Main MRPT website > C++ reference
MRPT logo
Classes | Public Member Functions | Public Attributes | Protected Member Functions | Protected Attributes

mrpt::slam::CRangeBearingKFSLAM Class Reference


Detailed Description

An implementation of EKF-based SLAM with range-bearing sensors, odometry, a full 6D robot pose, and 3D landmarks.

The main method is "processActionObservation" which processes pairs of action/observation. The state vector comprises: 3D robot position, a quaternion for its attitude, and the 3D landmarks in the map.

The following Wiki page describes an front-end application based on this class: http://www.mrpt.org/Application:kf-slam

For the theory behind this implementation, see the technical report in: http://www.mrpt.org/6D-SLAM

See also:
An implementation for 2D only: CRangeBearingKFSLAM2D

Definition at line 73 of file CRangeBearingKFSLAM.h.

#include <mrpt/slam/CRangeBearingKFSLAM.h>

Inheritance diagram for mrpt::slam::CRangeBearingKFSLAM:
Inheritance graph
[legend]

List of all members.

Classes

struct  TDataAssocInfo
 Information for data-association: More...
struct  TOptions
 The options for the algorithm. More...

Public Member Functions

 CRangeBearingKFSLAM ()
 Constructor.
virtual ~CRangeBearingKFSLAM ()
 Destructor:
void reset ()
 Reset the state of the SLAM filter: The map is emptied and the robot put back to (0,0,0).
void processActionObservation (CActionCollectionPtr &action, CSensoryFramePtr &SF)
 Process one new action and observations to update the map and robot pose estimate.
void getCurrentState (CPose3DQuatPDFGaussian &out_robotPose, std::vector< CPoint3D > &out_landmarksPositions, std::map< unsigned int, CLandmark::TLandmarkID > &out_landmarkIDs, CVectorDouble &out_fullState, CMatrixDouble &out_fullCovariance) const
 Returns the complete mean and cov.
void getCurrentState (CPose3DPDFGaussian &out_robotPose, std::vector< CPoint3D > &out_landmarksPositions, std::map< unsigned int, CLandmark::TLandmarkID > &out_landmarkIDs, CVectorDouble &out_fullState, CMatrixDouble &out_fullCovariance) const
 Returns the complete mean and cov.
void getCurrentRobotPose (CPose3DQuatPDFGaussian &out_robotPose) const
 Returns the mean & the 7x7 covariance matrix of the robot 6D pose (with rotation as a quaternion).
mrpt::poses::CPose3DQuat getCurrentRobotPoseMean () const
 Get the current robot pose mean, as a 3D+quaternion pose.
void getCurrentRobotPose (CPose3DPDFGaussian &out_robotPose) const
 Returns the mean & the 6x6 covariance matrix of the robot 6D pose (with rotation as 3 angles).
void getAs3DObject (mrpt::opengl::CSetOfObjectsPtr &outObj) const
 Returns a 3D representation of the landmarks in the map and the robot 3D position according to the current filter state.
void loadOptions (const mrpt::utils::CConfigFileBase &ini)
 Load options from a ini-like file/text.
const TDataAssocInfogetLastDataAssociation () const
 Returns a read-only reference to the information on the last data-association.
void getLastPartition (std::vector< vector_uint > &parts)
 Return the last partition of the sequence of sensoryframes (it is NOT a partition of the map!!) Only if options.doPartitioningExperiment = true.
void getLastPartitionLandmarks (std::vector< vector_uint > &landmarksMembership) const
 Return the partitioning of the landmarks in clusters accoring to the last partition.
void getLastPartitionLandmarksAsIfFixedSubmaps (size_t K, std::vector< vector_uint > &landmarksMembership)
 For testing only: returns the partitioning as "getLastPartitionLandmarks" but as if a fixed-size submaps (size K) were have been used.
double computeOffDiagonalBlocksApproximationError (const std::vector< vector_uint > &landmarksMembership) const
 Computes the ratio of the missing information matrix elements which are ignored under a certain partitioning of the landmarks.
void reconsiderPartitionsNow ()
 The partitioning of the entire map is recomputed again.
CIncrementalMapPartitioner::TOptionsmapPartitionOptions ()
 Provides access to the parameters of the map partitioning algorithm.
void saveMapAndPath2DRepresentationAsMATLABFile (const std::string &fil, float stdCount=3.0f, const std::string &styleLandmarks=std::string("b"), const std::string &stylePath=std::string("r"), const std::string &styleRobot=std::string("r")) const
 Save the current state of the filter (robot pose & map) to a MATLAB script which displays all the elements in 2D.

