next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

               2    2    2 2      2   2            2     2   2 2        2   2
o2 = ideal (a*h  - d q, c r  - a*p , c e*r - q, g*l q - b , c v w - e, a j*t 
     ------------------------------------------------------------------------
        2   2 2 2
     - l , h k q  - x)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             2 2 3 2 2 2 2    3 4 4   4 4   4 3    3 2 2 3 3   4 3 2 3 4 2 3
o3 = ideal (b h i l r w x  - g p q , c f k*r s  - j n p v x , d g h p s v x 
     ------------------------------------------------------------------------
        4 2 3   4 4 4 4 2   3    3 4 3
     - f l u , c i n q t u*w  - k r s )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous