uses observation numbers.

cex.id magnification of point labels.

qqline logical indicating if a qqline() should be added to the normal Q-Q plot.

cook.levels levels of Cook’s distance at which to draw contours.

add.smooth logical indicating if a smoother should be added to most plots; see also panel
above.

label.pos positioning of labels, for the left half and right half of the graph respectively, for
plots 1-3.

cex.caption controls the size of caption.

Details

sub.caption—by default the function call—is shown as a subtitle (under the x-axis title) on
each plot when plots are on separate pages, or as a subtitle in the outer margin (if any) when there
are multiple plots per page.

The ‘Scale-Location’ plot, also called ‘Spread-Location’ or ‘S-L’ plot, takes the square root of the
absolute residuals in order to diminish skewness (

√
|E| is much less skewed than |E| for Gaussian

zero-mean E).

plot.lm 1231

The ‘S-L’, the Q-Q, and the Residual-Leverage plot, use standardized residuals which have identical
variance (under the hypothesis). They are given as Ri/(s ×

√
1− hii) where hii are the diagonal

entries of the hat matrix, influence()$hat, see also hat, and where the Residual-Leverage
uses standardized Pearson residuals (residuals.glm(type = "pearson")) for R[i].

The Residual-Leverage plot shows contours of equal Cook’s distance, for values of cook.levels
(by default 0.5 and 1) and omits cases with leverage one with a warning. If the leverages are constant
(as is typically the case in a balanced aov situation) the plot uses factor level combinations instead
of the leverages for the x-axis. (The factor levels are ordered by mean fitted value.)

In the Cook’s distance vs leverage/(1-leverage) plot, contours of standardized residuals that are
equal in magnitude are lines through the origin. The contour lines are labelled with the magnitudes.

Author(s)

John Maindonald and Martin Maechler.

References

Belsley, D. A., Kuh, E. and Welsch, R. E. (1980) Regression Diagnostics. New York: Wiley.

Cook, R. D. and Weisberg, S. (1982) Residuals and Influence in Regression. London: Chapman
and Hall.

Firth, D. (1991) Generalized Linear Models. In Hinkley, D. V. and Reid, N. and Snell, E. J., eds: Pp.
55-82 in Statistical Theory and Modelling. In Honour of Sir David Cox, FRS. London: Chapman
and Hall.

Hinkley, D. V. (1975) On power transformations to symmetry. Biometrika 62, 101–111.

McCullagh, P. and Nelder, J. A. (1989) Generalized Linear Models. London: Chapman and Hall.

See Also

termplot, lm.influence, cooks.distance, hatvalues.

Examples

require(graphics)

Analysis of the life-cycle savings data
given in Belsley, Kuh and Welsch.
plot(lm.SR <- lm(sr ~ pop15 + pop75 + dpi + ddpi, data = LifeCycleSavings))

4 plots on 1 page;
allow room for printing model formula in outer margin:
par(mfrow = c(2, 2), oma = c(0, 0, 2, 0))
plot(lm.SR)
plot(lm.SR, id.n = NULL) # no id's
plot(lm.SR, id.n = 5, labels.id = NULL)# 5 id numbers

Was default in R <= 2.1.x:
Cook's distances instead of Residual-Leverage plot
plot(lm.SR, which = 1:4)

Fit a smooth curve, where applicable:
plot(lm.SR, panel = panel.smooth)
Gives a smoother curve
plot(lm.SR, panel = function(x,y) panel.smooth(x, y, span = 1))

1232 plot.ppr

par(mfrow=c(2,1))# same oma as above
plot(lm.SR, which = 1:2, sub.caption = "Saving Rates, n=50, p=5")

plot.ppr Plot Ridge Functions for Projection Pursuit Regression Fit

Description

Plot ridge functions for projection pursuit regression fit.

Usage

S3 method for class 'ppr':
plot(x, ask, type = "o", ...)

Arguments

x A fit of class "ppr" as produced by a call to ppr.

ask the graphics parameter ask: see par for details. If set to TRUE will ask be-
tween the plot of each cross-section.

type the type of line to draw

... further graphical parameters

Value

None

Side Effects

A series of plots are drawn on the current graphical device, one for each term in the fit.

See Also

ppr, par

Examples

require(graphics)

with(rock, {
area1 <- area/10000; peri1 <- peri/10000
par(mfrow=c(3,2))# maybe: , pty="s")
rock.ppr <- ppr(log(perm) ~ area1 + peri1 + shape,

data = rock, nterms = 2, max.terms = 5)
plot(rock.ppr, main="ppr(log(perm)~ ., nterms=2, max.terms=5)")
plot(update(rock.ppr, bass=5), main = "update(..., bass = 5)")
plot(update(rock.ppr, sm.method="gcv", gcvpen=2),

main = "update(..., sm.method=\"gcv\", gcvpen=2)")
})

plot.profile.nls 1233

plot.profile.nls Plot a profile.nls Object

Description

Displays a series of plots of the profile t function and interpolated confidence intervals for the param-
eters in a nonlinear regression model that has been fit with nls and profiled with profile.nls.

Usage

S3 method for class 'profile.nls':
plot(x, levels, conf= c(99, 95, 90, 80, 50)/100,

absVal =TRUE, ...)

Arguments

x an object of class "profile.nls"

levels levels, on the scale of the absolute value of a t statistic, at which to interpolate
intervals. Usually conf is used instead of giving levels explicitly.

conf a numeric vector of confidence levels for profile-based confidence intervals on
the parameters. Defaults to c(0.99, 0.95, 0.90, 0.80, 0.50).

absVal a logical value indicating whether or not the plots should be on the scale of the
absolute value of the profile t. Defaults to TRUE.

... other arguments to the plot function can be passed here.

Author(s)

Douglas M. Bates and Saikat DebRoy

References

Bates, D.M. and Watts, D.G. (1988), Nonlinear Regression Analysis and Its Applications, Wiley
(chapter 6)

See Also

nls, profile, profile.nls

Examples

require(graphics)

obtain the fitted object
fm1 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)
get the profile for the fitted model
pr1 <- profile(fm1, alpha = 0.05)
opar <- par(mfrow = c(2,2), oma = c(1.1, 0, 1.1, 0), las = 1)
plot(pr1, conf = c(95, 90, 80, 50)/100)
plot(pr1, conf = c(95, 90, 80, 50)/100, absVal = FALSE)
mtext("Confidence intervals based on the profile sum of squares",

side = 3, outer = TRUE)

1234 plot.spec

mtext("BOD data - confidence levels of 50%, 80%, 90% and 95%",
side = 1, outer = TRUE)

par(opar)

plot.spec Plotting Spectral Densities

Description

Plotting method for objects of class "spec". For multivariate time series it plots the marginal
spectra of the series or pairs plots of the coherency and phase of the cross-spectra.

Usage

S3 method for class 'spec':
plot(x, add = FALSE, ci = 0.95, log = c("yes", "dB", "no"),

xlab = "frequency", ylab = NULL, type = "l",
ci.col = "blue", ci.lty = 3,
main = NULL, sub = NULL,
plot.type = c("marginal", "coherency", "phase"),
...)

plot.spec.phase(x, ci = 0.95,
xlab = "frequency", ylab = "phase",
ylim = c(-pi, pi), type = "l",
main = NULL, ci.col = "blue", ci.lty = 3, ...)

plot.spec.coherency(x, ci = 0.95,
xlab = "frequency",
ylab = "squared coherency",
ylim = c(0, 1), type = "l",
main = NULL, ci.col = "blue", ci.lty = 3, ...)

Arguments

x an object of class "spec".

add logical. If TRUE, add to already existing plot. Only valid for plot.type =
"marginal".

ci coverage probability for confidence interval. Plotting of the confidence
bar/limits is omitted unless ci is strictly positive.

log If "dB", plot on log10 (decibel) scale (as S-PLUS), otherwise use conventional
log scale or linear scale. Logical values are also accepted. The default is "yes"
unless options(ts.S.compat = TRUE) has been set, when it is "dB".
Only valid for plot.type = "marginal".

xlab the x label of the plot.

ylab the y label of the plot. If missing a suitable label will be constructed.

type the type of plot to be drawn, defaults to lines.

ci.col colour for plotting confidence bar or confidence intervals for coherency and
phase.

plot.stepfun 1235

ci.lty line type for confidence intervals for coherency and phase.

main overall title for the plot. If missing, a suitable title is constructed.

sub a sub title for the plot. Only used for plot.type = "marginal". If miss-
ing, a description of the smoothing is used.

plot.type For multivariate time series, the type of plot required. Only the first character is
needed.

ylim, ... Graphical parameters.

See Also

spectrum

plot.stepfun Plot Step Functions

Description

Method of the generic plot for stepfun objects and utility for plotting piecewise constant func-
tions.

Usage

S3 method for class 'stepfun':
plot(x, xval, xlim, ylim,

xlab = "x", ylab = "f(x)", main = NULL,
add = FALSE, verticals = TRUE, do.points = TRUE,
pch = par("pch"),
col.points = par("col"), cex.points = par("cex"),
col.hor = par("col"), col.vert = par("col"),
lty = par("lty"), lwd = par("lwd"), ...)

S3 method for class 'stepfun':
lines(x, ...)

Arguments

x an R object inheriting from "stepfun".

xval numeric vector of abscissa values at which to evaluate x. Defaults to
knots(x) restricted to xlim.

xlim,ylim numeric(2) each; range of x or y values to use. Both have sensible defaults.

xlab,ylab labels of x and y axis.

main main title.

add logical; if TRUE only add to an existing plot.

verticals logical; if TRUE, draw vertical lines at steps.

do.points logical; if true, also draw points at the (xlim restricted) knot locations.

pch character; point character if do.points.

col.points character or integer code; color of points if do.points.

1236 plot.stepfun

cex.points numeric; character expansion factor if do.points.

col.hor color of horizontal lines.

col.vert color of vertical lines.

lty, lwd line type and thickness for all lines.

... further arguments of plot(.), or if(add) segments(.).

Value

A list with two components

t abscissa (x) values, including the two outermost ones.

y y values ‘in between’ the t[].

Author(s)

Martin Maechler 〈maechler@stat.math.ethz.ch〉, 1990, 1993; ported to R, 1997.

See Also

ecdf for empirical distribution functions as special step functions, approxfun and splinefun.

Examples

require(graphics)

y0 <- c(1,2,4,3)
sfun0 <- stepfun(1:3, y0, f = 0)
sfun.2 <- stepfun(1:3, y0, f = .2)
sfun1 <- stepfun(1:3, y0, right = TRUE)

tt <- seq(0,3, by=0.1)
op <- par(mfrow=c(2,2))
plot(sfun0); plot(sfun0, xval=tt, add=TRUE, col.hor="bisque")
plot(sfun.2);plot(sfun.2,xval=tt, add=TRUE, col.hor="orange")
plot(sfun1);lines(sfun1, xval=tt, col.hor="coral")
##-- This is revealing :
plot(sfun0, verticals= FALSE,

main = "stepfun(x, y0, f=f) for f = 0, .2, 1")
for(i in 1:3)
lines(list(sfun0,sfun.2,stepfun(1:3,y0,f = 1))[[i]],

col.hor=i, col.vert=i)
legend(2.5, 1.9, paste("f =", c(0,0.2,1)), col=1:3, lty=1, y.intersp=1)
par(op)

Extend and/or restrict 'viewport':
plot(sfun0, xlim = c(0,5), ylim = c(0, 3.5),

main = "plot(stepfun(*), xlim= . , ylim = .)")

##-- this works too (automatic call to ecdf(.)):
plot.stepfun(rt(50, df=3), col.vert = "gray20")

plot.ts 1237

plot.ts Plotting Time-Series Objects

Description

Plotting method for objects inheriting from class "ts".

Usage

S3 method for class 'ts':
plot(x, y = NULL, plot.type = c("multiple", "single"),

xy.labels, xy.lines, panel = lines, nc, yax.flip = FALSE,
mar.multi = c(0, 5.1, 0, if(yax.flip) 5.1 else 2.1),
oma.multi = c(6, 0, 5, 0), axes = TRUE, ...)

S3 method for class 'ts':
lines(x, ...)

Arguments

x, y time series objects, usually inheriting from class "ts".

plot.type for multivariate time series, should the series by plotted separately (with a com-
mon time axis) or on a single plot?

xy.labels logical, indicating if text() labels should be used for an x-y plot, or character,
supplying a vector of labels to be used. The default is to label for up to 150
points, and not for more.

xy.lines logical, indicating if lines should be drawn for an x-y plot. Defaults to the
value of xy.labels if that is logical, otherwise to TRUE.

panel a function(x, col, bg, pch, type, ...) which gives the action
to be carried out in each panel of the display for plot.type="multiple".
The default is lines.

nc the number of columns to use when type="multiple". Defaults to 1 for up
to 4 series, otherwise to 2.

yax.flip logical indicating if the y-axis (ticks and numbering) should flip from side 2
(left) to 4 (right) from series to series when type="multiple".

mar.multi, oma.multi
the (default) par settings for plot.type="multiple". Modify with care!

axes logical indicating if x- and y- axes should be drawn.

... additional graphical arguments, see plot, plot.default and par.

Details

If y is missing, this function creates a time series plot, for multivariate series of one of two kinds
depending on plot.type.

If y is present, both x and y must be univariate, and a scatter plot y ~ x will be drawn, enhanced
by using text if xy.labels is TRUE or character, and lines if xy.lines is TRUE.

1238 Poisson

See Also

ts for basic time series construction and access functionality.

Examples

require(graphics)

Multivariate
z <- ts(matrix(rt(200 * 8, df = 3), 200, 8),

start = c(1961, 1), frequency = 12)
plot(z, yax.flip = TRUE)
plot(z, axes = FALSE, ann = FALSE, frame.plot = TRUE,

mar.multi = c(0,0,0,0), oma.multi = c(1,1,5,1))
title("plot(ts(..), axes=FALSE, ann=FALSE, frame.plot=TRUE, mar..., oma...)")

z <- window(z[,1:3], end = c(1969,12))
plot(z, type = "b") # multiple
plot(z, plot.type="single", lty=1:3, col=4:2)

A phase plot:
plot(nhtemp, c(nhtemp[-1], NA), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")
a clearer way to do this would be
Not run:
plot(nhtemp, lag(nhtemp, 1), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")
End(Not run)

xy.lines and xy.labels are FALSE for large series:
plot(lag(sunspots, 1), sunspots, pch = ".")

SMI <- EuStockMarkets[, "SMI"]
plot(lag(SMI, 1), SMI, pch = ".")
plot(lag(SMI, 20), SMI, pch = ".", log = "xy",

main = "4 weeks lagged SMI stocks -- log scale", xy.lines= TRUE)

Poisson The Poisson Distribution

Description

Density, distribution function, quantile function and random generation for the Poisson distribution
with parameter lambda.

Usage

dpois(x, lambda, log = FALSE)
ppois(q, lambda, lower.tail = TRUE, log.p = FALSE)
qpois(p, lambda, lower.tail = TRUE, log.p = FALSE)
rpois(n, lambda)

Poisson 1239

Arguments

x vector of (non-negative integer) quantiles.

q vector of quantiles.

p vector of probabilities.

n number of random values to return.

lambda vector of (non-negative) means.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

The Poisson distribution has density

p(x) =
λxe−λ

x!

for x = 0, 1, 2, The mean and variance are E(X) = V ar(X) = λ.

If an element of x is not integer, the result of dpois is zero, with a warning. p(x) is computed
using Loader’s algorithm, see the reference in dbinom.

The quantile is left continuous: qgeom(q, prob) is the largest integer x such that P (X ≤ x) <
q.

Setting lower.tail = FALSE allows to get much more precise results when the default,
lower.tail = TRUE would return 1, see the example below.

Value

dpois gives the (log) density, ppois gives the (log) distribution function, qpois gives the quan-
tile function, and rpois generates random deviates.

Invalid lambda will result in return value NaN, with a warning.

Source

dpois uses C code contributed by Catherine Loader (see dbinom).

ppois uses pgamma.

qpois uses the Cornish–Fisher Expansion to include a skewness correction to a normal approxi-
mation, followed by a search.

rpois uses

Ahrens, J. H. and Dieter, U. (1982). Computer generation of Poisson deviates from modified normal
distributions. ACM Transactions on Mathematical Software, 8, 163–179.

See Also

dbinom for the binomial and dnbinom for the negative binomial distribution.

1240 poly

Examples

require(graphics)

-log(dpois(0:7, lambda=1) * gamma(1+ 0:7)) # == 1
Ni <- rpois(50, lambda = 4); table(factor(Ni, 0:max(Ni)))

1 - ppois(10*(15:25), lambda=100) # becomes 0 (cancellation)
ppois(10*(15:25), lambda=100, lower.tail=FALSE) # no cancellation

par(mfrow = c(2, 1))
x <- seq(-0.01, 5, 0.01)
plot(x, ppois(x, 1), type="s", ylab="F(x)", main="Poisson(1) CDF")
plot(x, pbinom(x, 100, 0.01),type="s", ylab="F(x)",

main="Binomial(100, 0.01) CDF")

poly Compute Orthogonal Polynomials

Description

Returns or evaluates orthogonal polynomials of degree 1 to degree over the specified set of points
x. These are all orthogonal to the constant polynomial of degree 0. Alternatively, evaluate raw
polynomials.

Usage

poly(x, ..., degree = 1, coefs = NULL, raw = FALSE)
polym(..., degree = 1, raw = FALSE)

S3 method for class 'poly':
predict(object, newdata, ...)

Arguments

x, newdata a numeric vector at which to evaluate the polynomial. x can also be a matrix.
Missing values are not allowed in x.

degree the degree of the polynomial. Must be less than the number of unique points.

coefs for prediction, coefficients from a previous fit.

raw if true, use raw and not orthogonal polynomials.

object an object inheriting from class "poly", normally the result of a call to poly
with a single vector argument.

... poly, polym: further vectors.
predict.poly: arguments to be passed to or from other methods.

Details

Although formally degree should be named (as it follows ...), an unnamed second argument of
length 1 will be interpreted as the degree.

The orthogonal polynomial is summarized by the coefficients, which can be used to evaluate it via
the three-term recursion given in Kennedy & Gentle (1980, pp. 343–4), and used in the predict
part of the code.

power 1241

Value

For poly with a single vector argument:
A matrix with rows corresponding to points in x and columns corresponding to the degree, with at-
tributes "degree" specifying the degrees of the columns and (unless raw = TRUE) "coefs"
which contains the centering and normalization constants used in constructing the orthogonal poly-
nomials. The matrix has given class c("poly", "matrix").

Other cases of poly and polym, and predict.poly: a matrix.

Note

This routine is intended for statistical purposes such as contr.poly: it does not attempt to or-
thogonalize to machine accuracy.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

Kennedy, W. J. Jr and Gentle, J. E. (1980) Statistical Computing Marcel Dekker.

See Also

contr.poly.

cars for an example of polynomial regression.

Examples

(z <- poly(1:10, 3))
predict(z, seq(2, 4, 0.5))
poly(seq(4, 6, 0.5), 3, coefs = attr(z, "coefs"))

polym(1:4, c(1, 4:6), degree=3) # or just poly()
poly(cbind(1:4, c(1, 4:6)), degree=3)

power Create a Power Link Object

Description

Creates a link object based on the link function η = µλ.

Usage

power(lambda = 1)

Arguments

lambda a real number.

Details

If lambda is non-positive, it is taken as zero, and the log link is obtained. The default lambda =
1 gives the identity link.

1242 power.anova.test

Value

A list with components linkfun, linkinv, mu.eta, and valideta. See make.link for
information on their meaning.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

make.link, family

To raise a number to a power, see Arithmetic.

To calculate the power of a test, see various functions in the stats package, e.g., power.t.test.

Examples

power()
quasi(link=power(1/3))[c("linkfun", "linkinv")]

power.anova.test Power calculations for balanced one-way analysis of variance tests

Description

Compute power of test or determine parameters to obtain target power.

Usage

power.anova.test(groups = NULL, n = NULL,
between.var = NULL, within.var = NULL,
sig.level = 0.05, power = NULL)

Arguments

groups Number of groups

n Number of observations (per group)

between.var Between group variance

within.var Within group variance

sig.level Significance level (Type I error probability)

power Power of test (1 minus Type II error probability)

Details

Exactly one of the parameters groups, n, between.var, power, within.var, and
sig.level must be passed as NULL, and that parameter is determined from the others. No-
tice that sig.level has non-NULL default so NULL must be explicitly passed if you want it
computed.

power.prop.test 1243

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with method and note elements.

Note

uniroot is used to solve power equation for unknowns, so you may see errors from it, notably
about inability to bracket the root when invalid arguments are given.

Author(s)

Claus Ekstrøm

See Also

anova, lm, uniroot

Examples

power.anova.test(groups=4, n=5, between.var=1, within.var=3)
Power = 0.3535594

power.anova.test(groups=4, between.var=1, within.var=3,
power=.80)

n = 11.92613

Assume we have prior knowledge of the group means:
groupmeans <- c(120, 130, 140, 150)
power.anova.test(groups = length(groupmeans),

between.var=var(groupmeans),
within.var=500, power=.90) # n = 15.18834

power.prop.test Power calculations two sample test for proportions

Description

Compute power of test, or determine parameters to obtain target power.

Usage

power.prop.test(n = NULL, p1 = NULL, p2 = NULL, sig.level = 0.05,
power = NULL,
alternative = c("two.sided", "one.sided"),
strict = FALSE)

1244 power.prop.test

Arguments

n Number of observations (per group)

p1 probability in one group

p2 probability in other group

sig.level Significance level (Type I error probability)

power Power of test (1 minus Type II error probability)

alternative One- or two-sided test

strict Use strict interpretation in two-sided case

Details

Exactly one of the parameters n, p1, p2, power, and sig.level must be passed as NULL, and
that parameter is determined from the others. Notice that sig.level has a non-NULL default so
NULL must be explicitly passed if you want it computed.

If strict = TRUE is used, the power will include the probability of rejection in the opposite
direction of the true effect, in the two-sided case. Without this the power will be half the significance
level if the true difference is zero.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with method and note elements.

Note

uniroot is used to solve power equation for unknowns, so you may see errors from it, notably
about inability to bracket the root when invalid arguments are given. If one of them is computed p1
< p2 will hold, although this is not enforced when both are specified.

Author(s)

Peter Dalgaard. Based on previous work by Claus Ekstrøm

See Also

prop.test, uniroot

Examples

power.prop.test(n = 50, p1 = .50, p2 = .75)
power.prop.test(p1 = .50, p2 = .75, power = .90)
power.prop.test(n = 50, p1 = .5, power = .90)

power.t.test 1245

power.t.test Power calculations for one and two sample t tests

Description

Compute power of test, or determine parameters to obtain target power.

Usage

power.t.test(n = NULL, delta = NULL, sd = 1, sig.level = 0.05,
power = NULL,
type = c("two.sample", "one.sample", "paired"),
alternative = c("two.sided", "one.sided"),
strict = FALSE)

Arguments

n Number of observations (per group)

delta True difference in means

sd Standard deviation

sig.level Significance level (Type I error probability)

power Power of test (1 minus Type II error probability)

type Type of t test

alternative One- or two-sided test

strict Use strict interpretation in two-sided case

Details

Exactly one of the parameters n, delta, power, sd, and sig.level must be passed as NULL,
and that parameter is determined from the others. Notice that the last two have non-NULL defaults
so NULL must be explicitly passed if you want to compute them.

If strict = TRUE is used, the power will include the probability of rejection in the opposite
direction of the true effect, in the two-sided case. Without this the power will be half the significance
level if the true difference is zero.

Value

Object of class "power.htest", a list of the arguments (including the computed one) augmented
with method and note elements.

Note

uniroot is used to solve power equation for unknowns, so you may see errors from it, notably
about inability to bracket the root when invalid arguments are given.

Author(s)

Peter Dalgaard. Based on previous work by Claus Ekstrøm

1246 PP.test

See Also

t.test, uniroot

Examples

power.t.test(n = 20, delta = 1)
power.t.test(power = .90, delta = 1)
power.t.test(power = .90, delta = 1, alternative = "one.sided")

PP.test Phillips-Perron Test for Unit Roots

Description

Computes the Phillips-Perron test for the null hypothesis that x has a unit root against a stationary
alternative.

Usage

PP.test(x, lshort = TRUE)

Arguments

x a numeric vector or univariate time series.

lshort a logical indicating whether the short or long version of the truncation lag pa-
rameter is used.

Details

The general regression equation which incorporates a constant and a linear trend is used and the
corrected t-statistic for a first order autoregressive coefficient equals one is computed. To estimate
sigma^2 the Newey-West estimator is used. If lshort is TRUE, then the truncation lag param-
eter is set to trunc(4*(n/100)^0.25), otherwise trunc(12*(n/100)^0.25) is used.
The p-values are interpolated from Table 4.2, page 103 of Banerjee et al. (1993).

Missing values are not handled.

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic.

parameter the truncation lag parameter.

p.value the p-value of the test.

method a character string indicating what type of test was performed.

data.name a character string giving the name of the data.

Author(s)

A. Trapletti

ppoints 1247

References

A. Banerjee, J. J. Dolado, J. W. Galbraith, and D. F. Hendry (1993) Cointegration, Error Correction,
and the Econometric Analysis of Non-Stationary Data, Oxford University Press, Oxford.

P. Perron (1988) Trends and random walks in macroeconomic time series. Journal of Economic
Dynamics and Control 12, 297–332.

Examples

x <- rnorm(1000)
PP.test(x)
y <- cumsum(x) # has unit root
PP.test(y)

ppoints Ordinates for Probability Plotting

Description

Generates the sequence of probability points (1:m - a)/(m + (1-a)-a) where m is either
n, if length(n)==1, or length(n).

Usage

ppoints(n, a = ifelse(n <= 10, 3/8, 1/2))

Arguments

n either the number of points generated or a vector of observations.

a the offset fraction to be used; typically in (0, 1).

Details

If 0 < a < 1, the resulting values are within (0, 1) (excluding boundaries). In any case, the resulting
sequence is symmetric in [0, 1], i.e., p + rev(p) == 1.

ppoints() is used in qqplot and qqnorm to generate the set of probabilities at which to
evaluate the inverse distribution.

The choice of a follows the documentation of the function of the same name in Becker et al (1988),
and appears to have been motivated by results from Blom (1958) on approximations to expect
normal order statistics (see also quantile).

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Blom, G. (1958) Statistical Estimates and Transformed Beta Variables. Wiley

See Also

qqplot, qqnorm.

1248 ppr

Examples

ppoints(4) # the same as ppoints(1:4)
ppoints(10)
ppoints(10, a=1/2)

ppr Projection Pursuit Regression

Description

Fit a projection pursuit regression model.

Usage

ppr(x, ...)

S3 method for class 'formula':
ppr(formula, data, weights, subset, na.action,

contrasts = NULL, ..., model = FALSE)

Default S3 method:
ppr(x, y, weights = rep(1,n),

ww = rep(1,q), nterms, max.terms = nterms, optlevel = 2,
sm.method = c("supsmu", "spline", "gcvspline"),
bass = 0, span = 0, df = 5, gcvpen = 1, ...)

Arguments

formula a formula specifying one or more numeric response variables and the explana-
tory variables.

x numeric matrix of explanatory variables. Rows represent observations, and
columns represent variables. Missing values are not accepted.

y numeric matrix of response variables. Rows represent observations, and
columns represent variables. Missing values are not accepted.

nterms number of terms to include in the final model.

data a data frame (or similar: see model.frame) from which variables specified in
formula are preferentially to be taken.

weights a vector of weights w_i for each case.

ww a vector of weights for each response, so the fit criterion is the sum over case i
and responses j of w_i ww_j (y_ij - fit_ij)^2 divided by the sum
of w_i.

subset an index vector specifying the cases to be used in the training sample. (NOTE:
If given, this argument must be named.)

na.action a function to specify the action to be taken if NAs are found. The default action
is given by getOption("na.action"). (NOTE: If given, this argument
must be named.)

contrasts the contrasts to be used when any factor explanatory variables are coded.

max.terms maximum number of terms to choose from when building the model.

ppr 1249

optlevel integer from 0 to 3 which determines the thoroughness of an optimization rou-
tine in the SMART program. See the ‘Details’ section.

sm.method the method used for smoothing the ridge functions. The default is to use Fried-
man’s super smoother supsmu. The alternatives are to use the smoothing spline
code underlying smooth.spline, either with a specified (equivalent) degrees
of freedom for each ridge functions, or to allow the smoothness to be chosen by
GCV.

bass super smoother bass tone control used with automatic span selection (see
supsmu); the range of values is 0 to 10, with larger values resulting in increased
smoothing.

span super smoother span control (see supsmu). The default, 0, results in automatic
span selection by local cross validation. span can also take a value in (0, 1].

df if sm.method is "spline" specifies the smoothness of each ridge term via
the requested equivalent degrees of freedom.

gcvpen if sm.method is "gcvspline" this is the penalty used in the GCV selection
for each degree of freedom used.

... arguments to be passed to or from other methods.

model logical. If true, the model frame is returned.

Details

The basic method is given by Friedman (1984), and is essentially the same code used by S-PLUS’s
ppreg. This code is extremely sensitive to the compiler used.

The algorithm first adds up to max.terms ridge terms one at a time; it will use less if it is unable
to find a term to add that makes sufficient difference. It then removes the least important term at
each step until nterms terms are left.

The levels of optimization (argument optlevel) differ in how thoroughly the models are refitted
during this process. At level 0 the existing ridge terms are not refitted. At level 1 the projection
directions are not refitted, but the ridge functions and the regression coefficients are. Levels 2 and
3 refit all the terms and are equivalent for one response; level 3 is more careful to re-balance the
contributions from each regressor at each step and so is a little less likely to converge to a saddle
point of the sum of squares criterion.

Value

A list with the following components, many of which are for use by the method functions.

call the matched call

p the number of explanatory variables (after any coding)

q the number of response variables

mu the argument nterms

ml the argument max.terms

gof the overall residual (weighted) sum of squares for the selected model

gofn the overall residual (weighted) sum of squares against the number of terms, up
to max.terms. Will be invalid (and zero) for less than nterms.

df the argument df

edf if sm.method is "spline" or "gcvspline" the equivalent number of de-
grees of freedom for each ridge term used.

1250 ppr

xnames the names of the explanatory variables

ynames the names of the response variables

alpha a matrix of the projection directions, with a column for each ridge term

beta a matrix of the coefficients applied for each response to the ridge terms: the rows
are the responses and the columns the ridge terms

yb the weighted means of each response

ys the overall scale factor used: internally the responses are divided by ys to have
unit total weighted sum of squares.

fitted.values
the fitted values, as a matrix if q > 1.

residuals the residuals, as a matrix if q > 1.

smod internal work array, which includes the ridge functions evaluated at the training
set points.

model (only if model=TRUE) the model frame.

References

Friedman, J. H. and Stuetzle, W. (1981) Projection pursuit regression. Journal of the American
Statistical Association, 76, 817–823.

Friedman, J. H. (1984) SMART User’s Guide. Laboratory for Computational Statistics, Stanford
University Technical Report No. 1.

Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. Springer.

See Also

plot.ppr, supsmu, smooth.spline

Examples

require(graphics)

Note: your numerical values may differ
attach(rock)
area1 <- area/10000; peri1 <- peri/10000
rock.ppr <- ppr(log(perm) ~ area1 + peri1 + shape,

data = rock, nterms = 2, max.terms = 5)
rock.ppr
Call:
ppr.formula(formula = log(perm) ~ area1 + peri1 + shape, data = rock,
nterms = 2, max.terms = 5)
#
Goodness of fit:
2 terms 3 terms 4 terms 5 terms
8.737806 5.289517 4.745799 4.490378

summary(rock.ppr)
..... (same as above)
.....
#
Projection direction vectors:
term 1 term 2
area1 0.34357179 0.37071027

prcomp 1251

peri1 -0.93781471 -0.61923542
shape 0.04961846 0.69218595
#
Coefficients of ridge terms:
term 1 term 2
1.6079271 0.5460971

par(mfrow=c(3,2))# maybe: , pty="s")
plot(rock.ppr, main="ppr(log(perm)~ ., nterms=2, max.terms=5)")
plot(update(rock.ppr, bass=5), main = "update(..., bass = 5)")
plot(update(rock.ppr, sm.method="gcv", gcvpen=2),

main = "update(..., sm.method=\"gcv\", gcvpen=2)")
cbind(perm=rock$perm, prediction=round(exp(predict(rock.ppr)), 1))
detach()

prcomp Principal Components Analysis

Description

Performs a principal components analysis on the given data matrix and returns the results as an
object of class prcomp.

Usage

prcomp(x, ...)

S3 method for class 'formula':
prcomp(formula, data = NULL, subset, na.action, ...)

Default S3 method:
prcomp(x, retx = TRUE, center = TRUE, scale. = FALSE,

tol = NULL, ...)

S3 method for class 'prcomp':
predict(object, newdata, ...)

Arguments

formula a formula with no response variable, referring only to numeric variables.

data an optional data frame (or similar: see model.frame) containing the vari-
ables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector used to select rows (observations) of the data matrix x.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that
is unset. The ‘factory-fresh’ default is na.omit.

... arguments passed to or from other methods. If x is a formula one might specify
scale. or tol.

x a numeric or complex matrix (or data frame) which provides the data for the
principal components analysis.

1252 prcomp

retx a logical value indicating whether the rotated variables should be returned.

center a logical value indicating whether the variables should be shifted to be zero
centered. Alternately, a vector of length equal the number of columns of x can
be supplied. The value is passed to scale.

scale. a logical value indicating whether the variables should be scaled to have unit
variance before the analysis takes place. The default is FALSE for consistency
with S, but in general scaling is advisable. Alternatively, a vector of length equal
the number of columns of x can be supplied. The value is passed to scale.

tol a value indicating the magnitude below which components should be omitted.
(Components are omitted if their standard deviations are less than or equal to
tol times the standard deviation of the first component.) With the default null
setting, no components are omitted. Other settings for tol could be tol = 0
or tol = sqrt(.Machine$double.eps), which would omit essentially
constant components.

object Object of class inheriting from "prcomp"

newdata An optional data frame or matrix in which to look for variables with which to
predict. If omitted, the scores are used. If the original fit used a formula or a
data frame or a matrix with column names, newdata must contain columns
with the same names. Otherwise it must contain the same number of columns,
to be used in the same order.

Details

The calculation is done by a singular value decomposition of the (centered and possibly scaled) data
matrix, not by using eigen on the covariance matrix. This is generally the preferred method for
numerical accuracy. The print method for these objects prints the results in a nice format and the
plot method produces a scree plot.

Note that scale = TRUE cannot be used if there are zero or constant (for center = TRUE)
variables.

Value

prcomp returns a list with class "prcomp" containing the following components:

sdev the standard deviations of the principal components (i.e., the square roots of
the eigenvalues of the covariance/correlation matrix, though the calculation is
actually done with the singular values of the data matrix).

rotation the matrix of variable loadings (i.e., a matrix whose columns contain the eigen-
vectors). The function princomp returns this in the element loadings.

x if retx is true the value of the rotated data (the centred (and scaled if requested)
data multiplied by the rotation matrix) is returned. Hence, cov(x) is the
diagonal matrix diag(sdev^2). For the formula method, napredict is
applied to handle the treatment of values omitted by the na.action.

center, scale
the centering and scaling used, or FALSE.

Note

The signs of the columns of the rotation matrix are arbitrary, and so may differ between different
programs for PCA, and even between different builds of R.

predict 1253

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Mardia, K. V., J. T. Kent, and J. M. Bibby (1979) Multivariate Analysis, London: Academic Press.

Venables, W. N. and B. D. Ripley (2002) Modern Applied Statistics with S, Springer-Verlag.

See Also

biplot.prcomp, screeplot, princomp, cor, cov, svd, eigen.

Examples

require(graphics)

the variances of the variables in the
USArrests data vary by orders of magnitude, so scaling is appropriate
prcomp(USArrests) # inappropriate
prcomp(USArrests, scale = TRUE)
prcomp(~ Murder + Assault + Rape, data = USArrests, scale = TRUE)
plot(prcomp(USArrests))
summary(prcomp(USArrests, scale = TRUE))
biplot(prcomp(USArrests, scale = TRUE))

predict Model Predictions

Description

predict is a generic function for predictions from the results of various model fitting functions.
The function invokes particular methods which depend on the class of the first argument.

Usage

predict (object, ...)

Arguments

object a model object for which prediction is desired.

... additional arguments affecting the predictions produced.

Details

Most prediction methods which similar to fitting linear models have an argument newdata speci-
fiying the first place to look for explanatory variables to be used for prediction. Some considerable
attempts are made to match up the columns in newdata to those used for fitting, for example that
they are of comparable types and that any factors have the same level set in the same order (or can
be transformed to be so).

Time series prediction methods in package stats have an argument n.ahead specifying how many
time steps ahead to predict.

Many methods have a logical argument se.fit saying if standard errors are to returned.

1254 predict.Arima

Value

The form of the value returned by predict depends on the class of its argument. See the docu-
mentation of the particular methods for details of what is produced by that method.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

predict.glm, predict.lm, predict.loess, predict.nls, predict.poly,
predict.princomp, predict.smooth.spline.

For time-series prediction, predict.ar, predict.Arima, predict.arima0,
predict.HoltWinters, predict.StructTS.

Examples

require(utils)

All the "predict" methods found
NB most of the methods in the standard packages are hidden.
for(fn in methods("predict"))

try({
f <- eval(substitute(getAnywhere(fn)$objs[[1]], list(fn = fn)))
cat(fn, ":\n\t", deparse(args(f)), "\n")
}, silent = TRUE)

predict.Arima Forecast from ARIMA fits

Description

Forecast from models fitted by arima.

Usage

S3 method for class 'Arima':
predict(object, n.ahead = 1, newxreg = NULL,

se.fit = TRUE, ...)

Arguments

object The result of an arima fit.

n.ahead The number of steps ahead for which prediction is required.

newxreg New values of xreg to be used for prediction. Must have at least n.ahead
rows.

se.fit Logical: should standard errors of prediction be returned?

... arguments passed to or from other methods.

predict.glm 1255

Details

Finite-history prediction is used, via KalmanForecast. This is only statistically efficient if the
MA part of the fit is invertible, so predict.Arima will give a warning for non-invertible MA
models.

The standard errors of prediction exclude the uncertainty in the estimation of the ARMA model and
the regression coefficients. According to Harvey (1993, pp. 58–9) the effect is small.

Value

A time series of predictions, or if se.fit = TRUE, a list with components pred, the predictions,
and se, the estimated standard errors. Both components are time series.

References

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford Uni-
versity Press.

Harvey, A. C. and McKenzie, C. R. (1982) Algorithm AS182. An algorithm for finite sample
prediction from ARIMA processes. Applied Statistics 31, 180–187.

Harvey, A. C. (1993) Time Series Models, 2nd Edition, Harvester Wheatsheaf, sections 3.3 and 4.4.

See Also

arima

Examples

predict(arima(lh, order = c(3,0,0)), n.ahead = 12)

(fit <- arima(USAccDeaths, order = c(0,1,1),
seasonal = list(order=c(0,1,1))))

predict(fit, n.ahead = 6)

predict.glm Predict Method for GLM Fits

Description

Obtains predictions and optionally estimates standard errors of those predictions from a fitted gen-
eralized linear model object.

Usage

S3 method for class 'glm':
predict(object, newdata = NULL,

type = c("link", "response", "terms"),
se.fit = FALSE, dispersion = NULL, terms = NULL,
na.action = na.pass, ...)

1256 predict.glm

Arguments

object a fitted object of class inheriting from "glm".

newdata optionally, a data frame in which to look for variables with which to predict. If
omitted, the fitted linear predictors are used.

type the type of prediction required. The default is on the scale of the linear predic-
tors; the alternative "response" is on the scale of the response variable. Thus
for a default binomial model the default predictions are of log-odds (probabili-
ties on logit scale) and type = "response" gives the predicted probabili-
ties. The "terms" option returns a matrix giving the fitted values of each term
in the model formula on the linear predictor scale.
The value of this argument can be abbreviated.

se.fit logical switch indicating if standard errors are required.

dispersion the dispersion of the GLM fit to be assumed in computing the standard errors.
If omitted, that returned by summary applied to the object is used.

terms with type="terms" by default all terms are returned. A character vector
specifies which terms are to be returned

na.action function determining what should be done with missing values in newdata.
The default is to predict NA.

... further arguments passed to or from other methods.

Details

If newdata is omitted the predictions are based on the data used for the fit. In that case how cases
with missing values in the original fit is determined by the na.action argument of that fit. If
na.action = na.omit omitted cases will not appear in the residuals, whereas if na.action
= na.exclude they will appear (in predictions and standard errors), with residual value NA. See
also napredict.

Value

If se = FALSE, a vector or matrix of predictions. If se = TRUE, a list with components

fit Predictions

se.fit Estimated standard errors
residual.scale

A scalar giving the square root of the dispersion used in computing the standard
errors.

Note

Variables are first looked for in newdata and then searched for in the usual way (which will include
the environment of the formula used in the fit). A warning will be given if the variables found are
not of the same length as those in newdata if it was supplied.

See Also

glm, SafePrediction

predict.HoltWinters 1257

Examples

require(graphics)

example from Venables and Ripley (2002, pp. 190-2.)
ldose <- rep(0:5, 2)
numdead <- c(1, 4, 9, 13, 18, 20, 0, 2, 6, 10, 12, 16)
sex <- factor(rep(c("M", "F"), c(6, 6)))
SF <- cbind(numdead, numalive=20-numdead)
budworm.lg <- glm(SF ~ sex*ldose, family=binomial)
summary(budworm.lg)

plot(c(1,32), c(0,1), type = "n", xlab = "dose",
ylab = "prob", log = "x")

text(2^ldose, numdead/20, as.character(sex))
ld <- seq(0, 5, 0.1)
lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,

sex=factor(rep("M", length(ld)), levels=levels(sex))),
type = "response"))

lines(2^ld, predict(budworm.lg, data.frame(ldose=ld,
sex=factor(rep("F", length(ld)), levels=levels(sex))),
type = "response"))

predict.HoltWinters
prediction function for fitted Holt-Winters models

Description

Computes predictions and prediction intervals for models fitted by the Holt-Winters method.

Usage

S3 method for class 'HoltWinters':
predict(object, n.ahead=1, prediction.interval = FALSE,

level = 0.95, ...)

Arguments

object An object of class HoltWinters.

n.ahead Number of future periods to predict.
prediction.interval

logical. If TRUE, the lower and upper bounds of the corresponding prediction
intervals are computed.

level Confidence level for the prediction interval.

... arguments passed to or from other methods.

Value

A time series of the predicted values. If prediction intervals are requested, a multiple time series is
returned with columns fit, lwr and upr for the predicted values and the lower and upper bounds
respectively.

1258 predict.lm

Author(s)

David Meyer 〈David.Meyer@wu-wien.ac.at〉

References

C. C. Holt (1957) Forecasting seasonals and trends by exponentially weighted moving averages,
ONR Research Memorandum, Carnigie Institute 52.

P. R. Winters (1960) Forecasting sales by exponentially weighted moving averages, Management
Science 6, 324–342.

See Also

HoltWinters

Examples

require(graphics)

m <- HoltWinters(co2)
p <- predict(m, 50, prediction.interval = TRUE)
plot(m, p)

predict.lm Predict method for Linear Model Fits

Description

Predicted values based on linear model object.

Usage

S3 method for class 'lm':
predict(object, newdata, se.fit = FALSE, scale = NULL, df = Inf,

interval = c("none", "confidence", "prediction"),
level = 0.95, type = c("response", "terms"),
terms = NULL, na.action = na.pass,
pred.var = res.var/weights, weights = 1, ...)

Arguments

object Object of class inheriting from "lm"

newdata An optional data frame in which to look for variables with which to predict. If
omitted, the fitted values are used.

se.fit A switch indicating if standard errors are required.

scale Scale parameter for std.err. calculation

df Degrees of freedom for scale

interval Type of interval calculation.

level Tolerance/confidence level

type Type of prediction (response or model term).

predict.lm 1259

terms If type="terms", which terms (default is all terms)

na.action function determining what should be done with missing values in newdata.
The default is to predict NA.

pred.var the variance(s) for future observations to be assumed for prediction intervals.
See ‘Details’.

weights variance weights for prediction. This can be a numeric vector or a one-sided
model formula. In the latter case, it is interpreted as an expression evaluated in
newdata

... further arguments passed to or from other methods.

Details

predict.lm produces predicted values, obtained by evaluating the regression function in the
frame newdata (which defaults to model.frame(object). If the logical se.fit is TRUE,
standard errors of the predictions are calculated. If the numeric argument scale is set (with op-
tional df), it is used as the residual standard deviation in the computation of the standard errors,
otherwise this is extracted from the model fit. Setting intervals specifies computation of con-
fidence or prediction (tolerance) intervals at the specified level, sometimes referred to as narrow
vs. wide intervals.

If the fit is rank-deficient, some of the columns of the design matrix will have been dropped. Predic-
tion from such a fit only makes sense if newdata is contained in the same subspace as the original
data. That cannot be checked accurately, so a warning is issued.

If newdata is omitted the predictions are based on the data used for the fit. In that case how cases
with missing values in the original fit is determined by the na.action argument of that fit. If
na.action = na.omit omitted cases will not appear in the residuals, whereas if na.action
= na.exclude they will appear (in predictions, standard errors or interval limits), with residual
value NA. See also napredict.

The prediction intervals are for a single observation at each case in newdata (or by default, the
data used for the fit) with error variance(s) pred.var. This can be a multiple of res.var, the
estimated value of σ2: the default is to assume that future observations have the same error variance
as those used for fitting. If weights is supplied, the inverse of this is used as a scale factor. For a
weighted fit, if the prediction is for the original data frame, weights defaults to the weights used
for the model fit, with a warning since it might not be the intended result. If the fit was weighted
and newdata is given, the default is to assume constant prediction variance, with a warning.

Value

predict.lm produces a vector of predictions or a matrix of predictions and bounds with column
names fit, lwr, and upr if interval is set. If se.fit is TRUE, a list with the following
components is returned:

fit vector or matrix as above

se.fit standard error of predicted means

residual.scale
residual standard deviations

df degrees of freedom for residual

1260 predict.loess

Note

Variables are first looked for in newdata and then searched for in the usual way (which will include
the environment of the formula used in the fit). A warning will be given if the variables found are
not of the same length as those in newdata if it was supplied.

Offsets specified by offset in the fit by lm will not be included in predictions, whereas those
specified by an offset term in the formula will be.

Notice that prediction variances and prediction intervals always refer to future observations, possi-
bly corresponding to the same predictors as used for the fit. The variance of the residuals will be
smaller.

Strictly speaking, the formula used for prediction limits assumes that the degrees of freedom for
the fit are the same as those for the residual variance. This may not be the case if res.var is not
obtained from the fit.

See Also

The model fitting function lm, predict, SafePrediction

Examples

require(graphics)

Predictions
x <- rnorm(15)
y <- x + rnorm(15)
predict(lm(y ~ x))
new <- data.frame(x = seq(-3, 3, 0.5))
predict(lm(y ~ x), new, se.fit = TRUE)
pred.w.plim <- predict(lm(y ~ x), new, interval="prediction")
pred.w.clim <- predict(lm(y ~ x), new, interval="confidence")
matplot(new$x,cbind(pred.w.clim, pred.w.plim[,-1]),

lty=c(1,2,2,3,3), type="l", ylab="predicted y")

Prediction intervals, special cases
The first three of these throw warnings
w <- 1 + x^2
fit <- lm(y ~ x)
wfit <- lm(y ~ x, weights = w)
predict(fit, interval = "prediction")
predict(wfit, interval = "prediction")
predict(wfit, new, interval = "prediction")
predict(wfit, new, interval = "prediction", weights = (new$x)^2)
predict(wfit, new, interval = "prediction", weights = ~x^2)

predict.loess Predict Loess Curve or Surface

Description

Predictions from a loess fit, optionally with standard errors.

predict.loess 1261

Usage

S3 method for class 'loess':
predict(object, newdata = NULL, se = FALSE, ...)

Arguments

object an object fitted by loess.

newdata an optional data frame in which to look for variables with which to predict,
or a matrix or vector containing exactly the variables needs for prediction. If
missing, the original data points are used.

se should standard errors be computed?

... arguments passed to or from other methods.

Details

The standard errors calculation is slower than prediction.

When the fit was made using surface="interpolate" (the default), predict.loess will
not extrapolate – so points outside an axis-aligned hypercube enclosing the original data will have
missing (NA) predictions and standard errors.

Value

If se = FALSE, a vector giving the prediction for each row of newdata (or the original data). If
se = TRUE, a list containing components

fit the predicted values.

se an estimated standard error for each predicted value.
residual.scale

the estimated scale of the residuals used in computing the standard errors.

df an estimate of the effective degrees of freedom used in estimating the residual
scale, intended for use with t-based confidence intervals.

If newdata was the result of a call to expand.grid, the predictions (and s.e.’s if requested) will
be an array of the appropriate dimensions.

Note

Variables are first looked for in newdata and then searched for in the usual way (which will include
the environment of the formula used in the fit). A warning will be given if the variables found are
not of the same length as those in newdata if it was supplied.

Author(s)

B. D. Ripley, based on the cloess package of Cleveland, Grosse and Shyu.

See Also

loess

1262 predict.nls

Examples

cars.lo <- loess(dist ~ speed, cars)
predict(cars.lo, data.frame(speed=seq(5, 30, 1)), se=TRUE)
to get extrapolation
cars.lo2 <- loess(dist ~ speed, cars,
control=loess.control(surface="direct"))

predict(cars.lo2, data.frame(speed=seq(5, 30, 1)), se=TRUE)

predict.nls Predicting from Nonlinear Least Squares Fits

Description

predict.nls produces predicted values, obtained by evaluating the regression function in the
frame newdata. If the logical se.fit is TRUE, standard errors of the predictions are calculated.
If the numeric argument scale is set (with optional df), it is used as the residual standard deviation
in the computation of the standard errors, otherwise this is extracted from the model fit. Setting
intervals specifies computation of confidence or prediction (tolerance) intervals at the specified
level.

At present se.fit and interval are ignored.

Usage

S3 method for class 'nls':
predict(object, newdata , se.fit = FALSE, scale = NULL, df = Inf,

interval = c("none", "confidence", "prediction"),
level = 0.95, ...)

Arguments

object An object that inherits from class nls.

newdata A named list or data frame in which to look for variables with which to predict.
If newdata is missing the fitted values at the original data points are returned.

se.fit A logical value indicating if the standard errors of the predictions should be
calculated. Defaults to FALSE. At present this argument is ignored.

scale A numeric scalar. If it is set (with optional df), it is used as the residual standard
deviation in the computation of the standard errors, otherwise this information
is extracted from the model fit. At present this argument is ignored.

df A positive numeric scalar giving the number of degrees of freedom for the
scale estimate. At present this argument is ignored.

interval A character string indicating if prediction intervals or a confidence interval on
the mean responses are to be calculated. At present this argument is ignored.

level A numeric scalar between 0 and 1 giving the confidence level for the intervals
(if any) to be calculated. At present this argument is ignored.

... Additional optional arguments. At present no optional arguments are used.

predict.smooth.spline 1263

Value

predict.nls produces a vector of predictions. When implemented, interval will produce a
matrix of predictions and bounds with column names fit, lwr, and upr. When implemented, if
se.fit is TRUE, a list with the following components will be returned:

fit vector or matrix as above

se.fit standard error of predictions
residual.scale

residual standard deviations

df degrees of freedom for residual

Note

Variables are first looked for in newdata and then searched for in the usual way (which will include
the environment of the formula used in the fit). A warning will be given if the variables found are
not of the same length as those in newdata if it was supplied.

See Also

The model fitting function nls, predict.

Examples

require(graphics)

fm <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)
predict(fm) # fitted values at observed times
Form data plot and smooth line for the predictions
opar <- par(las = 1)
plot(demand ~ Time, data = BOD, col = 4,

main = "BOD data and fitted first-order curve",
xlim = c(0,7), ylim = c(0, 20))

tt <- seq(0, 8, length = 101)
lines(tt, predict(fm, list(Time = tt)))
par(opar)

predict.smooth.spline
Predict from Smoothing Spline Fit

Description

Predict a smoothing spline fit at new points, return the derivative if desired. The predicted fit is
linear beyond the original data.

Usage

S3 method for class 'smooth.spline':
predict(object, x, deriv = 0, ...)

1264 predict.smooth.spline

Arguments

object a fit from smooth.spline.

x the new values of x.

deriv integer; the order of the derivative required.

... further arguments passed to or from other methods.

Value

A list with components

x The input x.

y The fitted values or derivatives at x.

See Also

smooth.spline

Examples

require(graphics)

attach(cars)
cars.spl <- smooth.spline(speed, dist, df=6.4)

"Proof" that the derivatives are okay, by comparing with approximation
diff.quot <- function(x,y) {
Difference quotient (central differences where available)
n <- length(x); i1 <- 1:2; i2 <- (n-1):n
c(diff(y[i1]) / diff(x[i1]), (y[-i1] - y[-i2]) / (x[-i1] - x[-i2]),
diff(y[i2]) / diff(x[i2]))

}

xx <- unique(sort(c(seq(0,30, by = .2), kn <- unique(speed))))
i.kn <- match(kn, xx)# indices of knots within xx
op <- par(mfrow = c(2,2))
plot(speed, dist, xlim = range(xx), main = "Smooth.spline & derivatives")
lines(pp <- predict(cars.spl, xx), col = "red")
points(kn, pp$y[i.kn], pch = 3, col="dark red")
mtext("s(x)", col = "red")
for(d in 1:3){
n <- length(pp$x)
plot(pp$x, diff.quot(pp$x,pp$y), type = 'l', xlab="x", ylab="",

col = "blue", col.main = "red",
main= paste("s",paste(rep("'",d), collapse=""),"(x)", sep=""))

mtext("Difference quotient approx.(last)", col = "blue")
lines(pp <- predict(cars.spl, xx, deriv = d), col = "red")

points(kn, pp$y[i.kn], pch = 3, col="dark red")
abline(h=0, lty = 3, col = "gray")

}
detach(); par(op)

preplot 1265

preplot Pre-computations for a Plotting Objeect

Description

Compute an object to be used for plots relating to the given model object.

Usage

preplot(object, ...)

Arguments

object a fitted model object.

... additional arguments for specific methods.

Details

Only the generic function is currently provided in base R, but some add-on packages have methods.
Principally here for S compatibility.

Value

An object set up to make a plot that describes object.

princomp Principal Components Analysis

Description

princomp performs a principal components analysis on the given numeric data matrix and returns
the results as an object of class princomp.

Usage

princomp(x, ...)

S3 method for class 'formula':
princomp(formula, data = NULL, subset, na.action, ...)

Default S3 method:
princomp(x, cor = FALSE, scores = TRUE, covmat = NULL,

subset = rep(TRUE, nrow(as.matrix(x))), ...)

S3 method for class 'princomp':
predict(object, newdata, ...)

1266 princomp

Arguments

formula a formula with no response variable, referring only to numeric variables.

data an optional data frame (or similar: see model.frame) containing the vari-
ables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector used to select rows (observations) of the data matrix x.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that
is unset. The ‘factory-fresh’ default is na.omit.

x a numeric matrix or data frame which provides the data for the principal com-
ponents analysis.

cor a logical value indicating whether the calculation should use the correlation ma-
trix or the covariance matrix. (The correlation matrix can only be used if there
are no constant variables.)

scores a logical value indicating whether the score on each principal component should
be calculated.

covmat a covariance matrix, or a covariance list as returned by cov.wt (and cov.mve
or cov.mcd from package MASS). If supplied, this is used rather than the
covariance matrix of x.

... arguments passed to or from other methods. If x is a formula one might specify
cor or scores.

object Object of class inheriting from "princomp"

newdata An optional data frame or matrix in which to look for variables with which to
predict. If omitted, the scores are used. If the original fit used a formula or a
data frame or a matrix with column names, newdata must contain columns
with the same names. Otherwise it must contain the same number of columns,
to be used in the same order.

Details

princomp is a generic function with "formula" and "default" methods.

The calculation is done using eigen on the correlation or covariance matrix, as determined by
cor. This is done for compatibility with the S-PLUS result. A preferred method of calculation is
to use svd on x, as is done in prcomp.

Note that the default calculation uses divisor N for the covariance matrix.

The print method for these objects prints the results in a nice format and the plot method
produces a scree plot (screeplot). There is also a biplot method.

If x is a formula then the standard NA-handling is applied to the scores (if requested): see
napredict.

princomp only handles so-called R-mode PCA, that is feature extraction of variables. If a data
matrix is supplied (possibly via a formula) it is required that there are at least as many units as
variables. For Q-mode PCA use prcomp.

Value

princomp returns a list with class "princomp" containing the following components:

sdev the standard deviations of the principal components.

princomp 1267

loadings the matrix of variable loadings (i.e., a matrix whose columns contain the eigen-
vectors). This is of class "loadings": see loadings for its printmethod.

center the means that were subtracted.

scale the scalings applied to each variable.

n.obs the number of observations.

scores if scores = TRUE, the scores of the supplied data on the principal compo-
nents. These are non-null only if x was supplied, and if covmat was also
supplied if it was a covariance list. For the formula method, napredict is
applied to handle the treatment of values omitted by the na.action.

call the matched call.

na.action If relevant.

Note

The signs of the columns of the loadings and scores are arbitrary, and so may differ between differ-
ent programs for PCA, and even between different builds of R.

References

Mardia, K. V., J. T. Kent and J. M. Bibby (1979). Multivariate Analysis, London: Academic Press.

Venables, W. N. and B. D. Ripley (2002). Modern Applied Statistics with S, Springer-Verlag.

See Also

summary.princomp, screeplot, biplot.princomp, prcomp, cor, cov, eigen.

Examples

require(graphics)

The variances of the variables in the
USArrests data vary by orders of magnitude, so scaling is appropriate
(pc.cr <- princomp(USArrests)) # inappropriate
princomp(USArrests, cor = TRUE) # =^= prcomp(USArrests, scale=TRUE)
Similar, but different:
The standard deviations differ by a factor of sqrt(49/50)

summary(pc.cr <- princomp(USArrests, cor = TRUE))
loadings(pc.cr) ## note that blank entries are small but not zero
plot(pc.cr) # shows a screeplot.
biplot(pc.cr)

Formula interface
princomp(~ ., data = USArrests, cor = TRUE)
NA-handling
USArrests[1, 2] <- NA
pc.cr <- princomp(~ Murder + Assault + UrbanPop,

data = USArrests, na.action=na.exclude, cor = TRUE)
pc.cr$scores

1268 print.ts

print.power.htest Print method for power calculation object

Description

Print object of class "power.htest" in nice layout.

Usage

S3 method for class 'power.htest':
print(x, ...)

Arguments

x Object of class "power.htest".

... further arguments to be passed to or from methods.

Details

A power.htest object is just a named list of numbers and character strings, supplemented with
method and note elements. The method is displayed as a title, the note as a footnote, and the
remaining elements are given in an aligned ‘name = value’ format.

Value

none

Author(s)

Peter Dalgaard

See Also

power.t.test, power.prop.test

print.ts Printing Time-Series Objects

Description

Print method for time series objects.

Usage

S3 method for class 'ts':
print(x, calendar, ...)

printCoefmat 1269

Arguments

x a time series object.

calendar enable/disable the display of information about month names, quarter names or
year when printing. The default is TRUE for a frequency of 4 or 12, FALSE
otherwise.

... additional arguments to print.

Details

This is the print methods for objects inheriting from class "ts".

See Also

print, ts.

Examples

print(ts(1:10, frequency = 7, start = c(12, 2)), calendar = TRUE)

printCoefmat Print Coefficient Matrices

Description

Utility function to be used in higher-level print methods, such as print.summary.lm,
print.summary.glm and print.anova. The goal is to provide a flexible interface with
smart defaults such that often, only x needs to be specified.

Usage

printCoefmat(x, digits=max(3, getOption("digits") - 2),
signif.stars = getOption("show.signif.stars"),
signif.legend = signif.stars,
dig.tst = max(1, min(5, digits - 1)),
cs.ind = 1:k, tst.ind = k + 1, zap.ind = integer(0),
P.values = NULL,
has.Pvalue = nc >= 4 &&

substr(colnames(x)[nc],1,3) == "Pr(",
eps.Pvalue = .Machine$double.eps,
na.print = "NA", ...)

Arguments

x a numeric matrix like object, to be printed.

digits minimum number of significant digits to be used for most numbers.

signif.stars logical; if TRUE, P-values are additionally encoded visually as ‘significance
stars’ in order to help scanning of long coefficient tables. It defaults to the
show.signif.stars slot of options.

1270 printCoefmat

signif.legend
logical; if TRUE, a legend for the ‘significance stars’ is printed provided
signif.stars=TRUE.

dig.tst minimum number of significant digits for the test statistics, see tst.ind.

cs.ind indices (integer) of column numbers which are (like) coefficients and standard
errors to be formatted together.

tst.ind indices (integer) of column numbers for test statistics.

zap.ind indices (integer) of column numbers which should be formatted by zapsmall,
i.e., by ‘zapping’ values close to 0.

P.values logical or NULL; if TRUE, the last column of x is formatted by format.pval
as P values. If P.values = NULL, the default, it is set to TRUE only if
options("show.coef.Pvalue") is TRUE and x has at least 4 columns
and the last column name of x starts with "Pr(".

has.Pvalue logical; if TRUE, the last column of x contains P values; in that case, it is printed
if and only if P.values (above) is true.

eps.Pvalue number,..

na.print a character string to code NA values in printed output.

... further arguments for print.

Value

Invisibly returns its argument, x.

Author(s)

Martin Maechler

See Also

print.summary.lm, format.pval, format.

Examples

cmat <- cbind(rnorm(3, 10), sqrt(rchisq(3, 12)))
cmat <- cbind(cmat, cmat[,1]/cmat[,2])
cmat <- cbind(cmat, 2*pnorm(-cmat[,3]))
colnames(cmat) <- c("Estimate", "Std.Err", "Z value", "Pr(>z)")
printCoefmat(cmat[,1:3])
printCoefmat(cmat)
options(show.coef.Pvalues = FALSE)
printCoefmat(cmat, digits=2)
printCoefmat(cmat, digits=2, P.values = TRUE)
options(show.coef.Pvalues = TRUE)# revert

profile 1271

profile Generic Function for Profiling Models

Description

Investigates behavior of objective function near the solution represented by fitted.

See documentation on method functions for further details.

Usage

profile(fitted, ...)

Arguments

fitted the original fitted model object.
... additional parameters. See documentation on individual methods.

Value

A list with an element for each parameter being profiled. See the individual methods for further
details.

See Also

profile.nls, profile.glm in package MASS, . . .

For profiling R code, see Rprof.

profile.nls Method for Profiling nls Objects

Description

Investigates the profile log-likelihood function for a fitted model of class "nls".

Usage

S3 method for class 'nls':
profile(fitted, which = 1:npar, maxpts = 100, alphamax = 0.01,

delta.t = cutoff/5, ...)

Arguments

fitted the original fitted model object.
which the original model parameters which should be profiled. This can be a numeric

or character vector. By default, all non-linear parameters are profiled.
maxpts maximum number of points to be used for profiling each parameter.
alphamax highest significance level allowed for the profile t-statistics.
delta.t suggested change on the scale of the profile t-statistics. Default value chosen to

allow profiling at about 10 parameter values.
... further arguments passed to or from other methods.

1272 proj

Details

The profile t-statistics is defined as the square root of change in sum-of-squares divided by residual
standard error with an appropriate sign.

Value

A list with an element for each parameter being profiled. The elements are data-frames with two
variables

par.vals a matrix of parameter values for each fitted model.

tau the profile t-statistics.

Author(s)

Of the original version, Douglas M. Bates and Saikat DebRoy

References

Bates, D. M. and Watts, D. G. (1988), Nonlinear Regression Analysis and Its Applications, Wiley
(chapter 6).

See Also

nls, profile, plot.profile.nls

Examples

obtain the fitted object
fm1 <- nls(demand ~ SSasympOrig(Time, A, lrc), data = BOD)
get the profile for the fitted model: default level is too extreme
pr1 <- profile(fm1, alpha = 0.05)
profiled values for the two parameters
pr1$A
pr1$lrc
see also example(plot.profile.nls)

proj Projections of Models

Description

proj returns a matrix or list of matrices giving the projections of the data onto the terms of a linear
model. It is most frequently used for aov models.

Usage

proj(object, ...)

S3 method for class 'aov':
proj(object, onedf = FALSE, unweighted.scale = FALSE, ...)

S3 method for class 'aovlist':

proj 1273

proj(object, onedf = FALSE, unweighted.scale = FALSE, ...)

Default S3 method:
proj(object, onedf = TRUE, ...)

S3 method for class 'lm':
proj(object, onedf = FALSE, unweighted.scale = FALSE, ...)

Arguments

object An object of class "lm" or a class inheriting from it, or an object with a similar
structure including in particular components qr and effects.

onedf A logical flag. If TRUE, a projection is returned for all the columns of the model
matrix. If FALSE, the single-column projections are collapsed by terms of the
model (as represented in the analysis of variance table).

unweighted.scale
If the fit producing object used weights, this determines if the projections
correspond to weighted or unweighted observations.

... Swallow and ignore any other arguments.

Details

A projection is given for each stratum of the object, so for aov models with an Error term the
result is a list of projections.

Value

A projection matrix or (for multi-stratum objects) a list of projection matrices.

Each projection is a matrix with a row for each observations and either a column for each term
(onedf = FALSE) or for each coefficient (onedf = TRUE). Projection matrices from the de-
fault method have orthogonal columns representing the projection of the response onto the column
space of the Q matrix from the QR decomposition. The fitted values are the sum of the projections,
and the sum of squares for each column is the reduction in sum of squares from fitting that column
(after those to the left of it).

The methods for lm and aov models add a column to the projection matrix giving the residuals
(the projection of the data onto the orthogonal complement of the model space).

Strictly, when onedf = FALSE the result is not a projection, but the columns represent sums of
projections onto the columns of the model matrix corresponding to that term. In this case the matrix
does not depend on the coding used.

Author(s)

The design was inspired by the S function of the same name described in Chambers et al. (1992).

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992) Analysis of variance; designed experi-
ments. Chapter 5 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth &
Brooks/Cole.

See Also

aov, lm, model.tables

1274 prop.test

Examples

N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,
55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),
K=factor(K), yield=yield)

npk.aov <- aov(yield ~ block + N*P*K, npk)
proj(npk.aov)

as a test, not particularly sensible
options(contrasts=c("contr.helmert", "contr.treatment"))
npk.aovE <- aov(yield ~ N*P*K + Error(block), npk)
proj(npk.aovE)

prop.test Test of Equal or Given Proportions

Description

prop.test can be used for testing the null that the proportions (probabilities of success) in several
groups are the same, or that they equal certain given values.

Usage

prop.test(x, n, p = NULL,
alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, correct = TRUE)

Arguments

x a vector of counts of successes or a matrix with 2 columns giving the counts of
successes and failures, respectively.

n a vector of counts of trials; ignored if x is a matrix.

p a vector of probabilities of success. The length of p must be the same as the
number of groups specified by x, and its elements must be greater than 0 and
less than 1.

alternative a character string specifying the alternative hypothesis, must be one of
"two.sided" (default), "greater" or "less". You can specify just the
initial letter. Only used for testing the null that a single proportion equals a given
value, or that two proportions are equal; ignored otherwise.

conf.level confidence level of the returned confidence interval. Must be a single number
between 0 and 1. Only used when testing the null that a single proportion equals
a given value, or that two proportions are equal; ignored otherwise.

correct a logical indicating whether Yates’ continuity correction should be applied.

prop.test 1275

Details

Only groups with finite numbers of successes and failures are used. Counts of successes and failures
must be nonnegative and hence not greater than the corresponding numbers of trials which must be
positive. All finite counts should be integers.

If p is NULL and there is more than one group, the null tested is that the proportions in each
group are the same. If there are two groups, the alternatives are that the probability of success in
the first group is less than, not equal to, or greater than the probability of success in the second
group, as specified by alternative. A confidence interval for the difference of proportions
with confidence level as specified by conf.level and clipped to [−1, 1] is returned. Continuity
correction is used only if it does not exceed the difference of the sample proportions in absolute
value. Otherwise, if there are more than 2 groups, the alternative is always "two.sided", the
returned confidence interval is NULL, and continuity correction is never used.

If there is only one group, then the null tested is that the underlying probability of success is p, or
.5 if p is not given. The alternative is that the probability of success if less than, not equal to, or
greater than p or 0.5, respectively, as specified by alternative. A confidence interval for the
underlying proportion with confidence level as specified by conf.level and clipped to [0, 1] is
returned. Continuity correction is used only if it does not exceed the difference between sample and
null proportions in absolute value. The confidence interval is computed by inverting the score test.

Finally, if p is given and there are more than 2 groups, the null tested is that the underlying prob-
abilities of success are those given by p. The alternative is always "two.sided", the returned
confidence interval is NULL, and continuity correction is never used.

Value

A list with class "htest" containing the following components:

statistic the value of Pearson’s chi-squared test statistic.
parameter the degrees of freedom of the approximate chi-squared distribution of the test

statistic.
p.value the p-value of the test.
estimate a vector with the sample proportions x/n.
conf.int a confidence interval for the true proportion if there is one group, or for the

difference in proportions if there are 2 groups and p is not given, or NULL oth-
erwise. In the cases where it is not NULL, the returned confidence interval has an
asymptotic confidence level as specified by conf.level, and is appropriate
to the specified alternative hypothesis.

null.value the value of p if specified by the null, or NULL otherwise.
alternative a character string describing the alternative.
method a character string indicating the method used, and whether Yates’ continuity

correction was applied.
data.name a character string giving the names of the data.

References

Wilson, E.B. (1927) Probable inference, the law of succession, and statistical inference. J. Am. Stat.
Assoc., 22, 209–212.

Newcombe R.G. (1998) Two-Sided Confidence Intervals for the Single Proportion: Comparison of
Seven Methods. Statistics in Medicine 17, 857–872.

Newcombe R.G. (1998) Interval Estimation for the Difference Between Independent Proportions:
Comparison of Eleven Methods. Statistics in Medicine 17, 873–890.

1276 prop.trend.test

See Also

binom.test for an exact test of a binomial hypothesis.

Examples

heads <- rbinom(1, size=100, prob = .5)
prop.test(heads, 100) # continuity correction TRUE by default
prop.test(heads, 100, correct = FALSE)

Data from Fleiss (1981), p. 139.
H0: The null hypothesis is that the four populations from which
the patients were drawn have the same true proportion of smokers.
A: The alternative is that this proportion is different in at
least one of the populations.

smokers <- c(83, 90, 129, 70)
patients <- c(86, 93, 136, 82)
prop.test(smokers, patients)

prop.trend.test Test for trend in proportions

Description

Performs chi-squared test for trend in proportions, i.e., a test asymptotically optimal for local al-
ternatives where the log odds vary in proportion with score. By default, score is chosen as the
group numbers.

Usage

prop.trend.test(x, n, score = 1:length(x))

Arguments

x Number of events

n Number of trials

score Group score

Value

An object of class "htest" with title, test statistic, p-value, etc.

Note

This really should get integrated with prop.test

Author(s)

Peter Dalgaard

See Also

prop.test

qqnorm 1277

Examples

smokers <- c(83, 90, 129, 70)
patients <- c(86, 93, 136, 82)
prop.test(smokers, patients)
prop.trend.test(smokers, patients)
prop.trend.test(smokers, patients,c(0,0,0,1))

qqnorm Quantile-Quantile Plots

Description

qqnorm is a generic function the default method of which produces a normal QQ plot of the values
in y. qqline adds a line to a normal quantile-quantile plot which passes through the first and third
quartiles.

qqplot produces a QQ plot of two datasets.

Graphical parameters may be given as arguments to qqnorm, qqplot and qqline.

Usage

qqnorm(y, ...)
Default S3 method:
qqnorm(y, ylim, main = "Normal Q-Q Plot",

xlab = "Theoretical Quantiles", ylab = "Sample Quantiles",
plot.it = TRUE, datax = FALSE, ...)

qqline(y, datax = FALSE, ...)

qqplot(x, y, plot.it = TRUE, xlab = deparse(substitute(x)),
ylab = deparse(substitute(y)), ...)

Arguments

x The first sample for qqplot.

y The second or only data sample.
xlab, ylab, main

plot labels. The xlab and ylab refer to the y and x axes respectively if datax
= TRUE.

plot.it logical. Should the result be plotted?

datax logical. Should data values be on the x-axis?

ylim, ... graphical parameters.

Value

For qqnorm and qqplot, a list with components

x The x coordinates of the points that were/would be plotted

y The original y vector, i.e., the corresponding y coordinates including NAs.

1278 quade.test

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

ppoints, used by qqnorm to generate approximations to expected order statistics for a normal
distribution.

Examples

require(graphics)

y <- rt(200, df = 5)
qqnorm(y); qqline(y, col = 2)
qqplot(y, rt(300, df = 5))

qqnorm(precip, ylab = "Precipitation [in/yr] for 70 US cities")

quade.test Quade Test

Description

Performs a Quade test with unreplicated blocked data.

Usage

quade.test(y, ...)

Default S3 method:
quade.test(y, groups, blocks, ...)

S3 method for class 'formula':
quade.test(formula, data, subset, na.action, ...)

Arguments

y either a numeric vector of data values, or a data matrix.
groups a vector giving the group for the corresponding elements of y if this is a vector;

ignored if y is a matrix. If not a factor object, it is coerced to one.
blocks a vector giving the block for the corresponding elements of y if this is a vector;

ignored if y is a matrix. If not a factor object, it is coerced to one.
formula a formula of the form a ~ b | c, where a, b and c give the data values and

corresponding groups and blocks, respectively.
data an optional matrix or data frame (or similar: see model.frame) containing

the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.
na.action a function which indicates what should happen when the data contain NAs. De-

faults to getOption("na.action").
... further arguments to be passed to or from methods.

quade.test 1279

Details

quade.test can be used for analyzing unreplicated complete block designs (i.e., there is exactly
one observation in y for each combination of levels of groups and blocks) where the normality
assumption may be violated.

The null hypothesis is that apart from an effect of blocks, the location parameter of y is the same
in each of the groups.

If y is a matrix, groups and blocks are obtained from the column and row indices, respectively.
NA’s are not allowed in groups or blocks; if y contains NA’s, corresponding blocks are removed.

Value

A list with class "htest" containing the following components:

statistic the value of Quade’s F statistic.

parameter a vector with the numerator and denominator degrees of freedom of the approx-
imate F distribution of the test statistic.

p.value the p-value of the test.

method the character string "Quade test".

data.name a character string giving the names of the data.

References

D. Quade (1979), Using weighted rankings in the analysis of complete blocks with additive block
effects. Journal of the American Statistical Association, 74, 680–683.

William J. Conover (1999), Practical nonparametric statistics. New York: John Wiley & Sons.
Pages 373–380.

See Also

friedman.test.

Examples

Conover (1999, p. 375f):
Numbers of five brands of a new hand lotion sold in seven stores
during one week.
y <- matrix(c(5, 4, 7, 10, 12,

1, 3, 1, 0, 2,
16, 12, 22, 22, 35,
5, 4, 3, 5, 4,

10, 9, 7, 13, 10,
19, 18, 28, 37, 58,
10, 7, 6, 8, 7),

nrow = 7, byrow = TRUE,
dimnames =
list(Store = as.character(1:7),

Brand = LETTERS[1:5]))
y
quade.test(y)

1280 quantile

quantile Sample Quantiles

Description

The generic function quantile produces sample quantiles corresponding to the given probabili-
ties. The smallest observation corresponds to a probability of 0 and the largest to a probability of
1.

Usage

quantile(x, ...)

Default S3 method:
quantile(x, probs = seq(0, 1, 0.25), na.rm = FALSE,

names = TRUE, type = 7, ...)

Arguments

x numeric vectors whose sample quantiles are wanted. Missing values are ignored.

probs numeric vector of probabilities with values in [0, 1]. (As from R 2.8.0 values up
to 2e-14 outside that range are accepted and moved to the nearby endpoint.

na.rm logical; if true, any NA and NaN’s are removed from x before the quantiles are
computed.

names logical; if true, the result has a names attribute. Set to FALSE for speedup with
many probs.

type an integer between 1 and 9 selecting one of the nine quantile algorithms detailed
below to be used.

... further arguments passed to or from other methods.

Details

A vector of length length(probs) is returned; if names = TRUE, it has a names attribute.

NA and NaN values in probs are propagated to the result.

Types

quantile returns estimates of underlying distribution quantiles based on one or two order statis-
tics from the supplied elements in x at probabilities in probs. One of the nine quantile algorithms
discussed in Hyndman and Fan (1996), selected by type, is employed.

Sample quantiles of type i are defined by

Qi(p) = (1− γ)xj + γxj+1

where 1 ≤ i ≤ 9, j−m
n ≤ p < j−m+1

n , xj is the jth order statistic, n is the sample size, and
m is a constant determined by the sample quantile type. Here γ depends on the fractional part of
g = np+m− j.

quantile 1281

For the continuous sample quantile types (4 through 9), the sample quantiles can be obtained by
linear interpolation between the kth order statistic and p(k):

p(k) =
k − α

n− α− β + 1

where α and β are constants determined by the type. Further, m = α+ p (1− α− β), and γ = g.

Discontinuous sample quantile types 1, 2, and 3

Type 1 Inverse of empirical distribution function.

Type 2 Similar to type 1 but with averaging at discontinuities.

Type 3 SAS definition: nearest even order statistic.

Continuous sample quantile types 4 through 9

Type 4 p(k) = k
n . That is, linear interpolation of the empirical cdf.

Type 5 p(k) = k−0.5
n . That is a piecewise linear function where the knots are the values midway

through the steps of the empirical cdf. This is popular amongst hydrologists.

Type 6 p(k) = k
n+1 . Thus p(k) = E[F (xk)]. This is used by Minitab and by SPSS.

Type 7 p(k) = k−1
n−1 . In this case, p(k) = mode[F (xk)]. This is used by S.

Type 8 p(k) = k− 1
3

n+ 1
3

. Then p(k) ≈ median[F (xk)]. The resulting quantile estimates are approxi-
mately median-unbiased regardless of the distribution of x.

Type 9 p(k) = k− 3
8

n+ 1
4

. The resulting quantile estimates are approximately unbiased for the expected
order statistics if x is normally distributed.

Hyndman and Fan (1996) recommend type 8. The default method is type 7, as used by S and by R
< 2.0.0.

Author(s)

of the version used in R >= 2.0.0, Ivan Frohne and Rob J Hyndman.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Hyndman, R. J. and Fan, Y. (1996) Sample quantiles in statistical packages, American Statistician,
50, 361–365.

See Also

ecdf for empirical distributions of which quantile is an inverse; boxplot.stats and
fivenum for computing other versions of quartiles, etc.

1282 r2dtable

Examples

quantile(x <- rnorm(1001))# Extremes & Quartiles by default
quantile(x, probs=c(.1,.5,1,2,5,10,50, NA)/100)

Compare different types
p <- c(0.1,0.5,1,2,5,10,50)/100
res <- matrix(as.numeric(NA), 9, 7)
for(type in 1:9) res[type,] <- y <- quantile(x, p, type=type)
dimnames(res) <- list(1:9, names(y))
round(res, 3)

r2dtable Random 2-way Tables with Given Marginals

Description

Generate random 2-way tables with given marginals using Patefield’s algorithm.

Usage

r2dtable(n, r, c)

Arguments

n a non-negative numeric giving the number of tables to be drawn.

r a non-negative vector of length at least 2 giving the row totals, to be coerced to
integer. Must sum to the same as c.

c a non-negative vector of length at least 2 giving the column totals, to be coerced
to integer.

Value

A list of length n containing the generated tables as its components.

References

Patefield, W. M. (1981) Algorithm AS159. An efficient method of generating r x c tables with given
row and column totals. Applied Statistics 30, 91–97.

Examples

Fisher's Tea Drinker data.
TeaTasting <-
matrix(c(3, 1, 1, 3),

nrow = 2,
dimnames = list(Guess = c("Milk", "Tea"),

Truth = c("Milk", "Tea")))
Simulate permutation test for independence based on the maximum
Pearson residuals (rather than their sum).
rowTotals <- rowSums(TeaTasting)
colTotals <- colSums(TeaTasting)
nOfCases <- sum(rowTotals)

read.ftable 1283

expected <- outer(rowTotals, colTotals, "*") / nOfCases
maxSqResid <- function(x) max((x - expected) ^ 2 / expected)
simMaxSqResid <-

sapply(r2dtable(1000, rowTotals, colTotals), maxSqResid)
sum(simMaxSqResid >= maxSqResid(TeaTasting)) / 1000
Fisher's exact test gives p = 0.4857 ...

read.ftable Manipulate Flat Contingency Tables

Description

Read, write and coerce ‘flat’ contingency tables.

Usage

read.ftable(file, sep = "", quote = "\"",
row.var.names, col.vars, skip = 0)

write.ftable(x, file = "", quote = TRUE, append = FALSE,
digits = getOption("digits"))

S3 method for class 'ftable':
format(x, quote = TRUE, digits = getOption("digits"), ...)

Arguments

file either a character string naming a file or a connection which the data are to be
read from or written to. "" indicates input from the console for reading and
output to the console for writing.

sep the field separator string. Values on each line of the file are separated by this
string.

quote a character string giving the set of quoting characters for read.ftable; to
disable quoting altogether, use quote="". For write.table, a logical in-
dicating whether strings in the data will be surrounded by double quotes.

row.var.names
a character vector with the names of the row variables, in case these cannot be
determined automatically.

col.vars a list giving the names and levels of the column variables, in case these cannot
be determined automatically.

skip the number of lines of the data file to skip before beginning to read data.

x an object of class "ftable".

append logical. If TRUE and file is the name of a file (and not a connection or
"|cmd"), the output from write.ftable is appended to the file. If FALSE,
the contents of file will be overwritten.

digits an integer giving the number of significant digits to use for (the cell entries of)
x.

... further arguments to be passed to or from methods.

1284 read.ftable

Details

read.ftable reads in a flat-like contingency table from a file. If the file contains the written
representation of a flat table (more precisely, a header with all information on names and levels of
column variables, followed by a line with the names of the row variables), no further arguments are
needed. Similarly, flat tables with only one column variable the name of which is the only entry
in the first line are handled automatically. Other variants can be dealt with by skipping all header
information using skip, and providing the names of the row variables and the names and levels
of the column variable using row.var.names and col.vars, respectively. See the examples
below.

Note that flat tables are characterized by their ‘ragged’ display of row (and maybe also column)
labels. If the full grid of levels of the row variables is given, one should instead use read.table
to read in the data, and create the contingency table from this using xtabs.

write.ftable writes a flat table to a file, which is useful for generating ‘pretty’ ASCII repre-
sentations of contingency tables.

References

Agresti, A. (1990) Categorical data analysis. New York: Wiley.

See Also

ftable for more information on flat contingency tables.

