tr1_impl/array

Go to the documentation of this file.
00001 // class template array -*- C++ -*-
00002 
00003 // Copyright (C) 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
00004 //
00005 // This file is part of the GNU ISO C++ Library.  This library is free
00006 // software; you can redistribute it and/or modify it under the
00007 // terms of the GNU General Public License as published by the
00008 // Free Software Foundation; either version 3, or (at your option)
00009 // any later version.
00010 
00011 // This library is distributed in the hope that it will be useful,
00012 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00013 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
00014 // GNU General Public License for more details.
00015 
00016 // Under Section 7 of GPL version 3, you are granted additional
00017 // permissions described in the GCC Runtime Library Exception, version
00018 // 3.1, as published by the Free Software Foundation.
00019 
00020 // You should have received a copy of the GNU General Public License and
00021 // a copy of the GCC Runtime Library Exception along with this program;
00022 // see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
00023 // <http://www.gnu.org/licenses/>.
00024 
00025 /** @file tr1_impl/array
00026  *  This is an internal header file, included by other library headers.
00027  *  You should not attempt to use it directly.
00028  */
00029 
00030 namespace std
00031 {
00032 _GLIBCXX_BEGIN_NAMESPACE_TR1
00033 
00034   /**
00035    *  @brief A standard container for storing a fixed size sequence of elements.
00036    *
00037    *  @ingroup sequences
00038    *
00039    *  Meets the requirements of a <a href="tables.html#65">container</a>, a
00040    *  <a href="tables.html#66">reversible container</a>, and a
00041    *  <a href="tables.html#67">sequence</a>.
00042    *
00043    *  Sets support random access iterators.
00044    *
00045    *  @param  Tp  Type of element. Required to be a complete type.
00046    *  @param  N  Number of elements.
00047   */
00048   template<typename _Tp, std::size_t _Nm>
00049     struct array
00050     {
00051       typedef _Tp                         value_type;
00052 #ifdef _GLIBCXX_INCLUDE_AS_CXX0X
00053       typedef _Tp*                                    pointer;
00054       typedef const _Tp*                              const_pointer;
00055 #endif
00056       typedef value_type&                             reference;
00057       typedef const value_type&                       const_reference;
00058       typedef value_type*                     iterator;
00059       typedef const value_type*               const_iterator;
00060       typedef std::size_t                             size_type;
00061       typedef std::ptrdiff_t                          difference_type;
00062       typedef std::reverse_iterator<iterator>         reverse_iterator;
00063       typedef std::reverse_iterator<const_iterator>   const_reverse_iterator;
00064 
00065       // Support for zero-sized arrays mandatory.
00066       value_type _M_instance[_Nm ? _Nm : 1];
00067 
00068       // No explicit construct/copy/destroy for aggregate type.
00069 
00070       void
00071 #ifdef _GLIBCXX_INCLUDE_AS_CXX0X
00072       // DR 776.
00073       fill(const value_type& __u)
00074 #else
00075       assign(const value_type& __u)
00076 #endif
00077       { std::fill_n(begin(), size(), __u); }
00078 
00079       void
00080       swap(array& __other)
00081       { std::swap_ranges(begin(), end(), __other.begin()); }
00082 
00083       // Iterators.
00084       iterator
00085       begin()
00086       { return iterator(&_M_instance[0]); }
00087 
00088       const_iterator
00089       begin() const 
00090       { return const_iterator(&_M_instance[0]); }
00091 
00092       iterator
00093       end()
00094       { return iterator(&_M_instance[_Nm]); }
00095 
00096       const_iterator
00097       end() const
00098       { return const_iterator(&_M_instance[_Nm]); }
00099 
00100       reverse_iterator 
00101       rbegin()
00102       { return reverse_iterator(end()); }
00103 
00104       const_reverse_iterator 
00105       rbegin() const
00106       { return const_reverse_iterator(end()); }
00107 
00108       reverse_iterator 
00109       rend()
00110       { return reverse_iterator(begin()); }
00111 
00112       const_reverse_iterator 
00113       rend() const
00114       { return const_reverse_iterator(begin()); }
00115 
00116 #ifdef _GLIBCXX_INCLUDE_AS_CXX0X
00117       const_iterator
00118       cbegin() const 
00119       { return const_iterator(&_M_instance[0]); }
00120 
00121       const_iterator
00122       cend() const
00123       { return const_iterator(&_M_instance[_Nm]); }
00124 
00125       const_reverse_iterator 
00126       crbegin() const
00127       { return const_reverse_iterator(end()); }
00128 
00129       const_reverse_iterator 
00130       crend() const
00131       { return const_reverse_iterator(begin()); }
00132 #endif
00133 
00134       // Capacity.
00135       size_type 
00136       size() const { return _Nm; }
00137 
00138       size_type 
00139       max_size() const { return _Nm; }
00140 
00141       bool 
00142       empty() const { return size() == 0; }
00143 
00144       // Element access.
