
Octave Control Systems Toolbox (ocst)
Version 1.0.0

July 2008

Dr A Scottedward Hodel

Copyright c© 2008 A Scottedward Hodel
Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the same conditions as for modified versions.

i

Table of Contents

1 Introduction . 1

2 System Data Structure . 2
2.1 Variables common to all ocst system formats 2
2.2 tf format variables . 3
2.3 zp format variables . 3
2.4 ss format variables . 3

3 System Construction and Interface Functions
. 4
3.1 Finite impulse response system interface functions 4
3.2 State space system interface functions . 5
3.3 Transfer function system interface functions 10
3.4 Zero-pole system interface functions . 11
3.5 Data structure access functions . 13

4 System display functions 18

5 Block Diagram Manipulations 19

6 Numerical Functions . 27

7 System Analysis-Properties 32

8 System Analysis-Time Domain 37

9 System Analysis-Frequency Domain. 41

10 Controller Design . 45

11 Miscellaneous Functions (Not yet properly
filed/documented) . 53

Chapter 1: Introduction 1

1 Introduction

The Octave Control Systems Toolbox (ocst) was initially developed by Dr. A. Scotted-
ward Hodel a.s.hodel@eng.auburn.edu with the assistance of his students
• R. Bruce Tenison btenison@dibbs.net,
• David C. Clem,
• John E. Ingram John.Ingram@sea.siemans.com, and
• Kristi McGowan.

This development was supported in part by nasa’s Marshall Space Flight Center as part
of an in-house cacsd environment. Additional important contributions were made by Dr.
Kai Mueller mueller@ifr.ing.tu-bs.de and Jose Daniel Munoz Frias (place.m).

An on-line menu-driven tutorial is available via DEMOcontrol; beginning ocst users
should start with this program.

Function FileDEMOcontrol
Octave Control Systems Toolbox demo/tutorial program. The demo allows the user
to select among several categories of ocst function:

octave:1> DEMOcontrol
Octave Controls System Toolbox Demo

[1] System representation
[2] Block diagram manipulations
[3] Frequency response functions
[4] State space analysis functions
[5] Root locus functions
[6] LQG/H2/Hinfinity functions
[7] End

Command examples are interactively run for users to observe the use of ocst functions
See also: bddemo, frdemo, analdemo, moddmeo, rldemo

mailto:a.s.hodel@eng.auburn.edu
mailto:btenison@dibbs.net
mailto:John.Ingram@sea.siemans.com
mailto:mueller@ifr.ing.tu-bs.de

Chapter 2: System Data Structure 2

2 System Data Structure

The ocst stores all dynamic systems in a single data structure format that can represent
continuous systems, discrete-systems, and mixed (hybrid) systems in state-space form, and
can also represent purely continuous/discrete systems in either transfer function or pole-
zero form. In order to provide more flexibility in treatment of discrete/hybrid systems, the
ocst also keeps a record of which system outputs are sampled.

Octave structures are accessed with a syntax much like that used by the C programming
language. For consistency in use of the data structure used in the ocst, it is recommended
that the system structure access m-files be used (see Chapter 3 [sysinterface], page 4). Some
elements of the data structure are absent depending on the internal system representation(s)
used. More than one system representation can be used for siso systems; the ocst m-files
ensure that all representations used are consistent with one another.

Function Filesysrepdemo
Tutorial for the use of the system data structure functions

2.1 Variables common to all ocst system formats

The data structure elements (and variable types) common to all system representations
are listed below; examples of the initialization and use of the system data structures are
given in subsequent sections and in the online demo DEMOcontrol.

n
nz The respective number of continuous and discrete states in the system (scalar)

inname
outname list of name(s) of the system input, output signal(s). (list of strings)

sys System status vector. (vector)
This vector indicates both what representation was used to initialize the system
data structure (called the primary system type) and which other representa-
tions are currently up-to-date with the primary system type (see Section 3.5
[structaccess], page 13).
The value of the first element of the vector indicates the primary system type.

0 for tf form (initialized with tf2sys or fir2sys)

1 for zp form (initialized with zp2sys)

2 for ss form (initialized with ss2sys)

The next three elements are boolean flags that indicate whether tf, zp, or ss,
respectively, are “up to date" (whether it is safe to use the variables associated
with these representations). These flags are changed when calls are made to
the sysupdate command.

tsam Discrete time sampling period (nonnegative scalar). tsam is set to 0 for contin-
uous time systems.

Chapter 2: System Data Structure 3

yd Discrete-time output list (vector)
indicates which outputs are discrete time (i.e., produced by D/A converters)
and which are continuous time. yd(ii) = 0 if output ii is continuous, = 1 if
discrete.

The remaining variables of the system data structure are only present if the correspond-
ing entry of the sys vector is true (=1).

2.2 tf format variables

num numerator coefficients (vector)

den denominator coefficients (vector)

2.3 zp format variables

zer system zeros (vector)

pol system poles (vector)

k leading coefficient (scalar)

2.4 ss format variables

a
b
c
d The usual state-space matrices. If a system has both continuous and discrete

states, they are sorted so that continuous states come first, then discrete states
Note some functions (e.g., bode, hinfsyn) will not accept systems with both
discrete and continuous states/outputs

stname names of system states (list of strings)

Chapter 3: System Construction and Interface Functions 4

3 System Construction and Interface Functions

Construction and manipulations of the ocst system data structure (see Chapter 2
[sysstruct], page 2) requires attention to many details in order to ensure that data struc-
ture contents remain consistent. Users are strongly encouraged to use the system interface
functions in this section. Functions for the formatted display in of system data structures
are given in Chapter 4 [sysdisp], page 18.

3.1 Finite impulse response system interface functions

Function Filefir2sys (num, tsam, inname, outname)
construct a system data structure from fir description

Inputs

num vector of coefficients [c0, c1, . . . , cn] of the siso fir transfer function

C(z) = c0 + c1z
−1 + c2z

−2 + . . .+ cnz
−n

tsam sampling time (default: 1)

inname name of input signal; may be a string or a list with a single entry

outname name of output signal; may be a string or a list with a single entry

Output

sys system data structure

Example

octave:1> sys = fir2sys([1 -1 2 4],0.342,\
> "A/D input","filter output");
octave:2> sysout(sys)
Input(s)
1: A/D input

Output(s):
1: filter output (discrete)

Sampling interval: 0.342
transfer function form:
1*z^3 - 1*z^2 + 2*z^1 + 4

1*z^3 + 0*z^2 + 0*z^1 + 0

Function File[c, tsam, input, output] = sys2fir (sys)
Extract fir data from system data structure; see fir2sys for parameter descriptions
See also: fir2sys

Chapter 3: System Construction and Interface Functions 5

3.2 State space system interface functions

Function Fileoutsys = ss (a, b, c, d, tsam, n, nz, stname, inname, outname,
outlist)

Create system structure from state-space data. May be continuous, discrete, or mixed
(sampled data)

Inputs

a
b
c
d usual state space matrices

default: d = zero matrix

tsam sampling rate. Default: tsam = 0 (continuous system)

n
nz number of continuous, discrete states in the system

If tsam is 0, n = rows(a), nz = 0
If tsam is greater than zero, n = 0, nz = rows(a)
see below for system partitioning

stname cell array of strings of state signal names
default (stname=[] on input): x_n for continuous states, xd_n for discrete
states

inname cell array of strings of input signal names
default (inname = [] on input): u_n

outname cell array of strings of output signal names
default (outname = [] on input): y_n

outlist

list of indices of outputs y that are sampled
If tsam is 0, outlist = []
If tsam is greater than 0, outlist = 1 : rows(c)

Unlike states, discrete/continuous outputs may appear in any order

sys2ss returns a vector yd where yd(outlist) = 1; all other entries of yd are 0

Output

outsys system data structure

System partitioning

Suppose for simplicity that outlist specified that the first several outputs were con-
tinuous and the remaining outputs were discrete. Then the system is partitioned
as

Chapter 3: System Construction and Interface Functions 6

x = [xc] (n x 1)
[xd] (nz x 1 discrete states)
a = [acc acd] b = [bc]
[adc add] [bd]
c = [ccc ccd] d = [dc]
[cdc cdd] [dd]

(cdc = c(outlist,1:n), etc.)

with dynamic equations:

d

dt
xc(t) = accxc(t) + acdxd(k ∗ tsam) + bc ∗ u(t)

xd((k + 1) ∗ tsam) = adcxc(ktsam) + addxd(ktsam) + bdu(ktsam)
yc(t) = cccxc(t) + ccdxd(ktsam) + dcu(t)

yd(ktsam) = cdcxc(ktsam) + cddxd(ktsam) + ddu(ktsam)

Signal partitions

| continuous | discrete |
--
states | stname(1:n,:) | stname((n+1):(n+nz),:) |
--
outputs | outname(cout,:) | outname(outlist,:) |
--

where cout is the list of in 1:rows(p) that are not contained in outlist.
(Discrete/continuous outputs may be entered in any order desired by the user.)
Example

octave:1> a = [1 2 3; 4 5 6; 7 8 10];
octave:2> b = [0 0 ; 0 1 ; 1 0];
octave:3> c = eye (3);
octave:4> sys = ss (a, b, c, [], 0, 3, 0, ..
> {"volts", "amps", "joules"});
octave:5> sysout(sys);
Input(s)
1: u_1
2: u_2

Output(s):
1: y_1
2: y_2
3: y_3

state-space form:
3 continuous states, 0 discrete states
State(s):
1: volts
2: amps
3: joules

Chapter 3: System Construction and Interface Functions 7

A matrix: 3 x 3
1 2 3
4 5 6
7 8 10
B matrix: 3 x 2
0 0
0 1
1 0
C matrix: 3 x 3
1 0 0
0 1 0
0 0 1
D matrix: 3 x 3
0 0
0 0
0 0

Notice that the D matrix is constructed by default to the correct dimensions. Default
input and output signals names were assigned since none were given

Function Filess2sys (a, b, c, d, tsam, n, nz, stname, inname, outname,
outlist)