Examples

Agresti (1990), page 157, Table 5.8.
Not in ftable standard format, but o.k.
file <- tempfile()
cat(" Intercourse\n",

"Race Gender Yes No\n",
"White Male 43 134\n",
" Female 26 149\n",
"Black Male 29 23\n",
" Female 22 36\n",
file = file)

file.show(file)
ft <- read.ftable(file)
ft
unlink(file)

Agresti (1990), page 297, Table 8.16.
Almost o.k., but misses the name of the row variable.
file <- tempfile()
cat(" \"Tonsil Size\"\n",

" \"Not Enl.\" \"Enl.\" \"Greatly Enl.\"\n",
"Noncarriers 497 560 269\n",
"Carriers 19 29 24\n",
file = file)

file.show(file)
ft <- read.ftable(file, skip = 2,

row.var.names = "Status",
col.vars = list("Tonsil Size" =

c("Not Enl.", "Enl.", "Greatly Enl.")))
ft

rect.hclust 1285

unlink(file)

ft22 <- ftable(Titanic, row.vars = 2:1, col.vars = 4:3)
write.ftable(ft22, quote = FALSE)

rect.hclust Draw Rectangles Around Hierarchical Clusters

Description

Draws rectangles around the branches of a dendrogram highlighting the corresponding clusters.
First the dendrogram is cut at a certain level, then a rectangle is drawn around selected branches.

Usage

rect.hclust(tree, k = NULL, which = NULL, x = NULL, h = NULL,
border = 2, cluster = NULL)

Arguments

tree an object of the type produced by hclust.

k, h Scalar. Cut the dendrogram such that either exactly k clusters are produced or
by cutting at height h.

which, x A vector selecting the clusters around which a rectangle should be drawn.
which seleccts clusters by number (from left to right in the tree), x selects
clusters containing the respective horizontal coordinates. Default is which =
1:k.

border Vector with border colors for the rectangles.

cluster Optional vector with cluster memberships as returned by
cutree(hclust.obj, k = k), can be specified for efficiency if
already computed.

Value

(Invisibly) returns a list where each element contains a vector of data points contained in the re-
spective cluster.

See Also

hclust, identify.hclust.

Examples

require(graphics)

hca <- hclust(dist(USArrests))
plot(hca)
rect.hclust(hca, k=3, border="red")
x <- rect.hclust(hca, h=50, which=c(2,7), border=3:4)
x

1286 reorder.dendrogram

relevel Reorder Levels of Factor

Description

The levels of a factor are re-ordered so that the level specified by ref is first and the others are
moved down. This is useful for contr.treatment contrasts which take the first level as the
reference.

Usage

relevel(x, ref, ...)

Arguments

x An unordered factor.

ref The reference level.

... Additional arguments for future methods.

Value

A factor of the same length as x.

See Also

factor, contr.treatment, levels, reorder.

Examples

warpbreaks$tension <- relevel(warpbreaks$tension, ref="M")
summary(lm(breaks ~ wool + tension, data=warpbreaks))

reorder.dendrogram Reorder a Dendrogram

Description

A method for the generic function reorder.

There are many different orderings of a dendrogram that are consistent with the structure imposed.
This function takes a dendrogram and a vector of values and reorders the dendrogram in the order
of the supplied vector, maintaining the constraints on the dendrogram.

Usage

S3 method for class 'dendrogram':
reorder(x, wts, agglo.FUN = sum, ...)

reorder.factor 1287

Arguments

x the (dendrogram) object to be reordered

wts numeric weights (arbitrary values) for reordering.

agglo.FUN a function for weights agglomeration, see below.

... additional arguments

Details

Using the weights wts, the leaves of the dendrogram are reordered so as to be in an order as
consistent as possible with the weights. At each node, the branches are ordered in increasing weights
where the weight of a branch is defined as f(wj) where f is agglo.FUN and wj is the weight of
the j-th sub branch).

Value

A dendrogram where each node has a further attribute value with its corresponding weight.

Author(s)

R. Gentleman and M. Maechler

See Also

reorder.

rev.dendrogram which simply reverses the nodes’ order; heatmap, cophenetic.

Examples

require(graphics)

set.seed(123)
x <- rnorm(10)
hc <- hclust(dist(x))
dd <- as.dendrogram(hc)
dd.reorder <- reorder(dd, 10:1)
plot(dd, main = "random dendrogram 'dd'")

op <- par(mfcol = 1:2)
plot(dd.reorder, main = "reorder(dd, 10:1)")
plot(reorder(dd,10:1, agglo.FUN= mean),

main = "reorder(dd, 10:1, mean)")
par(op)

reorder.factor Reorder Levels of a Factor

Description

reorder is a generic function. Its "factor" method reorders the levels of a factor depending
on values of a second variable, usually numeric. The "character" method is a convenient alias.

1288 reorder.factor

Usage

reorder(x, ...)

S3 method for class 'factor':
reorder(x, X, FUN = mean, ...,

order = is.ordered(x))

S3 method for class 'character':
reorder(x, X, FUN = mean, ...,

order = is.ordered(x))

Arguments

x a character vector or factor (possibly ordered) or whose levels will be reordered.

X a vector of the same length as x, whose subset of values for each unique level of
x determines the eventual order of that level.

FUN a function whose first argument is a vector and returns a scalar, to be applied to
each subset of X determined by the levels of x.

... optional: extra arguments supplied to FUN

order logical, whether return value will be an ordered factor rather than a factor.

Value

A factor or an ordered factor (depending on the value of order), with the order of the levels
determined by FUN applied to X grouped by x. The levels are ordered such that the values returned
by FUN are in increasing order.

Additionally, the values of FUN applied to the subsets of X (in the original order of the levels of x)
is returned as the "scores" attribute.

Author(s)

Deepayan Sarkar 〈deepayan.sarkar@r-project.org〉

See Also

reorder.dendrogram, levels, relevel.

Examples

require(graphics)

bymedian <- with(InsectSprays, reorder(spray, count, median))
boxplot(count ~ bymedian, data = InsectSprays,

xlab = "Type of spray", ylab = "Insect count",
main = "InsectSprays data", varwidth = TRUE,
col = "lightgray")

replications 1289

replications Number of Replications of Terms

Description

Returns a vector or a list of the number of replicates for each term in the formula.

Usage

replications(formula, data=NULL, na.action)

Arguments

formula a formula or a terms object or a data frame.

data a data frame used to find the objects in formula.

na.action function for handling missing values. Defaults to a na.action attribute of
data, then a setting of the option na.action, or na.fail if that is not set.

Details

If formula is a data frame and data is missing, formula is used for data with the formula ~
..

Value

A vector or list with one entry for each term in the formula giving the number(s) of replications for
each level. If all levels are balanced (have the same number of replications) the result is a vector,
otherwise it is a list with a component for each terms, as a vector, matrix or array as required.

A test for balance is !is.list(replications(formula,data)).

Author(s)

The design was inspired by the S function of the same name described in Chambers et al. (1992).

References

Chambers, J. M., Freeny, A and Heiberger, R. M. (1992) Analysis of variance; designed experi-
ments. Chapter 5 of Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth &
Brooks/Cole.

See Also

model.tables

1290 reshape

Examples

From Venables and Ripley (2002) p.165.
N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,
55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),
K=factor(K), yield=yield)

replications(~ . - yield, npk)

reshape Reshape Grouped Data

Description

This function reshapes a data frame between ‘wide’ format with repeated measurements in separate
columns of the same record and ‘long’ format with the repeated measurements in separate records.

Usage

reshape(data, varying = NULL, v.names = NULL, timevar = "time",
idvar = "id", ids = 1:NROW(data),
times = seq_along(varying[[1]]),
drop = NULL, direction, new.row.names = NULL,
sep = ".",
split = if (sep==""){

list(regexp="[A-Za-z][0-9]",include=TRUE)
} else {

list(regexp=sep, include= FALSE, fixed=TRUE)}
)

Arguments

data a data frame

varying names of sets of variables in the wide format that correspond to single variables
in long format (‘time-varying’). This is canonically a list of vectors of variable
names, but it can optionally be a matrix of names, or a single vector of names.
In each case, the names can be replaced by indexes which are interpreted as
referring to names(data). See below for more details and options.

v.names names of variables in the long format that correspond to multiple variables in
the wide format. See below for details.

timevar the variable in long format that differentiates multiple records from the same
group or individual.

idvar Names of one or more variables in long format that identify multiple records
from the same group/individual. These variables may also be present in wide
format

ids the values to use for a newly created idvar variable in long format.

reshape 1291

times the values to use for a newly created timevar variable in long format. See
below for details.

drop a vector of names of variables to drop before reshaping

direction character string, either "wide" to reshape to wide format, or "long" to re-
shape to long format.

new.row.names
logical; if TRUE and direction="wide", create new row names in long
format from the values of the id and time variables.

sep

split A list with three components, regexp, include, and (optionally) fixed.
This allows an extended interface to variable name splitting. See below for
details.

Details

The arguments to this function are described in terms of longitudinal data, as that is the application
motivating the functions. A ‘wide’ longitudinal dataset will have one record for each individual
with some time-constant variables that occupy single columns and some time-varying variables
that occupy a column for each time point. In ‘long’ format there will be multiple records for each
individual, with some variables being constant across these records and others varying across the
records. A ‘long’ format dataset also needs a ‘time’ variable identifying which time point each
record comes from and an ‘id’ variable showing which records refer to the same person.

If the data frame resulted from a previous reshape then the operation can be reversed simply
by reshape(a). The direction argument is optional and the other arguments are stored as
attributes on the data frame.

If direction="wide" and no varying or v.names arguments are supplied it is assumed that
all variables except idvar and timevar are time-varying. They are all expanded into multiple
variables in wide format.

If direction="long" the varying argument can be a vector of column names (or a corre-
sponding index). The function will attempt to guess the v.names and times from these names.
The default is variable names like x.1, x.2, where sep="." specifies to split at the dot and drop
it from the name. To have alphabetic followed by numeric times use sep="".

Variable name splitting as described above is only attempted in the case where varying is an
atomic vector, if it is a list or a matrix, v.names and times will generally need to be specified,
although they will default to, respectively, the first variable name in each set, and sequential times.

Also, guessing is not attempted if v.names is given explicitly. Notice that the order of variables
in varying is like x.1,y.1,x.2,y.2.

The split argument should not usually be necessary. The split$regexp component is passed
to either strsplit() or regexp(), where the latter is used if split$include is TRUE, in
which case the splitting occurs after the first character of the matched string. In the strsplit()
case, the separator is not included in the result, and it is possible to specify fixed-string matching
using split$fixed.

Value

The reshaped data frame with added attributes to simplify reshaping back to the original form.

See Also

stack, aperm; relist for reshaping the result of unlist.

1292 residuals

Examples

summary(Indometh)
wide <- reshape(Indometh, v.names="conc", idvar="Subject",

timevar="time", direction="wide")
wide

reshape(wide, direction="long")
reshape(wide, idvar="Subject", varying=list(2:12),

v.names="conc", direction="long")

times need not be numeric
df <- data.frame(id=rep(1:4,rep(2,4)),

visit=I(rep(c("Before","After"),4)),
x=rnorm(4), y=runif(4))

df
reshape(df, timevar="visit", idvar="id", direction="wide")
warns that y is really varying
reshape(df, timevar="visit", idvar="id", direction="wide", v.names="x")

unbalanced 'long' data leads to NA fill in 'wide' form
df2 <- df[1:7,]
df2
reshape(df2, timevar="visit", idvar="id", direction="wide")

Alternative regular expressions for guessing names
df3 <- data.frame(id=1:4, age=c(40,50,60,50), dose1=c(1,2,1,2),

dose2=c(2,1,2,1), dose4=c(3,3,3,3))
reshape(df3, direction="long", varying=3:5, sep="")

an example that isn't longitudinal data
state.x77 <- as.data.frame(state.x77)
long <- reshape(state.x77, idvar="state", ids=row.names(state.x77),

times=names(state.x77), timevar="Characteristic",
varying=list(names(state.x77)), direction="long")

reshape(long, direction="wide")

reshape(long, direction="wide", new.row.names=unique(long$state))

multiple id variables
df3 <- data.frame(school=rep(1:3,each=4), class=rep(9:10,6),

time=rep(c(1,1,2,2),3),
score=rnorm(12))
wide <- reshape(df3, idvar=c("school","class"), direction="wide")
wide
transform back
reshape(wide)

residuals Extract Model Residuals

runmed 1293

Description

residuals is a generic function which extracts model residuals from objects returned by model-
ing functions.

The abbreviated form resid is an alias for residuals. It is intended to encourage users to
access object components through an accessor function rather than by directly referencing an object
slot.

All object classes which are returned by model fitting functions should provide a residuals
method. (Note that the method is for ‘residuals’ and not ‘resid’.)

Methods can make use of naresid methods to compensate for the omission of missing values.
The default, nls and smooth.spline methods do.

Usage

residuals(object, ...)
resid(object, ...)

Arguments

object an object for which the extraction of model residuals is meaningful.

... other arguments.

Value

Residuals extracted from the object object.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

See Also

coefficients, fitted.values, glm, lm.

influence.measures for standardized (rstandard) and studentized (rstudent) residuals.

runmed Running Medians – Robust Scatter Plot Smoothing

Description

Compute running medians of odd span. This is the ‘most robust’ scatter plot smoothing possible.
For efficiency (and historical reason), you can use one of two different algorithms giving identical
results.

Usage

runmed(x, k, endrule = c("median", "keep", "constant"),
algorithm = NULL, print.level = 0)

1294 runmed

Arguments

x numeric vector, the ‘dependent’ variable to be smoothed.

k integer width of median window; must be odd. Turlach had a default of k <- 1
+ 2 * min((n-1)%/% 2, ceiling(0.1*n)). Use k = 3 for ‘mini-
mal’ robust smoothing eliminating isolated outliers.

endrule character string indicating how the values at the beginning and the end (of the
data) should be treated.

"keep" keeps the first and last k2 values at both ends, where k2 is the half-
bandwidth k2 = k %/% 2, i.e., y[j] = x[j] for j ∈ {1, . . . , k2;n−
k2 + 1, . . . , n};

"constant" copies median(y[1:k2]) to the first values and analogously
for the last ones making the smoothed ends constant;

"median" the default, smooths the ends by using symmetrical medians of
subsequently smaller bandwidth, but for the very first and last value where
Tukey’s robust end-point rule is applied, see smoothEnds.

algorithm character string (partially matching "Turlach" or "Stuetzle") or the de-
fault NULL, specifying which algorithm should be applied. The default choice
depends on n = length(x) and k where "Turlach" will be used for
larger problems.

print.level integer, indicating verboseness of algorithm; should rarely be changed by aver-
age users.

Details

Apart from the end values, the result y = runmed(x, k) simply has y[j] =
median(x[(j-k2):(j+k2)]) (k = 2*k2+1), computed very efficiently.

The two algorithms are internally entirely different:

"Turlach" is the Härdle-Steiger algorithm (see Ref.) as implemented by Berwin Turlach. A
tree algorithm is used, ensuring performance O(n log k) where n <- length(x) which
is asymptotically optimal.

"Stuetzle" is the (older) Stuetzle-Friedman implementation which makes use of median updating
when one observation enters and one leaves the smoothing window. While this performs as
O(n× k) which is slower asymptotically, it is considerably faster for small k or n.

Value

vector of smoothed values of the same length as x with an attribute k containing (the ‘oddified’)
k.

Author(s)

Martin Maechler 〈maechler@stat.math.ethz.ch〉, based on Fortran code from Werner Stuetzle and
S-plus and C code from Berwin Turlach.

References

Härdle, W. and Steiger, W. (1995) [Algorithm AS 296] Optimal median smoothing, Applied Statis-
tics 44, 258–264.

Jerome H. Friedman and Werner Stuetzle (1982) Smoothing of Scatterplots; Report, Dep. Statistics,
Stanford U., Project Orion 003.

scatter.smooth 1295

Martin Maechler (2003) Fast Running Medians: Finite Sample and Asymptotic Optimality; work-
ing paper available from the author.

See Also

smoothEndswhich implements Tukey’s end point rule and is called by default from runmed(*,
endrule = "median"). smooth uses running medians of 3 for its compound smoothers.

Examples

require(graphics)

utils::example(nhtemp)
myNHT <- as.vector(nhtemp)
myNHT[20] <- 2 * nhtemp[20]
plot(myNHT, type="b", ylim = c(48,60), main = "Running Medians Example")
lines(runmed(myNHT, 7), col = "red")

special: multiple y values for one x
plot(cars, main = "'cars' data and runmed(dist, 3)")
lines(cars, col = "light gray", type = "c")
with(cars, lines(speed, runmed(dist, k = 3), col = 2))

nice quadratic with a few outliers
y <- ys <- (-20:20)^2
y [c(1,10,21,41)] <- c(150, 30, 400, 450)
all(y == runmed(y, 1)) # 1-neighbourhood <==> interpolation
plot(y) ## lines(y, lwd=.1, col="light gray")
lines(lowess(seq(y),y, f = .3), col = "brown")
lines(runmed(y, 7), lwd=2, col = "blue")
lines(runmed(y,11), lwd=2, col = "red")

Lowess is not robust
y <- ys ; y[21] <- 6666 ; x <- seq(y)
col <- c("black", "brown","blue")
plot(y, col=col[1])
lines(lowess(x,y, f = .3), col = col[2])
lines(runmed(y, 7), lwd=2, col = col[3])
legend(length(y),max(y), c("data", "lowess(y, f = 0.3)", "runmed(y, 7)"),

xjust = 1, col = col, lty = c(0, 1,1), pch = c(1,NA,NA))

scatter.smooth Scatter Plot with Smooth Curve Fitted by Loess

Description

Plot and add a smooth curve computed by loess to a scatter plot.

Usage

scatter.smooth(x, y = NULL, span = 2/3, degree = 1,
family = c("symmetric", "gaussian"),
xlab = NULL, ylab = NULL,
ylim = range(y, prediction$y, na.rm = TRUE),

1296 scatter.smooth

evaluation = 50, ...)

loess.smooth(x, y, span = 2/3, degree = 1,
family = c("symmetric", "gaussian"), evaluation = 50, ...)

Arguments

x,y the x and y arguments provide the x and y coordinates for the plot. Any
reasonable way of defining the coordinates is acceptable. See the function
xy.coords for details.

span smoothness parameter for loess.

degree degree of local polynomial used.

family if "gaussian" fitting is by least-squares, and if family="symmetric" a
re-descending M estimator is used.

xlab label for x axis.

ylab label for y axis.

ylim the y limits of the plot.

evaluation number of points at which to evaluate the smooth curve.

... graphical parameters.

Details

loess.smooth is an auxiliary function which evaluates the loess smooth at evaluation
equally spaced points covering the range of x.

Value

For scatter.smooth, none.

For loess.smooth, a list with two components, x (the grid of evaluation points) and y (the
smoothed values at the grid points).

See Also

loess

Examples

require(graphics)

with(cars, scatter.smooth(speed, dist))

screeplot 1297

screeplot Screeplots

Description

screeplot.default plots the variances against the number of the principal component. This
is also the plot method for classes "princomp" and "prcomp".

Usage

Default S3 method:
screeplot(x, npcs = min(10, length(x$sdev)),

type = c("barplot", "lines"),
main = deparse(substitute(x)), ...)

Arguments

x an object containing a sdev component, such as that returned by princomp()
and prcomp().

npcs the number of components to be plotted.

type the type of plot.

main, ... graphics parameters.

References

Mardia, K. V., J. T. Kent and J. M. Bibby (1979). Multivariate Analysis, London: Academic Press.

Venables, W. N. and B. D. Ripley (2002). Modern Applied Statistics with S, Springer-Verlag.

See Also

princomp and prcomp.

Examples

require(graphics)

The variances of the variables in the
USArrests data vary by orders of magnitude, so scaling is appropriate
(pc.cr <- princomp(USArrests, cor = TRUE)) # inappropriate
screeplot(pc.cr)

fit <- princomp(covmat=Harman74.cor)
screeplot(fit)
screeplot(fit, npcs=24, type="lines")

1298 se.contrast

sd Standard Deviation

Description

This function computes the standard deviation of the values in x. If na.rm is TRUE then missing
values are removed before computation proceeds. If x is a matrix or a data frame, a vector of the
standard deviation of the columns is returned.

Usage

sd(x, na.rm = FALSE)

Arguments

x a numeric vector, matrix or data frame. An object which is not a vector, matrix
or data frame is coerced (if possible) by as.vector.

na.rm logical. Should missing values be removed?

Details

Like var this uses denominator n− 1.

The standard deviation of a zero-length vector (after removal of NAs if na.rm = TRUE) is not
defined and gives an error. The standard deviation of a length-one vector is NA.

See Also

var for its square, and mad, the most robust alternative.

Examples

sd(1:2) ^ 2

se.contrast Standard Errors for Contrasts in Model Terms

Description

Returns the standard errors for one or more contrasts in an aov object.

Usage

se.contrast(object, ...)
S3 method for class 'aov':
se.contrast(object, contrast.obj,

coef = contr.helmert(ncol(contrast))[, 1],
data = NULL, ...)

se.contrast 1299

Arguments

object A suitable fit, usually from aov.

contrast.obj The contrasts for which standard errors are requested. This can be specified
via a list or via a matrix. A single contrast can be specified by a list of logical
vectors giving the cells to be contrasted. Multiple contrasts should be specified
by a matrix, each column of which is a numerical contrast vector (summing to
zero).

coef used when contrast.obj is a list; it should be a vector of the same length
as the list with zero sum. The default value is the first Helmert contrast, which
contrasts the first and second cell means specified by the list.

data The data frame used to evaluate contrast.obj.

... further arguments passed to or from other methods.

Details

Contrasts are usually used to test if certain means are significantly different; it can be easier to use
se.contrast than compute them directly from the coefficients.

In multistratum models, the contrasts can appear in more than one stratum, in which case the stan-
dard errors are computed in the lowest stratum and adjusted for efficiencies and comparisons be-
tween strata. (See the comments in the note in the help for aov about using orthogonal contrasts.)
Such standard errors are often conservative.

Suitable matrices for use with coef can be found by calling contrasts and indexing the columns
by a factor.

Value

A vector giving the standard errors for each contrast.

See Also

contrasts, model.tables

Examples

From Venables and Ripley (2002) p.165.
N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,
55.0, 62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)

npk <- data.frame(block = gl(6,4), N = factor(N), P = factor(P),
K = factor(K), yield = yield)

Set suitable contrasts.
options(contrasts=c("contr.helmert", "contr.poly"))
npk.aov1 <- aov(yield ~ block + N + K, data=npk)
se.contrast(npk.aov1, list(N == "0", N == "1"), data=npk)
or via a matrix
cont <- matrix(c(-1,1), 2, 1, dimnames=list(NULL, "N"))
se.contrast(npk.aov1, cont[N, , drop=FALSE]/12, data=npk)

test a multi-stratum model
npk.aov2 <- aov(yield ~ N + K + Error(block/(N + K)), data=npk)

1300 selfStart

se.contrast(npk.aov2, list(N == "0", N == "1"))

an example looking at an interaction contrast
Dataset from R.E. Kirk (1995)
'Experimental Design: procedures for the behavioral sciences'
score <- c(12, 8,10, 6, 8, 4,10,12, 8, 6,10,14, 9, 7, 9, 5,11,12,

7,13, 9, 9, 5,11, 8, 7, 3, 8,12,10,13,14,19, 9,16,14)
A <- gl(2, 18, labels=c("a1", "a2"))
B <- rep(gl(3, 6, labels=c("b1", "b2", "b3")), 2)
fit <- aov(score ~ A*B)
cont <- c(1, -1)[A] * c(1, -1, 0)[B]
sum(cont) # 0
sum(cont*score) # value of the contrast
se.contrast(fit, as.matrix(cont))
(t.stat <- sum(cont*score)/se.contrast(fit, as.matrix(cont)))
summary(fit, split=list(B=1:2), expand.split = TRUE)
t.stat^2 is the F value on the A:B: C1 line (with Helmert contrasts)
Now look at all three interaction contrasts
cont <- c(1, -1)[A] * cbind(c(1, -1, 0), c(1, 0, -1), c(0, 1, -1))[B,]
se.contrast(fit, cont) # same, due to balance.
rm(A,B,score)

multi-stratum example where efficiencies play a role
utils::example(eff.aovlist)
fit <- aov(Yield ~ A + B * C + Error(Block), data = aovdat)
cont1 <- c(-1, 1)[A]/32 # Helmert contrasts
cont2 <- c(-1, 1)[B] * c(-1, 1)[C]/32
cont <- cbind(A=cont1, BC=cont2)
colSums(cont*Yield) # values of the contrasts
se.contrast(fit, as.matrix(cont))
Not run:
comparison with lme
library(nlme)
fit2 <- lme(Yield ~ A + B*C, random = ~1 | Block, data = aovdat)
summary(fit2)$tTable # same estimates, similar (but smaller) se's.
End(Not run)

selfStart Construct Self-starting Nonlinear Models

Description

Construct self-starting nonlinear models.

Usage

selfStart(model, initial, parameters, template)

Arguments

model a function object defining a nonlinear model or a nonlinear formula object of the
form ~expression.

selfStart 1301

initial a function object, taking three arguments: mCall, data, and LHS, represent-
ing, respectively, a matched call to the function model, a data frame in which to
interpret the variables in mCall, and the expression from the left-hand side of
the model formula in the call to nls. This function should return initial values
for the parameters in model.

parameters a character vector specifying the terms on the right hand side of model for
which initial estimates should be calculated. Passed as the namevec argument
to the deriv function.

template an optional prototype for the calling sequence of the returned object, passed as
the function.arg argument to the deriv function. By default, a template
is generated with the covariates in model coming first and the parameters in
model coming last in the calling sequence.

Details

This function is generic; methods functions can be written to handle specific classes of objects.

Value

a function object of class "selfStart", for the formula method obtained by applying deriv
to the right hand side of the model formula. An initial attribute (defined by the initial
argument) is added to the function to calculate starting estimates for the parameters in the model
automatically.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls

Examples

self-starting logistic model

SSlogis <- selfStart(~ Asym/(1 + exp((xmid - x)/scal)),
function(mCall, data, LHS)
{
xy <- sortedXyData(mCall[["x"]], LHS, data)
if(nrow(xy) < 4) {
stop("Too few distinct x values to fit a logistic")

}
z <- xy[["y"]]
if (min(z) <= 0) { z <- z + 0.05 * max(z) } # avoid zeroes
z <- z/(1.05 * max(z)) # scale to within unit height
xy[["z"]] <- log(z/(1 - z)) # logit transformation
aux <- coef(lm(x ~ z, xy))
parameters(xy) <- list(xmid = aux[1], scal = aux[2])
pars <- as.vector(coef(nls(y ~ 1/(1 + exp((xmid - x)/scal)),

data = xy, algorithm = "plinear")))
value <- c(pars[3], pars[1], pars[2])
names(value) <- mCall[c("Asym", "xmid", "scal")]
value

}, c("Asym", "xmid", "scal"))

1302 setNames

'first.order.log.model' is a function object defining a first order
compartment model
'first.order.log.initial' is a function object which calculates initial
values for the parameters in 'first.order.log.model'

self-starting first order compartment model
Not run:
SSfol <- selfStart(first.order.log.model, first.order.log.initial)
End(Not run)

setNames Set the Names in an Object

Description

This is a convenience function that sets the names on an object and returns the object. It is most
useful at the end of a function definition where one is creating the object to be returned and would
prefer not to store it under a name just so the names can be assigned.

Usage

setNames(object, nm)

Arguments

object an object for which a names attribute will be meaningful

nm a character vector of names to assign to the object

Value

An object of the same sort as object with the new names assigned.

Author(s)

Douglas M. Bates and Saikat DebRoy

See Also

clearNames

Examples

setNames(1:3, c("foo", "bar", "baz"))
this is just a short form of
tmp <- 1:3
names(tmp) <- c("foo", "bar", "baz")
tmp

shapiro.test 1303

shapiro.test Shapiro-Wilk Normality Test

Description

Performs the Shapiro-Wilk test of normality.

Usage

shapiro.test(x)

Arguments

x a numeric vector of data values. Missing values are allowed, but the number of
non-missing values must be between 3 and 5000.

Value

A list with class "htest" containing the following components:

statistic the value of the Shapiro-Wilk statistic.

p.value an approximate p-value for the test. This is said in Royston (1995) to be ade-
quate for p.value < 0.1.

method the character string "Shapiro-Wilk normality test".

data.name a character string giving the name(s) of the data.

Source

The algorithm used is a C translation of the Fortran code described in Royston (1995) and found
at http://lib.stat.cmu.edu/apstat/R94. The calculation of the p value is exact for
n = 3, otherwise approximations are used, separately for 4 ≤ n ≤ 11 and n ≥ 12.

References

Patrick Royston (1982) An extension of Shapiro and Wilk’s W test for normality to large samples.
Applied Statistics, 31, 115–124.

Patrick Royston (1982) Algorithm AS 181: The W test for Normality. Applied Statistics, 31, 176–
180.

Patrick Royston (1995) Remark AS R94: A remark on Algorithm AS 181: TheW test for normality.
Applied Statistics, 44, 547–551.

See Also

qqnorm for producing a normal quantile-quantile plot.

Examples

shapiro.test(rnorm(100, mean = 5, sd = 3))
shapiro.test(runif(100, min = 2, max = 4))

http://lib.stat.cmu.edu/apstat/R94

1304 SignRank

SignRank Distribution of the Wilcoxon Signed Rank Statistic

Description

Density, distribution function, quantile function and random generation for the distribution of the
Wilcoxon Signed Rank statistic obtained from a sample with size n.

Usage

dsignrank(x, n, log = FALSE)
psignrank(q, n, lower.tail = TRUE, log.p = FALSE)
qsignrank(p, n, lower.tail = TRUE, log.p = FALSE)
rsignrank(nn, n)

Arguments

x,q vector of quantiles.

p vector of probabilities.

nn number of observations. If length(nn) > 1, the length is taken to be the
number required.

n number(s) of observations in the sample(s). A positive integer, or a vector of
such integers.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

This distribution is obtained as follows. Let x be a sample of size n from a continuous distribution
symmetric about the origin. Then the Wilcoxon signed rank statistic is the sum of the ranks of
the absolute values x[i] for which x[i] is positive. This statistic takes values between 0 and
n(n+ 1)/2, and its mean and variance are n(n+ 1)/4 and n(n+ 1)(2n+ 1)/24, respectively.

If either of the first two arguments is a vector, the recycling rule is used to do the calculations for
all combinations of the two up to the length of the longer vector.

Value

dsignrank gives the density, psignrank gives the distribution function, qsignrank gives
the quantile function, and rsignrank generates random deviates.

Author(s)

Kurt Hornik; efficiency improvement by Ivo Ugrina.

See Also

wilcox.test to calculate the statistic from data, find p values and so on.

dwilcox etc, for the distribution of two-sample Wilcoxon rank sum statistic.

simulate 1305

Examples

require(graphics)

par(mfrow=c(2,2))
for(n in c(4:5,10,40)) {
x <- seq(0, n*(n+1)/2, length=501)
plot(x, dsignrank(x,n=n), type='l', main=paste("dsignrank(x,n=",n,")"))

}

simulate Simulate Responses

Description

Simulate one or more response vectors from the theoretical distribution corresponding to a fitted
model object.

Usage

simulate(object, nsim, seed, ...)

Arguments

object an object representing a fitted model.

nsim number of response vectors to simulate. Defaults to 1.

seed an object specifying if and how the random number generator should be initial-
ized (‘seeded’).
For the "lm" method, either NULL or an integer that will be used in a call to
set.seed before simulating the response vectors. If set, the value is saved as
the "seed" attribute of the returned value. The default, NULL will not change
the random generator state, and return .Random.seed as "seed" attribute,
see below.

... additional optional arguments.

Details

This is a generic function with a method for lm objects. Consult the individual modeling functions
for details on how to use this function.

Value

Typically, a list of length nsim of simulated response vectors. When appropriate the result can be
a data frame (which is a special type of list).

For the "lm" method, the result is a data frame with an attribute "seed" containing the seed
argument and as.list(RNGkind()) if seed was not NULL, or the value of .Random.seed
before the simulation was started when seed was NULL as by default.

See Also

fitted.values and residuals for related methods; glm, lm for model fitting.

1306 smooth

Examples

x <- 1:5
mod1 <- lm(c(1:3,7,6) ~ x)
S1 <- simulate(mod1, nsim = 4)
repeat the simulation:
.Random.seed <- attr(S1, "seed")
identical(S1, simulate(mod1, nsim = 4))

S2 <- simulate(mod1, nsim = 200, seed = 101)
rowMeans(S2) # should be about
fitted(mod1)

repeat identically:
(sseed <- attr(S2, "seed")) # seed; RNGkind as attribute
stopifnot(identical(S2, simulate(mod1, nsim = 200, seed = sseed)))

To be sure about the proper RNGkind, e.g., after
RNGversion("2.7.0")
first set the RNG kind, then simulate
do.call(RNGkind, attr(sseed, "kind"))
identical(S2, simulate(mod1, nsim = 200, seed = sseed))

smooth Tukey’s (Running Median) Smoothing

Description

Tukey’s smoothers, 3RS3R, 3RSS, 3R, etc.

Usage

smooth(x, kind = c("3RS3R", "3RSS", "3RSR", "3R", "3", "S"),
twiceit = FALSE, endrule = "Tukey", do.ends = FALSE)

Arguments

x a vector or time series

kind a character string indicating the kind of smoother required; defaults to
"3RS3R".

twiceit logical, indicating if the result should be ‘twiced’. Twicing a smoother S(y)
means S(y) + S(y − S(y)), i.e., adding smoothed residuals to the smoothed
values. This decreases bias (increasing variance).

endrule a character string indicating the rule for smoothing at the boundary. Either
"Tukey" (default) or "copy".

do.ends logical, indicating if the 3-splitting of ties should also happen at the boundaries
(ends). This is only used for kind = "S".

smooth 1307

Details

3 is Tukey’s short notation for running medians of length 3,
3R stands for Repeated 3 until convergence, and
S for Splitting of horizontal stretches of length 2 or 3.

Hence, 3RS3R is a concatenation of 3R, S and 3R, 3RSS similarly, whereas 3RSR means first 3R
and then (S and 3) Repeated until convergence – which can be bad.

Value

An object of class "tukeysmooth" (which has print and summary methods) and is a vector
or time series containing the smoothed values with additional attributes.

Note

S and S-PLUS use a different (somewhat better) Tukey smoother in smooth(*). Note that there
are other smoothing methods which provide rather better results. These were designed for hand
calculations and may be used mainly for didactical purposes.

Since R version 1.2, smooth does really implement Tukey’s end-point rule correctly (see argument
endrule).

kind = "3RSR" has been the default till R-1.1, but it can have very bad properties, see the
examples.

Note that repeated application of smooth(*) does smooth more, for the "3RS*" kinds.

References

Tukey, J. W. (1977). Exploratory Data Analysis, Reading Massachusetts: Addison-Wesley.

See Also

lowess; loess, supsmu and smooth.spline.

Examples

require(graphics)

see also demo(smooth) !

x1 <- c(4, 1, 3, 6, 6, 4, 1, 6, 2, 4, 2) # very artificial
(x3R <- smooth(x1, "3R")) # 2 iterations of "3"
smooth(x3R, kind = "S")

sm.3RS <- function(x, ...)
smooth(smooth(x, "3R", ...), "S", ...)

y <- c(1,1, 19:1)
plot(y, main = "misbehaviour of \"3RSR\"", col.main = 3)
lines(sm.3RS(y))
lines(smooth(y))
lines(smooth(y, "3RSR"), col = 3, lwd = 2)# the horror

x <- c(8:10,10, 0,0, 9,9)
plot(x, main = "breakdown of 3R and S and hence 3RSS")
matlines(cbind(smooth(x,"3R"),smooth(x,"S"), smooth(x,"3RSS"),smooth(x)))

1308 smooth.spline

presidents[is.na(presidents)] <- 0 # silly
summary(sm3 <- smooth(presidents, "3R"))
summary(sm2 <- smooth(presidents,"3RSS"))
summary(sm <- smooth(presidents))

all.equal(c(sm2),c(smooth(smooth(sm3, "S"), "S"))) # 3RSS === 3R S S
all.equal(c(sm), c(smooth(smooth(sm3, "S"), "3R")))# 3RS3R === 3R S 3R

plot(presidents, main = "smooth(presidents0, *) : 3R and default 3RS3R")
lines(sm3,col = 3, lwd = 1.5)
lines(sm, col = 2, lwd = 1.25)

smooth.spline Fit a Smoothing Spline

Description

Fits a cubic smoothing spline to the supplied data.

Usage

smooth.spline(x, y = NULL, w = NULL, df, spar = NULL,
cv = FALSE, all.knots = FALSE, nknots = NULL,
keep.data = TRUE, df.offset = 0, penalty = 1,
control.spar = list())

Arguments

x a vector giving the values of the predictor variable, or a list or a two-column
matrix specifying x and y.

y responses. If y is missing, the responses are assumed to be specified by x.

w optional vector of weights of the same length as x; defaults to all 1.

df the desired equivalent number of degrees of freedom (trace of the smoother ma-
trix).

spar smoothing parameter, typically (but not necessarily) in (0, 1]. The coefficient λ
of the integral of the squared second derivative in the fit (penalized log likeli-
hood) criterion is a monotone function of spar, see the details below.

cv ordinary (TRUE) or ‘generalized’ cross-validation (GCV) when FALSE.

all.knots if TRUE, all distinct points in x are used as knots. If FALSE (default), a subset
of x[] is used, specifically x[j] where the nknots indices are evenly spaced
in 1:n, see also the next argument nknots.

nknots integer giving the number of knots to use when all.knots=FALSE. Per de-
fault, this is less than n, the number of unique x values for n > 49.

keep.data logical specifying if the input data should be kept in the result. If TRUE (as per
default), fitted values and residuals are available from the result.

df.offset allows the degrees of freedom to be increased by df.offset in the GCV
criterion.

penalty the coefficient of the penalty for degrees of freedom in the GCV criterion.

smooth.spline 1309

control.spar optional list with named components controlling the root finding when the
smoothing parameter spar is computed, i.e., missing or NULL, see below.
Note that this is partly experimental and may change with general spar compu-
tation improvements!

low: lower bound for spar; defaults to -1.5 (used to implicitly default to 0 in
R versions earlier than 1.4).

high: upper bound for spar; defaults to +1.5.
tol: the absolute precision (tolerance) used; defaults to 1e-4 (formerly 1e-3).
eps: the relative precision used; defaults to 2e-8 (formerly 0.00244).
trace: logical indicating if iterations should be traced.
maxit: integer giving the maximal number of iterations; defaults to 500.

Note that spar is only searched for in the interval [low, high].

Details

The x vector should contain at least four distinct values. Distinct here means ‘distinct after rounding
to 6 significant digits’, i.e., x will be transformed to unique(sort(signif(x, 6))), and y
and w are pooled accordingly.

The computational λ used (as a function of s = spar) is λ = r ∗ 2563s−1 where r =
tr(X ′WX)/tr(Σ), Σ is the matrix given by Σij =

∫
B′′i (t)B′′j (t)dt, X is given by Xij = Bj(xi),

W is the diagonal matrix of weights (scaled such that its trace is n, the original number of observa-
tions) and Bk(.) is the k-th B-spline.

Note that with these definitions, fi = f(xi), and the B-spline basis representation f = Xc (i.e., c
is the vector of spline coefficients), the penalized log likelihood is L = (y− f)′W (y− f) +λc′Σc,
and hence c is the solution of the (ridge regression) (X ′WX + λΣ)c = X ′Wy.

If spar is missing or NULL, the value of df is used to determine the degree of smoothing. If
both are missing, leave-one-out cross-validation (ordinary or ‘generalized’ as determined by cv) is
used to determine λ. Note that from the above relation, spar is s = s0 + 0.0601 ∗ log λ, which
is intentionally different from the S-plus implementation of smooth.spline (where spar is
proportional to λ). In R’s (log λ) scale, it makes more sense to vary spar linearly.

Note however that currently the results may become very unreliable for spar values smaller than
about -1 or -2. The same may happen for values larger than 2 or so. Don’t think of setting spar or
the controls low and high outside such a safe range, unless you know what you are doing!

The ‘generalized’ cross-validation method will work correctly when there are duplicated points in
x. However, it is ambiguous what leave-one-out cross-validation means with duplicated points,
and the internal code uses an approximation that involves leaving out groups of duplicated points.
cv=TRUE is best avoided in that case.

Value

An object of class "smooth.spline" with components

x the distinct x values in increasing order, see the ‘Details’ above.
y the fitted values corresponding to x.
w the weights used at the unique values of x.
yin the y values used at the unique y values.
data only if keep.data = TRUE: itself a list with components x, y and w of

the same length. These are the original (xi, yi, wi), i = 1, . . . , n, values where
data$x may have repeated values and hence be longer than the above x com-
ponent; see details.

1310 smooth.spline

lev leverages, the diagonal values of the smoother matrix.

cv.crit cross-validation score, ‘generalized’ or true, depending on cv.

pen.crit penalized criterion

crit the criterion value minimized in the underlying .Fortran routine ‘sslvrg’.

df equivalent degrees of freedom used. Note that (currently) this value may become
quite unprecise when the true df is between and 1 and 2.

spar the value of spar computed or given.

lambda the value of λ corresponding to spar, see the details above.

iparms named integer(3) vector where ..$ipars["iter"] gives number of spar
computing iterations used.

fit list for use by predict.smooth.spline, with components

knot: the knot sequence (including the repeated boundary knots).

nk: number of coefficients or number of ‘proper’ knots plus 2.

coef: coefficients for the spline basis used.

min, range: numbers giving the corresponding quantities of x.

call the matched call.

Note

The default all.knots = FALSE and nknots = NULL entails using only O(n0.2) knots in-
stead of n for n > 49. This cuts speed and memory requirements, but not drastically anymore since
R version 1.5.1 where it is only O(nk) +O(n) where nk is the number of knots. In this case where
not all unique x values are used as knots, the result is not a smoothing spline in the strict sense, but
very close unless a small smoothing parameter (or large df) is used.

Author(s)

R implementation by B. D. Ripley and Martin Maechler (spar/lambda, etc).

This function is based on code in the GAMFIT Fortran program by T. Hastie and R. Tibshi-
rani (http://lib.stat.cmu.edu/general/), which makes use of spline code by Finbarr
O’Sullivan. Its design parallels the smooth.spline function of Chambers & Hastie (1992).

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S, Wadsworth & Brooks/Cole.

Green, P. J. and Silverman, B. W. (1994) Nonparametric Regression and Generalized Linear Mod-
els: A Roughness Penalty Approach. Chapman and Hall.

Hastie, T. J. and Tibshirani, R. J. (1990) Generalized Additive Models. Chapman and Hall.

See Also

predict.smooth.spline for evaluating the spline and its derivatives.

http://lib.stat.cmu.edu/general/

smoothEnds 1311

Examples

require(graphics)

attach(cars)
plot(speed, dist, main = "data(cars) & smoothing splines")
cars.spl <- smooth.spline(speed, dist)
(cars.spl)
This example has duplicate points, so avoid cv=TRUE

lines(cars.spl, col = "blue")
lines(smooth.spline(speed, dist, df=10), lty=2, col = "red")
legend(5,120,c(paste("default [C.V.] => df =",round(cars.spl$df,1)),

"s(* , df = 10)"), col = c("blue","red"), lty = 1:2,
bg='bisque')

detach()

Residual (Tukey Anscombe) plot:
plot(residuals(cars.spl) ~ fitted(cars.spl))
abline(h = 0, col="gray")

consistency check:
stopifnot(all.equal(cars$dist,

fitted(cars.spl) + residuals(cars.spl)))

##-- artificial example
y18 <- c(1:3,5,4,7:3,2*(2:5),rep(10,4))
xx <- seq(1,length(y18), len=201)
(s2 <- smooth.spline(y18)) # GCV
(s02 <- smooth.spline(y18, spar = 0.2))
plot(y18, main=deparse(s2$call), col.main=2)
lines(s2, col = "gray"); lines(predict(s2, xx), col = 2)
lines(predict(s02, xx), col = 3); mtext(deparse(s02$call), col = 3)

The following shows the problematic behavior of 'spar' searching:
(s2 <- smooth.spline(y18, control = list(trace=TRUE,tol=1e-6, low= -1.5)))
(s2m <- smooth.spline(y18, cv = TRUE,

control = list(trace=TRUE,tol=1e-6, low= -1.5)))
both above do quite similarly (Df = 8.5 +- 0.2)

smoothEnds End Points Smoothing (for Running Medians)

Description

Smooth end points of a vector y using subsequently smaller medians and Tukey’s end point rule at
the very end. (of odd span),

Usage

smoothEnds(y, k = 3)

1312 smoothEnds

Arguments

y dependent variable to be smoothed (vector).

k width of largest median window; must be odd.

Details

smoothEnds is used to only do the ‘end point smoothing’, i.e., change at most the observations
closer to the beginning/end than half the window k. The first and last value are computed using
Tukey’s end point rule, i.e., sm[1] = median(y[1], sm[2], 3*sm[2] - 2*sm[3]).

Value

vector of smoothed values, the same length as y.

Author(s)

Martin Maechler

References

John W. Tukey (1977) Exploratory Data Analysis, Addison.

Velleman, P.F., and Hoaglin, D.C. (1981) ABC of EDA (Applications, Basics, and Computing of
Exploratory Data Analysis); Duxbury.

See Also

runmed(*, endrule = "median") which calls smoothEnds().

Examples

require(graphics)

y <- ys <- (-20:20)^2
y [c(1,10,21,41)] <- c(100, 30, 400, 470)
s7k <- runmed(y,7, endrule = "keep")
s7. <- runmed(y,7, endrule = "const")
s7m <- runmed(y,7)
col3 <- c("midnightblue","blue","steelblue")
plot(y, main = "Running Medians -- runmed(*, k=7, end.rule = X)")
lines(ys, col = "light gray")
matlines(cbind(s7k,s7.,s7m), lwd= 1.5, lty = 1, col = col3)
legend(1,470, paste("endrule",c("keep","constant","median"),sep=" = "),

col = col3, lwd = 1.5, lty = 1)

stopifnot(identical(s7m, smoothEnds(s7k, 7)))

sortedXyData 1313

sortedXyData Create a sortedXyData object

Description

This is a constructor function for the class of sortedXyData objects. These objects are mostly
used in the initial function for a self-starting nonlinear regression model, which will be of the
selfStart class.

Usage

sortedXyData(x, y, data)

Arguments

x a numeric vector or an expression that will evaluate in data to a numeric vector

y a numeric vector or an expression that will evaluate in data to a numeric vector

data an optional data frame in which to evaluate expressions for x and y, if they are
given as expressions

Value

A sortedXyData object. This is a data frame with exactly two numeric columns, named x and
y. The rows are sorted so the x column is in increasing order. Duplicate x values are eliminated by
averaging the corresponding y values.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

selfStart, NLSstClosestX, NLSstLfAsymptote, NLSstRtAsymptote

Examples

DNase.2 <- DNase[DNase$Run == "2",]
sortedXyData(expression(log(conc)), expression(density), DNase.2)

spec.ar Estimate Spectral Density of a Time Series from AR Fit

Description

Fits an AR model to x (or uses the existing fit) and computes (and by default plots) the spectral
density of the fitted model.

Usage

spec.ar(x, n.freq, order = NULL, plot = TRUE, na.action = na.fail,
method = "yule-walker", ...)

1314 spec.ar

Arguments

x A univariate (not yet:or multivariate) time series or the result of a fit by ar.

n.freq The number of points at which to plot.

order The order of the AR model to be fitted. If omitted, the order is chosen by AIC.

plot Plot the periodogram?

na.action NA action function.

method method for ar fit.

... Graphical arguments passed to plot.spec.

Value

An object of class "spec". The result is returned invisibly if plot is true.

Warning

Some authors, for example Thomson (1990), warn strongly that AR spectra can be misleading.

Note

The multivariate case is not yet implemented.

References

Thompson, D.J. (1990) Time series analysis of Holocene climate data. Phil. Trans. Roy. Soc. A
330, 601–616.

Venables, W.N. and Ripley, B.D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
(Especially page 402.)

See Also

ar, spectrum.

Examples

require(graphics)

spec.ar(lh)

spec.ar(ldeaths)
spec.ar(ldeaths, method="burg")

spec.pgram 1315

spec.pgram Estimate Spectral Density of a Time Series by a Smoothed Peri-
odogram

Description

spec.pgram calculates the periodogram using a fast Fourier transform, and optionally smooths
the result with a series of modified Daniell smoothers (moving averages giving half weight to the
end values).

Usage

spec.pgram(x, spans = NULL, kernel, taper = 0.1,
pad = 0, fast = TRUE, demean = FALSE, detrend = TRUE,
plot = TRUE, na.action = na.fail, ...)

Arguments

x univariate or multivariate time series.

spans vector of odd integers giving the widths of modified Daniell smoothers to be
used to smooth the periodogram.

kernel alternatively, a kernel smoother of class "tskernel".

taper specifies the proportion of data to taper. A split cosine bell taper is applied to
this proportion of the data at the beginning and end of the series.

pad proportion of data to pad. Zeros are added to the end of the series to increase its
length by the proportion pad.

fast logical; if TRUE, pad the series to a highly composite length.

demean logical. If TRUE, subtract the mean of the series.

detrend logical. If TRUE, remove a linear trend from the series. This will also remove
the mean.

plot plot the periodogram?

na.action NA action function.

... graphical arguments passed to plot.spec.

Details

The raw periodogram is not a consistent estimator of the spectral density, but adjacent values are
asymptotically independent. Hence a consistent estimator can be derived by smoothing the raw
periodogram, assuming that the spectral density is smooth.

The series will be automatically padded with zeros until the series length is a highly composite
number in order to help the Fast Fourier Transform. This is controlled by the fast and not the
pad argument.

The periodogram at zero is in theory zero as the mean of the series is removed (but this may be
affected by tapering): it is replaced by an interpolation of adjacent values during smoothing, and no
value is returned for that frequency.

1316 spec.pgram

Value

A list object of class "spec" (see spectrum) with the following additional components:

kernel The kernel argument, or the kernel constructed from spans.

df The distribution of the spectral density estimate can be approximated by a
(scaled) chi square distribution with df degrees of freedom.

bandwidth The equivalent bandwidth of the kernel smoother as defined by Bloomfield
(1976, page 201).

taper The value of the taper argument.

pad The value of the pad argument.

detrend The value of the detrend argument.

demean The value of the demean argument.

The result is returned invisibly if plot is true.

Author(s)

Originally Martyn Plummer; kernel smoothing by Adrian Trapletti, synthesis by B.D. Ripley

References

Bloomfield, P. (1976) Fourier Analysis of Time Series: An Introduction. Wiley.

Brockwell, P.J. and Davis, R.A. (1991) Time Series: Theory and Methods. Second edition. Springer.

Venables, W.N. and Ripley, B.D. (2002) Modern Applied Statistics with S. Fourth edition. Springer.
(Especially pp. 392–7.)

See Also

spectrum, spec.taper, plot.spec, fft

Examples

require(graphics)

Examples from Venables & Ripley
spectrum(ldeaths)
spectrum(ldeaths, spans = c(3,5))
spectrum(ldeaths, spans = c(5,7))
spectrum(mdeaths, spans = c(3,3))
spectrum(fdeaths, spans = c(3,3))

bivariate example
mfdeaths.spc <- spec.pgram(ts.union(mdeaths, fdeaths), spans = c(3,3))
plots marginal spectra: now plot coherency and phase
plot(mfdeaths.spc, plot.type = "coherency")
plot(mfdeaths.spc, plot.type = "phase")

now impose a lack of alignment
mfdeaths.spc <- spec.pgram(ts.intersect(mdeaths, lag(fdeaths, 4)),

spans = c(3,3), plot = FALSE)
plot(mfdeaths.spc, plot.type = "coherency")
plot(mfdeaths.spc, plot.type = "phase")

spec.taper 1317

stocks.spc <- spectrum(EuStockMarkets, kernel("daniell", c(30,50)),
plot = FALSE)

plot(stocks.spc, plot.type = "marginal") # the default type
plot(stocks.spc, plot.type = "coherency")
plot(stocks.spc, plot.type = "phase")

sales.spc <- spectrum(ts.union(BJsales, BJsales.lead),
kernel("modified.daniell", c(5,7)))

plot(sales.spc, plot.type = "coherency")
plot(sales.spc, plot.type = "phase")

spec.taper Taper a Time Series by a Cosine Bell

Description

Apply a cosine-bell taper to a time series.

Usage

spec.taper(x, p = 0.1)

Arguments

x A univariate or multivariate time series

p The proportion to be tapered at each end of the series, either a scalar (giving the
proportion for all series) or a vector of the length of the number of series (giving
the proportion for each series..

Details

The cosine-bell taper is applied to the first and last p[i] observations of time series x[, i].

Value

A new time series object.

See Also

spec.pgram, cpgram

1318 spectrum

spectrum Spectral Density Estimation

Description

The spectrum function estimates the spectral density of a time series.

Usage

spectrum(x, ..., method = c("pgram", "ar"))

Arguments

x A univariate or multivariate time series.

method String specifying the method used to estimate the spectral density. Allowed
methods are "pgram" (the default) and "ar".

... Further arguments to specific spec methods or plot.spec.

Details

spectrum is a wrapper function which calls the methods spec.pgram and spec.ar.

The spectrum here is defined with scaling 1/frequency(x), following S-PLUS. This makes
the spectral density a density over the range (-frequency(x)/2, +frequency(x)/2],
whereas a more common scaling is 2π and range (−0.5, 0.5] (e.g., Bloomfield) or 1 and range
(−π, π].

If available, a confidence interval will be plotted by plot.spec: this is asymmetric, and the width
of the centre mark indicates the equivalent bandwidth.

Value

An object of class "spec", which is a list containing at least the following components:

freq vector of frequencies at which the spectral density is estimated. (Possibly ap-
proximate Fourier frequencies.) The units are the reciprocal of cycles per unit
time (and not per observation spacing): see ‘Details’ below.

spec Vector (for univariate series) or matrix (for multivariate series) of estimates of
the spectral density at frequencies corresponding to freq.

coh NULL for univariate series. For multivariate time series, a matrix containing the
squared coherency between different series. Column i + (j − 1) ∗ (j − 2)/2
of coh contains the squared coherency between columns i and j of x, where
i < j.

phase NULL for univariate series. For multivariate time series a matrix containing the
cross-spectrum phase between different series. The format is the same as coh.

series The name of the time series.

snames For multivariate input, the names of the component series.

method The method used to calculate the spectrum.

The result is returned invisibly if plot is true.

splinefun 1319

Note

The default plot for objects of class "spec" is quite complex, including an error bar and default
title, subtitle and axis labels. The defaults can all be overridden by supplying the appropriate graph-
ical parameters.

Author(s)

Martyn Plummer, B.D. Ripley

References

Bloomfield, P. (1976) Fourier Analysis of Time Series: An Introduction. Wiley.

Brockwell, P. J. and Davis, R. A. (1991) Time Series: Theory and Methods. Second edition.
Springer.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S-PLUS. Fourth edition.
Springer. (Especially pages 392–7.)

See Also

spec.ar, spec.pgram; plot.spec.

Examples

require(graphics)

Examples from Venables & Ripley
spec.pgram
par(mfrow=c(2,2))
spectrum(lh)
spectrum(lh, spans=3)
spectrum(lh, spans=c(3,3))
spectrum(lh, spans=c(3,5))

spectrum(ldeaths)
spectrum(ldeaths, spans=c(3,3))
spectrum(ldeaths, spans=c(3,5))
spectrum(ldeaths, spans=c(5,7))
spectrum(ldeaths, spans=c(5,7), log="dB", ci=0.8)

for multivariate examples see the help for spec.pgram

spec.ar
spectrum(lh, method="ar")
spectrum(ldeaths, method="ar")

splinefun Interpolating Splines

Description

Perform cubic (or Hermite) spline interpolation of given data points, returning either a list of points
obtained by the interpolation or a function performing the interpolation.

1320 splinefun

Usage

splinefun(x, y = NULL, method = c("fmm", "periodic", "natural", "monoH.FC"),
ties = mean)

spline(x, y = NULL, n = 3*length(x), method = "fmm",
xmin = min(x), xmax = max(x), xout, ties = mean)

splinefunH(x, y, m)

Arguments

x,y vectors giving the coordinates of the points to be interpolated. Alternatively a
single plotting structure can be specified: see xy.coords.

m (for splinefunH()): vector of slopesmi at the points (xi, yi); these together
determine the Hermite “spline” which is piecewise cubic, (only) once differen-
tiable continuously.

method specifies the type of spline to be used. Possible values are "fmm", "natural",
"periodic" and "monoH.FC".

n if xout is left unspecified, interpolation takes place at n equally spaced points
spanning the interval [xmin, xmax].

xmin, xmax left-hand and right-hand endpoint of the interpolation interval (when xout is
unspecified).

xout an optional set of values specifying where interpolation is to take place.

ties Handling of tied x values. Either a function with a single vector argument re-
turning a single number result or the string "ordered".

Details

The inputs can contain missing values which are deleted, so at least one complete (x, y) pair is
required. If method = "fmm", the spline used is that of Forsythe, Malcolm and Moler (an exact
cubic is fitted through the four points at each end of the data, and this is used to determine the end
conditions). Natural splines are used when method = "natural", and periodic splines when
method = "periodic".

The new (R 2.8.0) method "monoH.FC" computes a monotone Hermite spline according to the
method of Fritsch and Carlson. It does so by determining slopes such that the Hermite spline,
determined by (xi, yi,mi), is monotone (increasing or decreasing) iff the data are.

These interpolation splines can also be used for extrapolation, that is prediction at points outside the
range of x. Extrapolation makes little sense for method = "fmm"; for natural splines it is linear
using the slope of the interpolating curve at the nearest data point.

Value

spline returns a list containing components x and y which give the ordinates where interpolation
took place and the interpolated values.

splinefun returns a function with formal arguments x and deriv, the latter defaulting to zero.
This function can be used to evaluate the interpolating cubic spline (deriv=0), or its derivatives
(deriv=1,2,3) at the points x, where the spline function interpolates the data points originally
specified. This is often more useful than spline.

splinefun 1321

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

Forsythe, G. E., Malcolm, M. A. and Moler, C. B. (1977) Computer Methods for Mathematical
Computations.

Fritsch, F. N. and Carlson, R. E. (1980) Monotone piecewise cubic interpolation, SIAM Journal on
Numerical Analysis 17, 238–246.

See Also

approx and approxfun for constant and linear interpolation.

Package splines, especially interpSpline and periodicSpline for interpolation splines.
That package also generates spline bases that can be used for regression splines.

smooth.spline for smoothing splines.

Examples

require(graphics)

op <- par(mfrow = c(2,1), mgp = c(2,.8,0), mar = .1+c(3,3,3,1))
n <- 9
x <- 1:n
y <- rnorm(n)
plot(x, y, main = paste("spline[fun](.) through", n, "points"))
lines(spline(x, y))
lines(spline(x, y, n = 201), col = 2)

y <- (x-6)^2
plot(x, y, main = "spline(.) -- 3 methods")
lines(spline(x, y, n = 201), col = 2)
lines(spline(x, y, n = 201, method = "natural"), col = 3)
lines(spline(x, y, n = 201, method = "periodic"), col = 4)
legend(6,25, c("fmm","natural","periodic"), col=2:4, lty=1)

y <- sin((x-0.5)*pi)
f <- splinefun(x, y)
ls(envir = environment(f))
splinecoef <- get("z", envir = environment(f))
curve(f(x), 1, 10, col = "green", lwd = 1.5)
points(splinecoef, col = "purple", cex = 2)
curve(f(x, deriv=1), 1, 10, col = 2, lwd = 1.5)
curve(f(x, deriv=2), 1, 10, col = 2, lwd = 1.5, n = 401)
curve(f(x, deriv=3), 1, 10, col = 2, lwd = 1.5, n = 401)
par(op)

Manual spline evaluation --- demo the coefficients :
.x <- splinecoef$x
u <- seq(3,6, by = 0.25)
(ii <- findInterval(u, .x))
dx <- u - .x[ii]
f.u <- with(splinecoef,

y[ii] + dx*(b[ii] + dx*(c[ii] + dx* d[ii])))
stopifnot(all.equal(f(u), f.u))

1322 SSasymp

An example with ties (non-unique x values):
set.seed(1); x <- round(rnorm(30), 1); y <- sin(pi * x) + rnorm(30)/10
plot(x,y, main="spline(x,y) when x has ties")
lines(spline(x,y, n= 201), col = 2)
visualizes the non-unique ones:
tx <- table(x); mx <- as.numeric(names(tx[tx > 1]))
ry <- matrix(unlist(tapply(y, match(x,mx), range, simplify=FALSE)),

ncol=2, byrow=TRUE)
segments(mx, ry[,1], mx, ry[,2], col = "blue", lwd = 2)

An example of monotone interpolation
n <- 20
set.seed(11)
x. <- sort(runif(n)) ; y. <- cumsum(abs(rnorm(n)))
plot(x.,y.)
curve(splinefun(x.,y.)(x), add=TRUE, col=2, n=1001)
curve(splinefun(x.,y., method="mono")(x), add=TRUE, col=3, n=1001)
legend("topleft", paste("splinefun(\"", c("fmm", "monoH.CS"), "\")", sep=''),

col=2:3, lty=1)

SSasymp Asymptotic Regression Model

Description

This selfStart model evaluates the asymptotic regression function and its gradient. It has an
initial attribute that will evaluate initial estimates of the parameters Asym, R0, and lrc for a
given set of data.

Usage

SSasymp(input, Asym, R0, lrc)

Arguments

input a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the horizontal asymptote on the right side
(very large values of input).

R0 a numeric parameter representing the response when input is zero.

lrc a numeric parameter representing the natural logarithm of the rate constant.

Value

a numeric vector of the same length as input. It is the value of the expression Asym+(R0-
Asym)*exp(-exp(lrc)*input). If all of the arguments Asym, R0, and lrc are names
of objects, the gradient matrix with respect to these names is attached as an attribute named
gradient.

Author(s)

Jose Pinheiro and Douglas Bates

SSasympOff 1323

See Also

nls, selfStart

Examples

Lob.329 <- Loblolly[Loblolly$Seed == "329",]
SSasymp(Lob.329$age, 100, -8.5, -3.2) # response only
Asym <- 100
resp0 <- -8.5
lrc <- -3.2
SSasymp(Lob.329$age, Asym, resp0, lrc) # response and gradient
getInitial(height ~ SSasymp(age, Asym, resp0, lrc), data = Lob.329)
Initial values are in fact the converged values
fm1 <- nls(height ~ SSasymp(age, Asym, resp0, lrc), data = Lob.329)
summary(fm1)

SSasympOff Asymptotic Regression Model with an Offset

Description

This selfStartmodel evaluates an alternative parametrization of the asymptotic regression func-
tion and the gradient with respect to those parameters. It has an initial attribute that creates
initial estimates of the parameters Asym, lrc, and c0.

Usage

SSasympOff(input, Asym, lrc, c0)

Arguments

input a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the horizontal asymptote on the right side
(very large values of input).

lrc a numeric parameter representing the natural logarithm of the rate constant.

c0 a numeric parameter representing the input for which the response is zero.

Value

a numeric vector of the same length as input. It is the value of the expression Asym*(1 -
exp(-exp(lrc)*(input - c0))). If all of the arguments Asym, lrc, and c0 are names
of objects, the gradient matrix with respect to these names is attached as an attribute named
gradient.

Author(s)

Jose Pinheiro and Douglas Bates

1324 SSasympOrig

See Also

nls, selfStart; example(SSasympOff) gives graph showing the SSasympOff
parametrization, where φ1 is Asymp, φ3 is c0, and t0.5 is

Examples

CO2.Qn1 <- CO2[CO2$Plant == "Qn1",]
SSasympOff(CO2.Qn1$conc, 32, -4, 43) # response only
Asym <- 32; lrc <- -4; c0 <- 43
SSasympOff(CO2.Qn1$conc, Asym, lrc, c0) # response and gradient
getInitial(uptake ~ SSasympOff(conc, Asym, lrc, c0), data = CO2.Qn1)
Initial values are in fact the converged values
fm1 <- nls(uptake ~ SSasympOff(conc, Asym, lrc, c0), data = CO2.Qn1)
summary(fm1)

SSasympOrig Asymptotic Regression Model through the Origin

Description

This selfStart model evaluates the asymptotic regression function through the origin and its
gradient. It has an initial attribute that will evaluate initial estimates of the parameters Asym
and lrc for a given set of data.

Usage

SSasympOrig(input, Asym, lrc)

Arguments

input a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the horizontal asymptote.

lrc a numeric parameter representing the natural logarithm of the rate constant.

Value

a numeric vector of the same length as input. It is the value of the expression Asym*(1 -
exp(-exp(lrc)*input)). If all of the arguments Asym and lrc are names of objects, the
gradient matrix with respect to these names is attached as an attribute named gradient.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

SSbiexp 1325

Examples

Lob.329 <- Loblolly[Loblolly$Seed == "329",]
SSasympOrig(Lob.329$age, 100, -3.2) # response only
Asym <- 100; lrc <- -3.2
SSasympOrig(Lob.329$age, Asym, lrc) # response and gradient
getInitial(height ~ SSasympOrig(age, Asym, lrc), data = Lob.329)
Initial values are in fact the converged values
fm1 <- nls(height ~ SSasympOrig(age, Asym, lrc), data = Lob.329)
summary(fm1)

SSbiexp Biexponential model

Description

This selfStart model evaluates the biexponential model function and its gradient. It has an
initial attribute that creates initial estimates of the parameters A1, lrc1, A2, and lrc2.

Usage

SSbiexp(input, A1, lrc1, A2, lrc2)

Arguments

input a numeric vector of values at which to evaluate the model.

A1 a numeric parameter representing the multiplier of the first exponential.

lrc1 a numeric parameter representing the natural logarithm of the rate constant of
the first exponential.

A2 a numeric parameter representing the multiplier of the second exponential.

lrc2 a numeric parameter representing the natural logarithm of the rate constant of
the second exponential.

Value

a numeric vector of the same length as input. It is the value of the expression A1*exp(-
exp(lrc1)*input)+A2*exp(-exp(lrc2)*input). If all of the arguments A1, lrc1,
A2, and lrc2 are names of objects, the gradient matrix with respect to these names is attached as
an attribute named gradient.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

1326 SSD

Examples

Indo.1 <- Indometh[Indometh$Subject == 1,]
SSbiexp(Indo.1$time, 3, 1, 0.6, -1.3) # response only
A1 <- 3; lrc1 <- 1; A2 <- 0.6; lrc2 <- -1.3
SSbiexp(Indo.1$time, A1, lrc1, A2, lrc2) # response and gradient
getInitial(conc ~ SSbiexp(time, A1, lrc1, A2, lrc2), data = Indo.1)
Initial values are in fact the converged values
fm1 <- nls(conc ~ SSbiexp(time, A1, lrc1, A2, lrc2), data = Indo.1)
summary(fm1)

SSD SSD Matrix and Estimated Variance Matrix in Multivariate Models

Description

Functions to compute matrix of residual sums of squares and products, or the estimated variance
matrix for multivariate linear models.

Usage

S3 method for class 'mlm'
SSD(object, ...)

S3 methods for class 'SSD' and 'mlm'
estVar(object, ...)

Arguments

object object of class "mlm", or "SSD" in the case of estVar.

... Unused

Value

SSD() returns a list of class "SSD" containing the following components

SSD The residual sums of squares and products matrix

df Degrees of freedom

call Copied from object

estVar returns a matrix with the estimated variances and covariances.

See Also

mauchly.test, anova.mlm

SSfol 1327

Examples

Lifted from Baron+Li:
"Notes on the use of R for psychology experiments and questionnaires"
Maxwell and Delaney, p. 497
reacttime <- matrix(c(
420, 420, 480, 480, 600, 780,
420, 480, 480, 360, 480, 600,
480, 480, 540, 660, 780, 780,
420, 540, 540, 480, 780, 900,
540, 660, 540, 480, 660, 720,
360, 420, 360, 360, 480, 540,
480, 480, 600, 540, 720, 840,
480, 600, 660, 540, 720, 900,
540, 600, 540, 480, 720, 780,
480, 420, 540, 540, 660, 780),
ncol = 6, byrow = TRUE,
dimnames=list(subj=1:10,

cond=c("deg0NA", "deg4NA", "deg8NA",
"deg0NP", "deg4NP", "deg8NP")))

mlmfit <- lm(reacttime~1)
SSD(mlmfit)
estVar(mlmfit)

SSfol First-order Compartment Model

Description

This selfStart model evaluates the first-order compartment function and its gradient. It has an
initial attribute that creates initial estimates of the parameters lKe, lKa, and lCl.

Usage

SSfol(Dose, input, lKe, lKa, lCl)

Arguments

Dose a numeric value representing the initial dose.
input a numeric vector at which to evaluate the model.
lKe a numeric parameter representing the natural logarithm of the elimination rate

constant.
lKa a numeric parameter representing the natural logarithm of the absorption rate

constant.
lCl a numeric parameter representing the natural logarithm of the clearance.

Value

a numeric vector of the same length as input, which is the value of the expression Dose *
exp(lKe+lKa-lCl) * (exp(-exp(lKe)*input)-exp(-exp(lKa)*input)) /
(exp(lKa)-exp(lKe)).

If all of the arguments lKe, lKa, and lCl are names of objects, the gradient matrix with respect
to these names is attached as an attribute named gradient.

1328 SSfpl

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

Theoph.1 <- Theoph[Theoph$Subject == 1,]
SSfol(Theoph.1$Dose, Theoph.1$Time, -2.5, 0.5, -3) # response only
lKe <- -2.5; lKa <- 0.5; lCl <- -3
SSfol(Theoph.1$Dose, Theoph.1$Time, lKe, lKa, lCl) # response and gradient
getInitial(conc ~ SSfol(Dose, Time, lKe, lKa, lCl), data = Theoph.1)
Initial values are in fact the converged values
fm1 <- nls(conc ~ SSfol(Dose, Time, lKe, lKa, lCl), data = Theoph.1)
summary(fm1)

SSfpl Four-parameter Logistic Model

Description

This selfStart model evaluates the four-parameter logistic function and its gradient. It has an
initial attribute that will evaluate initial estimates of the parameters A, B, xmid, and scal for
a given set of data.

Usage

SSfpl(input, A, B, xmid, scal)

Arguments

input a numeric vector of values at which to evaluate the model.

A a numeric parameter representing the horizontal asymptote on the left side (very
small values of input).

B a numeric parameter representing the horizontal asymptote on the right side
(very large values of input).

xmid a numeric parameter representing the input value at the inflection point of the
curve. The value of SSfpl will be midway between A and B at xmid.

scal a numeric scale parameter on the input axis.

Value

a numeric vector of the same length as input. It is the value of the expression A+(B-
A)/(1+exp((xmid-input)/scal)). If all of the arguments A, B, xmid, and scal are
names of objects, the gradient matrix with respect to these names is attached as an attribute named
gradient.

SSgompertz 1329

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

Examples

Chick.1 <- ChickWeight[ChickWeight$Chick == 1,]
SSfpl(Chick.1$Time, 13, 368, 14, 6) # response only
A <- 13; B <- 368; xmid <- 14; scal <- 6
SSfpl(Chick.1$Time, A, B, xmid, scal) # response and gradient
getInitial(weight ~ SSfpl(Time, A, B, xmid, scal), data = Chick.1)
Initial values are in fact the converged values
fm1 <- nls(weight ~ SSfpl(Time, A, B, xmid, scal), data = Chick.1)
summary(fm1)

SSgompertz Gompertz Growth Model

Description

This selfStart model evaluates the Gompertz growth model and its gradient. It has an
initial attribute that creates initial estimates of the parameters Asym, b2, and b3.

Usage

SSgompertz(x, Asym, b2, b3)

Arguments

x a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the asymptote.

b2 a numeric parameter related to the value of the function at x = 0

b3 a numeric parameter related to the scale the x axis.

Value

a numeric vector of the same length as input. It is the value of the expression Asym*exp(-
b2*b3^x). If all of the arguments Asym, b2, and b3 are names of objects the gradient matrix
with respect to these names is attached as an attribute named gradient.

Author(s)

Douglas Bates

See Also

nls, selfStart

1330 SSlogis

Examples

DNase.1 <- subset(DNase, Run == 1)
SSlogis(log(DNase.1$conc), 4.5, 2.3, 0.7) # response only
Asym <- 4.5; b2 <- 2.3; b3 <- 0.7
SSgompertz(log(DNase.1$conc), Asym, b2, b3) # response and gradient
getInitial(density ~ SSgompertz(log(conc), Asym, b2, b3),

data = DNase.1)
Initial values are in fact the converged values
fm1 <- nls(density ~ SSgompertz(log(conc), Asym, b2, b3),

data = DNase.1)
summary(fm1)

SSlogis Logistic Model

Description

This selfStart model evaluates the logistic function and its gradient. It has an initial at-
tribute that creates initial estimates of the parameters Asym, xmid, and scal.

Usage

SSlogis(input, Asym, xmid, scal)

Arguments

input a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the asymptote.

xmid a numeric parameter representing the x value at the inflection point of the curve.
The value of SSlogis will be Asym/2 at xmid.

scal a numeric scale parameter on the input axis.

Value

a numeric vector of the same length as input. It is the value of the expression
Asym/(1+exp((xmid-input)/scal)). If all of the arguments Asym, xmid, and scal
are names of objects the gradient matrix with respect to these names is attached as an attribute
named gradient.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

SSmicmen 1331

Examples

Chick.1 <- ChickWeight[ChickWeight$Chick == 1,]
SSlogis(Chick.1$Time, 368, 14, 6) # response only
Asym <- 368; xmid <- 14; scal <- 6
SSlogis(Chick.1$Time, Asym, xmid, scal) # response and gradient
getInitial(weight ~ SSlogis(Time, Asym, xmid, scal), data = Chick.1)
Initial values are in fact the converged values
fm1 <- nls(weight ~ SSlogis(Time, Asym, xmid, scal), data = Chick.1)
summary(fm1)

SSmicmen Michaelis-Menten Model

Description

This selfStart model evaluates the Michaelis-Menten model and its gradient. It has an
initial attribute that will evaluate initial estimates of the parameters Vm and K

Usage

SSmicmen(input, Vm, K)

Arguments

input a numeric vector of values at which to evaluate the model.

Vm a numeric parameter representing the maximum value of the response.

K a numeric parameter representing the input value at which half the maximum
response is attained. In the field of enzyme kinetics this is called the Michaelis
parameter.

Value

a numeric vector of the same length as input. It is the value of the expression
Vm*input/(K+input). If both the arguments Vm and K are names of objects, the gradient
matrix with respect to these names is attached as an attribute named gradient.

Author(s)

Jose Pinheiro and Douglas Bates

See Also

nls, selfStart

1332 SSweibull

Examples

PurTrt <- Puromycin[Puromycin$state == "treated",]
SSmicmen(PurTrt$conc, 200, 0.05) # response only
Vm <- 200; K <- 0.05
SSmicmen(PurTrt$conc, Vm, K) # response and gradient
getInitial(rate ~ SSmicmen(conc, Vm, K), data = PurTrt)
Initial values are in fact the converged values
fm1 <- nls(rate ~ SSmicmen(conc, Vm, K), data = PurTrt)
summary(fm1)
Alternative call using the subset argument
fm2 <- nls(rate ~ SSmicmen(conc, Vm, K), data = Puromycin,

subset = state == "treated")
summary(fm2)

SSweibull Weibull growth curve model

Description

This selfStart model evaluates the Weibull model for growth curve data and its gradient. It has
an initial attribute that will evaluate initial estimates of the parameters Asym, Drop, lrc, and
pwr for a given set of data.

Usage

SSweibull(x, Asym, Drop, lrc, pwr)

Arguments

x a numeric vector of values at which to evaluate the model.

Asym a numeric parameter representing the horizontal asymptote on the right side
(very small values of x).

Drop a numeric parameter representing the change from Asym to the y intercept.

lrc a numeric parameter representing the natural logarithm of the rate constant.

pwr a numeric parameter representing the power to which x is raised.

Details

This model is a generalization of the SSasymp model in that it reduces to SSasymp when pwr is
unity.

Value

a numeric vector of the same length as x. It is the value of the expression Asym-Drop*exp(-
exp(lrc)*x^pwr). If all of the arguments Asym, Drop, lrc, and pwr are names of objects,
the gradient matrix with respect to these names is attached as an attribute named gradient.

Author(s)

Douglas Bates

start 1333

References

Ratkowsky, David A. (1983), Nonlinear Regression Modeling, Dekker. (section 4.4.5)

See Also

nls, selfStart, SSasymp

Examples

Chick.6 <- subset(ChickWeight, (Chick == 6) & (Time > 0))
SSweibull(Chick.6$Time, 160, 115, -5.5, 2.5) # response only
Asym <- 160; Drop <- 115; lrc <- -5.5; pwr <- 2.5
SSweibull(Chick.6$Time, Asym, Drop, lrc, pwr) # response and gradient
getInitial(weight ~ SSweibull(Time, Asym, Drop, lrc, pwr), data = Chick.6)
Initial values are in fact the converged values
fm1 <- nls(weight ~ SSweibull(Time, Asym, Drop, lrc, pwr), data = Chick.6)
summary(fm1)

start Encode the Terminal Times of Time Series

Description

Extract and encode the times the first and last observations were taken. Provided only for compati-
bility with S version 2.

Usage

start(x, ...)
end(x, ...)

Arguments

x a univariate or multivariate time-series, or a vector or matrix.

... extra arguments for future methods.

Details

These are generic functions, which will use the tsp attribute of x if it exists. Their default methods
decode the start time from the original time units, so that for a monthly series 1995.5 is repre-
sented as c(1995, 7). For a series of frequency f, time n+i/f is presented as c(n, i+1)
(even for i = 0 and f = 1).

Warning

The representation used by start and end has no meaning unless the frequency is supplied.

See Also

ts, time, tsp.

1334 stat.anova

stat.anova GLM Anova Statistics

Description

This is a utility function, used in lm and glm methods for anova(..., test != NULL) and
should not be used by the average user.

Usage

stat.anova(table, test = c("Chisq", "F", "Cp"), scale, df.scale, n)

Arguments

table numeric matrix as results from anova.glm(..., test=NULL).

test a character string, matching one of "Chisq", "F" or "Cp".

scale a residual mean square or other scale estimate to be used as the denominator in
an F test.

df.scale degrees of freedom corresponding to scale.

n number of observations.

Value

A matrix which is the original table, augmented by a column of test statistics, depending on the
test argument.

References

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical Models in
S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

anova.lm, anova.glm.

Examples

##-- Continued from '?glm':

print(ag <- anova(glm.D93))
stat.anova(ag$table, test = "Cp",

scale = sum(resid(glm.D93, "pearson")^2)/4,
df.scale = 4, n = 9)

stats-deprecated 1335

stats-deprecated Deprecated Functions in Stats package

Description

These functions are provided for compatibility with older versions of R only, and may be defunct
as soon as the next release.

Details

There are currently no deprecated functions in this package.

See Also

Deprecated

step Choose a model by AIC in a Stepwise Algorithm

Description

Select a formula-based model by AIC.

Usage

step(object, scope, scale = 0,
direction = c("both", "backward", "forward"),
trace = 1, keep = NULL, steps = 1000, k = 2, ...)

Arguments

object an object representing a model of an appropriate class (mainly "lm" and
"glm"). This is used as the initial model in the stepwise search.

scope defines the range of models examined in the stepwise search. This should be
either a single formula, or a list containing components upper and lower,
both formulae. See the details for how to specify the formulae and how they are
used.

scale used in the definition of the AIC statistic for selecting the models, currently only
for lm, aov and glm models. The default value, 0, indicates the scale should
be estimated: see extractAIC.

direction the mode of stepwise search, can be one of "both", "backward", or
"forward", with a default of "both". If the scope argument is missing
the default for direction is "backward".

trace if positive, information is printed during the running of step. Larger values
may give more detailed information.

keep a filter function whose input is a fitted model object and the associated AIC
statistic, and whose output is arbitrary. Typically keep will select a subset
of the components of the object and return them. The default is not to keep
anything.

1336 step

steps the maximum number of steps to be considered. The default is 1000 (essentially
as many as required). It is typically used to stop the process early.

k the multiple of the number of degrees of freedom used for the penalty. Only k
= 2 gives the genuine AIC: k = log(n) is sometimes referred to as BIC or
SBC.

... any additional arguments to extractAIC.

Details

step uses add1 and drop1 repeatedly; it will work for any method for which they work, and
that is determined by having a valid method for extractAIC. When the additive constant can be
chosen so that AIC is equal to Mallows’ Cp, this is done and the tables are labelled appropriately.

The set of models searched is determined by the scope argument. The right-hand-side of its
lower component is always included in the model, and right-hand-side of the model is included
in the upper component. If scope is a single formula, it specifes the upper component, and the
lower model is empty. If scope is missing, the initial model is used as the upper model.

Models specified by scope can be templates to update object as used by update.formula.
So using . in a scope formula means ‘what is already there’, with .^2 indicating all interactions
of existing terms.

There is a potential problem in using glm fits with a variable scale, as in that case the deviance is
not simply related to the maximized log-likelihood. The "glm"method for function extractAIC
makes the appropriate adjustment for a gaussian family, but may need to be amended for other
cases. (The binomial and poisson families have fixed scale by default and do not correspond
to a particular maximum-likelihood problem for variable scale.)

Value

the stepwise-selected model is returned, with up to two additional components. There is an
"anova" component corresponding to the steps taken in the search, as well as a "keep" com-
ponent if the keep= argument was supplied in the call. The "Resid. Dev" column of the
analysis of deviance table refers to a constant minus twice the maximized log likelihood: it will
be a deviance only in cases where a saturated model is well-defined (thus excluding lm, aov and
survreg fits, for example).

Warning

The model fitting must apply the models to the same dataset. This may be a problem if there are
missing values and R’s default of na.action = na.omit is used. We suggest you remove the
missing values first.

Note

This function differs considerably from the function in S, which uses a number of approximations
and does not in general compute the correct AIC.

This is a minimal implementation. Use stepAIC in package MASS for a wider range of object
classes.

Author(s)

B. D. Ripley: step is a slightly simplified version of stepAIC in package MASS (Venables &
Ripley, 2002 and earlier editions).

stepfun 1337

The idea of a step function follows that described in Hastie & Pregibon (1992); but the implemen-
tation in R is more general.

References

Hastie, T. J. and Pregibon, D. (1992) Generalized linear models. Chapter 6 of Statistical Models in
S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S. New York: Springer
(4th ed).

See Also

stepAIC in MASS, add1, drop1

Examples

utils::example(lm)
step(lm.D9)

summary(lm1 <- lm(Fertility ~ ., data = swiss))
slm1 <- step(lm1)
summary(slm1)
slm1$anova

stepfun Step Function Class

Description

Given the vectors (x1, . . . , xn) and (y0, y1, . . . , yn) (one value more!), stepfun(x,y,...)
returns an interpolating ‘step’ function, say fn. I.e., fn(t) = ci (constant) for t ∈ (xi, xi+1) and
at the abscissa values, if (by default) right = FALSE, fn(xi) = yi and for right = TRUE,
fn(xi) = yi−1, for i = 1, . . . , n.

The value of the constant ci above depends on the ‘continuity’ parameter f. For the default, right
= FALSE, f = 0, fn is a cadlag function, i.e., continuous at right, limit (‘the point’) at left. In
general, ci is interpolated in between the neighbouring y values, ci = (1−f)yi+f ·yi+1. Therefore,
for non-0 values of f, fn may no longer be a proper step function, since it can be discontinuous
from both sides, unless right = TRUE, f = 1 which is right-continuous.