Public Attributes

mrpt::slam::CRangeBearingKFSLAM::TOptions options

Protected Member Functions

mrpt::poses::CPose3DQuat getIncrementFromOdometry () const
 Return the last odometry, as a pose increment.
Virtual methods for Kalman Filter implementation
void OnGetAction (KFArray_ACT &out_u) const
 Must return the action vector u.
void OnTransitionModel (const KFArray_ACT &in_u, KFArray_VEH &inout_x, bool &out_skipPrediction) const
 Implements the transition model $ \hat{x}_{k|k-1} = f( \hat{x}_{k-1|k-1}, u_k ) $.
void OnTransitionJacobian (KFMatrix_VxV &out_F) const
 Implements the transition Jacobian $ \frac{\partial f}{\partial x} $.
void OnTransitionNoise (KFMatrix_VxV &out_Q) const
 Implements the transition noise covariance $ Q_k $.
void OnGetObservationsAndDataAssociation (vector_KFArray_OBS &out_z, vector_int &out_data_association, const vector_KFArray_OBS &in_all_predictions, const KFMatrix &in_S, const vector_size_t &in_lm_indices_in_S, const KFMatrix_OxO &in_R)
 This is called between the KF prediction step and the update step, and the application must return the observations and, when applicable, the data association between these observations and the current map.
void OnObservationModel (const vector_size_t &idx_landmarks_to_predict, vector_KFArray_OBS &out_predictions) const
 Implements the observation prediction $ h_i(x) $.
void OnObservationJacobians (const size_t &idx_landmark_to_predict, KFMatrix_OxV &Hx, KFMatrix_OxF &Hy) const
 Implements the observation Jacobians $ \frac{\partial h_i}{\partial x} $ and (when applicable) $ \frac{\partial h_i}{\partial y_i} $.
void OnSubstractObservationVectors (KFArray_OBS &A, const KFArray_OBS &B) const
 Computes A=A-B, which may need to be re-implemented depending on the topology of the individual scalar components (eg, angles).
void OnGetObservationNoise (KFMatrix_OxO &out_R) const
 Return the observation NOISE covariance matrix, that is, the model of the Gaussian additive noise of the sensor.
void OnPreComputingPredictions (const vector_KFArray_OBS &in_all_prediction_means, vector_size_t &out_LM_indices_to_predict) const
 This will be called before OnGetObservationsAndDataAssociation to allow the application to reduce the number of covariance landmark predictions to be made.
void OnInverseObservationModel (const KFArray_OBS &in_z, KFArray_FEAT &out_yn, KFMatrix_FxV &out_dyn_dxv, KFMatrix_FxO &out_dyn_dhn) const
 If applicable to the given problem, this method implements the inverse observation model needed to extend the "map" with a new "element".
void OnNewLandmarkAddedToMap (const size_t in_obsIdx, const size_t in_idxNewFeat)
 If applicable to the given problem, do here any special handling of adding a new landmark to the map.
void OnNormalizeStateVector ()
 This method is called after the prediction and after the update, to give the user an opportunity to normalize the state vector (eg, keep angles within -pi,pi range) if the application requires it.

Protected Attributes

CActionCollectionPtr m_action
 Set up by processActionObservation.
CSensoryFramePtr m_SF
 Set up by processActionObservation.
mrpt::utils::bimap
< CLandmark::TLandmarkID,
unsigned int > 
m_IDs
 The mapping between landmark IDs and indexes in the Pkk cov.
CIncrementalMapPartitioner mapPartitioner
 Used for map partitioning experiments.
CSimpleMap m_SFs
 The sequence of all the observations and the robot path (kept for debugging, statistics,etc)
std::vector< vector_uintm_lastPartitionSet
TDataAssocInfo m_last_data_association
 Last data association.