Create system structure from state-space data. May be continuous, discrete, or mixed
(sampled data)
Inputs

a
b
c
d usual state space matrices

default: d = zero matrix

tsam sampling rate. Default: tsam = 0 (continuous system)

n
nz number of continuous, discrete states in the system

If tsam is 0, n = rows(a), nz = 0
If tsam is greater than zero, n = 0, nz = rows(a)
see below for system partitioning

stname cell array of strings of state signal names
default (stname=[] on input): x_n for continuous states, xd_n for discrete
states

inname cell array of strings of input signal names
default (inname = [] on input): u_n

outname cell array of strings of input signal names
default (outname = [] on input): y_n

Chapter 3: System Construction and Interface Functions 8

outlist

list of indices of outputs y that are sampled
If tsam is 0, outlist = []
If tsam is greater than 0, outlist = 1 : rows(c)

Unlike states, discrete/continuous outputs may appear in any order
sys2ss returns a vector yd where yd(outlist) = 1; all other entries of yd are 0
Outputs outsys = system data structure
System partitioning

Suppose for simplicity that outlist specified that the first several outputs were con-
tinuous and the remaining outputs were discrete. Then the system is partitioned
as

x = [xc] (n x 1)
[xd] (nz x 1 discrete states)
a = [acc acd] b = [bc]
[adc add] [bd]
c = [ccc ccd] d = [dc]
[cdc cdd] [dd]

(cdc = c(outlist,1:n), etc.)

with dynamic equations:

d

dt
xc(t) = accxc(t) + acdxd(k ∗ tsam) + bc ∗ u(t)

xd((k + 1) ∗ tsam) = adcxc(ktsam) + addxd(ktsam) + bdu(ktsam)
yc(t) = cccxc(t) + ccdxd(ktsam) + dcu(t)

yd(ktsam) = cdcxc(ktsam) + cddxd(ktsam) + ddu(ktsam)

Signal partitions

| continuous | discrete |
--
states | stname(1:n,:) | stname((n+1):(n+nz),:) |
--
outputs | outname(cout,:) | outname(outlist,:) |
--

where cout is the list of in 1:rows(p) that are not contained in outlist.
(Discrete/continuous outputs may be entered in any order desired by the user.)
Example

octave:1> a = [1 2 3; 4 5 6; 7 8 10];
octave:2> b = [0 0 ; 0 1 ; 1 0];
octave:3> c = eye (3);
octave:4> sys = ss (a, b, c, [], 0, 3, 0,
> {"volts", "amps", "joules"});
octave:5> sysout(sys);
Input(s)

Chapter 3: System Construction and Interface Functions 9

1: u_1
2: u_2

Output(s):
1: y_1
2: y_2
3: y_3

state-space form:
3 continuous states, 0 discrete states
State(s):
1: volts
2: amps
3: joules

A matrix: 3 x 3
1 2 3
4 5 6
7 8 10
B matrix: 3 x 2
0 0
0 1
1 0
C matrix: 3 x 3
1 0 0
0 1 0
0 0 1
D matrix: 3 x 3
0 0
0 0
0 0

Notice that the D matrix is constructed by default to the correct dimensions. Default
input and output signals names were assigned since none were given

Function File[a, b, c, d, tsam, n, nz, stname, inname, outname, yd] =
sys2ss (sys)

Extract state space representation from system data structure

Input

sys System data structure

Outputs

a
b
c
d State space matrices for sys

tsam Sampling time of sys (0 if continuous)

Chapter 3: System Construction and Interface Functions 10

n
nz Number of continuous, discrete states (discrete states come last in state

vector x)

stname
inname
outname Signal names (lists of strings); names of states, inputs, and outputs, re-

spectively

yd Binary vector; yd(ii) is 1 if output y(ii) is discrete (sampled); otherwise
yd(ii) is 0

A warning massage is printed if the system is a mixed continuous and discrete system
Example

octave:1> sys=tf2sys([1 2],[3 4 5]);
octave:2> [a,b,c,d] = sys2ss(sys)
a =
0.00000 1.00000
-1.66667 -1.33333
b =
0
1
c = 0.66667 0.33333
d = 0

3.3 Transfer function system interface functions

Function Filetf (num, den, tsam, inname, outname)
build system data structure from transfer function format data
Inputs

num
den coefficients of numerator/denominator polynomials

tsam sampling interval. default: 0 (continuous time)

inname
outname input/output signal names; may be a string or cell array with a single

string entry

Outputs sys = system data structure
Example

octave:1> sys=tf([2 1],[1 2 1],0.1);
octave:2> sysout(sys)
Input(s)
1: u_1
Output(s):
1: y_1 (discrete)
Sampling interval: 0.1
transfer function form:

Chapter 3: System Construction and Interface Functions 11

2*z^1 + 1

1*z^2 + 2*z^1 + 1

Function Filetf2sys (num, den, tsam, inname, outname)
Build system data structure from transfer function format data
Inputs

num
den Coefficients of numerator/denominator polynomials

tsam Sampling interval; default: 0 (continuous time)

inname
outname Input/output signal names; may be a string or cell array with a single

string entry

Output

sys System data structure

Example

octave:1> sys=tf2sys([2 1],[1 2 1],0.1);
octave:2> sysout(sys)
Input(s)
1: u_1
Output(s):
1: y_1 (discrete)
Sampling interval: 0.1
transfer function form:
2*z^1 + 1

1*z^2 + 2*z^1 + 1

Function File[num, den, tsam, inname, outname] = sys2tf (sys)
Extract transfer function data from a system data structure
See tf for parameter descriptions
Example

octave:1> sys=ss([1 -2; -1.1,-2.1],[0;1],[1 1]);
octave:2> [num,den] = sys2tf(sys)
num = 1.0000 -3.0000
den = 1.0000 1.1000 -4.3000

3.4 Zero-pole system interface functions

Function Filezp (zer, pol, k, tsam, inname, outname)
Create system data structure from zero-pole data
Inputs

Chapter 3: System Construction and Interface Functions 12

zer vector of system zeros

pol vector of system poles

k scalar leading coefficient

tsam sampling period. default: 0 (continuous system)

inname
outname input/output signal names (lists of strings)

Outputs sys: system data structure
Example

octave:1> sys=zp([1 -1],[-2 -2 0],1);
octave:2> sysout(sys)
Input(s)
1: u_1
Output(s):
1: y_1
zero-pole form:
1 (s - 1) (s + 1)

s (s + 2) (s + 2)

Function Filezp2sys (zer, pol, k, tsam, inname, outname)
Create system data structure from zero-pole data
Inputs

zer Vector of system zeros

pol Vector of system poles

k Scalar leading coefficient

tsam Sampling period; default: 0 (continuous system)

inname
outname Input/output signal names (lists of strings)

Output

sys System data structure

Example

octave:1> sys=zp2sys([1 -1],[-2 -2 0],1);
octave:2> sysout(sys)
Input(s)
1: u_1
Output(s):
1: y_1
zero-pole form:
1 (s - 1) (s + 1)

s (s + 2) (s + 2)

Chapter 3: System Construction and Interface Functions 13

Function File[zer, pol, k, tsam, inname, outname] = sys2zp (sys)
Extract zero/pole/leading coefficient information from a system data structure
See zp for parameter descriptions
Example

octave:1> sys=ss([1 -2; -1.1,-2.1],[0;1],[1 1]);
octave:2> [zer,pol,k] = sys2zp(sys)
zer = 3.0000
pol =
-2.6953
1.5953
k = 1

3.5 Data structure access functions

Function Filesyschnames (sys, opt, list, names)
Superseded by syssetsignals

Function Filesyschtsam (sys, tsam)
This function changes the sampling time (tsam) of the system. Exits with an error if
sys is purely continuous time

Function File[n, nz, m, p, yd] = sysdimensions (sys, opt)
return the number of states, inputs, and/or outputs in the system sys

Inputs

sys system data structure

opt String indicating which dimensions are desired. Values:

"all" (default) return all parameters as specified under Outputs
below

"cst" return n= number of continuous states

"dst" return n= number of discrete states

"in" return n= number of inputs

"out" return n= number of outputs

Outputs

n number of continuous states (or individual requested dimension as spec-
ified by opt)

nz number of discrete states

m number of system inputs

p number of system outputs

yd binary vector; yd(ii) is nonzero if output ii is discrete yd(ii) = 0 if output
ii is continuous

See also: sysgetsignals, sysgettsam

Chapter 3: System Construction and Interface Functions 14

Function File[stname, inname, outname, yd] = sysgetsignals (sys)
Function Filesiglist = sysgetsignals (sys, sigid)
Function Filesigname = sysgetsignals (sys, sigid, signum, strflg)

Get signal names from a system
Inputs

sys system data structure for the state space system

sigid signal id. String. Must be one of

"in" input signals

"out" output signals

"st" stage signals

"yd" value of logical vector yd

signum index(indices) or name(s) or signals; see sysidx

strflg flag to return a string instead of a cell array; Values:

0 (default) return a cell array (even if signum specifies an indi-
vidual signal)

1 return a string. Exits with an error if signum does not specify
an individual signal

Outputs

•If sigid is not specified:
stname
inname
outname signal names (cell array of strings); names of states, inputs,

and outputs, respectively

yd binary vector; yd(ii) is nonzero if output ii is discrete

•If sigid is specified but signum is not specified:
sigid="in"

siglist is set to the cell array of input names

sigid="out"
siglist is set to the cell array of output names

sigid="st"
siglist is set to the cell array of state names
stage signals

sigid="yd"
siglist is set to logical vector indicating discrete outputs;
siglist(ii) = 0 indicates that output ii is continuous (unsam-
pled), otherwise it is discrete

•If the first three input arguments are specified:
signame is a cell array of the specified signal names (sigid is "in", "out",
or "st"), or else the logical flag indicating whether output(s) signum
is(are) discrete (sigval=1) or continuous (sigval=0)