Usage

stepfun(x, y, f = as.numeric(right), ties = "ordered",
right = FALSE)

is.stepfun(x)
knots(Fn, ...)
as.stepfun(x, ...)

S3 method for class 'stepfun':
print(x, digits = getOption("digits") - 2, ...)

S3 method for class 'stepfun':
summary(object, ...)

1338 stepfun

Arguments

x numeric vector giving the knots or jump locations of the step function for
stepfun(). For the other functions, x is as object below.

y numeric vector one longer than x, giving the heights of the function values be-
tween the x values.

f a number between 0 and 1, indicating how interpolation outside the given x
values should happen. See approxfun.

ties Handling of tied x values. Either a function or the string "ordered". See
approxfun.

right logical, indicating if the intervals should be closed on the right (and open on the
left) or vice versa.

Fn, object an R object inheriting from "stepfun".

digits number of significant digits to use, see print.

... potentially further arguments (required by the generic).

Value

A function of class "stepfun", say fn. There are methods available for sum-
marizing ("summary(.)"), representing ("print(.)") and plotting ("plot(.)", see
plot.stepfun) "stepfun" objects.

The environment of fn contains all the information needed;

"x","y" the original arguments

"n" number of knots (x values)

"f" continuity parameter
"yleft", "yright"

the function values outside the knots

"method" (always == "constant", from approxfun(.)).

The knots are also available via knots(fn).

Author(s)

Martin Maechler, 〈maechler@stat.math.ethz.ch〉 with some basic code from Thomas Lumley.

See Also

ecdf for empirical distribution functions as special step functions and plot.stepfun for plot-
ting step functions.

approxfun and splinefun.

Examples

y0 <- c(1,2,4,3)
sfun0 <- stepfun(1:3, y0, f = 0)
sfun.2 <- stepfun(1:3, y0, f = .2)
sfun1 <- stepfun(1:3, y0, f = 1)
sfun1c <- stepfun(1:3, y0, right=TRUE)# hence f=1
sfun0
summary(sfun0)

stl 1339

summary(sfun.2)

look at the internal structure:
unclass(sfun0)
ls(envir = environment(sfun0))

x0 <- seq(0.5,3.5, by = 0.25)
rbind(x=x0, f.f0 = sfun0(x0), f.f02= sfun.2(x0),

f.f1 = sfun1(x0), f.f1c = sfun1c(x0))
Identities :
stopifnot(identical(y0[-1], sfun0 (1:3)),# right = FALSE

identical(y0[-4], sfun1c(1:3)))# right = TRUE

stl Seasonal Decomposition of Time Series by Loess

Description

Decompose a time series into seasonal, trend and irregular components using loess, acronym
STL.

Usage

stl(x, s.window, s.degree = 0,
t.window = NULL, t.degree = 1,
l.window = nextodd(period), l.degree = t.degree,
s.jump = ceiling(s.window/10),
t.jump = ceiling(t.window/10),
l.jump = ceiling(l.window/10),
robust = FALSE,
inner = if(robust) 1 else 2,
outer = if(robust) 15 else 0,
na.action = na.fail)

Arguments

x univariate time series to be decomposed. This should be an object of class "ts"
with a frequency greater than one.

s.window either the character string "periodic" or the span (in lags) of the loess win-
dow for seasonal extraction, which should be odd. This has no default.

s.degree degree of locally-fitted polynomial in seasonal extraction. Should be zero or
one.

t.window the span (in lags) of the loess window for trend extraction, which should be
odd. If NULL, the default, nextodd(ceiling((1.5*period) / (1-
(1.5/s.window)))), is taken.

t.degree degree of locally-fitted polynomial in trend extraction. Should be zero or one.

l.window the span (in lags) of the loess window of the low-pass filter used for each
subseries. Defaults to the smallest odd integer greater than or equal to
frequency(x) which is recommended since it prevents competition between
the trend and seasonal components. If not an odd integer its given value is in-
creased to the next odd one.

1340 stl

l.degree degree of locally-fitted polynomial for the subseries low-pass filter. Must be 0
or 1.

s.jump, t.jump, l.jump
integers at least one to increase speed of the respective smoother. Linear inter-
polation happens between every *.jumpth value.

robust logical indicating if robust fitting be used in the loess procedure.

inner integer; the number of ‘inner’ (backfitting) iterations; usually very few (2) iter-
ations suffice.

outer integer; the number of ‘outer’ robustness iterations.

na.action action on missing values.

Details

The seasonal component is found by loess smoothing the seasonal sub-series (the series of all Jan-
uary values, . . .); if s.window = "periodic" smoothing is effectively replaced by taking the
mean. The seasonal values are removed, and the remainder smoothed to find the trend. The overall
level is removed from the seasonal component and added to the trend component. This process is
iterated a few times. The remainder component is the residuals from the seasonal plus trend fit.

Several methods for the resulting class "stl" objects, see, plot.stl.

Value

stl returns an object of class "stl" with components

time.series a multiple time series with columns seasonal, trend and remainder.

weights the final robust weights (all one if fitting is not done robustly).

call the matched call.

win integer (length 3 vector) with the spans used for the "s", "t", and "l"
smoothers.

deg integer (length 3) vector with the polynomial degrees for these smoothers.

jump integer (length 3) vector with the ‘jumps’ (skips) used for these smoothers.

ni number of inner iterations

no number of outer robustness iterations

Note

This is similar to but not identical to the stl function in S-PLUS. The remainder component
given by S-PLUS is the sum of the trend and remainder series from this function.

Author(s)

B.D. Ripley; Fortran code by Cleveland et al. (1990) from ‘netlib’.

References

R. B. Cleveland, W. S. Cleveland, J.E. McRae, and I. Terpenning (1990) STL: A Seasonal-Trend
Decomposition Procedure Based on Loess. Journal of Official Statistics, 6, 3–73.

stlmethods 1341

See Also

plot.stl for stl methods; loess in package stats (which is not actually used in stl).

StructTS for different kind of decomposition.

Examples

require(graphics)

plot(stl(nottem, "per"))
plot(stl(nottem, s.window = 4, t.window = 50, t.jump = 1))

plot(stllc <- stl(log(co2), s.window=21))
summary(stllc)
linear trend, strict period.
plot(stl(log(co2), s.window="per", t.window=1000))

Two STL plotted side by side :
stmd <- stl(mdeaths, s.window = "per") # non-robust

summary(stmR <- stl(mdeaths, s.window = "per", robust = TRUE))
op <- par(mar = c(0, 4, 0, 3), oma = c(5, 0, 4, 0), mfcol = c(4, 2))
plot(stmd, set.pars=NULL, labels = NULL,

main = "stl(mdeaths, s.w = \"per\", robust = FALSE / TRUE)")
plot(stmR, set.pars=NULL)
mark the 'outliers' :
(iO <- which(stmR $ weights < 1e-8)) # 10 were considered outliers
sts <- stmR$time.series
points(time(sts)[iO], 0.8* sts[,"remainder"][iO], pch = 4, col = "red")
par(op)# reset

stlmethods Methods for STL Objects

Description

Methods for objects of class stl, typically the result of stl. The plot method does a multiple
figure plot with some flexibility.

There are also (non-visible) print and summary methods.

Usage

S3 method for class 'stl':
plot(x, labels = colnames(X),

set.pars = list(mar = c(0, 6, 0, 6), oma = c(6, 0, 4, 0),
tck = -0.01, mfrow = c(nplot, 1)),

main = NULL, range.bars = TRUE, ..., col.range = "light gray")

Arguments

x stl object.

labels character of length 4 giving the names of the component time-series.

set.pars settings for par(.) when setting up the plot.

1342 StructTS

main plot main title.

range.bars logical indicating if each plot should have a bar at its right side which are of
equal heights in user coordinates.

... further arguments passed to or from other methods.

col.range colour to be used for the range bars, if plotted. Note this appears after ... and
so cannot be abbreviated.

See Also

plot.ts and stl, particularly for examples.

StructTS Fit Structural Time Series

Description

Fit a structural model for a time series by maximum likelihood.

Usage

StructTS(x, type = c("level", "trend", "BSM"), init = NULL,
fixed = NULL, optim.control = NULL)

Arguments

x a univariate numeric time series. Missing values are allowed.

type the class of structural model. If omitted, a BSM is used for a time series with
frequency(x) > 1, and a local trend model otherwise.

init initial values of the variance parameters.

fixed optional numeric vector of the same length as the total number of parameters.
If supplied, only NA entries in fixed will be varied. Probably most useful for
setting variances to zero.

optim.control
List of control parameters for optim. Method "L-BFGS-B" is used.

Details

Structural time series models are (linear Gaussian) state-space models for (univariate) time series
based on a decomposition of the series into a number of components. They are specified by a set of
error variances, some of which may be zero.

The simplest model is the local level model specified by type = "level". This has an under-
lying level µt which evolves by

µt+1 = µt + ξt, ξt ∼ N(0, σ2
ξ)

The observations are
xt = µt + εt, εt ∼ N(0, σ2

ε)

There are two parameters, σ2
ξ and σ2

ε . It is an ARIMA(0,1,1) model, but with restrictions on the
parameter set.

StructTS 1343

The local linear trend model, type = "trend", has the same measurement equation, but with a
time-varying slope in the dynamics for µt, given by

µt+1 = µt + νt + ξt, ξt ∼ N(0, σ2
ξ)

νt+1 = νt + ζt, ζt ∼ N(0, σ2
ζ)

with three variance parameters. It is not uncommon to find σ2
ζ = 0 (which reduces to the local level

model) or σ2
ξ = 0, which ensures a smooth trend. This is a restricted ARIMA(0,2,2) model.

The basic structural model, type = "BSM", is a local trend model with an additional seasonal
component. Thus the measurement equation is

xt = µt + γt + εt, εt ∼ N(0, σ2
ε)

where γt is a seasonal component with dynamics

γt+1 = −γt + · · ·+ γt−s+2 + ωt, ωt ∼ N(0, σ2
ω)

The boundary case σ2
ω = 0 corresponds to a deterministic (but arbitrary) seasonal pattern. (This is

sometimes known as the ‘dummy variable’ version of the BSM.)

Value

A list of class "StructTS" with components:

coef the estimated variances of the components.

loglik the maximized log-likelihood. Note that as all these models are non-stationary
this includes a diffuse prior for some observations and hence is not comparable
with arima nor different types of structural models.

data the time series x.

residuals the standardized residuals.

fitted a multiple time series with one component for the level, slope and seasonal
components, estimated contemporaneously (that is at time t and not at the end
of the series).

call the matched call.

series the name of the series x.

code the convergence code returned by optim.
model, model0

Lists representing the Kalman Filter used in the fitting. See KalmanLike.
model0 is the initial state of the filter, model its final state.

xtsp the tsp attributes of x.

Note

Optimization of structural models is a lot harder than many of the references admit. For example,
the AirPassengers data are considered in Brockwell & Davis (1996): their solution appears to
be a local maximum, but nowhere near as good a fit as that produced by StructTS. It is quite
common to find fits with one or more variances zero, and this can include σ2

ε .

1344 summary.aov

References

Brockwell, P. J. & Davis, R. A. (1996). Introduction to Time Series and Forecasting. Springer, New
York. Sections 8.2 and 8.5.

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford Uni-
versity Press.

Harvey, A. C. (1989) Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge
University Press.

Harvey, A. C. (1993) Time Series Models. 2nd Edition, Harvester Wheatsheaf.

See Also

KalmanLike, tsSmooth; stl for different kind of (seasonal) decomposition.

Examples

see also JohnsonJohnson, Nile and AirPassengers
require(graphics)

trees <- window(treering, start=0)
(fit <- StructTS(trees, type = "level"))
plot(trees)
lines(fitted(fit), col = "green")
tsdiag(fit)

(fit <- StructTS(log10(UKgas), type = "BSM"))
par(mfrow = c(4, 1))
plot(log10(UKgas))
plot(cbind(fitted(fit), resids=resid(fit)), main = "UK gas consumption")

keep some parameters fixed; trace optimizer:
StructTS(log10(UKgas), type = "BSM", fixed = c(0.1,0.001,NA,NA),

optim.control = list(trace=TRUE))

summary.aov Summarize an Analysis of Variance Model

Description

Summarize an analysis of variance model.

Usage

S3 method for class 'aov':
summary(object, intercept = FALSE, split,

expand.split = TRUE, keep.zero.df = TRUE, ...)

S3 method for class 'aovlist':
summary(object, ...)

summary.aov 1345

Arguments

object An object of class "aov" or "aovlist".

intercept logical: should intercept terms be included?

split an optional named list, with names corresponding to terms in the model. Each
component is itself a list with integer components giving contrasts whose con-
tributions are to be summed.

expand.split logical: should the split apply also to interactions involving the factor?

keep.zero.df logical: should terms with no degrees of freedom be included?

... Arguments to be passed to or from other methods, for summary.aovlist
including those for summary.aov.

Value

An object of class c("summary.aov", "listof") or "summary.aovlist" respectively.

For a fits with a single stratum the result will be a list of ANOVA tables, one for each response
(even if there is only one response): the tables are of class "anova" inheriting from class
"data.frame". They have columns "Df", "Sum Sq", "Mean Sq", as well as "F value"
and "Pr(>F)" if there are non-zero residual degrees of freedom. There is a row for each term in
the model, plus one for "Residuals" if there are any.

For multistratum fits the return value is a list of such summaries, one for each stratum.

Note

The use of expand.split = TRUE is little tested: it is always possible to set it to FALSE and
specify exactly all the splits required.

See Also

aov, summary, model.tables, TukeyHSD

Examples

From Venables and Ripley (2002) p.165.
N <- c(0,1,0,1,1,1,0,0,0,1,1,0,1,1,0,0,1,0,1,0,1,1,0,0)
P <- c(1,1,0,0,0,1,0,1,1,1,0,0,0,1,0,1,1,0,0,1,0,1,1,0)
K <- c(1,0,0,1,0,1,1,0,0,1,0,1,0,1,1,0,0,0,1,1,1,0,1,0)
yield <- c(49.5,62.8,46.8,57.0,59.8,58.5,55.5,56.0,62.8,55.8,69.5,55.0,

62.0,48.8,45.5,44.2,52.0,51.5,49.8,48.8,57.2,59.0,53.2,56.0)
npk <- data.frame(block=gl(6,4), N=factor(N), P=factor(P),

K=factor(K), yield=yield)

(npk.aov <- aov(yield ~ block + N*P*K, npk))
summary(npk.aov)
coefficients(npk.aov)

Cochran and Cox (1957, p.164)
3x3 factorial with ordered factors, each is average of 12.
CC <- data.frame(

y = c(449, 413, 326, 409, 358, 291, 341, 278, 312)/12,
P = ordered(gl(3, 3)), N = ordered(gl(3, 1, 9))

)
CC.aov <- aov(y ~ N * P, data = CC , weights = rep(12, 9))

1346 summary.glm

summary(CC.aov)

Split both main effects into linear and quadratic parts.
summary(CC.aov, split = list(N = list(L = 1, Q = 2),

P = list(L = 1, Q = 2)))

Split only the interaction
summary(CC.aov, split = list("N:P" = list(L.L = 1, Q = 2:4)))

split on just one var
summary(CC.aov, split = list(P = list(lin = 1, quad = 2)))
summary(CC.aov, split = list(P = list(lin = 1, quad = 2)),

expand.split=FALSE)

summary.glm Summarizing Generalized Linear Model Fits

Description

These functions are all methods for class glm or summary.glm objects.

Usage

S3 method for class 'glm':
summary(object, dispersion = NULL, correlation = FALSE,

symbolic.cor = FALSE, ...)

S3 method for class 'summary.glm':
print(x, digits = max(3, getOption("digits") - 3),

symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)

Arguments

object an object of class "glm", usually, a result of a call to glm.

x an object of class "summary.glm", usually, a result of a call to
summary.glm.

dispersion the dispersion parameter for the family used. Either a single numerical value or
NULL (the default), when it is inferred from object (see ‘Details’).

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

digits the number of significant digits to use when printing.

symbolic.cor logical. If TRUE, print the correlations in a symbolic form (see symnum) rather
than as numbers.

signif.stars logical. If TRUE, ‘significance stars’ are printed for each coefficient.

... further arguments passed to or from other methods.

summary.glm 1347

Details

print.summary.glm tries to be smart about formatting the coefficients, standard errors, etc.
and additionally gives ‘significance stars’ if signif.stars is TRUE. The coefficients
component of the result gives the estimated coefficients and their estimated standard errors, to-
gether with their ratio. This third column is labelled t ratio if the dispersion is estimated, and
z ratio if the dispersion is known (or fixed by the family). A fourth column gives the two-tailed
p-value corresponding to the t or z ratio based on a Student t or Normal reference distribution. (It is
possible that the dispersion is not known and there are no residual degrees of freedom from which
to estimate it. In that case the estimate is NaN.)

Aliased coefficients are omitted in the returned object but restored by the print method.

Correlations are printed to two decimal places (or symbolically): to see the actual correlations print
summary(object)$correlation directly.

The dispersion of a GLM is not used in the fitting process, but it is needed to find standard errors.
If dispersion is not supplied or NULL, the dispersion is taken as 1 for the binomial and
Poisson families, and otherwise estimated by the residual Chisquared statistic (calculated from
cases with non-zero weights) divided by the residual degrees of freedom.

summary can be used with Gaussian glm fits to handle the case of a linear regression with known
error variance, something not handled by summary.lm.

Value

summary.glm returns an object of class "summary.glm", a list with components

call the component from object.

family the component from object.

deviance the component from object.

contrasts the component from object.

df.residual the component from object.
null.deviance

the component from object.

df.null the component from object.
deviance.resid

the deviance residuals: see residuals.glm.

coefficients the matrix of coefficients, standard errors, z-values and p-values. Aliased coef-
ficients are omitted.

aliased named logical vector showing if the original coefficients are aliased.

dispersion either the supplied argument or the inferred/estimated dispersion if the latter is
NULL.

df a 3-vector of the rank of the model and the number of residual degrees of free-
dom, plus number of non-aliased coefficients.

cov.unscaled the unscaled (dispersion = 1) estimated covariance matrix of the esti-
mated coefficients.

cov.scaled ditto, scaled by dispersion.

correlation (only if correlation is true.) The estimated correlations of the estimated
coefficients.

symbolic.cor (only if correlation is true.) The value of the argument symbolic.cor.

1348 summary.lm

See Also

glm, summary.

Examples

--- Continuing the Example from '?glm':

summary(glm.D93)

summary.lm Summarizing Linear Model Fits

Description

summary method for class "lm".

Usage

S3 method for class 'lm':
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)

S3 method for class 'summary.lm':
print(x, digits = max(3, getOption("digits") - 3),

symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)

Arguments

object an object of class "lm", usually, a result of a call to lm.

x an object of class "summary.lm", usually, a result of a call to summary.lm.

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

digits the number of significant digits to use when printing.

symbolic.cor logical. If TRUE, print the correlations in a symbolic form (see symnum) rather
than as numbers.

signif.stars logical. If TRUE, ‘significance stars’ are printed for each coefficient.

... further arguments passed to or from other methods.

Details

print.summary.lm tries to be smart about formatting the coefficients, standard errors, etc. and
additionally gives ‘significance stars’ if signif.stars is TRUE.

Correlations are printed to two decimal places (or symbolically): to see the actual correlations print
summary(object)$correlation directly.

summary.lm 1349

Value

The function summary.lm computes and returns a list of summary statistics of the fitted linear
model given in object, using the components (list elements) "call" and "terms" from its
argument, plus

residuals the weighted residuals, the usual residuals rescaled by the square root of the
weights specified in the call to lm.

coefficients a p × 4 matrix with columns for the estimated coefficient, its standard error,
t-statistic and corresponding (two-sided) p-value. Aliased coefficients are omit-
ted.

aliased named logical vector showing if the original coefficients are aliased.

sigma the square root of the estimated variance of the random error

σ̂2 =
1

n− p
∑
i

wiR
2
i ,

where Ri is the i-th residual, residuals[i].

df degrees of freedom, a 3-vector (p, n− p, p∗), the last being the number of non-
aliased coefficients.

fstatistic (for models including non-intercept terms) a 3-vector with the value of the F-
statistic with its numerator and denominator degrees of freedom.

r.squared R2, the ‘fraction of variance explained by the model’,

R2 = 1−
∑
iR

2
i∑

i(yi − y∗)2
,

where y∗ is the mean of yi if there is an intercept and zero otherwise.
adj.r.squared

the above R2 statistic ‘adjusted’, penalizing for higher p.

cov.unscaled a p× p matrix of (unscaled) covariances of the β̂j , j = 1, . . . , p.

correlation the correlation matrix corresponding to the above cov.unscaled, if
correlation = TRUE is specified.

symbolic.cor (only if correlation is true.) The value of the argument symbolic.cor.

na.action from object, if present there.

See Also

The model fitting function lm, summary.

Function coef will extract the matrix of coefficients with standard errors, t-statistics and p-values.

Examples

##-- Continuing the lm(.) example:
coef(lm.D90)# the bare coefficients
sld90 <- summary(lm.D90 <- lm(weight ~ group -1))# omitting intercept
sld90
coef(sld90)# much more

1350 summary.manova

summary.manova Summary Method for Multivariate Analysis of Variance

Description

A summary method for class "manova".

Usage

S3 method for class 'manova':
summary(object,

test = c("Pillai", "Wilks", "Hotelling-Lawley", "Roy"),
intercept = FALSE, tol = 1e-7, ...)

Arguments

object An object of class "manova" or an aov object with multiple responses.
test The name of the test statistic to be used. Partial matching is used so the name

can be abbreviated.
intercept logical. If TRUE, the intercept term is included in the table.
tol tolerance to be used in deciding if the residuals are rank-deficient: see qr.
... further arguments passed to or from other methods.

Details

The summary.manova method uses a multivariate test statistic for the summary table. Wilks’
statistic is most popular in the literature, but the default Pillai–Bartlett statistic is recommended by
Hand and Taylor (1987).

The table gives a transformation of the test statistic which has approximately an F distribution. The
approximations used follow S-PLUS and SAS (the latter apart from some cases of the Hotelling–
Lawley statistic), but many other distributional approximations exist: see Anderson (1984) and
Krzanowski and Marriott (1994) for further references. All four approximate F statistics are the
same when the term being tested has one degree of freedom, but in other cases that for the Roy
statistic is an upper bound.

The tolerance tol is applied to the QR decomposition of the residual correlation matrix (unless
some response has essentially zero residuals, when it is unscaled). Thus the default value guards
against very highly correlated responses: it can be reduced but doing so will allow rather inaccurate
results and it will normally be better to transform the responses to remove the high correlation.

Value

An object of class "summary.manova". If there is a positive residual degrees of freedom, this is
a list with components

row.names The names of the terms, the row names of the stats table if present.
SS A named list of sums of squares and product matrices.
Eigenvalues A matrix of eigenvalues.
stats A matrix of the statistics, approximate F value, degrees of freedom and P value.

otherwise components row.names, SS and Df (degrees of freedom) for the terms (and not the
residuals).

summary.nls 1351

References

Anderson, T. W. (1994) An Introduction to Multivariate Statistical Analysis. Wiley.

Hand, D. J. and Taylor, C. C. (1987) Multivariate Analysis of Variance and Repeated Measures.
Chapman and Hall.

Krzanowski, W. J. (1988) Principles of Multivariate Analysis. A User’s Perspective. Oxford.

Krzanowski, W. J. and Marriott, F. H. C. (1994) Multivariate Analysis. Part I: Distributions, Ordi-
nation and Inference. Edward Arnold.

See Also

manova, aov

Examples

Example on producing plastic film from Krzanowski (1998, p. 381)
tear <- c(6.5, 6.2, 5.8, 6.5, 6.5, 6.9, 7.2, 6.9, 6.1, 6.3,

6.7, 6.6, 7.2, 7.1, 6.8, 7.1, 7.0, 7.2, 7.5, 7.6)
gloss <- c(9.5, 9.9, 9.6, 9.6, 9.2, 9.1, 10.0, 9.9, 9.5, 9.4,

9.1, 9.3, 8.3, 8.4, 8.5, 9.2, 8.8, 9.7, 10.1, 9.2)
opacity <- c(4.4, 6.4, 3.0, 4.1, 0.8, 5.7, 2.0, 3.9, 1.9, 5.7,

2.8, 4.1, 3.8, 1.6, 3.4, 8.4, 5.2, 6.9, 2.7, 1.9)
Y <- cbind(tear, gloss, opacity)
rate <- factor(gl(2,10), labels=c("Low", "High"))
additive <- factor(gl(2, 5, length=20), labels=c("Low", "High"))

fit <- manova(Y ~ rate * additive)
summary.aov(fit) # univariate ANOVA tables
summary(fit, test="Wilks") # ANOVA table of Wilks' lambda
summary(fit) # same F statistics as single-df terms

summary.nls Summarizing Non-Linear Least-Squares Model Fits

Description

summary method for class "nls".

Usage

S3 method for class 'nls':
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)

S3 method for class 'summary.nls':
print(x, digits = max(3, getOption("digits") - 3),

symbolic.cor = x$symbolic.cor,
signif.stars = getOption("show.signif.stars"), ...)

1352 summary.nls

Arguments

object an object of class "nls".

x an object of class "summary.nls", usually the result of a call to
summary.nls.

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

digits the number of significant digits to use when printing.

symbolic.cor logical. If TRUE, print the correlations in a symbolic form (see symnum) rather
than as numbers.

signif.stars logical. If TRUE, ‘significance stars’ are printed for each coefficient.

... further arguments passed to or from other methods.

Details

The distribution theory used to find the distribution of the standard errors and of the residual stan-
dard error (for t ratios) is based on linearization and is approximate, maybe very approximate.

print.summary.nls tries to be smart about formatting the coefficients, standard errors, etc.
and additionally gives ‘significance stars’ if signif.stars is TRUE.

Correlations are printed to two decimal places (or symbolically): to see the actual correlations print
summary(object)$correlation directly.

Value

The function summary.nls computes and returns a list of summary statistics of the fitted model
given in object, using the component "formula" from its argument, plus

residuals the weighted residuals, the usual residuals rescaled by the square root of the
weights specified in the call to nls.

coefficients a p × 4 matrix with columns for the estimated coefficient, its standard error,
t-statistic and corresponding (two-sided) p-value.

sigma the square root of the estimated variance of the random error

σ̂2 =
1

n− p
∑
i

R2
i ,

where Ri is the i-th weighted residual.

df degrees of freedom, a 2-vector (p, n − p). (Here and elsewhere n omits obser-
vations with zero weights.)

cov.unscaled a p× p matrix of (unscaled) covariances of the parameter estimates.

correlation the correlation matrix corresponding to the above cov.unscaled, if
correlation = TRUE is specified and there are a non-zero number of resid-
ual degrees of freedom.

symbolic.cor (only if correlation is true.) The value of the argument symbolic.cor.

See Also

The model fitting function nls, summary.

Function coef will extract the matrix of coefficients with standard errors, t-statistics and p-values.

summary.princomp 1353

summary.princomp Summary method for Principal Components Analysis

Description

The summary method for class "princomp".

Usage

S3 method for class 'princomp':
summary(object, loadings = FALSE, cutoff = 0.1, ...)

S3 method for class 'summary.princomp':
print(x, digits = 3, loadings = x$print.loadings,

cutoff = x$cutoff, ...)

Arguments

object an object of class "princomp", as from princomp().

loadings logical. Should loadings be included?

cutoff numeric. Loadings below this cutoff in absolute value are shown as blank in the
output.

x an object of class "summary.princomp".

digits the number of significant digits to be used in listing loadings.

... arguments to be passed to or from other methods.

Value

object with additional components cutoff and print.loadings.

See Also

princomp

Examples

summary(pc.cr <- princomp(USArrests, cor=TRUE))
print(summary(princomp(USArrests, cor=TRUE),

loadings = TRUE, cutoff = 0.2), digits = 2)

1354 supsmu

supsmu Friedman’s SuperSmoother

Description

Smooth the (x, y) values by Friedman’s ‘super smoother’.

Usage

supsmu(x, y, wt, span = "cv", periodic = FALSE, bass = 0)

Arguments

x x values for smoothing

y y values for smoothing

wt case weights, by default all equal

span the fraction of the observations in the span of the running lines smoother, or
"cv" to choose this by leave-one-out cross-validation.

periodic if TRUE, the x values are assumed to be in [0, 1] and of period 1.

bass controls the smoothness of the fitted curve. Values of up to 10 indicate increas-
ing smoothness.

Details

supsmu is a running lines smoother which chooses between three spans for the lines. The running
lines smoothers are symmetric, with k/2 data points each side of the predicted point, and values
of k as 0.5 * n, 0.2 * n and 0.05 * n, where n is the number of data points. If span is
specified, a single smoother with span span * n is used.

The best of the three smoothers is chosen by cross-validation for each prediction. The best spans are
then smoothed by a running lines smoother and the final prediction chosen by linear interpolation.

The FORTRAN code says: “For small samples (n < 40) or if there are substantial serial correla-
tions between observations close in x-value, then a pre-specified fixed span smoother (span > 0)
should be used. Reasonable span values are 0.2 to 0.4.”

Cases with non-finite values of x, y or wt are dropped, with a warning.

Value

A list with components

x the input values in increasing order with duplicates removed.

y the corresponding y values on the fitted curve.

References

Friedman, J. H. (1984) SMART User’s Guide. Laboratory for Computational Statistics, Stanford
University Technical Report No. 1.

Friedman, J. H. (1984) A variable span scatterplot smoother. Laboratory for Computational Statis-
tics, Stanford University Technical Report No. 5.

symnum 1355

See Also

ppr

Examples

require(graphics)

with(cars, {
plot(speed, dist)
lines(supsmu(speed, dist))
lines(supsmu(speed, dist, bass = 7), lty = 2)
})

symnum Symbolic Number Coding

Description

Symbolically encode a given numeric or logical vector or array. Particularly useful for visualization
of structured matrices, e.g., correlation, sparse, or logical ones.

Usage

symnum(x, cutpoints = c(0.3, 0.6, 0.8, 0.9, 0.95),
symbols = if(numeric.x) c(" ", ".", ",", "+", "*", "B")

else c(".", "|"),
legend = length(symbols) >= 3,
na = "?", eps = 1e-5, numeric.x = is.numeric(x),
corr = missing(cutpoints) && numeric.x,
show.max = if(corr) "1", show.min = NULL,
abbr.colnames = has.colnames,
lower.triangular = corr && is.numeric(x) && is.matrix(x),
diag.lower.tri = corr && !is.null(show.max))

Arguments

x numeric or logical vector or array.

cutpoints numeric vector whose values cutpoints[j] = cj (after augmentation, see
corr below) are used for intervals.

symbols character vector, one shorter than (the augmented, see corr below)
cutpoints. symbols[j]= sj are used as ‘code’ for the (half open) in-
terval (cj , cj+1].
When numeric.x is FALSE, i.e., by default when argument x is logical,
the default is c(".","|") (graphical 0 / 1 s).

legend logical indicating if a "legend" attribute is desired.

na character or logical. How NAs are coded. If na == FALSE, NAs are coded
invisibly, including the "legend" attribute below, which otherwise mentions
NA coding.

eps absolute precision to be used at left and right boundary.

1356 symnum

numeric.x logical indicating if x should be treated as numbers, otherwise as logical.

corr logical. If TRUE, x contains correlations. The cutpoints are augmented by 0
and 1 and abs(x) is coded.

show.max if TRUE, or of mode character, the maximal cutpoint is coded especially.

show.min if TRUE, or of mode character, the minimal cutpoint is coded especially.
abbr.colnames

logical, integer or NULL indicating how column names should be abbreviated (if
they are); if NULL (or FALSE and x has no column names), the column names
will all be empty, i.e., ""; otherwise if abbr.colnames is false, they are left
unchanged. If TRUE or integer, existing column names will be abbreviated to
abbreviate(*, minlength = abbr.colnames).

lower.triangular
logical. If TRUE and x is a matrix, only the lower triangular part of the matrix
is coded as non-blank.

diag.lower.tri
logical. If lower.triangular and this are TRUE, the diagonal part of the
matrix is shown.

Value

An atomic character object of class noquote and the same dimensions as x.

If legend is TRUE (as by default when there are more than two classes), the result has an attribute
"legend" containing a legend of the returned character codes, in the form

c1s1c2s2 . . . sncn+1

where cj = cutpoints[j] and sj = symbols[j].

Note

The optional (mostly logical) arguments all try to use smart defaults. Specifying them explicitly
may lead to considerably improved output in many cases.

Author(s)

Martin Maechler 〈maechler@stat.math.ethz.ch〉

See Also

as.character; image

Examples

ii <- 0:8; names(ii) <- ii
symnum(ii, cut= 2*(0:4), sym = c(".", "-", "+", "$"))
symnum(ii, cut= 2*(0:4), sym = c(".", "-", "+", "$"), show.max=TRUE)

symnum(1:12 %% 3 == 0)# --> "|" = TRUE, "." = FALSE for logical

Pascal's Triangle modulo 2 -- odd and even numbers:
N <- 38
pascal <- t(sapply(0:N, function(n) round(choose(n, 0:N - (N-n)%/%2))))
rownames(pascal) <- rep("", 1+N) # <-- to improve "graphic"

t.test 1357

symnum(pascal %% 2, symbols = c(" ", "A"), numeric = FALSE)

##-- Symbolic correlation matrices:
symnum(cor(attitude), diag = FALSE)
symnum(cor(attitude), abbr.= NULL)
symnum(cor(attitude), abbr.= FALSE)
symnum(cor(attitude), abbr.= 2)

symnum(cor(rbind(1, rnorm(25), rnorm(25)^2)))
symnum(cor(matrix(rexp(30, 1), 5, 18))) # <<-- PATTERN ! --
symnum(cm1 <- cor(matrix(rnorm(90) , 5, 18))) # < White Noise SMALL n
symnum(cm1, diag=FALSE)
symnum(cm2 <- cor(matrix(rnorm(900), 50, 18))) # < White Noise "BIG" n
symnum(cm2, lower=FALSE)

NA's:
Cm <- cor(matrix(rnorm(60), 10, 6)); Cm[c(3,6), 2] <- NA
symnum(Cm, show.max=NULL)

Graphical P-values (aka "significance stars"):
pval <- rev(sort(c(outer(1:6, 10^-(1:3)))))
symp <- symnum(pval, corr=FALSE,

cutpoints = c(0, .001,.01,.05, .1, 1),
symbols = c("***","**","*","."," "))

noquote(cbind(P.val = format(pval), Signif= symp))

t.test Student’s t-Test

Description

Performs one and two sample t-tests on vectors of data.

Usage

t.test(x, ...)

Default S3 method:
t.test(x, y = NULL,

alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, var.equal = FALSE,
conf.level = 0.95, ...)

S3 method for class 'formula':
t.test(formula, data, subset, na.action, ...)

Arguments

x a (non-empty) numeric vector of data values.

y an optional (non-empty) numeric vector of data values.

alternative a character string specifying the alternative hypothesis, must be one of
"two.sided" (default), "greater" or "less". You can specify just the
initial letter.

1358 t.test

mu a number indicating the true value of the mean (or difference in means if you
are performing a two sample test).

paired a logical indicating whether you want a paired t-test.

var.equal a logical variable indicating whether to treat the two variances as being equal.
If TRUE then the pooled variance is used to estimate the variance otherwise the
Welch (or Satterthwaite) approximation to the degrees of freedom is used.

conf.level confidence level of the interval.

formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the
data values and rhs a factor with two levels giving the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

The formula interface is only applicable for the 2-sample tests.

alternative = "greater" is the alternative that x has a larger mean than y.

If paired is TRUE then both x and y must be specified and they must be the same length. Missing
values are removed (in pairs if paired is TRUE). If var.equal is TRUE then the pooled esti-
mate of the variance is used. By default, if var.equal is FALSE then the variance is estimated
separately for both groups and the Welch modification to the degrees of freedom is used.

If the input data are effectively constant (compared to the larger of the two means) an error is
generated.

Value

A list with class "htest" containing the following components:

statistic the value of the t-statistic.

parameter the degrees of freedom for the t-statistic.

p.value the p-value for the test.

conf.int a confidence interval for the mean appropriate to the specified alternative hy-
pothesis.

estimate the estimated mean or difference in means depending on whether it was a one-
sample test or a two-sample test.

null.value the specified hypothesized value of the mean or mean difference depending on
whether it was a one-sample test or a two-sample test.

alternative a character string describing the alternative hypothesis.

method a character string indicating what type of t-test was performed.

data.name a character string giving the name(s) of the data.

See Also

prop.test

TDist 1359

Examples

require(graphics)

t.test(1:10,y=c(7:20)) # P = .00001855
t.test(1:10,y=c(7:20, 200)) # P = .1245 -- NOT significant anymore

Classical example: Student's sleep data
plot(extra ~ group, data = sleep)
Traditional interface
with(sleep, t.test(extra[group == 1], extra[group == 2]))
Formula interface
t.test(extra ~ group, data = sleep)

TDist The Student t Distribution

Description

Density, distribution function, quantile function and random generation for the t distribution with
df degrees of freedom (and optional non-centrality parameter ncp).

Usage

dt(x, df, ncp, log = FALSE)
pt(q, df, ncp, lower.tail = TRUE, log.p = FALSE)
qt(p, df, ncp, lower.tail = TRUE, log.p = FALSE)
rt(n, df, ncp)

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

df degrees of freedom (> 0, maybe non-integer). df = Inf is allowed. For qt
only values of at least one are currently supported unless ncp is supplied.

ncp non-centrality parameter δ; currently except for rt(), only for abs(ncp) <=
37.62. If omitted, use the central t distribution.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

The t distribution with df = ν degrees of freedom has density

f(x) =
Γ((ν + 1)/2)√
πνΓ(ν/2)

(1 + x2/ν)−(ν+1)/2

for all real x. It has mean 0 (for ν > 1) and variance ν
ν−2 (for ν > 2).

1360 TDist

The general non-central t with parameters (ν, δ) = (df, ncp) is defined as the distribution of
Tν(δ) := (U + δ)/

√
V/ν where U and V are independent random variables, U ∼ N (0, 1) and

V ∼ χ2
ν (see Chisquare).

The most used applications are power calculations for t-tests:
Let T = X̄−µ0

S/
√
n

where X̄ is the mean and S the sample standard deviation (sd) of X1, X2, . . . , Xn

which are i.i.d. N (µ, σ2) Then T is distributed as non-central twith df = n−1 degrees of freedom
and non-centrality parameter ncp = (µ− µ0)

√
n/σ.

Value

dt gives the density, pt gives the distribution function, qt gives the quantile function, and rt
generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

Note

Setting ncp = 0 is not equivalent to omitting ncp. R uses the non-centrality functionality when-
ever ncp is specified which provides continuous behavior at ncp = 0.

Source

The central dt is computed via an accurate formula provided by Catherine Loader (see the reference
in dbinom).

For the non-central case of dt, contributed by Claus Ekstrøm based on the relationship (for x 6= 0)
to the cumulative distribution.

For the central case of pt, a normal approximation in the tails, otherwise via pbeta.

For the non-central case of pt based on a C translation of

Lenth, R. V. (1989). Algorithm AS 243 — Cumulative distribution function of the non-central t
distribution, Applied Statistics 38, 185–189.

For central qt, a C translation of

Hill, G. W. (1970) Algorithm 396: Student’s t-quantiles. Communications of the ACM, 13(10),
619–620.

altered to take account of

Hill, G. W. (1981) Remark on Algorithm 396, ACM Transactions on Mathematical Software, 7,
250–1.

The non-central case is done by inversion.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole. (Except non-central versions.)

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume
2, chapters 28 and 31. Wiley, New York.

See Also

df for the F distribution.

termplot 1361

Examples

require(graphics)

1 - pt(1:5, df = 1)
qt(.975, df = c(1:10,20,50,100,1000))

tt <- seq(0,10, len=21)
ncp <- seq(0,6, len=31)
ptn <- outer(tt,ncp, function(t,d) pt(t, df = 3, ncp=d))
t.tit <- "Non-central t - Probabilities"
image(tt,ncp,ptn, zlim=c(0,1), main = t.tit)
persp(tt,ncp,ptn, zlim=0:1, r=2, phi=20, theta=200, main=t.tit,

xlab = "t", ylab = "non-centrality parameter",
zlab = "Pr(T <= t)")

plot(function(x) dt(x, df = 3, ncp = 2), -3, 11, ylim = c(0, 0.32),
main="Non-central t - Density", yaxs="i")

termplot Plot regression terms

Description

Plots regression terms against their predictors, optionally with standard errors and partial residuals
added.

Usage

termplot(model, data = NULL, envir = environment(formula(model)),
partial.resid = FALSE, rug = FALSE,
terms = NULL, se = FALSE,
xlabs = NULL, ylabs = NULL, main = NULL,
col.term = 2, lwd.term = 1.5,
col.se = "orange", lty.se = 2, lwd.se = 1,
col.res = "gray", cex = 1, pch = par("pch"),
col.smth = "darkred", lty.smth = 2, span.smth = 2/3,
ask = dev.interactive() && nb.fig < n.tms,
use.factor.levels = TRUE, smooth = NULL, ylim = "common",
...)

Arguments

model fitted model object

data data frame in which variables in model can be found

envir environment in which variables in model can be found
partial.resid

logical; should partial residuals be plotted?

rug add rugplots (jittered 1-d histograms) to the axes?

terms which terms to plot (default NULL means all terms)

se plot pointwise standard errors?

1362 termplot

xlabs vector of labels for the x axes

ylabs vector of labels for the y axes

main logical, or vector of main titles; if TRUE, the model’s call is taken as main title,
NULL or FALSE mean no titles.

col.term, lwd.term
color and line width for the ‘term curve’, see lines.

col.se, lty.se, lwd.se
color, line type and line width for the ‘twice-standard-error curve’ when se =
TRUE.

col.res, cex, pch
color, plotting character expansion and type for partial residuals, when
partial.resid = TRUE, see points.

ask logical; if TRUE, the user is asked before each plot, see par(ask=.).
use.factor.levels

Should x-axis ticks use factor levels or numbers for factor terms?

smooth NULL or a function with the same arguments as panel.smooth to draw a
smooth through the partial residuals for non-factor terms

lty.smth, col.smth, span.smth
Passed to smooth

ylim an optional range for the y axis, or "common" when a range sufficient for all
the plot will be computed, or "free" when limits are computed for each plot.

... other graphical parameters.

Details

The model object must have a predict method that accepts type=terms, eg glm in the base
package, coxph and survreg in the survival package.

For the partial.resid=TRUE option it must have a residuals method that accepts
type="partial", which lm and glm do.

The data argument should rarely be needed, but in some cases termplot may be unable to
reconstruct the original data frame. Using na.action=na.exclude makes these problems less
likely.

Nothing sensible happens for interaction terms.

See Also

For (generalized) linear models, plot.lm and predict.glm.

Examples

require(graphics)

had.splines <- "package:splines" %in% search()
if(!had.splines) rs <- require(splines)
x <- 1:100
z <- factor(rep(LETTERS[1:4],25))
y <- rnorm(100, sin(x/10)+as.numeric(z))
model <- glm(y ~ ns(x,6) + z)

par(mfrow=c(2,2)) ## 2 x 2 plots for same model :
termplot(model, main = paste("termplot(", deparse(model$call)," ...)"))

terms 1363

termplot(model, rug=TRUE)
termplot(model, partial.resid=TRUE, se = TRUE, main = TRUE)
termplot(model, partial.resid=TRUE, smooth=panel.smooth, span.smth=1/4)
if(!had.splines && rs) detach("package:splines")

terms Model Terms

Description

The function terms is a generic function which can be used to extract terms objects from various
kinds of R data objects.

Usage

terms(x, ...)

Arguments

x object used to select a method to dispatch.

... further arguments passed to or from other methods.

Details

There are methods for classes "aovlist", and "terms" "formula" (see terms.formula):
the default method just extracts the terms component of the object (if any).

There are print and labels methods for class "terms": the latter prints the term labels (see
terms.object).

Value

An object of class c("terms", "formula") which contains the terms representation of a
symbolic model. See terms.object for its structure.

References

Chambers, J. M. and Hastie, T. J. (1992) Statistical models. Chapter 2 of Statistical Models in S eds
J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

terms.object, terms.formula, lm, glm, formula.

1364 terms.formula

terms.formula Construct a terms Object from a Formula

Description

This function takes a formula and some optional arguments and constructs a terms object. The
terms object can then be used to construct a model.matrix.

Usage

S3 method for class 'formula':
terms(x, specials = NULL, abb = NULL, data = NULL, neg.out = TRUE,

keep.order = FALSE, simplify = FALSE, ...,
allowDotAsName = FALSE)

Arguments

x a formula.

specials which functions in the formula should be marked as special in the terms object.

abb Not implemented in R.

data a data frame from which the meaning of the special symbol . can be inferred.
It is unused if there is no . in the formula.

neg.out Not implemented in R.

keep.order a logical value indicating whether the terms should keep their positions. If
FALSE the terms are reordered so that main effects come first, followed by
the interactions, all second-order, all third-order and so on. Effects of a given
order are kept in the order specified.

simplify should the formula be expanded and simplified, the pre-1.7.0 behaviour?

... further arguments passed to or from other methods.
allowDotAsName

normally . in a formula refers to the remaining variables contained in data.
Exceptionally, . can be treated as a name for non-standard uses of formulae.

Details

Not all of the options work in the same way that they do in S and not all are implemented.

Value

A terms.object object is returned. The object itself is the re-ordered (unless keep.order =
TRUE) formula. In all cases variables within an interaction term in the formula are re-ordered by
the ordering of the "variables" attribute, which is the order in which the variables occur in the
formula.

See Also

terms, terms.object

terms.object 1365

terms.object Description of Terms Objects

Description

An object of class terms holds information about a model. Usually the model was specified in
terms of a formula and that formula was used to determine the terms object.

Value

The object itself is simply the formula supplied to the call of terms.formula. The object has a
number of attributes and they are used to construct the model frame:

factors A matrix of variables by terms showing which variables appear in which terms.
The entries are 0 if the variable does not occur in the term, 1 if it does occur and
should be coded by contrasts, and 2 if it occurs and should be coded via dummy
variables for all levels (as when an intercept or lower-order term is missing). If
there are no terms other than an intercept and offsets, this is numeric(0).

term.labels A character vector containing the labels for each of the terms in the model,
except for offsets. Non-syntactic names will be quoted by backticks. Note that
these are after possible re-ordering (unless argument keep.order was false).

variables A call to list of the variables in the model.

intercept Either 0, indicating no intercept is to be fit, or 1 indicating that an intercept is to
be fit.

order A vector of the same length as term.labels indicating the order of interac-
tion for each term.

response The index of the variable (in variables) of the response (the left hand side of the
formula). Zero, if there is no response.

offset If the model contains offset terms there is an offset attribute indicating
which variable(s) are offsets

specials If a specials argument was given to terms.formula there is a
specials attribute, a list of vectors (one for each specified special function)
giving numeric indices of the arguments of the list returned as the variables
attribute which contain these special functions.

dataClasses optional. A named character vector giving the classes (as given by .MFclass)
of the variables used in a fit.

The object has class c("terms", "formula").

Note

These objects are different from those found in S. In particular there is no formula attribute,
instead the object is itself a formula. Thus, the mode of a terms object is different as well.

Examples of the specials argument can be seen in the aov and coxph functions.

See Also

terms, formula.

1366 time

Examples

use of specials (as used for gam() in packages mgcv and gam)
(tf <- terms(y ~ x + x:z + s(x), specials = "s"))
Note that the "factors" attribute has variables as row names
and term labels as column names, both as character vectors.
attr(tf, "specials") # index 's' variable(s)
rownames(attr(tf, "factors"))[attr(tf, "specials")$s]

we can keep the order by
terms(y ~ x + x:z + s(x), specials = "s", keep.order = TRUE)

time Sampling Times of Time Series

Description

time creates the vector of times at which a time series was sampled.

cycle gives the positions in the cycle of each observation.

frequency returns the number of samples per unit time and deltat the time interval between
observations (see ts).

Usage

time(x, ...)
Default S3 method:
time(x, offset=0, ...)

cycle(x, ...)
frequency(x, ...)
deltat(x, ...)

Arguments

x a univariate or multivariate time-series, or a vector or matrix.

offset can be used to indicate when sampling took place in the time unit. 0 (the default)
indicates the start of the unit, 0.5 the middle and 1 the end of the interval.

... extra arguments for future methods.

Details

These are all generic functions, which will use the tsp attribute of x if it exists. time and cycle
have methods for class ts that coerce the result to that class.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

toeplitz 1367

See Also

ts, start, tsp, window.

date for clock time, system.time for CPU usage.

Examples

require(graphics)

cycle(presidents)
a simple series plot
plot(as.vector(time(presidents)), as.vector(presidents), type="l")

toeplitz Form Symmetric Toeplitz Matrix

Description

Forms a symmetric Toeplitz matrix given its first row.

Usage

toeplitz(x)

Arguments

x the first row to form the Toeplitz matrix.

Value

The Toeplitz matrix.

Author(s)

A. Trapletti

Examples

x <- 1:5
toeplitz (x)

1368 ts

ts Time-Series Objects

Description

The function ts is used to create time-series objects.

as.ts and is.ts coerce an object to a time-series and test whether an object is a time series.

Usage

ts(data = NA, start = 1, end = numeric(0), frequency = 1,
deltat = 1, ts.eps = getOption("ts.eps"), class = , names =)

as.ts(x, ...)
is.ts(x)

Arguments

data a numeric vector or matrix of the observed time-series values. A data frame will
be coerced to a numeric matrix via data.matrix.

start the time of the first observation. Either a single number or a vector of two
integers, which specify a natural time unit and a (1-based) number of samples
into the time unit. See the examples for the use of the second form.

end the time of the last observation, specified in the same way as start.

frequency the number of observations per unit of time.

deltat the fraction of the sampling period between successive observations; e.g., 1/12
for monthly data. Only one of frequency or deltat should be provided.

ts.eps time series comparison tolerance. Frequencies are considered equal if their ab-
solute difference is less than ts.eps.

class class to be given to the result, or none if NULL or "none". The default is "ts"
for a single series, c("mts", "ts") for multiple series.

names a character vector of names for the series in a multiple series: defaults to the
colnames of data, or Series 1, Series 2,

x an arbitrary R object.

... arguments passed to methods (unused for the default method).

Details

The function ts is used to create time-series objects. These are vector or matrices with class
of "ts" (and additional attributes) which represent data which has been sampled at equispaced
points in time. In the matrix case, each column of the matrix data is assumed to contain a single
(univariate) time series. Time series must have at least one observation, and although they need not
be numeric there is very limited support for non-numeric series.

Class "ts" has a number of methods. In particular arithmetic will attempt to align time axes,
and subsetting to extract subsets of series can be used (e.g., EuStockMarkets[, "DAX"]).
However, subsetting the first (or only) dimension will return a matrix or vector, as will matrix
subsetting. Subassignment can be used to replace values but not to extend a series (see window).
There is a method for t that transposes the series as a matrix (a one-column matrix if a vector) and
hence returns a result that does not inherit from class "ts".

ts-methods 1369

The value of argument frequency is used when the series is sampled an integral number of times
in each unit time interval. For example, one could use a value of 7 for frequency when the data
are sampled daily, and the natural time period is a week, or 12 when the data are sampled monthly
and the natural time period is a year. Values of 4 and 12 are assumed in (e.g.) print methods to
imply a quarterly and monthly series respectively.

as.ts is generic. Its default method will use the tsp attribute of the object if it has one to set the
start and end times and frequency.

is.ts tests if an object is a time series. It is generic: you can write methods to handle specific
classes of objects, see InternalMethods.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

tsp, frequency, start, end, time, window; print.ts, the print method for time series
objects; plot.ts, the plot method for time series objects.

Examples

require(graphics)

ts(1:10, frequency = 4, start = c(1959, 2)) # 2nd Quarter of 1959
print(ts(1:10, frequency = 7, start = c(12, 2)), calendar = TRUE)
print.ts(.)
Using July 1954 as start date:
gnp <- ts(cumsum(1 + round(rnorm(100), 2)),

start = c(1954, 7), frequency = 12)
plot(gnp) # using 'plot.ts' for time-series plot

Multivariate
z <- ts(matrix(rnorm(300), 100, 3), start=c(1961, 1), frequency=12)
class(z)
plot(z)
plot(z, plot.type="single", lty=1:3)

A phase plot:
plot(nhtemp, c(nhtemp[-1], NA), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")
a clearer way to do this would be
Not run:
plot(nhtemp, lag(nhtemp, 1), cex = .8, col="blue",

main = "Lag plot of New Haven temperatures")
End(Not run)

ts-methods Methods for Time Series Objects

Description

Methods for objects of class "ts", typically the result of ts.

1370 ts.plot

Usage

S3 method for class 'ts':
diff(x, lag = 1, differences = 1, ...)

S3 method for class 'ts':
na.omit(object, ...)

Arguments

x an object of class "ts" containing the values to be differenced.

lag an integer indicating which lag to use.

differences an integer indicating the order of the difference.

object a univariate or multivariate time series.

... further arguments to be passed to or from methods.

Details

The na.omit method omits initial and final segments with missing values in one or more of the
series. ‘Internal’ missing values will lead to failure.

Value

For the na.omit method, a time series without missing values. The class of object will be
preserved.

See Also

diff; na.omit, na.fail, na.contiguous.

ts.plot Plot Multiple Time Series

Description

Plot several time series on a common plot. Unlike plot.ts the series can have a different time
bases, but they should have the same frequency.

Usage

ts.plot(..., gpars = list())

Arguments

... one or more univariate or multivariate time series.

gpars list of named graphics parameters to be passed to the plotting functions. Those
commonly used can be supplied directly in

Value

None.

ts.union 1371

Note

Although this can be used for a single time series, plot is easier to use and is preferred.

See Also

plot.ts

Examples

require(graphics)

ts.plot(ldeaths, mdeaths, fdeaths,
gpars=list(xlab="year", ylab="deaths", lty=c(1:3)))

ts.union Bind Two or More Time Series

Description

Bind time series which have a common frequency. ts.union pads with NAs to the total time
coverage, ts.intersect restricts to the time covered by all the series.

Usage

ts.intersect(..., dframe = FALSE)
ts.union(..., dframe = FALSE)

Arguments

... two or more univariate or multivariate time series, or objects which can coerced
to time series.

dframe logical; if TRUE return the result as a data frame.

Details

As a special case, ... can contain vectors or matrices of the same length as the combined time
series of the time series present, as well as those of a single row.

Value

A time series object if dframe is FALSE, otherwise a data frame.

See Also

cbind.

Examples

ts.union(mdeaths, fdeaths)
cbind(mdeaths, fdeaths) # same as the previous line
ts.intersect(window(mdeaths, 1976), window(fdeaths, 1974, 1978))

sales1 <- ts.union(BJsales, lead = BJsales.lead)
ts.intersect(sales1, lead3 = lag(BJsales.lead, -3))

1372 tsdiag

tsdiag Diagnostic Plots for Time-Series Fits

Description

A generic function to plot time-series diagnostics.

Usage

tsdiag(object, gof.lag, ...)

Arguments

object a fitted time-series model

gof.lag the maximum number of lags for a Portmanteau goodness-of-fit test

... further arguments to be passed to particular methods

Details

This is a generic function. It will generally plot the residuals, often standardized, the autocorrelation
function of the residuals, and the p-values of a Portmanteau test for all lags up to gof.lag.

The methods for arima and StructTS objects plots residuals scaled by the estimate of their
(individual) variance, and use the Ljung–Box version of the portmanteau test.

Value

None. Diagnostics are plotted.

See Also

arima, StructTS, Box.test

Examples

Not run: require(graphics)

fit <- arima(lh, c(1,0,0))
tsdiag(fit)

see also examples(arima)

(fit <- StructTS(log10(JohnsonJohnson), type="BSM"))
tsdiag(fit)
End(Not run)

tsp 1373

tsp Tsp Attribute of Time-Series-like Objects

Description

tsp returns the tsp attribute (or NULL). It is included for compatibility with S version 2. tsp<-
sets the tsp attribute. hasTsp ensures x has a tsp attribute, by adding one if needed.

Usage

tsp(x)
tsp(x) <- value
hasTsp(x)

Arguments

x a vector or matrix or univariate or multivariate time-series.

value a numeric vector of length 3 or NULL.

Details

The tsp attribute was previously described here as c(start(x), end(x),
frequency(x)), but this is incorrect. It gives the start time in time units, the end time
and the frequency.

Assignments are checked for consistency.

Assigning NULL which removes the tsp attribute and any "ts" (or "mts") class of x.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

ts, time, start.

tsSmooth Use Fixed-Interval Smoothing on Time Series

Description

Performs fixed-interval smoothing on a univariate time series via a state-space model. Fixed-interval
smoothing gives the best estimate of the state at each time point based on the whole observed series.

Usage

tsSmooth(object, ...)

1374 Tukey

Arguments

object a time-series fit. Currently only class "StructTS" is supported

... possible arguments for future methods.

Value

A time series, with as many dimensions as the state space and results at each time point of the
original series. (For seasonal models, only the current seasonal component is returned.)

Author(s)

B. D. Ripley

References

Durbin, J. and Koopman, S. J. (2001) Time Series Analysis by State Space Methods. Oxford Uni-
versity Press.

See Also

KalmanSmooth, StructTS.

For examples consult AirPassengers, JohnsonJohnson and Nile.

Tukey The Studentized Range Distribution

Description

Functions of the distribution of the studentized range, R/s, where R is the range of a standard
normal sample and df × s2 is independently distributed as chi-squared with df degrees of freedom,
see pchisq.

Usage

ptukey(q, nmeans, df, nranges = 1, lower.tail = TRUE, log.p = FALSE)
qtukey(p, nmeans, df, nranges = 1, lower.tail = TRUE, log.p = FALSE)

Arguments

q vector of quantiles.

p vector of probabilities.

nmeans sample size for range (same for each group).

df degrees of freedom for s (see below).

nranges number of groups whose maximum range is considered.

log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

TukeyHSD 1375

Details

If ng =nranges is greater than one, R is the maximum of ng groups of nmeans observations
each.

Value

ptukey gives the distribution function and qtukey its inverse, the quantile function.

Note

A Legendre 16-point formula is used for the integral of ptukey. The computations are relatively
expensive, especially for qtukey which uses a simple secant method for finding the inverse of
ptukey. qtukey will be accurate to the 4th decimal place.

References

Copenhaver, Margaret Diponzio and Holland, Burt S. (1988) Multiple comparisons of simple effects
in the two-way analysis of variance with fixed effects. Journal of Statistical Computation and
Simulation, 30, 1–15.

See Also

pnorm and qnorm for the corresponding functions for the normal distribution.

Examples

if(interactive())
curve(ptukey(x, nm=6, df=5), from=-1, to=8, n=101)

(ptt <- ptukey(0:10, 2, df= 5))
(qtt <- qtukey(.95, 2, df= 2:11))
The precision may be not much more than about 8 digits:
summary(abs(.95 - ptukey(qtt,2, df = 2:11)))

TukeyHSD Compute Tukey Honest Significant Differences

Description

Create a set of confidence intervals on the differences between the means of the levels of a factor
with the specified family-wise probability of coverage. The intervals are based on the Studentized
range statistic, Tukey’s ‘Honest Significant Difference’ method. There is a plot method.

Usage

TukeyHSD(x, which, ordered = FALSE, conf.level = 0.95, ...)

1376 TukeyHSD

Arguments

x A fitted model object, usually an aov fit.

which A character vector listing terms in the fitted model for which the intervals should
be calculated. Defaults to all the terms.

ordered A logical value indicating if the levels of the factor should be ordered accord-
ing to increasing average in the sample before taking differences. If ordered
is true then the calculated differences in the means will all be positive. The
significant differences will be those for which the lwr end point is positive.

conf.level A numeric value between zero and one giving the family-wise confidence level
to use.

... Optional additional arguments. None are used at present.

Details

When comparing the means for the levels of a factor in an analysis of variance, a simple comparison
using t-tests will inflate the probability of declaring a significant difference when it is not in fact
present. This because the intervals are calculated with a given coverage probability for each interval
but the interpretation of the coverage is usually with respect to the entire family of intervals.

John Tukey introduced intervals based on the range of the sample means rather than the individual
differences. The intervals returned by this function are based on this Studentized range statistics.

Technically the intervals constructed in this way would only apply to balanced designs where there
are the same number of observations made at each level of the factor. This function incorporates an
adjustment for sample size that produces sensible intervals for mildly unbalanced designs.

If which specifies non-factor terms these will be dropped with a warning: if no terms are left this
is a an error.

Value

A list with one component for each term requested in which. Each component is a matrix with
columns diff giving the difference in the observed means, lwr giving the lower end point of the
interval, upr giving the upper end point and p adj giving the p-value after adjustment for the
multiple comparisons.

Author(s)

Douglas Bates

References

Miller, R. G. (1981) Simultaneous Statistical Inference. Springer.

Yandell, B. S. (1997) Practical Data Analysis for Designed Experiments. Chapman & Hall.

See Also

aov, qtukey, model.tables, simint

Uniform 1377

Examples

require(graphics)

summary(fm1 <- aov(breaks ~ wool + tension, data = warpbreaks))
TukeyHSD(fm1, "tension", ordered = TRUE)
plot(TukeyHSD(fm1, "tension"))

Uniform The Uniform Distribution

Description

These functions provide information about the uniform distribution on the interval from min to
max. dunif gives the density, punif gives the distribution function qunif gives the quantile
function and runif generates random deviates.

Usage

dunif(x, min=0, max=1, log = FALSE)
punif(q, min=0, max=1, lower.tail = TRUE, log.p = FALSE)
qunif(p, min=0, max=1, lower.tail = TRUE, log.p = FALSE)
runif(n, min=0, max=1)

Arguments

x,q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

min,max lower and upper limits of the distribution. Must be finite.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

If min or max are not specified they assume the default values of 0 and 1 respectively.

The uniform distribution has density

f(x) =
1

max−min
for min ≤ x ≤ max.

For the case of u := min == max, the limit case of X ≡ u is assumed, although there is no
density in that case and dunif will return NaN (the error condition).

runif will not generate either of the extreme values unless max = min or max-min is small
compared to min, and in particular not for the default arguments.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

1378 uniroot

See Also

.Random.seed about random number generation, rnorm, etc for other distributions.

Examples

u <- runif(20)

The following relations always hold :
punif(u) == u
dunif(u) == 1

var(runif(10000))#- ~ = 1/12 = .08333

uniroot One Dimensional Root (Zero) Finding

Description

The function uniroot searches the interval from lower to upper for a root (i.e., zero) of the
function f with respect to its first argument.

Usage

uniroot(f, interval, ...,
lower = min(interval), upper = max(interval),
f.lower = f(lower, ...), f.upper = f(upper, ...),
tol = .Machine$double.eps^0.25, maxiter = 1000)

Arguments

f the function for which the root is sought.

interval a vector containing the end-points of the interval to be searched for the root.

... additional named or unnamed arguments to be passed to f

lower, upper the lower and upper end points of the interval to be searched.
f.lower, f.upper

the same as f(upper) and f(lower), respectively. Passing these values
from the caller where they are often known is more economical as soon as f()
contains non-trivial computations.

tol the desired accuracy (convergence tolerance).

maxiter the maximum number of iterations.

Details

Note that arguments after ... must be matched exactly.

Either interval or both lower and upper must be specified: the upper endpoint must be
strictly larger than the lower endpoint. The function values at the endpoints must be of opposite
signs (or zero).

The function uses Fortran subroutine ‘"zeroin"’ (from Netlib) based on algorithms given in the
reference below. They assume a continuous function (which then is known to have at least one root
in the interval).

update 1379

Convergence is declared either if f(x) == 0 or the change in x for one step of the algorithm is
less than tol (plus an allowance for representation error in x).

If the algorithm does not converge in maxiter steps, a warning is printed and the current approx-
imation is returned.

f will be called as f(x, ...) for a numeric value of x.

Value

A list with four components: root and f.root give the location of the root and the value of the
function evaluated at that point. iter and estim.prec give the number of iterations used and an
approximate estimated precision for root. (If the root occurs at one of the endpoints, the estimated
precision is NA.)

Source

Based on ‘zeroin.c’ in http://www.netlib.org/c/brent.shar.

References

Brent, R. (1973) Algorithms for Minimization without Derivatives. Englewood Cliffs, NJ: Prentice-
Hall.

See Also

polyroot for all complex roots of a polynomial; optimize, nlm.

Examples

require(utils) # for str

f <- function (x,a) x - a
str(xmin <- uniroot(f, c(0, 1), tol = 0.0001, a = 1/3))
str(uniroot(function(x) x*(x^2-1) + .5, lower = -2, upper = 2,

tol = 0.0001), dig = 10)
str(uniroot(function(x) x*(x^2-1) + .5, lower = -2, upper = 2,

tol = 1e-10), dig = 10)

Find the smallest value x for which exp(x) > 0 (numerically):
r <- uniroot(function(x) 1e80*exp(x)-1e-300, c(-1000,0), tol = 1e-15)
str(r, digits= 15) ##> around -745, depending on the platform.

exp(r$root) # = 0, but not for r$root * 0.999...
minexp <- r$root * (1 - 10*.Machine$double.eps)
exp(minexp) # typically denormalized

update Update and Re-fit a Model Call

Description

update will update and (by default) re-fit a model. It does this by extracting the call stored in the
object, updating the call and (by default) evaluating that call. Sometimes it is useful to call update
with only one argument, for example if the data frame has been corrected.

http://www.netlib.org/c/brent.shar

1380 update.formula

Usage

update(object, ...)

Default S3 method:
update(object, formula., ..., evaluate = TRUE)

Arguments

object An existing fit from a model function such as lm, glm and many others.

formula. Changes to the formula – see update.formula for details.

... Additional arguments to the call, or arguments with changed values. Use
name=NULL to remove the argument name.

evaluate If true evaluate the new call else return the call.

Value

If evaluate = TRUE the fitted object, otherwise the updated call.

References

Chambers, J. M. (1992) Linear models. Chapter 4 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

update.formula

Examples

oldcon <- options(contrasts = c("contr.treatment", "contr.poly"))
Annette Dobson (1990) "An Introduction to Generalized Linear Models".
Page 9: Plant Weight Data.
ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
group <- gl(2, 10, 20, labels = c("Ctl", "Trt"))
weight <- c(ctl, trt)
lm.D9 <- lm(weight ~ group)
lm.D9
summary(lm.D90 <- update(lm.D9, . ~ . - 1))
options(contrasts = c("contr.helmert", "contr.poly"))
update(lm.D9)
options(oldcon)

update.formula Model Updating

Description

update.formula is used to update model formulae. This typically involves adding or dropping
terms, but updates can be more general.

var.test 1381

Usage

S3 method for class 'formula':
update(old, new, ...)

Arguments

old a model formula to be updated.

new a formula giving a template which specifies how to update.

... further arguments passed to or from other methods.

Details

Either or both of old and new can be objects such as length-one character vectors which can be
coerced to a formula via as.formula.

The function works by first identifying the left-hand side and right-hand side of the old formula.
It then examines the new formula and substitutes the lhs of the old formula for any occurrence of
‘.’ on the left of new, and substitutes the rhs of the old formula for any occurrence of ‘.’ on the
right of new. The result is then simplified via terms.formula(simplify = TRUE).

Value

The updated formula is returned. The environment of the result will that of old.

See Also

terms, model.matrix.

Examples

update(y ~ x, ~ . + x2) #> y ~ x + x2
update(y ~ x, log(.) ~ .) #> log(y) ~ x

var.test F Test to Compare Two Variances

Description

Performs an F test to compare the variances of two samples from normal populations.

Usage

var.test(x, ...)

Default S3 method:
var.test(x, y, ratio = 1,

alternative = c("two.sided", "less", "greater"),
conf.level = 0.95, ...)

S3 method for class 'formula':
var.test(formula, data, subset, na.action, ...)

1382 var.test

Arguments

x, y numeric vectors of data values, or fitted linear model objects (inheriting from
class "lm").

ratio the hypothesized ratio of the population variances of x and y.

alternative a character string specifying the alternative hypothesis, must be one of
"two.sided" (default), "greater" or "less". You can specify just the
initial letter.

conf.level confidence level for the returned confidence interval.

formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the
data values and rhs a factor with two levels giving the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

The null hypothesis is that the ratio of the variances of the populations from which x and y were
drawn, or in the data to which the linear models x and y were fitted, is equal to ratio.

Value

A list with class "htest" containing the following components:

statistic the value of the F test statistic.

parameter the degrees of the freedom of the F distribution of the test statistic.

p.value the p-value of the test.

conf.int a confidence interval for the ratio of the population variances.

estimate the ratio of the sample variances of x and y.

null.value the ratio of population variances under the null.

alternative a character string describing the alternative hypothesis.

method the character string "F test to compare two variances".

data.name a character string giving the names of the data.

See Also

bartlett.test for testing homogeneity of variances in more than two samples from normal
distributions; ansari.test and mood.test for two rank based (nonparametric) two-sample
tests for difference in scale.

Examples

x <- rnorm(50, mean = 0, sd = 2)
y <- rnorm(30, mean = 1, sd = 1)
var.test(x, y) # Do x and y have the same variance?
var.test(lm(x ~ 1), lm(y ~ 1)) # The same.

varimax 1383

varimax Rotation Methods for Factor Analysis

Description

These functions ‘rotate’ loading matrices in factor analysis.

Usage

varimax(x, normalize = TRUE, eps = 1e-5)
promax(x, m = 4)

Arguments

x A loadings matrix, with p rows and k < p columns

m The power used the target for promax. Values of 2 to 4 are recommended.

normalize logical. Should Kaiser normalization be performed? If so the rows of x are
re-scaled to unit length before rotation, and scaled back afterwards.

eps The tolerance for stopping: the relative change in the sum of singular values.

Details

These seek a ‘rotation’ of the factors x %*% T that aims to clarify the structure of the loadings
matrix. The matrix T is a rotation (possibly with reflection) for varimax, but a general linear
transformation for promax, with the variance of the factors being preserved.

Value

A list with components

loadings The ‘rotated’ loadings matrix, x %*% rotmat, of class "loadings".

rotmat The ‘rotation’ matrix.

References

Hendrickson, A. E. and White, P. O. (1964) Promax: a quick method for rotation to orthogonal
oblique structure. British Journal of Statistical Psychology, 17, 65–70.

Horst, P. (1965) Factor Analysis of Data Matrices. Holt, Rinehart and Winston. Chapter 10.

Kaiser, H. F. (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika
23, 187–200.

Lawley, D. N. and Maxwell, A. E. (1971) Factor Analysis as a Statistical Method. Second edition.
Butterworths.

See Also

factanal, Harman74.cor.

1384 Weibull

Examples

varimax with normalize = TRUE is the default
fa <- factanal(~., 2, data = swiss)
varimax(loadings(fa), normalize = FALSE)
promax(loadings(fa))

vcov Calculate Variance-Covariance Matrix for a Fitted Model Object

Description

Returns the variance-covariance matrix of the main parameters of a fitted model object.

Usage

vcov(object, ...)

Arguments

object a fitted model object.

... additional arguments for method functions. For the glm method this can be
used to pass a dispersion parameter.

Details

This is a generic function. Functions with names beginning in vcov. will be methods for this
function. Classes with methods for this function include: lm, mlm, glm, nls, negbin, polr,
rlm (in package MASS), multinom (in package nnet) gls, lme (in package nlme, coxph and
survreg (in package survival).

Value

A matrix of the estimated covariances between the parameter estimates in the linear or non-linear
predictor of the model.

Weibull The Weibull Distribution

Description

Density, distribution function, quantile function and random generation for the Weibull distribution
with parameters shape and scale.

Usage

dweibull(x, shape, scale = 1, log = FALSE)
pweibull(q, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
qweibull(p, shape, scale = 1, lower.tail = TRUE, log.p = FALSE)
rweibull(n, shape, scale = 1)

Weibull 1385

Arguments

x, q vector of quantiles.

p vector of probabilities.

n number of observations. If length(n) > 1, the length is taken to be the
number required.

shape, scale shape and scale parameters, the latter defaulting to 1.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

The Weibull distribution with shape parameter a and scale parameter σ has density given by

f(x) = (a/σ)(x/σ)a−1 exp(−(x/σ)a)

for x ≥ 0. The cumulative distribution function is F (x) = 1− exp(−(x/σ)a) on x ≥ 0, the mean
is E(X) = σΓ(1 + 1/a), and the V ar(X) = σ2(Γ(1 + 2/a)− (Γ(1 + 1/a))2).

Value

dweibull gives the density, pweibull gives the distribution function, qweibull gives the
quantile function, and rweibull generates random deviates.

Invalid arguments will result in return value NaN, with a warning.

Note

The cumulative hazard H(t) = − log(1 − F (t)) is -pweibull(t, a, b, lower =
FALSE, log = TRUE) which is just H(t) = (t/b)a.

Source

[dpq]weibull are calculated directly from the definitions. rweibull uses inversion.

References

Johnson, N. L., Kotz, S. and Balakrishnan, N. (1995) Continuous Univariate Distributions, volume
1, chapter 21. Wiley, New York.

See Also

The Exponential is a special case of the Weibull distribution.

Examples

x <- c(0,rlnorm(50))
all.equal(dweibull(x, shape = 1), dexp(x))
all.equal(pweibull(x, shape = 1, scale = pi), pexp(x, rate = 1/pi))
Cumulative hazard H():
all.equal(pweibull(x, 2.5, pi, lower.tail=FALSE, log.p=TRUE), -(x/pi)^2.5,

tol = 1e-15)
all.equal(qweibull(x/11, shape = 1, scale = pi), qexp(x/11, rate = 1/pi))

1386 weighted.residuals

weighted.mean Weighted Arithmetic Mean

Description

Compute a weighted mean of a numeric vector.

Usage

weighted.mean(x, w, na.rm = FALSE)

Arguments

x a numeric vector containing the values whose mean is to be computed.

w a vector of weights the same length as x giving the weights to use for each
element of x.

na.rm a logical value indicating whether NA values in x should be stripped before the
computation proceeds.

Details

If w is missing then all elements of x are given the same weight.

Missing values in w are not handled.

See Also

mean

Examples

GPA from Siegel 1994
wt <- c(5, 5, 4, 1)/15
x <- c(3.7,3.3,3.5,2.8)
xm <- weighted.mean(x,wt)

weighted.residuals Compute Weighted Residuals

Description

Computed weighted residuals from a linear model fit.

Usage

weighted.residuals(obj, drop0 = TRUE)

Arguments

obj R object, typically of class lm or glm.

drop0 logical. If TRUE, drop all cases with weights == 0.

wilcox.test 1387

Details

Weighted residuals are based on the deviance residuals, which for a lm fit are the raw residuals Ri
multiplied by

√
wi, where wi are the weights as specified in lm’s call.

Dropping cases with weights zero is compatible with influence and related functions.

Value

Numeric vector of length n′, where n′ is the number of of non-0 weights (drop0 = TRUE) or the
number of observations, otherwise.

See Also

residuals, lm.influence, etc.

Examples

utils::example("lm")
all.equal(weighted.residuals(lm.D9),

residuals(lm.D9))
x <- 1:10
w <- 0:9
y <- rnorm(x)
weighted.residuals(lmxy <- lm(y ~ x, weights = w))
weighted.residuals(lmxy, drop0 = FALSE)

wilcox.test Wilcoxon Rank Sum and Signed Rank Tests

Description

Performs one and two sample Wilcoxon tests on vectors of data; the latter is also known as ‘Mann-
Whitney’ test.

Usage

wilcox.test(x, ...)

Default S3 method:
wilcox.test(x, y = NULL,

alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, exact = NULL, correct = TRUE,
conf.int = FALSE, conf.level = 0.95, ...)

S3 method for class 'formula':
wilcox.test(formula, data, subset, na.action, ...)

1388 wilcox.test

Arguments

x numeric vector of data values. Non-finite (e.g. infinite or missing) values will
be omitted.

y an optional numeric vector of data values.

alternative a character string specifying the alternative hypothesis, must be one of
"two.sided" (default), "greater" or "less". You can specify just the
initial letter.

mu a number specifying an optional parameter used to form the null hypothesis. See
‘Details’.

paired a logical indicating whether you want a paired test.

exact a logical indicating whether an exact p-value should be computed.

correct a logical indicating whether to apply continuity correction in the normal approx-
imation for the p-value.

conf.int a logical indicating whether a confidence interval should be computed.

conf.level confidence level of the interval.

formula a formula of the form lhs ~ rhs where lhs is a numeric variable giving the
data values and rhs a factor with two levels giving the corresponding groups.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs. De-
faults to getOption("na.action").

... further arguments to be passed to or from methods.

Details

The formula interface is only applicable for the 2-sample tests.

If only x is given, or if both x and y are given and paired is TRUE, a Wilcoxon signed rank test
of the null that the distribution of x (in the one sample case) or of x - y (in the paired two sample
case) is symmetric about mu is performed.

Otherwise, if both x and y are given and paired is FALSE, a Wilcoxon rank sum test (equivalent
to the Mann-Whitney test: see the Note) is carried out. In this case, the null hypothesis is that the
distributions of x and y differ by a location shift of mu and the alternative is that they differ by some
other location shift (and the one-sided alternative "greater" is that x is shifted to the right of y).

By default (if exact is not specified), an exact p-value is computed if the samples contain less than
50 finite values and there are no ties. Otherwise, a normal approximation is used.

Optionally (if argument conf.int is true), a nonparametric confidence interval and an estimator
for the pseudomedian (one-sample case) or for the difference of the location parameters x-y is
computed. (The pseudomedian of a distribution F is the median of the distribution of (u + v)/2,
where u and v are independent, each with distribution F . If F is symmetric, then the pseudomedian
and median coincide. See Hollander & Wolfe (1973), page 34.) If exact p-values are available, an
exact confidence interval is obtained by the algorithm described in Bauer (1972), and the Hodges-
Lehmann estimator is employed. Otherwise, the returned confidence interval and point estimate are
based on normal approximations.

With small samples it may not be possible to achieve very high confidence interval coverages. If
this happens a warning will be given and an interval with lower coverage will be substituted.

wilcox.test 1389

Value

A list with class "htest" containing the following components:

statistic the value of the test statistic with a name describing it.

parameter the parameter(s) for the exact distribution of the test statistic.

p.value the p-value for the test.

null.value the location parameter mu.

alternative a character string describing the alternative hypothesis.

method the type of test applied.

data.name a character string giving the names of the data.

conf.int a confidence interval for the location parameter. (Only present if argument
conf.int = TRUE.)

estimate an estimate of the location parameter. (Only present if argument conf.int =
TRUE.)

Warning

This function can use large amounts of memory and stack (and even crash R if the stack limit is
exceeded) if exact = TRUE and one sample is large (several thousands or more).

Note

The literature is not unanimous about the definitions of the Wilcoxon rank sum and Mann-Whitney
tests. The two most common definitions correspond to the sum of the ranks of the first sample with
the minimum value subtracted or not: R subtracts and S-PLUS does not, giving a value which is
larger by m(m + 1)/2 for a first sample of size m. (It seems Wilcoxon’s original paper used the
unadjusted sum of the ranks but subsequent tables subtracted the minimum.)

R’s value can also be computed as the number of all pairs (x[i], y[j]) for which y[j] is not
greater than x[i], the most common definition of the Mann-Whitney test.

References

David F. Bauer (1972), Constructing confidence sets using rank statistics. Journal of the American
Statistical Association 67, 687–690.

Myles Hollander & Douglas A. Wolfe (1973), Nonparametric Statistical Methods. New York: John
Wiley & Sons. Pages 27–33 (one-sample), 68–75 (two-sample).
Or second edition (1999).

See Also

psignrank, pwilcox.

wilcox.exact in exactRankTests covers much of the same ground, but also produces exact
p-values in the presence of ties.

wilcox_test in package coin for exact and approximate conditional p-values for the Wilcoxon
tests.

kruskal.test for testing homogeneity in location parameters in the case of two or more sam-
ples; t.test for an alternative under normality assumptions [or large samples]

1390 Wilcoxon

Examples

require(graphics)
One-sample test.
Hollander & Wolfe (1973), 29f.
Hamilton depression scale factor measurements in 9 patients with
mixed anxiety and depression, taken at the first (x) and second
(y) visit after initiation of a therapy (administration of a
tranquilizer).
x <- c(1.83, 0.50, 1.62, 2.48, 1.68, 1.88, 1.55, 3.06, 1.30)
y <- c(0.878, 0.647, 0.598, 2.05, 1.06, 1.29, 1.06, 3.14, 1.29)
wilcox.test(x, y, paired = TRUE, alternative = "greater")
wilcox.test(y - x, alternative = "less") # The same.
wilcox.test(y - x, alternative = "less",

exact = FALSE, correct = FALSE) # H&W large sample
approximation

Two-sample test.
Hollander & Wolfe (1973), 69f.
Permeability constants of the human chorioamnion (a placental
membrane) at term (x) and between 12 to 26 weeks gestational
age (y). The alternative of interest is greater permeability
of the human chorioamnion for the term pregnancy.
x <- c(0.80, 0.83, 1.89, 1.04, 1.45, 1.38, 1.91, 1.64, 0.73, 1.46)
y <- c(1.15, 0.88, 0.90, 0.74, 1.21)
wilcox.test(x, y, alternative = "g") # greater
wilcox.test(x, y, alternative = "greater",

exact = FALSE, correct = FALSE) # H&W large sample
approximation

wilcox.test(rnorm(10), rnorm(10, 2), conf.int = TRUE)

Formula interface.
boxplot(Ozone ~ Month, data = airquality)
wilcox.test(Ozone ~ Month, data = airquality,

subset = Month %in% c(5, 8))

Wilcoxon Distribution of the Wilcoxon Rank Sum Statistic

Description

Density, distribution function, quantile function and random generation for the distribution of the
Wilcoxon rank sum statistic obtained from samples with size m and n, respectively.

Usage

dwilcox(x, m, n, log = FALSE)
pwilcox(q, m, n, lower.tail = TRUE, log.p = FALSE)
qwilcox(p, m, n, lower.tail = TRUE, log.p = FALSE)
rwilcox(nn, m, n)

Wilcoxon 1391

Arguments

x, q vector of quantiles.

p vector of probabilities.

nn number of observations. If length(nn) > 1, the length is taken to be the
number required.

m, n numbers of observations in the first and second sample, respectively. Can be
vectors of positive integers.

log, log.p logical; if TRUE, probabilities p are given as log(p).

lower.tail logical; if TRUE (default), probabilities are P [X ≤ x], otherwise, P [X > x].

Details

This distribution is obtained as follows. Let x and y be two random, independent samples of size m
and n. Then the Wilcoxon rank sum statistic is the number of all pairs (x[i], y[j]) for which
y[j] is not greater than x[i]. This statistic takes values between 0 and m * n, and its mean and
variance are m * n / 2 and m * n * (m + n + 1) / 12, respectively.

If any of the first three arguments are vectors, the recycling rule is used to do the calculations for all
combinations of the three up to the length of the longest vector.

Value

dwilcox gives the density, pwilcox gives the distribution function, qwilcox gives the quantile
function, and rwilcox generates random deviates.

