This function produces a diagonal matrix
D, and invertible matrices
P and
Q such that
D = PMQ. Warning: even though this function is called the Smith normal form, it doesn't necessarily satisfy the more stringent condition that the diagonal entries
d1, d2, ..., dn of
D satisfy:
d1|d2|...|dn..
i1 : M = matrix{{1,2,3},{1,34,45},{2213,1123,6543},{0,0,0}}
o1 = | 1 2 3 |
| 1 34 45 |
| 2213 1123 6543 |
| 0 0 0 |
4 3
o1 : Matrix ZZ <--- ZZ
|
i2 : (D,P,Q) = smithNormalForm M
o2 = (| 135654 0 0 |, | 1 33471 -43292 0 |, | 171927 -42421 54868 |)
| 0 1 0 | | 0 1 0 0 | | 93042 -22957 29693 |
| 0 0 1 | | 0 0 1 0 | | -74119 18288 -23654 |
| 0 0 0 | | 0 0 0 1 |
o2 : Sequence
|
i3 : D == P * M * Q
o3 = true
|
i4 : (D,P) = smithNormalForm(M, ChangeMatrix=>{true,false})
o4 = (| 135654 0 0 |, | 1 33471 -43292 0 |)
| 0 1 0 | | 0 1 0 0 |
| 0 0 1 | | 0 0 1 0 |
| 0 0 0 | | 0 0 0 1 |
o4 : Sequence
|
i5 : D = smithNormalForm(M, ChangeMatrix=>{false,false}, KeepZeroes=>true)
o5 = | 135654 0 0 |
| 0 1 0 |
| 0 0 1 |
3 3
o5 : Matrix ZZ <--- ZZ
|
This function is the underlying routine used by minimalPresentation in the case when the ring is ZZ, or a polynomial ring in one variable over a field.
i6 : prune coker M
o6 = cokernel | 135654 |
| 0 |
2
o6 : ZZ-module, quotient of ZZ
|
In the following example, we test the result be checking that the entries of
D1, P1 M Q1 are the same. The degrees associated to these matrices do not match up, so a simple test of equality would return false.
i7 : S = ZZ/101[t]
o7 = S
o7 : PolynomialRing
|
i8 : D = diagonalMatrix{t^2+1, (t^2+1)^2, (t^2+1)^3, (t^2+1)^5}
o8 = | t2+1 0 0 0 |
| 0 t4+2t2+1 0 0 |
| 0 0 t6+3t4+3t2+1 0 |
| 0 0 0 t10+5t8+10t6+10t4+5t2+1 |
4 4
o8 : Matrix S <--- S
|
i9 : P = random(S^4, S^4)
o9 = | 42 -15 -29 -38 |
| -50 -22 -39 2 |
| 39 50 30 -4 |
| 9 45 19 -36 |
4 4
o9 : Matrix S <--- S
|
i10 : Q = random(S^4, S^4)
o10 = | -16 -32 -42 17 |
| -6 -38 -50 -28 |
| -32 31 -41 37 |
| 31 24 15 -22 |
4 4
o10 : Matrix S <--- S
|
i11 : M = P*D*Q
o11 = | 34t10-32t8-45t6-18t4+38t2-24 -3t10-15t8-20t6-36t4+13t2+41
| -39t10+7t8+50t6-49t4-33t2+20 48t10+38t8-22t6+12t4-14t2-38
| -23t10-14t8+22t6+24t4+23t2+12 5t10+25t8-30t6+31t4-11t2+9
| -5t10-25t8+49t6-23t4-8t2-17 45t10+23t8+29t6+2t4+t2+50
-----------------------------------------------------------------------
36t10-22t8+34t6+31t4+49t2+9 28t10+39t8+15t6+6t4-10t2-12 |
30t10+49t8-20t6+36t4-45t2-19 -44t10-18t8+36t6-12t4-26t2-4 |
41t10+3t8-12t6-23t4-23t2+26 -13t10+36t8-30t6-18t4+17t2-44 |
-35t10+27t8-18t6+12t4-17t2-8 -16t10+21t8+38t6-18t4-35t2-16 |
4 4
o11 : Matrix S <--- S
|
i12 : (D1,P1,Q1) = smithNormalForm M;
|
i13 : D1 - P1*M*Q1 == 0
o13 = true
|
i14 : prune coker M
o14 = cokernel | t10+5t8+10t6+10t4+5t2+1 0 0 0 |
| 0 t6+3t4+3t2+1 0 0 |
| 0 0 t4+2t2+1 0 |
| 0 0 0 t2+1 |
4
o14 : S-module, quotient of S
|
This routine is under development. The main idea is to compute a Gröbner basis, transpose the generators, and repeat, until we encounter a matrix whose transpose is already a Gröbner basis. This may depend heavily on the monomial order.