Chapter 3: System Construction and Interface Functions 15

Examples (From sysrepdemo)
octave> sys=ss(rand(4),rand(4,2),rand(3,4));
octave># get all signal names
octave> [Ast,Ain,Aout,Ayd] = sysgetsignals(sys)
Ast =
(
[1] = x_1
[2] = x_2
[3] = x_3
[4] = x_4
)
Ain =
(
[1] = u_1
[2] = u_2
)
Aout =
(
[1] = y_1
[2] = y_2
[3] = y_3
)
Ayd =

0 0 0
octave> # get only input signal names:
octave> Ain = sysgetsignals(sys,"in")
Ain =
(
[1] = u_1
[2] = u_2
)
octave> # get name of output 2 (in cell array):
octave> Aout = sysgetsignals(sys,"out",2)
Aout =
(
[1] = y_2
)
octave> # get name of output 2 (as string):
octave> Aout = sysgetsignals(sys,"out",2,1)
Aout = y_2

Function Filesysgettype (sys)
return the initial system type of the system

Input

sys System data structure

Output

Chapter 3: System Construction and Interface Functions 16

systype String indicating how the structure was initially constructed. Values:
"ss", "zp", or "tf"

fir initialized systems return systype="tf"

Function Filesyssetsignals (sys, opt, names, sig idx)
change the names of selected inputs, outputs and states
Inputs

sys System data structure

opt Change default name (output)

"out" Change selected output names

"in" Change selected input names

"st" Change selected state names

"yd" Change selected outputs from discrete to continuous or from
continuous to discrete

names

opt = "out", "in", "st"
string or string array containing desired signal names or val-
ues

opt = "yd"
To desired output continuous/discrete flag Set name to 0 for
continuous, or 1 for discrete

sig idx indices or names of outputs, yd, inputs, or states whose respective
names/values should be changed
Default: replace entire cell array of names/entire yd vector

Outputs

retsys sys with appropriate signal names changed (or yd values, where appro-
priate)

Example

octave:1> sys=ss ([1 2; 3 4],[5;6],[7 8]);
octave:2> sys = syssetsignals (sys, "st",
> str2mat("Posx","Velx"));
octave:3> sysout(sys)
Input(s)
1: u_1
Output(s):
1: y_1
state-space form:
2 continuous states, 0 discrete states
State(s):
1: Posx

Chapter 3: System Construction and Interface Functions 17

2: Velx
A matrix: 2 x 2
1 2
3 4
B matrix: 2 x 1
5
6
C matrix: 1 x 2
7 8
D matrix: 1 x 1
0

Function Filesysupdate (sys, opt)
Update the internal representation of a system
Inputs

sys: system data structure

opt string:

"tf" update transfer function form

"zp" update zero-pole form

"ss" update state space form

"all" all of the above

Outputs

retsys Contains union of data in sys and requested data If requested data in sys
is already up to date then retsys=sys

Conversion to tf or zp exits with an error if the system is mixed continuous/digital
See also: tf, ss, zp, sysout, sys2ss, sys2tf, sys2zp

Function File[systype, nout, nin, ncstates, ndstates] = minfo (inmat)
Determines the type of system matrix. inmat can be a varying, a system, a constant,
and an empty matrix
Outputs

systype Can be one of: varying, system, constant, and empty

nout The number of outputs of the system

nin The number of inputs of the system

ncstates The number of continuous states of the system

ndstates The number of discrete states of the system

Function Filesysgettsam (sys)
Return the sampling time of the system sys

Chapter 4: System display functions 18

4 System display functions

Function Filesysout (sys, opt)
print out a system data structure in desired format

sys system data structure

opt Display option

[] primary system form (default)

"ss" state space form

"tf" transfer function form

"zp" zero-pole form

"all" all of the above

Function Filetfout (num, denom, x)
Print formatted transfer function n(s)/d(s) to the screen x defaults to the string
"s" See also: polyval, polyvalm, poly, roots, conv, deconv, residue, filter, polyderiv,
polyinteg, polyout

Function Filezpout (zer, pol, k, x)
print formatted zero-pole form to the screen x defaults to the string "s" See also:
polyval, polyvalm, poly, roots, conv, deconv, residue, filter, polyderiv, polyinteg,
polyout

Chapter 5: Block Diagram Manipulations 19

5 Block Diagram Manipulations

See Chapter 8 [systime], page 37.
Unless otherwise noted, all parameters (input,output) are system data structures.

Function Filebddemo (inputs)
Octave Controls toolbox demo: Block Diagram Manipulations demo

Function Filebuildssic (clst, ulst, olst, ilst, s1, s2, s3, s4, s5, s6, s7, s8)
Form an arbitrary complex (open or closed loop) system in state-space form from
several systems. buildssic can easily (despite its cryptic syntax) integrate transfer
functions from a complex block diagram into a single system with one call This
function is especially useful for building open loop interconnections for H∞ and H2

designs or for closing loops with these controllers
Although this function is general purpose, the use of sysgroup sysmult, sysconnect
and the like is recommended for standard operations since they can handle mixed
discrete and continuous systems and also the names of inputs, outputs, and states
The parameters consist of 4 lists that describe the connections outputs and inputs
and up to 8 systems s1–s8 Format of the lists:

clst connection list, describes the input signal of each system. The maximum
number of rows of Clst is equal to the sum of all inputs of s1-s8
Example: [1 2 -1; 2 1 0] means that: new input 1 is old input 1 +
output 2 - output 1, and new input 2 is old input 2 + output 1. The order
of rows is arbitrary

ulst if not empty the old inputs in vector ulst will be appended to the outputs.
You need this if you want to “pull out” the input of a system. Elements
are input numbers of s1–s8

olst output list, specifies the outputs of the resulting systems. Elements are
output numbers of s1–s8 The numbers are allowed to be negative and
may appear in any order. An empty matrix means all outputs

ilst input list, specifies the inputs of the resulting systems. Elements are
input numbers of s1–s8 The numbers are allowed to be negative and may
appear in any order. An empty matrix means all inputs

Example: Very simple closed loop system
w e +-----+ u +-----+
--->o--*-->| K |--*-->| G |--*---> y
^ | +-----+ | +-----+ |
- | | | |
| | +----------------> u
| | |
| +-------------------------|---> e
| |
+----------------------------+

The closed loop system GW can be obtained by

Chapter 5: Block Diagram Manipulations 20

GW = buildssic([1 2; 2 -1], 2, [1 2 3], 2, G, K);

clst 1st row: connect input 1 (G) with output 2 (K)
2nd row: connect input 2 (K) with negative output 1 (G)

ulst Append input of 2 (K) to the number of outputs

olst Outputs are output of 1 (G), 2 (K) and appended output 3 (from ulst)

ilst The only input is 2 (K)

Here is a real example:
+----+
-------------------->| W1 |---> v1
z | +----+
----|-------------+
| |
| +---+ v +----+
--->| G |--->O---->| W2 |---> v2
| +---+ | +----+
| |
| v
u y

min‖GWvz‖∞

The closed loop system GW from [z, u]T to [v1, v2, y]T can be obtained by (all siso
systems):

GW = buildssic([1, 4; 2, 4; 3, 1], 3, [2, 3, 5],
[3, 4], G, W1, W2, One);

where “One” is a unity gain (auxiliary) function with order 0 (e.g. One = ugain(1);)

Function Filesys = jet707 ()
Creates a linearized state-space model of a Boeing 707-321 aircraft at v=80 m/s
(M = 0.26, Ga0 = −3◦, α0 = 4◦, κ = 50◦)
System inputs: (1) thrust and (2) elevator angle
System outputs: (1) airspeed and (2) pitch angle
Reference: R. Brockhaus: Flugregelung (Flight Control), Springer, 1994 See also:
ord2

Function Fileord2 (nfreq, damp, gain)
Creates a continuous 2nd order system with parameters:
Inputs

nfreq natural frequency [Hz]. (not in rad/s)

damp damping coefficient

gain dc-gain This is steady state value only for damp > 0 gain is assumed to
be 1.0 if omitted

Chapter 5: Block Diagram Manipulations 21

Output

outsys system data structure has representation with w = 2πf :
/ \
| / -2w*damp -w \ / w \ |
G = | | |, | |, [0 gain], 0 |
| \ w 0 / \ 0 / |
\ /

See also jet707 (mimo example, Boeing 707-321 aircraft model)

Function Filesysadd (gsys, hsys)
returns sys = gsys + hsys

• Exits with an error if gsys and hsys are not compatibly dimensioned
• Prints a warning message is system states have identical names; duplicate names

are given a suffix to make them unique
• sys input/output names are taken from gsys

----| gsys |---
u | ---------- +|
----- (_)----> y
| ________ +|
----| hsys |---

Function Filesys = sysappend (syst, b, c, d, outname, inname, yd)
appends new inputs and/or outputs to a system
Inputs

syst system data structure

b matrix to be appended to sys "B" matrix (empty if none)

c matrix to be appended to sys "C" matrix (empty if none)

d revised sys d matrix (can be passed as [] if the revised d is all zeros)

outname list of names for new outputs

inname list of names for new inputs

yd binary vector; yd(ii) = 0 indicates a continuous output; yd(ii) = 1 indi-
cates a discrete output

Outputs

sys

sys.b := [syst.b , b]
sys.c := [syst.c]
[c]
sys.d := [syst.d | D12]
[D21 | D22]

where D12, D21, and D22 are the appropriate dimensioned blocks of the
input parameter d

Chapter 5: Block Diagram Manipulations 22

• The leading block D11 of d is ignored
• If inname and outname are not given as arguments, the new inputs

and outputs are be assigned default names
• yd is a binary vector of length rows(c) that indicates

continuous/sampled outputs. Default value for yd is:
− sys is continuous or mixed yd = zeros(1,rows(c))

− sys is discrete yd = ones(1,rows(c))

Function Fileclsys = sysconnect (sys, out idx, in idx, order, tol)
Close the loop from specified outputs to respective specified inputs
Inputs

sys System data structure

out idx
in idx Names or indices of signals to connect (see sysidx) The output specified

by out idx(ii) is connected to the input specified by in idx(ii)

order logical flag (default = 0)