Warning

These functions can use large amounts of memory and stack (and even crash R if the stack limit is
exceeded and stack-checking is not in place) if one sample is large (several thousands or more).

Note

S-PLUS uses a different (but equivalent) definition of the Wilcoxon statistic: see wilcox.test
for details.

Author(s)

Kurt Hornik

Source

These are calculated via recursion, based on cwilcox(k, m, n), the number of choices with
statistic k from samples of size m and n, which is itself calculated recursively and the results cached.
Then dwilcox and pwilcox sum appropriate values of cwilcox, and qwilcox is based on
inversion.

rwilcox generates a random permutation of ranks and evaluates the statistic.

See Also

wilcox.test to calculate the statistic from data, find p values and so on.

dsignrank etc, for the distribution of the one-sample Wilcoxon signed rank statistic.

1392 window

Examples

require(graphics)

x <- -1:(4*6 + 1)
fx <- dwilcox(x, 4, 6)
Fx <- pwilcox(x, 4, 6)

layout(rbind(1,2), widths=1, heights=c(3,2))
plot(x, fx,type='h', col="violet",

main= "Probabilities (density) of Wilcoxon-Statist.(n=6,m=4)")
plot(x, Fx,type="s", col="blue",

main= "Distribution of Wilcoxon-Statist.(n=6,m=4)")
abline(h=0:1, col="gray20",lty=2)
layout(1)# set back

N <- 200
hist(U <- rwilcox(N, m=4,n=6), breaks=0:25 - 1/2,

border="red", col="pink", sub = paste("N =",N))
mtext("N * f(x), f() = true \"density\"", side=3, col="blue")
lines(x, N*fx, type='h', col='blue', lwd=2)

points(x, N*fx, cex=2)

Better is a Quantile-Quantile Plot
qqplot(U, qw <- qwilcox((1:N - 1/2)/N, m=4,n=6),

main = paste("Q-Q-Plot of empirical and theoretical quantiles",
"Wilcoxon Statistic, (m=4, n=6)",sep="\n"))

n <- as.numeric(names(print(tU <- table(U))))
text(n+.2, n+.5, labels=tU, col="red")

window Time Windows

Description

window is a generic function which extracts the subset of the object x observed between the times
start and end. If a frequency is specified, the series is then re-sampled at the new frequency.

Usage

window(x, ...)
S3 method for class 'ts':
window(x, ...)
Default S3 method:
window(x, start = NULL, end = NULL,

frequency = NULL, deltat = NULL, extend = FALSE, ...)

window(x, ...) <- value
S3 replacement method for class 'ts':
window(x, start, end, frequency, deltat, ...) <- value

window 1393

Arguments

x a time-series (or other object if not replacing values).

start the start time of the period of interest.

end the end time of the period of interest.
frequency, deltat

the new frequency can be specified by either (or both if they are consistent).

extend logical. If true, the start and end values are allowed to extend the series. If
false, attempts to extend the series give a warning and are ignored.

... further arguments passed to or from other methods.

value replacement values.

Details

The start and end times can be specified as for ts. If there is no observation at the new start or
end, the immediately following (start) or preceding (end) observation time is used.

The replacement function has a method for ts objects, and is allowed to extend the series (with a
warning). There is no default method.

Value

The value depends on the method. window.default will return a vector or matrix with an
appropriate tsp attribute.

window.ts differs from window.default only in ensuring the result is a ts object.

If extend = TRUE the series will be padded with NAs if needed.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

time, ts.

Examples

window(presidents, 1960, c(1969,4)) # values in the 1960's
window(presidents, deltat=1) # All Qtr1s
window(presidents, start=c(1945,3), deltat=1) # All Qtr3s
window(presidents, 1944, c(1979,2), extend=TRUE)

pres <- window(presidents, 1945, c(1949,4)) # values in the 1940's
window(pres, 1945.25, 1945.50) <- c(60, 70)
window(pres, 1944, 1944.75) <- 0 # will generate a warning
window(pres, c(1945,4), c(1949,4), frequency=1) <- 85:89
pres

1394 xtabs

xtabs Cross Tabulation

Description

Create a contingency table from cross-classifying factors, usually contained in a data frame, using
a formula interface.

Usage

xtabs(formula = ~., data = parent.frame(), subset, na.action,
exclude = c(NA, NaN), drop.unused.levels = FALSE)

Arguments

formula a formula object with the cross-classifying variables (separated by +) on the
right hand side (or an object which can be coerced to a formula). Interactions
are not allowed. On the left hand side, one may optionally give a vector or a
matrix of counts; in the latter case, the columns are interpreted as corresponding
to the levels of a variable. This is useful if the data have already been tabulated,
see the examples below.

data an optional matrix or data frame (or similar: see model.frame) containing
the variables in the formula formula. By default the variables are taken from
environment(formula).

subset an optional vector specifying a subset of observations to be used.

na.action a function which indicates what should happen when the data contain NAs.

exclude a vector of values to be excluded when forming the set of levels of the classifying
factors.

drop.unused.levels
a logical indicating whether to drop unused levels in the classifying factors. If
this is FALSE and there are unused levels, the table will contain zero marginals,
and a subsequent chi-squared test for independence of the factors will not work.

Details

There is a summary method for contingency table objects created by table or xtabs, which
gives basic information and performs a chi-squared test for independence of factors (note that the
function chisq.test currently only handles 2-d tables).

If a left hand side is given in formula, its entries are simply summed over the cells corresponding
to the right hand side; this also works if the lhs does not give counts.

Value

A contingency table in array representation of class c("xtabs", "table"), with a "call"
attribute storing the matched call.

See Also

table for traditional cross-tabulation, and as.data.frame.table which is the inverse oper-
ation of xtabs (see the DF example below).

xtabs 1395

Examples

'esoph' has the frequencies of cases and controls for all levels of
the variables 'agegp', 'alcgp', and 'tobgp'.
xtabs(cbind(ncases, ncontrols) ~ ., data = esoph)
Output is not really helpful ... flat tables are better:
ftable(xtabs(cbind(ncases, ncontrols) ~ ., data = esoph))
In particular if we have fewer factors ...
ftable(xtabs(cbind(ncases, ncontrols) ~ agegp, data = esoph))

This is already a contingency table in array form.
DF <- as.data.frame(UCBAdmissions)
Now 'DF' is a data frame with a grid of the factors and the counts
in variable 'Freq'.
DF
Nice for taking margins ...
xtabs(Freq ~ Gender + Admit, DF)
And for testing independence ...
summary(xtabs(Freq ~ ., DF))

Create a nice display for the warp break data.
warpbreaks$replicate <- rep(1:9, len = 54)
ftable(xtabs(breaks ~ wool + tension + replicate, data = warpbreaks))

1396 xtabs

Chapter 8

The tools package

tools-package Tools for Package Development

Description

Tools for package development, administration and documentation.

Details

This package contains tools for manipulating R packages and their documentation.

For a complete list of functions, use library(help="tools").

Author(s)

Kurt Hornik and Friedrich Leisch

Maintainer: R Core Team 〈R-core@r-project.org〉

buildVignettes List and Build Package Vignettes

Description

Run Sweave and texi2dvi on all vignettes of a package.

Usage

buildVignettes(package, dir, lib.loc = NULL, quiet = TRUE, clean = TRUE)
pkgVignettes(package, dir, lib.loc = NULL)

1397

1398 charsets

Arguments

package a character string naming an installed package. If given, Sweave files are
searched in subdirectory ‘doc’.

dir a character string specifying the path to a package’s root source directory. This
subdirectory ‘inst/doc’ is searched for Sweave files.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. The specified library trees
are used to search for package.

quiet logical. Run Sweave and texi2dvi in quiet mode.

clean Remove all files generated by the build, even if there were copies there before.

Value

buildVignettes is called for its side effect of creating the PDF versions of all vignettes.

pkgVignettes returns an object of class "pkgVignettes".

charsets Conversion Tables between Character Sets

Description

charset_to_Unicode is a matrix of Unicode points with columns for the common 8-bit en-
codings.

Adobe_glyphs is a dataframe which gives Adobe glyph names for Unicode points. It has two
character columns, "adobe" and "unicode" (a 4-digit hex representation).

Usage

charset_to_Unicode

Adobe_glyphs

Details

charset_to_Unicode is an integer matrix of class c("noquote", "noquote") so prints
in hexadecimal. The mappings are those used by libiconv: there are differences in the way
quotes and minus/hyphen are mapped between sources (and the postscript encoding files use a
different mapping).

Adobe_glyphs include all the Adobe glyph names which correspond to single Uni-
code characters. It is sorted by Unicode point and within a point alphabetically on the
glyph(there can be more than one name for a Unicode point). The data are in the file
‘R_HOME/share/encodings/Adobe_glyphlist’.

Source

http://partners.adobe.com/public/developer/en/opentype/glyphlist.
txt

http://partners.adobe.com/public/developer/en/opentype/glyphlist.txt
http://partners.adobe.com/public/developer/en/opentype/glyphlist.txt

checkFF 1399

Examples

find Adobe names for ISOLatin2 chars.
latin2 <- charset_to_Unicode[, "ISOLatin2"]
aUnicode <- as.numeric(paste("0x", Adobe_glyphs$unicode, sep=""))
keep <- aUnicode %in% latin2
aUnicode <- aUnicode[keep]
aAdobe <- Adobe_glyphs[keep, 1]
first match
aLatin2 <- aAdobe[match(latin2, aUnicode)]
all matches
bLatin2 <- lapply(1:256, function(x) aAdobe[aUnicode == latin2[x]])
format(bLatin2, justify="none")

checkFF Check Foreign Function Calls

Description

Performs checks on calls to compiled code from R code. Currently only checks whether the inter-
face functions such as .C and .Fortran are called with a "NativeSymbolInfo" first argu-
ment or with argument PACKAGE specified, which is highly recommended to avoid name clashes
in foreign function calls.

Usage

checkFF(package, dir, file, lib.loc = NULL,
verbose = getOption("verbose"))

Arguments

package a character string naming an installed package. If given, the installed R code of
the package is checked.

dir a character string specifying the path to a package’s root source directory. This
should contain the subdirectory ‘R’ (for R code). Only used if package is not
given.

file the name of a file containing R code to be checked. Used if neither package
nor dir are given.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. The specified library trees
are used to search for package.

verbose a logical. If TRUE, additional diagnostics are printed (and the result is returned
invisibly).

Details

Note that we can only check if the name argument is a symbol or a character string, not what class
of object the symbol resolves to at run-time.

If the package has a namespace and if that contains a useDynLib directive, calls in top-level
functions in the package are not reported as their symbols will be preferentially looked up in the
DLL named in the first useDynLib directive.

1400 checkMD5sums

Value

An object of class "checkFF", which currently is a list of the (parsed) foreign function calls with
a character first argument and no PACKAGE argument.

There is a print method to display the information contained in such objects.

Warning

This function is still experimental. Both name and interface might change in future versions.

See Also

.C, .Fortran; Foreign.

Examples

checkFF(package = "stats", verbose = TRUE)

checkMD5sums Check and Create MD5 Checksum Files

Description

checkMD5sums checks the files against a file ‘MD5’.

Usage

checkMD5sums(package, dir)

Arguments

package the name of an installed package

dir the path to the top-level directory of an installed package.

Details

The file ‘MD5’ which is created is in a format which can be checked by md5sum -c MD5 if a
suitable command-line version of md5sum is available. (One is supplied in the bundle at http:
//www.murdoch-sutherland.com/Rtools/tools.zip.)

If dir is missing, an installed package of name package is searched for.

The private function tools:::.installMD5sums is used to create MD5 files in the Windows
build.

Value

checkMD5sums returns a logical, NA if there is no ‘MD5’ file to be checked.

See Also

md5sum

http://www.murdoch-sutherland.com/Rtools/tools.zip
http://www.murdoch-sutherland.com/Rtools/tools.zip

checkTnF 1401

checkTnF Check R Packages or Code for T/F

Description

Checks the specified R package or code file for occurrences of T or F, and gathers the expression
containing these. This is useful as in R T and F are just variables which are set to the logicals TRUE
and FALSE by default, but are not reserved words and hence can be overwritten by the user. Hence,
one should always use TRUE and FALSE for the logicals.

Usage

checkTnF(package, dir, file, lib.loc = NULL)

Arguments

package a character string naming an installed package. If given, the installed R code
and the examples in the documentation files of the package are checked. R code
installed as an image file cannot be checked.

dir a character string specifying the path to a package’s root source directory. This
must contain the subdirectory ‘R’ (for R code), and should also contain ‘man’
(for documentation). Only used if package is not given. If used, the R code
files and the examples in the documentation files are checked.

file the name of a file containing R code to be checked. Used if neither package
nor dir are given.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. The specified library trees
are used to search for package.

Value

An object of class "checkTnF" which is a list containing, for each file where occurrences of T
or F were found, a list with the expressions containing these occurrences. The names of the list are
the corresponding file names.

There is a print method for nicely displaying the information contained in such objects.

Warning

This function is still experimental. Both name and interface might change in future versions.

1402 checkVignettes

checkVignettes Check Package Vignettes

Description

Check all Sweave files of a package by running Sweave and/or Stangle on them. All R source
code files found after the tangling step are sourceed to check whether all code can be executed
without errors.

Usage

checkVignettes(package, dir, lib.loc = NULL,
tangle = TRUE, weave = TRUE, latex = FALSE,
workdir = c("tmp", "src", "cur"),
keepfiles = FALSE)

Arguments

package a character string naming an installed package. If given, Sweave files are
searched in subdirectory ‘doc’.

dir a character string specifying the path to a package’s root source directory. This
subdirectory ‘inst/doc’ is searched for Sweave files.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. The specified library trees
are used to search for package.

tangle Perform a tangle and source the extracted code?

weave Perform a weave?

latex logical: if tangle, weave and latex are TRUE and there is no ‘Makefile’
in the vignettes directory, run the tangled files through pdflatex.

workdir Directory used as working directory while checking the vignettes. If "tmp"
then a temporary directory is created, this is the default. If "src" then the di-
rectory containing the vignettes itself is used, if "cur" then the current working
directory of R is used.

keepfiles Delete file in temporary directory? This option is ignored when workdir !=
"tmp".

Value

An object of class "checkVignettes" which is a list with the error messages found during the
tangle and weave steps. There is a print method for nicely displaying the information contained
in such objects.

codoc 1403

codoc Check Code/Documentation Consistency

Description

Find inconsistencies between actual and documented ‘structure’ of R objects in a package. codoc
compares names and optionally also corresponding positions and default values of the arguments
of functions. codocClasses and codocData compare slot names of S4 classes and variable
names of data sets, respectively.

Usage

codoc(package, dir, lib.loc = NULL,
use.values = NULL, verbose = getOption("verbose"))

codocClasses(package, lib.loc = NULL)
codocData(package, lib.loc = NULL)

Arguments

package a character string naming an installed package.

dir a character string specifying the path to a package’s root source directory. This
must contain the subdirectories ‘man’ with R documentation sources (in Rd
format) and ‘R’ with R code. Only used if package is not given.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. The specified library trees
are used to search for package.

use.values if FALSE, do not use function default values when comparing code and docs.
Otherwise, compare all default values if TRUE, and only the ones documented
in the usage otherwise (default).

verbose a logical. If TRUE, additional diagnostics are printed.

Details

The purpose of codoc is to check whether the documented usage of function objects agrees with
their formal arguments as defined in the R code. This is not always straightforward, in particular
as the usage information for methods to generic functions often employs the name of the generic
rather than the method.

The following algorithm is used. If an installed package is used, it is loaded (unless it is the base
package), after possibly detaching an already loaded version of the package. Otherwise, if the
sources are used, the R code files of the package are collected and sourced in a new environment.
Then, the usage sections of the Rd files are extracted and parsed ‘as much as possible’ to give the
formals documented. For interpreted functions in the code environment, the formals are compared
between code and documentation according to the values of the argument use.values. Synopsis
sections are used if present; their occurrence is reported if verbose is true.

If a package has a name space both exported and unexported objects are checked, as well as regis-
tered S3 methods. (In the unlikely event of differences the order is exported objects in the package,
registered S3 methods and finally objects in the name space and only the first found is checked.)

Currently, the R documentation format has no high-level markup for the basic ‘structure’ of classes
and data sets (similar to the usage sections for function synopses). Variable names for data frames in

1404 delimMatch

documentation objects obtained by suitably editing ‘templates’ created by prompt are recognized
by codocData and used provided that the documentation object is for a single data frame (i.e.,
only has one alias). codocClasses analogously handles slot names for classes in documentation
objects obtained by editing shells created by promptClass.

Help files named ‘pkgname-defunct.Rd’ for the appropriate pkgname are checked more loosely,
as they may have undocumented arguments.

Value

codoc returns an object of class "codoc". Currently, this is a list which, for each Rd object in
the package where an inconsistency was found, contains an element with a list of the mismatches
(which in turn are lists with elements code and docs, giving the corresponding arguments ob-
tained from the function’s code and documented usage).

codocClasses and codocData return objects of class "codocClasses" and
"codocData", respectively, with a structure similar to class "codoc".

There are print methods for nicely displaying the information contained in such objects.

Warning

Both codocClasses and codocData are still experimental. Names, interfaces and values
might change in future versions.

Note

The default for use.values has been changed from FALSE to NULL, for R versions 1.9.0 and
later.

See Also

undoc, QC

delimMatch Delimited Pattern Matching

Description

Match delimited substrings in a character vector, with proper nesting.

Usage

delimMatch(x, delim = c("{", "}"), syntax = "Rd")

Arguments

x a character vector.

delim a character vector of length 2 giving the start and end delimiters. Future versions
might allow for arbitrary regular expressions.

syntax currently, always the string "Rd" indicating Rd syntax (i.e., ‘%’ starts a com-
ment extending till the end of the line, and ‘\’ escapes). Future versions might
know about other syntaxes, perhaps via ‘syntax tables’ allowing to flexibly spec-
ify comment, escape, and quote characters.

encoded_text_to_latex 1405

Value

An integer vector of the same length as x giving the starting position (in characters) of the first
match, or −1 if there is none, with attribute "match.length" giving the length (in characters)
of the matched text (or −1 for no match).

See Also

regexpr for ‘simple’ pattern matching.

Examples

x <- c("\\value{foo}", "function(bar)")
delimMatch(x)
delimMatch(x, c("(", ")"))

encoded_text_to_latex
Translate non-ASCII Text to LaTeX Escapes

Description

Translate non-ASCII characters in text to LaTeX escape sequences.

Usage

encoded_text_to_latex(x,
encoding = c("latin1", "latin2", "latin9",

"UTF-8", "utf8"))

Arguments

x a character vector.

encoding the encoding to be assumed. "latin9" is officially ISO-8859-15 or Latin-9,
but known as latin9 to LaTeX’s inputenc package.

Details

Non-ASCII characters in x are replaced by an appropriate LaTeX escape sequence, or ‘?’ if there
is no appropriate sequence.

Even if there is an appropriate sequence, it may not be supported by the font in use. Hyphen is
mapped to ‘\-’.

Value

A character vector of the same length as x.

See Also

iconv

1406 fileutils

Examples

x <- "fa\xE7ile"
encoded_text_to_latex(x, "latin1")
Not run:
create a tex file to show the upper half of 8-bit charsets
x <- rawToChar(as.raw(160:255), multiple=TRUE)
(x <- matrix(x, ncol=16, byrow=TRUE))
xx <- x
xx[] <- encoded_text_to_latex(x, "latin1") # or latin2 or latin9
xx <- apply(xx, 1, paste, collapse="&")
con <- file("test-encoding.tex", "w")
header <- c(
"\\documentclass{article}",
"\\usepackage[T1]{fontenc}",
"\\usepackage{Rd}",
"\\begin{document}",
"\\HeaderA{test}{}{test}",
"\\begin{Details}\relax",
"\\Tabular{cccccccccccccccc}{")
trailer <- c("}", "\\end{Details}", "\\end{document}")
writeLines(header, con)
writeLines(paste(xx, "\\", sep=""), con)
writeLines(trailer, con)
close(con)
and some UTF_8 chars
x <- intToUtf8(as.integer(

c(160:383,0x0192,0x02C6,0x02C7,0x02CA,0x02D8,
0x02D9, 0x02DD, 0x200C, 0x2018, 0x2019, 0x201C,
0x201D, 0x2020, 0x2022, 0x2026, 0x20AC)),

multiple=TRUE)
x <- matrix(x, ncol=16, byrow=TRUE)
xx <- x
xx[] <- encoded_text_to_latex(x, "UTF-8")
xx <- apply(xx, 1, paste, collapse="&")
con <- file("test-utf8.tex", "w")
writeLines(header, con)
writeLines(paste(xx, "\\", sep=""), con)
writeLines(trailer, con)
close(con)
End(Not run)

fileutils File Utilities

Description

Utilities for listing files, and manipulating file paths.

Usage

file_path_as_absolute(x)
file_path_sans_ext(x)

list_files_with_exts(dir, exts, all.files = FALSE,

fileutils 1407

full.names = TRUE)
list_files_with_type(dir, type, all.files = FALSE,

full.names = TRUE, OS_subdirs = .OStype())

Arguments

x character vector giving file paths.

dir a character string with the path name to a directory.

exts a character vector of possible file extensions.

all.files a logical. If FALSE (default), only visible files are considered; if TRUE, all files
are used.

full.names a logical indicating whether the full paths of the files found are returned (de-
fault), or just the file names.

type a character string giving the ‘type’ of the files to be listed, as characterized by
their extensions. Currently, possible values are "code" (R code), "data"
(data sets), "demo" (demos), "docs" (R documentation), and "vignette"
(vignettes).

OS_subdirs a character vector with the names of OS-specific subdirectories to possibly
include in the listing of R code and documentation files. By default, the
value of the environment variable R_OSTYPE, or if this is empty, the value
of .Platform$OS.type, is used.

Details

file_path_as_absolute turns a possibly relative file path absolute, performing tilde expan-
sion if necessary. Currently, only a single existing path can be given.

file_path_sans_ext returns the file paths without extensions. (Only purely alphanumeric
extensions are recognized.)

list_files_with_exts returns the paths or names of the files in directory dirwith extension
matching one of the elements of exts. Note that by default, full paths are returned, and that only
visible files are used.

list_files_with_type returns the paths of the files in dir of the given ‘type’, as determined
by the extensions recognized by R. When listing R code and documentation files, files in OS-specific
subdirectories are included if present according to the value of OS_subdirs. Note that by default,
full paths are returned, and that only visible files are used.

See Also

file.path, file.info, list.files

Examples

dir <- file.path(R.home(), "library", "stats")
list_files_with_exts(file.path(dir, "demo"), "R")
list_files_with_type(file.path(dir, "demo"), "demo") # the same
file_path_sans_ext(list.files(file.path(R.home(), "modules")))

1408 getDepList

getDepList Functions to Retrieve Dependency Information

Description

Given a dependency matrix, will create a DependsList object for that package which will include
the dependencies for that matrix, which ones are installed, which unresolved dependencies were
found online, which unresolved dependencies were not found online, and any R dependencies.

Usage

getDepList(depMtrx, instPkgs, recursive = TRUE, local = TRUE,
reduce = TRUE, lib.loc = NULL)

pkgDepends(pkg, recursive = TRUE, local = TRUE, reduce = TRUE,
lib.loc = NULL)

Arguments

depMtrx A dependency matrix as from package.dependencies

pkg The name of the package

instPkgs A matrix specifying all packages installed on the local system, as from
installed.packages

recursive Whether or not to include indirect dependencies

local Whether or not to search only locally

reduce Whether or not to collapse all sets of dependencies to a minimal value

lib.loc What libraries to use when looking for installed packages. NULL indicates all
library directories in the user’s .libPaths().

Details

The function pkgDepends is a convenience function which wraps getDepList and takes as
input a package name. It will then query installed.packages and also generate a dependency
matrix, calling getDepList with this information and returning the result.

These functions will retrieve information about the dependencies of the matrix, resulting in a
DependsList object. This is a list with four elements:

Depends A vector of the dependencies for this package.

Installed A vector of the dependencies which have been satisfied by the currently installed pack-
ages.

Found A list representing the dependencies which are not in Installed but were found online.
This list has element names which are the URLs for the repositories in which packages were
found and the elements themselves are vectors of package names which were found in the
respective repositories. If local=TRUE, the Found element will always be empty.

R Any R version dependencies.

installFoundDepends 1409

If recursive is TRUE, any package that is specified as a dependency will in turn have its depen-
dencies included (and so on), these are known as indirect dependencies. If recursive is FALSE,
only the dependencies directly stated by the package will be used.

If local is TRUE, the system will only look at the user’s local install and not online to find
unresolved dependencies.

If reduce is TRUE, the system will collapse the fields in the DependsList object such that a
minimal set of dependencies are specified (for instance if there was (’foo’, ’foo (>= 1.0.0)’, ’foo
(>= 1.3.0)’), it would only return ’foo (>= 1.3.0)’).

Value

An object of class DependsList

Author(s)

Jeff Gentry

See Also

installFoundDepends

Examples

pkgDepends("tools", local = FALSE)

installFoundDepends
A function to install unresolved dependencies

Description

This function will take the Found element of a pkgDependsList object and attempt to install
all of the listed packages from the specified repositories.

Usage

installFoundDepends(depPkgList, ...)

Arguments

depPkgList A Found element from a pkgDependsList object

... Arguments to pass on to install.packages

Details

This function takes as input the Found list from a pkgDependsList object. This list will have
element names being URLs corresponding to repositories and the elements will be vectors of pack-
age names. For each element, install.packages is called for that URL to install all packages
listed in the vector.

1410 makeLazyLoading

Author(s)

Jeff Gentry

See Also

pkgDepends, install.packages

Examples

Set up a temporary directory to install packages to
tmp <- tempfile()
dir.create(tmp)

pDL <- pkgDepends("tools",local=FALSE)
installFoundDepends(pDL$Found, destdir=tmp)

makeLazyLoading Lazy Loading of Packages

Description

Tools for lazy loading of packages from a database.

Usage

makeLazyLoading(package, lib.loc = NULL, compress = TRUE,
keep.source = getOption("keep.source.pkgs"))

Arguments

package package name string

lib.loc library trees, as in library

keep.source logical; should sources be kept when saving from source

compress logical; whether to compress entries on the database.

Details

A tool to set up packages for lazy loading from a database. For packages other than base you can
use makeLazyLoading(package) to convert them to use lazy loading.

Author(s)

Luke Tierney and Brian Ripley

Examples

set up package "splines" for lazy loading -- already done
Not run:
tools:::makeLazyLoading("splines")
End(Not run)

md5sum 1411

md5sum Compute MD5 Checksums

Description

Compute the 32-byte MD5 checksums of one or more files.

Usage

md5sum(files)

Arguments

files character. The paths of file(s) to be check-summed.

Value

A character vector of the same length as files, with names equal to files. The elements will
be NA for non-existent or unreadable files, otherwise a 32-character string of hexadecimal digits.

On Windows all files are read in binary mode (as the md5sum utilities there do): on other OSes the
files are read in the default way.

See Also

checkMD5sums

Examples

md5sum(dir(R.home(), pattern="^COPY", full.names=TRUE))

package.dependencies
Check Package Dependencies

Description

Parses and checks the dependencies of a package against the currently installed version of R (and
other packages).

Usage

package.dependencies(x, check = FALSE,
depLevel = c("Depends", "Imports", "Suggests"))

Arguments

x A matrix of package descriptions as returned by available.packages.

check If TRUE, return logical vector of check results. If FALSE, return parsed list of
dependencies.

depLevel Whether to look for Depends or Suggests level dependencies.

1412 QC

Details

Currently we only check if the package conforms with the currently running version of R. In the
future we might add checks for inter-package dependencies.

See Also

update.packages

QC QC Checks for R Code and/or Documentation

Description

Functions for performing various quality checks.

Usage

checkDocFiles(package, dir, lib.loc = NULL)
checkDocStyle(package, dir, lib.loc = NULL)
checkReplaceFuns(package, dir, lib.loc = NULL)
checkS3methods(package, dir, lib.loc = NULL)

Arguments

package a character string naming an installed package.

dir a character string specifying the path to a package’s root source directory. This
should contain the subdirectories ‘R’ (for R code) and ‘man’ with R documen-
tation sources (in Rd format). Only used if package is not given.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. The specified library trees
are used to search for package.

Details

checkDocFiles checks, for all Rd files in a package, whether all arguments shown in the usage
sections of the Rd file are documented in its arguments section. It also reports duplicated entries in
the arguments section, and ‘over-documented’ arguments which are given in the arguments section
but not in the usage. Note that the match is for the usage section and not a possibly existing synopsis
section, as the usage is what gets displayed.

checkDocStyle investigates how (S3) methods are shown in the usages of the Rd files in a
package. It reports the methods shown by their full name rather than using the Rd \methodmarkup
for indicating S3 methods. Earlier versions of R also reported about methods shown along with
their generic, which typically caused problems for the documentation of the primary argument in
the generic and its methods. With \method now being expanded in a way that class information is
preserved, joint documentation is no longer necessarily a problem. (The corresponding information
is still contained in the object returned by checkDocStyle.)

checkReplaceFuns checks whether replacement functions or S3/S4 replacement methods in
the package R code have their final argument named value.

checkS3methods checks whether all S3 methods defined in the package R code have all argu-
ments of the corresponding generic, with positional arguments of the generics in the same positions

Rdindex 1413

for the method. As an exception, the first argument of a formula method may be called formula
even if this is not the name used by the generic. The rules when ... is involved are subtle: see
the source code. Functions recognized as S3 generics are those with a call to UseMethod in their
body, internal S3 generics (see InternalMethods), and S3 group generics (see Math). Possible dis-
patch under a different name is not taken into account. The generics are sought first in the given
package, then in the base package and (currently) the packages graphics, stats, and utils added
in R 1.9.0 by splitting the former base, and, if an installed package is tested, also in the loaded
namespaces/packages listed in the package’s ‘DESCRIPTION’ Depends field.

If using an installed package, the checks needing access to all R objects of the package will load
the package (unless it is the base package), after possibly detaching an already loaded version of
the package.

Value

The functions return objects of class the same as the respective function names containing the infor-
mation about problems detected. There are print methods for nicely displaying the information
contained in such objects.

Warning

These functions are still experimental. Names, interfaces and values might change in future ver-
sions.

Rdindex Generate Index from Rd Files

Description

Print a 2-column index table with names and titles from given R documentation files to a given
output file or connection. The titles are nicely formatted between two column positions (typically
25 and 72, respectively).

Usage

Rdindex(RdFiles, outFile = "", type = NULL,
width = 0.9 * getOption("width"), indent = NULL)

Arguments

RdFiles a character vector specifying the Rd files to be used for creating the index, either
by giving the paths to the files, or the path to a single directory with the sources
of a package.

outFile a connection, or a character string naming the output file to print to. "" (the
default) indicates output to the console.

type a character string giving the documentation type of the Rd files to be included
in the index, or NULL (the default). The type of an Rd file is typically specified
via the \docType tag; if type is "data", Rd files whose only keyword is
datasets are included as well.

width a positive integer giving the target column for wrapping lines in the output.

indent a positive integer specifying the indentation of the second column. Must not be
greater than width/2, and defaults to width/3.

1414 Rdutils

Details

If a name is not a valid alias, the first alias (or the empty string if there is none) is used instead.

Rdutils Rd Utilities

Description

Utilities for computing on the information in Rd objects.

Usage

Rd_db(package, dir, lib.loc = NULL)
Rd_parse(file, text = NULL)

Arguments

package a character string naming an installed package.

dir a character string specifying the path to a package’s root source directory. This
should contain the subdirectory ‘man’ with R documentation sources (in Rd
format). Only used if package is not given.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. The specified library trees
are used to search for package.

file a connection, or a character string giving the name of a file or a URL to read
documentation in Rd format from.

text character vector with documentation in Rd format. Elements are treated as if
they were lines of a file.

Details

Rd_db builds a simple database of all Rd sources in a package, as a list of character vectors with
the lines of the Rd files in the package. This is particularly useful for working on installed packages,
where the individual Rd files in the sources are no longer available.

Rd_parse is a simple top-level Rd parser/analyzer. It returns a list with components

meta a list containing the Rd metadata (aliases, concepts, keywords, and documentation type);

data a data frame with the names (tags) and corresponding text (vals) of the top-level sections
in the R documentation object;

rest top-level text not accounted for (currently, silently discarded by Rdconv, and hence usually
the indication of a problem).

Note that at least for the time being, only the top-level structure is analyzed.

Warning

These functions are still experimental. Names, interfaces and values might change in future ver-
sions.

read.00Index 1415

Examples

Build the Rd db for the (installed) base package.
db <- Rd_db("base")
Run Rd_parse on all entries in the Rd db.
db <- lapply(db, function(txt) Rd_parse(text = txt))
Extract the metadata.
meta <- lapply(db, "[[", "meta")

Keyword metadata per Rd file.
keywords <- lapply(meta, "[[", "keywords")
Tabulate the keyword entries.
kw_table <- sort(table(unlist(keywords)))
The 5 most frequent ones:
rev(kw_table)[1 : 5]
The "most informative" ones:
kw_table[kw_table == 1]

Concept metadata per Rd file.
concepts <- lapply(meta, "[[", "concepts")
How many files already have \concept metadata?
sum(sapply(concepts, length) > 0)
How many concept entries altogether?
length(unlist(concepts))

read.00Index Read 00Index-style Files

Description

Read item/description information from 00Index-style files. Such files are description lists rendered
in tabular form, and currently used for the ‘INDEX’ and ‘demo/00Index’ files of add-on packages.

Usage

read.00Index(file)

Arguments

file the name of a file to read data values from. If the specified file is "", then input
is taken from the keyboard (in this case input can be terminated by a blank line).
Alternatively, file can be a connection, which will be opened if necessary,
and if so closed at the end of the function call.

Value

A character matrix with 2 columns named "Item" and "Description" which hold the items
and descriptions.

See Also

formatDL for the inverse operation of creating a 00Index-style file from items and their descrip-
tions.

1416 readNEWS

readNEWS Read R’s NEWS file or a similar one

Description

Read R’s NEWS file or a similarly formatted one. This is an experimental feature, new in R 2.4.0
and may change in several ways.

Usage

readNEWS(file = file.path(R.home(), "NEWS"), trace = FALSE,
chop = c("first", "1", "par1", "keepAll"))

checkNEWS(file = file.path(R.home(), "NEWS"))

Arguments

file the name of the file which the data are to be read from. Alternatively, file
can be a connection, which will be opened if necessary, and can also be a
complete URL. For more details, see the file argument of read.table.

trace logical indicating if the recursive reading should be traced, i.e., print what it is
doing.

chop a character string specifying how the news entries should be chopped; chop =
"keepAll" saves the full entries.

Details

readNEWS() reads a NEWS file; checkNEWS() checks for common errors in formatting. Cur-
rently it detects an incorrect number of spaces before the "o" item marker.

Value

readNEWS() returns an (S3) object of class "newsTree"; effectively a list of lists which is
a tree of NEWS entries.

checkNEWS() returns TRUE if no suspected errors are found, or prints a message for each sus-
pected error and returns FALSE.

Note that this is still experimental and may change in the future.

Examples

NEWStr <- readNEWS(trace = TRUE)# chop = "first" (= "first non-empty")
keep the full NEWS entry text i.e. "no chopping":
NEWStrA <- readNEWS(chop = "keepAll")
object.size(NEWStr)
object.size(NEWStrA) ## (no chopping) ==> about double the size

str(NEWStr, max.level = 3)

str(NEWStr[[c("2.3", "2.3.1")]], max.level=2, vec.len=1)

NEWStr [[c("2.3", "2.3.1", "NEW FEATURES")]]
NEWStrA[[c("2.4", "2.4.0", "NEW FEATURES")]]

showNonASCII 1417

Check the current NEWS file

stopifnot(checkNEWS())

showNonASCII Highlight non-ASCII characters

Description

This function prints elements of a character vector which contain non-ASCII bytes, printing such
bytes as a escape like <fc>.

Usage

showNonASCII(x)

Arguments

x a character vector.

Details

This was originally written to help detect non-portable text in files in packages.

It prints all lines of the files which contain non-ACII characters, preceded by the line number and
with non-ASCII bytes highlighted via iconv(sub = "byte").

Examples

out <- c(
"fa\xE7ile test of showNonASCII():",
"\\details{",
" This is a good line",
" This has an \xfcmlaut in it.",
" OK again.",
"}")
cat(out, file = "my.Rd", sep = "\n")

showNonASCII(readLines("my.Rd"))
unlink("my.Rd")

1418 tools-deprecated

texi2dvi Compile LaTeX Files

Description

Run latex and bibtex until all cross-references are resolved and create either a dvi or PDF file.

Usage

texi2dvi(file, pdf = FALSE, clean = FALSE, quiet = TRUE,
texi2dvi = getOption("texi2dvi"), texinputs = NULL)

Arguments

file character. Name of LaTeX source file.
pdf logical. If TRUE, a PDF file is produced instead of the default dvi file

(texi2dvi command line option ‘--pdf’).
clean logical. If TRUE, all auxiliary files are removed (texi2dvi command line

option ‘--clean’). May not work on some platforms.
quiet logical. No output unless an error occurs. Ignored if emulation (see the

texi2dvi argument) is used.
texi2dvi character (or NULL). Script or program used to compile a TeX file to dvi or PDF,

respectively. The default (selected by NULL) is to look for an executable on the
search path and otherwise emulate the script with system calls.

texinputs NULL or a character vector of paths to add to the LaTeX and bibtex input search
paths.

Details

Despite the name, this is used in R to compile LaTeX files, specifically those generated from
vignettes. As from R 2.7.1 it ensures that the ‘R_HOME/share/texmf’ directory is in the
TEXINPUTS path, so R style files such as ‘Sweave’ and ‘Rd’ will be found. The search path
used is first the existing TEXINPUTS setting (or the current directory if unset), then elements of
texinputs, then ‘R_HOME /share/texmf’ and finally the default path. Analogous changes are
made to BIBINPUTS and BSTINPUTSsettings.

Author(s)

Achim Zeileis and R-core

tools-deprecated Deprecated Objects in Package tools

Description

The functions or variables listed here are provided for compatibility with older versions of R only,
and may be defunct as soon as of the next release.

See Also

Deprecated, Defunct

undoc 1419

undoc Find Undocumented Objects

Description

Finds the objects in a package which are undocumented, in the sense that they are visible to the user
(or data objects or S4 classes provided by the package), but no documentation entry exists.

Usage

undoc(package, dir, lib.loc = NULL)

Arguments

package a character string naming an installed package.

dir a character string specifying the path to a package’s root source directory. This
must contain the subdirectory ‘man’ with R documentation sources (in Rd for-
mat), and at least one of the ‘R’ or ‘data’ subdirectories with R code or data
objects, respectively.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. The specified library trees
are used to search for package.

Details

This function is useful for package maintainers mostly. In principle, all user-level R objects should
be documented.

The base package is special as it contains the primitives and these do not have definitions available at
code level. We provide equivalent closures in environments .ArgsEnv and .GenericArgsEnv
in the base package that are used for various purposes: undoc("base") checks that all the
primitives that are not language constructs are prototyped in those environments and no others are.

Value

An object of class "undoc" which is a list of character vectors containing the names of the undoc-
umented objects split according to documentation type. This representation is still experimental,
and might change in future versions.

There is a print method for nicely displaying the information contained in such objects.

See Also

codoc, QC

Examples

undoc("tools") # Undocumented objects in 'tools'

1420 vignetteDepends

vignetteDepends Retrieve Dependency Information for a Vignette

Description

Given a vignette name, will create a DependsList object that reports information about the packages
the vignette depends on.

Usage

vignetteDepends(vignette, recursive = TRUE, reduce = TRUE,
local = TRUE, lib.loc = NULL)

Arguments

vignette The path to the vignette source

recursive Whether or not to include indirect dependencies

reduce Whether or not to collapse all sets of dependencies to a minimal value

local Whether or not to search only locally

lib.loc What libraries to search in locally

Details

If recursive is TRUE, any package that is specified as a dependency will in turn have its depen-
dencies included (and so on), these are known as indirect dependencies. If recursive is FALSE, only
the dependencies directly named by the vignette will be used.

If local is TRUE, the system will only look at the user’s local machine and not online to find
dependencies.

If reduce is TRUE, the system will collapse the fields in the DependsList to the minimal set of
dependencies (for instance if the dependencies were (’foo’, ’foo (>= 1.0.0)’, ’foo (>= 1.3.0)’), the
return value would be ’foo (>= 1.3.0)’).

Value

An object of class DependsList

Author(s)

Jeff Gentry

See Also

pkgDepends

Examples

gridEx <- system.file("doc", "grid.Snw", package = "grid")
vignetteDepends(gridEx)

write_PACKAGES 1421

write_PACKAGES Generate PACKAGES files

Description

Generate ‘PACKAGES’ and ‘PACKAGES.gz’ files for a repository of source or Mac/Windows
binary packages.

Usage

write_PACKAGES(dir, fields = NULL,
type = c("source", "mac.binary", "win.binary"),
verbose = FALSE, unpacked = FALSE, subdirs = FALSE)

Arguments

dir Character vector describing the location of the repository (directory in-
cluding source or binary packages) to generate the ‘PACKAGES’ and
‘PACKAGES.gz’ files from and write them to.

fields a character vector giving the fields to be used in the ‘PACKAGES’ and
‘PACKAGES.gz’ files in addition to the default ones, or NULL (default).
The default corresponds to the fields needed by available.packages:
"Package", "Bundle", "Priority", "Version", "Depends",
"Suggests", "Imports" and "Contains".

type Type of packages: currently source ‘.tar.gz’ archives, and Mac or Windows
binary (‘.tgz’ or ‘.zip’, respectively) packages are supported. Defaults to
"win.binary" on Windows and to "source" otherwise.

verbose logical. Should packages be listed as they are processed?

unpacked a logical indicating whether the package contents are available in unpacked form
or not (default).

subdirs either logical (to indicate if subdirectories should be included) or a character
vector of subdirectories to include.

Details

type = "win.binary" uses unz connections to read all ‘DESCRIPTION’ files contained in
the (zipped) binary packages for Windows in the given directory dir, and builds ‘PACKAGES’
and ‘PACKAGES.gz’ files from this information.

Value

Invisibly returns the number of packages described in the resulting ‘PACKAGES’ and
‘PACKAGES.gz’ files. If 0, no packages were found and no files were written.

Note

Processing ‘.tar.gz’ archives to extract the ‘DESCRIPTION’ files is quite slow.

This function can be useful on other OSes to prepare a repository to be accessed by Windows
machines, so type = "win.binary" should work on all OSes.

1422 xgettext

Author(s)

Uwe Ligges and R-core.

See Also

See read.dcf and write.dcf for reading ‘DESCRIPTION’ files and writing the
‘PACKAGES’ and ‘PACKAGES.gz’ files.

Examples

Not run:
write_PACKAGES("c:/myFolder/myRepository") # on Windows
write_PACKAGES("/pub/RWin/bin/windows/contrib/2.1",

type="win.binary") # on Linux
End(Not run)

xgettext Extract Translatable Messages from R Files in a Package

Description

For each file in the ‘R’ directory (including system-specific subdirectories) of a package, extract
the unique arguments passed to stop, warning, message, gettext and gettextf, or to
ngettext.

Usage

xgettext(dir, verbose = FALSE, asCall = TRUE)

xngettext(dir, verbose = FALSE)

xgettext2pot(dir, potFile)

Arguments

dir the directory of a source package.

verbose logical: should each file be listed as it is processed?

asCall logical: if TRUE each argument is returned whole, otherwise the strings within
each argument are extracted.

potFile name of po template file to be produced. Defaults to "R-pkgname.pot"
where pkgname is the basename of dir.

Details

Leading and trailing white space (space, tab and linefeed) is removed for calls to gettext,
gettextf, stop, warning, and message, as it is by the internal code that passes strings
for translation.

We look to see if these functions were called with domain = NA and if so omit the call if asCall
= TRUE: note that the call might contain a call to gettext which would be visible if asCall
= FALSE.

xgettext 1423

xgettext2pot calls xgettext and then xngettext, and writes a PO template file for use
with the GNU Gettext tools. This ensures that the strings for simple translation are unique in the
file (as GNU Gettext requires), but does not do so for ngettext calls (and the rules are not stated
in the Gettext manual).

If applied to the base package, this also looks in the ‘.R’ files in ‘R_HOME/share/R’.

Value

For xgettext, a list of objects of class "xgettext" (which has a print method), one per
source file that potentially contains translatable strings.

For xngettext, a list of objects of class "xngettext", which are themselves lists of length-2
character strings.

Examples

Not run:
in a source-directory build of R:
xgettext(file.path(R.home(), "src", "library", "splines"))
End(Not run)

1424 xgettext

Chapter 9

The utils package

utils-package The R Utils Package

Description

R utility functions

Details

This package contains a collection of utility functions.

For a complete list, use library(help="utils").

Author(s)

R Development Core Team and contributors worldwide

Maintainer: R Core Team 〈R-core@r-project.org〉

alarm Alert the user

Description

Gives an audible or visual signal to the user.

Usage

alarm()

Details

alarm() works by sending a "\a" character to the console. On most platforms this will ring a
bell, beep, or give some other signal to the user (unless standard output has been redirected).

1425

1426 apropos

Value

No useful value is returned.

Examples

alarm()

apropos Find Objects by (Partial) Name

Description

apropos() returns a character vector giving the names of all objects in the search list matching
what.

find() is a different user interface to the same task.

Usage

apropos(what, where = FALSE, ignore.case = TRUE, mode = "any")

find(what, mode = "any", numeric = FALSE, simple.words = TRUE)

Arguments

what character string with name of an object, or more generally a regular expression
to match against.

where, numeric
a logical indicating whether positions in the search list should also be returned

ignore.case logical indicating if the search should be case-insensitive, TRUE by default.
Note that in R versions prior to 2.5.0, the default was implicitly ignore.case
= FALSE.

mode character; if not "any", only objects whose mode equals mode are searched.
simple.words logical; if TRUE, the what argument is only searched as whole word.

Details

If mode != "any" only those objects which are of mode mode are considered. If where is
TRUE, the positions in the search list are returned as the names attribute.

find is a different user interface for the same task as apropos. However, by default
(simple.words == TRUE), only full words are searched with grep(fixed = TRUE).

Note that in R versions prior to 2.5.0, what was allowed to be non-character, such that
find(cor) worked as it does in S. This possibility has been dropped in line with the aim of
minimizing all use of non-standard evaluation in R.

Value

For apropos character vector, sorted by name, possibly with names giving the (numerical) posi-
tions on the search path.

For find, either a character vector of environment names, or for numeric = TRUE, a numerical
vector of positions on the search path, with names giving the names of the corresponding environ-
ments.

BATCH 1427

Author(s)

Kurt Hornik and Martin Maechler (May 1997).

See Also

glob2rx to convert wildcard patterns to regular expressions.

objects for listing objects from one place, help.search for searching the help system,
search for the search path.

Examples

require(stats)

Not run: apropos("lm")
apropos("GLM") # more than a dozen
that may include internal objects starting '.__C__' if
methods is attached
apropos("GLM", ignore.case = FALSE) # not one
apropos("lq")

cor <- 1:pi
find("cor") #> ".GlobalEnv" "package:stats"
find("cor", numeric=TRUE) # numbers with these names
find("cor", numeric=TRUE, mode="function")# only the second one
rm(cor)

Not run: apropos(".", mode="list") # a long list

need a DOUBLE backslash '\\' (in case you don't see it anymore)
apropos("\\[")

Not run: # everything
length(apropos("."))

those starting with 'pr'
apropos("^pr")

the 1-letter things
apropos("^.$")
the 1-2-letter things
apropos("^..?$")
the 2-to-4 letter things
apropos("^.{2,4}$")

the 8-and-more letter things
apropos("^.{8,}$")
table(nchar(apropos("^.{8,}$")))
End(Not run)

BATCH Batch Execution of R

1428 browseEnv

Description

Run R non-interactively with input from infile and send output (stdout/stderr) to another file.

Usage

R CMD BATCH [options] infile [outfile]

Arguments

infile the name of a file with R code to be executed.

options a list of R command line options, e.g., for setting the amount of memory
available and controlling the load/save process. If infile starts with a ‘-’,
use ‘--’ as the final option. The default options are ‘--restore --save
--no-readline’.

outfile the name of a file to which to write output. If not given, the name used is that of
infile, with a possible ‘.R’ extension stripped, and ‘.Rout’ appended.

Details

Use R CMD BATCH --help to be reminded of the usage.

By default, the input commands are printed along with the output. To suppress this behavior, add
options(echo = FALSE) at the beginning of infile, or use option ‘--slave’.

The infile can have end of line marked by LF or CRLF (but not just CR), and files with an
incomplete last line (missing end of line (EOL) mark) are processed correctly.

A final expression ‘proc.time()’ will be executed after the input script unless the latter calls
q(runLast=FALSE) or is aborted.

Additional options can be set by the environment variable R_BATCH_OPTIONS: these come after
‘--restore --save --no-readline’ and before any options given on the command line.

Note

Unlike Splus BATCH, this does not run the R process in the background. In most shells, R CMD
BATCH [options] infile [outfile] & will do so.

Report bugs to 〈r-bugs@r-project.org〉.

browseEnv Browse Objects in Environment

Description

The browseEnv function opens a browser with list of objects currently in sys.frame() envi-
ronment.

Usage

browseEnv(envir = .GlobalEnv, pattern,
excludepatt = "^last\\.warning",
html = .Platform$OS.type != "mac",
expanded = TRUE, properties = NULL,
main = NULL, debugMe = FALSE)

browseEnv 1429

Arguments

envir an environment the objects of which are to be browsed.

pattern a regular expression for object subselection is passed to the internal ls() call.

excludepatt a regular expression for dropping objects with matching names.

html is used on non Macintosh machines to display the workspace on a HTML page
in your favorite browser.

expanded whether to show one level of recursion. It can be useful to switch it to FALSE if
your workspace is large. This option is ignored if html is set to FALSE.

properties a named list of global properties (of the objects chosen) to be showed in the
browser; when NULL (as per default), user, date, and machine information is
used.

main a title string to be used in the browser; when NULL (as per default) a title is
constructed.

debugMe logical switch; if true, some diagnostic output is produced.

Details

Very experimental code. Only allows one level of recursion into object structures. The HTML
version is not dynamic.

It can be generalized. See sources (‘..../library/base/R/databrowser.R’) for details.

wsbrowser() is currently just an internally used function; its argument list will certainly change.

Most probably, this should rather work through using the ‘tkWidget’ package (from www.
Bioconductor.org).

See Also

str, ls.

Examples

if(interactive()) {
create some interesting objects :
ofa <- ordered(4:1)
ex1 <- expression(1+ 0:9)
ex3 <- expression(u,v, 1+ 0:9)
example(factor, echo = FALSE)
example(table, echo = FALSE)
example(ftable, echo = FALSE)
example(lm, echo = FALSE, ask = FALSE)
example(str, echo = FALSE)

and browse them:
browseEnv()

a (simple) function's environment:
af12 <- approxfun(1:2, 1:2, method = "const")
browseEnv(envir = environment(af12))

}

www.Bioconductor.org
www.Bioconductor.org

1430 browseURL

browseURL Load URL into a WWW Browser

Description

Load a given URL into a WWW browser.

Usage

browseURL(url, browser = getOption("browser"), encodeIfNeeded = FALSE)

Arguments

url a non-empty character string giving the URL to be loaded.

browser a non-empty character string giving the name of the program to be used as hy-
pertext browser. It should be in the PATH, or a full path specified. Alternatively,
an R function to be called to invoke the browser.

encodeIfNeeded
Should the URL be encoded by URLencode before passing to the browser?
This is not needed (and might be harmful) if the browser program/function
itself does encoding, and can be harmful for file:// URLs on some systems
and for http:// URLs passed to some CGI applications. Fortunately, most
URLs do not need encoding.

Details

The default browser is set by option "browser", in turn set by the environment variable
R_BROWSER which is by default set in file ‘R_HOME/etc/Renviron’ to a choice made manu-
ally or automatically when R was configured. (See Startup for where to override that default
value.)

If browser supports remote control and R knows how to perform it, the URL is opened in any
already running browser or a new one if necessary. This mechanism currently is available for
browsers which support the "-remote openURL(...)" interface (which includes Opera 5/6,
Mozilla >= 0.9.5 and Mozilla Firefox), Galeon, KDE konqueror (via kfmclient) and the GNOME
interface to Mozilla. Netscape 7.0 and Opera 7 behave slightly differently, and you will need to
open them first. Note that the type of browser is determined from its name, so this mechanism will
only be used if the browser is installed under its canonical name.

Because "-remote" will use any browser displaying on the X server (whatever machine it is
running on), the remote control mechanism is only used if DISPLAY points to the local host. This
may not allow displaying more than one URL at a time from a remote host.

It is the caller’s responsibility to encode url if necessary (see URLencode). This can be tricky
for file URLs, where the format accepted can depend on the browser and OS.

Examples

Not run:
for KDE users who want to open files in a new tab
option(browser="kfmclient newTab")
browseURL("http://www.r-project.org")
End(Not run)

browseVignettes 1431

browseVignettes List Vignettes in an HTML Browser

Description

List available vignettes in an HTML browser with links to PDF, LaTeX/noweb source, and (tangled)
R code (if available).

Usage

browseVignettes(package = NULL, lib.loc = NULL, all = TRUE)

S3 method for class 'browseVignettes':
print(x, ...)

Arguments

package a character vector with the names of packages to search through, or NULL in
which "all" packages (as defined by argument all) are searched.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known.

all logical; if TRUE search all available packages in the library trees specified by
lib.loc, and if FALSE, search only attached packages.

x Object of class browseVignettes.

... Further arguments, ignored by the print method.

Details

Function browseVignettes returns an object of the same class; the print method displays it as
an HTML page in a browser (using browseURL).

See Also

browseURL, vignette

Examples

Not run:
List vignettes from all *attached* packages
browseVignettes(all = FALSE)

List vignettes from a specific package
browseVignettes("grid")
End(Not run)

1432 bug.report

bug.report Send a Bug Report

Description

Invokes an editor to write a bug report and optionally mail it to the automated r-bugs repository at
〈r-bugs@r-project.org〉. Some standard information on the current version and configuration of R
are included automatically.

Usage

bug.report(subject = "",
ccaddress = Sys.getenv("USER"),
method = getOption("mailer"),
address = "r-bugs@r-project.org",
file = "R.bug.report")

Arguments

subject Subject of the email. Please do not use single quotes (’) in the subject! File
separate bug reports for multiple bugs

ccaddress Optional email address for copies (default is current user). Use ccaddress =
FALSE for no copies.

method Submission method, one of "mailx", "gnudoit", "none", or "ess".

address Recipient’s email address.

file File to use for setting up the email (or storing it when method is "none" or
sending mail fails).

Details

Currently direct submission of bug reports works only on Unix systems. If the submission method
is "mailx", then the default editor is used to write the bug report. Which editor is used can
be controlled using options, type getOption("editor") to see what editor is currently
defined. Please use the help pages of the respective editor for details of usage. After saving the
bug report (in the temporary file opened) and exiting the editor the report is mailed using a Unix
command line mail utility such as mailx. A copy of the mail is sent to the current user.

If method is "gnudoit", then an emacs mail buffer is opened and used for sending the email.

If method is "none" or NULL (and in every case on Windows systems), then only an editor is
opened to help writing the bug report. The report can then be copied to your favorite email program
and be sent to the r-bugs list.

If method is "ess" the body of the mail is simply sent to stdout.

Value

Nothing useful.

bug.report 1433

When is there a bug?

If R executes an illegal instruction, or dies with an operating system error message that indicates a
problem in the program (as opposed to something like “disk full”), then it is certainly a bug.

Taking forever to complete a command can be a bug, but you must make certain that it was really
R’s fault. Some commands simply take a long time. If the input was such that you KNOW it should
have been processed quickly, report a bug. If you don’t know whether the command should take a
long time, find out by looking in the manual or by asking for assistance.

If a command you are familiar with causes an R error message in a case where its usual definition
ought to be reasonable, it is probably a bug. If a command does the wrong thing, that is a bug. But
be sure you know for certain what it ought to have done. If you aren’t familiar with the command,
or don’t know for certain how the command is supposed to work, then it might actually be working
right. Rather than jumping to conclusions, show the problem to someone who knows for certain.

Finally, a command’s intended definition may not be best for statistical analysis. This is a very
important sort of problem, but it is also a matter of judgement. Also, it is easy to come to such a
conclusion out of ignorance of some of the existing features. It is probably best not to complain
about such a problem until you have checked the documentation in the usual ways, feel confident
that you understand it, and know for certain that what you want is not available. The mailing list
r-devel@r-project.org is a better place for discussions of this sort than the bug list.

If you are not sure what the command is supposed to do after a careful reading of the manual this
indicates a bug in the manual. The manual’s job is to make everything clear. It is just as important
to report documentation bugs as program bugs.

If the online argument list of a function disagrees with the manual, one of them must be wrong, so
report the bug.

How to report a bug

When you decide that there is a bug, it is important to report it and to report it in a way which is
useful. What is most useful is an exact description of what commands you type, from when you
start R until the problem happens. Always include the version of R, machine, and operating system
that you are using; type version in R to print this. To help us keep track of which bugs have been
fixed and which are still open please send a separate report for each bug.

The most important principle in reporting a bug is to report FACTS, not hypotheses or categoriza-
tions. It is always easier to report the facts, but people seem to prefer to strain to posit explanations
and report them instead. If the explanations are based on guesses about how R is implemented,
they will be useless; we will have to try to figure out what the facts must have been to lead to such
speculations. Sometimes this is impossible. But in any case, it is unnecessary work for us.

For example, suppose that on a data set which you know to be quite large the com-
mand data.frame(x, y, z, monday, tuesday) never returns. Do not report that
data.frame() fails for large data sets. Perhaps it fails when a variable name is a day of the
week. If this is so then when we got your report we would try out the data.frame() command
on a large data set, probably with no day of the week variable name, and not see any problem. There
is no way in the world that we could guess that we should try a day of the week variable name.

Or perhaps the command fails because the last command you used was a [method that had a bug
causing R’s internal data structures to be corrupted and making the data.frame() command fail
from then on. This is why we need to know what other commands you have typed (or read from
your startup file).

It is very useful to try and find simple examples that produce apparently the same bug, and somewhat
useful to find simple examples that might be expected to produce the bug but actually do not. If
you want to debug the problem and find exactly what caused it, that is wonderful. You should still
report the facts as well as any explanations or solutions.

1434 capture.output

Invoking R with the ‘--vanilla’ option may help in isolating a bug. This ensures that the site
profile and saved data files are not read.

A bug report can be generated using the bug.report() function. This automatically includes
the version information and sends the bug to the correct address. Alternatively the bug report can be
emailed to 〈r-bugs@r-project.org〉 or submitted to the Web page at http://bugs.r-project.
org.

Bug reports on contributed packages should be sent to the package maintainer rather than to r-
bugs.

Author(s)

This help page is adapted from the Emacs manual and the R FAQ

See Also

R FAQ, also sessionInfo() from which you may add to the bug report.

capture.output Send output to a character string or file

Description

Evaluates its arguments with the output being returned as a character string or sent to a file. Related
to sink in the same way that with is related to attach.

Usage

capture.output(..., file = NULL, append = FALSE)

Arguments

... Expressions to be evaluated.

file A file name or a connection, or NULL to return the output as a character vector.
If the connection is not open, it will be opened initially and closed on exit.

append logical. If file a file name or unopened connection, append or overwrite?

Details

An attempt is made to write output as far as possible to file if there is an error in evaluating the
expressions, but for file = NULL all output will be lost.

Value

A character string (if file=NULL), or invisible NULL.

See Also

sink, textConnection

http://bugs.r-project.org
http://bugs.r-project.org

chooseCRANmirror 1435

Examples

require(stats)
glmout <- capture.output(example(glm))
glmout[1:5]
capture.output(1+1, 2+2)
capture.output({1+1; 2+2})
Not run:
on Unix with enscript available
ps <- pipe("enscript -o tempout.ps","w")
capture.output(example(glm), file=ps)
close(ps)
End(Not run)

chooseCRANmirror Select a CRAN Mirror

Description

Interact with the user to choose a CRAN mirror.

Usage

chooseCRANmirror(graphics = getOption("menu.graphics"))

getCRANmirrors(all = FALSE, local.only = FALSE)

Arguments

graphics Logical. If true and tcltk and an X server are available, use a Tk widget, or if
under the AQUA interface use a MacOS X widget, otherwise use menu.

all Logical, get all known mirrors or only the ones flagged as OK.

local.only Logical, try to get most recent list from CRAN or use file on local disk only.

Details

A list of mirrors is stored in file ‘R_HOME/doc/CRAN_mirrors.csv’, but first an on-line list of
current mirrors is consulted, and the file copy used only if the on-line list is inaccessible.

This function was originally written to support a Windows GUI menu item, but is also called by
contrib.url if it finds the initial dummy value of options("repos").

Value

None for chooseCRANmirror(), this function is invoked for its side effect of updating
options("repos").

getCRANmirrors() returns a data frame with mirror information.

See Also

setRepositories, contrib.url.

1436 citation

citation Citing R and R Packages in Publications

Description

How to cite R and R packages in publications.

Usage

citation(package = "base", lib.loc = NULL)
S3 method for class 'citation':
toBibtex(object, ...)
S3 method for class 'citationList':
toBibtex(object, ...)

Arguments

package a character string with the name of a single package. An error occurs if more
than one package name is given.

lib.loc a character vector with path names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries.

object return object of citation.

... currently not used.

Details

The R core development team and the very active community of package authors have invested a
lot of time and effort in creating R as it is today. Please give credit where credit is due and cite R
and R packages when you use them for data analysis.

Execute function citation() for information on how to cite the base R system in publications.
If the name of a non-base package is given, the function either returns the information contained
in the CITATION file of the package or auto-generates citation information. In the latter case the
package ‘DESCRIPTION’ file is parsed, the resulting citation object may be arbitrarily bad, but is
quite useful (at least as a starting point) in most cases.

If only one reference is given, the print method shows both a text version and a BibTeX entry for
it, if a package has more than one reference then only the text versions are shown. The BibTeX
versions can be obtained using function toBibtex (see the examples below).

Value

An object of class "citationList".

See Also

citEntry

citEntry 1437

Examples

the basic R reference
citation()

references for a package -- might not have these installed
if(nchar(system.file(package="lattice"))) citation("lattice")
if(nchar(system.file(package="foreign"))) citation("foreign")

extract the bibtex entry from the return value
x <- citation()
toBibtex(x)

citEntry Writing Package CITATION Files

Description

The ‘CITATION’ file of R packages contains an annotated list of references that should be used for
citing the packages.

Usage

citEntry(entry, textVersion, header = NULL, footer = NULL, ...)
citHeader(...)
citFooter(...)
readCitationFile(file, meta = NULL)

Arguments

entry a character string with a BibTeX entry type

textVersion a character string with a text representation of the reference

header a character string with optional header text

footer a character string with optional footer text

file a file name

... see details below

meta a list of package metadata as obtained by packageDescription, or NULL
(default).

Details

The ‘CITATION’ file of an R package should be placed in the ‘inst’ subdirectory of the package
source. The file is an R source file and may contain arbitrary R commands including conditionals
and computations. The file is source()ed by the R parser in a temporary environment and all
resulting objects of class "citation" (the return value of citEntry) are collected.

Typically the file will contain zero or more calls to citHeader, then one or more calls to
citEntry, and finally zero or more calls to citFooter. citHeader and citFooter are
simply wrappers to paste, and their ... argument is passed on to paste as is.

1438 citEntry

Value

citEntry returns an object of class "citation", readCitationFile returns an object of
class "citationList".

Entry Types

citEntry creates "citation" objects, which are modeled after BibTeX entries. The entry
should be a valid BibTeX entry type, e.g.,

article: An article from a journal or magazine.
book: A book with an explicit publisher.
inbook: A part of a book, which may be a chapter (or section or whatever) and/or a range of pages.
incollection: A part of a book having its own title.
inproceedings: An article in a conference proceedings.
manual: Technical documentation like a software manual.
mastersthesis: A Master’s thesis.
misc: Use this type when nothing else fits.
phdthesis: A PhD thesis.
proceedings: The proceedings of a conference.
techreport: A report published by a school or other institution, usually numbered within a series.
unpublished: A document having an author and title, but not formally published.

Entry Fields

The ... argument of citEntry can be any number of BibTeX fields, including

address: The address of the publisher or other type of institution.
author: The name(s) of the author(s), either as a character string in the format described in the

LaTeX book, or a personList object.
booktitle: Title of a book, part of which is being cited.
chapter: A chapter (or section or whatever) number.
editor: Name(s) of editor(s), same format as author.
institution: The publishing institution of a technical report.
journal: A journal name.
note: Any additional information that can help the reader. The first word should be capitalized.
number: The number of a journal, magazine, technical report, or of a work in a series.
pages: One or more page numbers or range of numbers.
publisher: The publisher’s name.
school: The name of the school where a thesis was written.
series: The name of a series or set of books.
title: The work’s title.
volume: The volume of a journal or multi-volume book.
year: The year of publication.

Examples

basecit <- system.file("CITATION", package="base")
source(basecit, echo=TRUE)
readCitationFile(basecit)

close.socket 1439

close.socket Close a Socket

Description

Closes the socket and frees the space in the file descriptor table. The port may not be freed imme-
diately.

Usage

close.socket(socket, ...)

Arguments

socket A socket object

... further arguments passed to or from other methods.

Value

logical indicating success or failure

Author(s)

Thomas Lumley

See Also

make.socket, read.socket

combn Generate All Combinations of n Elements, Taken m at a Time

Description

Generate all combinations of the elements of x taken m at a time. If x is a positive integer, returns all
combinations of the elements of seq(x) taken m at a time. If argument FUN is not NULL, applies a
function given by the argument to each point. If simplify is FALSE, returns a list; otherwise returns
an array, typically a matrix. ... are passed unchanged to the FUN function, if specified.

Usage

combn(x, m, FUN = NULL, simplify = TRUE, ...)

1440 combn

Arguments

x vector source for combinations, or integer n for x <- seq(n).

m number of elements to choose.

FUN function to be applied to each combination; default NULL means the identity,
i.e., to return the combination (vector of length m).

simplify logical indicating if the result should be simplified to an array (typically a
matrix); if FALSE, the function returns a list. Note that when simplify
= TRUE as by default, the dimension of the result is simply determined from
FUN(\emph{<1st combination>}), for efficiency reasons. This will
badly fail if FUN(u) is not of constant length.

... optionally, further arguments to FUN.

Value

a list or array (in nondegenerate cases), see the simplify argument above.

Author(s)

Scott Chasalow wrote the original in 1994 for S; R package combinat and documentation by Vince
Carey 〈stvjc@channing.harvard.edu〉; small changes by the R core team, notably to return an array
in all cases of simplify = TRUE, e.g., for combn(5,5).

References

Nijenhuis, A. and Wilf, H.S. (1978) Combinatorial Algorithms for Computers and Calculators;
Academic Press, NY.

See Also

choose for fast computation of the number of combinations. expand.grid for creating a data
frame from all combinations of factors or vectors.

Examples

combn(letters[1:4], 2)
(m <- combn(10, 5, min)) # minimum value in each combination
mm <- combn(15, 6, function(x) matrix(x, 2,3))
stopifnot(round(choose(10,5)) == length(m),

c(2,3, round(choose(15,6))) == dim(mm))

Different way of encoding points:
combn(c(1,1,1,1,2,2,2,3,3,4), 3, tabulate, nbins = 4)

Compute support points and (scaled) probabilities for a
Multivariate-Hypergeometric(n = 3, N = c(4,3,2,1)) p.f.:
table.mat(t(combn(c(1,1,1,1,2,2,2,3,3,4), 3, tabulate,nbins=4)))

compareVersion 1441

compareVersion Compare Two Package Version Numbers

Description

Compare two package version numbers to see which is later.

Usage

compareVersion(a, b)

Arguments

a, b Character strings representing package version numbers.

Details

R package version numbers are of the form x.y-z for integers x, y and z, with components after
x optionally missing (in which case the version number is older than those with the components
present).

Value

0 if the numbers are equal, -1 if b is later and 1 if a is later (analogous to the C function strcmp).

See Also

package_version, library, packageStatus.

Examples

compareVersion("1.0", "1.0-1")
compareVersion("7.2-0","7.1-12")

COMPILE Compile Files for Use with R

Description

Compile given source files so that they can subsequently be collected into a shared library using R
CMD SHLIB and be loaded into R using dyn.load().

Usage

R CMD COMPILE [options] srcfiles

1442 count.fields

Arguments

srcfiles A list of the names of source files to be compiled. Currently, C, C++, Objective
C, Objective C++ and FORTRAN are supported; the corresponding files should
have the extensions ‘.c’, ‘.cc’ (or ‘.cpp’ or ‘.C’), ‘.m’, ‘.mm’ (or ‘.M’) and ‘.f’,
respectively.

options A list of compile-relevant settings, such as special values for CFLAGS or
FFLAGS, or for obtaining information about usage and version of the utility.

Details

Note that Ratfor is not supported. If you have Ratfor source code, you need to convert it to FOR-
TRAN. On many Solaris systems mixing Ratfor and FORTRAN code will work.

Objective C and Objective C++ support is optional and will work only if the corresponding compil-
ers were available at R configure time.

Note

Some binary distributions of R have COMPILE in a separate bundle, e.g. an R-devel RPM.

See Also

SHLIB, dyn.load; the section on “Customizing compilation under Unix” in “R Administration
and Installation” (see the ‘doc/manual’ subdirectory of the R source tree).

count.fields Count the Number of Fields per Line

Description

count.fields counts the number of fields, as separated by sep, in each of the lines of file
read.

Usage

count.fields(file, sep = "", quote = "\"'", skip = 0,
blank.lines.skip = TRUE, comment.char = "#")

Arguments

file a character string naming an ASCII data file, or a connection, which will be
opened if necessary, and if so closed at the end of the function call.

sep the field separator character. Values on each line of the file are separated by this
character. By default, arbitrary amounts of whitespace can separate fields.

quote the set of quoting characters

skip the number of lines of the data file to skip before beginning to read data.
blank.lines.skip

logical: if TRUE blank lines in the input are ignored.

comment.char character: a character vector of length one containing a single character or an
empty string.

data 1443

Details

This used to be used by read.table and can still be useful in discovering problems in reading a
file by that function.

For the handling of comments, see scan.

Value

A vector with the numbers of fields found.

See Also

read.table

Examples

cat("NAME", "1:John", "2:Paul", file = "foo", sep = "\n")
count.fields("foo", sep = ":")
unlink("foo")

data Data Sets

Description

Loads specified data sets, or list the available data sets.

Usage

data(..., list = character(0), package = NULL, lib.loc = NULL,
verbose = getOption("verbose"), envir = .GlobalEnv)

Arguments

... a sequence of names or literal character strings.

list a character vector.

package a character vector giving the package(s) to look in for data sets, or NULL.

By default, all packages in the search path are used, then the ‘data’ subdirectory
(if present) of the current working directory.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known.

verbose a logical. If TRUE, additional diagnostics are printed.

envir the environment where the data should be loaded.

1444 data

Details

Currently, four formats of data files are supported:

1. files ending ‘.R’ or ‘.r’ are source()d in, with the R working directory changed temporarily
to the directory containing the respective file. (data ensures that the utils package is attached,
in case it had been run via utils::data.)

2. files ending ‘.RData’ or ‘.rda’ are load()ed.

3. files ending ‘.tab’, ‘.txt’ or ‘.TXT’ are read using read.table(..., header =
TRUE), and hence result in a data frame.

4. files ending ‘.csv’ or ‘.CSV’ are read using read.table(..., header = TRUE,
sep = ";"), and also result in a data frame.

If more than one matching file name is found, the first on this list is used.

The data sets to be loaded can be specified as a sequence of names or character strings, or as the
character vector list, or as both.

For each given data set, the first two types (‘.R’ or ‘.r’, and ‘.RData’ or ‘.rda’ files) can create
several variables in the load environment, which might all be named differently from the data set.
The second two (‘.tab’, ‘.txt’, or ‘.TXT’, and ‘.csv’ or ‘.CSV’ files) will always result in the
creation of a single variable with the same name as the data set.

If no data sets are specified, data lists the available data sets. It looks for a new-style data index
in the ‘Meta’ or, if this is not found, an old-style ‘00Index’ file in the ‘data’ directory of each
specified package, and uses these files to prepare a listing. If there is a ‘data’ area but no index,
available data files for loading are computed and included in the listing, and a warning is given:
such packages are incomplete. The information about available data sets is returned in an object
of class "packageIQR". The structure of this class is experimental. Where the datasets have
a different name from the argument that should be used to retrieve them the index will have an
entry like beaver1 (beavers) which tells us that dataset beaver1 can be retrieved by the
call data(beaver).

If lib.loc and package are both NULL (the default), the data sets are searched for in all the
currently loaded packages then in the ‘data’ directory (if any) of the current working directory.

If lib.loc = NULL but package is specified as a character vector, the specified package(s) are
searched for first amongst loaded packages and then in the default library/ies (see .libPaths).

If lib.loc is specified (and not NULL), packages are searched for in the specified library/ies, even
if they are already loaded from another library.

To just look in the ‘data’ directory of the current working directory, set package =
character(0) (and lib.loc = NULL, the default).

Value

a character vector of all data sets specified, or information about all available data sets in an object
of class "packageIQR" if none were specified.

Note

The data files can be many small files. On some file systems it is desirable to save space, and the
files in the ‘data’ directory of an installed package can be zipped up as a zip archive ‘Rdata.zip’.
You will need to provide a single-column file ‘filelist’ of file names in that directory.

One can take advantage of the search order and the fact that a ‘.R’ file will change directory. If
raw data are stored in ‘mydata.txt’ then one can set up ‘mydata.R’ to read ‘mydata.txt’ and pre-
process it, e.g., using transform. For instance one can convert numeric vectors to factors with

dataentry 1445

the appropriate labels. Thus, the ‘.R’ file can effectively contain a metadata specification for the
plaintext formats.

See Also

help for obtaining documentation on data sets, save for creating the second (‘.rda’) kind of data,
typically the most efficient one.

Examples

require(utils)
data() # list all available data sets
try(data(package = "rpart"))# list the data sets in the rpart package
data(USArrests, "VADeaths") # load the data sets 'USArrests' and 'VADeaths'
help(USArrests) # give information on data set 'USArrests'

dataentry Spreadsheet Interface for Entering Data

Description

A spreadsheet-like editor for entering or editing data.

Usage

data.entry(..., Modes = NULL, Names = NULL)
dataentry(data, modes)
de(..., Modes = list(), Names = NULL)

Arguments

... A list of variables: currently these should be numeric or character vectors or list
containing such vectors.

Modes The modes to be used for the variables.

Names The names to be used for the variables.

data A list of numeric and/or character vectors.

modes A list of length up to that of data giving the modes of (some of) the variables.
list() is allowed.

Details

The data entry editor is only available on some platforms and GUIs. Where available it provides a
means to visually edit a matrix or a collection of variables (including a data frame) as described in
the Notes section.

data.entry has side effects, any changes made in the spreadsheet are reflected in the variables.
The functions de, de.ncols, de.setup and de.restore are designed to help achieve these
side effects. If the user passes in a matrix, X say, then the matrix is broken into columns before
dataentry is called. Then on return the columns are collected and glued back together and the
result assigned to the variable X. If you don’t want this behaviour use dataentry directly.

1446 dataentry

The primitive function is dataentry. It takes a list of vectors of possibly different lengths and
modes (the second argument) and opens a spreadsheet with these variables being the columns. The
columns of the dataentry window are returned as vectors in a list when the spreadsheet is closed.

de.ncols counts the number of columns which are supplied as arguments to data.entry.
It attempts to count columns in lists, matrices and vectors. de.setup sets things up so that
on return the columns can be regrouped and reassigned to the correct name. This is handled by
de.restore.

Value

de and dataentry return the edited value of their arguments. data.entry invisibly returns
a vector of variable names but its main value is its side effect of assigning new version of those
variables in the user’s workspace.

Resources

The data entry window responds to X resources of class R_dataentry. Resources
foreground, background and geometry are utilized.

Note

The details of interface to the data grid may differ by platform and GUI. The following description
applies to the X11-based implementation under Unix.

You can navigate around the grid using the cursor keys or by clicking with the (left) mouse button
on any cell. The active cell is highlighted by thickening the surrounding rectangle. Moving to the
right or down will scroll the grid as needed: there is no constraint to the rows or columns currently
in use.

There are alternative ways to navigate using the keys. Return and (keypad) Enter and LineFeed all
move down. Tab moves right and Shift-Tab move left. Home moves to the top left.

PageDown or Control-F moves down a page, and PageUp or Control-B up by a page. End will show
the last used column and the last few rows used (in any column).

Using any other key starts an editing process on the currently selected cell: moving away from that
cell enters the edited value whereas Esc cancels the edit and restores the previous value. When the
editing process starts the cell is cleared. In numerical columns (the default) only letters making up
a valid number (including -.eE) are accepted, and entering an invalid edited value (such as blank)
enters NA in that cell. The last entered value can be deleted using the BackSpace or Del(ete) key.
Only a limited number of characters (currently 29) can be entered in a cell, and if necessary only
the start or end of the string will be displayed, with the omissions indicated by > or <. (The start is
shown except when editing.)

Entering a value in a cell further down a column than the last used cell extends the variable and fills
the gap (if any) by NAs (not shown on screen).

The column names can only be selected by clicking in them. This gives a popup menu to select
the column type (currently Real (numeric) or Character) or to change the name. Changing the type
converts the current contents of the column (and converting from Character to Real may generate
NAs.) If changing the name is selected the header cell becomes editable (and is cleared). As with
all cells, the value is entered by moving away from the cell by clicking elsewhere or by any of the
keys for moving down (only).

New columns are created by entering values in them (and not by just assigning a new name). The
mode of the column is auto-detected from the first value entered: if this is a valid number it gives a
numeric column. Unused columns are ignored, so adding data in var5 to a three-column grid adds
one extra variable, not two.

debugger 1447

The Copy button copies the currently selected cell: paste copies the last copied value to the
current cell, and right-clicking selects a cell and copies in the value. Initially the value is blank, and
attempts to paste a blank value will have no effect.

Control-L will refresh the display, recalculating field widths to fit the current entries.

In the default mode the column widths are chosen to fit the contents of each column, with a de-
fault of 10 characters for empty columns. you can specify fixed column widths by setting option
de.cellwidth to the required fixed width (in characters). (set it to zero to return to variable
widths). The displayed width of any field is limited to 600 pixels (and by the window width).

See Also

vi, edit: edit uses dataentry to edit data frames.

Examples

call data entry with variables x and y
Not run: data.entry(x,y)

debugger Post-Mortem Debugging

Description

Functions to dump the evaluation environments (frames) and to examine dumped frames.

Usage

dump.frames(dumpto = "last.dump", to.file = FALSE)
debugger(dump = last.dump)

Arguments

dumpto a character string. The name of the object or file to dump to.

to.file logical. Should the dump be to an R object or to a file?

dump An R dump object created by dump.frames.

Details

To use post-mortem debugging, set the option error to be a call to dump.frames. By default
this dumps to an R object "last.dump" in the workspace, but it can be set to dump to a file (a
dump of the object produced by a call to save). The dumped object contain the call stack, the
active environments and the last error message as returned by geterrmessage.

When dumping to file, dumpto gives the name of the dumped object and the file name has ‘.rda’
appended.

A dump object of class "dump.frames" can be examined by calling debugger. This will give
the error message and a list of environments from which to select repeatedly. When an environment
is selected, it is copied and the browser called from within the copy.

If dump.frames is installed as the error handler, execution will continue even in non-interactive
sessions. See the examples for how to dump and then quit.

1448 debugger

Value

Invisible NULL.

Note

Functions such as sys.parent and environment applied to closures will not work correctly
inside debugger.

If the error occurred when computing the default value of a formal argument the debugger will
report "recursive default argument reference" when trying to examine that environment.

Of course post-mortem debugging will not work if R is too damaged to produce and save the dump,
for example if it has run out of workspace.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

options for setting error options; recover is an interactive debugger working similarly to
debugger but directly after the error occurs.

Examples

Not run:
options(error=quote(dump.frames("testdump", TRUE)))

f <- function() {
g <- function() stop("test dump.frames")
g()

}
f() # will generate a dump on file "testdump.rda"
options(error=NULL)

possibly in another R session
load("testdump.rda")
debugger(testdump)
Available environments had calls:
1: f()
2: g()
3: stop("test dump.frames")

Enter an environment number, or 0 to exit
Selection: 1
Browsing in the environment with call:
f()
Called from: debugger.look(ind)
Browse[1]> ls()
[1] "g"
Browse[1]> g
function() stop("test dump.frames")
<environment: 759818>
Browse[1]>
Available environments had calls:
1: f()

demo 1449

2: g()
3: stop("test dump.frames")

Enter an environment number, or 0 to exit
Selection: 0

A possible setting for non-interactive sessions
options(error=quote({dump.frames(to.file=TRUE); q()}))
End(Not run)

demo Demonstrations of R Functionality

Description

demo is a user-friendly interface to running some demonstration R scripts. demo() gives the list
of available topics.

Usage

demo(topic, package = NULL, lib.loc = NULL,
character.only = FALSE, verbose = getOption("verbose"))

Arguments

topic the topic which should be demonstrated, given as a name or literal charac-
ter string, or a character string, depending on whether character.only is
FALSE (default) or TRUE. If omitted, the list of available topics is displayed.

package a character vector giving the packages to look into for demos, or NULL. By
default, all packages in the search path are used.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries.

character.only
logical; if TRUE, use topic as character string.

verbose a logical. If TRUE, additional diagnostics are printed.

Details

If no topics are given, demo lists the available demos. The corresponding information is returned in
an object of class "packageIQR". The structure of this class is experimental. In earlier versions
of R, an empty character vector was returned along with listing available demos.

See Also

source which is called by demo.

1450 download.file

Examples

demo() # for attached packages

All available demos:
demo(package = .packages(all.available = TRUE))

demo(lm.glm, package="stats")
Not run:
ch <- "scoping"
demo(ch, character = TRUE)

End(Not run)

download.file Download File from the Internet

Description

This function can be used to download a file from the Internet.

Usage

download.file(url, destfile, method, quiet = FALSE, mode = "w",
cacheOK = TRUE)

Arguments

url A character string naming the URL of a resource to be downloaded.

destfile A character string with the name where the downloaded file is saved. Tilde-
expansion is performed.

method Method to be used for downloading files. Currently download methods
"internal", "wget" and "lynx" are available, and there is a value
"auto": see ‘Details’. The method can also be set through the option
"download.file.method": see options().

quiet If TRUE, suppress status messages (if any), and the progress bar.

mode character. The mode with which to write the file. Useful values are "w", "wb"
(binary), "a" (append) and "ab". Only used for the "internal" method.

cacheOK logical. Is a server-side cached value acceptable? Implemented for the
"internal" and "wget" methods.

Details

The function download.file can be used to download a single file as described by url from
the internet and store it in destfile. The url must start with a scheme such as "http://",
"ftp://" or "file://".

