gnu.math

Class RatNum

public abstract class RatNum extends RealNum

The abstract class of rational numbers.
Method Summary
static RatNumadd(RatNum x, RatNum y, int k)
static intcompare(RatNum x, RatNum y)
abstract IntNumdenominator()
static RatNumdivide(RatNum x, RatNum y)
static booleanequals(RatNum x, RatNum y)
booleanequals(Object obj)
static RatNuminfinity(int sign)
Return exact "rational" infinity.
booleanisExact()
booleanisZero()
static RatNummake(IntNum num, IntNum den)
abstract IntNumnumerator()
Numericpower(IntNum y)
static RealNumrationalize(RealNum x, RealNum y)
Calcaulte the simplest rational between two reals.
static RatNumtimes(RatNum x, RatNum y)
RatNumtoExact()
IntNumtoExactInt(int rounding_mode)
RealNumtoInt(int rounding_mode)

Method Detail

add

public static RatNum add(RatNum x, RatNum y, int k)

compare

public static int compare(RatNum x, RatNum y)

denominator

public abstract IntNum denominator()

divide

public static RatNum divide(RatNum x, RatNum y)

equals

public static boolean equals(RatNum x, RatNum y)

equals

public boolean equals(Object obj)

infinity

public static RatNum infinity(int sign)
Return exact "rational" infinity.

Parameters: sign either 1 or -1 for positive or negative infinity

isExact

public boolean isExact()

isZero

public boolean isZero()

make

public static RatNum make(IntNum num, IntNum den)

numerator

public abstract IntNum numerator()

power

public Numeric power(IntNum y)

rationalize

public static RealNum rationalize(RealNum x, RealNum y)
Calcaulte the simplest rational between two reals.

times

public static RatNum times(RatNum x, RatNum y)

toExact

public final RatNum toExact()

toExactInt

public IntNum toExactInt(int rounding_mode)

toInt

public RealNum toInt(int rounding_mode)