0 Leave inputs and outputs in their original order

1 Permute inputs and outputs to the order shown in the dia-
gram below

tol Tolerance for singularities in algebraic loops, default: 200eps

Outputs

clsys Resulting closed loop system

Method

sysconnect internally permutes selected inputs, outputs as shown below, closes the
loop, and then permutes inputs and outputs back to their original order

u_1 ----->| |----> y_1
| sys |
old u_2 | |
u_2* ---->(+)--->| |----->y_2
(in_idx) ^ -------------------- | (out_idx)

The input that has the summing junction added to it has an * added to the end of
the input name

Function File[csys, acd, ccd] = syscont (sys)
Extract the purely continuous subsystem of an input system
Input

sys system data structure

Chapter 5: Block Diagram Manipulations 23

Outputs

csys is the purely continuous input/output connections of sys

acd
ccd connections from discrete states to continuous states, discrete states to

continuous outputs, respectively
If no continuous path exists, csys will be empty

Function File[dsys, adc, cdc] = sysdisc (sys)
Input

sys System data structure

Outputs

dsys Purely discrete portion of sys (returned empty if there is no purely discrete
path from inputs to outputs)

adc
cdc Connections from continuous states to discrete states and discrete out-

puts, respectively

Function Fileretsys = sysdup (asys, out idx, in idx)
Duplicate specified input/output connections of a system
Inputs

asys system data structure

out idx
in idx indices or names of desired signals (see sigidx) duplicates are made of

y(out_idx(ii)) and u(in_idx(ii))

Output

retsys Resulting closed loop system: duplicated i/o names are appended with a
"+" suffix

Method

sysdup creates copies of selected inputs and outputs as shown below. u1, y1 is the
set of original inputs/outputs, and u2, y2 is the set of duplicated inputs/outputs in
the order specified in in idx, out idx, respectively

u1 ----->| |----> y1
| asys |
u2 ------>| |----->y2
(in_idx) -------------------- (out_idx)

Function Filesys = sysgroup (asys, bsys)
Combines two systems into a single system
Inputs

Chapter 5: Block Diagram Manipulations 24

asys
bsys System data structures

Output

sys sys = blockdiag(asys, bsys)

| ________ |
u1 ----->|--> | asys |--->|----> y1
| -------- |
| ________ |
u2 ----->|--> | bsys |--->|----> y2

Ksys

The function also rearranges the internal state-space realization of sys so that the
continuous states come first and the discrete states come last If there are duplicate
names, the second name has a unique suffix appended on to the end of the name

Function Filesys = sysmult (Asys, Bsys)
Compute sys = Asys ∗Bsys (series connection):

u ---------- ----------
--->| Bsys |---->| Asys |--->
---------- ----------

A warning occurs if there is direct feed-through from an input or a continuous state
of Bsys, through a discrete output of Bsys, to a continuous state or output in Asys
(system data structure does not recognize discrete inputs)

Function Fileretsys = sysprune (asys, out idx, in idx)
Extract specified inputs/outputs from a system
Inputs

asys system data structure

out idx
in idx Indices or signal names of the outputs and inputs to be kept in the re-

turned system; remaining connections are “pruned” off May select as []
(empty matrix) to specify all outputs/inputs

retsys = sysprune (Asys, [1:3,4], "u_1");
retsys = sysprune (Asys, {"tx", "ty", "tz"}, 4);

Output

retsys Resulting system

u1 ------->| |----> y1
(in_idx) | Asys | (out_idx)
u2 ------->| |----| y2
(deleted)-------------------- (deleted)

Chapter 5: Block Diagram Manipulations 25

Function Filepv = sysreorder (vlen, list)
Inputs

vlen Vector length

list A subset of [1:vlen]

Output

pv A permutation vector to order elements of [1:vlen] in list to the end
of a vector

Used internally by sysconnect to permute vector elements to their desired locations

Function Fileretsys = sysscale (sys, outscale, inscale, outname, inname)
scale inputs/outputs of a system
Inputs

sys Structured system

outscale
inscale Constant matrices of appropriate dimension

outname
inname Lists of strings with the names of respectively outputs and inputs

Output

retsys resulting open loop system:
----------- ------- -----------
u --->| inscale |--->| sys |--->| outscale |---> y
----------- ------- -----------

If the input names and output names (each a list of strings) are not given and the
scaling matrices are not square, then default names will be given to the inputs and/or
outputs
A warning message is printed if outscale attempts to add continuous system outputs
to discrete system outputs; otherwise yd is set appropriately in the returned value of
sys

Function Filesys = syssub (Gsys, Hsys)
Return sys = Gsys−Hsys
Method

Gsys and Hsys are connected in parallel The input vector is connected to both sys-
tems; the outputs are subtracted. Returned system names are those of Gsys

+--------+
+--->| Gsys |---+
| +--------+ |
| +|
u --+ (_)--> y
| -|
| +--------+ |
+--->| Hsys |---+
+--------+

Chapter 5: Block Diagram Manipulations 26

Function Fileugain (n)
Creates a system with unity gain, no states This trivial system is sometimes needed
to create arbitrary complex systems from simple systems with buildssic Watch out
if you are forming sampled systems since ugain does not contain a sampling period
See also: hinfdemo, jet707

Function FileW = wgt1o (vl, vh, fc)
State space description of a first order weighting function
Weighting function are needed by the H2/H∞ design procedure These functions are
part of the augmented plant P (see hinfdemo for an application example)
Inputs

vl Gain at low frequencies

vh Gain at high frequencies

fc Corner frequency (in Hz, not in rad/sec)

Output

W Weighting function, given in form of a system data structure

Function Fileksys = parallel (asys, bsys)
Forms the parallel connection of two systems

| -------- |
u ----->|----> | asys |--->|----> y1
| | -------- |
| | -------- |
|--->|----> | bsys |--->|----> y2

ksys

Function File[retsys, nc, no] = sysmin (sys, flg)
Returns a minimal (or reduced order) system
Inputs

sys System data structure

flg When equal to 0 (default value), returns minimal system, in which state
names are lost; when equal to 1, returns system with physical states
removed that are either uncontrollable or unobservable (cannot reduce
further without discarding physical meaning of states)

Outputs

retsys Returned system

nc Number of controllable states in the returned system

no Number of observable states in the returned system

cflg is_controllable(retsys)

oflg is_observable(retsys)

Chapter 6: Numerical Functions 27

6 Numerical Functions

Function Filex = are (a, b, c, opt)
Solve the Algebraic Riccati Equation

ATX +XA−XBX + C = 0

Inputs for identically dimensioned square matrices

a n by n matrix;

b n by n matrix or n by m matrix; in the latter case b is replaced by
b := b ∗ b′;

c n by n matrix or p by m matrix; in the latter case c is replaced by
c := c′ ∗ c;

opt (optional argument; default = "B"): String option passed to balance
prior to ordered Schur decomposition

Output

x solution of the are

Method Laub’s Schur method (ieee Transactions on Automatic Control, 1979) is
applied to the appropriate Hamiltonian matrix See also: balance, dare

Function Filex = dare (a, b, q, r, opt)
Return the solution, x of the discrete-time algebraic Riccati equation

ATXA−X +ATXB(R+BTXB)−1BTXA+Q = 0

Inputs

a n by n matrix;

b n by m matrix;

q n by n matrix, symmetric positive semidefinite, or a p by n matrix, In
the latter case q := q′ ∗ q is used;

r m by m, symmetric positive definite (invertible);

opt (optional argument; default = "B"): String option passed to balance
prior to ordered QZ decomposition

Output

x solution of dare

Method Generalized eigenvalue approach (Van Dooren; siam J Sci. Stat. Comput.,
Vol 2) applied to the appropriate symplectic pencil
See also: Ran and Rodman, Stable Hermitian Solutions of Discrete Algebraic Riccati
Equations, Mathematics of Control, Signals and Systems, Vol 5, no 2 (1992), pp
165–194 See also: balance, are

Chapter 6: Numerical Functions 28

Function File[tvals, plist] = dre (sys, q, r, qf, t0, tf, ptol, maxits)
Solve the differential Riccati equation

−dP
dt

= ATP + PA− PBR−1BTP +Q

P (tf) = Qf

for the lti system sys. Solution of standard lti state feedback optimization

min
∫ tf

t0

xTQx+ uTRudt+ x(tf)TQfx(tf)

optimal input is
u = −R−1BTP (t)x

Inputs

sys continuous time system data structure

q state integral penalty

r input integral penalty

qf state terminal penalty

t0
tf limits on the integral

ptol tolerance (used to select time samples; see below); default = 0.1

maxits number of refinement iterations (default=10)

Outputs

tvals time values at which p(t) is computed

plist list values of p(t); plist { i } is p(tvals(i))

tvals is selected so that:

‖plisti − plisti−1‖ < ptol

for every i between 2 and length(tvals)

Function Filedgram (a, b)
Return controllability gramian of discrete time system

xk+1 = axk + buk

Inputs

a n by n matrix

b n by m matrix

Output

Chapter 6: Numerical Functions 29

m n by n matrix, satisfies

amaT −m+ bbT = 0

Function Filedlyap (a, b)
Solve the discrete-time Lyapunov equation
Inputs

a n by n matrix;

b Matrix: n by n, n by m, or p by n

Output

x matrix satisfying appropriate discrete time Lyapunov equation

Options:
• b is square: solve

axaT − x+ b = 0

• b is not square: x satisfies either

axaT − x+ bbT = 0

or
aTxa− x+ bT b = 0,

whichever is appropriate

Method Uses Schur decomposition method as in Kitagawa, An Algorithm for Solving
the Matrix Equation X = FXF ′+S, International Journal of Control, Volume 25,
Number 5, pages 745–753 (1977)
Column-by-column solution method as suggested in Hammarling, Numerical Solution
of the Stable, Non-Negative Definite Lyapunov Equation, ima Journal of Numerical
Analysis, Volume 2, pages 303–323 (1982)