If method = "auto" is chosen (the default), the internal method is chosen for "file://"
URLs, and for the others provided capabilities("http/ftp") is true (which it almost al-
ways is). Otherwise methods "wget" and "lynx" are tried in turn.

cacheOK = FALSE is useful for "http://" URLs, and will attempt to get a copy directly
from the site rather than from an intermediate cache. (Not all platforms support it.) It is used by
available.packages.

download.file 1451

The remaining details apply to method "internal" only.

Note that https:// connections are not supported.

See url for how "file://" URLs are interpreted, especially on Windows. This function does
decode encoded URLs.

The timeout for many parts of the transfer can be set by the option timeout which defaults to 60
seconds.

The level of detail provided during transfer can be set by the quiet argument and the
internet.info option. The details depend on the platform and scheme, but setting
internet.info to 0 gives all available details, including all server responses. Using 2 (the
default) gives only serious messages, and 3 or more suppresses all messages.

A progress bar tracks the transfer. If the file length is known, an equals represents 2% of the transfer
completed: otherwise a dot represents 10Kb.

Method "wget" can be used with proxy firewalls which require user/password authentication if
proper values are stored in the configuration file for wget.

Value

An (invisible) integer code, 0 for success and non-zero for failure. For the "wget" and "lynx"
methods this is the status code returned by the external program. The "internal" method can
return 1, but will in most cases throw an error.

Setting Proxies

This applies to the internal code only.

Proxies can be specified via environment variables. Setting "no_proxy" to "*" stops
any proxy being tried. Otherwise the setting of "http_proxy" or "ftp_proxy" (or
failing that, the all upper-case version) is consulted and if non-empty used as a proxy
site. For FTP transfers, the username and password on the proxy can be specified by
"ftp_proxy_user" and "ftp_proxy_password". The form of "http_proxy" should
be "http://proxy.dom.com/" or "http://proxy.dom.com:8080/" where the port
defaults to 80 and the trailing slash may be omitted. For "ftp_proxy" use the form
"ftp://proxy.dom.com:3128/" where the default port is 21. These environment vari-
ables must be set before the download code is first used: they cannot be altered later by calling
Sys.setenv.

Usernames and passwords can be set for HTTP proxy transfers via environment variable
http_proxy_user in the form user:passwd. Alternatively, http_proxy can be of the
form "http://user:pass@proxy.dom.com:8080/" for compatibility with wget. Only
the HTTP/1.0 basic authentication scheme is supported.

Note

Methods "wget" and "lynx" are for historical compatibility. They will block all other activity
on the R process.

For methods "wget" and "lynx" a system call is made to the tool given by method, and the
respective program must be installed on your system and be in the search path for executables.

See Also

options to set the HTTPUserAgent, timeout and internet.info options.

url for a finer-grained way to read data from URLs.

url.show, available.packages, download.packages for applications

1452 edit

edit Invoke a Text Editor

Description

Invoke a text editor on an R object.

Usage

Default S3 method:
edit(name = NULL, file = "", title = NULL,

editor = getOption("editor"), ...)

vi(name = NULL, file = "")
emacs(name = NULL, file = "")
pico(name = NULL, file = "")
xemacs(name = NULL, file = "")
xedit(name = NULL, file = "")

Arguments

name a named object that you want to edit. If name is missing then the file specified
by file is opened for editing.

file a string naming the file to write the edited version to.
title a display name for the object being edited.
editor a string naming the text editor you want to use. On Unix the default is set from

the environment variables EDITOR or VISUAL if either is set, otherwise vi is
used. On Windows it defaults to notepad.

... further arguments to be passed to or from methods.

Details

edit invokes the text editor specified by editor with the object name to be edited. It is a generic
function, currently with a default method and one for data frames and matrices.

data.entry can be used to edit data, and is used by edit to edit matrices and data frames on
systems for which data.entry is available.

It is important to realize that edit does not change the object called name. Instead, a copy of
name is made and it is that copy which is changed. Should you want the changes to apply to the
object name you must assign the result of edit to name. (Try fix if you want to make permanent
changes to an object.)

In the form edit(name), edit deparses name into a temporary file and invokes the editor
editor on this file. Quitting from the editor causes file to be parsed and that value returned.
Should an error occur in parsing, possibly due to incorrect syntax, no value is returned. Calling
edit(), with no arguments, will result in the temporary file being reopened for further editing.

Note that deparsing is not perfect, and the object recreated after editing can differ in subtle ways
from that deparsed: see dput and .deparseOpts. (The deparse options used are the same as the
defaults for dump.) Editing a function will preserve its environment. See edit.data.frame
for further changes that can occur when editing a data frame or matrix.

Currently only the internal editor in Windows makes use of the title option; it displays the given
name in the window header.

edit.data.frame 1453

Note

The functions vi, emacs, pico, xemacs, xedit rely on the corresponding editor being avail-
able and being on the path. This is system-dependent.

See Also

edit.data.frame, data.entry, fix.

Examples

Not run:
use xedit on the function mean and assign the changes
mean <- edit(mean, editor = "xedit")

use vi on mean and write the result to file mean.out
vi(mean, file = "mean.out")
End(Not run)

edit.data.frame Edit Data Frames and Matrices

Description

Use data editor on data frame or matrix contents.

Usage

S3 method for class 'data.frame':
edit(name, factor.mode = c("character", "numeric"),

edit.row.names = any(row.names(name) != 1:nrow(name)), ...)

S3 method for class 'matrix':
edit(name, edit.row.names = !is.null(dn[[1]]), ...)

Arguments

name A data frame or (numeric, logical or characer) matrix.

factor.mode How to handle factors (as integers or using character levels) in a data frame.
edit.row.names

logical. Show the row names (if they exist) be displayed as a separate editable
column? It is an error to ask for this on a matrix with NULL row names.

... further arguments passed to or from other methods.

Details

At present, this only works on simple data frames containing numeric, logical or character vectors
and factors, and numeric, logical or character matrices. Any other mode of matrix will give an error,
and a warning is given when the matrix has a class (which will be discarded).

Data frame columns are coerced on input to character unless numeric (in the sense of
is.numeric), logical or factor. A warning is given when classes are discarded. Special char-
acters (tabs, non-printing ASCII, etc.) will be displayed as escape sequences.

1454 edit.data.frame

Factors columns are represented in the spreadsheet as either numeric vectors (which are more suit-
able for data entry) or character vectors (better for browsing). After editing, vectors are padded
with NA to have the same length and factor attributes are restored. The set of factor levels can not
be changed by editing in numeric mode; invalid levels are changed to NA and a warning is issued.
If new factor levels are introduced in character mode, they are added at the end of the list of levels
in the order in which they encountered.

It is possible to use the data-editor’s facilities to select the mode of columns to swap between
numerical and factor columns in a data frame. Changing any column in a numerical matrix to
character will cause the result to be coerced to a character matrix. Changing the mode of logical
columns is not supported.

For a data frame, the row names will be taken from the original object if edit.row.names =
FALSE and the number of rows is unchanged, and from the edited output if edit.row.names
= TRUE and there are no duplicates. (If the row.names column is incomplete, it is extended by
entries like row223.) In all other cases the row names are replaced by seq(length=nrows).

For a matrix, colnames will be added (of the form col7) if needed. The rownames will be
taken from the original object if edit.row.names = FALSE and the number of rows is un-
changed (otherwise NULL), and from the edited output if edit.row.names = TRUE. (If the
row.names column is incomplete, it is extended by entries like row223.)

Editing a matrix or data frame will lose all attributes apart from the row and column names.

Value

The edited data frame or matrix.

Note

fix(dataframe) works for in-place editing by calling this function.

If the data editor is not available, a dump of the object is presented for editing using the default
method of edit.

At present the data editor is limited to 65535 rows.

Author(s)

Peter Dalgaard

See Also

data.entry, edit

Examples

Not run:
edit(InsectSprays)
edit(InsectSprays, factor.mode="numeric")
End(Not run)

example 1455

example Run an Examples Section from the Online Help

Description

Run all the R code from the Examples part of R’s online help topic topic with two possible
exceptions, dontrun and dontshow, see ‘Details’ below.

Usage

example(topic, package = NULL, lib.loc = NULL,
local = FALSE, echo = TRUE,
verbose = getOption("verbose"),
setRNG = FALSE, ask = getOption("example.ask"),
prompt.prefix = abbreviate(topic, 6))

Arguments

topic name or literal character string: the online help topic the examples of which
should be run.

package a character vector giving the package names to look into for example code, or
NULL. By default, all packages in the search path are used.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries.

local logical: if TRUE evaluate locally, if FALSE evaluate in the workspace.

echo logical; if TRUE, show the R input when sourcing.

verbose logical; if TRUE, show even more when running example code.

setRNG logical or expression; if not FALSE, the random number generator state is saved,
then initialized to a specified state, the example is run and the (saved) state
is restored. setRNG = TRUE sets the same state as R CMD check does
for running a package’s examples. This is currently equivalent to setRNG =
{RNGkind("default", "default"); set.seed(1)}.

ask logical (or "default") indicating if par(ask=TRUE) and
grid.prompt(ask=TRUE) should be called before graphical output
happens from the example code. The value "default" (the factory-fresh
default) means to ask if echo == TRUE and the graphics device appears to
be interactive. This parameter applies both to any currently opened device and
to any devices opened by the example code.

prompt.prefix
character; prefixes the prompt to be used if echo = TRUE.

Details

If lib.loc is not specified, the packages are searched for amongst those already loaded, then in
the specified libraries. If lib.loc is specified, they are searched for only in the specified libraries,
even if they are already loaded from another library.

An attempt is made to load the package before running the examples, but this will not replace a
package loaded from another location.

1456 example

If local=TRUE objects are not created in the workspace and so not available for examination
after example completes: on the other hand they cannot clobber objects of the same name in the
workspace.

As detailed in the manual Writing R Extensions, the author of the help page can markup parts of
the examples for two exception rules

dontrun encloses code that should not be run.

dontshow encloses code that is invisible on help pages, but will be run both by the package
checking tools, and the example() function. This was previously testonly, and that
form is still accepted.

If the examples file contains non-ASCII characters the encoding used will matter. If in a UTF-8
locale example first tries UTF-8 and then Latin-1. (This can be overridden by setting the encoding
in the ‘.Rd’ file.)

Value

The value of the last evaluated expression.

Note

The examples can be many small files. On some file systems it is desirable to save space, and the
files in the ‘R-ex’ directory of an installed package can be zipped up as a zip archive ‘Rex.zip’.

Author(s)

Martin Maechler and others

See Also

demo

Examples

example(InsectSprays)
force use of the standard package 'stats':
example("smooth", package="stats", lib.loc=.Library)

set RNG *before* example as when R CMD check is run:

r1 <- example(quantile, setRNG = TRUE)
x1 <- rnorm(1)
u <- runif(1)
identical random numbers
r2 <- example(quantile, setRNG = TRUE)
x2 <- rnorm(1)
stopifnot(identical(r1, r2))
but x1 and x2 differ since the RNG state from before example()
differs and is restored!
x1; x2

file.edit 1457

file.edit Edit One or More Files

Description

Edit one or more files in a text editor.

Usage

file.edit(..., title = file, editor = getOption("editor"))

Arguments

... one or more character vectors containing the names of the files to be edited.

title the title to use in the editor; defaults to the filename.

editor the text editor to be used.

Details

Path expansion (see path.expand will be done on names.

The behaviour of this function is very system dependent. Currently files can be opened only one at
a time on Unix; on Windows, the internal editor allows multiple files to be opened, but has a limit
of 50 simultaneous edit windows.

The title argument is used for the window caption in Windows, and is ignored on other platforms.

See Also

files, file.show, edit, fix,

Examples

Not run:
open two R scripts for editing
file.edit("script1.R", "script2.R")
End(Not run)

file_test Shell-style Tests on Files

Description

Utility for shell-style file tests.

Usage

file_test(op, x, y)

1458 fix

Arguments

op a character string specifying the test to be performed. Unary tests (only x is
used) are "-f" (existence and not being a directory) and "-d" (existence and
directory). Binary tests are "-nt" (strictly newer than, using the modification
dates) and "-ot" (strictly older than): in both cases the test is false unless both
files exist.

x,y character vectors giving file paths.

Details

‘Existence’ here means being on the file system and accessible by the stat system call (or a 64-bit
extension) – on a Unix-alike this requires execute permission on all of the directories in the path
that leads to the file, but no permissions on the file itself.

See Also

file.exists which only tests for existence (test -e on some systems) but not for not being
a directory.

file.path, file.info

Examples

dir <- file.path(R.home(), "library", "stats")
file_test("-d", dir)
file_test("-nt", file.path(dir, "R"), file.path(dir, "demo"))

fix Fix an Object

Description

fix invokes edit on x and then assigns the new (edited) version of x in the user’s workspace.

Usage

fix(x, ...)

Arguments

x the name of an R object, as a name or a character string.

... arguments to pass to editor: see edit.

Details

The name supplied as x need not exist as an R object, in which case a function with no arguments
and an empty body is supplied for editing.

Editing an R object may change it in ways other than are obvious: see the comment under edit.
See edit.data.frame for changes that can occur when editing a data frame or matrix.

flush.console 1459

See Also

edit, edit.data.frame

Examples

Not run:
Assume 'my.fun' is a user defined function :
fix(my.fun)
now my.fun is changed
Also,
fix(my.data.frame) # calls up data editor
fix(my.data.frame, factor.mode="char") # use of ...

End(Not run)

flush.console Flush Output to A Console

Description

This does nothing except on console-based versions of R. On the Mac OS X and Windows GUIs, it
ensures that the display of output in the console is current, even if output buffering is on.

Usage

flush.console()

format Format Unordered and Ordered Lists

Description

Format unordered (itemize) and ordered (enumerate) lists.

Usage

formatUL(x, label = "*", offset = 0,
width = 0.9 * getOption("width"))

formatOL(x, type = "arabic", offset = 0, start = 1,
width = 0.9 * getOption("width"))

Arguments

x a character vector of list items.

label a character string used for labelling the items.

offset a non-negative integer giving the offset (indentation) of the list.

width a positive integer giving the target column for wrapping lines in the output.

1460 getAnywhere

type a character string specifying the ‘type’ of the labels in the ordered list. If
"arabic" (default), arabic numerals are used. For "Alph" or "alph", sin-
gle upper or lower case letters are employed (in this case, the number of the last
item must not exceed 26. Finally, for "Roman" or "roman", the labels are
given as upper or lower case roman numerals (with the number of the last item
maximally 3899). type can be given as a unique abbreviation of the above,
or as one of the HTML style tokens "1" (arabic), "A"/"a" (alphabetic), or
"I"/"i" (roman), respectively.

start a positive integer specifying the starting number of the first item in an ordered
list.

Value

A character vector with the formatted entries.

See Also

formatDL for formatting description lists.

Examples

A simpler recipe.
x <- c("Mix dry ingredients thoroughly.",

"Pour in wet ingredients.",
"Mix for 10 minutes.",
"Bake for one hour at 300 degrees.")

Format and output as an unordered list.
writeLines(formatUL(x))
Format and output as an ordered list.
writeLines(formatOL(x))
Ordered list using lower case roman numerals.
writeLines(formatOL(x, type = "i"))
Ordered list using upper case letters and some offset.
writeLines(formatOL(x, type = "A", offset = 5))

getAnywhere Retrieve an R Object, Including from a Namespace

Description

These functions locates all objects with name matching its argument, whether visible on the search
path, registered as an S3 method or in a namespace but not exported. getAnywhere() returns
the objects and argsAnywhere() returns the arguments of any objects that are functions.

Usage

getAnywhere(x)
argsAnywhere(x)

Arguments

x a character string or name.

getFromNamespace 1461

Details

The function looks at all loaded namespaces, whether or not they are associated with a package on
the search list.

Where functions are found as an S3 method, an attempt is made to find which namespace registered
them. This may not be correct, especially if a namespace is unloaded.

Value

For getAnywhere() an object of class "getAnywhere". This is a list with components

name the name searched for.

objs a list of objects found

where a character vector explaining where the object(s) were found

visible logical: is the object visible

dups logical: is the object identical to one earlier in the list.

Normally the structure will be hidden by the print method. There is a [method to extract one or
more of the objects found.

For argsAnywhere() one or more argument lists as returned by args.

See Also

get, getFromNamespace, args

Examples

getAnywhere("format.dist")
getAnywhere("simpleLoess") # not exported from stats
argsAnywhere(format.dist)

getFromNamespace Utility functions for Developing Namespaces

Description

Utility functions to access and replace the non-exported functions in a namespace, for use in devel-
oping packages with namespaces.

Usage

getFromNamespace(x, ns, pos = -1, envir = as.environment(pos))

assignInNamespace(x, value, ns, pos = -1,
envir = as.environment(pos))

fixInNamespace(x, ns, pos = -1, envir = as.environment(pos), ...)

1462 getFromNamespace

Arguments

x an object name (given as a character string).

value an R object.

ns a namespace, or character string giving the namespace.

pos where to look for the object: see get.

envir an alternative way to specify an environment to look in.

... arguments to pass to the editor: see edit.

Details

The namespace can be specified in several ways. Using, for example, ns = "stats" is the most
direct, but a loaded package with a namespace can be specified via any of the methods used for
get: ns can also be the environment printed as <namespace:foo>.

getFromNamespace is similar to (but predates) the ::: operator, but is more flexible in how
the namespace is specified.

fixInNamespace invokes edit on the object named x and assigns the revised object in place
of the original object. For compatibility with fix, x can be unquoted.

Value

getFromNamespace returns the object found (or gives an error).

assignInNamespace and fixInNamespace are invoked for their side effect of changing the
object in the namespace.

Note

assignInNamespace and fixInNamespace change the copy in the namespace, but not any
copies already exported from the namespace, in particular an object of that name in the package (if
already attached) and any copies already imported into other namespaces. They are really intended
to be used only for objects which are not exported from the namespace. They do attempt to alter a
copy registered as an S3 method if one is found.

They can only be used to change the values of objects in the namespace, not to create new objects.

See Also

get, fix, getS3method

Examples

getFromNamespace("findGeneric", "utils")
Not run:
fixInNamespace("predict.ppr", "stats")
stats:::predict.ppr
getS3method("predict", "ppr")
alternatively
fixInNamespace("predict.ppr", pos = 3)
fixInNamespace("predict.ppr", pos = "package:stats")
End(Not run)

getS3method 1463

getS3method Get An S3 Method

Description

Get a method for an S3 generic, possibly from a namespace.

Usage

getS3method(f, class, optional = FALSE)

Arguments

f character: name of the generic.

class character: name of the class.

optional logical: should failure to find the generic or a method be allowed?

Details

S3 methods may be hidden in packages with namespaces, and will not then be found by get: this
function can retrieve such functions, primarily for debugging purposes.

Value

The function found, or NULL if no function is found and optional = TRUE.

See Also

methods, get

Examples

require(stats)
exists("predict.ppr") # false
getS3method("predict", "ppr")

glob2rx Change Wildcard or Globbing Pattern into Regular Expression

Description

Change wildcard aka globbing patterns into the corresponding regular expressions (regexp).

Usage

glob2rx(pattern, trim.head = FALSE, trim.tail = TRUE)

1464 head

Arguments

pattern character vector

trim.head logical specifying if leading "^.*" should be trimmed from the result.

trim.tail logical specifying if trailing ".*$" should be trimmed from the result.

Details

This takes a wildcard as used by most shells and returns an equivalent regular expression. ? is
mapped to . (match a single character), * to .* (match any string, including an empty one), and
the pattern is anchored (it must start at the beginning and end at the end). Optionally, the resulting
regexp is simplified.

Note that now even (, [and { can be used in pattern, but glob2rx() may not work correctly
with arbitrary characters in pattern.

Value

A character vector of the same length as the input pattern where each wildcard is translated to
the corresponding regular expression.

Author(s)

Martin Maechler, Unix/sed based version, 1991; current: 2004

See Also

regexp about regular expression, sub, etc about substitutions using regexps.

Examples

stopifnot(glob2rx("abc.*") == "^abc\\.",
glob2rx("a?b.*") == "^a.b\\.",
glob2rx("a?b.*", trim.tail=FALSE) == "^a.b\\..*$",
glob2rx("*.doc") == "^.*\\.doc$",
glob2rx("*.doc", trim.head=TRUE) == "\\.doc$",
glob2rx("*.t*") == "^.*\\.t",
glob2rx("*.t??") == "^.*\\.t..$",
glob2rx("*[*") == "^.*\\["

)

head Return the First or Last Part of an Object

Description

Returns the first or last parts of a vector, matrix, table, data frame or function. Since head() and
tail() are generic functions, they may also have been extended to other classes.

head 1465

Usage

head(x, ...)
Default S3 method:
head(x, n = 6, ...)
S3 method for class 'data.frame':
head(x, n = 6, ...)
S3 method for class 'matrix':
head(x, n = 6, ...)
S3 method for class 'ftable':
head(x, n = 6, ...)
S3 method for class 'table':
head(x, n = 6, ...)
S3 method for class 'function':
head(x, n = 6, ...)

tail(x, ...)
Default S3 method:
tail(x, n = 6, ...)
S3 method for class 'data.frame':
tail(x, n = 6, ...)
S3 method for class 'matrix':
tail(x, n = 6, addrownums = TRUE, ...)
S3 method for class 'ftable':
tail(x, n = 6, addrownums = FALSE, ...)
S3 method for class 'table':
tail(x, n = 6, addrownums = TRUE, ...)
S3 method for class 'function':
tail(x, n = 6, ...)

Arguments

x an object

n a single integer. If positive, size for the resulting object: number of elements for
a vector (including lists), rows for a matrix or data frame or lines for a function.
If negative, all but the n last/first number of elements of x.

addrownums if there are no row names, create them from the row numbers.

... arguments to be passed to or from other methods.

Details

For matrices, 2-dim tables and data frames, head() (tail()) returns the first (last) n rows when
n > 0 or all but the last (first) n rows when n < 0. head.matrix() and tail.matrix()
are exported. For functions, the lines of the deparsed function are returned as character strings.

If a matrix has no row names, then tail() will add row names of the form "[n,]" to the
result, so that it looks similar to the last lines of x when printed. Setting addrownums = FALSE
suppresses this behaviour.

Value

An object (usually) like x but generally smaller. For ftable objects x, a transformed
format(x).

1466 help

Author(s)

Patrick Burns, improved and corrected by R-Core. Negative argument added by Vincent Goulet.

Examples

head(letters)
head(letters, n = -6)

head(freeny.x, n = 10)
head(freeny.y)

tail(letters)
tail(letters, n = -6)

tail(freeny.x)
tail(freeny.y)

tail(library)

head(stats::ftable(Titanic))

help Documentation

Description

These functions provide access to documentation. Documentation on a topic with name name
(typically, an R object or a data set) can be displayed with either help("name") or ?name.

Usage

help(topic, offline = FALSE, package = NULL,
lib.loc = NULL, verbose = getOption("verbose"),
try.all.packages = getOption("help.try.all.packages"),
chmhelp = getOption("chmhelp"),
htmlhelp = getOption("htmlhelp"),
pager = getOption("pager"))

?topic

type?topic

Arguments

topic usually, a name or character string specifying the topic for which help is sought.
A character string (enclosed in explicit single or double quotes) is always taken
as naming a topic.
For help, if the value of topic is a length-one character vector the topic is
taken to be the value of the only element. Otherwise topic must be a name or
a reserved word (if syntactically valid) or character string.

help 1467

For ? the topic argument may also be a function call, to ask for documen-
tation on a corresponding method: see the section on S4 method documenta-
tion. Unlike help, all names are deparsed to give the desired topic. The forms
pkg::topic and pkg:::topic are treated specially, and look for help on
topic in package package.
See ‘Details’ for what happens if this is omitted for help.

offline a logical indicating whether documentation should be displayed on-line to the
screen (the default) or hardcopy of it should be produced.

package a name or character vector giving the packages to look into for documentation,
or NULL. By default, all packages in the search path are used.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries.

verbose logical; if TRUE, the file name is reported.
try.all.packages

logical; see Note.

chmhelp logical (or NULL). Only relevant under Windows. If TRUE the Compiled HTML
version of the help on the topic will be shown in a help viewer. If none is
available, plain text help will be shown.

htmlhelp logical (or NULL). If TRUE (which is the default after help.start has been
called), the HTML version (if available) of the help on the topic will be shown
in the browser specified by options("browser"). See browseURL for
details of the browsers that are supported. Where possible an existing browser
window is re-used.

pager the pager to be used for file.show.

type the special type of documentation to use for this topic; for example, if the type
is class, documentation is provided for the class with name topic. The
function topicName returns the actual name used in this case. See the section
on method documentation for the uses of type to get help on formal methods.

Details

topic is not optional: if it is omitted R will give a hint as to suitable topics if a package is specified,
to available packages if lib.loc only is specified, and help on help itself if nothing is specified.
(In all cases this will be text help.)

Some topics need to be quoted (by backticks) or given as a character string. There include those
which cannot syntactically appear on their own such as unary and binary operators, function and
control-flow reserved words (including if, else for, in, repeat, while, break and next.
The other reserved words can be used as if they were names, for example TRUE, NA and Inf.

If multiple help files matching topic are found, in interactive use a menu is presented for the user
to choose one: otherwise the first on the search path is used. (The menu will be a graphical menu if
possible if getOption("menu.graphics") is true, the default.)

HTML help works best if help.start() has been called in the session. Otherwise there will
be a warning about ‘Using non-linked HTML file: hyperlinks may be incorrect’ and cross-library
links will most likely not be resolved.

If offline is TRUE, hardcopy of the documentation is produced by running the LaTeX version
of the help page through latex and dvips. Depending on your dvips configuration, hardcopy
will be sent to the printer or saved in a file. If the programs are in non-standard locations and hence
were not found at compile time, you can either set the options latexcmd and dvipscmd, or

1468 help

the environment variables R_LATEXCMD and R_DVIPSCMD appropriately. The appearance of the
output can be customized through a file ‘Rhelp.cfg’ somewhere in your LaTeX search path.

If LaTeX versions of help pages were not built at the installation of the package, the print method
will ask if conversion with R CMD Rdconv (which requires Perl) should be attempted.

S4 Method Documentation

The authors of formal (‘S4’) methods can provide documentation on specific methods, as well as
overall documentation on the methods of a particular function. The "?" operator allows access to
this documentation in three ways.

The expression methods ? f will look for the overall documentation methods for the function
f. Currently, this means the documentation file containing the alias f-methods.

There are two different ways to look for documentation on a particular method. The first is to
supply the topic argument in the form of a function call, omitting the type argument. The effect
is to look for documentation on the method that would be used if this function call were actually
evaluated. See the examples below. If the function is not a generic (no S4 methods are defined for
it), the help reverts to documentation on the function name.

The "?" operator can also be called with type supplied as "method"; in this case also, the
topic argument is a function call, but the arguments are now interpreted as specifying the class
of the argument, not the actual expression that will appear in a real call to the function. See the
examples below.

The first approach will be tedious if the actual call involves complicated expressions, and may be
slow if the arguments take a long time to evaluate. The second approach avoids these difficulties,
but you do have to know what the classes of the actual arguments will be when they are evaluated.

Both approaches make use of any inherited methods; the signature of the method to be looked up is
found by using selectMethod (see the documentation for getMethod).

Note

Unless lib.loc is specified explicitly, the loaded packages are searched before those in the spec-
ified libraries. This ensures that if a library is loaded from a library not in the known library trees,
then the help from the loaded library is used. If lib.loc is specified explicitly, the loaded pack-
ages are not searched.

If this search fails and argument try.all.packages is TRUE and neither packages nor
lib.loc is specified, then all the packages in the known library trees are searched for help on
topic and a list of (any) packages where help may be found is printed (but no help is shown).
N.B. searching all packages can be slow.

The help files can be many small files. On some file systems it is desirable to save space, and the text
files in the ‘help’ directory of an installed package can be zipped up as a zip archive ‘Rhelp.zip’.
Ensure that file ‘AnIndex’ remains un-zipped. Similarly, all the files in the ‘latex’ directory can be
zipped to ‘Rhelp.zip’.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

help.request 1469

See Also

help.search() or ?? for finding help pages on a vague topic; help.start() which opens
the HTML version of the R help pages; library() for listing available packages and the user-
level objects they contain; data() for listing available data sets; methods().

See prompt() to get a prototype for writing help pages of private packages.

Examples

help()
help(help) # the same

help(lapply)
?lapply # the same

help("for") # or ?"for", but quotes/backticks are needed
?`+`

help(package="splines") # get help even when package is not loaded

data() # list all available data sets
?women # information about data set "women"

topi <- "women"
help(topi)

try(help("bs", try.all.packages=FALSE)) # reports not found (an error)
help("bs", try.all.packages=TRUE) # reports can be found

in package 'splines'

Not run:
require(methods)
define a S4 generic function and some methods
combo <- function(x, y) c(x, y)
setGeneric("combo")
setMethod("combo", c("numeric", "numeric"), function(x, y) x+y)

assume we have written some documentation
for combo, and its methods

?combo ## produces the function documentation

methods?combo ## looks for the overall methods documentation

method?combo("numeric", "numeric") ## documentation for the method above

?combo(1:10, rnorm(10)) ## ... the same method, selected according to
the arguments (one integer, the other numeric)

?combo(1:10, letters) ## documentation for the default method
End(Not run)

help.request Send a Post to R-help

1470 help.request

Description

Prompts the user to check they have done all that is expected of them before sending a post to the R-
help mailing list, provides a template for the post with session information included and optionally
sends the email (on Unix systems).

Usage

help.request(subject = "",
ccaddress = Sys.getenv("USER"),
method = getOption("mailer"),
address = "r-help@R-project.org",
file = "R.help.request")

Arguments

subject subject of the email. Please do not use single quotes (’) in the subject! Post
separate help requests for multiple queries.

ccaddress optional email address for copies (default is current user). Use ccaddress =
FALSE for no copies.

method submission method: for Unix one of "mailx", "gnudoit", "none" or
"ess"; for Windows either "none" (default) or "mailto".

address recipient’s email address.

file file to use for setting up the email (or storing it when method is "none" or
sending mail fails).

Details

This function is not intended to replace the posting guide. Please read the guide before posting to R-
help or using this function (see http://www.r-project.org/posting-guide.html).

The help.request function:

• asks whether the user has consulted relevant resources, stopping and opening the relevant url
if a negative response if given.

• checks whether the current version of R is being used and whether the add-on packages are
up-to-date, giving the option of updating where necessary.

• asks whether the user has prepared appropriate (minimal, reproducible, self-contained, com-
mented) example code ready to paste into the post.

Once this checklist has been completed a template post is prepared including current session infor-
mation.

If method is "none" or NULL, then the default text editor is opened for the user to complete the
post. Which editor is used can be controlled using options, type getOption("editor") to
see what editor is currently defined. Please use the help pages of the respective editor for details of
usage. The report can then be copied to your favorite email program and sent to the r-help list.

On Windows systems there is an experimental "mailto" option, which sends the template post
to the system’s default email program for the user to edit and send.

On Unix systems there are three options for direct submission of the post. If the submission method
is "mailx", then the default editor is used to write the help request. After saving the help request
(in the temporary file opened) and exiting the editor the report is mailed using a Unix command line
mail utility such as mailx. A copy of the mail is sent to the current user. If method is "gnudoit",

http://www.r-project.org/posting-guide.html

help.search 1471

then an emacs mail buffer is opened and used for sending the email. If method is "ess" the body
of the mail is simply sent to stdout.

Value

Nothing useful.

Author(s)

Heather Turner, based on code and help page of bug.report().

See Also

The posting guide (http://www.r-project.org/posting-guide.html), also
sessionInfo() from which you may add to the help request.

help.search Search the Help System

Description

Allows for searching the help system for documentation matching a given character string in the
(file) name, alias, title, concept or keyword entries (or any combination thereof), using either fuzzy
matching or regular expression matching. Names and titles of the matched help entries are displayed
nicely formatted.

Usage

help.search(pattern, fields = c("alias", "concept", "title"),
apropos, keyword, whatis, ignore.case = TRUE,
package = NULL, lib.loc = NULL,
help.db = getOption("help.db"),
verbose = getOption("verbose"),
rebuild = FALSE, agrep = NULL)

??pattern
field??pattern

Arguments

pattern a character string to be matched in the specified fields. If this is given, the
arguments apropos, keyword, and whatis are ignored.

fields a character vector specifying the fields of the help data bases to be searched. The
entries must be abbreviations of "name", "title", "alias", "concept",
and "keyword", corresponding to the help page’s (file) name, its title, the
topics and concepts it provides documentation for, and the keywords it can be
classified to.

apropos a character string to be matched in the help page topics and title.

keyword a character string to be matched in the help page ‘keywords’. ‘Key-
words’ are really categories: the standard categories are listed in file
‘RHOME/doc/KEYWORDS’ (see also the example) and some package writers
have defined their own. If keyword is specified, agrep defaults to FALSE.

http://www.r-project.org/posting-guide.html

1472 help.search

whatis a character string to be matched in the help page topics.

ignore.case a logical. If TRUE, case is ignored during matching; if FALSE, pattern matching
is case sensitive.

package a character vector with the names of packages to search through, or NULL in
which case all available packages in the library trees specified by lib.loc are
searched.

lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to all libraries currently known.

help.db a character string giving the file path to a previously built and saved help data
base, or NULL.

verbose logical; if TRUE, the search process is traced.

rebuild a logical indicating whether the help data base should be rebuilt. This will be
done automatically if lib.loc or the search path is changed, or if package
is used and a value is not found.

agrep if NULL (the default unless keyword is used) and the character string to be
matched consists of alphanumeric characters, whitespace or a dash only, ap-
proximate (fuzzy) matching via agrep is used unless the string has fewer than
5 characters; otherwise, it is taken to contain a regular expression to be matched
via grep. If FALSE, approximate matching is not used. Otherwise, one can
give a numeric or a list specifying the maximal distance for the approximate
match, see argument max.distance in the documentation for agrep.

field a single value of fields to search.

Details

Upon installation of a package, a pre-built help.search index is serialized as ‘hsearch.rds’ in the
‘Meta’ directory (provided the package has any help pages). These files are used to create the data
base.

The arguments apropos and whatis play a role similar to the Unix commands with the same
names.

Searching with agrep = FALSE will be several times faster than the default.

If possible, the help data base is saved in memory or (if memory limits have been set: see
mem.limits) to a file in the session temporary directory for use by subsequent calls in the session.

Note that currently the aliases in the matching help files are not displayed.

Matching by agrep is by bytes even in multi-byte locales: character-by-character matching will
be too slow with a thousand or more packages.

As with ?, in ?? the pattern may be prefixed with a package name followed by :: or ::: to limit
the search to that package.

Value

The results are returned in a list object of class "hsearch", which has a print method for nicely
formatting the results of the query. This mechanism is experimental, and may change in future
versions of R.

In R.app on Mac OS X, this will show up a browser with selectable items. On exiting this browser,
the help pages for the selected items will be shown in separate help windows.

The internal format of the class is undocumented and subject to change.

help.start 1473

See Also

help; help.start for starting the hypertext (currently HTML) version of R’s online documen-
tation, which offers a similar search mechanism.

RSiteSearch to access an on-line search of R resources.

apropos uses regexps and has nice examples.

Examples

help.search("linear models") # In case you forgot how to fit linear
models

help.search("non-existent topic")

??utils::help # All the topics matching "help" in the utils package

Not run:
help.search("print") # All help pages with topics or title

matching 'print'
help.search(apropos = "print") # The same

help.search(keyword = "hplot") # All help pages documenting high-level
plots.

file.show(file.path(R.home(), "doc", "KEYWORDS")) # show all keywords

Help pages with documented topics starting with 'try'.
help.search("\\btry", fields = "alias")
End(Not run)

help.start Hypertext Documentation

Description

Start the hypertext (currently HTML) version of R’s online documentation.

Usage

help.start(gui = "irrelevant", browser = getOption("browser"),
remote = NULL, searchEngine = FALSE)

Arguments

gui just for compatibility with S-PLUS.

browser the name of the program to be used as hypertext browser. It should be in the
PATH, or a full path specified. Alternatively, it can be a function which will be
called with an URL as its only argument.

remote A character giving a valid URL for the ‘R_HOME’ directory on a remote loca-
tion.

searchEngine logical: if true go directly to the search engine page. A workaround for Firefox
3 users (see ‘Notes’).

1474 index.search

Details

All the packages in the known library trees are linked to directory ‘.R’ in the per-session temporary
directory. The links are re-made each time make.packages.html or help.start is run,
which should be done after packages are installed, updated or removed.

A side effect is to set options(htmlhelp = TRUE) so that future help requests (by default)
are sent to the browser.

If the browser named by the browser argument is different from the default browser as specified
by options("browser"), the default is changed to the given browser so that it gets used for
all future help requests. (This only holds when browser is a name, not a function.)

Note

There is a Java-based search facility available from the HTML page that help.start brings up.
Should this not work, please consult the ‘R Installation and Administration’ manual which is linked
from that page.

Note to users of Firefox 3: the search results have links that are resolved incorrectly by that
browser if starting from the normal HTML index page. The workaround is to start with
help.start(searchEngine = TRUE)

See Also

help() for on- and off-line help in ASCII/Editor or PostScript format.

browseURL for how the help file is displayed.

RSiteSearch to access an on-line search of R resources.

Examples

Not run:
help.start()
End(Not run)

index.search Search Indices for Help Files

Description

Used to search the indices for help files, possibly under aliases.

Usage

index.search(topic, path, file="AnIndex", type = "help")

Arguments

topic The keyword to be searched for in the indices.

path The path(s) to the packages to be searched.

file The index file to be searched. Normally ‘"AnIndex"’.

type The type of file required.

INSTALL 1475

Details

For each package in path, examine the file file in directory ‘type’, and look up the matching
file stem for topic topic, if any.

Value

A character vector of matching files, as if they are in directory type of the corresponding package.
In the special cases of type = "html", "R-ex" and "latex" the file extensions ".html",
".R" and ".tex" are added.

See Also

help, example

INSTALL Install Add-on Packages

Description

Utility for installing add-on packages.

Usage

R CMD INSTALL [options] [-l lib] pkgs

Arguments

pkgs A space-separated list with the path names of the packages to be installed.

lib the path name of the R library tree to install to.

options a space-separated list of options through which in particular the process for
building the help files can be controlled. Options should only be given once.
Use R CMD INSTALL --help for the current list of options.

Details

This will stop at the first error, so if you want all the pkgs to be tried, call this via a shell for or
foreach loop.

If used as R CMD INSTALL pkgs without explicitly specifying lib, packages are installed into
the library tree rooted at the first directory in the library path which would be used by R run in the
current environment.

To install into the library tree lib, use R CMD INSTALL -l lib pkgs. This prepends lib
to R_LIBS for duration of the install, so required packages in the installation directory will be
found (and used in preference to those in other libraries).

Both lib and the elements of pkgs may be absolute or relative path names of directories. pkgs
may also contain names of package/bundle archive files of the form ‘pkg_version.tar.gz’ as
obtained from CRAN: these are then extracted in a temporary directory. Finally, binary pack-
age/bundle archive files (as created by R CMD build --binary can be supplied.

Some package sources contain a ‘configure’ script that can be passed arguments or variables via
the option ‘--configure-args’ and ‘--configure-vars’, respectively, if necessary. The

1476 installed.packages

latter is useful in particular if libraries or header files needed for the package are in non-system
directories. In this case, one can use the configure variables LIBS and CPPFLAGS to specify these
locations (and set these via ‘--configure-vars’), see section “Configuration variables” in “R
Installation and Administration” for more information. (If these are used more than once on the
command line, only the last instance is used.) One can bypass the configure mechanism using the
option ‘--no-configure’.

If ‘--no-docs’ is given, no help files are built. Options ‘--no-text’, ‘--no-html’, and
‘--no-latex’ suppress creating the text, HTML, and LaTeX versions, respectively. The default
is to build help files in all three versions.

If the attempt to install the package fails, leftovers are removed. If the package was already installed,
the old version is restored. This happens either if a command encounters an error or if the install is
interrupted from the keyboard: after cleaning up the script terminates.

Use R CMD INSTALL --help for more usage information.

Packages using the methods package

Packages that require the methods package and make use functions such as setMethod or
setClass, should be installed using lazy-loading (or, deprecated, by creating a binary image):
use the field LazyLoad in the ‘DESCRIPTION’ file to ensure this.

Note

Some parts of the operation of INSTALL depend on ‘/tmp’ having both write and execution access
to the account running R. This is usually the case, but if ‘/tmp’ has been mounted as noexec,
environment variable TMPDIR needs to be set to a directory from which execution is allowed.

See Also

REMOVE and library for information on using several library trees; update.packages for
automatic update of packages using the internet (or other R level installation of packages, such as
by install.packages).

The section on “Add-on packages” in “R Installation and Administration” and the chapter on “Cre-
ating R packages” in “Writing R Extensions” (see RShowDoc and the ‘doc/manual’ subdirectory
of the R source tree).

installed.packages Find Installed Packages

Description

Find (or retrieve) details of all packages installed in the specified libraries.

Usage

installed.packages(lib.loc = NULL, priority = NULL,
noCache = FALSE, fields = NULL)

LINK 1477

Arguments

lib.loc character vector describing the location of R library trees to search through.

priority character vector or NULL (default). If non-null, used to select packages;
"high" is equivalent to c("base", "recommended"). To select all
packages without an assigned priority use priority = "NA".

noCache Do not use cached information.

fields a character vector giving the fields to extract from each package’s
DESCRIPTION file in addition to the default ones, or NULL (default). Un-
available fields result in NA values.

Details

installed.packages scans the ‘DESCRIPTION’ files of each package found along
lib.loc and returns a matrix of package names, library paths and version numbers.

Note: this works with package names, not bundle names, and for versioned installs with the name
under which the package is installed, in the style mypkg_1.3-7.

The information found is cached (by library) for the R session and specified fields argument,
and updated only if the top-level library directory has been altered, for example by installing or
removing a package. If the cached information becomes confused, it can be refreshed by running
installed.packages(noCache = TRUE).

Value

A matrix with one row per package, row names the package names and column
names "Package", "LibPath", "Version", "Priority", "Bundle", "Contains",
"Depends", "Suggests", "Imports" and "Built" (the R version the package was built
under). Additional columns can be specified using the fields argument.

See Also

update.packages, INSTALL, REMOVE.

Examples

str(ip <- installed.packages(priority = "high"))
ip[, c(1,3:5)]
plic <- installed.packages(priority = "high", fields="License")
what licenses are there:
table(plic[,"License"])

LINK Create Executable Programs

Description

Front-end for creating executable programs.

Usage

R CMD LINK [options] linkcmd

1478 localeToCharset

Arguments

linkcmd a list of commands to link together suitable object files (include library objects)
to create the executable program.

options further options to control the linking, or for obtaining information about usage
and version.

Details

The linker front-end is useful in particular when linking against the R shared library, in which case
linkcmd must contain -lR but need not specify its library path.

Currently only works if the C compiler is used for linking, and no C++ code is used.

Use R CMD LINK --help for more usage information.

Note

Some binary distributions of R have LINK in a separate bundle, e.g. an R-devel RPM.

localeToCharset Select a Suitable Encoding Name from a Locale Name

Description

This functions aims to find a suitable coding for the locale named, by default the current locale, and
if it is a UTF-8 locale a suitable single-byte encoding.

Usage

localeToCharset(locale = Sys.getlocale("LC_CTYPE"))

Arguments

locale character string naming a locale.

Details

The operation differs by OS. Locale names are normaly like es_MX.iso88591. If final com-
ponent indicates an encoding and it is not utf8 we just need to look up the equivalent encoding
name. Otherwise, the language (here es) is used to choose a primary or fallback encoding.

In the C locale the answer will be "ASCII".

Value

A character vector naming an encoding and possibly a fallback single-encoding, NA if unknown.

Note

The encoding names are those used by libiconv, and ought also to work with glibc but maybe
not with commercial Unixen.

ls.str 1479

See Also

Sys.getlocale, iconv.

Examples

localeToCharset()

ls.str List Objects and their Structure

Description

ls.str and lsf.str are variations of ls applying str() to each matched name: see section
Value.

Usage

ls.str(pos = -1, name, envir, all.names = FALSE,
pattern, mode = "any")

lsf.str(pos = -1, envir, ...)

S3 method for class 'ls_str':
print(x, max.level = 1, give.attr = FALSE, ...)

Arguments

pos integer indicating search path position.

name optional name indicating search path position, see ls.

envir environment to use, see ls.

all.names logical indicating if names which begin with a . are omitted; see ls.

pattern a regular expression passed to ls. Only names matching pattern are consid-
ered.

max.level maximal level of nesting which is applied for displaying nested structures, e.g.,
a list containing sub lists. Default 0: Display all nesting levels.

give.attr logical; if TRUE (default), show attributes as sub structures.

mode character specifying the mode of objects to consider. Passed to exists and
get.

x an object of class "ls_str".

... further arguments to pass. and lsf.str passes them to ls.str which passes
them on to ls. The (non-exported) print method print.ls_str passes them
to str.

Value

ls.str and lsf.str return an object of class "ls_str", basically the character vector of
matching names (functions only for lsf.str), similarly to ls, with a print() method that
calls str() on each object.

1480 make.packages.html

Author(s)

Martin Maechler

See Also

str, summary, args.

Examples

require(stats)

lsf.str()#- how do the functions look like which I am using?
ls.str(mode = "list") #- what are the structured objects I have defined?

create a few objects
example(glm, echo = FALSE)
ll <- as.list(LETTERS)
print(ls.str(), max.level = 0)# don't show details

which base functions have "file" in their name ?
lsf.str(pos = length(search()), pattern = "file")

demonstrating that ls.str() works inside functions
["browser/debug mode"]:
tt <- function(x, y=1) { aa <- 7; r <- x + y; ls.str() }
(nms <- sapply(strsplit(capture.output(tt(2))," *: *"), `[`, 1))
stopifnot(nms == c("aa", "r","x","y"))

make.packages.html Update HTML Documentation Files

Description

Functions to link and (optionally) re-create the HTML documentation files to reflect all installed
packages.

Usage

make.packages.html(lib.loc = .libPaths(), packages = TRUE)

Arguments

lib.loc character vector. List of libraries to be included.

packages logical: should be package indices be create.

Details

This sets up the links from packages in libraries to the ‘.R’ subdirectory of the per-session directory
(see tempdir) and optionally creates the ‘packages.html’ and ‘index.txt’ files to point to those
links. The slow part is creating those files (as all the package ‘DESCRIPTION’ files are read).

If a package is available in more than one library tree, all the copies are linked, after the first with
suffix .1 etc.

make.socket 1481

Value

Invisible logical, indicating if the files were created.

See Also

help.start

Examples

Not run:
to prefer HTML help, put in your .Rprofile
options(htmlhelp=TRUE)
make.packages.html(packages=FALSE)
this can be slow for large numbers of installed packages.
End(Not run)

make.socket Create a Socket Connection

Description

With server = FALSE attempts to open a client socket to the specified port and host. With
server = TRUE listens on the specified port for a connection and then returns a server socket. It
is a good idea to use on.exit to ensure that a socket is closed, as you only get 64 of them.

Usage

make.socket(host = "localhost", port, fail = TRUE, server = FALSE)

Arguments

host name of remote host

port port to connect to/listen on

fail failure to connect is an error?

server a server socket?

Value

An object of class "socket".

socket socket number. This is for internal use

port port number of the connection

host name of remote computer

Warning

I don’t know if the connecting host name returned when server = TRUE can be trusted. I
suspect not.

Author(s)

Thomas Lumley

1482 memory.size

References

Adapted from Luke Tierney’s code for XLISP-Stat, in turn based on code from Robbins and
Robbins "Practical UNIX Programming"

See Also

close.socket, read.socket

Examples

daytime <- function(host = "localhost"){
a <- make.socket(host, 13)
on.exit(close.socket(a))
read.socket(a)

}
Official time (UTC) from US Naval Observatory
Not run: daytime("tick.usno.navy.mil")

memory.size Report on Memory Allocation

Description

memory.size and memory.limit are used to manage the total memory allocation on Win-
dows. On other platforms these are stubs which report infinity with a warning.

Usage

memory.size(max = FALSE)

memory.limit(size = NA)

Arguments

max logical. If true the maximum amount of memory obtained from the OS is re-
ported, otherwise the amount currently in use.

size numeric. If NA report the memory size, otherwise request a new limit, in Mb.

Details

To restrict memory usage on a Unix-alike use the facilities of the shell used to launch R, e.g. limit
or ulimit.

Value

Size in bytes: always Inf.

See Also

Memory-limits for other limits.

menu 1483

menu Menu Interaction Function

Description

menu presents the user with a menu of choices labelled from 1 to the number of choices. To exit
without choosing an item one can select ‘0’.

Usage

menu(choices, graphics = FALSE, title = "")

Arguments

choices a character vector of choices

graphics a logical indicating whether a graphics menu should be used if available.

title a character string to be used as the title of the menu. NULL is also accepted.

Details

If graphics = TRUE and a windowing system is available (Windows, MacOS X or X11 via
Tcl/Tk) a listbox widget is used, otherwise a text menu.

Ten or fewer items will be displayed in a single column, more in multiple columns if possible within
the current display width.

No title is displayed if title is NULL or "".

Value

The number corresponding to the selected item, or 0 if no choice was made.

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

See Also

select.list, which is used to implement the graphical menu, and allows multiple selections.

Examples

Not run:
switch(menu(c("List letters", "List LETTERS")) + 1,

cat("Nothing done\n"), letters, LETTERS)
End(Not run)

1484 methods

methods List Methods for S3 Generic Functions or Classes

Description

List all available methods for an S3 generic function, or all methods for a class.

Usage

methods(generic.function, class)

Arguments

generic.function
a generic function, or a character string naming a generic function.

class a symbol or character string naming a class: only used if
generic.function is not supplied.

Details

Function methods can be used to find out about the methods for a particular generic function or
class. The functions listed are those which are named like methods and may not actually be methods
(known exceptions are discarded in the code). Note that the listed methods may not be user-visible
objects, but often help will be available for them.

If class is used, we check that a matching generic can be found for each user-visible object named.
If generic.function is given, there is a warning if it appears not to be a generic function. (The
check for being generic used can be fooled.)

Value

An object of class "MethodsFunction", a character vector of function names with an "info"
attribute. There is a print method which marks with an asterisk any methods which are not
visible: such functions can be examined by getS3method or getAnywhere.

The "info" attribute is a data frame, currently with a logical column, visible and a factor
column from (indicating where the methods were found).

Note

This scheme is called S3 (S version 3). For new projects, it is recommended to use the more
flexible and robust S4 scheme provided in the methods package. Functions can have both S3 and
S4 methods, and function showMethods will list the S4 methods (possibly none).

The original methods function was written by Martin Maechler.

References

Chambers, J. M. (1992) Classes and methods: object-oriented programming in S. Appendix A of
Statistical Models in S eds J. M. Chambers and T. J. Hastie, Wadsworth & Brooks/Cole.

mirrorAdmin 1485

See Also

S3Methods, class, getS3method.

For S4, showMethods, Methods.

Examples

require(stats)

methods(summary)
methods(class = "aov")
methods("[[") # uses C-internal dispatching
methods("$")
methods("$<-") # replacement function
methods("+") # binary operator
methods("Math") # group generic
require(graphics)
methods("axis") # looks like it has methods, but not generic
Not run:
methods(print) # over 100
End(Not run)
--> help(showMethods) for related examples

mirrorAdmin Managing Repository Mirrors

Description

Functions helping to maintain CRAN, some of them may also be useful for administrators of other
repository networks.

Usage

mirror2html(mirrors = NULL, file = "mirrors.html",
head = "mirrors-head.html", foot = "mirrors-foot.html")

checkCRAN(method)

Arguments

mirrors A data frame, by default the CRAN list of mirrors is used.

file A connection object or a character string.

head Name of optional header file.

foot Name of optional footer file.

method Download method, see download.file.

Details

mirror2html creates the HTML file for the CRAN list of mirrors and invisibly returns the HTML
text.

checkCRAN performs a sanity checks on all CRAN mirrors.

1486 normalizePath

modifyList Recursively Modify Elements of a List

Description

Modifies a possibly nested list recursively by changing a subset of elements at each level to match
a second list.

Usage

modifyList(x, val)

Arguments

x a named list, possibly empty.

val a named list with components to replace corresponding components in x.

Value

A modified version of x, with the modifications determined as follows (here, list elements are
identified by their names). Elements in val which are missing from x are added to x. For
elements that are common to both but are not both lists themselves, the component in x is re-
placed by the one in val. For common elements that are both lists, x[[name]] is replaced by
modifyList(x[[name]], val[[name]]).

Author(s)

Deepayan Sarkar 〈Deepayan.Sarkar@R-project.org〉

Examples

foo <- list(a = 1, b = list(c = "a", d = FALSE))
bar <- modifyList(foo, list(e = 2, b = list(d = TRUE)))
str(foo)
str(bar)

normalizePath Express File Paths in Canonical Form

Description

Convert file paths to canonical form for the platform, to display them in a user-understandable form.

Usage

normalizePath(path)

Arguments

path character vector of file paths.

nsl 1487

Details

Where the platform supports it this turns paths into absolute paths in their canonical form (no ./,
../ nor symbolic links).

If the path is not a real path the result is undefined but will most likely be the corresponding input
element.

Value

A character vector.

Examples

cat(normalizePath(c(R.home(), tempdir())), sep = "\n")

nsl Look up the IP Address by Hostname

Description

Interface to gethostbyname.

Usage

nsl(hostname)

Arguments

hostname the name of the host.

Value

The IP address, as a character string, or NULL if the call fails.

Note

This was included as a test of internet connectivity, to fail if the node running R is not connected. It
will also return NULL if BSD networking is not supported, including the header file ‘arpa/inet.h’.

Examples

Not run: nsl("www.r-project.org")

1488 object.size

object.size Report the Space Allocated for an Object

Description

Provides an estimate of the memory that is being used to store an R object.

Usage

object.size(x)

Arguments

x An R object.

Details

Exactly which parts of the memory allocation should be attributed to which object is not clear-
cut. This function merely provides a rough indication: it should be reasonably accurate for atomic
vectors, but does not detect if elements of a list are shared, for example. (Sharing amongst elements
of a character vector is taken into account, but not that between character vectors in a single object.)

The calculation is of the size of the object, and excludes the space needed to store its name in the
symbol table.

Associated space (e.g. the environment of a function and what the pointer in a EXTPTRSXP points
to) is not included in the calculation.

Object sizes are larger on 64-bit platforms than 32-bit ones, but will very likely be the same on
different platforms with the same word length and pointer size.

Value

An estimate of the memory allocation attributable to the object, in bytes.

See Also

Memory-limits for the design limitations on object size.

Examples

object.size(letters)
object.size(ls)
find the 10 largest objects in the base package
z <- sapply(ls("package:base"), function(x)

object.size(get(x, envir = baseenv())))
as.matrix(rev(sort(z))[1:10])

package.skeleton 1489

package.skeleton Create a Skeleton for a New Source Package

Description

package.skeleton automates some of the setup for a new source package. It creates directo-
ries, saves functions, data, and R code files to appropriate places, and creates skeleton help files and
a ‘Read-and-delete-me’ file describing further steps in packaging.

Usage

package.skeleton(name = "anRpackage", list,
environment = .GlobalEnv,
path = ".", force = FALSE, namespace = FALSE,
code_files = character())

Arguments

name character string: the package name and directory name for your package.

list character vector naming the R objects to put in the package. Usually, at most one
of list, environment, or code_files will be supplied. See ‘Details’.

environment an environment where objects are looked for. See ‘Details’.

path path to put the package directory in.

force If FALSE will not overwrite an existing directory.

namespace a logical indicating whether to add a name space for the package. If TRUE, a
NAMESPACE file is created to export all objects whose names begin with a letter,
plus all S4 methods and classes.

code_files a character vector with the paths to R code files to build the package around. See
‘Details’.

Details

The arguments list, environment, and code_files provide alternative ways to initialize
the package. If code_files is supplied, the files so named will be sourced to form the environ-
ment, then used to generate the package skeleton. Otherwise list defaults to the non-hidden files
in environment (those whose name does not start with .), but can be supplied to select a subset
of the objects in that environment.

Stubs of help files are generated for functions, data objects, and S4 classes and methods, using the
prompt, promptClass, and promptMethods functions.

The package sources are placed in subdirectory name of path. If code_files is supplied, these
files are copied; otherwise, objects will be dumped into individual source files. The file names in
code_files should have suffix ".R" and be in the current working directory.

The filenames created for source and documentation try to be valid for all OSes known to run R.
Invalid characters are replaced by ‘_’, invalid names are preceded by ‘zz’, and finally the converted
names are made unique by make.unique(sep = "_"). This can be done for code and help
files but not data files (which are looked for by name). Also, the code and help files should have
names starting with an ASCII letter or digit, and this is checked and if necessary z prepended.

When you are done, delete the ‘Read-and-delete-me’ file, as it should not be distributed.

1490 packageDescription

Value

Used for its side-effects.

References

Read the Writing R Extensions manual for more details.

Once you have created a source package you need to install it: see the R Installation and Adminis-
tration manual, INSTALL and install.packages.

See Also

prompt, promptClass, and promptMethods.

Examples

require(stats)
two functions and two "data sets" :
f <- function(x,y) x+y
g <- function(x,y) x-y
d <- data.frame(a=1, b=2)
e <- rnorm(1000)

package.skeleton(list=c("f","g","d","e"), name="mypkg")

packageDescription Package Description

Description

Parses and returns the ‘DESCRIPTION’ file of a package.

Usage

packageDescription(pkg, lib.loc = NULL, fields = NULL,
drop = TRUE, encoding = "")

Arguments

pkg a character string with the package name.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known. If the default is used, the
loaded packages are searched before the libraries.

fields a character vector giving the tags of fields to return (if other fields occur in the
file they are ignored).

drop If TRUE and the length of fields is 1, then a single character string with
the value of the respective field is returned instead of an object of class
"packageDescription".

encoding If there is an Encoding field, to what encoding should re-encoding be at-
tempted? If NA, no re-encoding. The other values are as used by iconv, so
the default "" indicates the encoding of the current locale.

packageStatus 1491

Details

A package will not be ‘found’ unless it has a ‘DESCRIPTION’ file which contains a valid
Version field. Different warnings are given when no package directory is found and when there
is a suitable directory but no valid ‘DESCRIPTION’ file.

An attached environment named to look like a package (e.g. package:utils2) will be ignored
as from R 2.6.0.

Value

If a ‘DESCRIPTION’ file for the given package is found and can successfully be read,
packageDescription returns an object of class "packageDescription", which is a
named list with the values of the (given) fields as elements and the tags as names, unless drop
= TRUE.

If parsing the ‘DESCRIPTION’ file was not successful, it returns a named list of NAs with the field
tags as names if fields is not null, and NA otherwise.

See Also

read.dcf

Examples

packageDescription("stats")
packageDescription("stats", fields = c("Package", "Version"))

packageDescription("stats", fields = "Version")
packageDescription("stats", fields = "Version", drop = FALSE)

packageStatus Package Management Tools

Description

Summarize information about installed packages and packages available at various repositories, and
automatically upgrade outdated packages.

Usage

packageStatus(lib.loc = NULL, repositories = NULL, method,
type = getOption("pkgType"))

S3 method for class 'packageStatus':
summary(object, ...)

S3 method for class 'packageStatus':
update(object, lib.loc = levels(object$inst$LibPath),

repositories = levels(object$avail$Repository), ...)

S3 method for class 'packageStatus':
upgrade(object, ask = TRUE, ...)

1492 packageStatus

Arguments

lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to all libraries currently known.

repositories a character vector of URLs describing the location of R package repositories on
the Internet or on the local machine.

method Download method, see download.file.

type type of package distribution: see install.packages.

object an object of class "packageStatus" as returned by packageStatus.

ask if TRUE, the user is prompted which packages should be upgraded and which
not.

... currently not used.

Details

The URLs in repositories should be full paths to the appropriate contrib sections of the repos-
itories. The default is contrib.url(getOption("repos")).

There are print and summary methods for the "packageStatus" objects: the print
method gives a brief tabular summary and the summary method prints the results.

The update method updates the "packageStatus" object. The upgrade method is similar
to update.packages: it offers to install the current versions of those packages which are not
currently up-to-date.

Value

An object of class "packageStatus". This is a list with two components

inst a data frame with columns as the matrix returned by installed.packages
plus "Status", a factor with levels c("ok", "upgrade"). Only the
newest version of each package is reported, in the first repository in which it
appears.

avail a data frame with columns as the matrix returned by available.packages
plus "Status", a factor with levels c("installed", "not
installed", "unavailable")..

See Also

installed.packages, available.packages

Examples

Not run:
x <- packageStatus()
print(x)
summary(x)
upgrade(x)
x <- update(x)
print(x)
End(Not run)

page 1493

page Invoke a Pager on an R Object

Description

Displays a representation of the object named by x in a pager via file.show.

Usage

page(x, method = c("dput", "print"), ...)

Arguments

x An R object, or a character string naming an object.

method The default method is to dump the object via dput. An alternative is to use
print and capture the output to be shown in the pager.

... additional arguments for dput, print or file.show (such as title).

Details

If x is a length-one character vector, it is used as the name of an object to look up in the environment
from which page is called. All other objects are displayed directly.

A default value of title is passed to file.show if one is not supplied in

See Also

file.show, edit, fix.

To go to a new page when graphing, see frame.

Examples

Not run:
four ways to look at the code of 'page'
page(page) # as an object
page("page") # a character string
v <- "page"; page(v) # a length-one character vector
page(utils::page) # a call
End(Not run)

person Person Names and Contact Information

Description

A class and utility methods for holding information about persons like name and email address.

1494 PkgUtils

Usage

person(first = "", last = "", middle = "", email = "")
personList(...)
as.person(x)
as.personList(x)

S3 method for class 'person':
as.character(x, ...)
S3 method for class 'personList':
as.character(x, ...)

S3 method for class 'person':
toBibtex(object, ...)
S3 method for class 'personList':
toBibtex(object, ...)

Arguments

first character string, first name

middle character string, middle name(s)

last character string, last name

email character string, email address

... for personList an arbitrary number of person objects

x a character string or an object of class person or personList

object an object of class person or personList

Examples

create a person object directly
p1 <- person("Karl", "Pearson", email = "pearson@stats.heaven")
p1

convert a string
p2 <- as.person("Ronald Aylmer Fisher")
p2

create one object holding both
p <- personList(p1, p2)
ps <- as.character(p)
ps
as.personList(ps)

convert to BibTeX author field
toBibtex(p)

PkgUtils Utilities for Building and Checking Add-on Packages

prompt 1495

Description

Utilities for checking whether the sources of an R add-on package work correctly, and for building
a source or binary package from them.

Usage

R CMD build [options] pkgdirs
R CMD check [options] pkgdirs

Arguments

pkgdirs a list of names of directories with sources of R add-on packages.

options further options to control the processing, or for obtaining information about us-
age and version of the utility.

Details

R CMD check checks R add-on packages from their sources, performing a wide variety of diag-
nostic checks.

R CMD build builds R source or binary packages from their sources. The name(s) of the pack-
ages are taken from the ‘DESCRIPTION’ files and not from the directory names.

Use R CMD foo --help to obtain usage information on utility foo.

Several of the options to build --binary are passed to INSTALL so consult its help for the
details.

See Also

The sections on “Checking and building packages” and “Processing Rd format” in “Writing R
Extensions” (see the ‘doc/manual’ subdirectory of the R source tree).

INSTALL is called by build --binary.

prompt Produce Prototype of an R Documentation File

Description

Facilitate the constructing of files documenting R objects.

Usage

prompt(object, filename = NULL, name = NULL, ...)

Default S3 method:
prompt(object, filename = NULL, name = NULL,

force.function = FALSE, ...)

S3 method for class 'data.frame':
prompt(object, filename = NULL, name = NULL, ...)

1496 prompt

Arguments

object an R object, typically a function for the default method.

filename usually, a connection or a character string giving the name of the file to which
the documentation shell should be written. The default corresponds to a file
whose name is name followed by ".Rd". Can also be NA (see below).

name a character string specifying the name of the object.

force.function
a logical. If TRUE, treat object as function in any case.

... further arguments passed to or from other methods.

Details

Unless filename is NA, a documentation shell for object is written to the file specified by
filename, and a message about this is given. For function objects, this shell contains the proper
function and argument names. R documentation files thus created still need to be edited and moved
into the ‘man’ subdirectory of the package containing the object to be documented.

If filename is NA, a list-style representation of the documentation shell is created and re-
turned. Writing the shell to a file amounts to cat(unlist(x), file = filename, sep
= "\n"), where x is the list-style representation.

When prompt is used in for loops or scripts, the explicit name specification will be useful.

Value

If filename is NA, a list-style representation of the documentation shell. Otherwise, the name of
the file written to is returned invisibly.

Warning

The default filename may not be a valid filename under limited file systems (e.g. those on Windows).

Currently, calling prompt on a non-function object assumes that the object is in fact a data set and
hence documents it as such. This may change in future versions of R. Use promptData to create
documentation skeletons for data sets.

Note

The documentation file produced by prompt.data.frame does not have the same format as
many of the data frame documentation files in the base package. We are trying to settle on a
preferred format for the documentation.

Author(s)

Douglas Bates for prompt.data.frame

References

Becker, R. A., Chambers, J. M. and Wilks, A. R. (1988) The New S Language. Wadsworth &
Brooks/Cole.

promptData 1497

See Also

promptData, help and the chapter on “Writing R documentation” in “Writing R Extensions”
(see the ‘doc/manual’ subdirectory of the R source tree).

For creation of many help pages (for a package), see package.skeleton.

To prompt the user for input, see readline.

Examples

require(graphics)
prompt(plot.default)
prompt(interactive, force.function = TRUE)
unlink("plot.default.Rd")
unlink("interactive.Rd")

prompt(women) # data.frame
unlink("women.Rd")

prompt(sunspots) # non-data.frame data
unlink("sunspots.Rd")

promptData Generate a Shell for Documentation of Data Sets

Description

Generates a shell of documentation for a data set.

Usage

promptData(object, filename = NULL, name = NULL)

Arguments

object an R object to be documented as a data set.

filename usually, a connection or a character string giving the name of the file to which
the documentation shell should be written. The default corresponds to a file
whose name is name followed by ".Rd". Can also be NA (see below).

name a character string specifying the name of the object.

Details

Unless filename is NA, a documentation shell for object is written to the file specified by
filename, and a message about this is given.

If filename is NA, a list-style representation of the documentation shell is created and re-
turned. Writing the shell to a file amounts to cat(unlist(x), file = filename, sep
= "\n"), where x is the list-style representation.

Currently, only data frames are handled explicitly by the code.

1498 promptPackage

Value

If filename is NA, a list-style representation of the documentation shell. Otherwise, the name of
the file written to is returned invisibly.

Warning

This function is still experimental. Both interface and value might change in future versions. In
particular, it may be preferable to use a character string naming the data set and optionally a speci-
fication of where to look for it instead of using object/name as we currently do. This would be
different from prompt, but consistent with other prompt-style functions in package methods, and
also allow prompting for data set documentation without explicitly having to load the data set.

See Also

prompt

Examples

promptData(sunspots)
unlink("sunspots.Rd")

promptPackage Generate a Shell for Documentation of a Package

Description

Generates a shell of documentation for an installed or source package.

Usage

promptPackage(package, lib.loc = NULL, filename = NULL,
name = NULL, final = FALSE)

Arguments

package the name of an installed or source package to be documented.

lib.loc a character vector describing the location of R library trees to search through, or
NULL. The default value of NULL corresponds to all libraries currently known.
For a source package this should specify the parent directory of the package’s
sources.

filename usually, a connection or a character string giving the name of the file to which
the documentation shell should be written. The default corresponds to a file
whose name is name followed by ".Rd". Can also be NA (see below).

name a character string specifying the name of the help topic, typically of the form
<pkg>-package.

final a logical value indicating whether to attempt to create a usable version of the
help topic, rather than just a shell.

rcompgen 1499

Details

Unless filename is NA, a documentation shell for package is written to the file specified by
filename, and a message about this is given.

If filename is NA, a list-style representation of the documentation shell is created and re-
turned. Writing the shell to a file amounts to cat(unlist(x), file = filename, sep
= "\n"), where x is the list-style representation.

If final is TRUE, the generated documentation will not include the place-holder slots for manual
editing, it will be usable as-is. In most cases a manually edited file is preferable (but final =
TRUE is certainly less work).

Value

If filename is NA, a list-style representation of the documentation shell. Otherwise, the name of
the file written to is returned invisibly.

See Also

prompt

Examples

filename <- tempfile()
promptPackage("utils", filename = filename)
file.show(filename)
unlink(filename)

rcompgen A Completion Generator for R

Description

This package provides a mechanism to generate relevant completions from a partially completed
command line. It is not intended to be useful by itself, but rather in conjunction with other mech-
anisms that use it as a backend. The functions listed in the usage section provide a simple control
and query mechanism. The actual interface consists of a few unexported functions described further
down.

Usage

rc.settings(ops, ns, args, func, ipck, S3, data, help,
argdb, files)

rc.status()

rc.getOption(name)

rc.options(...)

1500 rcompgen

Arguments

ops, ns, args, func, ipck, S3, data, help, argdb, files
logical, turning some optional completion features on and off.

ops: activates completion after the $ and @ operators

ns: controls namespace related completions

args: enables completion of function arguments

func: enables detection of functions. If enabled, a customizable extension
("(" by default) is appended to function names. The process of deter-
mining whether a potential completion is a function requires evaluation,
including for lazy loaded symbols. This is extremely undesirable for large
objects, because of potentially wasteful use of memory in addition to the
time overhead associated with loading. For this reason, this feature is dis-
abled by default.

S3: when args=TRUE, activates completion on arguments of all S3 methods
(otherwise just the generic, which usually has very few arguments)

ipck: enables completion of installed package names inside library and
require

data: enables completion of data sets (including those already visible) inside
data

help: enables completion of help requests starting with a question mark, by
looking inside help index files

argdb: when args=TRUE, completion is attempted on function arguments.
Generally, the list of valid arguments is determined by dynamic calls to
args. While this gives results that are technically correct, the use of the
... argument often hides some useful arguments. To give more flexibility
in this regard, rcompgen internally retains an optional table of valid argu-
ments names for specific functions. Setting argdb=TRUE enables prefer-
ential lookup in this internal data base for functions with an entry in it. Of
course, this is useful only when the data base contains information about
the function of interest. Some functions are included in the package (the
maintainer is happy to add more upon request), and more can be added
by the user through the unexported function .addFunctionInfo (see
below).

files: enables filename completion in R code. This is initially set to FALSE,
in which case the underlying completion front-end can take over (and hope-
fully do a better job than we would have done). For systems where no such
facilities exist, this can be set to TRUE if file name completion is desired.
This is currently experimental and may not work very well.

All settings are turned on by default except ipck, func and files. Turn
more off if your CPU cycles are valuable; you will still retain basic completion
on names of objects in the search list. See below for additional details.

name, ... user-settable options. Currently valid names are

function.suffix: default "("

funarg.suffix: default " = "

package.suffix default "::"

See options for detailed usage description

rcompgen 1501

Details

There are several types of completion, some of which can be disabled using rc.settings. The
most basic level, which can not be turned off once the package is loaded, provides completion on
names visible on the search path, along with a few special keywords (e.g. TRUE). This type of
completion is not attempted if the partial ‘word’ (a.k.a. token) being completed is empty (since
there would be too many completions). The more advanced types of completion are described
below.

Completion after extractors $ and @: When the ops setting is turned on, completion after $ and
@ is attempted. This requires the prefix to be evaluated, which is attempted unless it involves
an explicit function call (implicit function calls involving the use of [, $, etc do not inhibit
evaluation).

Completion inside namespaces: When the ns setting is turned on, completion inside namespaces
is attempted when a token is preceded by the :: or ::: operators. Additionally, the ba-
sic completion mechanism is extended to include attached namespaces, or more precisely,
foopkg:: becomes a valid completion of foo if the return value of search() includes
the string "package:foopkg".
The completion of package namespaces applies only to attached packages, i.e. if MASS is not
attached (whether or not it is loaded), MAS will not complete to MASS::. However, attempted
completion inside an apparent namespace will attempt to load the namespace if it is not already
loaded, e.g. trying to complete on MASS::fr will load MASS (but not necessarily attach it)
even if it is not already loaded.

Completion of function arguments: When the args setting is turned on, completion on function
arguments is attempted whenever deemed appropriate. The mechanism used will currently
fail if the relevant function (at the point where completion is requested) was entered on a
previous prompt (which implies in particular that the current line is being typed in response to
a continuation prompt, usually +). Note that separation by newlines is fine.
The list of possible argument completions that is generated can be misleading. There is no
problem for non-generic functions (except that ... is listed as a completion; this is inten-
tional as it signals the fact that the function can accept further arguments). However, for
generic functions, it is practically impossible to give a reliable argument list without evaluat-
ing arguments (and not even then, in some cases), which is risky (in addition to being difficult
to code, which is the real reason it hasn’t even been tried), especially when that argument is
itself an inline function call. Our compromise is to consider arguments of all currently avail-
able methods of that generic. This has two drawbacks. First, not all listed completions may be
appropriate in the call currently being constructed. Second, for generics with many methods
(like print and plot), many matches will need to be considered, which may take a notice-
able amount of time. Despite these drawbacks, we believe this behaviour to be more useful
than the only other practical alternative, which is to list arguments of the generic only.
Only S3 methods are currently supported in this fashion, and that can be turned off using the
S3 setting.
Since arguments can be unnamed in R function calls, other types of completion are also ap-
propriate whenever argument completion is. Since there are usually many many more visible
objects than formal arguments of any particular function, possible argument completions are
often buried in a bunch of other possibilites. However, recall that basic completion is sup-
pressed for blank tokens. This can be useful to list possible arguments of a function. For exam-
ple, trying to complete seq([TAB] and seq(from = 1, [TAB]) will both list only the
arguments of seq (or any of its methods), whereas trying to complete seq(length[TAB]
will list both the length.out argument and the length(function as possible comple-
tions. Note that no attempt is made to remove arguments already supplied, as that would incur
a further speed penalty.

1502 rcompgen

Special functions: For a few special functions (library, data, etc), the first argument is treated
specially, in the sense that normal completion is suppressed, and some function specific com-
pletions are enabled if so requested by the settings. The ipck setting, which controls whether
library and require will complete on installed packages, is disabled by default because
the first call to installed.packages is potentially time consuming (e.g. when pack-
ages are installed on a remote network file server). Note, however, that the results of a call
to installed.packages is cached, so subsequent calls are usually fast, so turning this
option on is not particularly onerous even in such situations.

Value

rc.status returns, as a list, the contents of an internal (unexported) environment that is used to
record the results of the last completion attempt. This can be useful for debugging. For such use,
one must resist the temptation to use completion when typing the call to rc.status itself, as that
then becomes the last attempt by the time the call is executed.

The items of primary interest in the returned list are:

comps the possible completions generated by the last call to .completeToken, as a
character vector

token the token that was (or, is to be) completed, as set by the last call to
.assignToken (possibly inside a call to .guessTokenFromLine)

linebuffer the full line, as set by the last call to .assignLinebuffer

start the start position of the token in the line buffer, as set by the last call to
.assignStart

end the end position of the token in the line buffer, as set by the last call to
.assignEnd

fileName logical, indicating whether the cursor is currently inside quotes. If so, no com-
pletion is attempted. A reasonable default behaviour for the backend in that case
is to fall back to filename completion.

fguess the name of the function rcompgen thinks the cursor is currently inside

isFirstArg logical. If cursor is inside a function, is it the first argument?

In addition, the components settings and options give the current values of settings and
options respectively.

rc.getOption and rc.options behave much like getOption and options respectively.

Unexported API

There are several unexported functions in the package. Of these, a few are special because they
provide the API through which other mechanisms can make use of the facilities provided by this
package (they are unexported because they are not meant to be called directly by users). The usage
of these functions are:

.assignToken(text)

.assignLinebuffer(line)

.assignStart(start)

.assignEnd(end)

.completeToken()

.retrieveCompletions()

rcompgen 1503

.getFileComp()

.guessTokenFromLine()

.win32consoleCompletion(linebuffer, cursorPosition,
check.repeat = TRUE,
minlength = -1)

.addFunctionInfo(...)

The first four functions set up a completion attempt by specifying the token to be completed (text),
and indicating where (start and end, which should be integers) the token is placed within the
complete line typed so far (line).

Potenial completions of the token are generated by .completeToken, and the completions can
be retrieved as an R character vector using .retrieveCompletions.

If the cursor is inside quotes, no completion is attempted. The function .getFileComp can be
used after a call to .completeToken to determine if this is the case (returns TRUE), and alter-
native completions generated as deemed useful. In most cases, filename completion is a reasonable
fallback.

The .guessTokenFromLine function is provided for use with backends that do not already
break a line into tokens. It requires the linebuffer and endpoint (cursor position) to be already set,
and itself sets the token and the start position. It returns the token as a character string. (This is used
by the ESS completion hook example given in the examples/altesscomp.el file.)

The .win32consoleCompletion is similar in spirit, but is more geared towards the Windows
GUI (or rather, any front-end that has no completion facilities of its own). It requires the linebuffer
and cursor position as arguments, and returns a list with three components, addition, possible
and comps. If there is an unambiguous extension at the current position, addition contains the
additional text that should be inserted at the cursor. If there is more than one possibility, these are
available either as a character vector of preformatted strings in possible, or as a single string in
comps. possible consists of lines formatted using the current width option, so that printing
them on the console one line at a time will be a reasonable way to list them. comps is a space
separated (collapsed) list of the same completions, in case the front-end wishes to display it in some
other fashion.

The minlength argument can be used to suppress completion when the token is too short (which
can be useful if the front-end is set up to try completion on every keypress). If check.repeat
is TRUE, it is detected if the same completion is being requested more than once in a row, and
ambiguous completions are returned only in that case. This is an attempt to emulate GNU Readline
behaviour, where a single TAB completes upto any unambiguous part, and multiple possibilities are
reported only on two consecutive TABs.

As the various front-end interfaces evolve, the details of these functions are likely to change as well.

The function .addFunctionInfo can be used to add information about the permitted argument
names for specific functions. Multiple named arguments are allowed in calls to it, where the tags are
names of functions and values are character vectors representing valid arguments. When the argdb
setting is TRUE, these are used as a source of valid argument names for the relevant functions.

Note

If you are uncomfortable with unsolicited evaluation of pieces of code, you should set ops
= FALSE. Otherwise, trying to complete foo@ba will evaluate foo, trying to complete
foo[i,1:10]$ba will evaluate foo[i,1:10], etc. This should not be too bad, as explicit
function calls (involving parentheses) are not evaluated in this manner. However, this will affect
lazy loaded symbols (and presumably other promise type thingies).

1504 read.DIF

Author(s)

Deepayan Sarkar, 〈deepayan.sarkar@r-project.org〉

read.DIF Data Input from Spreadsheet

Description

Reads a file in Data Interchange Format (DIF) and creates a data frame from it. DIF is a format for
data matrices such as single spreadsheets.

Usage

read.DIF(file, header = FALSE,
dec = ".", row.names, col.names,
as.is = !stringsAsFactors,
na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE,
blank.lines.skip = TRUE,
stringsAsFactors = default.stringsAsFactors(),
transpose = FALSE)

Arguments

file the name of the file which the data are to be read from, or a connection, or a
complete URL.

header a logical value indicating whether the spreadsheet contains the names of the
variables as its first line. If missing, the value is determined from the file format:
header is set to TRUE if and only if the first row contains only character values
and the top left cell is empty.

dec the character used in the file for decimal points.
row.names a vector of row names. This can be a vector giving the actual row names, or a

single number giving the column of the table which contains the row names, or
character string giving the name of the table column containing the row names.
If there is a header and the first row contains one fewer field than the number of
columns, the first column in the input is used for the row names. Otherwise if
row.names is missing, the rows are numbered.
Using row.names = NULL forces row numbering.

col.names a vector of optional names for the variables. The default is to use "V" followed
by the column number.

as.is the default behavior of read.DIF is to convert character variables (which are
not converted to logical, numeric or complex) to factors. The variable as.is
controls the conversion of columns not otherwise specified by colClasses.
Its value is either a vector of logicals (values are recycled if necessary), or a
vector of numeric or character indices which specify which columns should not
be converted to factors.
Note: to suppress all conversions including those of numeric columns, set
colClasses = "character".
Note that as.is is specified per column (not per variable) and so includes the
column of row names (if any) and any columns to be skipped.

read.DIF 1505

na.strings a character vector of strings which are to be interpreted as NA values. Blank
fields are also considered to be missing values in logical, integer, numeric and
complex fields.

colClasses character. A vector of classes to be assumed for the columns. Recycled as
necessary, or if the character vector is named, unspecified values are taken to be
NA.
Possible values are NA (when type.convert is used), "NULL" (when the
column is skipped), one of the atomic vector classes (logical, integer, numeric,
complex, character, raw), or "factor", "Date" or "POSIXct". Otherwise
there needs to be an as method (from package methods) for conversion from
"character" to the specified formal class.
Note that colClasses is specified per column (not per variable) and so in-
cludes the column of row names (if any).

nrows the maximum number of rows to read in. Negative values are ignored.

skip the number of lines of the data file to skip before beginning to read data.

check.names logical. If TRUE then the names of the variables in the data frame are checked
to ensure that they are syntactically valid variable names. If necessary they are
adjusted (by make.names) so that they are, and also to ensure that there are
no duplicates.

blank.lines.skip
logical: if TRUE blank lines in the input are ignored.

stringsAsFactors
logical: should character vectors be converted to factors?

transpose logical, indicating if the row and column interpretation should be transposed.
Microsoft’s Excel has been known to produce (non-standard conforming) DIF
files which would need transpose = TRUE to be read correctly.

Value

A data frame (data.frame) containing a representation of the data in the file. Empty input is an
error unless col.names is specified, when a 0-row data frame is returned: similarly giving just a
header line if header = TRUE results in a 0-row data frame.

Note

The columns referred to in as.is and colClasses include the column of row names (if any).

Less memory will be used if colClasses is specified as one of the six atomic vector classes.

Author(s)

R Core; transpose option by Christoph Buser, ETH Zurich

References

The DIF format specification can be found by searching on http://www.wotsit.org/; the
optional header fields are ignored. See also http://en.wikipedia.org/wiki/Data_
Interchange_Format.

The term is likely to lead to confusion: Windows will have a ‘Windows Data Interchange Format
(DIF) data format’ as part of its WinFX system, which may or may not be compatible.

http://www.wotsit.org/
http://en.wikipedia.org/wiki/Data_Interchange_Format
http://en.wikipedia.org/wiki/Data_Interchange_Format

1506 read.fortran

See Also

The R Data Import/Export manual.

scan, type.convert, read.fwf for reading f ixed width f ormatted input; read.table;
data.frame.

Examples

read.DIF() needs transpose=TRUE for file exported from Excel
udir <- system.file("misc", package="utils")
dd <- read.DIF(file.path(udir, "exDIF.dif"), header= TRUE, transpose=TRUE)
dc <- read.csv(file.path(udir, "exDIF.csv"), header= TRUE)
stopifnot(identical(dd,dc), dim(dd) == c(4,2))

read.fortran Read fixed-format data

Description

Read fixed-format data files using Fortran-style format specifications.

Usage

read.fortran(file, format, ..., as.is = TRUE, colClasses = NA)

Arguments

file File or connection to read from

format Character vector or list of vectors. See ‘Details’ below.