Constructor & Destructor Documentation

mrpt::slam::CRangeBearingKFSLAM::CRangeBearingKFSLAM (  )

Constructor.

virtual mrpt::slam::CRangeBearingKFSLAM::~CRangeBearingKFSLAM (  ) [virtual]

Destructor:


Member Function Documentation

double mrpt::slam::CRangeBearingKFSLAM::computeOffDiagonalBlocksApproximationError ( const std::vector< vector_uint > &  landmarksMembership ) const

Computes the ratio of the missing information matrix elements which are ignored under a certain partitioning of the landmarks.

See also:
getLastPartitionLandmarks, getLastPartitionLandmarksAsIfFixedSubmaps
void mrpt::slam::CRangeBearingKFSLAM::getAs3DObject ( mrpt::opengl::CSetOfObjectsPtr outObj ) const

Returns a 3D representation of the landmarks in the map and the robot 3D position according to the current filter state.

Parameters:
out_objects
void mrpt::slam::CRangeBearingKFSLAM::getCurrentRobotPose ( CPose3DQuatPDFGaussian out_robotPose ) const

Returns the mean & the 7x7 covariance matrix of the robot 6D pose (with rotation as a quaternion).

See also:
getCurrentState, getCurrentRobotPoseMean
void mrpt::slam::CRangeBearingKFSLAM::getCurrentRobotPose ( CPose3DPDFGaussian out_robotPose ) const [inline]

Returns the mean & the 6x6 covariance matrix of the robot 6D pose (with rotation as 3 angles).

See also:
getCurrentState

Definition at line 146 of file CRangeBearingKFSLAM.h.

References mrpt::math::UNINITIALIZED_QUATERNION.

mrpt::poses::CPose3DQuat mrpt::slam::CRangeBearingKFSLAM::getCurrentRobotPoseMean (  ) const

Get the current robot pose mean, as a 3D+quaternion pose.

See also:
getCurrentRobotPose
void mrpt::slam::CRangeBearingKFSLAM::getCurrentState ( CPose3DQuatPDFGaussian out_robotPose,
std::vector< CPoint3D > &  out_landmarksPositions,
std::map< unsigned int, CLandmark::TLandmarkID > &  out_landmarkIDs,
CVectorDouble out_fullState,
CMatrixDouble out_fullCovariance 
) const

Returns the complete mean and cov.

Parameters:
out_robotPoseThe mean and the 7x7 covariance matrix of the robot 6D pose
out_landmarksPositionsOne entry for each of the M landmark positions (3D).
out_landmarkIDsEach element[index] (for indices of out_landmarksPositions) gives the corresponding landmark ID.
out_fullStateThe complete state vector (7+3M).
out_fullCovarianceThe full (7+3M)x(7+3M) covariance matrix of the filter.
See also:
getCurrentRobotPose
void mrpt::slam::CRangeBearingKFSLAM::getCurrentState ( CPose3DPDFGaussian out_robotPose,
std::vector< CPoint3D > &  out_landmarksPositions,
std::map< unsigned int, CLandmark::TLandmarkID > &  out_landmarkIDs,
CVectorDouble out_fullState,
CMatrixDouble out_fullCovariance 
) const [inline]

Returns the complete mean and cov.

Parameters:
out_robotPoseThe mean and the 7x7 covariance matrix of the robot 6D pose
out_landmarksPositionsOne entry for each of the M landmark positions (3D).
out_landmarkIDsEach element[index] (for indices of out_landmarksPositions) gives the corresponding landmark ID.
out_fullStateThe complete state vector (7+3M).
out_fullCovarianceThe full (7+3M)x(7+3M) covariance matrix of the filter.
See also:
getCurrentRobotPose

Definition at line 120 of file CRangeBearingKFSLAM.h.

References mrpt::math::UNINITIALIZED_QUATERNION.

mrpt::poses::CPose3DQuat mrpt::slam::CRangeBearingKFSLAM::getIncrementFromOdometry (  ) const [protected]

Return the last odometry, as a pose increment.

const TDataAssocInfo& mrpt::slam::CRangeBearingKFSLAM::getLastDataAssociation (  ) const [inline]

Returns a read-only reference to the information on the last data-association.