Function FileW = gram (sys, mode)
Function FileWc = gram (a, b)

gram (sys, ’c’) returns the controllability gramian of the (continuous- or
discrete-time) system sys gram (sys, ’o’) returns the observability gramian of the
(continuous- or discrete-time) system sys gram (a, b) returns the controllability
gramian Wc of the continuous-time system dx/dt = ax+bu; i.e., Wc satisfies
aWc+mWc′+bb′ = 0

Function Filelyap (a, b, c)
Function Filelyap (a, b)

Solve the Lyapunov (or Sylvester) equation via the Bartels-Stewart algorithm (Com-
munications of the acm, 1972)
If a, b, and c are specified, then lyap returns the solution of the Sylvester equation

AX +XB + C = 0

Chapter 6: Numerical Functions 30

If only (a, b) are specified, then lyap returns the solution of the Lyapunov equation

ATX +XA+B = 0

If b is not square, then lyap returns the solution of either

ATX +XA+BTB = 0

or
AX +XAT +BBT = 0

whichever is appropriate
Solves by using the Bartels-Stewart algorithm (1972)

Function Fileqzval (a, b)
Compute generalized eigenvalues of the matrix pencil (A− λB)
a and b must be real matrices
qzval is obsolete; use qz instead

Function Filey = zgfmul (a, b, c, d, x)
Compute product of zgep incidence matrix F with vector x Used by zgepbal (in
zgscal) as part of generalized conjugate gradient iteration

Function Filezgfslv (n, m, p, b)
Solve system of equations for dense zgep problem

Function Filezz = zginit (a, b, c, d)
Construct right hand side vector zz for the zero-computation generalized eigenvalue
problem balancing procedure. Called by zgepbal

Function Filezgreduce (sys, meps)
Implementation of procedure REDUCE in (Emami-Naeini and Van Dooren, Auto-
matica, # 1982)

Function File[nonz, zer] = zgrownorm (mat, meps)
Return nonz = number of rows of mat whose two norm exceeds meps, and zer =
number of rows of mat whose two norm is less than meps

Function Filex = zgscal (f, z, n, m, p)
Generalized conjugate gradient iteration to solve zero-computation generalized eigen-
value problem balancing equation fx = z; called by zgepbal

Function File[a, b] = zgsgiv (c, s, a, b)
Apply givens rotation c,s to row vectors a, b No longer used in zero-balancing
(zgpbal); kept for backward compatibility

Chapter 6: Numerical Functions 31

Function Filex = zgshsr (y)
Apply householder vector based on em to column vector y Called by zgfslv

References

ZGEP Hodel, Computation of Zeros with Balancing, 1992, Linear Algebra and its
Applications

Generalized CG
Golub and Van Loan, Matrix Computations, 2nd ed 1989.

Chapter 7: System Analysis-Properties 32

7 System Analysis-Properties

Function Fileanaldemo ()
Octave Controls toolbox demo: State Space analysis demo

Function File[n, m, p] = abcddim (a, b, c, d)
Check for compatibility of the dimensions of the matrices defining the linear system
[A,B,C,D] corresponding to

dx

dt
= Ax+Bu

y = Cx+Du

or a similar discrete-time system
If the matrices are compatibly dimensioned, then abcddim returns

n The number of system states

m The number of system inputs

p The number of system outputs

Otherwise abcddim returns n = m = p = −1
Note: n = 0 (pure gain block) is returned without warning See also: is abcd

Function Filectrb (sys, b)
Function Filectrb (a, b)

Build controllability matrix:

Qs = [BABA2B . . . An−1B]

of a system data structure or the pair (a, b)
ctrb forms the controllability matrix The numerical properties of is_controllable
are much better for controllability tests

Function Fileh2norm (sys)
Computes the H2 norm of a system data structure (continuous time only)
Reference: Doyle, Glover, Khargonekar, Francis, State-Space Solutions to Standard
H2 and H∞ Control Problems, ieee tac August 1989

Function File[g, gmin, gmax] = hinfnorm (sys, tol, gmin, gmax, ptol)
Computes the H∞ norm of a system data structure
Inputs

sys system data structure

tol H∞ norm search tolerance (default: 0.001)

gmin minimum value for norm search (default: 1e-9)

Chapter 7: System Analysis-Properties 33

gmax maximum value for norm search (default: 1e+9)

ptol pole tolerance:
• if sys is continuous, poles with |real(pole)| < ptol‖H‖ (H is appro-

priate Hamiltonian) are considered to be on the imaginary axis
• if sys is discrete, poles with |pole − 1| < ptol‖[s1s2]‖ (appropriate

symplectic pencil) are considered to be on the unit circle
• Default value: 1e-9

Outputs

g Computed gain, within tol of actual gain. g is returned as Inf if the
system is unstable

gmin
gmax Actual system gain lies in the interval [gmin, gmax]

References: Doyle, Glover, Khargonekar, Francis, State-space solutions to standard
H2 and H∞ control problems, ieee tac August 1989; Iglesias and Glover, State-
Space approach to discrete-time H∞ control, Int. J. Control, vol 54, no. 5, 1991;
Zhou, Doyle, Glover, Robust and Optimal Control, Prentice-Hall, 1996

Function Fileobsv (sys, c)
Function Fileobsv (a, c)

Build observability matrix:

Qb =


C
CA
CA2

...
CAn−1


of a system data structure or the pair (a, c)
The numerical properties of is_observable are much better for observability tests

Function File[zer, pol] = pzmap (sys)
Plots the zeros and poles of a system in the complex plane
Input

sys System data structure

Outputs

pol

zer if omitted, the poles and zeros are plotted on the screen otherwise, pol
and zer are returned as the system poles and zeros (see sys2zp for a
preferable function call)

Function Fileretval = is abcd (a, b, c, d)
Returns retval = 1 if the dimensions of a, b, c, d are compatible, otherwise retval =
0 with an appropriate diagnostic message printed to the screen. The matrices b, c,
or d may be omitted See also: abcddim

Chapter 7: System Analysis-Properties 34

Function File[retval, u] = is controllable (sys, tol)
Function File[retval, u] = is controllable (a, b, tol)

Logical check for system controllability
Inputs

sys system data structure

a
b n by n, n by m matrices, respectively

tol optional roundoff parameter. Default value: 10*eps

Outputs

retval Logical flag; returns true (1) if the system sys or the pair (a, b) is con-
trollable, whichever was passed as input arguments

u u is an orthogonal basis of the controllable subspace

Method Controllability is determined by applying Arnoldi iteration with complete
re-orthogonalization to obtain an orthogonal basis of the Krylov subspace

span ([b,a*b,...,a^{n-1}*b])

The Arnoldi iteration is executed with krylov if the system has a single input; other-
wise a block Arnoldi iteration is performed with krylovb See also: size, rows, columns,
length, ismatrix, isscalar, isvector, is observable, is stabilizable, is detectable, krylov,
krylovb

Function Fileretval = is detectable (a, c, tol, dflg)
Function Fileretval = is detectable (sys, tol)

Test for detectability (observability of unstable modes) of (a, c)
Returns 1 if the system a or the pair (a, c) is detectable, 0 if not, and -1 if the system
has unobservable modes at the imaginary axis (unit circle for discrete-time systems)
See is_stabilizable for detailed description of arguments and computational
method See also: is stabilizable, size, rows, columns, length, ismatrix, isscalar,
isvector

Function File[retval, dgkf struct] = is dgkf (asys, nu, ny, tol)
Determine whether a continuous time state space system meets assumptions of dgkf
algorithm Partitions system into:

[dx/dt] [A | Bw Bu][w]
[z] = [Cz | Dzw Dzu][u]
[y] [Cy | Dyw Dyu]

or similar discrete-time system If necessary, orthogonal transformations qw, qz and
nonsingular transformations ru, ry are applied to respective vectors w, z, u, y in order
to satisfy dgkf assumptions Loop shifting is used if dyu block is nonzero
Inputs

asys system data structure

nu number of controlled inputs

Chapter 7: System Analysis-Properties 35

ny number of measured outputs

tol threshold for 0; default: 200*eps

Outputs

retval true(1) if system passes check, false(0) otherwise

dgkf struct
data structure of is_dgkf results. Entries:

nw
nz dimensions of w, z

a system A matrix

bw (n x nw) qw-transformed disturbance input matrix

bu (n x nu) ru-transformed controlled input matrix;
B = [BwBu]

cz (nz x n) Qz-transformed error output matrix

cy (ny x n) ry-transformed measured output matrix
C = [Cz;Cy]

dzu

dyw off-diagonal blocks of transformed system D matrix that en-
ter z, y from u, w respectively

ru controlled input transformation matrix

ry observed output transformation matrix

dyu nz nonzero if the dyu block is nonzero

dyu untransformed dyu block

dflg nonzero if the system is discrete-time

is_dgkf exits with an error if the system is mixed discrete/continuous
References

[1] Doyle, Glover, Khargonekar, Francis, State Space Solutions to Standard
H2 and H∞ Control Problems, ieee tac August 1989

[2] Maciejowksi, J.M., Multivariable Feedback Design, Addison-Wesley, 1989

Function Filedigital = is digital (sys, eflg)
Return nonzero if system is digital
Inputs

sys System data structure

eflg When equal to 0 (default value), exits with an error if the system is mixed
(continuous and discrete components); when equal to 1, print a warning
if the system is mixed (continuous and discrete); when equal to 2, operate
silently

Chapter 7: System Analysis-Properties 36

Output

digital When equal to 0, the system is purely continuous; when equal to 1,
the system is purely discrete; when equal to -1, the system is mixed
continuous and discrete

Exits with an error if sys is a mixed (continuous and discrete) system

Function File[retval, u] = is observable (a, c, tol)
Function File[retval, u] = is observable (sys, tol)

Logical check for system observability
Default: tol = tol = 10*norm(a,’fro’)*eps

Returns 1 if the system sys or the pair (a, c) is observable, 0 if not
See is_controllable for detailed description of arguments and default values See
also: size, rows, columns, length, ismatrix, isscalar, isvector