... Other arguments for read.table

as.is Keep characters as characters?

colClasses Variable classes to override defaults. See read.table for details.

Details

The format for a field is of one of the following forms: rFl.d, rDl.d, rXl, rAl, rIl, where
l is the number of columns, d is the number of decimal places, and r is the number of repeats. F
and D are numeric formats, A is character, I is integer, and X indicates columns to be skipped. The
repeat code r and decimal place code d are always optional. The length code l is required except
for X formats when r is present.

For a single-line record, format should be a character vector. For a multiline record it should be
a list with a character vector for each line.

Skipped (X) columns are not passed to read.table, so colClasses, col.names, and similar
arguments passed to read.table should not reference these columns.

Value

A data frame

read.fwf 1507

See Also

read.fwf, read.csv

Examples

ff <- tempfile()
cat(file=ff, "123456", "987654", sep="\n")
read.fortran(ff, c("F2.1","F2.0","I2"))
read.fortran(ff, c("2F1.0","2X","2A1"))
unlink(ff)
cat(file=ff, "123456AB", "987654CD", sep="\n")
read.fortran(ff, list(c("2F3.1","A2"), c("3I2","2X")))
unlink(ff)

read.fwf Read Fixed Width Format Files

Description

Read a table of fixed width formatted data into a data.frame.

Usage

read.fwf(file, widths, header = FALSE, sep = "\t",
skip = 0, row.names, col.names, n = -1,
buffersize = 2000, ...)

Arguments

file the name of the file which the data are to be read from.
Alternatively, file can be a connection, which will be opened if necessary,
and if so closed at the end of the function call.

widths integer vector, giving the widths of the fixed-width fields (of one line), or list of
integer vectors giving widths for multiline records.

header a logical value indicating whether the file contains the names of the variables as
its first line. If present, the names must be delimited by sep.

sep character; the separator used internally; should be a character that does not occur
in the file (except in the header).

skip number of initial lines to skip; see read.table.

row.names see read.table.

col.names see read.table.

n the maximum number of records (lines) to be read, defaulting to no limit.

buffersize Maximum number of lines to read at one time

... further arguments to be passed to read.table. Useful further arguments in-
clude as.is, na.strings, colClasses and strip.white.

1508 read.socket

Details

Multiline records are concatenated to a single line before processing. Fields that are of zero-width
or are wholly beyond the end of the line in file are replaced by NA.

Negative-width fields are used to indicate columns to be skipped, eg -5 to skip 5 columns.
These fields are not seen by read.table and so should not be included in a col.names or
colClasses argument (nor in the header line, if present).

Reducing the buffersize argument may reduce memory use when reading large files with long
lines. Increasing buffersize may result in faster processing when enough memory is available.

Value

A data.frame as produced by read.table which is called internally.

Author(s)

Brian Ripley for R version: original Perl by Kurt Hornik.

See Also

scan and read.table.

Examples

ff <- tempfile()
cat(file=ff, "123456", "987654", sep="\n")
read.fwf(ff, widths=c(1,2,3)) #> 1 23 456 \ 9 87 654
read.fwf(ff, widths=c(1,-2,3)) #> 1 456 \ 9 654
unlink(ff)
cat(file=ff, "123", "987654", sep="\n")
read.fwf(ff, widths=c(1,0, 2,3)) #> 1 NA 23 NA \ 9 NA 87 654
unlink(ff)
cat(file=ff, "123456", "987654", sep="\n")
read.fwf(ff, widths=list(c(1,0, 2,3), c(2,2,2))) #> 1 NA 23 456 98 76 54
unlink(ff)

read.socket Read from or Write to a Socket

Description

read.socket reads a string from the specified socket, write.socket writes to the specified
socket. There is very little error checking done by either.

Usage

read.socket(socket, maxlen = 256, loop = FALSE)
write.socket(socket, string)

read.table 1509

Arguments

socket a socket object

maxlen maximum length of string to read

loop wait for ever if there is nothing to read?

string string to write to socket

Value

read.socket returns the string read.

Author(s)

Thomas Lumley

See Also

close.socket, make.socket

Examples

finger <- function(user, host = "localhost", port = 79, print = TRUE)
{

if (!is.character(user))
stop("user name must be a string")

user <- paste(user,"\r\n")
socket <- make.socket(host, port)
on.exit(close.socket(socket))
write.socket(socket, user)
output <- character(0)
repeat{

ss <- read.socket(socket)
if (ss == "") break
output <- paste(output, ss)

}
close.socket(socket)
if (print) cat(output)
invisible(output)

}
Not run:
finger("root") ## only works if your site provides a finger daemon
End(Not run)

read.table Data Input

Description

Reads a file in table format and creates a data frame from it, with cases corresponding to lines and
variables to fields in the file.

1510 read.table

Usage

read.table(file, header = FALSE, sep = "", quote = "\"'",
dec = ".", row.names, col.names,
as.is = !stringsAsFactors,
na.strings = "NA", colClasses = NA, nrows = -1,
skip = 0, check.names = TRUE, fill = !blank.lines.skip,
strip.white = FALSE, blank.lines.skip = TRUE,
comment.char = "#",
allowEscapes = FALSE, flush = FALSE,
stringsAsFactors = default.stringsAsFactors(),
encoding = "unknown")

read.csv(file, header = TRUE, sep = ",", quote="\"", dec=".",
fill = TRUE, comment.char="", ...)

read.csv2(file, header = TRUE, sep = ";", quote="\"", dec=",",
fill = TRUE, comment.char="", ...)

read.delim(file, header = TRUE, sep = "\t", quote="\"", dec=".",
fill = TRUE, comment.char="", ...)

read.delim2(file, header = TRUE, sep = "\t", quote="\"", dec=",",
fill = TRUE, comment.char="", ...)

Arguments

file the name of the file which the data are to be read from. Each row of the table
appears as one line of the file. If it does not contain an absolute path, the file
name is relative to the current working directory, getwd(). Tilde-expansion is
performed where supported.
Alternatively, file can be a readable text-mode connection (which will be
opened for reading if necessary, and if so closed (and hence destroyed) at
the end of the function call). (If stdin() is used, the prompts for lines may
be somewhat confusing. Terminate input with a blank line or an EOF signal,
Ctrl-D on Unix and Ctrl-Z on Windows. Any pushback on stdin() will
be cleared before return.)
file can also be a complete URL.
To read a data file not in the current encoding (for example a Latin-1 file in
a UTF-8 locale or conversely) use a file connection setting the encoding
argument.

header a logical value indicating whether the file contains the names of the variables as
its first line. If missing, the value is determined from the file format: header is
set to TRUE if and only if the first row contains one fewer field than the number
of columns.

sep the field separator character. Values on each line of the file are separated by this
character. If sep = "" (the default for read.table) the separator is ‘white
space’, that is one or more spaces, tabs, newlines or carriage returns.

quote the set of quoting characters. To disable quoting altogether, use quote = "".
See scan for the behaviour on quotes embedded in quotes. Quoting is only con-
sidered for columns read as character, which is all of them unless colClasses
is specified.

read.table 1511

dec the character used in the file for decimal points.

row.names a vector of row names. This can be a vector giving the actual row names, or a
single number giving the column of the table which contains the row names, or
character string giving the name of the table column containing the row names.
If there is a header and the first row contains one fewer field than the number of
columns, the first column in the input is used for the row names. Otherwise if
row.names is missing, the rows are numbered.
Using row.names = NULL forces row numbering. Missing or NULL
row.names generate row names that are considered to be ‘automatic’ (and
not preserved by as.matrix).

col.names a vector of optional names for the variables. The default is to use "V" followed
by the column number.

as.is the default behavior of read.table is to convert character variables (which
are not converted to logical, numeric or complex) to factors. The vari-
able as.is controls the conversion of columns not otherwise specified by
colClasses. Its value is either a vector of logicals (values are recycled if
necessary), or a vector of numeric or character indices which specify which
columns should not be converted to factors.
Note: to suppress all conversions including those of numeric columns, set
colClasses = "character".
Note that as.is is specified per column (not per variable) and so includes the
column of row names (if any) and any columns to be skipped.

na.strings a character vector of strings which are to be interpreted as NA values. Blank
fields are also considered to be missing values in logical, integer, numeric and
complex fields.

colClasses character. A vector of classes to be assumed for the columns. Recycled as
necessary, or if the character vector is named, unspecified values are taken to be
NA.
Possible values are NA (when type.convert is used), "NULL" (when the
column is skipped), one of the atomic vector classes (logical, integer, numeric,
complex, character, raw), or "factor", "Date" or "POSIXct". Otherwise
there needs to be an as method (from package methods) for conversion from
"character" to the specified formal class.
Note that colClasses is specified per column (not per variable) and so in-
cludes the column of row names (if any).

nrows integer: the maximum number of rows to read in. Negative and other invalid
values are ignored.

skip integer: the number of lines of the data file to skip before beginning to read data.

check.names logical. If TRUE then the names of the variables in the data frame are checked
to ensure that they are syntactically valid variable names. If necessary they are
adjusted (by make.names) so that they are, and also to ensure that there are
no duplicates.

fill logical. If TRUE then in case the rows have unequal length, blank fields are
implicitly added. See ‘Details’.

strip.white logical. Used only when sep has been specified, and allows the stripping of
leading and trailing white space from character fields (numeric fields are
always stripped). See scan for further details, remembering that the columns
may include the row names.

1512 read.table

blank.lines.skip
logical: if TRUE blank lines in the input are ignored.

comment.char character: a character vector of length one containing a single character or an
empty string. Use "" to turn off the interpretation of comments altogether.

allowEscapes logical. Should C-style escapes such as \n be processed or read verbatim (the
default)? Note that if not within quotes these could be interpreted as a delimiter
(but not as a comment character). For more details see scan.

flush logical: if TRUE, scan will flush to the end of the line after reading the last of
the fields requested. This allows putting comments after the last field.

stringsAsFactors
logical: should character vectors be converted to factors? Note that this is over-
ridden bu as.is and colClasses, both of which allow finer control.

encoding encoding to be assumed for input strings. It is used to mark character strings as
known to be in Latin-1 or UTF-8: it is not used to re-encode the input. For an
example of how to do so, see the examples under file.

... Further arguments to be passed to read.table.

Details

This function is the principal means of reading tabular data into R.

A field or line is ‘blank’ if it contains nothing (except whitespace if no separator is specified) before
a comment character or the end of the field or line.

If row.names is not specified and the header line has one less entry than the number of columns,
the first column is taken to be the row names. This allows data frames to be read in from the format
in which they are printed. If row.names is specified and does not refer to the first column, that
column is discarded from such files.

The number of data columns is determined by looking at the first five lines of input (or the whole file
if it has less than five lines), or from the length of col.names if it is specified and is longer. This
could conceivably be wrong if fill or blank.lines.skip are true, so specify col.names
if necessary.

read.csv and read.csv2 are identical to read.table except for the defaults. They are
intended for reading ‘comma separated value’ files (‘.csv’) or (read.csv2) the variant used
in countries that use a comma as decimal point and a semicolon as field separator. Similarly,
read.delim and read.delim2 are for reading delimited files, defaulting to the TAB char-
acter for the delimiter. Notice that header = TRUE and fill = TRUE in these variants, and
that the comment character is disabled.

The rest of the line after a comment character is skipped; quotes are not processed in comments.
Complete comment lines are allowed provided blank.lines.skip = TRUE; however, com-
ment lines prior to the header must have the comment character in the first non-blank column.

Quoted fields with embedded newlines are supported except after a comment character.

Note that unless colClasses is specified, all columns are read as character columns and then
converted. This means that quotes are interpreted in all fields and that a column of values like
"42" will result in an integer column.

Value

A data frame (data.frame) containing a representation of the data in the file.

Empty input is an error unless col.names is specified, when a 0-row data frame is returned:
similarly giving just a header line if header = TRUE results in a 0-row data frame. Note that in
either case tthe columns will logical unless colClasses was supplied.

recover 1513

Character strings in the result (including factor levels) will have a declared encoding if encoding
is "latin1" or "UTF-8".

Note

The columns referred to in as.is and colClasses include the column of row names (if any).

Less memory will be used if colClasses is specified as one of the six atomic vector classes. This
can be particularly so when reading a column that takes many distinct numeric values, as storing
each distinct value as a character string can take up to 14 times as much memory as storing it as an
integer.

Using nrows, even as a mild over-estimate, will help memory usage.

Using comment.char = "" will be appreciably faster than the read.table default.

read.table is not the right tool for reading large matrices, especially those with many columns:
it is designed to read data frames which may have columns of very different classes. Use scan
instead.

References

Chambers, J. M. (1992) Data for models. Chapter 3 of Statistical Models in S eds J. M. Chambers
and T. J. Hastie, Wadsworth & Brooks/Cole.

See Also

The R Data Import/Export manual.

scan, type.convert, read.fwf for reading f ixed width f ormatted input; write.table;
data.frame.

count.fields can be useful to determine problems with reading files which result in reports of
incorrect record lengths.

recover Browsing after an Error

Description

This function allows the user to browse directly on any of the currently active function calls, and
is suitable as an error option. The expression options(error=recover) will make this the
error option.

Usage

recover()

Details

When called, recover prints the list of current calls, and prompts the user to select one of them.
The standard R browser is then invoked from the corresponding environment; the user can type
ordinary S language expressions to be evaluated in that environment.

When finished browsing in this call, type c to return to recover from the browser. Type another
frame number to browse some more, or type 0 to exit recover.

1514 recover

The use of recover largely supersedes dump.frames as an error option, unless you really
want to wait to look at the error. If recover is called in non-interactive mode, it behaves like
dump.frames. For computations involving large amounts of data, recover has the advantage
that it does not need to copy out all the environments in order to browse in them. If you do decide
to quit interactive debugging, call dump.frames directly while browsing in any frame (see the
examples).

Value

Nothing useful is returned. However, you can invoke recover directly from a function, rather
than through the error option shown in the examples. In this case, execution continues after you
type 0 to exit recover.

Compatibility Note

The R recover function can be used in the same way as the S-Plus function of the same name;
therefore, the error option shown is a compatible way to specify the error action. However, the
actual functions are essentially unrelated and interact quite differently with the user. The navigating
commands up and down do not exist in the R version; instead, exit the browser and select another
frame.

References

John M. Chambers (1998). Programming with Data; Springer.
See the compatibility note above, however.

See Also

browser for details about the interactive computations; options for setting the error option;
dump.frames to save the current environments for later debugging.

Examples

Not run:

options(error = recover) # setting the error option

Example of interaction

> myFit <- lm(y ~ x, data = xy, weights = w)
Error in lm.wfit(x, y, w, offset = offset, ...) :

missing or negative weights not allowed

Enter a frame number, or 0 to exit
1:lm(y ~ x, data = xy, weights = w)
2:lm.wfit(x, y, w, offset = offset, ...)
Selection: 2
Called from: eval(expr, envir, enclos)
Browse[1]> objects() # all the objects in this frame
[1] "method" "n" "ny" "offset" "tol" "w"
[7] "x" "y"
Browse[1]> w
[1] -0.5013844 1.3112515 0.2939348 -0.8983705 -0.1538642
[6] -0.9772989 0.7888790 -0.1919154 -0.3026882
Browse[1]> dump.frames() # save for offline debugging

relist 1515

Browse[1]> c # exit the browser

Enter a frame number, or 0 to exit
1:lm(y ~ x, data = xy, weights = w)
2:lm.wfit(x, y, w, offset = offset, ...)
Selection: 0 # exit recover
>

End(Not run)

relist Allow Re-Listing an unlist()ed Object

Description

relist() is an S3 generic function with a few methods in order to allow easy inversion of
unlist(obj) when that is used with an object obj of (S3) class "relistable".

Usage

relist(flesh, skeleton)
Default S3 method:
relist(flesh, skeleton = attr(flesh, "skeleton"))
S3 method for class 'factor':
relist(flesh, skeleton = attr(flesh, "skeleton"))
S3 method for class 'list':
relist(flesh, skeleton = attr(flesh, "skeleton"))
S3 method for class 'matrix':
relist(flesh, skeleton = attr(flesh, "skeleton"))

as.relistable(x)
is.relistable(x)

S3 method for class 'relistable':
unlist(x, recursive = TRUE, use.names = TRUE)

Arguments

flesh a vector to be relisted

skeleton a list, the structure of which determines the structure of the result

x an R object, typically a list (or vector).

recursive logical. Should unlisting be applied to list components of x?

use.names logical. Should names be preserved?

Details

Some functions need many parameters, which are most easily represented in complex structures,
e.g., nested lists. Unfortunately, many mathematical functions in R, including optim and nlm can
only operate on functions whose domain is a vector. R has unlist() to convert nested list objects
into a vector representation. relist(), it’s methods and the functionality mentioned here provide

1516 relist

the inverse operation to convert vectors back to the convenient structural representation. This allows
structured functions (such as optim()) to have simple mathematical interfaces.

For example, a likelihood function for a multivariate normal model needs a variance-covariance
matrix and a mean vector. It would be most convenient to represent it as a list containing a vector
and a matrix. A typical parameter might look like

list(mean=c(0, 1), vcov=cbind(c(1, 1), c(1, 0))).

However, optim cannot operate on functions that take lists as input; it only likes numeric vec-
tors. The solution is conversion. Given a function mvdnorm(x, mean, vcov, log=FALSE)
which computes the required probability density, then

ipar <- list(mean=c(0, 1), vcov=cbind(c(1, 1), c(1, 0)))
initial.param <- as.relistable(ipar)

ll <- function(param.vector)
{

param <- relist(param.vector, skeleton=ipar))
-sum(mvdnorm(x, mean = param$mean, vcov = param$vcov,

log = TRUE))
}

optim(unlist(initial.param), ll)

relist takes two parameters: skeleton and flesh. Skeleton is a sample object that has the right
shape but the wrong content. flesh is a vector with the right content but the wrong shape.
Invoking

relist(flesh, skeleton)

will put the content of flesh on the skeleton. You don’t need to specify skeleton explicitly if the
skeleton is stored as an attribute inside flesh. In particular, if flesh was created from some object obj
with unlist(as.relistable(obj)) then the skeleton attribute is automatically set. (Note
that this does not apply to the example here, as optim is creating a new vector to pass to ll and
not its par argument.)

As long as skeleton has the right shape, it should be a precise inverse of unlist. These
equalities hold:

relist(unlist(x), x) == x
unlist(relist(y, skeleton)) == y

x <- as.relistable(x)
relist(unlist(x)) == x

Value

an object of (S3) class "relistable" (and "list").

Author(s)

R Core, based on a code proposal by Andrew Clausen.

REMOVE 1517

See Also

unlist

Examples

ipar <- list(mean=c(0, 1), vcov=cbind(c(1, 1), c(1, 0)))
initial.param <- as.relistable(ipar)
ul <- unlist(initial.param)
relist(ul)
stopifnot(identical(relist(ul), initial.param))

REMOVE Remove Add-on Packages

Description

Utility for removing add-on packages.

Usage

R CMD REMOVE [options] [-l lib] pkgs

Arguments

pkgs a list with the names of the packages to be removed.

lib the path name of the R library tree to remove from. May be absolute or relative.

options further options.

Details

If used as R CMD REMOVE pkgs without explicitly specifying lib, packages are removed from
the library tree rooted at the first directory in the library path which would be used by R run in the
current environment.

To remove from the library tree lib, use R CMD REMOVE -l lib pkgs.

Use R CMD REMOVE --help for more usage information.

Note

Some binary distributions of R have INSTALL in a separate bundle, e.g. an R-devel RPM.

See Also

INSTALL, remove.packages

1518 RHOME

remove.packages Remove Installed Packages

Description

Removes installed packages/bundles and updates index information as necessary.

Usage

remove.packages(pkgs, lib, version)

Arguments

pkgs a character vector with the names of the package(s) or bundle(s) to be removed.

lib a character vector giving the library directories to remove the packages from. If
missing, defaults to the first element in .libPaths().

version A character vector specifying version(s) with versioned installs of the package(s)
to remove. If none is provided, the system will remove an unversioned install of
the package if one is found, otherwise the latest versioned install.

Details

If an element of pkgs matches a bundle name, all the packages in the bundle will be removed. This
takes precedence over matching a package name.

pkgs and version will be recycled if necessary to the length of the longer one.

See Also

REMOVE for a command line version; install.packages for installing packages.

RHOME R Home Directory

Description

Returns the location of the R home directory, which is the root of the installed R tree.

Usage

R RHOME

roman 1519

roman Roman Numerals

Description

Manipulate integers as roman numerals.

Usage

as.roman(x)

Arguments

x a numeric vector, or a character vector of arabic or roman numerals.

Details

as.roman creates objects of class "roman" which are internally represented as integers, and
have suitable methods for printing, formatting, subsetting, and coercion to character.

Only numbers between 1 and 3899 have a unique representation as roman numbers.

References

Wikipedia contributors (2006). Roman numerals. Wikipedia, The Free Encyclopedia. http://
en.wikipedia.org/w/index.php?title=Roman_numerals\&oldid=78252134.
Accessed September 29, 2006.

Examples

First five roman 'numbers'.
(y <- as.roman(1 : 5))
Middle one.
y[3]
Current year as a roman number.
(y <- as.roman(format(Sys.Date(), "%Y")))
10 years ago ...
y - 10

Rprof Enable Profiling of R’s Execution

Description

Enable or disable profiling of the execution of R expressions.

Usage

Rprof(filename = "Rprof.out", append = FALSE, interval = 0.02,
memory.profiling=FALSE)

http://en.wikipedia.org/w/index.php?title=Roman_numerals\&oldid=78252134
http://en.wikipedia.org/w/index.php?title=Roman_numerals\&oldid=78252134

1520 Rprof

Arguments

filename The file to be used for recording the profiling results. Set to NULL or "" to
disable profiling.

append logical: should the file be over-written or appended to?

interval real: time interval between samples.

memory.profiling
logical: write memory use information to the file?

Details

Enabling profiling automatically disables any existing profiling to another or the same file.

Profiling works by writing out the call stack every interval seconds, to the file specified. Either
the summaryRprof function or the Perl script R CMD Rprof can be used to process the output
file to produce a summary of the usage; use R CMD Rprof --help for usage information.

Note that the timing interval cannot be too small: once the timer goes off, the information is not
recorded until the next timing click (probably in the range 1–10msecs).

Note

Profiling is not available on all platforms. By default, it is attempted to compile support for profiling.
Configure R with ‘--disable-R-profiling’ to change this.

As R profiling uses the same mechanisms as C profiling, the two cannot be used together, so do not
use Rprof in an executable built for profiling.

See Also

The chapter on “Tidying and profiling R code” in “Writing R Extensions” (see the ‘doc/manual’
subdirectory of the R source tree).

summaryRprof

tracemem, Rprofmem for other ways to track memory use.

Examples

Not run:
Rprof()
some code to be profiled
Rprof(NULL)
some code NOT to be profiled
Rprof(append=TRUE)
some code to be profiled
Rprof(NULL)
...
Now post-process the output as described in Details
End(Not run)

Rprofmem 1521

Rprofmem Enable Profiling of R’s Memory Use

Description

Enable or disable reporting of memory allocation in R.

Usage

Rprofmem(filename = "Rprofmem.out", append = FALSE, threshold = 0)

Arguments

filename The file to be used for recording the memory allocations. Set to NULL or "" to
disable reporting.

append logical: should the file be over-written or appended to?

threshold numeric: allocations on R’s "large vector" heap larger than this number of bytes
will be reported.

Details

Enabling profiling automatically disables any existing profiling to another or the same file.

Profiling writes the call stack to the specified file every time malloc is called to allocate a large
vector object or to allocate a page of memory for small objects. The size of a page of memory and
the size above which malloc is used for vectors are compile-time constants, by default 2000 and
128 bytes respectively.

The profiler tracks allocations, some of which will be to previously used memory and will not
increase the total memory use of R.

Value

None

Note

The memory profiler slows down R even when not in use, and so is a compile-time option. The
memory profiler can be used at the same time as other R and C profilers.

See Also

The R sampling profiler, Rprof also collects memory information.

tracemem traces duplications of specific objects.

The "Writing R Extensions" manual section on "Tidying and profiling R code"

1522 Rscript

Examples

Not run:
not supported unless R is compiled to support it.
Rprofmem("Rprofmem.out", threshold=1000)
example(glm)
Rprofmem(NULL)
noquote(readLines("Rprofmem.out", n=5))
End(Not run)

Rscript Scripting Front-End for R

Description

This is an alternative front end for use in #! scripts and other scripting applications.

Usage

Rscript [options] [-e expression] file [args]

Arguments

options A list of options beginning with --. These can be any of the options of the
standard R front-end, and also those described in the details.

expression a R expression.

file The name of a file containing R commands. - indicates ‘stdin’.

args Arguments to be passed to the script in file.

Details

Rscript --help gives details of usage, and Rscript --version gives the version of
Rscript.

Other invocations invoke the R front-end with selected options. This front-end is convenient for
writing #! scripts since it is an executable and takes file directly as an argument. Options
--slave --no-restore are always supplied: these imply --no-save.

Either one or more ‘-e’ options or file should be supplied. When using ‘-e’ options be aware
of the quoting rules in the shell used: see the examples.

Additional options accepted (before file or args) are

-verbose gives details of what Rscript is doing. Also passed on to R.

-default-packages=list where list is a comma-separated list of package names or
NULL. Sets the environment variable R_DEFAULT_PACKAGES which determines the pack-
ages loaded on startup. The default for Rscript omits methods as it takes about 60% of the
startup time.

Normally the version of R is determined at installation, but this can be overridden by setting the
environment variable RHOME.

stdin() refers to the input file, and file("stdin") to the stdin file stream of the process.

RShowDoc 1523

Note

Rscript is only supported on systems with the execv system call.

Examples

Not run:
Rscript -e 'date()' -e 'format(Sys.time(), "%a %b %d %X %Y")'

example #! script for a Unix-alike

#! /path/to/Rscript --vanilla --default-packages=utils
args <- commandArgs(TRUE)
res <- try(install.packages(args))
if(inherits(res, "try-error")) q(status=1) else q()

End(Not run)

RShowDoc Show R Manuals and Other Documentation

Description

Utility function to find and display R documentation.

Usage

RShowDoc(what, type = c("pdf", "html", "txt"), package)

Arguments

what a character string: see ‘Details’.

type an optional character string giving the preferred format.

package an optional character string specifying the name of a package within which to
look for documentation.

Details

what can specify one of several different sources of documentation, including the R manuals (R-
admin, R-data, R-exts, R-intro, R-ints, R-lang), NEWS, COPYING (the GPL licence),
FAQ (also available as R-FAQ), and the files in ‘R_HOME/doc’.

If package is supplied, documentation is looked for in the ‘doc’ and top-level directories of an
installed package of that name.

If what is missing a brief usage message is printed.

The documentation types are tried in turn starting with the first specified in type (or "pdf" if
none is specified).

Value

A invisible character string given the path to the file found.

1524 RSiteSearch

Examples

Not run:
RShowDoc("R-lang")
RShowDoc("FAQ", type="html")
RShowDoc("frame", package="grid")
RShowDoc("changes.txt", package="grid")
RShowDoc("NEWS", package="MASS")
End(Not run)

RSiteSearch Search for Key Words or Phrases in the R-help Mailing List Archives
or Documentation

Description

Search for key words or phrases in the R-help mailing list archives, or R manuals and help pages,
using the search engine at http://search.r-project.org and view them in a web browser.

Usage

RSiteSearch(string,
restrict = c("Rhelp02a", "functions", "docs"),
format = c("normal", "short"),
sortby = c("score", "date:late", "date:early",

"subject", "subject:descending",
"from", "from:descending",
"size", "size:descending"),

matchesPerPage = 20)

Arguments

string word(s) or phrase to search. If the words are to be searched as one entity, enclose
all words in braces (see example).

restrict a character vector, typically of length larger than one: What areas to search in:
Rhelp02a for R-help mailing list archive since 2002, Rhelp01 for mailing
list archive before 2002, docs for R manuals, functions for help pages.
R-devel for R-devel mailing list. Use c() to specify more than one.

format normal or short (no excerpts); can be abbreviated.

sortby character string (can be abbreviated) indicating how to sort the search results:
(score, date:late for sorting by date with latest results first,
date:early for earliest first, subject for subject in alphabeti-
cal order, subject:descending for reverse alphabetical order,
from or from:descending for sender (when applicable), size or
size:descending for size.)

matchesPerPage
How many items to show per page.

http://search.r-project.org

Rtangle 1525

Details

This function is designed to work with the search site at http://search.r-project.org,
and depends on that site continuing to be made available (thanks to Jonathan Baron and the School
of Arts and Sciences of the University of Pennslyvania).

Unique partial matches will work for all arguments. Each new browser window will stay open
unless you close it.

Value

(Invisibly) the complete URL passed to the browser, including the query string.

Author(s)

Andy Liaw and Jonathan Baron

See Also

help.search, help.start for local searches.

browseURL for how the help file is displayed.

Examples

need Internet connection
RSiteSearch("{logistic regression}") # matches exact phrase
Sys.sleep(5) # allow browser to open, take a quick look
RSiteSearch("Baron Liaw", restrict = "Rhelp02a")
Search in R-devel archive and documents (and store the query-string):
Sys.sleep(5)
fullquery <- RSiteSearch("S4", restrict = c("R-dev", "docs"))
fullquery # a string of ~ 116 characters
the latest purported bug reports, responses ...
Sys.sleep(5)
RSiteSearch("bug", restrict = "R-devel", sortby = "date:late")

Rtangle R Driver for Stangle

Description

A driver for Stangle that extracts R code chunks.

Usage

Rtangle()
RtangleSetup(file, syntax, output = NULL, annotate = TRUE,

split = FALSE, prefix = TRUE, quiet = FALSE)

http://search.r-project.org

1526 RweaveLatex

Arguments

file Name of Sweave source file.

syntax An object of class SweaveSyntax.

output Name of output file, default is to remove extension ‘.nw’, ‘.Rnw’ or ‘.Snw’ and
to add extension ‘.R’. Any directory names in file are also removed such that
the output is created in the current working directory.

annotate By default, code chunks are separated by comment lines specifying the names
and numbers of the code chunks. If FALSE, only the code chunks without any
decorating comments are extracted.

split Split output in single files per code chunk?

prefix If split = TRUE, prefix the chunk labels by the basename of the input file to
get output file names?

quiet If TRUE all progress messages are suppressed.

Author(s)

Friedrich Leisch

References

Friedrich Leisch: Sweave User Manual, 2008
http://www.stat.uni-muenchen.de/~leisch/Sweave

See Also

Sweave, RweaveLatex

RweaveLatex R/LaTeX Driver for Sweave

Description

A driver for Sweave that translates R code chunks in LaTeX files.

Usage

RweaveLatex()

RweaveLatexSetup(file, syntax, output = NULL, quiet = FALSE,
debug = FALSE, echo = TRUE, eval = TRUE,
keep.source = FALSE, split = FALSE,
stylepath, pdf = TRUE, eps = TRUE)

http://www.stat.uni-muenchen.de/~leisch/Sweave

RweaveLatex 1527

Arguments

file Name of Sweave source file.

syntax An object of class SweaveSyntax.

output Name of output file, default is to remove extension ‘.nw’, ‘.Rnw’ or ‘.Snw’ and
to add extension ‘.tex’. Any directory names in file are also removed such
that the output is created in the current working directory.

quiet If TRUE all progress messages are suppressed.

debug If TRUE, input and output of all code chunks is copied to the console.

stylepath See ‘Details’.

echo set default for option echo, see details below.

eval set default for option eval, see details below.

keep.source set default for option keep.source, see details below.

split set default for option split, see details below.

pdf set default for option pdf, see details below.

eps set default for option eps, see details below.

Details

The LaTeX file generated needs to contain \usepackage{Sweave}, and if this is not present
in the Sweave source file, it is inserted by the RweaveLatex driver. If stylepath = TRUE,
a hard-coded path to the file ‘Sweave.sty’ in the R installation is set in place of Sweave. The
hard-coded path makes the TeX file less portable, but avoids the problem of installing the current
version of ‘Sweave.sty’ to some place in your TeX input path. However, TeX may not be able to
process the hard-coded path if it contains spaces (as it often will under Windows) or TeX special
characters.

The default in R prior to 2.7.0 was stylepath = TRUE. It is now taken from the environment
variable SWEAVE_STYLEPATH_DEFAULT, or is FALSE it that is unset or empty. If set, it should
be exactly TRUE or FALSE: any other values are taken as FALSE.

Supported Options

RweaveLatex supports the following options for code chunks (the values in parentheses show
the default values):

echo: logical (TRUE). Include S code in the output file?

keep.source: logical (FALSE). When echoing, if keep.source == TRUE the original source
is copied to the file. Otherwise, deparsed source is echoed.

eval: logical (TRUE). If FALSE, the code chunk is not evaluated, and hence no text or graphical
output produced.

results: character string (verbatim). If verbatim, the output of S commands is included in
the verbatim-like Soutput environment. If tex, the output is taken to be already proper latex
markup and included as is. If hide then all output is completely suppressed (but the code
executed during the weave).

print: logical (FALSE) If TRUE, each expression in the code chunk is wrapped into a print()
statement before evaluation, such that the values of all expressions become visible.

term: logical (TRUE). If TRUE, visibility of values emulates an interactive R session: values of
assignments are not printed, values of single objects are printed. If FALSE, output comes
only from explicit print or cat statements.

1528 savehistory

split: logical (FALSE). If TRUE, text output is written to separate files for each code chunk.

strip.white: character string (false). If true, blank lines at the beginning and end of output are
removed. If all, then all blank lines are removed from the output.

prefix: logical (TRUE). If TRUE generated filenames of figures and output have a common prefix.

prefix.string: a character string, default is the name of the ‘.Snw’ source file.

include: logical (TRUE), indicating whether input statements for text output and includegraph-
ics statements for figures should be auto-generated. Use include = FALSE if the output
should appear in a different place than the code chunk (by placing the input line manually).

fig: logical (FALSE), indicating whether the code chunk produces graphical output. Note that only
one figure per code chunk can be processed this way.

eps: logical (TRUE), indicating whether EPS figures shall be generated. Ignored if fig =
FALSE.

pdf: logical (TRUE), indicating whether PDF figures shall be generated. Ignored if fig =
FALSE.

width: numeric (6), width of figures in inch.

height: numeric (6), height of figures in inch.

expand: logical (TRUE). Expand references to other chunks so that only R code appears in the
output file. If FALSE, the chunk reference (e.g. <<chunkname>>) will appear. The
expand=FALSE option requires keep.source = TRUE or it will have no effect.

concordance: logical (FALSE). Write a concordance file to link the input line numbers to the
output line numbers. This is an experimental feature; see the source code for the output
format, which is subject to change in future releases.

Author(s)

Friedrich Leisch

References

Friedrich Leisch: Sweave User Manual, 2008
http://www.stat.uni-muenchen.de/~leisch/Sweave

See Also

Sweave, Rtangle

savehistory Load or Save or Display the Commands History

Description

Load or save or display the commands history.

http://www.stat.uni-muenchen.de/~leisch/Sweave

savehistory 1529

Usage

loadhistory(file = ".Rhistory")
savehistory(file = ".Rhistory")

history(max.show = 25, reverse = FALSE, pattern, ...)

timestamp(stamp = date(),
prefix = "##------ ", suffix = " ------##",
quiet = FALSE)

Arguments

file The name of the file in which to save the history, or from which to load it. The
path is relative to the current working directory.

max.show The maximum number of lines to show. Inf will give all of the currently avail-
able history.

reverse logical. If true, the lines are shown in reverse order. Note: this is not useful
when there are continuation lines.

pattern A character string to be matched against the lines of the history

... Arguments to be passed to grep when doing the matching.

stamp A value or vector of values to be written into the history.

prefix A prefix to apply to each line.

suffix A suffix to apply to each line.

quiet If TRUE, suppress printing timestamp to the console.

Details

There are several history mechanisms available for the different R consoles, which work in similar
but not identical ways. Other uses of R, in particular embedded uses, may have no history. This
works under the readline and GNOME and MacOS X consoles, but not otherwise (for example,
in batch use or in an embedded application).

The readline history mechanism is controlled by two environment variables: R_HISTSIZE
controls the number of lines that are saved (default 512), and R_HISTFILE sets the filename used
for the loading/saving of history if requested at the beginning/end of a session (but not the default
for these functions). There is no limit on the number of lines of history retained during a session,
so setting R_HISTSIZE to a large value has no penalty unless a large file is actually generated.

These variables are read at the time of saving, so can be altered within a session by the use of
Sys.setenv.

history shows only unique matching lines if pattern is supplied.

The timestamp function writes a timestamp (or other message) into the history and echos it to
the console. On platforms that do not support a history mechanism (where the mechanism does not
yet support timestamps) only the console message is printed.

Note

If you want to save the history (almost) every session, you can put a call to savehistory() in
.Last. See the examples.

1530 select.list

Examples

Not run:
.Last <- function()

if(interactive()) try(savehistory("~/.Rhistory"))
End(Not run)

select.list Select Items from a List

Description

Select item(s) from a character vector.

Usage

select.list(list, preselect = NULL, multiple = FALSE, title = NULL)

Arguments

list character. A list of items.

preselect a character vector, or NULL. If non-null and if the string(s) appear in the list, the
item(s) are selected initially.

multiple logical: can more than one item be selected?

title optional character string for window title.

Details

Under the AQUA interface for MacOS X this brings up a modal dialog box with a (scrollable) list
of items, which can be selected by the mouse.

Otherwise it displays a text list from which the user can choose by number(s). The multiple
= FALSE case uses menu. Preselection is only supported for multiple = TRUE, where it is
indicated by a "+" preceding the item.

Value

A character vector of selected items. If multiple is false and no item was selected (or Cancel
was used), "" is returned. If multiple is true and no item was selected (or Cancel was used)
then a character vector of length 0 is returned.

See Also

menu, tk_select.list for a graphical version using Tcl/Tk.

Examples

Not run:
select.list(sort(.packages(all.available = TRUE)))
End(Not run)

sessionInfo 1531

sessionInfo Collect Information About the Current R Session

Description

Print version information about R and attached or loaded packages.

Usage

sessionInfo(package=NULL)
S3 method for class 'sessionInfo':
print(x, ...)
S3 method for class 'sessionInfo':
toLatex(object, ...)

Arguments

package a character vector naming installed packages. By default all attached packages
are used.

x an object of class "sessionInfo".

object an object of class "sessionInfo".

... currently not used.

See Also

R.version

Examples

sessionInfo()
toLatex(sessionInfo())

setRepositories Select Package Repositories

Description

Interact with the user to choose the package repositories to be used.

Usage

setRepositories(graphics = getOption("menu.graphics"), ind = NULL)

Arguments

graphics Logical. If true and tcltk and an X server are available, use a Tk widget, or if
under the AQUA interface use a MacOS X widget, otherwise use a text list in
the console.

ind NULL or a vector of integer indices, which have the same effect as if they were
entered at the prompt for graphics=FALSE.

1532 SHLIB

Details

The default list of known repositories is stored in the file ‘R_HOME/etc/repositories’. That file
can be edited for a site, or a user can have a personal copy in ‘HOME /.R/repositories’ which will
take precedence.

The items that are preselected are those that are currently in options("repos") plus those
marked as default in the list of known repositories.

This function requires the R session to be interactive unless ind is supplied.

Value

This function is invoked mainly for its side effect of updating options("repos"). It returns
(invisibly) the previous repos options setting (as a list with component repos) or NULL if no
changes were applied.

See Also

chooseCRANmirror, install.packages.

SHLIB Build Shared Library for Dynamic Loading

Description

Compile the given source files and then link all specified object files into a shared library which can
be loaded into R using dyn.load or library.dynam.

Usage

R CMD SHLIB [options] [-o libname] files

Arguments

files a list specifying the object files to be included in the shared library. You can also
include the name of source files (for which the object files are automagically
made from their sources) and library linking commands.

libname the full name of the shared library to be built, including the extension (typically
‘.so’ on Unix systems). If not given, the name of the library is taken from the
first file.

options Further options to control the processing. Use R CMD SHLIB --help for a
current list.

Details

R CMD SHLIB is the mechanism used by INSTALL to compile source code in packages. Please
consult section ‘Creating shared objects’ in the manual ‘Writing R Extensions’ for how to customize
it (for example to add cpp flags and to add libraries to the link step) and for details of some of its
quirks.

Items in files with extensions ‘.c’, ‘.cpp’, ‘.cc’, ‘.C’, ‘.f’, ‘.f90’, ‘.f95’, ‘.m’, ‘.M’ and ‘.mm’
are regarded as source files, and those with extension ‘.o’ as object files. All other items are passed
to the linker.

stack 1533

Note

Some binary distributions of R have SHLIB in a separate bundle, e.g., an R-devel RPM.

See Also

COMPILE, dyn.load, library.dynam.

The section on “Customizing compilation under Unix” in “R Administration and Installation” (see
the ‘doc/manual’ subdirectory of the R source tree).

The ‘R Installation and Administration’ and ‘Writing R Extensions’ manuals.

Examples

Not run:
R CMD SHLIB -o mylib.so a.f b.f -L/opt/acml3.5.0/gnu64/lib -lacml
End(Not run)

stack Stack or Unstack Vectors from a Data Frame or List

Description

Stacking vectors concatenates multiple vectors into a single vector along with a factor indicating
where each observation originated. Unstacking reverses this operation.

Usage

stack(x, ...)
Default S3 method:
stack(x, ...)
S3 method for class 'data.frame':
stack(x, select, ...)

unstack(x, ...)
Default S3 method:
unstack(x, form, ...)
S3 method for class 'data.frame':
unstack(x, form, ...)

Arguments

x object to be stacked or unstacked

select expression, indicating variables to select from a data frame

form a two-sided formula whose left side evaluates to the vector to be unstacked and
whose right side evaluates to the indicator of the groups to create. Defaults to
formula(x) in unstack.data.frame.

... further arguments passed to or from other methods.

1534 str

Details

The stack function is used to transform data available as separate columns in a data frame or list
into a single column that can be used in an analysis of variance model or other linear model. The
unstack function reverses this operation.

Value

unstack produces a list of columns according to the formula form. If all the columns have the
same length, the resulting list is coerced to a data frame.

stack produces a data frame with two columns

values the result of concatenating the selected vectors in x

ind a factor indicating from which vector in x the observation originated

Author(s)

Douglas Bates

See Also

lm, reshape

Examples

require(stats)
formula(PlantGrowth) # check the default formula
pg <- unstack(PlantGrowth) # unstack according to this formula
pg
stack(pg) # now put it back together
stack(pg, select = -ctrl) # omitting one vector

str Compactly Display the Structure of an Arbitrary R Object

Description

Compactly display the internal structure of an R object, a diagnostic function and an alternative to
summary (and to some extent, dput). Ideally, only one line for each ‘basic’ structure is displayed.
It is especially well suited to compactly display the (abbreviated) contents of (possibly nested) lists.
The idea is to give reasonable output for any R object. It calls args for (non-primitive) function
objects.

strOptions() is a convenience function for setting options(str = .), see the examples.

Usage

str(object, ...)

S3 method for class 'data.frame':
str(object, ...)

Default S3 method:

str 1535

str(object, max.level = NA,
vec.len = strO$vec.len, digits.d = strO$digits.d,
nchar.max = 128, give.attr = TRUE,
give.head = TRUE, give.length = give.head,
width = getOption("width"), nest.lev = 0,
indent.str = paste(rep.int(" ", max(0, nest.lev + 1)),

collapse = ".."),
comp.str="$ ", no.list = FALSE, envir = baseenv(),
strict.width = strO$strict.width,
formatNum = strO$formatNum, ...)

strOptions(strict.width = "no", digits.d = 3, vec.len = 4,
formatNum = function(x, ...)

format(x, trim=TRUE, drop0trailing=TRUE, ...))

Arguments

object any R object about which you want to have some information.
max.level maximal level of nesting which is applied for displaying nested structures, e.g.,

a list containing sub lists. Default NA: Display all nesting levels.
vec.len numeric (>= 0) indicating how many ‘first few’ elements are displayed of each

vector. The number is multiplied by different factors (from .5 to 3) depending
on the kind of vector. Defaults to the vec.len component of option "str"
(see options) which defaults to 4.

digits.d number of digits for numerical components (as for print). Defaults to the
digits.d component of option "str" which defaults to 3.

nchar.max maximal number of characters to show for character strings. Longer strings
are truncated, see longch example below.

give.attr logical; if TRUE (default), show attributes as sub structures.
give.length logical; if TRUE (default), indicate length (as [1:...]).
give.head logical; if TRUE (default), give (possibly abbreviated) mode/class and length (as

<type>[1:...]).
width the page width to be used. The default is the currently active

options("width"); note that this has only a weak effect, unless
strict.width is not "no".

nest.lev current nesting level in the recursive calls to str.
indent.str the indentation string to use.
comp.str string to be used for separating list components.
no.list logical; if true, no ‘list of . . . ’ nor the class are printed.
envir the environment to be used for promise (see delayedAssign) objects only.
strict.width string indicating if the width argument’s specification should be followed

strictly, one of the values c("no", "cut", "wrap"). Defaults to the
strict.width component of option "str" (see options) which de-
faults to "no" for back compatibility reasons; "wrap" uses strwrap(*,
width=width) whereas "cut" cuts directly to width. Note that a small
vec.length may be better than setting strict.width = "wrap".

formatNum a function such as format for formatting numeric vectors. It defaults to the
formatNum component of option "str", see “Usage” of strOptions()
above, which is almost back compatible to R version ≤ 2.7.x, however, using
formatC may be slightly better.

1536 str

... potential further arguments (required for Method/Generic reasons).

Value

str does not return anything, for efficiency reasons. The obvious side effect is output to the
terminal.

Author(s)

Martin Maechler 〈maechler@stat.math.ethz.ch〉 since 1990.

See Also

ls.str for listing objects with their structure; summary, args.

Examples

require(stats); require(grDevices); require(graphics)
The following examples show some of 'str' capabilities
str(1:12)
str(ls)
str(args) #- more useful than args(args) !
str(freeny)
str(str)
str(.Machine, digits.d = 20)
str(lsfit(1:9,1:9))
str(lsfit(1:9,1:9), max.level = 1)
str(lsfit(1:9,1:9), width = 60, strict.width = "cut")
str(lsfit(1:9,1:9), width = 60, strict.width = "wrap")
op <- options(); str(op) # save first;

otherwise internal options() is used.
need.dev <-
!exists(".Device") || is.null(.Device) || .Device == "null device"

{ if(need.dev) postscript()
str(par())
if(need.dev) graphics.off()

}
ch <- letters[1:12]; is.na(ch) <- 3:5
str(ch) # character NA's

nchar(longch <- paste(rep(letters,100), collapse=""))
str(longch)
str(longch, nchar.max = 52)

str(longch, strict.width = "wrap")

Settings for narrow transcript :
op <- options(width = 60,

str = strOptions(strict.width = "wrap"))
str(lsfit(1:9,1:9))
str(options())
reset to previous:
options(op)

str(quote({ A+B; list(C,D) }))

summaryRprof 1537

S4 classes :
require(stats4)
x <- 0:10; y <- c(26, 17, 13, 12, 20, 5, 9, 8, 5, 4, 8)
ll <- function(ymax=15, xh=6)

-sum(dpois(y, lambda=ymax/(1+x/xh), log=TRUE))
fit <- mle(ll)
str(fit)

summaryRprof Summarise Output of R Sampling Profiler

Description

Summarise the output of the Rprof function to show the amount of time used by different R
functions.

Usage

summaryRprof(filename = "Rprof.out", chunksize = 5000,
memory=c("none","both","tseries","stats"),
index=2, diff=TRUE, exclude=NULL)

Arguments

filename Name of a file produced by Rprof()

chunksize Number of lines to read at a time

memory Summaries for memory information. See ‘Details’ below

index How to summarize the stack trace for memory information. See ‘Details’ below.

diff If TRUE memory summaries use change in memory rather than current memory

exclude Functions to exclude when summarizing the stack trace for memory summaries

Details

This function is an alternative to R CMD Rprof. It provides the convenience of an all-R imple-
mentation but will be slower for large files.

As the profiling output file could be larger than available memory, it is read in blocks of
chunksize lines. Increasing chunksize will make the function run faster if sufficient memory
is available.

When called with memory.profiling=TRUE, the profiler writes information on three aspects
of memory use: vector memory in small blocks on the R heap, vector memory in large blocks
(from malloc), memory in nodes on the R heap. It also records the number of calls to the internal
function duplicate in the time interval. duplicate is called by C code when arguments need
to be copied. Note that the profiler does not track which function actually allocated the memory.

With memory="both" the change in total memory (truncated at zero) is reported in addition to
timing data.

With memory="tseries" or memory="stats" the index argument specifies how to
summarize the stack trace. A positive number specifies that many calls from the bottom of

1538 Sweave

the stack; a negative number specifies the number of calls from the top of the stack. With
memory="tseries" the index is used to construct labels and may be a vector to give mul-
tiple sets of labels. With memory="stats" the index must be a single number and speci-
fies how to aggregate the data to the maximum and average of the memory statistics. With both
memory="tseries" and memory="stats" the argument diff=TRUE asks for summaries
of the increase in memory use over the sampling interval and diff=FALSE asks for the memory
use at the end of the interval.

Value

If memory="none",a list with components

by.self Timings sorted by ‘self’ time

by.total Timings sorted by ‘total’ time
sampling.time

Total length of profiling run

If memory="both" the same list but with memory consumption in Mb in addition to the timings.

If memory="tseries" a data frame giving memory statistics over time

If memory="stats" a by object giving memory statistics by function.

See Also

The chapter on “Tidying and profiling R code” in “Writing R Extensions” (see the ‘doc/manual’
subdirectory of the R source tree).

Rprof

tracemem traces copying of an object via the C function duplicate.

Rprofmem is a non-sampling memory use profiler.

http://developer.r-project.org/memory-profiling.html

Examples

Not run:
Rprof() is not available on all platforms
Rprof(tmp <- tempfile())
example(glm)
Rprof()
summaryRprof(tmp)
unlink(tmp)
End(Not run)

Sweave Automatic Generation of Reports

Description

Sweave provides a flexible framework for mixing text and S code for automatic report generation.
The basic idea is to replace the S code with its output, such that the final document only contains
the text and the output of the statistical anlysis.

http://developer.r-project.org/memory-profiling.html

Sweave 1539

Usage

Sweave(file, driver = RweaveLatex(),
syntax = getOption("SweaveSyntax"), ...)

Stangle(file, driver = Rtangle(),
syntax = getOption("SweaveSyntax"), ...)

Arguments

file Name of Sweave source file.
driver The actual workhorse, see details below.
syntax An object of class SweaveSyntax or a character string with its

name. The default installation provides SweaveSyntaxNoweb and
SweaveSyntaxLatex.

... Further arguments passed to the driver’s setup function.

Details

Automatic generation of reports by mixing word processing markup (like latex) and S code. The S
code gets replaced by its output (text or graphs) in the final markup file. This allows a report to be
re-generated if the input data change and documents the code to reproduce the analysis in the same
file that also produces the report.

Sweave combines the documentation and code chunks together (or their output) into a single
document. Stangle extracts only the code from the Sweave file creating a valid S source file
(that can be run using source). Code inside \Sexpr{} statements is ignored by Stangle.

Stangle is just a frontend to Sweave using a simple driver by default, which discards the docu-
mentation and concatenates all code chunks the current S engine understands.

Hook Functions

Before each code chunk is evaluated, a number of hook functions can be executed. If
getOption("SweaveHooks") is set, it is taken to be a collection of hook functions. For
each logical option of a code chunk (echo, print, . . .) a hook can be specified, which is ex-
ecuted if and only if the respective option is TRUE. Hooks must be named elements of the list
returned by getOption("SweaveHooks") and be functions taking no arguments. E.g., if op-
tion "SweaveHooks" is defined as list(fig = foo), and foo is a function, then it would
be executed before the code in each figure chunk. This is especially useful to set defaults for the
graphical parameters in a series of figure chunks.

Note that the user is free to define new Sweave options and associate arbitrary hooks with them.
E.g., one could define a hook function for option clean that removes all objects in the global
environment. Then all code chunks with clean = TRUE would start operating on an empty
workspace.

Syntax Definition

Sweave allows a very flexible syntax framework for marking documentation and text chunks. The
default is a noweb-style syntax, as alternative a latex-style syntax can be used. See the user manual
for details.

Author(s)

Friedrich Leisch

1540 SweaveSyntConv

References

Friedrich Leisch: Dynamic generation of statistical reports using literate data analysis. In W. Härdle
and B. Rönz, editors, Compstat 2002 - Proceedings in Computational Statistics, pages 575–580.
Physika Verlag, Heidelberg, Germany, 2002. ISBN 3-7908-1517-9.

Friedrich Leisch: Sweave User Manual, 2008
http://www.stat.uni-muenchen.de/~leisch/Sweave

See Also

RweaveLatex, Rtangle

Examples

testfile <- system.file("Sweave", "Sweave-test-1.Rnw", package = "utils")

enforce par(ask=FALSE)
options(device.ask.default=FALSE)

create a LaTeX file
Sweave(testfile)

This can be compiled to PDF by
Not run: tools::texi2dvi("Sweave-test-1.tex", pdf=TRUE)
or outside R by
R CMD texi2dvi Sweave-test-1.tex
which sets the appropriate TEXINPUTS path.

create an S source file from the code chunks
Stangle(testfile)
which can be sourced, e.g.
source("Sweave-test-1.R")

SweaveSyntConv Convert Sweave Syntax

Description

This function converts the syntax of files in Sweave format to another Sweave syntax definition.

Usage

SweaveSyntConv(file, syntax, output = NULL)

Arguments

file Name of Sweave source file.
syntax An object of class SweaveSyntax or a character string with its name giving

the target syntax to which the file is converted.
output Name of output file, default is to remove the extension from the input file and to

add the default extension of the target syntax. Any directory names in file are
also removed such that the output is created in the current working directory.

http://www.stat.uni-muenchen.de/~leisch/Sweave

toLatex 1541

Author(s)

Friedrich Leisch

References

Friedrich Leisch: Sweave User Manual, 2008
http://www.stat.uni-muenchen.de/~leisch/Sweave

See Also

RweaveLatex, Rtangle

Examples

testfile <- system.file("Sweave", "Sweave-test-1.Rnw", package = "utils")

convert the file to latex syntax
SweaveSyntConv(testfile, SweaveSyntaxLatex)

and run it through Sweave
Sweave("Sweave-test-1.Stex")

toLatex Converting R Objects to BibTeX or LaTeX

Description

These methods convert R objects to character vectors with BibTeX or LaTeX markup.

Usage

toBibtex(object, ...)
toLatex(object, ...)
S3 method for class 'Bibtex':
print(x, prefix="", ...)
S3 method for class 'Latex':
print(x, prefix="", ...)

Arguments

object object of a class for which a toBibtex or toLatex method exists.

x object of class "Bibtex" or "Latex".

prefix a character string which is printed at the beginning of each line, mostly used to
insert whitespace for indentation.

... currently not used in the print methods.

Details

Objects of class "Bibtex" or "Latex" are simply character vectors where each element holds
one line of the corresponding BibTeX or LaTeX file.

http://www.stat.uni-muenchen.de/~leisch/Sweave

1542 txtProgressBar

See Also

citEntry and sessionInfo for examples

txtProgressBar Text Progress Bar

Description

Text progress bar in the R console.

Usage

txtProgressBar(min = 0, max = 1, initial = 0, char = "=",
width = NA, title, label, style = 1)

getTxtProgressBar(pb)
setTxtProgressBar(pb, value, title = NULL, label = NULL)
S3 method for class 'txtProgressBar':
close(con, ...)

Arguments

min, max (finite) numeric values for the extremes of the progress bar.
initial, value

initial or new value for the progress bar.

char the character (or character string) to form the progress bar.

width the width of the progress bar, as a multiple of the width of char. If NA, the de-
fault, the number of characters is that which fits into getOption("width").

style the ‘style’ of the bar – see ‘Details’.

pb, con an object of class "txtProgressBar".

title, label ignored, for compatibility with other progress bars.

... for consistency with the generic.

Details

txtProgressBar will display a progress bar on the R console via a text representation.

setTxtProgessBar will update the value. Missing (NA) and out-of-range values of value will
be (silently) ignored.

The progress bar should be closed when finished with: this outputs the final newline character.

style = 1 and style = 2 just shows a line of char. They differ in that style = 2 redraws
the line each time, which is useful if other code might be writing to the R console. style = 3
marks the end of the range by | and gives a percentage to the right of the bar.

Value

For txtProgressBar an object of class "txtProgressBar".

For getTxtProgressBar and setTxtProgressBar, a length-one numeric vector giving the
previous value (invisibly for setTxtProgressBar).

type.convert 1543

Note

Using style 2 or 3 or reducing the value with style = 1 uses \r to return to the left margin –
the interpretation of carriage return is up to the terminal or console in which R is running.

See Also

tkProgressBar

Examples

slow
testit <- function(x = sort(runif(20)), ...)
{

pb <- txtProgressBar(...)
for(i in c(0, x, 1)) {Sys.sleep(0.5); setTxtProgressBar(pb, i)}
Sys.sleep(1)
close(pb)

}
testit()
testit(runif(10))
testit(style=3)

type.convert Type Conversion on Character Variables

Description

Convert a character vector to logical, integer, numeric, complex or factor as appropriate.

Usage

type.convert(x, na.strings = "NA", as.is = FALSE, dec = ".")

Arguments

x a character vector.

na.strings a vector of strings which are to be interpreted as NA values. Blank fields are also
considered to be missing values in logical, integer, numeric or complex vectors.

as.is logical. See ‘Details’.

dec the character to be assumed for decimal points.

Details

This is principally a helper function for read.table. Given a character vector, it attempts to
convert it to logical, integer, numeric or complex, and failing that converts it to factor unless as.is
= TRUE. The first type that can accept all the non-missing values is chosen.

Vectors which are entirely missing values are converted to logical, since NA is primarily logical.

Value

A vector of the selected class, or a factor.

1544 update.packages

See Also

read.table

update.packages Download Packages from CRAN-like repositories

Description

These functions can be used to automatically compare the version numbers of installed packages
with the newest available version on the repositories and update outdated packages on the fly.

Usage

update.packages(lib.loc = NULL, repos = getOption("repos"),
contriburl = contrib.url(repos, type),
method, instlib = NULL,
ask = TRUE, available = NULL,
oldPkgs = NULL, ...,
checkBuilt = FALSE, type = getOption("pkgType"))

available.packages(contriburl = contrib.url(getOption("repos")),
method, fields = NULL)

old.packages(lib.loc = NULL, repos = getOption("repos"),
contriburl = contrib.url(repos),
instPkgs = installed.packages(lib.loc = lib.loc),
method, available = NULL, checkBuilt = FALSE)

new.packages(lib.loc = NULL, repos = getOption("repos"),
contriburl = contrib.url(repos, type),
instPkgs = installed.packages(lib.loc = lib.loc),
method, available = NULL, ask = FALSE, ...,
type = getOption("pkgType"))

download.packages(pkgs, destdir, available = NULL,
repos = getOption("repos"),
contriburl = contrib.url(repos, type),
method, type = getOption("pkgType"), ...)

install.packages(pkgs, lib, repos = getOption("repos"),
contriburl = contrib.url(repos, type),
method, available = NULL, destdir = NULL,
installWithVers = FALSE, dependencies = NA,
type = getOption("pkgType"),
configure.args = character(0),
clean = FALSE, ...)

contrib.url(repos, type = getOption("pkgType"))

update.packages 1545

Arguments

lib.loc character vector describing the location of R library trees to search through (and
update packages therein).

repos character vector, the base URL(s) of the repositories to use, i.e., the URL of
the CRAN master such as "http://cran.r-project.org" or its Statlib
mirror, "http://lib.stat.cmu.edu/R/CRAN". Can be NULL to install
from local files (‘.tar.gz’ for source packages).

contriburl URL(s) of the contrib sections of the repositories. Use this argument only if
your repository mirror is incomplete, e.g., because you burned only the ‘contrib’
section on a CD. Overrides argument repos. As repos, can also be NULL to
install from local files.

method Download method, see download.file.

pkgs character vector of the short names of packages/bundles whose current versions
should be downloaded from the repositories. If repos = NULL, a charac-
ter vector of file paths of ‘.tar.gz’ files. These can be source archives or bi-
nary package/bundle archive files (as created by R CMD build --binary).
Tilde-expansion will be done on the file paths. If this is a zero-length character
vector, a listbox of available packages (including those contained in bundles) is
presented where possible.

destdir directory where downloaded packages are stored.

available an object listing packages available at the repositories as returned by
available.packages.

lib character vector giving the library directories where to install the packages. Re-
cycled as needed. If missing, defaults to .libPaths()[1].

ask logical indicating whether to ask user before packages are actually downloaded
and installed, or the character string "graphics", which brings up a widget
to allow the user to (de-)select from the list of packages which could be updated.
The latter only works on systems with a GUI version of select.list, and is
otherwise equivalent to ask = TRUE.

installWithVers
If TRUE, will invoke the install of the package such that it can be referenced by
package version.

checkBuilt If TRUE, a package built under an earlier minor version of R is considered to be
‘old’.

instlib character string giving the library directory where to install the packages.

dependencies logical indicating to also install uninstalled packages on which these packages
depend/suggest/import (and so on recursively). Not used if repos = NULL.
Can also be a character vector, a subset of c("Depends", "Imports",
"Suggests"). Note that only if the dependent package is installed is
checked, not if it meets the version requirements.
Only supported if lib is of length one (or missing), so it is unambiguous where
to install the dependent packages.
The default, NA, means c("Depends", "Imports") if lib is unambigu-
ous, and FALSE otherwise.

configure.args
a character vector or a named list. If a character vector with no names is sup-
plied, the elements are concatenated into a single string (separated by a space)
and used as the value for the --configure-args flag in the call to R CMD

1546 update.packages

INSTALL. If the character vector has names, these are assumed to identify val-
ues for --configure-args for individual packages. This allows one to
specify settings for an entire collection of packages which will be used if any
of those packages are installed. These settings can therefore be reused and act
as default settings. A named list can be used also to the same effect, and that
allows multi-element character strings for each package which are concatenated
to a single string to be used as the value for --configure-args.

oldPkgs if specified as non-NULL, update.packages() only considers these pack-
ages for updating.

instPkgs by default all installed packages, installed.packages(lib.loc=lib.loc).
A subset can be specified; currently this must be in the same (character matrix)
format as returned by installed.packages().

... (for update.packages). Arguments such as destdir,
installWithVers and dependencies to be passed to
install.packages.
(for new.packages). Arguments such as destdir and dependencies
to be passed to install.packages.
(for install.packages and download.packages) arguments to be
passed to download.file.

type character, indicating the type of package to download and install. Possible val-
ues are "source" (the default except under the CRAN Mac OS X build),
"mac.binary" and "win.binary" (which can be downloaded but not in-
stalled).

clean a logical value indicating whether to specify to add the --clean flag to the call
to R CMD INSTALL. This is sometimes used to perform additional operations
at the end of the package installation in addition to removing intermediate files.

fields a character vector giving the fields to extract from the PACKAGES file(s) in
addition to the default ones, or NULL (default). Unavailable fields result in NA
values.

Details

All of these functions work with the names of a package or bundle (and not the component packages
of a bundle, except for install.packages if the repository provides the necessary informa-
tion).

available.packages returns a matrix of details corresponding to packages/bundles currently
available at one or more repositories. The current list of packages is downloaded over the internet
(or copied from a local mirror). It returns only packages whose version requirements are met by the
running version of R.

old.packages compares the information from available.packages with that from
instPkgs (installed.packages by default) and reports installed packages/bundles that
have newer versions on the repositories or, if checkBuilt = TRUE, that were built under an
earlier minor version of R (for example built under 2.0.x when running R 2.1.1).

new.packages does the same comparison but reports uninstalled packages/bundles that are avail-
able at the repositories. (It checks the front-end package gnomeGUI separately.) It will give warn-
ings about incompletely installed bundles (provided the information is available) and bundles whose
contents has changed. If ask != FALSE it asks which packages should be installed in the first
element of lib.loc. NB: versioned installs are not installs of a named package.

download.packages takes a list of package/bundle names and a destination directory, down-
loads the newest versions and saves them in destdir. If the list of available packages is not

update.packages 1547

given as argument, it is obtained from repositories. If a repository is local, i.e. the URL starts
with "file:", then the packages are not downloaded but used directly. Both "file:" and
"file:///" are allowed as prefixes to a file path. Use the latter only for URLs: see url for their
interpretation. (Other forms of "file://" URLs are not supported.)

The main function of the set is update.packages. First a list of all packages/bundles found in
lib.loc is created and compared with those available at the repositories. If ask = TRUE (the
default) packages/bundles with a newer version are reported and for each one the user can specify if
it should be updated. If so, the package sources are downloaded from the repositories and installed
in the respective library path (or instlib if specified) using the R INSTALL mechanism.

install.packages can be used to install new packages/bundles. It takes a vector of names and
a destination library, downloads the packages from the repositories and installs them. (If the library
is omitted it defaults to the first directory in .libPaths(), with a warning if there is more than
one.) If lib is omitted or is of length one and is not a (group) writeable directory, the code offers to
create a personal library tree (the first element of Sys.getenv("R_LIBS_USER")) and install
there.

If a repository is used (rather than local ‘.tar.gz’ files), an attempt is made to install the packages
in an order that respects their dependencies. This does assume that all the entries in lib are on the
default library path for installs (set by R_LIBS).

contrib.url adds the appropriate type-specific path within a repository to each URL in repos.

For install.packages, destdir is the directory to which packages will be downloaded. If
it is NULL (the default) a directory downloaded_packages of the session temporary directory
will be used (and the files will be deleted at the end of the session).

If repos or contriburl is a vector of length greater than one, the newest version of the package
compatible with this version of R is fetched from the first repository on the list within which it is
found.

Value

For available.packages, a matrix with one row per package/bundle, row names the package
names and column names "Package", "Version", "Priority", "Bundle", "Depends",
"Imports", "Suggests" "Contains" and "Repository". Additional columns can be
specified using the fields argument.

For old.packages, NULL or a matrix with one row per package/bundle, row names the package
names and column names "Package", "LibPath", "Installed" (the version), "Built"
(the version built under), "ReposVer" and "Repository".

For new.packages a character vector of package/bundle names, after any have been installed.

For download.packages, a two-column matrix of names and destination file names, for those
packages/bundles successfully downloaded. If packages are not available or there is a problem with
the download, suitable warnings are given.

install.packages and update.packages have no return value.

Warning

Take care when using dependencies with update.packages, for it is unclear where new
dependencies should be installed. The current implementation will only allow it if all the packages
to be updated are in a single library, when that library will be used.

You are advised to run update.packages before install.packages to ensure that any
installed dependencies have their latest versions.

1548 url.show

Note

Some binary distributions of R have INSTALL in a separate bundle, e.g. an R-devel RPM.
install.packages will give an error if called on such a system.

See Also

installed.packages, remove.packages

See download.file for how to handle proxies and other options to monitor file transfers.

INSTALL, REMOVE, library, .packages, read.dcf

The ‘R Installation and Administration’ manual for how to set up a repository.

Examples

Not run:
install.packages(

c("XML_0.99-5.tar.gz",
"../../Interfaces/Perl/RSPerl_0.8-0.tar.gz"),

repos = NULL,
configure.args = c(XML = '--with-xml-config=xml-config',

RSPerl = "--with-modules='IO Fcntl'"))
End(Not run)

url.show Display a text URL

Description

Extension of file.show to display text files from a remote server.

Usage

url.show(url, title = url, file = tempfile(),
delete.file = TRUE, method, ...)

Arguments

url The URL to read from.
title Title for the browser.
file File to copy to.
delete.file Delete the file afterwards?
method File transfer method: see download.file
... Arguments to pass to file.show.

See Also

url, file.show, download.file

Examples

Not run: url.show("http://lib.stat.cmu.edu/datasets/csb/ch3a.txt")

URLencode 1549

URLencode Encode or Decode a (partial) URL

Description

Functions to encode or decode characters in URLs.

Usage

URLencode(URL, reserved = FALSE)
URLdecode(URL)

Arguments

URL A character string.

reserved should reserved characters be encoded? See ‘Details’.

Details

Characters in a URL other than the English alphanumeric characters and $ - _ . + ! * ’
() , should be encoded as % plus a two-digit hexadecimal representation, and any single-byte
character can be so encoded. (Multi-byte characters are encoded as byte-by-byte.)

In addition, ; / ? : @ = & are reserved characters, and should be encoded unless used in
their reserved sense, which is scheme specific. The default in URLencode is to leave them alone,
which is appropriate for file:// URLs, but probably not for http:// ones.

Value

A character string.

References

RFC1738, http://www.rfc-editor.org/rfc/rfc1738.txt

Examples

(y <- URLencode("a url with spaces and / and @"))
URLdecode(y)
(y <- URLencode("a url with spaces and / and @", reserved=TRUE))
URLdecode(y)
URLdecode("ab%20cd")

http://www.rfc-editor.org/rfc/rfc1738.txt

1550 View

utils-deprecated Deprecated Functions in Package utils

Description

These functions are provided for compatibility with older versions of R only, and may be defunct
as soon as of the next release.

Usage

CRAN.packages(CRAN = getOption("repos"), method,
contriburl = contrib.url(CRAN))

Arguments

CRAN character, an earlier way to specify a repository.

method Download method, see download.file.

contriburl URL(s) of the contrib section of the repositories. Use this argument only if your
CRAN mirror is incomplete, e.g., because you burned only the ‘contrib’ section
on a CD. Overrides argument repos.

See Also

Deprecated, Defunct

View Invoke a Data Viewer

Description

Invoke a spreadsheet-style data viewer on a matrix-like R object.

Usage

View(x, title)

Arguments

x an R object which can be coerced to a data frame with non-zero numbers of
rows and columns.

title title for viewer window. Defaults to name of x.

vignette 1551

Details

Object x is coerced (if possible) to a data frame, and all non-numeric columns are then coerced
to character. The object is then viewed in a spreadsheet-like data viewer, a read-only version of
data.entry.

If there are row names on the data frame that are not 1:nrow, they are displayed in a separate first
column called row.names.

Objects with zero columns or zero rows are not accepted.

The array of cells can be navigated by the cursor keys and Home, End, Page Up and Page Down
(where supported by X11) as well as Enter and Tab.

Value

Invisible NULL. The functions puts up a window and returns immediately: the window can be
closed via its controls or menus.

See Also

edit.data.frame, data.entry.

vignette View or List Vignettes

Description

View a specified vignette, or list the available ones.

Usage

vignette(topic, package = NULL, lib.loc = NULL, all = TRUE)

S3 method for class 'vignette':
print(x, ...)
S3 method for class 'vignette':
edit(name, ...)

Arguments

topic a character string giving the (base) name of the vignette to view. If omitted, all
vignettes from all installed packages are listed.

package a character vector with the names of packages to search through, or NULL in
which "all" packages (as defined by argument all) are searched.

lib.loc a character vector of directory names of R libraries, or NULL. The default value
of NULL corresponds to all libraries currently known.

all logical; if TRUE search all available packages in the library trees specified by
lib.loc, and if FALSE, search only attached packages.

x, name Object of class vignette.

... Ignored by the printmethod, passed on to file.edit by the editmethod.

1552 withVisible

Details

Function vignette returns an object of the same class, the print method opens a viewer for
it. Currently, only PDF versions of vignettes can be viewed. The program specified by the
pdfviewer option is used for this. If several vignettes have PDF versions with base name identi-
cal to topic, the first one found is used.

If no topics are given, all available vignettes are listed. The corresponding information is returned
in an object of class "packageIQR".

The edit method extracts the R code from the vignette to a temporary file and opens the file in an
editor (see edit). This makes it very easy to execute the commands line by line, modify them in
any way you want to help you test variants, etc.. An alternative way of extracting the R code from
the vignette is to run Stangle on the source code of the vignette, see the examples below.

Examples

List vignettes from all *attached* packages
vignette(all = FALSE)

List vignettes from all *installed* packages (can take a long time!):
vignette(all = TRUE)

Not run:
Open the grid intro vignette
vignette("grid")

The same
v1 <- vignette("grid")
print(v1)

Now let us have a closer look at the code
edit(v1)

An alternative way of extracting the code,
R file is written to current working directory
Stangle(v1$file)

A package can have more than one vignette (package grid has several):
vignette(package="grid")
vignette("rotated")
The same, but without searching for it:
vignette("rotated", package="grid")
End(Not run)

withVisible Return both a value and its visibility

Description

This function evaluates an expression, returning it in a two element list containing its value and a
flag showing whether it would automatically print.

Usage

withVisible(x)

write.table 1553

Arguments

x An expression to be evaluated.

Details

The argument is evaluated in the caller’s context.

Value

value The value of x after evaluation.

visible logical; whether the value would auto-print.

See Also

invisible, eval

Examples

x <- 1
withVisible(x <- 1)
x
withVisible(x)

Wrap the call in evalq() for special handling

df <- data.frame(a=1:5, b=1:5)
evalq(withVisible(a + b), envir=df)

write.table Data Output

Description

write.table prints its required argument x (after converting it to a data frame if it is not one
nor a matrix) to a file or connection.

Usage

write.table(x, file = "", append = FALSE, quote = TRUE, sep = " ",
eol = "\n", na = "NA", dec = ".", row.names = TRUE,
col.names = TRUE, qmethod = c("escape", "double"))

write.csv(...)
write.csv2(...)

1554 write.table

Arguments

x the object to be written, preferably a matrix or data frame. If not, it is attempted
to coerce x to a data frame.

file either a character string naming a file or a connection open for writing. ""
indicates output to the console.

append logical. Only relevant if file is a character string. If TRUE, the output is
appended to the file. If FALSE, any existing file of the name is destroyed.

quote a logical value (TRUE or FALSE) or a numeric vector. If TRUE, any character
or factor columns will be surrounded by double quotes. If a numeric vector, its
elements are taken as the indices of columns to quote. In both cases, row and
column names are quoted if they are written. If FALSE, nothing is quoted.

sep the field separator string. Values within each row of x are separated by this
string.

eol the character(s) to print at the end of each line (row). For example,
eol="\r\n" will produce Windows’ line endings on a Unix-alike OS, and
eol="\r" will produce files as expected by MacOS Excel 2004.

na the string to use for missing values in the data.

dec the string to use for decimal points in numeric or complex columns: must be a
single character.

row.names either a logical value indicating whether the row names of x are to be written
along with x, or a character vector of row names to be written.

col.names either a logical value indicating whether the column names of x are to be written
along with x, or a character vector of column names to be written. See the
section on ‘CSV files’ for the meaning of col.names = NA.

qmethod a character string specifying how to deal with embedded double quote characters
when quoting strings. Must be one of "escape" (default), in which case the
quote character is escaped in C style by a backslash, or "double", in which
case it is doubled. You can specify just the initial letter.

... arguments to write.table: col.names, sep, dec and qmethod cannot
be altered.

Details

If the table has no columns the rownames will be written only if row.names=TRUE, and vice
versa.

Real and complex numbers are written to the maximal possible precision.

If a data frame has matrix-like columns these will be converted to multiple columns in the result (via
as.matrix) and so a character col.names or a numeric quote should refer to the columns in
the result, not the input. Such matrix-like columns are unquoted by default.

Any columns in a data frame which are lists or have a class (e.g. dates) will be converted by the
appropriate as.character method: such columns are unquoted by default. On the other hand,
any class information for a matrix is discarded and non-atomic (e.g. list) matrices are coerced to
character.

Only columns which have been converted to character will be quoted if specified by quote.

The dec argument only applies to columns that are not subject to conversion to character because
they have a class or are part of a matrix-like column (or matrix), in particular to columns protected
by I(). Use options("OutDec") to control such conversions.

write.table 1555

In almost all cases the conversion of numeric quantities is governed by the option "scipen" (see
options), but with the internal equivalent of digits=15. For finer control, use format to
make a character matrix/data frame, and call write.table on that.

These functions check for a user interrupt every 1000 lines of output.

If file is not open for writing, an attempt is made to open it and then close it after use.

CSV files

By default there is no column name for a column of row names. If col.names = NA and
row.names = TRUE a blank column name is added, which is the convention used for CSV
files to be read by spreadsheets.

write.csv and write.csv2 provide convenience wrappers for writing CSV files. They set
sep, dec and qmethod, and col.names to NA if row.names = TRUE and TRUE otherwise.

write.csv uses "." for the decimal point and a comma for the separator.

write.csv2 uses a comma for the decimal point and a semicolon for the separator, the Excel
convention for CSV files in some Western European locales.

These wrappers are deliberately inflexible: they are designed to ensure that the correct conventions
are used to write a valid file. Attempts to change col.names, sep, dec or qmethod are ignored,
with a warning.

Note

write.table can be slow for data frames with large numbers (hundreds or more) of columns:
this is inevitable as each column could be of a different class and so must be handled separately. If
they are all of the same class, consider using a matrix instead.

See Also

The ‘R Data Import/Export’ manual.

read.table, write.

write.matrix in package MASS.

Examples

Not run:
To write a CSV file for input to Excel one might use
x <- data.frame(a = I("a \" quote"), b = pi)
write.table(x, file = "foo.csv", sep = ",", col.names = NA,

qmethod = "double")
and to read this file back into R one needs
read.table("foo.csv", header = TRUE, sep = ",", row.names = 1)
NB: you do need to specify a separator if qmethod = "double".

Alternatively
write.csv(x, file = "foo.csv")
read.csv("foo.csv", row.names = 1)
or without row names
write.csv(x, file = "foo.csv", row.names = FALSE)
read.csv("foo.csv")
End(Not run)

1556 zip.file.extract

zip.file.extract Extract File from a Zip Archive

Description

This will extract the file named file from the zip archive, if possible, and write it in a temporary
location.

Usage

zip.file.extract(file, zipname = "R.zip",
unzip = getOption("unzip"))

Arguments

file A file name. (If a path is given, see ‘Note’.)

zipname The file name (not path) of a zip archive, including the ".zip" extension if
required.

unzip character string: the method to be used, an empty string indicates
"internal".

Details

All platforms support an "internal" unzip: this is the default under Windows and the fall-back
under Unix if no unzip program was found during configuration and R_UNZIPCMD is not set.

The file will be extracted if it is in the archive and any required unzip utility is available. It will
be extracted to the directory given by tempdir, overwriting any existing file of that name.

Value

The name of the original or extracted file. Success is indicated by returning a different name.

Note

The "internal" method is very simple, and will not set file dates.

This is a helper function for help, example and data. As such, it handles file paths in an
unusual way. Any path component of zipname is ignored, and the path to file is used only to
determine the directory within which to find zipname.

