This function produces a diagonal matrix
D, and invertible matrices
P and
Q such that
D = PMQ. Warning: even though this function is called the Smith normal form, it doesn't necessarily satisfy the more stringent condition that the diagonal entries
d1, d2, ..., dn of
D satisfy:
d1|d2|...|dn..
i1 : M = matrix{{1,2,3},{1,34,45},{2213,1123,6543},{0,0,0}}
o1 = | 1 2 3 |
| 1 34 45 |
| 2213 1123 6543 |
| 0 0 0 |
4 3
o1 : Matrix ZZ <--- ZZ
|
i2 : (D,P,Q) = smithNormalForm M
o2 = (| 135654 0 0 |, | 1 33471 -43292 0 |, | 171927 -42421 54868 |)
| 0 1 0 | | 0 1 0 0 | | 93042 -22957 29693 |
| 0 0 1 | | 0 0 1 0 | | -74119 18288 -23654 |
| 0 0 0 | | 0 0 0 1 |
o2 : Sequence
|
i3 : D == P * M * Q
o3 = true
|
i4 : (D,P) = smithNormalForm(M, ChangeMatrix=>{true,false})
o4 = (| 135654 0 0 |, | 1 33471 -43292 0 |)
| 0 1 0 | | 0 1 0 0 |
| 0 0 1 | | 0 0 1 0 |
| 0 0 0 | | 0 0 0 1 |
o4 : Sequence
|
i5 : D = smithNormalForm(M, ChangeMatrix=>{false,false}, KeepZeroes=>true)
o5 = | 135654 0 0 |
| 0 1 0 |
| 0 0 1 |
3 3
o5 : Matrix ZZ <--- ZZ
|
This function is the underlying routine used by minimalPresentation in the case when the ring is ZZ, or a polynomial ring in one variable over a field.
i6 : prune coker M
o6 = cokernel | 135654 |
| 0 |
2
o6 : ZZ-module, quotient of ZZ
|
In the following example, we test the result be checking that the entries of
D1, P1 M Q1 are the same. The degrees associated to these matrices do not match up, so a simple test of equality would return false.
i7 : S = ZZ/101[t]
o7 = S
o7 : PolynomialRing
|
i8 : D = diagonalMatrix{t^2+1, (t^2+1)^2, (t^2+1)^3, (t^2+1)^5}
o8 = | t2+1 0 0 0 |
| 0 t4+2t2+1 0 0 |
| 0 0 t6+3t4+3t2+1 0 |
| 0 0 0 t10+5t8+10t6+10t4+5t2+1 |
4 4
o8 : Matrix S <--- S
|
i9 : P = random(S^4, S^4)
o9 = | -12 -25 25 45 |
| 14 -49 35 9 |
| -7 -20 -27 34 |
| 32 -11 24 50 |
4 4
o9 : Matrix S <--- S
|
i10 : Q = random(S^4, S^4)
o10 = | 39 -5 39 -12 |
| 42 -40 -26 -47 |
| -35 -49 20 48 |
| 31 -23 -23 -19 |
4 4
o10 : Matrix S <--- S
|
i11 : M = P*D*Q
o11 = | -19t10+6t8+46t6-27t4-36t2+12 -25t10-24t8+40t6+4t4-23t2+12
| -24t10-19t8+50t6-14t4+8t2-34 -5t10-25t8-48t6-3t4-7t2-32
| 44t10+18t8-29t6+11t4-9t2-23 26t10+29t8-33t6-21t4-23t2-38
| 35t10-27t8+15t6-6t4-t2-19 -39t10+7t8+50t6-44t4+27t2-26
-----------------------------------------------------------------------
-25t10-24t8+48t6-19t4-15t2-50 -47t10-33t8+23t6-38t4+t2+48 |
-5t10-25t8+44t6-9t4+18t2-10 31t10-47t8-30t6-23t4+38t2+8 |
26t10+29t8+23t6-32t4-16t2+36 -40t10+2t8+21t6-15t4-3t2-9 |
-39t10+7t8-11t6+23t4+35t2-45 -41t10-3t8+35t6+28t4-38t2+32 |
4 4
o11 : Matrix S <--- S
|
i12 : (D1,P1,Q1) = smithNormalForm M;
|
i13 : D1 - P1*M*Q1 == 0
o13 = true
|
i14 : prune coker M
o14 = cokernel | t10+5t8+10t6+10t4+5t2+1 0 0 0 |
| 0 t6+3t4+3t2+1 0 0 |
| 0 0 t4+2t2+1 0 |
| 0 0 0 t2+1 |
4
o14 : S-module, quotient of S
|
This routine is under development. The main idea is to compute a Gröbner basis, transpose the generators, and repeat, until we encounter a matrix whose transpose is already a Gröbner basis. This may depend heavily on the monomial order.