Function Fileis sample (ts)
Return true if ts is a valid sampling time (real, scalar, > 0)

Function Fileis siso (sys)
Returns nonzero if the system data structure sys is single-input, single-output

Function Fileretval = is stabilizable (sys, tol)
Function Fileretval = is stabilizable (a, b, tol, dflg)

Logical check for system stabilizability (i.e., all unstable modes are controllable) Re-
turns 1 if the system is stabilizable, 0 if the system is not stabilizable, -1 if the system
has non stabilizable modes at the imaginary axis (unit circle for discrete-time systems
Test for stabilizability is performed via Hautus Lemma. If dflg 6=0 assume that
discrete-time matrices (a,b) are supplied See also: size, rows, columns, length, is-
matrix, isscalar, isvector, is observable, is stabilizable, is detectable

Function Fileis signal list (mylist)
Return true if mylist is a list of individual strings

Function Fileis stable (a, tol, dflg)
Function Fileis stable (sys, tol)

Returns 1 if the matrix a or the system sys is stable, or 0 if not
Inputs

tol is a roundoff parameter, set to 200*eps if omitted

dflg Digital system flag (not required for system data structure):

dflg != 0 stable if eig(a) is in the unit circle

dflg == 0 stable if eig(a) is in the open LHP (default)

See also: size, rows, columns, length, ismatrix, isscalar, isvector, is observable,
is stabilizable, is detectable, krylov, krylovb

Chapter 8: System Analysis-Time Domain 37

8 System Analysis-Time Domain

Function Filec2d (sys, opt, t)
Function Filec2d (sys, t)

Converts the system data structure describing:

ẋ = Acx+Bcu

into a discrete time equivalent model:

xn+1 = Adxn +Bdun

via the matrix exponential or bilinear transform
Inputs

sys system data structure (may have both continuous time and discrete time
subsystems)

opt string argument; conversion option (optional argument; may be omitted
as shown above)

"ex" use the matrix exponential (default)

"bi" use the bilinear transformation

s =
2(z − 1)
T (z + 1)

FIXME: This option exits with an error if sys is not purely
continuous. (The ex option can handle mixed systems.)

"matched"
Use the matched pole/zero equivalent transformation (cur-
rently only works for purely continuous siso systems)

t sampling time; required if sys is purely continuous
Note that if the second argument is not a string, c2d() assumes that the
second argument is t and performs appropriate argument checks

Output

dsys Discrete time equivalent via zero-order hold, sample each t sec

This function adds the suffix _d to the names of the new discrete states

Function Filed2c (sys, tol)
Function Filed2c (sys, opt)

Convert a discrete (sub)system into a purely continuous one The sampling time used
is sysgettsam(sys)

Inputs

sys system data structure with discrete components

Chapter 8: System Analysis-Time Domain 38

tol Scalar value Tolerance for convergence of default "log" option (see below)

opt conversion option. Choose from:

"log" (default) Conversion is performed via a matrix logarithm Due
to some problems with this computation, it is followed by a
steepest descent algorithm to identify continuous time a, b,
to get a better fit to the original data
If called as d2c (sys, tol), with tol positive scalar, the "log"
option is used. The default value for tol is 1e-8

"bi" Conversion is performed via bilinear transform
z = (1+sT/2)/(1 − sT/2) where T is the system sampling
time (see sysgettsam)
FIXME: bilinear option exits with an error if sys is not purely
discrete

Output

csys continuous time system (same dimensions and signal names as in sys)

Function File[dsys, fidx] = dmr2d (sys, idx, sprefix, ts2, cuflg)
convert a multirate digital system to a single rate digital system states specified by
idx, sprefix are sampled at ts2, all others are assumed sampled at ts1 = sysgettsam
(sys)

Inputs

sys discrete time system; dmr2d exits with an error if sys is not discrete

idx indices or names of states with sampling time sysgettsam(sys) (may be
empty); see cellidx

sprefix list of string prefixes of states with sampling time sysgettsam(sys) (may
be empty)

ts2 sampling time of states not specified by idx, sprefix must be an integer
multiple of sysgettsam(sys)

cuflg "constant u flag" if cuflg is nonzero then the system inputs are assumed
to be constant over the revised sampling interval ts2 Otherwise, since the
inputs can change during the interval t in [kts2, (k+1)ts2], an additional
set of inputs is included in the revised B matrix so that these intersample
inputs may be included in the single-rate system default cuflg = 1

Outputs

dsys equivalent discrete time system with sampling time ts2

The sampling time of sys is updated to ts2

if cuflg=0 then a set of additional inputs is added to the system with
suffixes d1, . . . , dn to indicate their delay from the starting time k ts2,
i.e u = [u 1; u 1 d1; . . . , u 1 dn] where u 1 dk is the input k*ts1 units
of time after u 1 is sampled. (ts1 is the original sampling time of the
discrete time system and ts2 = (n+1)*ts1)

Chapter 8: System Analysis-Time Domain 39

fidx indices of "formerly fast" states specified by idx and sprefix; these states
are updated to the new (slower) sampling interval ts2

WARNING Not thoroughly tested yet; especially when cuflg == 0

Function Filedamp (p, tsam)
Displays eigenvalues, natural frequencies and damping ratios of the eigenvalues of a
matrix p or the A matrix of a system p, respectively If p is a system, tsam must not
be specified If p is a matrix and tsam is specified, eigenvalues of p are assumed to be
in z-domain See also: eig

Function Filedcgain (sys, tol)
Returns dc-gain matrix. If dc-gain is infinite an empty matrix is returned The ar-
gument tol is an optional tolerance for the condition number of the A Matrix in sys
(default tol = 1.0e-10)

Function File[y, t] = impulse (sys, inp, tstop, n)
Impulse response for a linear system The system can be discrete or multivariable (or
both) If no output arguments are specified, impulse produces a plot or the impulse
response data for system sys

Inputs

sys System data structure

inp Index of input being excited

tstop The argument tstop (scalar value) denotes the time when the simulation
should end

n the number of data values
Both parameters tstop and n can be omitted and will be computed from
the eigenvalues of the A Matrix

Outputs

y Values of the impulse response

t Times of the impulse response

See also: step

Function File[y, t] = step (sys, inp, tstop, n)
Step response for a linear system The system can be discrete or multivariable (or
both) If no output arguments are specified, step produces a plot or the step response
data for system sys

Inputs

sys System data structure

inp Index of input being excited

tstop The argument tstop (scalar value) denotes the time when the simulation
should end

Chapter 8: System Analysis-Time Domain 40

n the number of data values
Both parameters tstop and n can be omitted and will be computed from
the eigenvalues of the A Matrix

Outputs

y Values of the step response

t Times of the step response

When invoked with the output parameter y the plot is not displayed See also: impulse

Chapter 9: System Analysis-Frequency Domain 41

9 System Analysis-Frequency Domain

Demonstration/tutorial script

Function Filefrdemo ()
Octave Control Toolbox demo: Frequency Response demo

Function File[mag, phase, w] = bode (sys, w, out idx, in idx)
If no output arguments are given: produce Bode plots of a system; otherwise, compute
the frequency response of a system data structure
Inputs

sys a system data structure (must be either purely continuous or discrete; see
is digital)

w frequency values for evaluation
if sys is continuous, then bode evaluates G(jw) where G(s) is the system
transfer function
if sys is discrete, then bode evaluates G(exp(jwT)), where
• T is the system sampling time
• G(z) is the system transfer function

Default the default frequency range is selected as follows: (These steps
are not performed if w is specified)
1. via routine bodquist , isolate all poles and zeros away from w=0

(jw=0 or exp(jwT)=1) and select the frequency range based on the
breakpoint locations of the frequencies

2. if sys is discrete time, the frequency range is limited to jwT in
[0, 2π/T]

3. A "smoothing" routine is used to ensure that the plot phase does
not change excessively from point to point and that singular points
(e.g., crossovers from +/- 180) are accurately shown

out idx
in idx

The names or indices of outputs and inputs to be used in the frequency
response. See sysprune

Example

bode(sys,[],"y_3", {"u_1","u_4"});

Outputs

mag
phase the magnitude and phase of the frequency response G(jw) or

G(exp(jwT)) at the selected frequency values

w the vector of frequency values used
1. If no output arguments are given, e.g.,

Chapter 9: System Analysis-Frequency Domain 42

bode(sys);

bode plots the results to the screen. Descriptive labels are automatically placed
Failure to include a concluding semicolon will yield some garbage being printed
to the screen (ans = [])

2. If the requested plot is for an mimo system, mag is set to ||G(jw)|| or
||G(exp(jwT))|| and phase information is not computed

Function File[wmin, wmax] = bode bounds (zer, pol, dflg, tsam)
Get default range of frequencies based on cutoff frequencies of system poles and zeros
Frequency range is the interval [10wmin , 10wmax]
Used internally in __freqresp__ (bode, nyquist)

Function Filefreqchkw (w)
Used by __freqresp__ to check that input frequency vector w is valid Returns
boolean value

Function Fileout = ltifr (a, b, w)
Function Fileout = ltifr (sys, w)

Linear time invariant frequency response of single-input systems
Inputs

a
b coefficient matrices of dx/dt = Ax+Bu

sys system data structure

w vector of frequencies

Output

out frequency response, that is:

G(jω) = (jωI −A)−1B

for complex frequencies s = jw

Function File[realp, imagp, w] = nyquist (sys, w, out idx, in idx, atol)
Function Filenyquist (sys, w, out idx, in idx, atol)

Produce Nyquist plots of a system; if no output arguments are given, Nyquist plot is
printed to the screen
Compute the frequency response of a system
Inputs (pass as empty to get default values)

sys system data structure (must be either purely continuous or discrete; see
is_digital)

w frequency values for evaluation If sys is continuous, then bode evaluates
G(jw); if sys is discrete, then bode evaluates G(exp(jwT)), where T is
the system sampling time

Chapter 9: System Analysis-Frequency Domain 43

default the default frequency range is selected as follows: (These steps are not
performed if w is specified)
1. via routine __bodquist__, isolate all poles and zeros away from w=0