00145       reference
00146       operator[](size_type __n)
00147       { return _M_instance[__n]; }
00148 
00149       const_reference
00150       operator[](size_type __n) const
00151       { return _M_instance[__n]; }
00152 
00153       reference
00154       at(size_type __n)
00155       {
00156     if (__n >= _Nm)
00157       std::__throw_out_of_range(__N("array::at"));
00158     return _M_instance[__n];
00159       }
00160 
00161       const_reference
00162       at(size_type __n) const
00163       {
00164     if (__n >= _Nm)
00165       std::__throw_out_of_range(__N("array::at"));
00166     return _M_instance[__n];
00167       }
00168 
00169       reference 
00170       front()
00171       { return *begin(); }
00172 
00173       const_reference 
00174       front() const
00175       { return *begin(); }
00176 
00177       reference 
00178       back()
00179       { return _Nm ? *(end() - 1) : *end(); }
00180 
00181       const_reference 
00182       back() const
00183       { return _Nm ? *(end() - 1) : *end(); }
00184 
00185       _Tp* 
00186       data()
00187       { return &_M_instance[0]; }
00188 
00189       const _Tp* 
00190       data() const
00191       { return &_M_instance[0]; }
00192     };
00193 
00194   // Array comparisons.
00195   template<typename _Tp, std::size_t _Nm>
00196     inline bool 
00197     operator==(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
00198     { return std::equal(__one.begin(), __one.end(), __two.begin()); }
00199 
00200   template<typename _Tp, std::size_t _Nm>
00201     inline bool
00202     operator!=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
00203     { return !(__one == __two); }
00204 
00205   template<typename _Tp, std::size_t _Nm>
00206     inline bool
00207     operator<(const array<_Tp, _Nm>& __a, const array<_Tp, _Nm>& __b)
00208     { 
00209       return std::lexicographical_compare(__a.begin(), __a.end(),
00210                       __b.begin(), __b.end()); 
00211     }
00212 
00213   template<typename _Tp, std::size_t _Nm>
00214     inline bool
00215     operator>(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
00216     { return __two < __one; }
00217 
00218   template<typename _Tp, std::size_t _Nm>
00219     inline bool
00220     operator<=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
00221     { return !(__one > __two); }
00222 
00223   template<typename _Tp, std::size_t _Nm>
00224     inline bool
00225     operator>=(const array<_Tp, _Nm>& __one, const array<_Tp, _Nm>& __two)
00226     { return !(__one < __two); }
00227 
00228   // Specialized algorithms [6.2.2.2].
00229   template<typename _Tp, std::size_t _Nm>
00230     inline void
00231     swap(array<_Tp, _Nm>& __one, array<_Tp, _Nm>& __two)
00232     { __one.swap(__two); }
00233 
00234   // Tuple interface to class template array [6.2.2.5].
00235 
00236   /// tuple_size
00237   template<typename _Tp> 
00238     class tuple_size;
00239 
00240   /// tuple_element
00241 #ifdef _GLIBCXX_INCLUDE_AS_CXX0X
00242   template<std::size_t _Int, typename _Tp>
00243 #else
00244   template<int _Int, typename _Tp>
00245 #endif
00246     class tuple_element;
00247 
00248   template<typename _Tp, std::size_t _Nm>
00249     struct tuple_size<array<_Tp, _Nm> >
00250 #ifdef _GLIBCXX_INCLUDE_AS_CXX0X
00251     { static const std::size_t value = _Nm; };
00252 #else
00253     { static const int value = _Nm; };
00254 #endif
00255 
00256   template<typename _Tp, std::size_t _Nm>
00257 #ifdef _GLIBCXX_INCLUDE_AS_CXX0X
00258     const std::size_t
00259 #else
00260     const int
00261 #endif
00262     tuple_size<array<_Tp, _Nm> >::value;  
00263 
00264 #ifdef _GLIBCXX_INCLUDE_AS_CXX0X
00265   template<std::size_t _Int, typename _Tp, std::size_t _Nm>
00266 #else
00267   template<int _Int, typename _Tp, std::size_t _Nm>
00268 #endif
00269     struct tuple_element<_Int, array<_Tp, _Nm> >
00270     { typedef _Tp type; };
00271 
00272 #ifdef _GLIBCXX_INCLUDE_AS_CXX0X
00273   template<std::size_t _Int, typename _Tp, std::size_t _Nm>
00274 #else
00275   template<int _Int, typename _Tp, std::size_t _Nm>
00276 #endif
00277     inline _Tp&
00278     get(array<_Tp, _Nm>& __arr)
00279     { return __arr[_Int]; }
00280 
00281 #ifdef _GLIBCXX_INCLUDE_AS_CXX0X
00282   template<std::size_t _Int, typename _Tp, std::size_t _Nm>
00283 #else
00284   template<int _Int, typename _Tp, std::size_t _Nm>
00285 #endif
00286     inline const _Tp&
00287     get(const array<_Tp, _Nm>& __arr)
00288     { return __arr[_Int]; }
00289 
00290 _GLIBCXX_END_NAMESPACE_TR1
00291 }