

Nominum, Inc.
2385 Bay Road
Redwood City, CA 94063
(650) 381-6000

www.nominum.com

How to Measure the Performance of a
Caching DNS server

©2008 Nominum, Inc. All rights reserved. Nominum is a registered trademark.

Contents

Introduction .. 1

What are we measuring, anyway? ... 1

Measuring latency ... 1

Measuring throughput ... 3

Measuring throughput querying the Internet .. 4

Measuring throughput in a closed lab environment ... 4

Appendix A: Obtaining dnsperf and resperf ... 5

Appendix B: Obtaining test data .. 5
Obtaining test data using tcpdump.. 5
Obtaining test data using query logging... 5

About Nominum... 7

©2008 Nominum, Inc. All rights reserved. Nominum is a registered trademark.

Introduction

Nominum CNS is a high-performance caching DNS server. Nominum customers who
evaluate CNS are encouraged to run their own performance tests to compare it against
competing DNS servers or against their existing DNS infrastructure, but those who
attempt this are sometimes surprised to find that the results of their measurements differ
significantly from what was expected or from Nominum's published performance
numbers.

This document attempts to explain some of the issues involved in measuring the
performance of caching servers, why some measurement techniques can yield widely
varying results, and how to construct performance tests to get results that are as
accurate and reproducible as possible.

What are we measuring, anyway?

The first thing we need to know is what aspect of server performance we are trying to
measure. This document discusses the measurement of throughput and latency; there
are other things that could be measured such as memory consumption or network
bandwidth consumption, but those will not be discussed here.

The throughput of a caching DNS server is the number of queries per second it is capable
of handling. This number is of interest to administrators of high-volume servers who
need to ensure sufficient capacity, for example at an ISP with a large number of
customers or a search engine operator who needs to look up a large number of web
server addresses.

The latency of a caching DNS server is the time it takes to answer any particular query.
This is the aspect of server performance that is most visible to the individual end user -
whenever you find yourself waiting for a web browser with a status line saying "Looking
up host www.something.com...", you are experiencing the latency of a caching DNS
server.

One might think that latency and throughput are related – if a server can answer N
queries per second, doesn't that mean answering each query must take 1/N seconds on
average? In fact, there is no such simple or obvious mathematical relationship between
throughput and latency - it is possible for a caching server to have excellent latency
characteristics but abysmal throughput or vice versa. This is because caching servers
can and do work on multiple DNS queries simultaneously. In practice, busy servers can
be working on several hundred queries or even thousands of queries at any one time,
handling thousands of queries per second even though some of them take many seconds
to complete.

Measuring latency

In theory, measuring latency is easy: you send a query to a caching server, wait for a
response, and see how long it took. You can even do this without any specialized
measurements tool by using "dig", which conveniently prints the "Total query time" as
part of its output.

©2008 Nominum, Inc. All rights reserved. Nominum is a registered trademark.

Latency depends in part on the quality of the caching server implementation, such as its
ability to effectively use cached information instead of performing repeated queries, to
consistently select the fastest of multiple authoritative servers, and to avoid waiting for
unresponsive servers for a long time when alternative servers are available.
Unfortunately, it also depends heavily on a number of factors unrelated to the caching
server itself, such as the following:

 The amount of repetition among the queries. Repeated queries can be answered
from the cache will show a very small latency compared to ones where the
server has to contact one or more authoritative servers to find the answer.

 Whether the cache already contains the same data used in the test (if it does,
the test will run very fast indeed).

 Whether the cache already contains data unrelated to the test.

 The quality of the network connection. Latency measurements from a server
that talks to authoritative servers over a 28 kbps dialup connection in Australia
will look very different from those of a server with an OC-3 in Palo Alto,
California.

 The percentage of queries that fail with a timeout due to unresponsive
authoritative servers. These can take hundreds of times longer to complete than
the average successful query: in a typical case, a successful query might take
0.1 seconds, but query that fails with a timeout might take 30 seconds.
Therefore, even a small percentage of failed queries can easily dominate the
overall average latency.

 The client's overall query timeout (how long the client will keep trying before
giving up on a query). In practice, the latency of a failed query will be
determined by the shorter of the caching server's internal query timeout and the
client's query timeout; in other words, by whichever party is the first to give up.

 The client's retransmission timeout. This is of particular interest when
measuring the performance of BIND version 8 or older because of a peculiarity in
its lookup algorithm. In some circumstances, BIND 8 will find that it is missing
some name server addresses needed to answer the query and will initiate a
lookup for the missing addresses, but will not automatically resume processing
the query when they arrive. Instead, it relies on the client to retransmit the
query, which makes the overall latency dependent on how long the client waits
to retransmit.

Note that the latency will not significantly depend on the speed of the machine the
caching server is running on, since it is dominated by external network delays and
timeouts rather than by processing time. For the same reason, measuring latency in a
closed laboratory environment using artificial authoritative servers makes little sense; the
latencies shown by such a measurement will bear little resemblance to those experienced
when the server is talking to the live Internet.