(jw=0 or exp(jwT) = 1) and select the frequency range based on the
breakpoint locations of the frequencies

2. if sys is discrete time, the frequency range is limited to jwT in [0, 2pπ]
3. A “smoothing” routine is used to ensure that the plot phase does

not change excessively from point to point and that singular points
(e.g., crossovers from +/- 180) are accurately shown

atol for interactive nyquist plots: atol is a change-in-slope tolerance for the of
asymptotes (default = 0; 1e-2 is a good choice). This allows the user to
“zoom in” on portions of the Nyquist plot too small to be seen with large
asymptotes

Outputs

realp
imagp the real and imaginary parts of the frequency response G(jw) or

G(exp(jwT)) at the selected frequency values

w the vector of frequency values used

If no output arguments are given, nyquist plots the results to the screen If atol != 0
and asymptotes are detected then the user is asked interactively if they wish to zoom
in (remove asymptotes) Descriptive labels are automatically placed
Note: if the requested plot is for an mimo system, a warning message is presented;
the returned information is of the magnitude ‖G(jw)‖ or ‖G(exp(jwT)‖ only; phase
information is not computed

Function File[mag, phase, w] = nichols (sys, w, outputs, inputs)
Produce Nichols plot of a system
Inputs

sys System data structure (must be either purely continuous or discrete; see
is_digital)

w Frequency values for evaluation
if sys is continuous, then nichols evaluates G(jw)
if sys is discrete, then nichols evaluates G(exp(jwT)), where T=sys.
tsam is the system sampling time
the default frequency range is selected as follows (These steps are
not performed if w is specified):
1. via routine __bodquist__, isolate all poles and zeros away from

w=0 (jw = 0 or exp(jwT) = 1) and select the frequency range
based on the breakpoint locations of the frequencies

2. if sys is discrete time, the frequency range is limited to jwT in
[0, 2pπ]

Chapter 9: System Analysis-Frequency Domain 44

3. A “smoothing” routine is used to ensure that the plot phase does
not change excessively from point to point and that singular
points (e.g., crossovers from +/- 180) are accurately shown

outputs
inputs the names or indices of the output(s) and input(s) to be used in the

frequency response; see sysprune

Outputs

mag
phase The magnitude and phase of the frequency response G(jw) or

G(exp(jwT)) at the selected frequency values

w The vector of frequency values used

If no output arguments are given, nichols plots the results to the screen Descriptive
labels are automatically placed. See xlabel, ylabel, and title

Note: if the requested plot is for an mimo system, mag is set to ‖G(jw)‖ or
‖G(exp(jwT)‖ and phase information is not computed

Function File[zer, gain] = tzero (a, b, c, d, opt)
Function File[zer, gain] = tzero (sys, opt)

Compute transmission zeros of a continuous system:

ẋ = Ax+Bu

y = Cx+Du

or of a discrete one:
xk+1 = Axk +Buk

yk = Cxk +Duk

Outputs

zer transmission zeros of the system

gain leading coefficient (pole-zero form) of siso transfer function returns
gain=0 if system is multivariable

References

1. Emami-Naeini and Van Dooren, Automatica, 1982
2. Hodel, Computation of Zeros with Balancing, 1992 Lin. Alg. Appl

Function Filezr = tzero2 (a, b, c, d, bal)
Compute the transmission zeros of a, b, c, d

bal = balancing option (see balance); default is "B"

Needs to incorporate mvzero algorithm to isolate finite zeros; use tzero instead

Chapter 10: Controller Design 45

10 Controller Design

Function Filedgkfdemo ()
Octave Controls toolbox demo: H2/H∞ options demos

Function Filehinfdemo ()
H∞ design demos for continuous siso and mimo systems and a discrete system. The
siso system is difficult to control because it is non-minimum-phase and unstable. The
second design example controls the jet707 plant, the linearized state space model of
a Boeing 707-321 aircraft at v=80 m/s (M = 0.26, Ga0 = −3◦, α0 = 4◦, κ = 50◦)
Inputs: (1) thrust and (2) elevator angle Outputs: (1) airspeed and (2) pitch angle.
The discrete system is a stable and second order

siso plant:

G(s) =
s− 2

(s+ 2)(s− 1)

+----+
-------------------->| W1 |---> v1
z | +----+
----|-------------+
| |
| +---+ v y +----+
u *--->| G |--->O--*-->| W2 |---> v2
| +---+ | +----+
| |
| +---+ |
-----| K |<-------
+---+

min‖Tvz‖∞

W1 und W2 are the robustness and performance weighting functions

mimo plant:
The optimal controller minimizes the H∞ norm of the augmented plant
P (mixed-sensitivity problem):

Chapter 10: Controller Design 46

w
1 -----------+
| +----+
+---------------------->| W1 |----> z1
w | | +----+
2 ------------------------+
| | |
| v +----+ v +----+
+--*-->o-->| G |-->o--*-->| W2 |---> z2
| +----+ | +----+
| |
^ v
u y (to K)
(from controller K) z1z2

y

 = P

w1

w2

u


Discrete system:

This is not a true discrete design. The design is carried out in continuous
time while the effect of sampling is described by a bilinear transformation
of the sampled system This method works quite well if the sampling
period is “small” compared to the plant time constants

The continuous plant:

G(s) =
1

(s+ 2)(s+ 1)

is discretised with a zoh (Sampling period = Ts = 1 second):

G(z) =
0.199788z + 0.073498

(z − 0.36788)(z − 0.13534)

+----+
-------------------->| W1 |---> v1
z | +----+
----|-------------+
| |
| +---+ v +----+
--->| G |--->O---->| W2 |---> v2
| +---+ | +----+
| |
| +---+ |
-----| K |<-------
+---+

min‖Tvz‖∞
W1 and W2 are the robustness and performance weighting functions

Chapter 10: Controller Design 47

Function File[l, m, p, e] = dlqe (a, g, c, sigw, sigv, z)
Construct the linear quadratic estimator (Kalman filter) for the discrete time system

xk+1 = Axk +Buk +Gwk

yk = Cxk +Duk + vk

where w, v are zero-mean gaussian noise processes with respective intensities sigw =
cov (w, w) and sigv = cov (v, v)

If specified, z is cov (w, v). Otherwise cov (w, v) = 0

The observer structure is

zk|k = zk|k−1 + l(yk − Czk|k−1 −Duk)

zk+1|k = Azk|k +Buk

The following values are returned:

l The observer gain, (A−ALC) is stable

m The Riccati equation solution

p The estimate error covariance after the measurement update

e The closed loop poles of (A−ALC)

Function File[k, p, e] = dlqr (a, b, q, r, z)
Construct the linear quadratic regulator for the discrete time system

xk+1 = Axk +Buk

to minimize the cost functional

J =
∑

xTQx+ uTRu

z omitted or
J =

∑
xTQx+ uTRu+ 2xTZu

z included

The following values are returned:

k The state feedback gain, (A−BK) is stable

p The solution of algebraic Riccati equation

e The closed loop poles of (A−BK)

Chapter 10: Controller Design 48

Function File[Lp, Lf, P, Z] = dkalman (A, G, C, Qw, Rv, S)
Construct the linear quadratic estimator (Kalman predictor) for the discrete time
system

xk+1 = Axk +Buk +Gwk

yk = Cxk +Duk + vk

where w, v are zero-mean gaussian noise processes with respective intensities Qw =
cov (w, w) and Rv = cov (v, v)

If specified, S is cov (w, v). Otherwise cov (w, v) = 0

The observer structure is xk+1|k = Axk|k−1 + Buk + Lp(yk − Cxk|k−1 − Duk) xk|k =
xk|k + Lf (yk − Cxk|k−1 −Duk)

The following values are returned:

Lp The predictor gain, (A− LpC) is stable

Lf The filter gain

P The Riccati solution P = E{(x− xn|n−1)(x− xn|n−1)′}

Z The updated error covariance matrix Z = E{(x− xn|n)(x− xn|n)′}

Function File[K, gain, kc, kf, pc, pf] = h2syn (asys, nu, ny, tol)
Design H2 optimal controller per procedure in Doyle, Glover, Khargonekar, Francis,
State-Space Solutions to Standard H2 and H∞ Control Problems, ieee tac August
1989

Discrete-time control per Zhou, Doyle, and Glover, Robust and optimal control,
Prentice-Hall, 1996

Inputs

asys system data structure (see ss, sys2ss)
• controller is implemented for continuous time systems
• controller is not implemented for discrete time systems

nu number of controlled inputs

ny number of measured outputs

tol threshold for 0. Default: 200*eps

Outputs

k system controller

gain optimal closed loop gain

kc full information control (packed)

kf state estimator (packed)

pc are solution matrix for regulator subproblem

pf are solution matrix for filter subproblem

Chapter 10: Controller Design 49

Function FileK = hinf ctr (dgs, f, h, z, g)
Called by hinfsyn to compute the H∞ optimal controller
Inputs

dgs data structure returned by is_dgkf

f
h feedback and filter gain (not partitioned)

g final gamma value

Outputs

K controller (system data structure)

Do not attempt to use this at home; no argument checking performed

Function File[k, g, gw, xinf, yinf] = hinfsyn (asys, nu, ny, gmin, gmax,
gtol, ptol, tol)

Inputs input system is passed as either

asys system data structure (see ss, sys2ss)
• controller is implemented for continuous time systems
• controller is not implemented for discrete time systems (see bilinear

transforms in c2d, d2c)

nu number of controlled inputs

ny number of measured outputs

gmin initial lower bound on H∞ optimal gain

gmax initial upper bound on H∞ Optimal gain

gtol Gain threshold. Routine quits when gmax/gmin < 1+tol

ptol poles with abs(real(pole)) < ptol‖H‖ (H is appropriate Hamiltonian)
are considered to be on the imaginary axis Default: 1e-9

tol threshold for 0. Default: 200*eps
gmax, min, tol, and tol must all be positive scalars