Index

! (Logic), 244
!= (Comparison), 66
∗Topic IO

rcompgen, 1499
∗Topic NA

complete.cases, 1025
factor, 148
NA, 274
na.action, 1186
na.fail, 1188
naprint, 1189
naresid, 1189

∗Topic algebra
backsolve, 33
chol, 57
chol2inv, 59
colSums, 63
crossprod, 83
eigen, 125
matrix, 261
qr, 322
QR.Auxiliaries, 324
solve, 393
svd, 431

∗Topic aplot
abline, 657
arrows, 659
Axis, 662
axis, 663
box, 671
bxp, 675
contour, 681
coplot, 684
filled.contour, 689
frame, 693
grid, 694
Hershey, 601
image, 702
Japanese, 605
legend, 706
lines, 710
matplot, 712
mtext, 718

persp, 730
plot.window, 746
plot.xy, 747
plotmath, 617
points, 748
polygon, 751
rect, 753
rect.hclust, 1285
rug, 755
screen, 756
segments, 758
symbols, 770
text, 773
title, 775
xspline, 777

∗Topic arith
all.equal, 10
approxfun, 981
Arithmetic, 17
colSums, 63
cumsum, 84
diff, 108
Extremes, 146
findInterval, 157
gl, 190
matmult, 260
ppoints, 1247
prod, 319
range, 335
roman, 1519
Round, 362
sign, 388
sort, 395
sum, 429
tabulate, 452

∗Topic array
addmargins, 965
aggregate, 967
aperm, 13
apply, 15
array, 19
backsolve, 33
cbind, 50

1557

1558 INDEX

cbind2, 873
chol, 57
chol2inv, 59
col, 61
colSums, 63
contrast, 1029
cor, 1034
crossprod, 83
data.matrix, 91
det, 104
diag, 107
dim, 111
dimnames, 112
drop, 117
eigen, 125
expand.grid, 136
Extract, 138
Extract.data.frame, 142
isSymmetric, 217
kronecker, 220
lm.fit, 1144
lower.tri, 247
margin.table, 253
mat.or.vec, 254
matmult, 260
matplot, 712
matrix, 261
maxCol, 263
merge, 268
nrow, 282
outer, 302
prop.table, 320
qr, 322
QR.Auxiliaries, 324
row, 364
row/colnames, 366
scale, 372
slice.index, 391
svd, 431
sweep, 432
t, 449

∗Topic attribute
attr, 30
attributes, 31
call, 45
comment, 65
length, 225
mode, 272
name, 275
names, 276
NULL, 287
numeric, 287

structure, 422
typeof, 475
which, 490

∗Topic category
aggregate, 967
by, 43
cut, 85
Extract.factor, 145
factor, 148
ftable, 1092
ftable.formula, 1094
gl, 190
interaction, 206
levels, 226
loglin, 1155
nlevels, 280
plot.table, 745
read.ftable, 1283
split, 402
table, 450
tapply, 453
xtabs, 1394

∗Topic character
abbreviate, 6
agrep, 7
char.expand, 52
character, 53
charmatch, 54
chartr, 55
delimMatch, 1404
Encoding, 128
format, 163
format.info, 168
formatC, 170
gettext, 188
glob2rx, 1463
grep, 191
iconv, 199
make.names, 249
make.unique, 250
nchar, 278
paste, 306
pmatch, 307
regex, 352
sprintf, 404
sQuote, 407
strsplit, 419
strtrim, 421
strwidth, 767
strwrap, 423
substr, 427
symnum, 1355

INDEX 1559

utf8Conversion, 484
∗Topic chron

as.POSIX*, 23
axis.POSIXct, 665
cut.POSIXt, 87
Dates, 93
DateTimeClasses, 94
difftime, 109
format.Date, 166
hist.POSIXt, 698
Ops.Date, 293
rep, 357
round.POSIXt, 363
seq.Date, 381
seq.POSIXt, 382
strptime, 415
Sys.time, 444
timezones, 463
weekdays, 489

∗Topic classes
as, 864
as.data.frame, 20
BasicClasses, 868
callGeneric, 869
callNextMethod, 871
canCoerce, 873
character, 53
class, 60
Classes, 875
classRepresentation-class,

878
data.class, 88
data.frame, 89
Documentation, 879
dotsMethods, 881
double, 114
environment-class, 883
findClass, 884
findMethods, 886
fixPre1.8, 887
genericFunction-class, 888
GenericFunctions, 889
getClass, 893
getMethod, 894
integer, 205
is, 901
is.object, 212
is.recursive, 214
is.single, 215
isSealedMethod, 906
language-class, 907
LinearMethodsList-class, 908

logical, 246
makeClassRepresentation, 909
MethodDefinition-class, 911
Methods, 912
MethodsList-class, 916
MethodWithNext-class, 917
new, 918
numeric, 287
ObjectsWithPackage-class, 920
promptClass, 921
raw, 339
rawConversion, 341
real, 350
representation, 923
row.names, 365
S3, 925
SClassExtension-class, 930
setClass, 931
setClassUnion, 934
setMethod, 940
signature-class, 951
slot, 952
StructureClasses, 954
TraceClasses, 955
validObject, 956
vector, 485

∗Topic cluster
as.hclust, 998
cophenetic, 1033
cutree, 1041
dist, 1057
hclust, 1106
identify.hclust, 1116
kmeans, 1131
rect.hclust, 1285

∗Topic color
col2rgb, 578
colorRamp, 579
colors, 581
convertColor, 583
gray, 597
gray.colors, 598
hcl, 599
hsv, 604
make.rgb, 606
palette, 609
Palettes, 610
rgb, 639
rgb2hsv, 640

∗Topic complex
complex, 68

∗Topic connection

1560 INDEX

cat, 48
connections, 73
dput, 116
dump, 118
gzcon, 196
parse, 304
pushBack, 321
rawConnection, 340
read.00Index, 1415
read.DIF, 1504
read.fortran, 1506
read.fwf, 1507
read.table, 1509
readBin, 343
readChar, 346
readLines, 349
scan, 373
seek, 377
showConnections, 386
sink, 389
socketSelect, 393
source, 397
textConnection, 460
write, 494
writeLines, 495

∗Topic datagen
simulate, 1305

∗Topic datasets
ability.cov, 499
airmiles, 500
AirPassengers, 501
airquality, 502
anscombe, 503
attenu, 504
attitude, 505
austres, 506
beavers, 506
BJsales, 507
BOD, 508
cars, 509
charsets, 1398
ChickWeight, 510
chickwts, 511
CO2, 512
co2, 513
crimtab, 513
data, 1443
discoveries, 515
DNase, 516
esoph, 517
euro, 518
eurodist, 519

EuStockMarkets, 519
faithful, 520
Formaldehyde, 521
freeny, 522
HairEyeColor, 523
Harman23.cor, 524
Harman74.cor, 524
Indometh, 525
infert, 526
InsectSprays, 527
iris, 527
islands, 529
JohnsonJohnson, 529
LakeHuron, 530
lh, 530
LifeCycleSavings, 531
Loblolly, 532
longley, 532
lynx, 533
morley, 534
mtcars, 535
nhtemp, 535
Nile, 536
nottem, 537
occupationalStatus, 538
Orange, 539
OrchardSprays, 540
PlantGrowth, 541
precip, 541
presidents, 542
pressure, 543
Puromycin, 543
quakes, 545
randu, 545
rivers, 546
rock, 547
sleep, 547
stackloss, 548
state, 549
sunspot.month, 550
sunspot.year, 551
sunspots, 551
swiss, 552
Theoph, 553
Titanic, 554
ToothGrowth, 555
treering, 556
trees, 557
UCBAdmissions, 558
UKDriverDeaths, 559
UKgas, 560
UKLungDeaths, 561

INDEX 1561

USAccDeaths, 561
USArrests, 562
USJudgeRatings, 562
USPersonalExpenditure, 563
uspop, 564
VADeaths, 564
volcano, 565
warpbreaks, 566
women, 567
WorldPhones, 567
WWWusage, 568

∗Topic data
apropos, 1426
as.environment, 21
assign, 26
assignOps, 27
attach, 28
autoload, 32
bquote, 40
delayedAssign, 100
deparse, 101
detach, 105
environment, 129
eval, 132
exists, 135
force, 158
get, 180
getAnywhere, 1460
getFromNamespace, 1461
getS3method, 1463
libPaths, 228
library, 229
library.dynam, 233
ns-load, 285
search, 377
substitute, 425
sys.parent, 439
with, 492
zpackages, 496

∗Topic debugging
recover, 1513
srcfile, 409
trace, 465

∗Topic design
contrast, 1029
contrasts, 1030
TukeyHSD, 1375

∗Topic device
.Device, 1
cairo, 574
dev.interactive, 585
dev.xxx, 586

dev2, 588
Devices, 592
embedFonts, 593
grDevices-package, 571
pdf, 611
pdf.options, 615
pictex, 616
png, 621
postscript, 624
postscriptFonts, 630
ps.options, 632
quartz, 634
quartzFonts, 636
recordGraphics, 637
screen, 756
Type1Font, 643
x11, 645
X11Fonts, 648
xfig, 649

∗Topic distribution
bandwidth, 1000
Beta, 1003
Binomial, 1006
birthday, 1011
Cauchy, 1016
chisq.test, 1017
Chisquare, 1020
density, 1049
Exponential, 1068
FDist, 1078
fivenum, 1085
GammaDist, 1095
Geometric, 1098
hist, 695
Hypergeometric, 1115
IQR, 1124
Logistic, 1153
Lognormal, 1157
Multinomial, 1185
NegBinomial, 1190
Normal, 1207
Poisson, 1238
ppoints, 1247
qqnorm, 1277
r2dtable, 1282
Random, 330
Random.user, 334
sample, 368
SignRank, 1304
stem, 764
TDist, 1359
Tukey, 1374

1562 INDEX

Uniform, 1377
Weibull, 1384
Wilcoxon, 1390

∗Topic documentation
apropos, 1426
args, 16
browseVignettes, 1431
buildVignettes, 1397
checkTnF, 1401
checkVignettes, 1402
codoc, 1403
data, 1443
Defunct, 99
demo, 1449
Deprecated, 104
Documentation, 879
example, 1455
help, 1466
help.search, 1471
help.start, 1473
NotYet, 282
NumericConstants, 289
prompt, 1495
promptData, 1497
promptPackage, 1498
QC, 1412
Quotes, 327
Rdindex, 1413
Rdutils, 1414
readNEWS, 1416
Reserved, 360
RShowDoc, 1523
RSiteSearch, 1524
str, 1534
Syntax, 435
tools-package, 1397
undoc, 1419
vignette, 1551

∗Topic dplot
absolute.size, 782
approxfun, 981
arrow, 783
axTicks, 667
boxplot.stats, 572
clip, 680
cm, 577
col2rgb, 578
colors, 581
contourLines, 582
convertNative, 783
convertXY, 683
convolve, 1031

dataViewport, 784
dev.size, 586
devAskNewPage, 592
drawDetails, 785
ecdf, 1061
editDetails, 786
expression, 137
extendrange, 594
fft, 1079
gEdit, 787
getNames, 788
gpar, 788
gPath, 790
Grid, 791
Grid Viewports, 792
grid.add, 795
grid.arrows, 796
grid.circle, 799
grid.clip, 800
grid.collection, 801
grid.convert, 802
grid.copy, 804
grid.curve, 805
grid.display.list, 807
grid.draw, 808
grid.edit, 809
grid.frame, 810
grid.get, 811
grid.grab, 812
grid.grill, 813
grid.grob, 814
grid.layout, 816
grid.lines, 817
grid.locator, 819
grid.ls, 820
grid.move.to, 822
grid.newpage, 824
grid.null, 824
grid.pack, 825
grid.place, 827
grid.plot.and.legend, 828
grid.points, 828
grid.polygon, 829
grid.pretty, 831
grid.prompt, 831
grid.record, 832
grid.rect, 833
grid.refresh, 834
grid.remove, 834
grid.segments, 835
grid.set, 837
grid.show.layout, 838

INDEX 1563

grid.show.viewport, 839
grid.text, 840
grid.xaxis, 842
grid.xspline, 843
grid.yaxis, 846
grobName, 847
grobWidth, 847
grobX, 848
hcl, 599
hist, 695
hist.POSIXt, 698
hsv, 604
jitter, 218
layout, 704
n2mfrow, 607
Palettes, 610
panel.smooth, 722
par, 723
plot.density, 1226
plotViewport, 849
pop.viewport, 849
ppoints, 1247
pretty, 310
push.viewport, 850
Querying the Viewport Tree,

851
rgb2hsv, 640
screen, 756
splinefun, 1319
stepfun, 1337
stringWidth, 852
strwidth, 767
trans3d, 643
unit, 852
unit.c, 854
unit.length, 855
unit.pmin, 856
unit.rep, 856
units, 776
validDetails, 857
vpPath, 858
widthDetails, 859
Working with Viewports, 859
xDetails, 862
xy.coords, 651
xyTable, 653
xyz.coords, 654

∗Topic environment
apropos, 1426
as.environment, 21
browser, 41
commandArgs, 64

debug, 98
eapply, 124
gc, 177
gctorture, 179
interactive, 207
is.R, 213
layout, 704
ls, 247
Memory, 265
Memory-limits, 267
options, 294
par, 723
quit, 325
R.Version, 329
reg.finalizer, 351
remove, 356
Startup, 410
stop, 413
stopifnot, 414
Sys.getenv, 436
Sys.setenv, 441
taskCallback, 455
taskCallbackManager, 457
taskCallbackNames, 458

∗Topic error
bug.report, 1432
conditions, 69
debugger, 1447
help.request, 1469
options, 294
stop, 413
stopifnot, 414
warning, 486
warnings, 488

∗Topic file
.Platform, 4
basename, 35
browseURL, 1430
cat, 48
connections, 73
count.fields, 1442
dataentry, 1445
dcf, 97
dput, 116
dump, 118
file.access, 150
file.choose, 152
file.info, 152
file.path, 153
file.show, 154
file_test, 1457
files, 155

1564 INDEX

fileutils, 1406
glob2rx, 1463
gzcon, 196
list.files, 237
load, 238
package.skeleton, 1489
parse, 304
path.expand, 307
rawConnection, 340
read.00Index, 1415
read.DIF, 1504
read.fortran, 1506
read.fwf, 1507
read.table, 1509
readBin, 343
readChar, 346
readLines, 349
readNEWS, 1416
save, 370
scan, 373
seek, 377
sink, 389
source, 397
Sys.glob, 437
sys.source, 443
system, 446
system.file, 447
tempfile, 459
textConnection, 460
unlink, 477
url.show, 1548
write, 494
write.table, 1553
write_PACKAGES, 1421
writeLines, 495
zip.file.extract, 1556

∗Topic graphs
chull, 576

∗Topic hplot
assocplot, 660
barplot, 668
biplot, 1008
biplot.princomp, 1009
boxplot, 672
cdplot, 678
contour, 681
coplot, 684
cpgram, 1040
curve, 687
dendrogram, 1046
dotchart, 688
ecdf, 1061

filled.contour, 689
fourfoldplot, 692
heatmap, 1109
hist, 695
hist.POSIXt, 698
image, 702
interaction.plot, 1122
lag.plot, 1139
matplot, 712
monthplot, 1182
mosaicplot, 715
pairs, 719
panel.smooth, 722
persp, 730
pie, 733
plot, 735
plot.acf, 1225
plot.data.frame, 737
plot.default, 738
plot.design, 740
plot.factor, 742
plot.formula, 742
plot.histogram, 744
plot.isoreg, 1228
plot.lm, 1229
plot.ppr, 1232
plot.spec, 1234
plot.stepfun, 1235
plot.table, 745
plot.ts, 1237
qqnorm, 1277
spineplot, 759
stars, 761
stripchart, 765
sunflowerplot, 768
symbols, 770
termplot, 1361

∗Topic htest
ansari.test, 977
bartlett.test, 1002
binom.test, 1005
chisq.test, 1017
cor.test, 1036
fisher.test, 1082
fligner.test, 1086
friedman.test, 1090
kruskal.test, 1133
ks.test, 1135
mantelhaen.test, 1168
mauchly.test, 1170
mcnemar.test, 1172
mood.test, 1184

INDEX 1565

oneway.test, 1210
p.adjust, 1220
pairwise.prop.test, 1222
pairwise.t.test, 1222
pairwise.table, 1223
pairwise.wilcox.test, 1224
power.anova.test, 1242
power.prop.test, 1243
power.t.test, 1245
print.power.htest, 1268
prop.test, 1274
prop.trend.test, 1276
quade.test, 1278
shapiro.test, 1303
t.test, 1357
var.test, 1381
wilcox.test, 1387

∗Topic interface
.Script, 5
browseEnv, 1428
dyn.load, 121
getDLLRegisteredRoutines, 181
getLoadedDLLs, 183
getNativeSymbolInfo, 184
getNumCConverters, 186
Internal, 208
Primitive, 312
system, 446

∗Topic iplot
dev.xxx, 586
frame, 693
getGraphicsEvent, 595
identify, 700
identify.hclust, 1116
layout, 704
locator, 711
par, 723
plot.histogram, 744
recordPlot, 638

∗Topic iteration
apply, 15
by, 43
combn, 1439
Control, 81
dendrapply, 1044
eapply, 124
identical, 202
lapply, 223
rapply, 338
sweep, 432
tapply, 453

∗Topic list

clearNames, 1022
eapply, 124
Extract, 138
lapply, 223
list, 235
NULL, 287
rapply, 338
relist, 1515
setNames, 1302
unlist, 478

∗Topic loess
loess, 1150
loess.control, 1152

∗Topic logic
all, 9
all.equal, 10
any, 12
Comparison, 66
complete.cases, 1025
Control, 81
duplicated, 120
identical, 202
ifelse, 204
Logic, 244
logical, 246
match, 254
NA, 274
unique, 476
which, 490

∗Topic manip
addmargins, 965
append, 14
c, 44
cbind, 50
cbind2, 873
Colon, 62
cut.POSIXt, 87
deparse, 101
dimnames, 112
duplicated, 120
expand.model.frame, 1067
getInitial, 1099
head, 1464
list, 235
mapply, 251
match, 254
merge, 268
model.extract, 1176
NA, 274
NLSstAsymptotic, 1204
NLSstClosestX, 1204
NLSstLfAsymptote, 1205

1566 INDEX

NLSstRtAsymptote, 1206
NULL, 287
order, 300
order.dendrogram, 1219
relist, 1515
reorder.dendrogram, 1286
rep, 357
replace, 359
reshape, 1290
rev, 360
rle, 361
row/colnames, 366
rowsum, 367
seq, 379
seq.Date, 381
seq.POSIXt, 382
sequence, 383
slotOp, 392
sort, 395
sortedXyData, 1313
stack, 1533
structure, 422
subset, 424
transform, 471
type.convert, 1543
unique, 476
unlist, 478
xtfrm, 496

∗Topic math
.Machine, 2
Bessel, 36
convolve, 1031
deriv, 1052
fft, 1079
Hyperbolic, 198
integrate, 1120
is.finite, 209
kappa, 219
log, 242
Math, 259
nextn, 1192
poly, 1240
polyroot, 309
Special, 399
splinefun, 1319
Trig, 472

∗Topic methods
.BasicFunsList, 864
as, 864
as.data.frame, 20
callGeneric, 869
callNextMethod, 871

canCoerce, 873
class, 60
Classes, 875
data.class, 88
data.frame, 89
Documentation, 879
dotsMethods, 881
findClass, 884
findMethods, 886
GenericFunctions, 889
getMethod, 894
groupGeneric, 194
implicitGeneric, 898
initialize-methods, 900
InternalMethods, 208
is, 901
is.object, 212
isSealedMethod, 906
method.skeleton, 910
Methods, 912
methods, 1484
methods-package, 863
MethodsList-class, 916
na.action, 1186
noquote, 281
plot.data.frame, 737
predict, 1253
promptMethods, 922
row.names, 365
S4groupGeneric, 928
setClass, 931
setGeneric, 935
setMethod, 940
setOldClass, 944
showMethods, 949
summary, 430
UseMethod, 480

∗Topic misc
base-deprecated, 34
citation, 1436
citEntry, 1437
close.socket, 1439
contributors, 81
copyright, 82
license, 235
make.socket, 1481
mirrorAdmin, 1485
person, 1493
read.socket, 1508
sessionInfo, 1531
sets, 384
stats-deprecated, 1335

INDEX 1567

toLatex, 1541
tools-deprecated, 1418
url.show, 1548
utils-deprecated, 1550

∗Topic models
add1, 963
AIC, 969
alias, 970
anova, 971
anova.glm, 972
anova.lm, 974
anova.mlm, 975
aov, 980
AsIs, 25
asOneSidedFormula, 999
C, 1013
case/variable.names, 1015
coef, 1024
confint, 1026
deviance, 1055
df.residual, 1056
dummy.coef, 1060
eff.aovlist, 1064
effects, 1065
expand.grid, 136
extractAIC, 1069
factor.scope, 1073
family, 1074
fitted, 1084
formula, 1088
formula.nls, 1090
getInitial, 1099
glm, 1100
glm.control, 1104
glm.summaries, 1105
is.empty.model, 1125
labels, 222
lm.summaries, 1147
logLik, 1154
loglin, 1155
make.link, 1165
makepredictcall, 1166
manova, 1167
mauchly.test, 1170
model.extract, 1176
model.frame, 1177
model.matrix, 1179
model.tables, 1180
naprint, 1189
naresid, 1189
nls, 1197
nls.control, 1202

numericDeriv, 1209
offset, 1210
plot.profile.nls, 1233
power, 1241
predict.glm, 1255
predict.nls, 1262
preplot, 1265
profile, 1271
profile.nls, 1271
proj, 1272
relevel, 1286
replications, 1289
residuals, 1292
se.contrast, 1298
selfStart, 1300
simulate, 1305
SSasymp, 1322
SSasympOff, 1323
SSasympOrig, 1324
SSbiexp, 1325
SSD, 1326
SSfol, 1327
SSfpl, 1328
SSgompertz, 1329
SSlogis, 1330
SSmicmen, 1331
SSweibull, 1332
stat.anova, 1334
step, 1335
summary.aov, 1344
summary.glm, 1346
summary.lm, 1348
summary.manova, 1350
summary.nls, 1351
terms, 1363
terms.formula, 1364
terms.object, 1365
tilde, 462
TukeyHSD, 1375
update, 1379
update.formula, 1380
vcov, 1384

∗Topic multivariate
anova.mlm, 975
as.hclust, 998
biplot, 1008
biplot.princomp, 1009
cancor, 1014
cmdscale, 1023
cophenetic, 1033
cor, 1034
cov.wt, 1039

1568 INDEX

cutree, 1041
dendrogram, 1046
dist, 1057
factanal, 1070
hclust, 1106
kmeans, 1131
loadings, 1149
mahalanobis, 1164
mauchly.test, 1170
prcomp, 1251
princomp, 1265
screeplot, 1297
SSD, 1326
stars, 761
summary.princomp, 1353
symbols, 770
varimax, 1383

∗Topic nonlinear
deriv, 1052
getInitial, 1099
nlm, 1193
nls, 1197
nls.control, 1202
optim, 1212
plot.profile.nls, 1233
predict.nls, 1262
profile.nls, 1271
vcov, 1384

∗Topic nonparametric
sunflowerplot, 768

∗Topic optimize
constrOptim, 1027
glm.control, 1104
nlm, 1193
nlminb, 1195
optim, 1212
optimize, 1217
uniroot, 1378

∗Topic package
base-package, 1
datasets-package, 499
graphics-package, 657
grDevices-package, 571
grid-package, 781
methods-package, 863
stats-package, 959
tools-package, 1397
utils-package, 1425

∗Topic print
cat, 48
dcf, 97
format, 163, 1459

format.info, 168
format.pval, 169
formatC, 170
formatDL, 172
hexmode, 198
labels, 222
loadings, 1149
ls.str, 1479
noquote, 281
octmode, 291
options, 294
plot.isoreg, 1228
print, 312
print.data.frame, 314
print.default, 315
printCoefmat, 1269
prmatrix, 317
sprintf, 404
str, 1534
write.table, 1553

∗Topic programming
.BasicFunsList, 864
.Machine, 2
all.equal, 10
all.names, 11
as, 864
as.function, 22
autoload, 32
body, 39
bquote, 40
browser, 41
call, 45
callCC, 46
callGeneric, 869
callNextMethod, 871
check.options, 575
checkFF, 1399
Classes, 875
commandArgs, 64
conditions, 69
Control, 81
debug, 98
delayedAssign, 100
delete.response, 1043
deparse, 101
deparseOpts, 102
do.call, 113
Documentation, 879
dotsMethods, 881
dput, 116
environment, 129
eval, 132

INDEX 1569

expression, 137
findClass, 884
findMethods, 886
fixPre1.8, 887
force, 158
Foreign, 159
formals, 162
format.info, 168
function, 174
funprog, 175
GenericFunctions, 889
getClass, 893
getMethod, 894
getNumCConverters, 186
getPackageName, 896
hasArg, 897
identical, 202
identity, 204
ifelse, 204
implicitGeneric, 898
initialize-methods, 900
interactive, 207
invisible, 209
is, 901
is.finite, 209
is.function, 211
is.language, 212
is.recursive, 214
isS4, 216
isSealedMethod, 906
Last.value, 225
makeClassRepresentation, 909
match.arg, 256
match.call, 257
match.fun, 258
menu, 1483
message, 270
method.skeleton, 910
Methods, 912
missing, 271
model.extract, 1176
name, 275
nargs, 278
new, 918
ns-dblcolon, 283
ns-topenv, 286
on.exit, 292
Paren, 303
parse, 304
promptClass, 921
promptMethods, 922
R.Version, 329

Recall, 351
recover, 1513
reg.finalizer, 351
representation, 923
Reserved, 360
S3, 925
setClass, 931
setClassUnion, 934
setGeneric, 935
setMethod, 940
setOldClass, 944
show, 948
slot, 952
source, 397
stop, 413
stopifnot, 414
substitute, 425
switch, 434
Syntax, 435
sys.parent, 439
tools-package, 1397
trace, 465
traceback, 469
try, 474
utils-package, 1425
validObject, 956
warning, 486
warnings, 488
with, 492
withVisible, 1552

∗Topic regression
anova, 971
anova.glm, 972
anova.lm, 974
anova.mlm, 975
aov, 980
case/variable.names, 1015
coef, 1024
contrast, 1029
contrasts, 1030
df.residual, 1056
effects, 1065
expand.model.frame, 1067
fitted, 1084
glm, 1100
glm.summaries, 1105
influence.measures, 1117
isoreg, 1126
line, 1140
lm, 1141
lm.fit, 1144
lm.influence, 1146

1570 INDEX

lm.summaries, 1147
ls.diag, 1160
ls.print, 1161
lsfit, 1162
nls, 1197
nls.control, 1202
plot.lm, 1229
plot.profile.nls, 1233
ppr, 1248
predict.glm, 1255
predict.lm, 1258
predict.nls, 1262
profile.nls, 1271
residuals, 1292
stat.anova, 1334
summary.aov, 1344
summary.glm, 1346
summary.lm, 1348
summary.nls, 1351
termplot, 1361
weighted.residuals, 1386

∗Topic robust
fivenum, 1085
IQR, 1124
line, 1140
mad, 1163
median, 1173
medpolish, 1174
runmed, 1293
smooth, 1306
smoothEnds, 1311

∗Topic smooth
bandwidth, 1000
density, 1049
isoreg, 1126
ksmooth, 1137
loess, 1150
loess.control, 1152
lowess, 1159
predict.loess, 1260
predict.smooth.spline, 1263
runmed, 1293
scatter.smooth, 1295
smooth, 1306
smooth.spline, 1308
smoothEnds, 1311
sunflowerplot, 768
supsmu, 1354

∗Topic sysdata
.Machine, 2
colors, 581
commandArgs, 64

Constants, 80
NULL, 287
palette, 609
R.Version, 329
Random, 330
Random.user, 334

∗Topic tree
dendrogram, 1046

∗Topic ts
acf, 960
acf2AR, 962
ar, 983
ar.ols, 986
arima, 988
arima.sim, 991
arima0, 993
ARMAacf, 996
ARMAtoMA, 997
Box.test, 1012
cpgram, 1040
decompose, 1042
diffinv, 1056
embed, 1066
filter, 1080
HoltWinters, 1112
KalmanLike, 1127
kernapply, 1129
kernel, 1130
lag, 1138
lag.plot, 1139
monthplot, 1182
na.contiguous, 1187
plot.acf, 1225
plot.HoltWinters, 1227
plot.spec, 1234
plot.ts, 1237
PP.test, 1246
predict.Arima, 1254
predict.HoltWinters, 1257
print.ts, 1268
spec.ar, 1313
spec.pgram, 1315
spec.taper, 1317
spectrum, 1318
start, 1333
stl, 1339
stlmethods, 1341
StructTS, 1342
time, 1366
toeplitz, 1367
ts, 1368
ts-methods, 1369

INDEX 1571

ts.plot, 1370
ts.union, 1371
tsdiag, 1372
tsp, 1373
tsSmooth, 1373
window, 1392

∗Topic univar
ave, 999
cor, 1034
Extremes, 146
fivenum, 1085
IQR, 1124
is.unsorted, 215
mad, 1163
mean, 264
median, 1173
nclass, 608
order, 300
quantile, 1280
range, 335
rank, 336
sd, 1298
sort, 395
stem, 764
weighted.mean, 1386
xtfrm, 496

∗Topic utilities
.Platform, 4
.checkMFClasses, 959
alarm, 1425
all.equal, 10
as.graphicsAnnot, 571
as.POSIX*, 23
axis.POSIXct, 665
BATCH, 1427
bindenv, 38
bug.report, 1432
buildVignettes, 1397
builtins, 42
capabilities, 47
capture.output, 1434
check.options, 575
checkFF, 1399
checkMD5sums, 1400
checkTnF, 1401
checkVignettes, 1402
chooseCRANmirror, 1435
combn, 1439
compareVersion, 1441
COMPILE, 1441
conflicts, 73
Cstack_info, 84

dataentry, 1445
date, 92
Dates, 93
DateTimeClasses, 94
debugger, 1447
Defunct, 99
demo, 1449
Deprecated, 104
dev2bitmap, 590
difftime, 109
download.file, 1450
edit, 1452
edit.data.frame, 1453
encoded_text_to_latex, 1405
encodeString, 126
Encoding, 128
EnvVar, 131
example, 1455
file.edit, 1457
findInterval, 157
fix, 1458
flush.console, 1459
format.Date, 166
gc.time, 178
getDepList, 1408
getpid, 187
gettext, 188
getwd, 189
glob2rx, 1463
grep, 191
help.request, 1469
iconv, 199
icuSetCollate, 201
index.search, 1474
INSTALL, 1475
installed.packages, 1476
installFoundDepends, 1409
integrate, 1120
is.R, 213
isSymmetric, 217
jitter, 218
l10n_info, 222
LINK, 1477
localeconv, 240
locales, 241
localeToCharset, 1478
ls.str, 1479
make.packages.html, 1480
makeLazyLoading, 1410
manglePackageName, 251
mapply, 251
maxCol, 263

1572 INDEX

md5sum, 1411
memory.profile, 267
memory.size, 1482
menu, 1483
modifyList, 1486
n2mfrow, 607
noquote, 281
normalizePath, 1486
NotYet, 282
ns-hooks, 284
ns-load, 285
nsl, 1487
numeric_version, 290
object.size, 1488
Ops.Date, 293
package.dependencies, 1411
package.skeleton, 1489
packageDescription, 1490
packageStatus, 1491
page, 1493
PkgUtils, 1494
pos.to.env, 310
proc.time, 318
QC, 1412
R.home, 328
rcompgen, 1499
Rdindex, 1413
RdUtils, 342
Rdutils, 1414
readline, 348
relevel, 1286
REMOVE, 1517
remove.packages, 1518
reorder.factor, 1287
RHOME, 1518
Rprof, 1519
Rprofmem, 1521
Rscript, 1522
RSiteSearch, 1524
Rtangle, 1525
RweaveLatex, 1526
savehistory, 1528
savePlot, 642
select.list, 1530
setRepositories, 1531
setTimeLimit, 385
SHLIB, 1532
showNonASCII, 1417
shQuote, 387
Signals, 389
srcfile, 409
str, 1534

strptime, 415
strtrim, 421
summaryRprof, 1537
Sweave, 1538
SweaveSyntConv, 1540
symnum, 1355
Sys.getenv, 436
Sys.glob, 437
Sys.info, 438
Sys.setenv, 441
Sys.sleep, 442
sys.source, 443
Sys.time, 444
Sys.which, 445
system, 446
system.file, 447
system.time, 448
texi2dvi, 1418
timezones, 463
toString, 464
tracemem, 470
txtProgressBar, 1542
unname, 480
update.packages, 1544
URLencode, 1549
UserHooks, 483
utf8Conversion, 484
View, 1550
vignetteDepends, 1420
which.min, 491
write_PACKAGES, 1421
xgettext, 1422
zutils, 497

’ (Quotes), 327
* (Arithmetic), 17
** (Arithmetic), 17
*.difftime (difftime), 109
+ (Arithmetic), 17
+.Date (Ops.Date), 293
+.POSIXt (DateTimeClasses), 94
- (Arithmetic), 17
-.Date (Ops.Date), 293
-.POSIXt (DateTimeClasses), 94
-> (assignOps), 27
->> (assignOps), 27
.AutoloadEnv (autoload), 32
.Autoloaded (autoload), 32
.BaseNamespaceEnv (environment),

129
.BasicFunsList, 864
.C, 115, 122, 124, 181, 184–187, 1400
.C (Foreign), 159

INDEX 1573

.Call, 122, 124, 181, 184–186, 469

.Call (Foreign), 159

.Class (UseMethod), 480

.Defunct (Defunct), 99

.Deprecated (Deprecated), 104

.Device, 1, 585, 635

.Devices (.Device), 1

.External, 122, 124, 181, 184–186, 208

.External (Foreign), 159

.First, 207, 326

.First (Startup), 410

.First.lib, 124, 234, 235, 284

.First.lib (library), 229

.Fortran, 115, 122–124, 181, 184–186,
1400

.Fortran (Foreign), 159

.Generic (UseMethod), 480

.GlobalEnv, 377, 426, 439

.GlobalEnv (environment), 129

.Group (groupGeneric), 194

.InitTraceFunctions
(TraceClasses), 955

.Internal, 42, 312, 482

.Internal (Internal), 208

.Last, 389, 411, 412, 1529

.Last (quit), 325

.Last.lib, 234, 285

.Last.lib (library), 229

.Last.value (Last.value), 225

.Library (libPaths), 228

.MFclass, 1365

.MFclass (.checkMFClasses), 959

.Machine, 2, 4, 345, 1217

.Method (UseMethod), 480

.NotYetImplemented (NotYet), 282

.NotYetUsed (NotYet), 282

.OldClassesList (setOldClass), 944

.OptRequireMethods (Startup), 410

.Options (options), 294

.Pars (par), 723

.Platform, 3, 4, 48, 330, 439, 447, 1407

.Primitive, 208, 303

.Primitive (Primitive), 312

.Random.seed, 1208, 1305, 1378

.Random.seed (Random), 330

.Renviron (Startup), 410

.Rprofile, 295

.Rprofile (Startup), 410

.S3PrimitiveGenerics
(InternalMethods), 208

.Script, 5

.Traceback (traceback), 469

.__H__.cbind (cbind), 50

.__H__.rbind (cbind), 50

.checkMFClasses, 959

.decode_numeric_version
(numeric_version), 290

.deparseOpts, 101, 116, 118, 1452

.deparseOpts (deparseOpts), 102

.doTrace (trace), 465

.doTracePrint (TraceClasses), 955

.dynLibs (library.dynam), 233

.encode_numeric_version
(numeric_version), 290

.expand_R_libs_env_var
(libPaths), 228

.getXlevels (.checkMFClasses), 959

.handleSimpleError (conditions),
69

.isOpen (srcfile), 409

.leap.seconds (DateTimeClasses),
94

.libPaths, 131, 232, 235, 497, 1444, 1518,
1545

.libPaths (libPaths), 228

.makeMessage (message), 270

.makeTracedFunction
(TraceClasses), 955

.make_numeric_version
(numeric_version), 290

.noGenerics (library), 229

.onAttach, 286

.onAttach (ns-hooks), 284

.onLoad, 231, 234, 286

.onLoad (ns-hooks), 284

.onUnload, 234, 286

.onUnload (ns-hooks), 284

.packageStartupMessage (message),
270

.packages, 232, 235, 377, 1548

.packages (zpackages), 496

.primTrace (trace), 465

.primUntrace (trace), 465

.ps.prolog (postscript), 624

.row_names_info, 366

.setOldIs (setOldClass), 944

.signalSimpleWarning
(conditions), 69

.slotNames (slot), 952

.standard_regexps (zutils), 497

.untracedFunction (TraceClasses),
955

.userHooksEnv (UserHooks), 483
/ (Arithmetic), 17

1574 INDEX

/.difftime (difftime), 109
:, 207, 380
: (Colon), 62
:: (ns-dblcolon), 283
:::, 1462
::: (ns-dblcolon), 283
< (Comparison), 66
<-, 27
<- (assignOps), 27
<-class (language-class), 907
<= (Comparison), 66
<<-, 29
<<- (assignOps), 27
= (assignOps), 27
==, 11
== (Comparison), 66
> (Comparison), 66
>= (Comparison), 66
?, 1472
? (help), 1466
??, 1469
?? (help.search), 1471
[, 118, 143, 208, 291, 425, 1130
[(Extract), 138
[.AsIs (AsIs), 25
[.Date (Dates), 93
[.POSIXct (DateTimeClasses), 94
[.POSIXlt (DateTimeClasses), 94
[.acf (acf), 960
[.data.frame, 91, 139, 141, 1177
[.data.frame

(Extract.data.frame), 142
[.difftime (difftime), 109
[.factor, 139, 141, 149, 150
[.factor (Extract.factor), 145
[.formula (formula), 1088
[.getAnywhere (getAnywhere), 1460
[.hexmode (hexmode), 198
[.noquote (noquote), 281
[.numeric_version

(numeric_version), 290
[.octmode (octmode), 291
[.simple.list (Extract), 138
[.terms (delete.response), 1043
[.ts (ts), 1368
[<-, 208
[<- (Extract), 138
[<-.Date (Dates), 93
[<-.POSIXct (DateTimeClasses), 94
[<-.POSIXlt (DateTimeClasses), 94
[<-.data.frame

(Extract.data.frame), 142

[<-.factor (Extract.factor), 145
[[, 208, 1048
[[(Extract), 138
[[.Date (Dates), 93
[[.POSIXct (DateTimeClasses), 94
[[.data.frame

(Extract.data.frame), 142
[[.dendrogram (dendrogram), 1046
[[.factor (Extract.factor), 145
[[.numeric_version

(numeric_version), 290
[[<-, 208
[[<- (Extract), 138
[[<-.data.frame

(Extract.data.frame), 142
[[<-.numeric_version

(numeric_version), 290
$, 208
$ (Extract), 138
$.DLLInfo (getLoadedDLLs), 183
$.package_version

(numeric_version), 290
$<-, 208
$<- (Extract), 138
$<-.data.frame

(Extract.data.frame), 142
%*%, 19, 83, 221, 303
%*% (matmult), 260
%/% (Arithmetic), 17
%% (Arithmetic), 17
%in%, 384
%in% (match), 254
%o%, 83
%o% (outer), 302
%x% (kronecker), 220
& (Logic), 244
&& (Logic), 244
__ClassMetaData (Classes), 875
^ (Arithmetic), 17
~ (tilde), 462
‘ (Quotes), 327
| (Logic), 244

abbreviate, 6, 1356
ability.cov, 499, 1073
abline, 657, 695, 711, 723, 752
abs, 389
abs (Math), 259
absolute.size, 782, 859
acf, 960, 1226
acf2AR, 962, 986, 997
acos, 199
acos (Trig), 472

INDEX 1575

acosh (Hyperbolic), 198
adapt, 1122
add.scope (factor.scope), 1073
add1, 963, 972, 1070, 1074, 1336, 1337
addGrob, 791, 796, 810, 812
addGrob (grid.add), 795
addmargins, 254, 451, 965
addNA (factor), 148
addTaskCallback, 455, 457–459
addTaskCallback (taskCallback),

455
Adobe_glyphs (charsets), 1398
aggregate, 16, 368, 454, 967
agnes, 998, 1033, 1109
agrep, 7, 193, 1472
AIC, 969, 1069, 1070
airmiles, 500
AirPassengers, 501, 1343, 1374
airquality, 502
alarm, 1425
alias, 970, 981, 1025
alist, 23, 40, 163
alist (list), 235
all, 9, 11, 13, 245, 414
all.equal, 10, 67, 203, 217
all.equal.numeric, 217
all.equal.POSIXct

(DateTimeClasses), 94
all.names, 11, 1016
all.vars, 1016, 1089
all.vars (all.names), 11
allGenerics (GenericFunctions),

889
anova, 431, 965, 971, 973, 975, 1102, 1103,

1134, 1142, 1161, 1198, 1243, 1334
anova-class (setOldClass), 944
anova.glm, 964, 972, 1102, 1103, 1106,

1334
anova.glm-class (setOldClass), 944
anova.glm.null-class

(setOldClass), 944
anova.glmlist (anova.glm), 972
anova.lm, 974, 1144, 1148, 1334
anova.lmlist (anova.lm), 974
anova.mlm, 975, 1172, 1326
anova.mlmlist (anova.mlm), 975
ansari.test, 977, 1003, 1087, 1185, 1382
ansari_test, 979
anscombe, 503, 1144
any, 10, 12, 245
ANY-class (BasicClasses), 868

aov, 298, 740, 964, 965, 980, 1030, 1031,
1061, 1064, 1065, 1069, 1074, 1141,
1142, 1144, 1148, 1167, 1175, 1181,
1231, 1272, 1273, 1299, 1335, 1345,
1351, 1365, 1376

aov-class (setOldClass), 944
aperm, 13, 20, 450, 1291
append, 14
apply, 15, 63, 64, 120, 224, 259, 433, 454,

968
applyEdit (gEdit), 787
applyEdits (gEdit), 787
approx, 158, 1321
approx (approxfun), 981
approxfun, 981, 1063, 1236, 1321, 1338
apropos, 193, 248, 356, 1426, 1473
ar, 983, 988, 991, 996, 1314
ar.burg (ar), 983
ar.mle (ar), 983
ar.ols, 984, 986, 986
ar.yw, 962
ar.yw (ar), 983
arcCurvature (grid.curve), 805
Arg (complex), 68
args, 16, 40, 163, 174, 278, 1461, 1480,

1500, 1534, 1536
argsAnywhere (getAnywhere), 1460
arima, 988, 992, 995–998, 1129, 1254, 1255,

1343, 1372
arima.sim, 991, 991, 1081
arima0, 986, 990, 991, 993
Arith, 18
Arith (S4groupGeneric), 928
Arithmetic, 17, 210, 243, 260, 261, 401,

436, 1242
ARMAacf, 962, 996, 998
ARMAtoMA, 997, 997
array, 19, 112, 113, 118, 141, 283, 454, 490,

875, 1439, 1440
array-class (StructureClasses),

954
arrow, 783, 806, 819, 823, 836, 845
arrows, 659, 723, 758
arrowsGrob (grid.arrows), 796
as, 61, 92, 486, 864, 873, 878, 900, 903, 904,

926, 930, 931
as.array (array), 19
as.call (call), 45
as.character, 6, 49, 55, 56, 101, 112, 127,

165, 191, 200, 208, 236, 279, 306,
308, 367, 405, 421, 423, 427, 572,
681, 700, 773, 1356

1576 INDEX

as.character (character), 53
as.character.condition

(conditions), 69
as.character.Date (format.Date),

166
as.character.error (conditions),

69
as.character.hexmode (hexmode),

198
as.character.numeric_version

(numeric_version), 290
as.character.octmode (octmode),

291
as.character.person (person), 1493
as.character.personList (person),

1493
as.character.POSIXt (strptime),

415
as.character.srcref (srcfile), 409
as.complex, 208
as.complex (complex), 68
as.data.frame, 20, 25, 90, 144, 1093,

1100, 1141, 1150, 1177
as.data.frame.Date (Dates), 93
as.data.frame.numeric_version

(numeric_version), 290
as.data.frame.POSIXct

(DateTimeClasses), 94
as.data.frame.POSIXlt

(DateTimeClasses), 94
as.data.frame.table, 21, 1394
as.data.frame.table (table), 450
as.Date, 293
as.Date (format.Date), 166
as.dendrogram, 1045, 1110, 1219
as.dendrogram (dendrogram), 1046
as.difftime (difftime), 109
as.dist (dist), 1057
as.double, 208, 288, 350, 405
as.double (double), 114
as.double.difftime (difftime), 109
as.double.POSIXlt (as.POSIX*), 23
as.environment, 21, 29, 883
as.expression (expression), 137
as.factor, 402, 454
as.factor (factor), 148
as.formula, 1381
as.formula (formula), 1088
as.function, 22
as.graphicsAnnot, 571, 663, 706, 707,

718, 734, 767, 776, 840, 1230
as.hclust, 998, 1033

as.hexmode (hexmode), 198
as.integer, 82, 138, 143, 208, 363
as.integer (integer), 205
as.list, 223, 479
as.list (list), 235
as.list.numeric_version

(numeric_version), 290
as.logical, 208
as.logical (logical), 246
as.matrix, 90, 92, 261, 366, 450, 1058,

1059, 1511, 1554
as.matrix (matrix), 261
as.matrix.dist (dist), 1057
as.matrix.noquote (noquote), 281
as.matrix.POSIXlt

(DateTimeClasses), 94
as.name, 214
as.name (name), 275
as.null (NULL), 287
as.numeric, 92, 310
as.numeric (numeric), 287
as.numeric_version

(numeric_version), 290
as.octmode, 155
as.octmode (octmode), 291
as.ordered (factor), 148
as.package_version

(numeric_version), 290
as.pairlist (list), 235
as.person (person), 1493
as.personList (person), 1493
as.POSIX*, 23
as.POSIXct, 95, 96
as.POSIXct (as.POSIX*), 23
as.POSIXlt, 96, 132, 241, 415, 416, 464,

490
as.POSIXlt (as.POSIX*), 23
as.qr (qr), 322
as.raw, 208
as.raw (raw), 339
as.real (real), 350
as.relistable (relist), 1515
as.roman (roman), 1519
as.single, 161
as.single (double), 114
as.stepfun, 1126
as.stepfun (stepfun), 1337
as.symbol, 138
as.symbol (name), 275
as.table, 1093
as.table (table), 450
as.ts (ts), 1368

INDEX 1577

as.vector, 15, 44, 53, 54, 68, 82, 115, 206,
208, 236, 246, 275, 384

as.vector (vector), 485
as<- (as), 864
asin, 199
asin (Trig), 472
asinh (Hyperbolic), 198
AsIs, 25, 164
asOneSidedFormula, 999
asp (plot.window), 746
asS4, 927
asS4 (isS4), 216
assign, 26, 28, 29, 181, 493, 575
assignInNamespace

(getFromNamespace), 1461
assignOps, 27
assoc, 661
assocplot, 660, 717
atan, 199
atan (Trig), 472
atan2 (Trig), 472
atanh (Hyperbolic), 198
atomic, 1513
atomic (vector), 485
atop (plotmath), 617
attach, 26, 28, 105, 106, 232, 377, 493,

1434, 1491
attachNamespace (ns-load), 285
attenu, 504
attitude, 505, 1144
attr, 30, 32, 66, 295, 296, 366, 423, 1294
attr.all.equal (all.equal), 10
attr<-, 953
attr<- (attr), 30
attributes, 10, 11, 31, 31, 65, 66, 112,

139, 146, 273, 277, 422, 423, 575,
933, 1044

attributes<- (attributes), 31
austres, 506
autoload, 32, 232
autoloader (autoload), 32
Autoloads (autoload), 32
available.packages, 1411, 1421, 1450,

1451, 1492
available.packages

(update.packages), 1544
ave, 999
Axis, 662, 665, 682
axis, 617, 620, 662, 663, 666, 667, 670, 676,

696, 723, 727, 728, 755
axis.Date (axis.POSIXct), 665
axis.POSIXct, 662, 665, 699

axTicks, 311, 664, 665, 667, 694, 728

backquote, 174
backquote (Quotes), 327
backsolve, 33, 58, 394
backtick, 28, 139, 1467
backtick (Quotes), 327
bandwidth, 1000
bandwidth.kernel (kernel), 1130
bandwidth.nrd, 1001
bar (plotmath), 617
barplot, 668, 697, 708, 742, 754
barplot.default, 598
bartlett.test, 979, 1002, 1087, 1185,

1382
base, 571
base (base-package), 1
base-defunct, 35
base-deprecated, 104
base-deprecated, 34
base-package, 1
baseenv (environment), 129
basename, 35, 157, 307
BasicClasses, 868
BATCH, 65, 1427
bcv, 1001
beaver1 (beavers), 506
beaver2 (beavers), 506
beavers, 506
Bessel, 36, 401
bessel (Bessel), 36
besselI (Bessel), 36
besselJ (Bessel), 36
besselK (Bessel), 36
besselY (Bessel), 36
Beta, 1003
beta, 36, 1004, 1005
beta (Special), 399
bgroup (plotmath), 617
bindenv, 38
bindingIsActive (bindenv), 38
bindingIsLocked (bindenv), 38
bindtextdomain (gettext), 188
binom.test, 1005, 1276
Binomial, 1006
binomial, 1103
binomial (family), 1074
biplot, 1008, 1010, 1266
biplot.default, 1010
biplot.prcomp, 1253
biplot.prcomp (biplot.princomp),

1009
biplot.princomp, 1009, 1009, 1267

1578 INDEX

birthday, 1011
bitmap, 592, 594, 624
bitmap (dev2bitmap), 590
BJsales, 507
bmp, 48, 593, 647
bmp (png), 621
BOD, 508
body, 39, 163, 174
body<- (body), 39
body<-,MethodDefinition-method

(MethodsList-class), 916
bold (plotmath), 617
bolditalic (plotmath), 617
box, 671, 675, 680, 682, 690, 723, 724, 745,

752, 754, 763
Box.test, 1012, 1372
boxplot, 573, 662, 672, 675, 742, 743, 765
boxplot.stats, 572, 673, 674, 1086, 1281
bquote, 40, 426, 620
break, 360
break (Control), 81
browseEnv, 356, 1428
browser, 41, 99, 295, 465, 467, 468, 1513,

1514
browseURL, 1430, 1431, 1467, 1474, 1525
browseVignettes, 1431
bs, 1166
bug.report, 295, 1432, 1471
build (PkgUtils), 1494
buildVignettes, 1397
builtins, 42
bw.bcv (bandwidth), 1000
bw.nrd, 1050, 1051
bw.nrd (bandwidth), 1000
bw.nrd0 (bandwidth), 1000
bw.SJ (bandwidth), 1000
bw.ucv (bandwidth), 1000
bxp, 573, 672–674, 675
by, 43, 269, 454
bzfile (connections), 73

C, 150, 1013, 1030, 1031, 1179
c, 44, 52, 96, 208, 236, 281, 479, 486
c.Date (Dates), 93
c.noquote (noquote), 281
c.numeric_version

(numeric_version), 290
c.POSIXct (DateTimeClasses), 94
c.POSIXlt (DateTimeClasses), 94
cairo, 574
cairo_pdf, 48, 588, 593, 614
cairo_pdf (cairo), 574
cairo_ps, 48, 629

cairo_ps (cairo), 574
call, 22, 45, 114, 133, 137, 138, 140, 212,

257, 258, 273, 276, 351, 1053, 1059,
1126

call-class (language-class), 907
callCC, 46
callGeneric, 869, 872, 930
callNextMethod, 871, 912, 917–919
canCoerce, 867, 873
cancor, 1014
capabilities, 47, 78, 200, 575, 593, 624,

1450
capture.output, 391, 461, 1434
cars, 509, 1166, 1241
case.names, 367
case.names (case/variable.names),

1015
case/variable.names, 1015
casefold (chartr), 55
cat, 48, 78, 297, 306, 313, 488, 494, 495,

1104, 1527
Cauchy, 1016
cbind, 50, 208, 269, 874, 1371
cbind.ts (ts), 1368
cbind2, 873
cbind2,ANY,ANY-method (cbind2),

873
cbind2,ANY,missing-method

(cbind2), 873
cbind2-methods (cbind2), 873
ccf (acf), 960
cdplot, 678, 761
ceiling (Round), 362
char.expand, 52
character, 53, 149, 249, 281, 315, 329,

446, 773, 775, 1230, 1535
character-class (BasicClasses),

868
charmatch, 53, 54, 193, 255, 308
charset_to_Unicode (charsets),

1398
charsets, 1398
charToRaw, 339
charToRaw (rawConversion), 341
chartr, 54, 55, 128, 193
check, 1455
check (PkgUtils), 1494
check.options, 575, 629, 633
check_tzones (DateTimeClasses), 94
checkCRAN (mirrorAdmin), 1485
checkDocFiles (QC), 1412
checkDocStyle (QC), 1412

INDEX 1579

checkFF, 1399
checkMD5sums, 1400, 1411
checkNEWS (readNEWS), 1416
checkReplaceFuns (QC), 1412
checkS3methods (QC), 1412
checkTnF, 1401
checkVignettes, 1402
ChickWeight, 510
chickwts, 511
childNames (grid.grob), 814
chisq.test, 451, 523, 661, 1017, 1084,

1394
Chisquare, 1020, 1078, 1360
chol, 34, 57, 59, 126
chol2inv, 58, 59, 394
choose, 1440
choose (Special), 399
chooseCRANmirror, 298, 1435, 1532
chron, 24, 166
chull, 576
CIDFont, 627, 630, 632
CIDFont (Type1Font), 643
circleGrob (grid.circle), 799
CITATION, 1436
CITATION (citEntry), 1437
citation, 1436
citEntry, 1436, 1437, 1542
citFooter (citEntry), 1437
citHeader (citEntry), 1437
class, 31, 32, 60, 89, 115, 195, 212, 248,

281, 288, 312, 338, 430, 451, 483,
695, 743, 926, 971, 1142, 1253, 1485

class<- (class), 60
Classes, 863, 875, 879, 894, 912, 913, 919,

933, 953
classRepresentation, 875, 893, 909,

931, 935, 958
classRepresentation-class, 878
ClassUnionRepresentation-class

(setClassUnion), 934
clearNames, 1022, 1302
clip, 680, 728, 729
clipboard (connections), 73
clipGrob (grid.clip), 800
close, 1510
close (connections), 73
close.screen (screen), 756
close.socket, 1439, 1482, 1509
close.srcfile (srcfile), 409
close.txtProgressBar

(txtProgressBar), 1542

closeAllConnections
(showConnections), 386

cm, 577
cm.colors (Palettes), 610
cmdscale, 1023
co.intervals (coplot), 684
CO2, 512
co2, 513
codoc, 1403, 1419
codocClasses (codoc), 1403
codocData (codoc), 1403
coef, 658, 989, 1024, 1026, 1066, 1106,

1144, 1148, 1198, 1349, 1352
coefficients, 972, 1085, 1102, 1293
coefficients (coef), 1024
coerce (as), 864
coerce,ANY,array-method (as), 864
coerce,ANY,call-method (as), 864
coerce,ANY,character-method (as),

864
coerce,ANY,complex-method (as),

864
coerce,ANY,environment-method

(as), 864
coerce,ANY,expression-method

(as), 864
coerce,ANY,function-method (as),

864
coerce,ANY,integer-method (as),

864
coerce,ANY,list-method (as), 864
coerce,ANY,logical-method (as),

864
coerce,ANY,matrix-method (as), 864
coerce,ANY,name-method (as), 864
coerce,ANY,NULL-method (as), 864
coerce,ANY,numeric-method (as),

864
coerce,ANY,S3-method (S3), 925
coerce,ANY,S4-method (S3), 925
coerce,ANY,single-method (as), 864
coerce,ANY,ts-method (as), 864
coerce,ANY,vector-method (as), 864
coerce,oldClass,S3-method (S3),

925
coerce-methods (as), 864
coerce<- (as), 864
col, 61, 365, 380, 392
col2rgb, 578, 581, 584, 610, 611, 639, 640
colMeans, 265
colMeans (colSums), 63
colnames, 113, 514

1580 INDEX

colnames (row/colnames), 366
colnames<- (row/colnames), 366
Colon, 62
colon (Colon), 62
colorConverter, 583
colorConverter (make.rgb), 606
colorRamp, 579, 610
colorRampPalette (colorRamp), 579
colors, 578, 581, 584, 610, 611, 729, 747,

789, 1062
colorspaces (convertColor), 583
colours (colors), 581
colSums, 63, 368, 429
combn, 137, 400, 1439
commandArgs, 64, 412
comment, 31, 32, 65
comment<- (comment), 65
Compare, 67
Compare (S4groupGeneric), 928
compareVersion, 290, 1441
Comparison, 66, 149, 202, 203, 300, 339,

396, 436
COMPILE, 1441, 1533
complete.cases, 275, 1025
Complex, 69
Complex (S4groupGeneric), 928
Complex (groupGeneric), 194
complex, 68, 260, 289, 309
complex-class (BasicClasses), 868
computeRestarts (conditions), 69
condition (conditions), 69
conditionCall (conditions), 69
conditionMessage (conditions), 69
conditions, 69, 271
confint, 1026, 1144, 1198
confint.glm, 1026
confint.nls, 1026
conflicts, 29, 73, 230
Conj, 450
Conj (complex), 68
connection, 373, 1415, 1416, 1442, 1507,

1510
connection (connections), 73
connections, 73, 295, 296, 321, 341, 345,

347, 349, 379, 387, 461, 495
Constants, 80
constrOptim, 1027, 1194, 1196, 1215
contour, 295, 582, 601, 603, 662, 681, 691,

703, 723, 732
contourLines, 295, 582, 682
contourplot, 682, 691
contr.helmert, 1031

contr.helmert (contrast), 1029
contr.poly, 1031, 1241
contr.poly (contrast), 1029
contr.SAS (contrast), 1029
contr.sum, 1014, 1031
contr.sum (contrast), 1029
contr.treatment, 1031, 1286
contr.treatment (contrast), 1029
contrast, 1029
contrasts, 145, 298, 1014, 1030, 1030,

1179, 1299
contrasts<- (contrasts), 1030
contrib.url, 1435
contrib.url (update.packages),

1544
contributors, 81, 82
Control, 81, 436
convertColor, 583, 606
convertHeight (grid.convert), 802
convertNative, 783
convertUnit (grid.convert), 802
convertWidth (grid.convert), 802
convertX (grid.convert), 802
convertXY, 683
convertY (grid.convert), 802
convolve, 1031, 1080, 1081, 1129, 1192
cooks.distance, 1147, 1231
cooks.distance

(influence.measures), 1117
cophenetic, 1033, 1287
coplot, 662, 684, 722, 757, 1089
copyright, 82
copyrights (copyright), 82
cor, 1034, 1253, 1266, 1267
cor.test, 1036, 1036
cos, 199
cos (Trig), 472
cosh (Hyperbolic), 198
count.fields, 1442, 1513
cov, 1040, 1164, 1253, 1267
cov (cor), 1034
cov.mcd, 1266
cov.mve, 1266
cov.wt, 1036, 1039, 1071, 1266
cov2cor (cor), 1034
covratio, 1147
covratio (influence.measures),

1117
coxph, 1362, 1365
cpgram, 1040, 1317
CRAN.packages (utils-deprecated),

1550

INDEX 1581

crimtab, 513
crossprod, 83
Cstack_info, 84
cummax (cumsum), 84
cummin (cumsum), 84
cumprod, 320
cumprod (cumsum), 84
cumsum, 84, 320
current.transform (Querying the

Viewport Tree), 851
current.viewport (Querying the

Viewport Tree), 851
current.vpPath (Querying the

Viewport Tree), 851
current.vpTree (Querying the

Viewport Tree), 851
curve, 687
curveGrob (grid.curve), 805
cut, 85, 87, 88, 403, 703
cut.Date, 94
cut.Date (cut.POSIXt), 87
cut.dendrogram (dendrogram), 1046
cut.POSIXt, 87, 96
cut2, 86
cutree, 1041, 1109
cycle (time), 1366

D (deriv), 1052
daisy, 1059
data, 80, 232, 371, 1443, 1469, 1500, 1502,

1556
data.class, 88
data.entry, 1453, 1454, 1551
data.entry (dataentry), 1445
data.frame, 21, 25, 50–52, 65, 89, 92, 105,

106, 111, 113, 144, 194, 249, 262,
269, 296, 315, 366, 377, 449, 472,
480, 652, 654, 736, 737, 1177, 1178,
1505–1508, 1512, 1513

data.frame-class (setOldClass),
944

data.frameRowLabels-class
(setOldClass), 944

data.matrix, 91, 263, 366, 720, 737
dataentry, 298, 1445
datasets (datasets-package), 499
datasets-package, 499
dataViewport, 784, 849
Date, 93, 109, 167, 194, 288, 293, 364, 381,

418, 444, 454, 490, 1174
Date (Dates), 93
date, 24, 92, 110, 166, 241, 445, 1367
Date-class (setOldClass), 944

date-time, 110
date-time (DateTimeClasses), 94
Dates, 93, 96, 666
DateTimeClasses, 24, 80, 93, 94, 94, 110,

153, 364, 382, 418, 444, 490, 666
dbeta, 1079, 1097
dbeta (Beta), 1003
dbinom, 1004, 1079, 1097, 1098, 1116, 1191,

1239, 1360
dbinom (Binomial), 1006
dcauchy (Cauchy), 1016
dcf, 97
dchisq, 1079, 1097
dchisq (Chisquare), 1020
de (dataentry), 1445
debug, 41, 42, 98, 174
debugger, 1447
decompose, 1042
default.stringsAsFactors

(data.frame), 89
Defunct, 99, 104, 282, 1418, 1550
delayedAssign, 33, 100, 119, 426, 1535
delete.response, 1043
delimMatch, 1404
deltat, 1138
deltat (time), 1366
demo, 399, 603, 605, 1449, 1456
dendrapply, 338, 1044
dendrogram, 360, 1033, 1041, 1044, 1046,

1109, 1110, 1219
density, 678, 679, 697, 736, 745, 770, 1000,

1001, 1049, 1227
density-class (setOldClass), 944
deparse, 54, 101, 103, 117, 119, 279, 305,

328, 426, 771
deparseOpts, 102
Deprecated, 35, 99, 104, 282, 1335, 1418,

1550
deriv, 1052, 1193, 1194
deriv3 (deriv), 1052
derivedDefaultMethodWithTrace-class

(TraceClasses), 955
det, 104, 126, 323
detach, 29, 105, 230–232, 286, 377, 483,

484
determinant (det), 104
dev.control, 592
dev.control (dev2), 588
dev.copy, 642
dev.copy (dev2), 588
dev.copy2eps (dev2), 588
dev.copy2pdf (dev2), 588

1582 INDEX

dev.cur, 1, 589, 593
dev.cur (dev.xxx), 586
dev.interactive, 585, 593
dev.list (dev.xxx), 586
dev.new, 586
dev.new (dev.xxx), 586
dev.next (dev.xxx), 586
dev.off (dev.xxx), 586
dev.prev (dev.xxx), 586
dev.print, 575, 593, 624, 642
dev.print (dev2), 588
dev.set (dev.xxx), 586
dev.size, 586
dev.xxx, 586
dev2, 588
dev2bitmap, 590, 593
devAskNewPage, 298, 592, 724, 831
deviance, 1055, 1056, 1070, 1106, 1148,

1198
device (Devices), 592
deviceIsInteractive

(dev.interactive), 585
Devices, 575, 585, 587, 592, 594, 614, 617,

624, 629, 635, 648, 651, 757
dexp (Exponential), 1068
df, 1360
df (FDist), 1078
df.kernel (kernel), 1130
df.residual, 1055, 1056, 1106, 1148,

1198
dfbeta (influence.measures), 1117
dfbetas, 1147
dfbetas (influence.measures), 1117
dffits, 1147
dffits (influence.measures), 1117
dgamma, 1005, 1021, 1069
dgamma (GammaDist), 1095
dgeom, 1191
dgeom (Geometric), 1098
dget, 119
dget (dput), 116
dhyper (Hypergeometric), 1115
diag, 107, 247, 261
diag<- (diag), 107
diana, 998
diff, 108, 1056, 1057, 1138, 1370
diff.ts, 109
diff.ts (ts-methods), 1369
diffinv, 109, 1056
difftime, 95, 96, 109, 194, 293, 381, 382
digamma (Special), 399

dim, 19, 20, 31, 32, 111, 146, 208, 262, 283,
454, 490

dim<-, 208
dim<- (dim), 111
dimnames, 19, 20, 31, 32, 83, 112, 112, 138,

208, 262, 277, 317, 366, 367, 454,
476, 480, 745

dimnames<-, 208
dimnames<- (dimnames), 112
dir (list.files), 237
dir.create (files), 155
dirname (basename), 35
discoveries, 515
displaystyle (plotmath), 617
dist, 1024, 1033, 1057, 1059, 1110
dlnorm, 1208
dlnorm (Lognormal), 1157
dlogis (Logistic), 1153
dmultinom (Multinomial), 1185
DNase, 516
dnbinom, 1008, 1099, 1239
dnbinom (NegBinomial), 1190
dnorm, 1158
dnorm (Normal), 1207
do.call, 46, 113, 351
Documentation, 879
Documentation-class

(Documentation), 879
Documentation-methods

(Documentation), 879
dot (plotmath), 617
dotchart, 670, 688, 735
dotsMethods, 881, 916, 936, 939, 942
double, 114, 115, 146, 205, 288, 350, 654
double-class (BasicClasses), 868
download.file, 48, 75, 132, 239, 295,

296, 1450, 1492, 1545, 1546, 1548,
1550

download.packages, 1451
download.packages

(update.packages), 1544
downViewport, 794, 858
downViewport (Working with

Viewports), 859
dpois, 1008, 1191
dpois (Poisson), 1238
dput, 78, 103, 116, 119, 371, 1452, 1493,

1534
dQuote, 426
dQuote (sQuote), 407
draw.details (drawDetails), 785
drawDetails, 785

INDEX 1583

drop, 117, 139, 261
drop.scope (factor.scope), 1073
drop.terms (delete.response), 1043
drop1, 118, 972, 973, 975, 1070, 1074, 1336,

1337
drop1 (add1), 963
dsignrank, 1391
dsignrank (SignRank), 1304
dt, 1017, 1079
dt (TDist), 1359
dummy.coef, 1060
dump, 78, 103, 116, 117, 118, 371
dump.frames, 295, 1514
dump.frames (debugger), 1447
dump.frames-class (setOldClass),

944
dumpMethod (GenericFunctions), 889
dumpMethods (GenericFunctions),

889
dunif (Uniform), 1377
duplicated, 120, 477
duplicated.numeric_version

(numeric_version), 290
duplicated.POSIXlt

(DateTimeClasses), 94
dweibull, 1069
dweibull (Weibull), 1384
dwilcox, 1304
dwilcox (Wilcoxon), 1390
dyn.load, 4, 121, 160, 162, 182, 183, 186,

234, 235, 1442, 1533
dyn.unload, 234
dyn.unload (dyn.load), 121

eapply, 124, 224
ecdf, 158, 1061, 1236, 1281, 1338
edit, 103, 298, 466, 467, 1447, 1452, 1454,

1457–1459, 1462, 1493, 1552
edit.data.frame, 1452, 1453, 1453,

1458, 1459, 1551
edit.matrix (edit.data.frame),

1453
edit.vignette (vignette), 1551
editDetails, 786
editGrob, 788, 791
editGrob (grid.edit), 809
eff.aovlist, 1064
effects, 972, 1065, 1103, 1106, 1143, 1144,

1148
eigen, 125, 217, 323, 432, 1253, 1266, 1267
else, 360
else (Control), 81
emacs (edit), 1452

embed, 1066
embedFonts, 593, 613, 614, 627, 631
emptyenv (environment), 129
encoded_text_to_latex, 1405
encodeString, 49, 126, 165, 279, 316
Encoding, 56, 128, 192, 200, 342, 420, 422,

428, 485
Encoding<- (Encoding), 128
end, 1369
end (start), 1333
engine.display.list

(grid.display.list), 807
env.profile (environment), 129
environment, 22, 26–29, 103, 129,

133–135, 180, 224, 236, 248, 357,
439, 575, 637, 1338, 1429, 1443,
1448

environment variables (EnvVar),
131

environment-class, 883
environment<- (environment), 129
environmentIsLocked (bindenv), 38
environmentName (environment), 129
EnvVar, 131
erase.screen (screen), 756
Error (aov), 980
esoph, 517, 1103
estVar (SSD), 1326
euro, 518
eurodist, 519
EuStockMarkets, 519
eval, 130, 132, 138, 225, 305, 399, 426, 440,

637, 1553
evalq, 493
evalq (eval), 132
example, 298, 1455, 1475, 1556
exists, 27, 130, 135, 181, 1479
existsMethod (getMethod), 894
exp, 1069
exp (log), 242
expand.grid, 136, 1261, 1440
expand.model.frame, 1067, 1179
expm1 (log), 242
Exponential, 1068, 1385
expression, 46, 81, 101, 102, 133, 134,

137, 140, 212, 305, 426, 637, 673,
706, 718, 767, 773, 775, 832, 840,
1053, 1054

expression-class (BasicClasses),
868

extendrange, 336, 594
extends, 876, 935

1584 INDEX

extends (is), 901
externalptr-class (BasicClasses),

868
Extract, 138, 144, 145, 392, 436
Extract.data.frame, 142
Extract.factor, 145
extractAIC, 965, 969, 970, 1055, 1069,

1335, 1336
Extremes, 146

F (logical), 246
factanal, 1070, 1149, 1190, 1383
factor, 62, 67, 86, 115, 139, 145, 148, 190,

194, 207, 227, 246, 280, 430, 453,
496, 673, 685, 740, 742, 1101, 1179,
1286

factor-class (setOldClass), 944
factor.scope, 1073
factorial (Special), 399
faithful, 520
FALSE, 360
FALSE (logical), 246
family, 1074, 1100, 1102, 1154, 1165, 1242
family.glm (glm.summaries), 1105
family.lm (lm.summaries), 1147
fdeaths (UKLungDeaths), 561
FDist, 1078
fft, 1032, 1050, 1079, 1192, 1316
fifo (connections), 73
file, 200, 341, 344, 347, 349, 373, 375, 387,

398, 409, 461, 495, 1510, 1512, 1522
file (connections), 73
file.access, 150, 153, 156, 157, 238
file.append (files), 155
file.choose, 152, 238
file.copy (files), 155
file.create (files), 155
file.edit, 1457, 1551
file.exists, 1458
file.exists (files), 155
file.info, 151, 152, 157, 238, 292, 1407,

1458
file.path, 35, 153, 157, 1407, 1458
file.remove, 478
file.remove (files), 155
file.rename (files), 155
file.show, 154, 157, 295, 1457, 1467,

1493, 1548
file.symlink (files), 155
file_path_as_absolute

(fileutils), 1406
file_path_sans_ext (fileutils),

1406

file_test, 157, 1457
files, 153, 155, 155, 238, 1457
fileutils, 1406
filled.contour, 565, 662, 682, 689, 703,

723
Filter (funprog), 175
filter, 997, 1032, 1080, 1129
Find (funprog), 175
find, 248, 891
find (apropos), 1426
findClass, 884
findFunction (GenericFunctions),

889
findInterval, 86, 157, 255
findMethod (getMethod), 894
findMethods, 886
findMethodSignatures

(findMethods), 886
findRestart (conditions), 69
finite (is.finite), 209
fisher.test, 1082
fitted, 1084, 1106, 1144, 1148, 1190, 1198
fitted.values, 972, 1025, 1103, 1293,

1305
fivenum, 573, 1085, 1125, 1281
fix, 1452, 1453, 1457, 1458, 1462, 1493
fixInNamespace

(getFromNamespace), 1461
fixPre1.8, 887
fligner.test, 979, 1003, 1086, 1185
floor (Round), 362
flush (connections), 73
flush.console, 1459
for, 360, 1496
for (Control), 81
for-class (language-class), 907
force, 134, 158
Foreign, 159, 1400
Formaldehyde, 521
formals, 17, 162, 236, 278
formals<- (formals), 162
format, 49, 50, 53, 163, 168, 171, 172, 262,

313, 314, 430, 464, 465, 1058, 1270,
1459, 1535, 1555

format.Date, 94, 164, 166
format.difftime (difftime), 109
format.dist (dist), 1057
format.ftable (read.ftable), 1283
format.hexmode (hexmode), 198
format.info, 165, 168
format.octmode (octmode), 291
format.POSIXct, 24, 164

INDEX 1585

format.POSIXct (strptime), 415
format.POSIXlt, 24
format.POSIXlt (strptime), 415
format.pval, 169, 1270
formatC, 165, 168, 170, 406, 1535
formatDL, 172, 1415, 1460
formatOL (format), 1459
formatUL (format), 1459
formula, 25, 63, 129, 328, 463, 682, 740,

743, 999, 1053, 1088, 1090, 1100,
1141, 1142, 1150, 1177–1179, 1198,
1363, 1365, 1394

formula-class (setOldClass), 944
formula.lm (lm.summaries), 1147
formula.nls, 1090
forwardsolve (backsolve), 33
fourfoldplot, 692
frac (plotmath), 617
frame, 693, 1493
frameGrob (grid.frame), 810
freeny, 522, 1144
frequency, 1318, 1369
frequency (time), 1366
friedman.test, 1090, 1279
ftable, 451, 966, 1092, 1095, 1284, 1465
ftable.default, 1094, 1095
ftable.formula, 1093, 1094, 1094
function, 23, 40, 46, 129, 138, 163, 174,

209, 360, 685, 736
function-class (BasicClasses), 868
functionWithTrace-class

(TraceClasses), 955
funprog, 175
fuzzy matching, 1471
fuzzy matching (agrep), 7

Gamma, 1154
Gamma (family), 1074
gamma, 36, 1096, 1097
gamma (Special), 399
gammaCody, 401
GammaDist, 1095
gaussian, 1154
gaussian (family), 1074
gc, 177, 179, 266, 268, 352, 449
gc.time, 178, 319
gcinfo, 266
gcinfo (gc), 177
gctorture, 178, 179
gEdit, 787
gEditList (gEdit), 787
genericFunction, 914
genericFunction-class, 888

GenericFunctions, 863, 889, 896, 910,
951

genericFunctionWithTrace-class
(TraceClasses), 955

Geometric, 1098
get, 27, 130, 136, 180, 259, 284, 310, 575,

885, 1461–1463, 1479
get.gpar (gpar), 788
get_all_vars (model.frame), 1177
getAllConnections

(showConnections), 386
getAnywhere, 1460, 1484
getCConverterDescriptions

(getNumCConverters), 186
getCConverterStatus

(getNumCConverters), 186
getClass, 875, 878, 893, 925, 953
getClassDef, 878, 957
getClassDef (getClass), 893
getClasses (findClass), 884
getConnection (showConnections),

386
getCRANmirrors

(chooseCRANmirror), 1435
getDepList, 1408
getDLLRegisteredRoutines, 181, 183,

186
geterrmessage, 474, 1447
geterrmessage (stop), 413
getFromNamespace, 1461, 1461
getGeneric, 890, 916, 939
getGenerics, 920, 921
getGenerics (GenericFunctions),

889
getGraphicsEvent, 595
getGrob, 791, 796, 810, 812, 835
getGrob (grid.get), 811
getGroupMembers, 929
getHook (UserHooks), 483
getInitial, 1099
getLoadedDLLs, 123, 182, 183, 235
getMethod, 892, 894, 1468
getMethods (findMethods), 886
getNames, 788
getNativeSymbolInfo, 183, 184
getNumCConverters, 186
getOption, 90, 164, 168, 315, 417, 487,

585, 587, 622, 1467, 1502
getOption (options), 294
getPackageName, 896, 909
getpid, 187
getRversion, 330

1586 INDEX

getRversion (numeric_version), 290
getS3method, 483, 1462, 1463, 1484, 1485
getSlots (slot), 952
getSrcLines (srcfile), 409
getTaskCallbackNames, 455, 456, 458
getTaskCallbackNames

(taskCallbackNames), 458
gettext, 188, 270, 271, 404, 406, 413, 414,

487, 1422
gettextf, 1422
gettextf (sprintf), 404
getTxtProgressBar

(txtProgressBar), 1542
getValidity (validObject), 956
getwd, 189, 237, 373, 436, 1510
gl, 150, 190, 383
gList (grid.grob), 814
glm, 430, 964, 972, 973, 1025, 1030, 1031,

1055, 1056, 1074, 1076, 1085, 1088,
1089, 1100, 1104–1106, 1118, 1119,
1125, 1144, 1146, 1148, 1157, 1165,
1176, 1188, 1210, 1230, 1256, 1293,
1305, 1335, 1336, 1346, 1348, 1362,
1363, 1384, 1386

glm-class (setOldClass), 944
glm.control, 1101, 1104
glm.fit, 1104, 1105
glm.null-class (setOldClass), 944
glm.summaries, 1105
glob2rx, 193, 238, 248, 356, 1427, 1463
globalenv, 22
globalenv (environment), 129
gpar, 620, 626, 630, 647, 649, 788, 824
gPath, 790, 827, 828
graphics (graphics-package), 657
graphics-package, 657
graphics.off, 593
graphics.off (dev.xxx), 586
gray, 581, 597, 598, 604, 610, 611, 639, 729
gray.colors, 598, 678, 760
grconvertX (convertXY), 683
grconvertY (convertXY), 683
grDevices (grDevices-package), 571
grDevices-package, 571
gregexpr (grep), 191
grep, 8, 54, 55, 191, 248, 308, 352, 356, 420,

1472, 1529
grey, 579
grey (gray), 597
grey.colors (gray.colors), 598
Grid, 791, 794, 797, 800, 801, 806, 814, 817,

819, 823–825, 829, 830, 834, 836,

838, 840, 841, 843, 845, 847
grid, 571, 657, 694, 1229
Grid Viewports, 792
grid-package, 781
grid.add, 795
grid.arrows, 796
grid.circle, 799
grid.clip, 800
grid.collection, 801
grid.convert, 784, 802
grid.convertHeight

(grid.convert), 802
grid.convertWidth (grid.convert),

802
grid.convertX (grid.convert), 802
grid.convertY (grid.convert), 802
grid.copy, 804
grid.curve, 805
grid.display.list, 807
grid.draw, 786, 808, 815
grid.edit, 787, 809, 815, 827, 828, 858
grid.frame, 810, 827, 828
grid.gedit (grid.edit), 809
grid.get, 811, 815
grid.gget (grid.get), 811
grid.grab, 812
grid.grabExpr (grid.grab), 812
grid.gremove (grid.remove), 834
grid.grill, 813
grid.grob, 802, 804, 814, 837
grid.layout, 791, 794, 816, 838, 853
grid.line.to, 797
grid.line.to (grid.move.to), 822
grid.lines, 797, 817
grid.locator, 819
grid.ls, 820
grid.move.to, 822
grid.newpage, 592, 824, 832
grid.null, 824
grid.pack, 811, 825, 828
grid.place, 827, 827
grid.plot.and.legend, 828
grid.points, 828
grid.polygon, 829
grid.polyline (grid.lines), 817
grid.pretty, 831
grid.prompt, 831, 1455
grid.record, 832
grid.rect, 833
grid.refresh, 834
grid.remove, 834
grid.segments, 797, 835

INDEX 1587

grid.set, 837
grid.show.layout, 794, 817, 838
grid.show.viewport, 839
grid.text, 840
grid.xaxis, 842, 847
grid.xspline, 806, 843
grid.yaxis, 843, 846
grob, 788, 791, 796, 808, 810, 812, 822, 835
grob (grid.grob), 814
grobHeight (grobWidth), 847
grobName, 847
grobPathListing (grid.ls), 820
grobTree (grid.grob), 814
grobWidth, 847, 848, 852
grobX, 848, 862
grobY, 862
grobY (grobX), 848
group (plotmath), 617
group generic, 61, 149, 208, 481
group generic (groupGeneric), 194
groupGeneric, 194
groupGenericFunction-class

(genericFunction-class),
888

GroupGenericFunctions, 870, 912
GroupGenericFunctions

(S4groupGeneric), 928
groupGenericFunctionWithTrace-class

(TraceClasses), 955
gsub, 56, 128
gsub (grep), 191
gTree, 813
gTree (grid.grob), 814
gzcon, 75, 78, 196
gzfile, 197
gzfile (connections), 73

HairEyeColor, 523
Harman23.cor, 524, 1073
Harman74.cor, 524, 1073, 1383
hasArg, 897
hasMethod (getMethod), 894
hasMethods (findMethods), 886
hasTsp (tsp), 1373
hat, 1147, 1161, 1231
hat (influence.measures), 1117
hat (plotmath), 617
hatvalues, 1231
hatvalues (influence.measures),

1117
hcl, 581, 597, 599, 604, 611, 639, 729
hclust, 998, 1033, 1041, 1059, 1106, 1110,

1111, 1117, 1285

head, 1464
heat.colors, 580, 581, 702, 703
heat.colors (Palettes), 610
heatmap, 703, 1109, 1287
heightDetails, 782
heightDetails (widthDetails), 859
help, 17, 155, 298, 879, 1445, 1455, 1466,

1473–1475, 1497, 1556
help.request, 1469
help.search, 356, 1427, 1469, 1471, 1525
help.start, 298, 1467, 1469, 1473, 1473,

1481, 1525
Hershey, 601, 605, 682, 725, 774, 790
hexmode, 198, 292
hist, 609, 670, 695, 698, 699, 744–746, 754,

759–761, 1051
hist.Date, 94
hist.Date (hist.POSIXt), 698
hist.default, 699
hist.POSIXt, 698
history (savehistory), 1528
HoltWinters, 1112, 1228, 1258
hsearch-class (setOldClass), 944
hsv, 581, 597, 599, 600, 604, 610, 611, 639,

640, 645, 703, 729
Hyperbolic, 198
Hypergeometric, 1115

I, 21, 90, 91, 1088, 1089, 1554
I (AsIs), 25
iconv, 48, 76, 128, 199, 650, 1405, 1417,

1479, 1490
iconvlist, 409
iconvlist (iconv), 199
icuSetCollate, 201
identical, 10, 11, 67, 202, 210
identify, 700, 712, 1117
identify.hclust, 1108, 1109, 1116,

1285
identity, 204
if, 205, 244, 304, 360
if (Control), 81
if-class (language-class), 907
ifelse, 82, 204
Im (complex), 68
image, 591, 593, 648, 682, 691, 702, 723,

732, 746, 1109–1111, 1356
implicit generic, 232
implicit generic

(implicitGeneric), 898
implicitGeneric, 898, 915, 939
in (Control), 81
index.search, 1474

1588 INDEX

Indometh, 525
Inf, 18, 158, 160, 289, 360, 1085
Inf (is.finite), 209
inf (plotmath), 617
infert, 526, 1103
influence, 1119, 1120, 1148, 1231, 1387
influence (lm.influence), 1146
influence.measures, 1106, 1117, 1146,

1147, 1149, 1293
inherits, 877
inherits (class), 60
initialize, 876, 879, 901, 905, 937, 956
initialize (new), 918
initialize,ANY-method

(initialize-methods), 900
initialize,array-method

(StructureClasses), 954
initialize,data.frame-method

(setOldClass), 944
initialize,environment-method

(initialize-methods), 900
initialize,factor-method

(setOldClass), 944
initialize,matrix-method

(StructureClasses), 954
initialize,mts-method

(StructureClasses), 954
initialize,ordered-method

(setOldClass), 944
initialize,signature-method

(initialize-methods), 900
initialize,summary.table-method

(setOldClass), 944
initialize,table-method

(setOldClass), 944
initialize,traceable-method

(initialize-methods), 900
initialize,ts-method

(StructureClasses), 954
initialize-methods, 919
initialize-methods, 900
InsectSprays, 527
INSTALL, 231, 232, 897, 1475, 1477, 1490,

1495, 1517, 1532, 1547, 1548
install.packages, 232, 298, 1409, 1410,

1490, 1492, 1518, 1532
install.packages

(update.packages), 1544
installed.packages, 231, 232, 1408,

1476, 1492, 1502, 1546, 1548
installFoundDepends, 1409, 1409
Insurance, 1210

integer, 62, 89, 111, 116, 146, 168, 205,
226, 260, 283, 288, 289, 332, 491,
514

integer-class (BasicClasses), 868
integral (plotmath), 617
integrate, 1120
integrate-class (setOldClass), 944
interaction, 62, 63, 206
interaction.plot, 741, 1122
interactive, 207, 295
Internal, 208
internal generic, 61, 196, 216, 481,

482
internal generic

(InternalMethods), 208
InternalGenerics, 481
InternalGenerics

(InternalMethods), 208
InternalMethods, 19, 53, 139, 149, 208,

210, 226, 262, 274, 288, 479, 1369,
1413

interpSpline, 1321
intersect (sets), 384
intToBits (rawConversion), 341
intToUtf8, 128
intToUtf8 (utf8Conversion), 484
inverse.gaussian, 1154
inverse.gaussian (family), 1074
inverse.rle (rle), 361
invisible, 174, 209, 312, 609, 950, 1117,

1553
invokeRestart (conditions), 69
invokeRestartInteractively

(conditions), 69
IQR, 608, 1086, 1124, 1163
iris, 527
iris3 (iris), 527
is, 61, 486, 875, 878, 901, 931
is.array, 208
is.array (array), 19
is.atomic, 375
is.atomic (is.recursive), 214
is.call (call), 45
is.character (character), 53
is.complex (complex), 68
is.data.frame (as.data.frame), 20
is.double, 288
is.double (double), 114
is.element, 255
is.element (sets), 384
is.empty.model, 1125
is.environment (environment), 129

INDEX 1589

is.expression (expression), 137
is.factor (factor), 148
is.finite, 209
is.function, 211
is.infinite (is.finite), 209
is.integer (integer), 205
is.language, 46, 212, 214, 276
is.leaf (dendrogram), 1046
is.list, 214, 486
is.list (list), 235
is.loaded, 184, 186
is.loaded (dyn.load), 121
is.logical (logical), 246
is.matrix, 208
is.matrix (matrix), 261
is.mts (ts), 1368
is.na, 149, 208, 1025
is.na (NA), 274
is.na.POSIXlt (DateTimeClasses),

94
is.na<- (NA), 274
is.na<-.factor (factor), 148
is.name (name), 275
is.nan, 208, 275
is.nan (is.finite), 209
is.null (NULL), 287
is.numeric, 92, 208, 369, 486
is.numeric (numeric), 287
is.numeric_version

(numeric_version), 290
is.object, 61, 208, 212, 216, 481, 483,

572, 954
is.ordered (factor), 148
is.package_version

(numeric_version), 290
is.pairlist (list), 235
is.primitive (is.function), 211
is.qr (qr), 322
is.R, 213
is.raw (raw), 339
is.real (real), 350
is.recursive, 139, 214
is.relistable (relist), 1515
is.single, 215
is.stepfun (stepfun), 1337
is.symbol, 51
is.symbol (name), 275
is.table (table), 450
is.ts (ts), 1368
is.tskernel (kernel), 1130
is.unsorted, 215, 396
is.vector (vector), 485

isClass, 873, 893, 894
isClass (findClass), 884
isClassUnion (setClassUnion), 934
isGeneric, 916, 939
isGeneric (GenericFunctions), 889
isGroup (GenericFunctions), 889
isIncomplete, 461
isIncomplete (connections), 73
islands, 529
ISOdate (strptime), 415
ISOdatetime (strptime), 415
isoMDS, 1024, 1127
isOpen (connections), 73
isoreg, 1126, 1228, 1229
isRestart (conditions), 69
isS4, 212, 216, 392, 475, 927, 954
isSealedClass (isSealedMethod),

906
isSealedMethod, 906
isSeekable (seek), 377
isSymmetric, 217
isTRUE, 11, 203
isTRUE (Logic), 244
isXS3Class (S3), 925
italic (plotmath), 617