Definition at line 248 of file CRangeBearingKFSLAM.h.

void mrpt::slam::CRangeBearingKFSLAM::getLastPartition ( std::vector< vector_uint > &  parts ) [inline]

Return the last partition of the sequence of sensoryframes (it is NOT a partition of the map!!) Only if options.doPartitioningExperiment = true.

See also:
getLastPartitionLandmarks

Definition at line 257 of file CRangeBearingKFSLAM.h.

void mrpt::slam::CRangeBearingKFSLAM::getLastPartitionLandmarks ( std::vector< vector_uint > &  landmarksMembership ) const

Return the partitioning of the landmarks in clusters accoring to the last partition.

Note that the same landmark may appear in different clusters (the partition is not in the space of landmarks) Only if options.doPartitioningExperiment = true

Parameters:
landmarksMembershipThe i'th element of this vector is the set of clusters to which the i'th landmark in the map belongs to (landmark index != landmark ID !!).
See also:
getLastPartition
void mrpt::slam::CRangeBearingKFSLAM::getLastPartitionLandmarksAsIfFixedSubmaps ( size_t  K,
std::vector< vector_uint > &  landmarksMembership 
)

For testing only: returns the partitioning as "getLastPartitionLandmarks" but as if a fixed-size submaps (size K) were have been used.

void mrpt::slam::CRangeBearingKFSLAM::loadOptions ( const mrpt::utils::CConfigFileBase ini )

Load options from a ini-like file/text.

CIncrementalMapPartitioner::TOptions* mrpt::slam::CRangeBearingKFSLAM::mapPartitionOptions (  ) [inline]

Provides access to the parameters of the map partitioning algorithm.

Definition at line 292 of file CRangeBearingKFSLAM.h.

void mrpt::slam::CRangeBearingKFSLAM::OnGetAction ( KFArray_ACT out_u ) const [protected, virtual]

Must return the action vector u.

Parameters:
out_uThe action vector which will be passed to OnTransitionModel

Implements mrpt::bayes::CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE >.

void mrpt::slam::CRangeBearingKFSLAM::OnGetObservationNoise ( KFMatrix_OxO out_R ) const [protected, virtual]

Return the observation NOISE covariance matrix, that is, the model of the Gaussian additive noise of the sensor.

Parameters:
out_RThe noise covariance matrix. It might be non diagonal, but it'll usually be.

Implements mrpt::bayes::CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE >.

void mrpt::slam::CRangeBearingKFSLAM::OnGetObservationsAndDataAssociation ( vector_KFArray_OBS out_z,
vector_int out_data_association,
const vector_KFArray_OBS in_all_predictions,
const KFMatrix in_S,
const vector_size_t in_lm_indices_in_S,
const KFMatrix_OxO in_R 
) [protected, virtual]

This is called between the KF prediction step and the update step, and the application must return the observations and, when applicable, the data association between these observations and the current map.

Parameters:
out_zN vectors, each for one "observation" of length OBS_SIZE, N being the number of "observations": how many observed landmarks for a map, or just one if not applicable.
out_data_associationAn empty vector or, where applicable, a vector where the i'th element corresponds to the position of the observation in the i'th row of out_z within the system state vector (in the range [0,getNumberOfLandmarksInTheMap()-1]), or -1 if it is a new map element and we want to insert it at the end of this KF iteration.
in_SThe full covariance matrix of the observation predictions (i.e. the "innovation covariance matrix"). This is a M·O x M·O matrix with M=length of "in_lm_indices_in_S".
in_lm_indices_in_SThe indices of the map landmarks (range [0,getNumberOfLandmarksInTheMap()-1]) that can be found in the matrix in_S.

This method will be called just once for each complete KF iteration.

Note:
It is assumed that the observations are independent, i.e. there are NO cross-covariances between them.

Implements mrpt::bayes::CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE >.

void mrpt::slam::CRangeBearingKFSLAM::OnInverseObservationModel ( const KFArray_OBS in_z,
KFArray_FEAT out_yn,
KFMatrix_FxV out_dyn_dxv,
KFMatrix_FxO out_dyn_dhn 
) const [protected, virtual]

If applicable to the given problem, this method implements the inverse observation model needed to extend the "map" with a new "element".