Outputs

k System controller

g Designed gain value

gw Closed loop system

xinf are solution matrix for regulator subproblem

yinf are solution matrix for filter subproblem

References:
1. Doyle, Glover, Khargonekar, Francis, State-Space Solutions to Standard H2 and
H∞ Control Problems, ieee tac August 1989

Chapter 10: Controller Design 50

2. Maciejowksi, J.M., Multivariable feedback design, Addison-Wesley, 1989, isbn
0-201-18243-2

3. Keith Glover and John C. Doyle, State-space formulae for all stabilizing con-
trollers that satisfy an H∞norm bound and relations to risk sensitivity, Systems
& Control Letters 11, Oct. 1988, pp 167–172

Function File[retval, pc, pf] = hinfsyn chk (a, b1, b2, c1, c2, d12, d21, g,
ptol)

Called by hinfsyn to see if gain g satisfies conditions in Theorem 3 of Doyle, Glover,
Khargonekar, Francis, State Space Solutions to Standard H2 and H∞ Control Prob-
lems, ieee tac August 1989

Warning: do not attempt to use this at home; no argument checking performed

Inputs

As returned by is_dgkf, except for:

g candidate gain level

ptol as in hinfsyn

Outputs

retval 1 if g exceeds optimal Hinf closed loop gain, else 0

pc solution of “regulator” H∞ are

pf solution of “filter” H∞ are

Do not attempt to use this at home; no argument checking performed

Function File[xinf, x ha err] = hinfsyn ric (a, bb, c1, d1dot, r, ptol)
Forms

xx = ([bb; -c1’*d1dot]/r) * [d1dot’*c1 bb’];
Ha = [a 0*a; -c1’*c1 - a’] - xx;

and solves associated Riccati equation The error code x ha err indicates one of the
following conditions:

0 successful

1 xinf has imaginary eigenvalues

2 hx not Hamiltonian

3 xinf has infinite eigenvalues (numerical overflow)

4 xinf not symmetric

5 xinf not positive definite

6 r is singular

Chapter 10: Controller Design 51

Function File[k, p, e] = lqe (a, g, c, sigw, sigv, z)
Construct the linear quadratic estimator (Kalman filter) for the continuous time sys-
tem

dx

dt
= Ax+Gu

y = Cx+ v

where w and v are zero-mean gaussian noise processes with respective intensities
sigw = cov (w, w)
sigv = cov (v, v)

The optional argument z is the cross-covariance cov (w, v). If it is omitted, cov
(w, v) = 0 is assumed
Observer structure is dz/dt = A z + B u + k (y - C z - D u)

The following values are returned:

k The observer gain, (A−KC) is stable

p The solution of algebraic Riccati equation

e The vector of closed loop poles of (A−KC)

Function File[k, q1, p1, ee, er] = lqg (sys, sigw, sigv, q, r, in idx)
Design a linear-quadratic-gaussian optimal controller for the system

dx/dt = A x + B u + G w [w]=N(0,[Sigw 0])
y = C x + v [v] (0 Sigv])

or
x(k+1) = A x(k) + B u(k) + G w(k) [w]=N(0,[Sigw 0])
y(k) = C x(k) + v(k) [v] (0 Sigv])

Inputs

sys system data structure

sigw
sigv intensities of independent Gaussian noise processes (as above)

q
r state, control weighting respectively. Control are is

in idx names or indices of controlled inputs (see sysidx, cellidx)
default: last dim(R) inputs are assumed to be controlled inputs, all others
are assumed to be noise inputs

Outputs

k system data structure format lqg optimal controller (Obtain A, B, C
matrices with sys2ss, sys2tf, or sys2zp as appropriate)

p1 Solution of control (state feedback) algebraic Riccati equation

q1 Solution of estimation algebraic Riccati equation

ee Estimator poles

es Controller poles

See also: h2syn, lqe, lqr

Chapter 10: Controller Design 52

Function File[k, p, e] = lqr (a, b, q, r, z)
construct the linear quadratic regulator for the continuous time system

dx

dt
= Ax+Bu

to minimize the cost functional

J =
∫ ∞

0

xTQx+ uTRu

z omitted or
J =

∫ ∞
0

xTQx+ uTRu+ 2xTZu

z included
The following values are returned:

k The state feedback gain, (A − BK) is stable and minimizes the cost
functional

p The stabilizing solution of appropriate algebraic Riccati equation

e The vector of the closed loop poles of (A−BK)

Reference Anderson and Moore, Optimal control: linear quadratic methods, Prentice-
Hall, 1990, pp. 56–58

Function File[y, x] = lsim (sys, u, t, x0)
Produce output for a linear simulation of a system; produces a plot for the output of
the system, sys

u is an array that contains the system’s inputs. Each row in u corresponds to a
different time step. Each column in u corresponds to a different input. t is an array
that contains the time index of the system; t should be regularly spaced. If initial
conditions are required on the system, the x0 vector should be added to the argument
list
When the lsim function is invoked a plot is not displayed; however, the data is returned
in y (system output) and x (system states)

Function FileK = place (sys, p)
Function FileK = place (a, b, p)

Computes the matrix K such that if the state is feedback with gain K, then the
eigenvalues of the closed loop system (i.e. A−BK) are those specified in the vector
p

Version: Beta (May-1997): If you have any comments, please let me know (see the
file place.m for my address)

Chapter 11: Miscellaneous Functions (Not yet properly filed/documented) 53

11 Miscellaneous Functions (Not yet properly
filed/documented)

Function Fileaxis2dlim (axdata)
Determine axis limits for 2-D data (column vectors); leaves a 10% margin around the
plots Inserts margins of +/- 0.1 if data is one-dimensional (or a single point)
Input

axdata n by 2 matrix of data [x, y]

Output

axvec Vector of axis limits appropriate for call to axis function

Function Filemoddemo (inputs)
Octave Control toolbox demo: Model Manipulations demo

Function Fileprompt (str)
Prompt user to continue
Input

str Input string. Its default value is:
\n ---- Press a key to continue ---

Function Filerldemo (inputs)
Octave Control toolbox demo: Root Locus demo

Function File[rldata, k] = rlocus (sys[, increment, min k, max k])
Display root locus plot of the specified siso system

----- --- --------
--->| + |---|k|---->| SISO |----------->
----- --- -------- |
- ^ |
|_____________________________|

Inputs

sys system data structure

min k Minimum value of k

max k Maximum value of k

increment The increment used in computing gain values

Outputs

Plots the root locus to the screen

rldata Data points plotted: in column 1 real values, in column 2 the imaginary
values

k Gains for real axis break points

Chapter 11: Miscellaneous Functions (Not yet properly filed/documented) 54

Function File[yy, idx] = sortcom (xx[, opt])
Sort a complex vector

Inputs

xx Complex vector

opt sorting option:

"re" Real part (default);

"mag" By magnitude;

"im" By imaginary part

if opt is not chosen as "im", then complex conjugate pairs are grouped
together, a− jb followed by a+jb

Outputs

yy Sorted values

idx Permutation vector: yy = xx(idx)

Function File[num, den] = ss2tf (a, b, c, d)
Conversion from transfer function to state-space The state space system:

ẋ = Ax+Bu

y = Cx+Du

is converted to a transfer function:

G(s) =
num(s)
den(s)

used internally in system data structure format manipulations

Function File[pol, zer, k] = ss2zp (a, b, c, d)
Converts a state space representation to a set of poles and zeros; k is a gain associated
with the zeros

Used internally in system data structure format manipulations

Function Filestarp (P, K, ny, nu)
Redheffer star product or upper/lower LFT, respectively

Chapter 11: Miscellaneous Functions (Not yet properly filed/documented) 55

+-------+
--------->| |--------->
| P |
+--->| |---+ ny
| +-------+ |
+-------------------+
| |
+----------------+ |
| |
| +-------+ |
+--->| |------+ nu
| K |
--------->| |--------->
+-------+

If ny and nu “consume” all inputs and outputs of K then the result is a lower fractional
transformation If ny and nu “consume” all inputs and outputs of P then the result
is an upper fractional transformation
ny and/or nu may be negative (i.e. negative feedback)

Function File[a, b, c, d] = tf2ss (num, den)
Conversion from transfer function to state-space The state space system:

ẋ = Ax+Bu

y = Cx+Du

is obtained from a transfer function:

G(s) =
num(s)
den(s)

The vector den must contain only one row, whereas the vector num may contain as
many rows as there are outputs y of the system. The state space system matrices
obtained from this function will be in controllable canonical form as described in
Modern Control Theory, (Brogan, 1991)

Function File[zer, pol, k] = tf2zp (num, den)
Converts transfer functions to poles-and-zero representations
Returns the zeros and poles of the siso system defined by num/den k is a gain
associated with the system zeros

Function File[a, b, c, d] = zp2ss (zer, pol, k)
Conversion from zero / pole to state space
Inputs

zer
pol Vectors of (possibly) complex poles and zeros of a transfer function. Com-

plex values must come in conjugate pairs (i.e., x+jy in zer means that
x − jy is also in zer) The number of zeros must not exceed the number
of poles

Chapter 11: Miscellaneous Functions (Not yet properly filed/documented) 56

k Real scalar (leading coefficient)

Outputs

a
b
c
d The state space system, in the form:

ẋ = Ax+Bu

y = Cx+Du

Function File[num, den] = zp2tf (zer, pol, k)
Converts zeros / poles to a transfer function
Inputs

zer
pol Vectors of (possibly complex) poles and zeros of a transfer function. Com-

plex values must appear in conjugate pairs

k Real scalar (leading coefficient)

	Introduction
	System Data Structure
	Variables common to all OCST system formats
	tf format variables
	zp format variables
	ss format variables

	System Construction and Interface Functions
	Finite impulse response system interface functions
	State space system interface functions
	Transfer function system interface functions
	Zero-pole system interface functions
	Data structure access functions

	System display functions
	Block Diagram Manipulations
	Numerical Functions
	System Analysis-Properties
	System Analysis-Time Domain
	System Analysis-Frequency Domain
	Controller Design
	Miscellaneous Functions (Not yet properly filed/documented)