Japanese, 603, 605
jitter, 218, 755, 769
JohnsonJohnson, 529, 1374
jpeg, 47, 48, 591, 593
jpeg (png), 621
julian (weekdays), 489

KalmanForecast, 1255
KalmanForecast (KalmanLike), 1127
KalmanLike, 990, 1127, 1343, 1344
KalmanRun (KalmanLike), 1127
KalmanSmooth, 1374
KalmanSmooth (KalmanLike), 1127
kappa, 219
kernapply, 1129, 1131
kernel, 1129, 1130
kmeans, 1109, 1131
knots, 1235, 1338
knots (stepfun), 1337
kronecker, 220, 303
kruskal.test, 1133, 1211, 1389
ks.test, 1135
ksmooth, 1137

l10n_info, 222, 242
La.svd (svd), 431
labels, 222, 1048, 1148, 1363

1590 INDEX

labels.dendrogram
(order.dendrogram), 1219

labels.dist (dist), 1057
labels.lm (lm.summaries), 1147
labels.terms (terms), 1363
lag, 1138
lag.plot, 1139
LakeHuron, 530
language-class, 907
lapply, 16, 124, 223, 259, 338, 454, 968,

1045
Last.value, 225
last.warning (warnings), 488
layout, 587, 608, 704, 727, 729, 757, 817,

1111
lbeta (Special), 399
lchoose (Special), 399
lcm (layout), 704
ldeaths (UKLungDeaths), 561
legend, 138, 617, 706, 754, 1123
length, 208, 225
length<-, 208
length<- (length), 225
LETTERS (Constants), 80
letters (Constants), 80
levelplot, 682, 691, 703
levels, 31, 32, 150, 226, 246, 280, 1286,

1288
levels<-, 208
levels<- (levels), 226
lfactorial (Special), 399
lgamma (Special), 399
lh, 530
libPaths, 228
library, 29, 33, 106, 229, 229, 235,

284–286, 295, 377, 444, 483, 484,
497, 891, 897, 1441, 1469, 1476,
1500, 1502, 1548

library.dynam, 123, 124, 182, 231, 232,
233, 1533

library.dynam.unload, 106, 123
libraryIQR-class (setOldClass),

944
licence (license), 235
license, 82, 235
LifeCycleSavings, 531, 1144
limitedLabels (recover), 1513
line, 1140
linearizeMlist, 908, 909, 917
LinearMethodsList-class, 908
lines, 652, 658, 680, 688, 695, 710, 713,

714, 722, 723, 725, 726, 732, 736,

743, 744, 747, 748, 750, 752, 758,
778, 1228, 1237, 1362

lines.formula (plot.formula), 742
lines.histogram (plot.histogram),

744
lines.isoreg (plot.isoreg), 1228
lines.stepfun (plot.stepfun), 1235
lines.ts (plot.ts), 1237
linesGrob (grid.lines), 817
lineToGrob (grid.move.to), 822
LINK, 1477
link-glm, 1075
list, 106, 141, 180, 235, 274, 294, 323, 329,

374, 454, 472, 1228, 1230, 1309,
1416, 1440, 1486, 1516, 1532

list-class (BasicClasses), 868
list.files, 152, 153, 155, 157, 190, 237,

356, 448, 1407
list_files_with_exts (fileutils),

1406
list_files_with_type (fileutils),

1406
listFromMlist, 917
lm, 298, 430, 479, 964, 965, 974, 975, 981,

1016, 1025, 1026, 1030, 1031, 1055,
1056, 1065, 1069, 1074, 1085, 1088,
1089, 1103, 1118, 1125, 1134, 1141,
1141, 1144–1148, 1161, 1163, 1188,
1230, 1243, 1260, 1273, 1293, 1305,
1335, 1348, 1349, 1362, 1363, 1386,
1387, 1534

lm-class (setOldClass), 944
lm.fit, 323, 1142, 1144, 1144
lm.influence, 1119, 1120, 1144, 1146,

1161, 1231, 1387
lm.summaries, 1147
lm.wfit, 1144
lm.wfit (lm.fit), 1144
lme, 980
load, 29, 78, 238, 371, 1444
loadedNamespaces, 377
loadedNamespaces (ns-load), 285
loadhistory (savehistory), 1528
loadings, 1149, 1267
loadNamespace, 284, 484
loadNamespace (ns-load), 285
Loblolly, 532
local, 351, 411
local (eval), 132
localeconv, 222, 240
locales, 66, 167, 241, 353, 418
localeToCharset, 200, 398, 1478

INDEX 1591

locator, 701, 706, 711
lockBinding, 26, 461
lockBinding (bindenv), 38
lockEnvironment, 357
lockEnvironment (bindenv), 38
loess, 1150, 1152, 1160, 1261, 1296, 1307,

1341
loess.control, 1150, 1151, 1152
loess.smooth (scatter.smooth),

1295
log, 242, 260, 929
log10 (log), 242
log1p (log), 242
log2 (log), 242
logb (log), 242
Logic, 244, 245, 339, 436, 491
Logic (S4groupGeneric), 928
logical, 245, 246, 260, 414, 490
logical-class (BasicClasses), 868
Logistic, 1153
logLik, 969, 970, 1069, 1076, 1154, 1198
logLik-class (setOldClass), 944
logLik.gls, 1155
logLik.lme, 1155
loglin, 523, 716, 717, 1103, 1155
loglm, 1103, 1157
Lognormal, 1157
longley, 532, 1144
lower.tri, 108, 247
lowess, 652, 722, 1151, 1159, 1307
lqs, 1178
ls, 130, 247, 310, 356, 357, 1429, 1479
ls.diag, 1160, 1161, 1163
ls.print, 1161, 1161, 1163
ls.str, 130, 248, 1479, 1536
lsf.str (ls.str), 1479
lsfit, 323, 324, 1160, 1161, 1162
lynx, 533

mad, 608, 1125, 1163, 1298
mahalanobis, 1164
make.link, 1075, 1076, 1165, 1242
make.names, 90, 91, 249, 250, 1505, 1511
make.packages.html, 1474, 1480
make.rgb, 583, 584, 606
make.socket, 48, 1439, 1481, 1509
make.unique, 143, 249, 250, 1489
makeActiveBinding (bindenv), 38
makeARIMA (KalmanLike), 1127
makeClassRepresentation, 885, 909,

933
makeLazyLoading, 1410
makepredictcall, 1166

makepredictcall.poly (poly), 1240
manglePackageName, 251
manova, 1167, 1351
mantelhaen.test, 1168
maov-class (setOldClass), 944
Map (funprog), 175
mapply, 176, 224, 251, 454
margin.table, 253, 320, 451, 966
mat.or.vec, 254
match, 55, 143, 193, 254, 269, 308, 491
match.arg, 255, 256, 258, 259, 308, 1059
match.call, 224, 256, 257, 308, 895
match.fun, 15, 124, 223, 252, 256, 258,

258, 302, 308, 433
Math, 85, 149, 199, 243, 259, 260, 362, 363,

388, 400, 473, 1413
Math (S4groupGeneric), 928
Math (groupGeneric), 194
Math,structure-method

(StructureClasses), 954
Math.data.frame, 91
Math.Date (Dates), 93
Math.difftime (difftime), 109
Math.factor (factor), 148
Math.POSIXlt (DateTimeClasses), 94
Math.POSIXt (DateTimeClasses), 94
Math2, 363
Math2 (S4groupGeneric), 928
matlines (matplot), 712
matmult, 260
matplot, 528, 712
matpoints (matplot), 712
matrix, 20, 92, 108, 112, 113, 141, 217, 247,

261, 261, 283, 686, 714, 875, 1439,
1440

matrix-class (StructureClasses),
954

mauchly.test, 1170, 1326
max, 336, 491, 492, 982
max (Extremes), 146
max.col, 492
max.col (maxCol), 263
maxCol, 263
mcnemar.test, 1172
md5sum, 1400, 1411
mdeaths (UKLungDeaths), 561
mean, 64, 264, 982, 1000, 1360, 1386
mean.Date (Dates), 93
mean.difftime (difftime), 109
mean.POSIXct, 265
mean.POSIXct (DateTimeClasses), 94
mean.POSIXlt (DateTimeClasses), 94

1592 INDEX

median, 1000, 1086, 1163, 1173, 1175, 1307
medpolish, 1174
mem.limits, 1472
mem.limits (Memory), 265
Memory, 178, 265, 267, 295, 352, 412
Memory-limits, 266, 1488
Memory-limits, 267, 1482
memory.limit (memory.size), 1482
memory.profile, 266, 267
memory.size, 1482
menu, 1435, 1483, 1530
merge, 268
message, 270, 390, 487, 1422
method.skeleton, 910, 941, 942
MethodDefinition, 895, 896, 916, 918,

951, 952
MethodDefinition-class, 911
MethodDefinitionWithTrace-class

(TraceClasses), 955
Methods, 99, 336, 863, 870, 872, 878, 881,

882, 885, 895, 896, 901, 912, 917,
929, 932, 933, 936, 939, 942, 945,
953, 1485

methods, 11, 196, 208, 212, 248, 281, 313,
430, 481, 483, 1105, 1147, 1346,
1463, 1469, 1484

methods-package, 863
MethodsList, 909, 912
MethodsList-class, 887
MethodsList-class, 916
MethodWithNext, 912
MethodWithNext-class, 917
MethodWithNextWithTrace-class

(TraceClasses), 955
mget (get), 180
min, 336, 491, 982
min (Extremes), 146
mirror2html (mirrorAdmin), 1485
mirrorAdmin, 1485
missing, 271, 426, 898
missing-class (BasicClasses), 868
mlm-class (setOldClass), 944
Mod, 11, 260
Mod (complex), 68
mode, 11, 60, 115, 136, 180, 181, 272, 288,

384, 426, 475, 481, 1426, 1479
mode<- (mode), 272
model.extract, 1176, 1180
model.frame, 946, 978, 1002, 1037, 1067,

1071, 1086, 1089, 1091, 1094, 1103,
1133, 1143, 1166, 1176, 1177, 1179,
1180, 1184, 1187, 1210, 1211, 1248,

1251, 1266, 1278, 1358, 1382, 1388,
1394

model.frame.default, 1166
model.matrix, 21, 90, 1142, 1179, 1179,

1364, 1381
model.matrix.default, 1142
model.offset, 1101, 1142, 1210
model.offset (model.extract), 1176
model.response (model.extract),

1176
model.tables, 980, 981, 1061, 1180, 1273,

1289, 1299, 1345, 1376
model.tables.aovlist, 1064
model.weights (model.extract),

1176
modifyList, 1486
month.abb (Constants), 80
month.name (Constants), 80
monthplot, 1182
months (weekdays), 489
mood.test, 979, 1003, 1087, 1184, 1382
morley, 534
mosaic, 716
mosaicplot, 523, 661, 693, 715, 745, 761
mostattributes<- (attributes), 31
moveToGrob (grid.move.to), 822
mtable-class (setOldClass), 944
mtcars, 535
mtext, 617, 620, 680, 686, 718, 723, 724,

726, 774, 776
mts-class (setOldClass), 944
Multinomial, 1185
mvfft (fft), 1079

n2mfrow, 607, 1139
NA, 35, 67, 109, 148, 149, 158, 160, 210, 226,

244, 246, 272, 274, 298, 313, 315,
335, 337, 360, 374, 490, 572, 578,
651, 654, 672, 694, 1035, 1085,
1110, 1187, 1188, 1220, 1248, 1270,
1277, 1280, 1355, 1505, 1511, 1542,
1543

na.action, 275, 1146, 1186, 1188, 1190
na.contiguous, 1187, 1188, 1370
na.exclude, 1100, 1141, 1146, 1147, 1190,

1198
na.exclude (na.fail), 1188
na.fail, 275, 1025, 1067, 1100, 1141, 1177,

1187, 1188, 1198, 1251, 1266, 1370
na.omit, 275, 1025, 1067, 1100, 1141, 1177,

1187, 1190, 1198, 1251, 1266, 1370
na.omit (na.fail), 1188
na.omit.ts, 1187

INDEX 1593

na.omit.ts (ts-methods), 1369
na.pass, 1178
na.pass (na.fail), 1188
NA_character_, 306, 360
NA_character_ (NA), 274
NA_complex_, 360
NA_complex_ (NA), 274
NA_integer_, 18, 289, 360
NA_integer_ (NA), 274
NA_real_, 203, 289, 360
NA_real_ (NA), 274
name, 49, 133, 139, 212, 230, 275, 1449, 1466
name-class (language-class), 907
names, 10, 19, 31, 32, 83, 91, 107, 112, 138,

139, 141, 146, 208, 223, 249, 276,
366, 367, 476, 480, 587, 1280

names<-, 208
names<- (names), 276
NaN, 18, 67, 160, 203, 274, 275, 289, 360,

572, 1085, 1280
NaN (is.finite), 209
napredict, 1072, 1085, 1188, 1256, 1259,

1266
napredict (naresid), 1189
naprint, 1189
naresid, 1106, 1146, 1148, 1188, 1189,

1293
nargs, 278
NativeSymbol, 159
NativeSymbol

(getNativeSymbolInfo), 184
NativeSymbolInfo, 159, 1399
NativeSymbolInfo

(getNativeSymbolInfo), 184
nchar, 164, 278, 306, 420, 428, 465, 768
nclass, 608
nclass.FD, 697
nclass.scott, 697
nclass.Sturges, 697
NCOL, 367
NCOL (nrow), 282
ncol, 112
ncol (nrow), 282
Negate (funprog), 175
NegBinomial, 1190
nestedListing (grid.ls), 820
new, 876, 878, 900, 918, 925, 927, 944, 957
new.env, 884
new.env (environment), 129
new.packages (update.packages),

1544
next, 360

next (Control), 81
NextMethod, 61
NextMethod (UseMethod), 480
nextn, 1032, 1080, 1192
ngettext, 1422
ngettext (gettext), 188
nhtemp, 535
Nile, 536, 1374
nlevels, 150, 227, 280
nlm, 1054, 1193, 1196, 1215, 1218, 1379,

1515
nlminb, 1194, 1195, 1215
nls, 185, 1085, 1090, 1099, 1194, 1197,

1203, 1233, 1263, 1272, 1293, 1301,
1323–1325, 1328–1331, 1333, 1352

nls.control, 1198, 1199, 1202
NLSstAsymptotic, 1204
NLSstClosestX, 1204, 1205, 1206, 1313
NLSstLfAsymptote, 1205, 1205, 1313
NLSstRtAsymptote, 1205, 1206, 1206,

1313
nonstandardGenericWithTrace-class

(TraceClasses), 955
noquote, 281, 313, 316, 1356, 1398
Normal, 1207
normalizePath, 1486
nottem, 537
NotYet, 282
NotYetImplemented (NotYet), 282
NotYetUsed (NotYet), 282
NROW, 367
NROW (nrow), 282
nrow, 112, 282
ns, 1166
ns-dblcolon, 283
ns-hooks, 284
ns-load, 285
ns-topenv, 286
nsl, 1487
NULL, 283, 287, 360, 415, 640, 1110, 1111,

1532
NULL-class (BasicClasses), 868
nullGrob (grid.null), 824
numeric, 62, 115, 116, 206, 287, 288, 335
numeric-class (BasicClasses), 868
numeric_version, 290
NumericConstants, 80, 289, 375, 436
numericDeriv, 1209
nzchar (nchar), 278

object.size, 266, 267, 1488
objects, 29, 106, 232, 357, 377, 1427
objects (ls), 247

1594 INDEX

ObjectsWithPackage-class, 920
occupationalStatus, 538
octmode, 198, 291
offset, 1089, 1101, 1142, 1176, 1210, 1365
old.packages (update.packages),

1544
oldClass, 195, 945
oldClass (class), 60
oldClass-class (setOldClass), 944
oldClass<- (class), 60
on.exit, 174, 292, 389, 440, 1481
oneway.test, 1210
open (connections), 73
open.srcfile (srcfile), 409
open.srcfilecopy (srcfile), 409
Ops, 18, 66, 110, 149, 244, 293, 482
Ops (S4groupGeneric), 928
Ops (groupGeneric), 194
Ops,array,array-method

(StructureClasses), 954
Ops,array,structure-method

(StructureClasses), 954
Ops,structure,array-method

(StructureClasses), 954
Ops,structure,structure-method

(StructureClasses), 954
Ops,structure,vector-method

(StructureClasses), 954
Ops,vector,structure-method

(StructureClasses), 954
Ops.Date, 94, 293
Ops.difftime (difftime), 109
Ops.factor (factor), 148
Ops.numeric_version

(numeric_version), 290
Ops.ordered (factor), 148
Ops.POSIXt (DateTimeClasses), 94
Ops.ts (ts), 1368
optim, 989, 990, 994, 1027, 1028, 1054,

1071, 1114, 1194, 1196, 1212, 1342,
1343, 1515, 1516

optimise (optimize), 1217
optimize, 1194, 1196, 1214, 1215, 1217,

1379
options, 4, 30, 41, 49, 90, 96, 123, 131, 141,

164, 230, 242, 294, 313, 316, 349,
375, 398, 399, 408, 411, 414, 416,
444, 474, 487, 488, 582, 589, 592,
593, 682, 701, 712, 723, 729, 831,
1031, 1048, 1100, 1104, 1141, 1177,
1187, 1188, 1198, 1251, 1266, 1269,
1270, 1432, 1435, 1448, 1450, 1451,

1470, 1500, 1502, 1514, 1534, 1535,
1554, 1555

Orange, 539
OrchardSprays, 540
order, 215, 300, 337, 395, 396, 496, 1126
order.dendrogram, 1048, 1111, 1219
ordered, 194, 313
ordered (factor), 148
ordered-class (setOldClass), 944
outer, 221, 252, 259, 302
over (plotmath), 617

p.adjust, 1220, 1222–1225
pacf (acf), 960
package.dependencies, 1411
package.skeleton, 897, 911, 1489, 1497
package_version, 194, 1441
package_version

(numeric_version), 290
packageDescription, 1437, 1490
packageEvent (UserHooks), 483
packageInfo-class (setOldClass),

944
packageIQR-class (setOldClass),

944
packageSlot, 884, 933
packageSlot (getPackageName), 896
packageSlot<- (getPackageName),

896
packageStartupMessage (message),

270
packageStatus, 1441, 1491
packBits (rawConversion), 341
packGrob (grid.pack), 825
page, 154, 1493
pairlist, 1, 81, 163, 287
pairlist (list), 235
pairs, 662, 686, 719, 722, 737
pairwise.prop.test, 1222
pairwise.t.test, 1221, 1222, 1224
pairwise.table, 1223
pairwise.wilcox.test, 1224
palette, 578, 581, 598, 609, 611, 691, 729,

747, 789, 1008
Palettes, 610
panel.identify, 820
panel.smooth, 686, 722, 1230, 1362
par, 373, 586, 597, 601, 603, 607, 608, 620,

626, 630, 639, 647, 649, 658, 659,
663–665, 667, 670, 671, 676, 680,
686, 689, 694, 700, 703, 705,
711–714, 716, 718, 719, 722, 723,
732, 735, 736, 738–740, 742, 743,

INDEX 1595

746, 748, 749, 752, 754, 757, 758,
762, 763, 766, 767, 769, 773–775,
777, 778, 1110, 1111, 1123, 1139,
1226, 1228, 1230, 1232, 1237, 1341,
1362, 1455

Paren, 82, 303, 436
parent.env (environment), 129
parent.env<- (environment), 129
parent.frame, 130, 133, 134
parent.frame (sys.parent), 439
parse, 78, 101, 102, 128, 137, 304, 397, 399
paste, 50, 54, 128, 165, 279, 306, 406, 420,

428, 1437
path.expand, 35, 151, 152, 154, 156, 157,

228, 307, 437, 438, 1457
pathListing (grid.ls), 820
pbeta, 1007, 1079, 1191, 1360
pbeta (Beta), 1003
pbinom (Binomial), 1006
pbirthday (birthday), 1011
pcauchy (Cauchy), 1016
pch (points), 748
pchisq, 1079, 1374
pchisq (Chisquare), 1020
pdf, 131, 574, 575, 587–593, 611, 615, 630,

632, 639, 643, 644, 684, 748, 749,
774

pdf.options, 576, 593, 612, 614, 615, 633
pdfFonts, 613, 614, 644
pdfFonts (postscriptFonts), 630
periodicSpline, 1321
person, 1493
personList, 1438
personList (person), 1493
persp, 484, 643, 730
pexp (Exponential), 1068
pf (FDist), 1078
pgamma, 401, 1191
pgamma (GammaDist), 1095
pgeom (Geometric), 1098
phantom (plotmath), 617
phyper (Hypergeometric), 1115
pi (Constants), 80
pico (edit), 1452
pictex, 592, 616
pie, 733
pipe (connections), 73
pkgDepends, 1410, 1420
pkgDepends (getDepList), 1408
PkgUtils, 1494
pkgVignettes (buildVignettes),

1397

placeGrob (grid.place), 827
plain (plotmath), 617
PlantGrowth, 541
plclust (hclust), 1106
plnorm (Lognormal), 1157
plogis, 199
plogis (Logistic), 1153
plot, 651, 670, 695, 697, 703, 708, 711, 713,

714, 719, 735, 737–740, 742, 745,
746, 748, 750, 769, 1062, 1108,
1130, 1175, 1228, 1235–1237, 1266

plot.acf, 962, 1225
plot.data.frame, 91, 737
plot.Date, 94
plot.Date (axis.POSIXct), 665
plot.decomposed.ts (decompose),

1042
plot.default, 652, 662, 666, 669, 675,

682, 687, 690, 694, 711, 713, 723,
724, 728, 729, 736, 737, 738, 740,
742, 743, 745–748, 763, 766, 769,
1047, 1107, 1130, 1139, 1237

plot.dendrogram, 680
plot.dendrogram (dendrogram), 1046
plot.density, 1051, 1226
plot.design, 740
plot.ecdf (ecdf), 1061
plot.factor, 742, 743, 745
plot.formula, 736, 742, 742
plot.function (curve), 687
plot.hclust, 1046
plot.hclust (hclust), 1106
plot.histogram, 695, 696, 744
plot.HoltWinters, 1227
plot.isoreg, 1127, 1228
plot.lm, 294, 1229, 1362
plot.mlm (plot.lm), 1229
plot.new, 484, 592, 680, 727, 746, 767
plot.new (frame), 693
plot.POSIXct (axis.POSIXct), 665
plot.POSIXlt (axis.POSIXct), 665
plot.ppr, 1232, 1250
plot.prcomp (prcomp), 1251
plot.princomp (princomp), 1265
plot.profile.nls, 1233, 1272
plot.spec, 298, 1234, 1314, 1316, 1319
plot.stepfun, 1062, 1235, 1338
plot.stl, 1340, 1341
plot.stl (stlmethods), 1341
plot.table, 745
plot.ts, 1139, 1140, 1237, 1342,

1369–1371

1596 INDEX

plot.tskernel (kernel), 1130
plot.TukeyHSD (TukeyHSD), 1375
plot.window, 664, 670, 676, 682, 689, 690,

694, 703, 723, 728, 736, 738, 739,
746, 766, 771

plot.xy, 711, 713, 747, 747, 750
plotmath, 147, 236, 260, 276, 306, 320,

384, 429, 572, 601, 616, 617, 644,
673, 707, 719, 774–776, 840, 1120

plotViewport, 785, 849
pmatch, 53, 55, 141, 193, 255, 256, 258, 307
pmax (Extremes), 146
pmin (Extremes), 146
pnbinom (NegBinomial), 1190
png, 47, 48, 298, 589, 591, 593, 621, 635, 646
pnorm, 1375
pnorm (Normal), 1207
points, 652, 686, 695, 701, 707, 711, 713,

714, 722–724, 727, 732, 736, 739,
743, 747, 748, 748, 829, 1047, 1048,
1228, 1230, 1362

points.default, 747
points.formula (plot.formula), 742
pointsGrob (grid.points), 828
Poisson, 1238
poisson (family), 1074
poly, 1166, 1240
polygon, 577, 723, 734, 751, 754, 758, 778,

1047
polygonGrob (grid.polygon), 829
polylineGrob (grid.lines), 817
polym (poly), 1240
polyroot, 309, 1379
pop.viewport, 849, 850
popViewport, 794, 858
popViewport (Working with

Viewports), 859
pos.to.env, 310
Position (funprog), 175
POSIXct, 21, 166, 418
POSIXct (DateTimeClasses), 94
POSIXct-class (setOldClass), 944
POSIXlt, 21, 166, 418
POSIXlt (DateTimeClasses), 94
POSIXlt-class (setOldClass), 944
POSIXt, 109, 194, 288
POSIXt (DateTimeClasses), 94
POSIXt-class (setOldClass), 944
possibleExtends, 865
postDrawDetails (drawDetails), 785
postscript, 131, 132, 296, 574, 575,

587–592, 612–614, 617, 622, 624,

630, 632–635, 643, 644, 646, 650,
651, 684, 729, 748, 774

postscriptFonts, 594, 626, 627, 629,
630, 644

power, 1075, 1076, 1165, 1241
power.anova.test, 1242
power.prop.test, 1243, 1268
power.t.test, 1242, 1245, 1268
PP.test, 1246
ppoints, 1247, 1278
ppois (Poisson), 1238
ppr, 1232, 1248, 1355
prcomp, 1009, 1190, 1251, 1266, 1267, 1297
precip, 541
predict, 136, 1067, 1144, 1190, 1198, 1253,

1260, 1263
predict.ar, 1254
predict.ar (ar), 983
predict.Arima, 991, 1254, 1254
predict.arima0, 1254
predict.arima0 (arima0), 993
predict.glm, 1103, 1254, 1255, 1362
predict.HoltWinters, 1114, 1228,

1254, 1257
predict.lm, 1143, 1144, 1254, 1258
predict.loess, 1151, 1254, 1260
predict.mlm (predict.lm), 1258
predict.nls, 1200, 1254, 1262
predict.poly, 1254
predict.poly (poly), 1240
predict.prcomp (prcomp), 1251
predict.princomp, 1254
predict.princomp (princomp), 1265
predict.smooth.spline, 1254, 1263,

1310
predict.StructTS, 1254
predict.StructTS (StructTS), 1342
preDrawDetails (drawDetails), 785
preplot, 1265
presidents, 542
pressure, 543
pretty, 310, 595, 665, 667
prettyNum, 164, 165
prettyNum (formatC), 170
Primitive, 312
primitive, 482
primitive (Primitive), 312
princomp, 1009, 1010, 1073, 1149, 1190,

1253, 1265, 1297, 1353
print, 48, 50, 65, 165, 281, 295, 312,

315–317, 410, 948, 971, 980, 1048,
1062, 1108, 1130, 1175, 1198, 1266,

INDEX 1597

1269, 1270, 1338, 1363, 1493, 1527,
1535

print.anova, 1269
print.anova (anova), 971
print.aov (aov), 980
print.aovlist (aov), 980
print.ar (ar), 983
print.arima0 (arima0), 993
print.AsIs (AsIs), 25
print.Bibtex (toLatex), 1541
print.browseVignettes

(browseVignettes), 1431
print.by (by), 43
print.checkDocFiles (QC), 1412
print.checkDocStyle (QC), 1412
print.checkFF (checkFF), 1399
print.checkReplaceFuns (QC), 1412
print.checkS3methods (QC), 1412
print.checkTnF (checkTnF), 1401
print.checkVignettes

(checkVignettes), 1402
print.codoc (codoc), 1403
print.codocClasses (codoc), 1403
print.codocData (codoc), 1403
print.condition (conditions), 69
print.connection (connections), 73
print.data.frame, 91, 314
print.Date (Dates), 93
print.default, 49, 65, 127, 164, 295,

313, 314, 315, 317, 327, 410, 664,
1047

print.dendrogram (dendrogram),
1046

print.density (density), 1049
print.difftime (difftime), 109
print.dist (dist), 1057
print.DLLInfo (getLoadedDLLs), 183
print.DLLInfoList

(getLoadedDLLs), 183
print.DLLRegisteredRoutines

(getDLLRegisteredRoutines),
181

print.ecdf (ecdf), 1061
print.factanal (loadings), 1149
print.family (family), 1074
print.formula (formula), 1088
print.ftable (ftable), 1092
print.getAnywhere (getAnywhere),

1460
print.glm (glm), 1100
print.hclust (hclust), 1106
print.hexmode (hexmode), 198

print.HoltWinters (HoltWinters),
1112

print.hsearch (help.search), 1471
print.infl (influence.measures),

1117
print.integrate (integrate), 1120
print.kmeans (kmeans), 1131
print.Latex (toLatex), 1541
print.libraryIQR (library), 229
print.lm (lm), 1141
print.loadings, 1073
print.loadings (loadings), 1149
print.logLik (logLik), 1154
print.ls_str (ls.str), 1479
print.MethodsFunction (methods),

1484
print.NativeRoutineList

(getDLLRegisteredRoutines),
181

print.noquote (noquote), 281
print.numeric_version

(numeric_version), 290
print.octmode (octmode), 291
print.packageDescription

(packageDescription), 1490
print.packageInfo (library), 229
print.packageIQR (data), 1443
print.packageStatus

(packageStatus), 1491
print.POSIXct (DateTimeClasses),

94
print.POSIXlt (DateTimeClasses),

94
print.power.htest, 1268
print.prcomp (prcomp), 1251
print.princomp (princomp), 1265
print.proc_time (proc.time), 318
print.recordedplot (recordPlot),

638
print.restart (conditions), 69
print.rle (rle), 361
print.sessionInfo (sessionInfo),

1531
print.simple.list (print), 312
print.socket (make.socket), 1481
print.srcfile (srcfile), 409
print.srcref (srcfile), 409
print.stepfun (stepfun), 1337
print.StructTS (StructTS), 1342
print.summary.aov (summary.aov),

1344

1598 INDEX

print.summary.aovlist
(summary.aov), 1344

print.summary.glm, 1269
print.summary.glm (summary.glm),

1346
print.summary.lm, 169, 1269, 1270
print.summary.lm (summary.lm),

1348
print.summary.manova

(summary.manova), 1350
print.summary.nls (summary.nls),

1351
print.summary.prcomp (prcomp),

1251
print.summary.princomp

(summary.princomp), 1353
print.summary.table (table), 450
print.table (print), 312
print.terms (terms), 1363
print.ts, 1268, 1369
print.TukeyHSD (TukeyHSD), 1375
print.undoc (undoc), 1419
print.vignette (vignette), 1551
print.warnings (warnings), 488
print.xtabs (xtabs), 1394
printCoefmat, 298, 1269
prmatrix, 317
proc.time, 179, 318, 385, 445, 449
prod, 319
profile, 1198, 1233, 1271, 1272
profile.glm, 1271
profile.nls, 1200, 1233, 1271, 1271
prohibitGeneric, 939
prohibitGeneric

(implicitGeneric), 898
proj, 981, 1181, 1272
promax (varimax), 1383
promise, 133
promise (delayedAssign), 100
promises, 159, 371
promises (delayedAssign), 100
prompt, 922, 923, 1404, 1469, 1489, 1490,

1495, 1498, 1499
promptClass, 921, 923, 1404, 1489, 1490
promptData, 1496, 1497, 1497
promptMethods, 922, 922, 1489, 1490
promptPackage, 1498
prop.table, 254, 320, 451
prop.test, 1006, 1222, 1244, 1274, 1276,

1358
prop.trend.test, 1276
prototype, 909

prototype (representation), 923
ps.options, 576, 593, 615, 626, 629, 632,

651
psigamma (Special), 399
psignrank, 1389
psignrank (SignRank), 1304
pt (TDist), 1359
ptukey (Tukey), 1374
punif (Uniform), 1377
Puromycin, 543
push.viewport, 850, 850
pushBack, 76, 78, 321, 461
pushBackLength (pushBack), 321
pushViewport, 794, 858
pushViewport (Working with

Viewports), 859
pweibull (Weibull), 1384
pwilcox, 1389
pwilcox (Wilcoxon), 1390

q, 370, 413, 1428
q (quit), 325
qbeta, 1079
qbeta (Beta), 1003
qbinom (Binomial), 1006
qbirthday (birthday), 1011
QC, 1404, 1412, 1419
qcauchy (Cauchy), 1016
qchisq, 1079
qchisq (Chisquare), 1020
qexp (Exponential), 1068
qf (FDist), 1078
qgamma (GammaDist), 1095
qgeom (Geometric), 1098
qhyper (Hypergeometric), 1115
qlnorm (Lognormal), 1157
qlogis (Logistic), 1153
qnbinom (NegBinomial), 1190
qnorm, 331, 1375
qnorm (Normal), 1207
qpois (Poisson), 1238
qqline, 1230
qqline (qqnorm), 1277
qqnorm, 1247, 1277, 1303
qqplot, 1247
qqplot (qqnorm), 1277
qr, 34, 58, 126, 219, 220, 322, 324, 325, 432,

976, 1015, 1145, 1350
QR.Auxiliaries, 324
qr.Q, 323
qr.Q (QR.Auxiliaries), 324
qr.qy, 325
qr.R, 323

INDEX 1599

qr.R (QR.Auxiliaries), 324
qr.solve, 394
qr.X, 323
qr.X (QR.Auxiliaries), 324
qsignrank (SignRank), 1304
qt (TDist), 1359
qtukey, 1376
qtukey (Tukey), 1374
quade.test, 1091, 1278
quakes, 545
quantile, 86, 572, 1086, 1125, 1174, 1247,

1280
quarters (weekdays), 489
quartz, 48, 412, 593, 614, 623, 634, 636,

701, 712
quartz.options, 593
quartzFont (quartzFonts), 636
quartzFonts, 635, 636
quasi, 1101
quasi (family), 1074
quasibinomial (family), 1074
quasipoisson (family), 1074
Querying the Viewport Tree, 851
quit, 325
qunif (Uniform), 1377
quote, 41, 113, 134, 467, 468, 620, 907
quote (substitute), 425
Quotes, 80, 289, 316, 327, 436, 438
qweibull (Weibull), 1384
qwilcox (Wilcoxon), 1390

R.home, 328, 448
R.Version, 132, 329
R.version, 4, 213, 290, 438, 439, 1531
R.version (R.Version), 329
r2dtable, 1282
R_HOME, 5, 83, 235, 295, 410–412, 582, 644,

1398, 1418, 1423, 1430, 1435, 1473,
1523, 1532

R_HOME (R.home), 328
R_LIBS (libPaths), 228
R_LIBS_SITE (libPaths), 228
R_LIBS_USER (libPaths), 228
R_system_version

(numeric_version), 290
rainbow, 581, 597, 598, 604, 610, 639, 702,

703, 729
rainbow (Palettes), 610
Random, 330
Random.user, 331, 334
randu, 545
range, 147, 335, 595, 686, 1086, 1125
rank, 301, 336, 396, 496

rapply, 224, 338, 1045
raw, 339
raw-class (BasicClasses), 868
rawConnection, 340
rawConnectionValue

(rawConnection), 340
rawConversion, 341
rawShift, 339
rawShift (rawConversion), 341
rawToBits (rawConversion), 341
rawToChar, 339
rawToChar (rawConversion), 341
rbeta (Beta), 1003
rbind, 208, 874
rbind (cbind), 50
rbind2 (cbind2), 873
rbind2,ANY,ANY-method (cbind2),

873
rbind2,ANY,missing-method

(cbind2), 873
rbind2-methods (cbind2), 873
rbinom, 1186
rbinom (Binomial), 1006
rc.getOption (rcompgen), 1499
rc.options (rcompgen), 1499
rc.settings (rcompgen), 1499
rc.status (rcompgen), 1499
rcauchy (Cauchy), 1016
rchisq (Chisquare), 1020
rcompgen, 1499
rcond (kappa), 219
Rd2dvi (RdUtils), 342
Rd2txt (RdUtils), 342
Rd_db (Rdutils), 1414
Rd_parse (Rdutils), 1414
Rdconv, 922
Rdconv (RdUtils), 342
Rdindex, 1413
RdUtils, 342
Rdutils, 1414
Re (complex), 68
read.00Index, 1415
read.csv, 1507
read.csv (read.table), 1509
read.csv2 (read.table), 1509
read.dcf, 78, 1422, 1491, 1548
read.dcf (dcf), 97
read.delim (read.table), 1509
read.delim2 (read.table), 1509
read.DIF, 1504
read.fortran, 1506
read.ftable, 1094, 1283

1600 INDEX

read.fwf, 1506, 1507, 1507, 1513
read.socket, 1439, 1482, 1508
read.table, 91, 128, 296, 327, 376, 1416,

1443, 1444, 1506–1508, 1509, 1543,
1544, 1555

readBin, 4, 78, 343, 347, 349, 376
readChar, 78, 344, 346, 376
readCitationFile (citEntry), 1437
readline, 348, 1497
readLines, 77, 78, 128, 321, 345, 347, 348,

349, 375, 376, 495
readNEWS, 1416
real, 115, 288, 350
Recall, 46, 351
recordedplot-class (setOldClass),

944
recordGraphics, 637, 832
recordGrob (grid.record), 832
recordPlot, 638
recover, 99, 295, 465, 467, 468, 1448, 1513
rect, 672, 723, 744, 752, 753, 760
rect.hclust, 1108, 1109, 1117, 1285
rectGrob (grid.rect), 833
Reduce (funprog), 175
reformulate (delete.response),

1043
reg.finalizer, 178, 351
regex, 352
regexp, 193, 1463, 1464
regexp (regex), 352
regexpr, 55, 1405
regexpr (grep), 191
registerImplicitGenerics

(implicitGeneric), 898
regular expression, 191, 193, 237,

248, 419, 420, 625, 1426, 1429,
1471, 1472, 1479

regular expression (regex), 352
relevel, 227, 1286, 1288
relist, 479, 1291, 1515
REMOVE, 232, 1476, 1477, 1517, 1518, 1548
remove, 356
remove.packages, 1517, 1518, 1548
removeCConverter

(getNumCConverters), 186
removeClass (findClass), 884
removeGeneric (GenericFunctions),

889
removeGrob, 791, 796, 810, 812, 835
removeGrob (grid.remove), 834
removeMethod (setMethod), 940

removeMethods (GenericFunctions),
889

removeTaskCallback, 458, 459
removeTaskCallback

(taskCallback), 455
Renviron (Startup), 410
reorder, 227, 1111, 1219, 1286, 1287
reorder (reorder.factor), 1287
reorder.dendrogram, 1048, 1110, 1286,

1288
reorder.factor, 1287
rep, 144, 208, 303, 312, 357, 380, 383, 651,

654, 856, 857
rep.numeric_version

(numeric_version), 290
repeat, 360
repeat (Control), 81
repeat-class (language-class), 907
replace, 359
replayPlot (recordPlot), 638
replicate, 359
replicate (lapply), 223
replications, 981, 1181, 1289
representation, 923, 931
require, 216, 295, 411, 1500, 1502
require (library), 229
Reserved, 360, 436
reserved, 81, 246, 274, 287, 1466, 1467
reserved (Reserved), 360
resetClass (findClass), 884
resetGeneric, 914
reshape, 1290, 1534
resid (residuals), 1292
residuals, 972, 1025, 1065, 1085, 1103,

1106, 1144, 1148, 1190, 1198, 1292,
1305, 1362, 1387

residuals.glm, 1148, 1231, 1347
residuals.glm (glm.summaries),

1105
residuals.HoltWinters

(HoltWinters), 1112
residuals.lm (lm.summaries), 1147
residuals.tukeyline (line), 1140
restartDescription (conditions),

69
restartFormals (conditions), 69
retracemem (tracemem), 470
return, 209, 304
return (function), 174
rev, 360, 1110
rev.dendrogram, 1287
rev.dendrogram (dendrogram), 1046

INDEX 1601

rexp (Exponential), 1068
rf (FDist), 1078
rgamma (GammaDist), 1095
rgb, 578, 581, 597, 599, 600, 604, 611, 639,

640, 729, 789
rgb2hsv, 604, 640
rgeom (Geometric), 1098
RHOME, 328, 1518
rhyper (Hypergeometric), 1115
ring (plotmath), 617
rivers, 546
rle, 361, 476, 477
rle-class (setOldClass), 944
rlnorm (Lognormal), 1157
rlogis (Logistic), 1153
rm (remove), 356
rmultinom (Multinomial), 1185
rnbinom (NegBinomial), 1190
RNG, 1208
RNG (Random), 330
RNGkind, 334, 1305
RNGkind (Random), 330
RNGversion (Random), 330
rnorm, 333, 1378
rnorm (Normal), 1207
rock, 547
roman, 1519
Round, 362
round, 110, 206, 364
round (Round), 362
round.Date, 94
round.Date (round.POSIXt), 363
round.difftime (difftime), 109
round.POSIXt, 96, 363
row, 62, 364, 380, 392
row.names, 31, 32, 91, 112, 365, 367
row.names<- (row.names), 365
row/colnames, 366
rowMeans (colSums), 63
rownames, 92, 113, 262, 366, 514
rownames (row/colnames), 366
rownames<- (row/colnames), 366
rowsum, 64, 367
rowSums, 368
rowSums (colSums), 63
rpart, 960
rpois (Poisson), 1238
Rprof, 412, 1271, 1519, 1521, 1537, 1538
Rprofile (Startup), 410
Rprofmem, 268, 471, 1520, 1521, 1538
Rscript, 1522
RShowDoc, 1476, 1523

rsignrank (SignRank), 1304
RSiteSearch, 1473, 1474, 1524
rstandard, 1106, 1149, 1293
rstandard (influence.measures),

1117
rstudent, 1106, 1148, 1149, 1293
rstudent (influence.measures),

1117
rt (TDist), 1359
Rtangle, 1525, 1528, 1540, 1541
RtangleSetup (Rtangle), 1525
rug, 218, 662, 755, 1361
runif, 333, 1208
runif (Uniform), 1377
runmed, 1293, 1312
RweaveLatex, 1526, 1526, 1540, 1541
RweaveLatexSetup (RweaveLatex),

1526
rweibull (Weibull), 1384
rwilcox (Wilcoxon), 1390

S3, 925
S3-class (S3), 925
S3Class, 877
S3Class (S3), 925
S3Class<- (S3), 925
S3groupGeneric, 929, 930
S3groupGeneric (groupGeneric), 194
S3Methods, 1485
S3Methods (UseMethod), 480
S3Part (S3), 925
S3Part<- (S3), 925
S4 (S3), 925
S4-class (BasicClasses), 868
S4groupGeneric, 196, 928, 955
SafePrediction, 1256, 1260
SafePrediction (makepredictcall),

1166
sammon, 1024
sample, 368
sapply, 251, 252, 454
sapply (lapply), 223
save, 29, 78, 119, 239, 242, 296, 370, 494,

1445, 1447
savehistory, 1528
savePlot, 591, 642, 648
scale, 372, 433, 1166, 1252
scan, 78, 128, 150, 305, 321, 327, 349, 373,

399, 494, 1443, 1506, 1508,
1510–1513

scatter.smooth, 1295
SClassExtension, 876, 878, 879, 903,

913

1602 INDEX

SClassExtension-class, 930
screen, 756
screeplot, 1253, 1266, 1267, 1297
scriptscriptstyle (plotmath), 617
scriptstyle (plotmath), 617
sd, 1036, 1298, 1360
Sd2Rd (RdUtils), 342
se.contrast, 1181, 1298
se.contrast.aovlist, 1064
sealClass (findClass), 884
SealedMethodDefinition-class

(MethodDefinition-class),
911

search, 22, 26, 29, 73, 105, 106, 135, 180,
230, 232, 248, 357, 377, 575, 897,
1427, 1479, 1501

searchpaths (search), 377
Seatbelts (UKDriverDeaths), 559
seek, 78, 377
seekViewport, 794, 858
seekViewport (Working with

Viewports), 859
segments, 658, 660, 723, 752, 754, 758,

1047, 1048, 1236
segmentsGrob (grid.segments), 835
select.list, 1483, 1530, 1545
selectMethod, 871, 873, 880, 914, 950,

951
selectMethod (getMethod), 894
selfStart, 1099, 1205, 1206, 1300, 1313,

1323–1325, 1328–1331, 1333
selfStart.default, 1099
selfStart.formula, 1099
seq, 63, 359, 360, 379, 381–383, 1440
seq.Date, 88, 94, 380, 381
seq.int, 208
seq.POSIXt, 88, 96, 380, 381, 382, 699
seq_along (seq), 379
seq_len, 383
seq_len (seq), 379
sequence, 359, 380, 383
sessionInfo, 330, 439, 1434, 1471, 1531,

1542
set.seed (Random), 330
setAs, 865, 873, 903–905
setAs (as), 864
setCConverterStatus

(getNumCConverters), 186
setChildren (grid.add), 795
setClass, 863, 866, 873, 876–879,

892–894, 901–904, 907, 909, 910,
913, 914, 916, 923, 924, 926, 930,

931, 937, 945–948, 957, 958, 1476
setClassUnion, 876, 880, 881, 885, 903,

913, 914, 930, 934
setdiff (sets), 384
setEPS, 626
setEPS (ps.options), 632
setequal (sets), 384
setGeneric, 888, 892, 899, 905, 916, 919,

935, 941, 942, 948, 954
setGenericImplicit

(implicitGeneric), 898
setGrob, 791
setGrob (grid.set), 837
setGroupGeneric, 888, 928
setGroupGeneric (setGeneric), 935
setHook, 231, 285, 694, 732, 824
setHook (UserHooks), 483
setIs, 866, 876, 878, 893, 903, 913, 914,

919, 930, 946, 948
setIs (is), 901
setMethod, 467, 863, 864, 881, 888, 901,

906, 907, 910–912, 916, 929, 936,
939, 940, 945, 947, 951, 1476

setNames, 1022, 1302
setOldClass, 877, 919, 925–927, 942, 944,

954, 955
setPackageName (getPackageName),

896
setPS (ps.options), 632
setReplaceMethod

(GenericFunctions), 889
setRepositories, 298, 299, 1435, 1531
sets, 384
setSessionTimeLimit

(setTimeLimit), 385
setTimeLimit, 385
setTxtProgressBar

(txtProgressBar), 1542
setValidity (validObject), 956
setwd, 442
setwd (getwd), 189
shapiro.test, 1136, 1303
SHLIB, 124, 235, 1442, 1532
show, 295, 316, 937, 948
show,ANY-method (show), 948
show,classRepresentation-method

(show), 948
show,genericFunction-method

(show), 948
show,MethodDefinition-method

(show), 948

INDEX 1603

show,MethodWithNext-method
(show), 948

show,ObjectsWithPackage-method
(show), 948

show,signature-method
(signature-class), 951

show,traceable-method (show), 948
show,ts-method

(StructureClasses), 954
show-methods (show), 948
showClass, 949
showConnections, 78, 341, 386, 461
showDefault, 948
showMethods, 882, 887, 892, 916, 917, 949,

949, 1484, 1485
showMlist, 949
showNonASCII, 1417
shQuote, 328, 387, 408, 446
sign, 388
signalCondition, 413
signalCondition (conditions), 69
Signals, 389
signature (GenericFunctions), 889
signature-class, 951
signif, 164, 170, 315, 430, 653
signif (Round), 362
SignRank, 1304
simint, 1376
simpleCondition (conditions), 69
simpleError (conditions), 69
simpleMessage (conditions), 69
simpleWarning (conditions), 69
simulate, 1305
sin, 199, 260
sin (Trig), 472
single, 161
single (double), 114
single-class (BasicClasses), 868
sinh (Hyperbolic), 198
sink, 49, 78, 386, 389, 1434
sleep, 547
slice.index, 391
slot, 392, 875, 878, 952
slot<- (slot), 952
slotNames (slot), 952
slotOp, 392
slotsFromS3 (S3), 925
smooth, 1295, 1306
smooth.spline, 1250, 1264, 1293, 1307,

1308, 1321
smoothEnds, 1294, 1295, 1311
socket-class (setOldClass), 944

socketConnection (connections), 73
socketSelect, 393
solve, 34, 59, 323, 393, 1164
solve.qr, 394
solve.qr (qr), 322
sort, 202, 215, 241, 301, 337, 360, 395, 496
sort.list (order), 300
sortedXyData, 1205, 1206, 1313
source, 118, 119, 128, 207, 305, 397, 444,

865, 941, 1402, 1444, 1449, 1539
spec (spectrum), 1318
spec.ar, 1313, 1318, 1319
spec.pgram, 1315, 1317–1319
spec.taper, 1316, 1317
Special, 19, 260, 399
spectrum, 1129, 1235, 1314, 1316, 1318
spineplot, 679, 742, 759
spline, 982
spline (splinefun), 1319
splinefun, 688, 982, 1063, 1236, 1319,

1338
splinefunH (splinefun), 1319
split, 86, 402
split.Date (Dates), 93
split.POSIXct (DateTimeClasses),

94
split.screen, 705, 727, 729
split.screen (screen), 756
split<- (split), 402
sprintf, 128, 165, 172, 188, 306, 404, 613,

626, 650
sqrt, 19, 243, 401
sqrt (Math), 259
sQuote, 296, 328, 388, 407, 426
srcfile, 305, 409
srcfile-class (srcfile), 409
srcfilecopy, 305
srcfilecopy (srcfile), 409
srcfilecopy-class (srcfile), 409
srcref, 305
srcref (srcfile), 409
srcref-class (srcfile), 409
SSasymp, 1204, 1322, 1332, 1333
SSasympOff, 1323
SSasympOrig, 1324
SSbiexp, 1325
SSD, 1171, 1172, 1326
SSfol, 554, 1327
SSfpl, 1328
SSgompertz, 1329
SSlogis, 1330
SSmicmen, 1331

1604 INDEX

SSweibull, 1332
stack, 1291, 1533
stack.loss (stackloss), 548
stack.x (stackloss), 548
stackloss, 548, 1144
standardGeneric, 888, 891
Stangle, 1402, 1525, 1552
Stangle (Sweave), 1538
stars, 761, 772
start, 1333, 1367, 1369, 1373
Startup, 65, 131, 295, 410, 442, 1430
stat.anova, 972, 1334
state, 549, 562
stats (stats-package), 959
stats-deprecated, 1335
stats-package, 959
stderr, 270, 390
stderr (showConnections), 386
stdin, 321, 349, 373, 386, 1510, 1522
stdin (showConnections), 386
stdout, 76, 390
stdout (showConnections), 386
stem, 697, 745, 764
step, 965, 1069, 1070, 1335
stepAIC, 1336, 1337
stepfun, 1062, 1063, 1126, 1235, 1337
stl, 1043, 1183, 1339, 1341, 1342, 1344
stlmethods, 1341
stop, 189, 271, 295, 390, 413, 414, 415, 487,

1422
stopifnot, 10, 414, 414
storage.mode, 115, 116, 206, 288, 475
storage.mode (mode), 272
storage.mode<- (mode), 272
str, 248, 1048, 1429, 1479, 1480, 1534
str.default, 1047
str.dendrogram (dendrogram), 1046
str.logLik (logLik), 1154
str.POSIXt (DateTimeClasses), 94
strftime, 96, 166, 295
strftime (strptime), 415
strheight, 726
strheight (strwidth), 767
stringHeight (stringWidth), 852
stringWidth, 848, 852
stripchart, 662, 674, 737, 765
strOptions (str), 1534
strptime, 23, 24, 96, 110, 241, 242, 415,

666, 699
strsplit, 54, 128, 279, 306, 352, 356, 419,

428
strtrim, 128, 421, 428

StructTS, 1129, 1183, 1341, 1342, 1372,
1374

structure, 422, 877, 946
structure-class

(StructureClasses), 954
StructureClasses, 954
strwidth, 279, 707, 725, 767
strwrap, 423, 1535
sub, 54, 56, 128, 420, 1464
sub (grep), 191
Subscript (Extract), 138
subset, 144, 424, 472
substitute, 41, 100, 102, 113, 272, 292,

425, 467, 468, 620, 913
substr, 7, 54, 128, 279, 306, 420, 422, 427
substr<- (substr), 427
substring (substr), 427
substring<- (substr), 427
sum, 64, 320, 429
Summary, 9, 12, 13, 147, 149, 319, 336, 429
Summary (S4groupGeneric), 928
Summary (groupGeneric), 194
summary, 430, 972, 980, 1051, 1102, 1103,

1147, 1198, 1345, 1348, 1349, 1352,
1353, 1480, 1534, 1536

summary.aov, 981, 1344
summary.aovlist (summary.aov),

1344
summary.connection (connections),

73
Summary.Date (Dates), 93
summary.Date (Dates), 93
Summary.difftime (difftime), 109
summary.ecdf (ecdf), 1061
Summary.factor (factor), 148
summary.glm, 431, 973, 1102, 1103, 1106,

1346
summary.infl

(influence.measures), 1117
summary.lm, 431, 1144, 1147, 1148, 1161,

1347, 1348
summary.manova, 976, 977, 1167, 1350
summary.mlm (summary.lm), 1348
summary.nls, 1200, 1351
Summary.numeric_version

(numeric_version), 290
summary.packageStatus

(packageStatus), 1491
Summary.POSIXct

(DateTimeClasses), 94
summary.POSIXct

(DateTimeClasses), 94

INDEX 1605

Summary.POSIXlt
(DateTimeClasses), 94

summary.POSIXlt
(DateTimeClasses), 94

summary.prcomp (prcomp), 1251
summary.princomp, 1267, 1353
summary.stepfun (stepfun), 1337
summary.table (table), 450
summary.table-class

(setOldClass), 944
summaryRprof, 1520, 1537
sunflowerplot, 653, 768, 772
sunspot.month, 550, 552
sunspot.year, 551
sunspots, 550, 551
sup (plotmath), 617
suppressMessages (message), 270
suppressPackageStartupMessages,

231
suppressPackageStartupMessages

(message), 270
suppressWarnings (warning), 486
supsmu, 1250, 1307, 1354
Surv, 496
survival, 24, 166
survreg, 1362
svd, 58, 126, 220, 323, 431, 1015, 1253, 1266
svg, 48
svg (cairo), 574
Sweave, 299, 1397, 1398, 1402, 1526, 1528,

1538, 1540
SweaveSyntaxLatex (Sweave), 1538
SweaveSyntaxNoweb (Sweave), 1538
SweaveSyntConv, 1540
sweep, 16, 259, 373, 432, 1035
swiss, 552, 1144
switch, 82, 434
symbol (plotmath), 617
symbols, 723, 764, 770
symnum, 1346, 1348, 1352, 1355
Syntax, 19, 67, 82, 141, 245, 289, 304, 328,

435
sys.call, 133, 224, 258, 278
sys.call (sys.parent), 439
sys.calls (sys.parent), 439
Sys.chmod (files), 155
Sys.Date, 93, 94
Sys.Date (Sys.time), 444
sys.frame, 26, 134, 135, 180, 248, 357
sys.frame (sys.parent), 439
sys.frames (sys.parent), 439
sys.function (sys.parent), 439

Sys.getenv, 132, 436, 441, 442
Sys.getlocale, 131, 222, 248, 436, 1479
Sys.getlocale (locales), 241
Sys.getpid (getpid), 187
Sys.glob, 228, 238, 437, 478
Sys.info, 4, 438
Sys.localeconv, 241, 242
Sys.localeconv (localeconv), 240
sys.nframe (sys.parent), 439
sys.on.exit, 293
sys.on.exit (sys.parent), 439
sys.parent, 439, 1448
sys.parents (sys.parent), 439
Sys.putenv (base-deprecated), 34
Sys.setenv, 35, 132, 436, 441, 1451, 1529
Sys.setlocale, 240
Sys.setlocale (locales), 241
Sys.sleep, 385, 442
sys.source, 29, 130, 286, 296, 399, 443
sys.status (sys.parent), 439
Sys.time, 93, 96, 444, 464
Sys.timezone, 24, 445
Sys.timezone (timezones), 463
Sys.umask, 76
Sys.umask (files), 155
Sys.unsetenv (Sys.setenv), 441
Sys.which, 445
system, 4, 5, 213, 446
system.file, 447
system.time, 319, 448, 1367

T (logical), 246
t, 14, 449, 1368
t.test, 1134, 1135, 1211, 1223, 1246, 1357,

1389
t.ts (ts), 1368
table, 86, 313, 450, 453, 514, 538, 745, 966,

1093–1095, 1157, 1394
table-class (setOldClass), 944
tabulate, 86, 451, 452
tail (head), 1464
tan, 199
tan (Trig), 472
tanh, 1153
tanh (Hyperbolic), 198
tapply, 16, 43, 224, 368, 453, 968
taskCallback, 455
taskCallbackManager, 455, 456, 457,

459
taskCallbackNames, 458
tcrossprod (crossprod), 83
TDist, 1359
tempdir, 132, 1480

1606 INDEX

tempdir (tempfile), 459
tempfile, 459
termplot, 1231, 1361
terms, 740, 1044, 1089, 1102, 1143, 1177,

1178, 1180, 1363, 1364, 1365, 1381
terms.formula, 1089, 1363, 1364, 1365,

1381
terms.object, 1363, 1364, 1365
terrain.colors, 580, 610, 702, 703
terrain.colors (Palettes), 610
texi2dvi, 1397, 1398, 1418
text, 138, 601, 603, 605, 617, 620, 627,

680–682, 701, 708, 719, 723–727,
767, 768, 773, 776, 1237

textConnection, 78, 460, 1434
textConnectionValue

(textConnection), 460
textGrob (grid.text), 840
textstyle (plotmath), 617
Theoph, 553
tiff, 47, 48, 593
tiff (png), 621
tilde, 462
time, 449, 652, 1333, 1366, 1369, 1373, 1393
time zone (timezones), 463
time zones, 23
time zones (timezones), 463
timestamp (savehistory), 1528
timezone (timezones), 463
timezones, 463
Titanic, 554
title, 620, 670, 676, 680, 682, 686, 689,

690, 696, 713, 719, 723, 724, 727,
731, 736, 738–740, 766, 774, 775,
1107, 1228, 1230

tk_select.list, 1530
tkProgressBar, 1543
toBibtex (toLatex), 1541
toBibtex.citation (citation), 1436
toBibtex.citationList (citation),

1436
toBibtex.person (person), 1493
toBibtex.personList (person), 1493
toeplitz, 1367
toLatex, 1541
toLatex.sessionInfo

(sessionInfo), 1531
tolower, 128, 193
tolower (chartr), 55
tools (tools-package), 1397
tools-deprecated, 1418
tools-package, 1397

ToothGrowth, 555
topenv, 296, 444
topenv (ns-topenv), 286
topo.colors, 579, 581, 702, 703
topo.colors (Palettes), 610
toString, 164, 165, 464
toupper, 128, 193
toupper (chartr), 55
trace, 99, 465, 471, 900, 955, 956
traceable, 876, 900
traceable-class (TraceClasses),

955
traceback, 42, 99, 295, 398, 413, 469
TraceClasses, 955
tracemem, 268, 470, 1520, 1521, 1538
tracingState, 471
tracingState (trace), 465
trans3d, 643, 732
transform, 425, 471, 493
treering, 556
trees, 557
trellis.focus, 820
Trig, 243, 472
trigamma (Special), 399
TRUE, 245, 360, 414, 1237
TRUE (logical), 246
truehist, 609, 697
trunc, 206, 929
trunc (Round), 362
trunc.Date (round.POSIXt), 363
trunc.POSIXt, 96
trunc.POSIXt (round.POSIXt), 363
truncate (seek), 377
try, 151, 231, 296, 414, 469, 474, 483
tryCatch, 469
tryCatch (conditions), 69
ts, 109, 194, 298, 1183, 1238, 1269, 1333,

1366, 1367, 1368, 1369, 1373, 1393
ts-class (StructureClasses), 954
ts-methods, 1369
ts.intersect, 1143
ts.intersect (ts.union), 1371
ts.plot, 1370
ts.union, 1371
tsdiag, 991, 996, 1372
tsp, 18, 31, 32, 245, 1333, 1366, 1367, 1369,

1373, 1393
tsp<- (tsp), 1373
tsSmooth, 1128, 1129, 1344, 1373
Tukey, 1374
TukeyHSD, 981, 1181, 1345, 1375
txtProgressBar, 1542

INDEX 1607

type, 115, 206, 288, 292
type (typeof), 475
type.convert, 1505, 1506, 1511, 1513,

1543
Type1Font, 627, 630, 632, 643
typeof, 18, 181, 211, 268, 273, 276, 289,

475, 875, 918

UCBAdmissions, 558
ucv, 1001
UKDriverDeaths, 559
UKgas, 560
UKLungDeaths, 561
unclass, 150
unclass (class), 60
undebug (debug), 98
underline (plotmath), 617
undoc, 1404, 1419
Uniform, 1377
union (sets), 384
unique, 121, 476
unique.numeric_version

(numeric_version), 290
unique.POSIXlt (DateTimeClasses),

94
uniroot, 309, 1001, 1194, 1218, 1243, 1244,

1246, 1378
unit, 784, 791, 794, 802, 803, 819, 820, 848,

852, 852, 855
unit.c, 854, 854
unit.length, 855
unit.pmax (unit.pmin), 856
unit.pmin, 856
unit.rep, 856
units, 776
units (difftime), 109
units<- (difftime), 109
unix.time (system.time), 448
unlink, 157, 460, 477
unlist, 44, 165, 208, 236, 478, 1291,

1515–1517
unlist.relistable (relist), 1515
unloadNamespace, 106, 230, 284
unloadNamespace (ns-load), 285
unlockBinding (bindenv), 38
unname, 263, 480
unsplit (split), 402
unstack (stack), 1533
untrace, 955
untrace (trace), 465
untracemem (tracemem), 470
unz, 1421
unz (connections), 73

update, 1379
update.formula, 1089, 1336, 1380, 1380
update.packages, 299, 1412, 1476, 1477,

1492, 1544
update.packageStatus

(packageStatus), 1491
upgrade (packageStatus), 1491
upper.tri, 108
upper.tri (lower.tri), 247
upViewport, 794, 858
upViewport (Working with

Viewports), 859
url, 48, 239, 1451, 1547, 1548
url (connections), 73
url.show, 1451, 1548
URLdecode, 76
URLdecode (URLencode), 1549
URLencode, 1430, 1549
USAccDeaths, 561
USArrests, 562
UseMethod, 51, 61, 196, 480
UserHooks, 483
USJudgeRatings, 562
USPersonalExpenditure, 563
uspop, 564
utf8Conversion, 484
utf8ToInt (utf8Conversion), 484
utils (utils-package), 1425
utils-deprecated, 1550
utils-package, 1425

VADeaths, 564
validDetails, 857
validObject, 878, 910, 932, 946, 956
var, 1040, 1163, 1164, 1298
var (cor), 1034
var.test, 979, 1003, 1087, 1185, 1381
variable.names, 367
variable.names

(case/variable.names), 1015
varimax, 1073, 1383
vcov, 989, 1026, 1144, 1198, 1384
vector, 50, 121, 168, 236, 477, 485
vector-class (BasicClasses), 868
Vectorize, 303, 1121
Vectorize (mapply), 251
version, 229
version (R.Version), 329
vi, 1447
vi (edit), 1452
View, 1550
viewport, 785, 791, 797, 800, 801, 806,

814, 817, 819, 820, 822, 823, 825,

1608 INDEX

829, 830, 834, 836, 838, 840, 841,
843, 845, 847, 849, 851, 858, 860

viewport (Grid Viewports), 792
vignette, 1431, 1551
vignetteDepends, 1420
vignettes, 781
vignettes (vignette), 1551
VIRTUAL-class (BasicClasses), 868
volcano, 565
vpList (Grid Viewports), 792
vpPath, 858, 860
vpStack (Grid Viewports), 792
vpTree (Grid Viewports), 792

warning, 18, 51, 189, 245, 271, 294, 390,
414, 415, 486, 488, 1422

warnings, 296, 487, 488
warpbreaks, 566
weekdays, 94, 489
weekdays.POSIXt, 96
Weibull, 1384
weighted.mean, 265, 1386
weighted.residuals, 1148, 1386
weights, 1198, 1386
weights (lm.summaries), 1147
weights.glm (glm), 1100
which, 490, 492
which.is.max, 492
which.max, 264
which.max (which.min), 491
which.min, 147, 491, 491
while, 360
while (Control), 81
while-class (language-class), 907
widehat (plotmath), 617
widetilde (plotmath), 617
width.SJ, 1001
widthDetails, 782, 859
wilcox.exact, 1389
wilcox.test, 1134, 1135, 1224, 1225,

1304, 1387, 1391
wilcox_test, 1389
Wilcoxon, 1390
window, 1367–1369, 1392
window<- (window), 1392
with, 29, 492, 915, 1434
withCallingHandlers (conditions),

69
within (with), 492
withRestarts (conditions), 69
withVisible, 209, 1552
women, 567
Working with Viewports, 859

WorldPhones, 567
write, 117, 119, 313, 376, 494, 1555
write.csv (write.table), 1553
write.csv2 (write.table), 1553
write.dcf, 1422
write.dcf (dcf), 97
write.ftable (read.ftable), 1283
write.matrix, 1555
write.socket (read.socket), 1508
write.table, 98, 494, 1513, 1553
write_PACKAGES, 1421
writeBin, 78, 347, 495
writeBin (readBin), 343
writeChar, 78, 344, 495
writeChar (readChar), 346
writeLines, 78, 345, 347, 349, 390, 495
wsbrowser (browseEnv), 1428
WWWusage, 568

X11, 48, 132, 412, 574, 593, 622, 624, 642,
649, 701, 712, 774

X11 (x11), 645
x11, 645, 729
X11.options, 622
X11.options (x11), 645
X11Font (X11Fonts), 648
X11Fonts, 648, 648
xaxisGrob (grid.xaxis), 842
xDetails, 862
xedit (edit), 1452
xemacs (edit), 1452
xfig, 592, 649, 748
xgettext, 189, 1422
xgettext2pot (xgettext), 1422
xinch (units), 776
xngettext (xgettext), 1422
xor (Logic), 244
xspline, 777, 845
xsplineGrob (grid.xspline), 843
xtabs, 451, 566, 1094, 1284, 1394
xtfrm, 301, 337, 395, 496
xtfrm.numeric_version

(numeric_version), 290
xy.coords, 576, 577, 651, 653, 655, 700,

706, 707, 711, 738, 739, 747, 748,
752, 769, 771, 773, 777, 982, 1126,
1159, 1296, 1320

xyinch (units), 776
xyTable, 653, 769, 770
xyz.coords, 654

yaxisGrob (grid.yaxis), 846
yDetails (xDetails), 862

INDEX 1609

yinch (units), 776

zapsmall, 1270
zapsmall (Round), 362
zip.file.extract, 1556
zpackages, 496
zutils, 497

	Contents
	The base package
	base-package
	.Device
	.Machine
	.Platform
	.Script
	abbreviate
	agrep
	all
	all.equal
	all.names
	any
	aperm
	append
	apply
	args
	Arithmetic
	array
	as.data.frame
	as.environment
	as.function
	as.POSIX*
	AsIs
	assign
	assignOps
	attach
	attr
	attributes
	autoload
	backsolve
	base-deprecated
	basename
	Bessel
	bindenv
	body
	bquote
	browser
	builtins
	by
	c
	call
	callCC
	capabilities
	cat
	cbind
	char.expand
	character
	charmatch
	chartr
	chol
	chol2inv
	class
	col
	Colon
	colSums
	commandArgs
	comment
	Comparison
	complex
	conditions
	conflicts
	connections
	Constants
	contributors
	Control
	copyright
	crossprod
	Cstack_info
	cumsum
	cut
	cut.POSIXt
	data.class
	data.frame
	data.matrix
	date
	Dates
	DateTimeClasses
	dcf
	debug
	Defunct
	delayedAssign
	deparse
	deparseOpts
	Deprecated
	det
	detach
	diag
	diff
	difftime
	dim
	dimnames
	do.call
	double
	dput
	drop
	dump
	duplicated
	dyn.load
	eapply
	eigen
	encodeString
	Encoding
	environment
	EnvVar
	eval
	exists
	expand.grid
	expression
	Extract
	Extract.data.frame
	Extract.factor
	Extremes
	factor
	file.access
	file.choose
	file.info
	file.path
	file.show
	files
	findInterval
	force
	Foreign
	formals
	format
	format.Date
	format.info
	format.pval
	formatC
	formatDL
	function
	funprog
	gc
	gc.time
	gctorture
	get
	getDLLRegisteredRoutines
	getLoadedDLLs
	getNativeSymbolInfo
	getNumCConverters
	getpid
	gettext
	getwd
	gl
	grep
	groupGeneric
	gzcon
	hexmode
	Hyperbolic
	iconv
	icuSetCollate
	identical
	identity
	ifelse
	integer
	interaction
	interactive
	Internal
	InternalMethods
	invisible
	is.finite
	is.function
	is.language
	is.object
	is.R
	is.recursive
	is.single
	is.unsorted
	isS4
	isSymmetric
	jitter
	kappa
	kronecker
	l10n_info
	labels
	lapply
	Last.value
	length
	levels
	libPaths
	library
	library.dynam
	license
	list
	list.files
	load
	localeconv
	locales
	log
	Logic
	logical
	lower.tri
	ls
	make.names
	make.unique
	manglePackageName
	mapply
	margin.table
	mat.or.vec
	match
	match.arg
	match.call
	match.fun
	Math
	matmult
	matrix
	maxCol
	mean
	Memory
	Memory-limits
	memory.profile
	merge
	message
	missing
	mode
	NA
	name
	names
	nargs
	nchar
	nlevels
	noquote
	NotYet
	nrow
	ns-dblcolon
	ns-hooks
	ns-load
	ns-topenv
	NULL
	numeric
	NumericConstants
	numeric_version
	octmode
	on.exit
	Ops.Date
	options
	order
	outer
	Paren
	parse
	paste
	path.expand
	pmatch
	polyroot
	pos.to.env
	pretty
	Primitive
	print
	print.data.frame
	print.default
	prmatrix
	proc.time
	prod
	prop.table
	pushBack
	qr
	QR.Auxiliaries
	quit
	Quotes
	R.home
	R.Version
	Random
	Random.user
	range
	rank
	rapply
	raw
	rawConnection
	rawConversion
	RdUtils
	readBin
	readChar
	readline
	readLines
	real
	Recall
	reg.finalizer
	regex
	remove
	rep
	replace
	Reserved
	rev
	rle
	Round
	round.POSIXt
	row
	row.names
	row/colnames
	rowsum
	sample
	save
	scale
	scan
	search
	seek
	seq
	seq.Date
	seq.POSIXt
	sequence
	sets
	setTimeLimit
	showConnections
	shQuote
	sign
	Signals
	sink
	slice.index
	slotOp
	socketSelect
	solve
	sort
	source
	Special
	split
	sprintf
	sQuote
	srcfile
	Startup
	stop
	stopifnot
	strptime
	strsplit
	strtrim
	structure
	strwrap
	subset
	substitute
	substr
	sum
	summary
	svd
	sweep
	switch
	Syntax
	Sys.getenv
	Sys.glob
	Sys.info
	sys.parent
	Sys.setenv
	Sys.sleep
	sys.source
	Sys.time
	Sys.which
	system
	system.file
	system.time
	t
	table
	tabulate
	tapply
	taskCallback
	taskCallbackManager
	taskCallbackNames
	tempfile
	textConnection
	tilde
	timezones
	toString
	trace
	traceback
	tracemem
	transform
	Trig
	try
	typeof
	unique
	unlink
	unlist
	unname
	UseMethod
	UserHooks
	utf8Conversion
	vector
	warning
	warnings
	weekdays
	which
	which.min
	with
	write
	writeLines
	xtfrm
	zpackages
	zutils

	The datasets package
	datasets-package
	ability.cov
	airmiles
	AirPassengers
	airquality
	anscombe
	attenu
	attitude
	austres
	beavers
	BJsales
	BOD
	cars
	ChickWeight
	chickwts
	CO2
	co2
	crimtab
	discoveries
	DNase
	esoph
	euro
	eurodist
	EuStockMarkets
	faithful
	Formaldehyde
	freeny
	HairEyeColor
	Harman23.cor
	Harman74.cor
	Indometh
	infert
	InsectSprays
	iris
	islands
	JohnsonJohnson
	LakeHuron
	lh
	LifeCycleSavings
	Loblolly
	longley
	lynx
	morley
	mtcars
	nhtemp
	Nile
	nottem
	occupationalStatus
	Orange
	OrchardSprays
	PlantGrowth
	precip
	presidents
	pressure
	Puromycin
	quakes
	randu
	rivers
	rock
	sleep
	stackloss
	state
	sunspot.month
	sunspot.year
	sunspots
	swiss
	Theoph
	Titanic
	ToothGrowth
	treering
	trees
	UCBAdmissions
	UKDriverDeaths
	UKgas
	UKLungDeaths
	USAccDeaths
	USArrests
	USJudgeRatings
	USPersonalExpenditure
	uspop
	VADeaths
	volcano
	warpbreaks
	women
	WorldPhones
	WWWusage

	The grDevices package
	grDevices-package
	as.graphicsAnnot
	boxplot.stats
	cairo
	check.options
	chull
	cm
	col2rgb
	colorRamp
	colors
	contourLines
	convertColor
	dev.interactive
	dev.size
	dev.xxx
	dev2
	dev2bitmap
	devAskNewPage
	Devices
	embedFonts
	extendrange
	getGraphicsEvent
	gray
	gray.colors
	hcl
	Hershey
	hsv
	Japanese
	make.rgb
	n2mfrow
	nclass
	palette
	Palettes
	pdf
	pdf.options
	pictex
	plotmath
	png
	postscript
	postscriptFonts
	ps.options
	quartz
	quartzFonts
	recordGraphics
	recordPlot
	rgb
	rgb2hsv
	savePlot
	trans3d
	Type1Font
	x11
	X11Fonts
	xfig
	xy.coords
	xyTable
	xyz.coords

	The graphics package
	graphics-package
	abline
	arrows
	assocplot
	Axis
	axis
	axis.POSIXct
	axTicks
	barplot
	box
	boxplot
	bxp
	cdplot
	clip
	contour
	convertXY
	coplot
	curve
	dotchart
	filled.contour
	fourfoldplot
	frame
	grid
	hist
	hist.POSIXt
	identify
	image
	layout
	legend
	lines
	locator
	matplot
	mosaicplot
	mtext
	pairs
	panel.smooth
	par
	persp
	pie
	plot
	plot.data.frame
	plot.default
	plot.design
	plot.factor
	plot.formula
	plot.histogram
	plot.table
	plot.window
	plot.xy
	points
	polygon
	rect
	rug
	screen
	segments
	spineplot
	stars
	stem
	stripchart
	strwidth
	sunflowerplot
	symbols
	text
	title
	units
	xspline

	The grid package
	grid-package
	absolute.size
	arrow
	convertNative
	dataViewport
	drawDetails
	editDetails
	gEdit
	getNames
	gpar
	gPath
	Grid
	Grid Viewports
	grid.add
	grid.arrows
	grid.circle
	grid.clip
	grid.collection
	grid.convert
	grid.copy
	grid.curve
	grid.display.list
	grid.draw
	grid.edit
	grid.frame
	grid.get
	grid.grab
	grid.grill
	grid.grob
	grid.layout
	grid.lines
	grid.locator
	grid.ls
	grid.move.to
	grid.newpage
	grid.null
	grid.pack
	grid.place
	grid.plot.and.legend
	grid.points
	grid.polygon
	grid.pretty
	grid.prompt
	grid.record
	grid.rect
	grid.refresh
	grid.remove
	grid.segments
	grid.set
	grid.show.layout
	grid.show.viewport
	grid.text
	grid.xaxis
	grid.xspline
	grid.yaxis
	grobName
	grobWidth
	grobX
	plotViewport
	pop.viewport
	push.viewport
	Querying the Viewport Tree
	stringWidth
	unit
	unit.c
	unit.length
	unit.pmin
	unit.rep
	validDetails
	vpPath
	widthDetails
	Working with Viewports
	xDetails

	The methods package
	methods-package
	.BasicFunsList
	as
	BasicClasses
	callGeneric
	callNextMethod
	canCoerce
	cbind2
	Classes
	classRepresentation-class
	Documentation
	dotsMethods
	environment-class
	findClass
	findMethods
	fixPre1.8
	genericFunction-class
	GenericFunctions
	getClass
	getMethod
	getPackageName
	hasArg
	implicitGeneric
	initialize-methods
	is
	isSealedMethod
	language-class
	LinearMethodsList-class
	makeClassRepresentation
	method.skeleton
	MethodDefinition-class
	Methods
	MethodsList-class
	MethodWithNext-class
	new
	ObjectsWithPackage-class
	promptClass
	promptMethods
	representation
	S3
	S4groupGeneric
	SClassExtension-class
	setClass
	setClassUnion
	setGeneric
	setMethod
	setOldClass
	show
	showMethods
	signature-class
	slot
	StructureClasses
	TraceClasses
	validObject

	The stats package
	stats-package
	.checkMFClasses
	acf
	acf2AR
	add1
	addmargins
	aggregate
	AIC
	alias
	anova
	anova.glm
	anova.lm
	anova.mlm
	ansari.test
	aov
	approxfun
	ar
	ar.ols
	arima
	arima.sim
	arima0
	ARMAacf
	ARMAtoMA
	as.hclust
	asOneSidedFormula
	ave
	bandwidth
	bartlett.test
	Beta
	binom.test
	Binomial
	biplot
	biplot.princomp
	birthday
	Box.test
	C
	cancor
	case/variable.names
	Cauchy
	chisq.test
	Chisquare
	clearNames
	cmdscale
	coef
	complete.cases
	confint
	constrOptim
	contrast
	contrasts
	convolve
	cophenetic
	cor
	cor.test
	cov.wt
	cpgram
	cutree
	decompose
	delete.response
	dendrapply
	dendrogram
	density
	deriv
	deviance
	df.residual
	diffinv
	dist
	dummy.coef
	ecdf
	eff.aovlist
	effects
	embed
	expand.model.frame
	Exponential
	extractAIC
	factanal
	factor.scope
	family
	FDist
	fft
	filter
	fisher.test
	fitted
	fivenum
	fligner.test
	formula
	formula.nls
	friedman.test
	ftable
	ftable.formula
	GammaDist
	Geometric
	getInitial
	glm
	glm.control
	glm.summaries
	hclust
	heatmap
	HoltWinters
	Hypergeometric
	identify.hclust
	influence.measures
	integrate
	interaction.plot
	IQR
	is.empty.model
	isoreg
	KalmanLike
	kernapply
	kernel
	kmeans
	kruskal.test
	ks.test
	ksmooth
	lag
	lag.plot
	line
	lm
	lm.fit
	lm.influence
	lm.summaries
	loadings
	loess
	loess.control
	Logistic
	logLik
	loglin
	Lognormal
	lowess
	ls.diag
	ls.print
	lsfit
	mad
	mahalanobis
	make.link
	makepredictcall
	manova
	mantelhaen.test
	mauchly.test
	mcnemar.test
	median
	medpolish
	model.extract
	model.frame
	model.matrix
	model.tables
	monthplot
	mood.test
	Multinomial
	na.action
	na.contiguous
	na.fail
	naprint
	naresid
	NegBinomial
	nextn
	nlm
	nlminb
	nls
	nls.control
	NLSstAsymptotic
	NLSstClosestX
	NLSstLfAsymptote
	NLSstRtAsymptote
	Normal
	numericDeriv
	offset
	oneway.test
	optim
	optimize
	order.dendrogram
	p.adjust
	pairwise.prop.test
	pairwise.t.test
	pairwise.table
	pairwise.wilcox.test
	plot.acf
	plot.density
	plot.HoltWinters
	plot.isoreg
	plot.lm
	plot.ppr
	plot.profile.nls
	plot.spec
	plot.stepfun
	plot.ts
	Poisson
	poly
	power
	power.anova.test
	power.prop.test
	power.t.test
	PP.test
	ppoints
	ppr
	prcomp
	predict
	predict.Arima
	predict.glm
	predict.HoltWinters
	predict.lm
	predict.loess
	predict.nls
	predict.smooth.spline
	preplot
	princomp
	print.power.htest
	print.ts
	printCoefmat
	profile
	profile.nls
	proj
	prop.test
	prop.trend.test
	qqnorm
	quade.test
	quantile
	r2dtable
	read.ftable
	rect.hclust
	relevel
	reorder.dendrogram
	reorder.factor
	replications
	reshape
	residuals
	runmed
	scatter.smooth
	screeplot
	sd
	se.contrast
	selfStart
	setNames
	shapiro.test
	SignRank
	simulate
	smooth
	smooth.spline
	smoothEnds
	sortedXyData
	spec.ar
	spec.pgram
	spec.taper
	spectrum
	splinefun
	SSasymp
	SSasympOff
	SSasympOrig
	SSbiexp
	SSD
	SSfol
	SSfpl
	SSgompertz
	SSlogis
	SSmicmen
	SSweibull
	start
	stat.anova
	stats-deprecated
	step
	stepfun
	stl
	stlmethods
	StructTS
	summary.aov
	summary.glm
	summary.lm
	summary.manova
	summary.nls
	summary.princomp
	supsmu
	symnum
	t.test
	TDist
	termplot
	terms
	terms.formula
	terms.object
	time
	toeplitz
	ts
	ts-methods
	ts.plot
	ts.union
	tsdiag
	tsp
	tsSmooth
	Tukey
	TukeyHSD
	Uniform
	uniroot
	update
	update.formula
	var.test
	varimax
	vcov
	Weibull
	weighted.mean
	weighted.residuals
	wilcox.test
	Wilcoxon
	window
	xtabs

	The tools package
	tools-package
	buildVignettes
	charsets
	checkFF
	checkMD5sums
	checkTnF
	checkVignettes
	codoc
	delimMatch
	encoded_text_to_latex
	fileutils
	getDepList
	installFoundDepends
	makeLazyLoading
	md5sum
	package.dependencies
	QC
	Rdindex
	Rdutils
	read.00Index
	readNEWS
	showNonASCII
	texi2dvi
	tools-deprecated
	undoc
	vignetteDepends
	write_PACKAGES
	xgettext

	The utils package
	utils-package
	alarm
	apropos
	BATCH
	browseEnv
	browseURL
	browseVignettes
	bug.report
	capture.output
	chooseCRANmirror
	citation
	citEntry
	close.socket
	combn
	compareVersion
	COMPILE
	count.fields
	data
	dataentry
	debugger
	demo
	download.file
	edit
	edit.data.frame
	example
	file.edit
	file_test
	fix
	flush.console
	format
	getAnywhere
	getFromNamespace
	getS3method
	glob2rx
	head
	help
	help.request
	help.search
	help.start
	index.search
	INSTALL
	installed.packages
	LINK
	localeToCharset
	ls.str
	make.packages.html
	make.socket
	memory.size
	menu
	methods
	mirrorAdmin
	modifyList
	normalizePath
	nsl
	object.size
	package.skeleton
	packageDescription
	packageStatus
	page
	person
	PkgUtils
	prompt
	promptData
	promptPackage
	rcompgen
	read.DIF
	read.fortran
	read.fwf
	read.socket
	read.table
	recover
	relist
	REMOVE
	remove.packages
	RHOME
	roman
	Rprof
	Rprofmem
	Rscript
	RShowDoc
	RSiteSearch
	Rtangle
	RweaveLatex
	savehistory
	select.list
	sessionInfo
	setRepositories
	SHLIB
	stack
	str
	summaryRprof
	Sweave
	SweaveSyntConv
	toLatex
	txtProgressBar
	type.convert
	update.packages
	url.show
	URLencode
	utils-deprecated
	View
	vignette
	withVisible
	write.table
	zip.file.extract

	Index