Parameters:
in_zThe observation vector whose inverse sensor model is to be computed. This is actually one of the vector<> returned by OnGetObservations().
out_ynThe F-length vector with the inverse observation model $ y_n=y(x,z_n) $.
out_dyn_dxvThe $F \times V$ Jacobian of the inv. sensor model wrt the robot pose $ \frac{\partial y_n}{\partial x_v} $.
out_dyn_dhnThe $F \times O$ Jacobian of the inv. sensor model wrt the observation vector $ \frac{\partial y_n}{\partial h_n} $.
  • O: OBS_SIZE
  • V: VEH_SIZE
  • F: FEAT_SIZE
Note:
OnNewLandmarkAddedToMap will be also called after calling this method if a landmark is actually being added to the map.

Reimplemented from mrpt::bayes::CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE >.

void mrpt::slam::CRangeBearingKFSLAM::OnNewLandmarkAddedToMap ( const size_t  in_obsIdx,
const size_t  in_idxNewFeat 
) [protected, virtual]

If applicable to the given problem, do here any special handling of adding a new landmark to the map.

Parameters:
in_obsIndexThe index of the observation whose inverse sensor is to be computed. It corresponds to the row in in_z where the observation can be found.
in_idxNewFeatThe index that this new feature will have in the state vector (0:just after the vehicle state, 1: after that,...). Save this number so data association can be done according to these indices.
See also:
OnInverseObservationModel

Reimplemented from mrpt::bayes::CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE >.

void mrpt::slam::CRangeBearingKFSLAM::OnNormalizeStateVector (  ) [protected, virtual]

This method is called after the prediction and after the update, to give the user an opportunity to normalize the state vector (eg, keep angles within -pi,pi range) if the application requires it.

Reimplemented from mrpt::bayes::CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE >.

void mrpt::slam::CRangeBearingKFSLAM::OnObservationJacobians ( const size_t &  idx_landmark_to_predict,
KFMatrix_OxV Hx,
KFMatrix_OxF Hy 
) const [protected, virtual]

Implements the observation Jacobians $ \frac{\partial h_i}{\partial x} $ and (when applicable) $ \frac{\partial h_i}{\partial y_i} $.

Parameters:
idx_landmark_to_predictThe index of the landmark in the map whose prediction is expected as output. For non SLAM-like problems, this will be zero and the expected output is for the whole state vector.
HxThe output Jacobian $ \frac{\partial h_i}{\partial x} $.
HyThe output Jacobian $ \frac{\partial h_i}{\partial y_i} $.

Reimplemented from mrpt::bayes::CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE >.

void mrpt::slam::CRangeBearingKFSLAM::OnObservationModel ( const vector_size_t idx_landmarks_to_predict,
vector_KFArray_OBS out_predictions 
) const [protected, virtual]

Implements the observation prediction $ h_i(x) $.

Parameters:
idx_landmark_to_predictThe indices of the landmarks in the map whose predictions are expected as output. For non SLAM-like problems, this input value is undefined and the application should just generate one observation for the given problem.
out_predictionsThe predicted observations.

Implements mrpt::bayes::CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE >.

void mrpt::slam::CRangeBearingKFSLAM::OnPreComputingPredictions ( const vector_KFArray_OBS in_all_prediction_means,
vector_size_t out_LM_indices_to_predict 
) const [protected, virtual]

This will be called before OnGetObservationsAndDataAssociation to allow the application to reduce the number of covariance landmark predictions to be made.

For example, features which are known to be "out of sight" shouldn't be added to the output list to speed up the calculations.

Parameters:
in_all_prediction_meansThe mean of each landmark predictions; the computation or not of the corresponding covariances is what we're trying to determined with this method.
out_LM_indices_to_predictThe list of landmark indices in the map [0,getNumberOfLandmarksInTheMap()-1] that should be predicted.
Note:
This is not a pure virtual method, so it should be implemented only if desired. The default implementation returns a vector with all the landmarks in the map.
See also:
OnGetObservations, OnDataAssociation

Reimplemented from mrpt::bayes::CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE >.

void mrpt::slam::CRangeBearingKFSLAM::OnSubstractObservationVectors ( KFArray_OBS A,
const KFArray_OBS B 
) const [protected, virtual]

Computes A=A-B, which may need to be re-implemented depending on the topology of the individual scalar components (eg, angles).

Reimplemented from mrpt::bayes::CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE >.

void mrpt::slam::CRangeBearingKFSLAM::OnTransitionJacobian ( KFMatrix_VxV out_F ) const [protected, virtual]

Implements the transition Jacobian $ \frac{\partial f}{\partial x} $.

Parameters:
out_FMust return the Jacobian. The returned matrix must be $V \times V$ with V being either the size of the whole state vector (for non-SLAM problems) or VEH_SIZE (for SLAM problems).

Reimplemented from mrpt::bayes::CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE >.

void mrpt::slam::CRangeBearingKFSLAM::OnTransitionModel ( const KFArray_ACT in_u,
KFArray_VEH inout_x,
bool &  out_skipPrediction 
) const [protected, virtual]

Implements the transition model $ \hat{x}_{k|k-1} = f( \hat{x}_{k-1|k-1}, u_k ) $.

Parameters:
in_uThe vector returned by OnGetAction.
inout_xAt input has

\[ \hat{x}_{k-1|k-1} \]

, at output must have $ \hat{x}_{k|k-1} $ .

out_skipSet this to true if for some reason you want to skip the prediction step (to do not modify either the vector or the covariance). Default:false

Implements mrpt::bayes::CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE >.

void mrpt::slam::CRangeBearingKFSLAM::OnTransitionNoise ( KFMatrix_VxV out_Q ) const [protected, virtual]

Implements the transition noise covariance $ Q_k $.

Parameters:
out_QMust return the covariance matrix. The returned matrix must be of the same size than the jacobian from OnTransitionJacobian

Implements mrpt::bayes::CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE >.

void mrpt::slam::CRangeBearingKFSLAM::processActionObservation ( CActionCollectionPtr action,
CSensoryFramePtr SF 
)

Process one new action and observations to update the map and robot pose estimate.

See the description of the class at the top of this page.

Parameters:
actionMay contain odometry
SFThe set of observations, must contain at least one CObservationBearingRange
void mrpt::slam::CRangeBearingKFSLAM::reconsiderPartitionsNow (  )

The partitioning of the entire map is recomputed again.

Only when options.doPartitioningExperiment = true. This can be used after changing the parameters of the partitioning method. After this method, you can call getLastPartitionLandmarks.

See also:
getLastPartitionLandmarks
void mrpt::slam::CRangeBearingKFSLAM::reset (  )

Reset the state of the SLAM filter: The map is emptied and the robot put back to (0,0,0).

void mrpt::slam::CRangeBearingKFSLAM::saveMapAndPath2DRepresentationAsMATLABFile ( const std::string &  fil,
float  stdCount = 3.0f,
const std::string &  styleLandmarks = std::string("b"),
const std::string &  stylePath = std::string("r"),
const std::string &  styleRobot = std::string("r") 
) const

Save the current state of the filter (robot pose & map) to a MATLAB script which displays all the elements in 2D.


Member Data Documentation

Set up by processActionObservation.

Definition at line 434 of file CRangeBearingKFSLAM.h.

The mapping between landmark IDs and indexes in the Pkk cov.

matrix:

Definition at line 442 of file CRangeBearingKFSLAM.h.

Last data association.

Definition at line 455 of file CRangeBearingKFSLAM.h.

Definition at line 453 of file CRangeBearingKFSLAM.h.

Set up by processActionObservation.

Definition at line 438 of file CRangeBearingKFSLAM.h.

The sequence of all the observations and the robot path (kept for debugging, statistics,etc)

Definition at line 451 of file CRangeBearingKFSLAM.h.

Used for map partitioning experiments.

Definition at line 447 of file CRangeBearingKFSLAM.h.




Page generated by Doxygen 1.7.2 for MRPT 0.9.4 SVN: at Mon Jan 10 22:46:17 UTC 2011