In practice, getting repeatable latency numbers that can be meaningfully compared
between different servers is very hard. Probably the best you can do is to measure the
latency by sending a large number of queries similar to those a production server in your
particular environment would see, with similar timeouts to what your production clients

©2008 Nominum, Inc. All rights reserved. Nominum is a registered trademark.

use, using the same network connection you would in production, and calculate an
average. If you do this using multiple server implementations, the numbers should be
meaningful for comparing one server against another, but they cannot be directly
compared against numbers obtained in another environment.

One way of performing the latency measurement is using "dnsperf" (see Appendix A).
Although dnsperf is primarily intended for measuring throughput, it can also be used for
measuring latency. The trick is to limit the number of concurrent queries (specified by
the "-q" option) to a small number to ensure that that neither the server nor the network
link becomes overloaded at any point during the test. Values of 1 to 10 are reasonable
choices.

You also need to specify the -H option, which makes dnsperf display latency statistics,
including a histogram showing the latency distribution. The argument to the -H option is
the number of buckets in this histogram; 20 is a reasonable value. Of the latency
statistics printed, the average (Avg) is usually the one of most interest.

To summarize, running dnsperf with the following options should provide reasonable
latency statistics:

 dnsperf -q 10 -H 20

Measuring throughput

The throughput of a caching DNS server is usually limited either by the amount of CPU
time needed to process each query, the number of packets the network interface on the
server machine can process per second, or by network bandwidth.

Answering a query from the cache requires much less CPU time and fewer packets of
network traffic than answering a query where the server needs to perform a recursive
lookup by querying authoritative servers. Therefore, it is useful to characterize the
throughput of a caching server by two numbers:

 The number of queries it can answer per second when the answers are already in
the cache (cache hits)

 The number of queries it can answer per second when the answers are not in the
cache and the server must perform a recursive lookup, contacting one or more
authoritative servers (cache misses)

The actual throughput with a mixed production load will be somewhere between these
two numbers, closer to one or the other depending on the cache hit rate.

The throughput for cache misses will depend on how complicated the recursive lookup is
- is it enough to query a single authoritative server, or does the caching server have to
follow multiple referrals and look up missing name server addresses before reaching the
answer? When the testing is done by doing lookups against the Internet, it is a good idea
to use test queries derived from actual recorded caching name server traffic to make sure
that the mix of queries is similar to that which occurs in production use (see Appendix B).

©2008 Nominum, Inc. All rights reserved. Nominum is a registered trademark.

Measuring throughput querying the Internet

One way of measuring throughput is to have the caching server query actual
authoritative servers on the Internet. This will give you realistic numbers, but for them
to actually show actual maximum throughput of the server, you need a very fast Internet
connection so that it does not become the bottleneck. It is very easy to end up
measuring the speed of your Internet connection rather than that of the caching server.
Preferably the connection should not be behind a firewall - we have found that some
stateful firewalls do not take kindly to the deluge a DNS traffic generated by this kind of
test and lock up, crash, or drop packets as a result of running out of state storage space.

You will also need an appropriate testing tool. The current tool of choice is "resperf",
which was specifically designed for measuring caching server throughput and works much
better than dnsperf for this purpose. The resperf program is distributed with dnsperf
(see Appendix A). Please read the resperf(8) man page for detailed instructions.

Measuring throughput in a closed lab environment

As an alternative to running tests against authoritative servers on the Internet,
throughput can be measured in a closed lab environment against a limited set of
authoritative server machines, or even a set of authoritative servers running on virtual IP
addresses on a single machine.

This is likely to yield slightly less realistic but more reproducible results than tests
involving the Internet. It also requires much less parallelism from the test clients
because the round-trip times on a laboratory LAN are shorter - each query will be
answered more quickly, which lets each client send more queries per unit of time.
Finally, it has the advantage of not overloading one's Internet connection with huge
amounts of UDP traffic.

The downside is that you need to do the extra work of designing and setting up a set of
authoritative servers to simulate those on the Internet, generating and loading
authoritative zone data, and generating a set of queries that can be resolved using those
servers. The authoritative servers need to be fast enough not to become the bottleneck
in the test.

In our own laboratory measurements, we use a standardized test designed to
approximate the behavior of typical web surfing clients. It involves queries of the form
"www.domain.com" for a large number of different values of "domain", where each
"domain" is separately delegated from a simulated "com" server using two NS records
and two glue A records. This means that each query to the caching server will require
two queries to the authoritative servers: one to the "com" server returning a referral, and
a second one to the "domain.com" server returning the answer, just like a typical lookup
for an uncached web server address would. To avoid the authoritative servers becoming
a bottleneck, we use a simple authoritative server specifically written for the purpose of
this test; this server only knows how to answer the types of queries that occur in the
tests but will do it much faster than a general purpose authoritative server could.

©2008 Nominum, Inc. All rights reserved. Nominum is a registered trademark.

Appendix A: Obtaining dnsperf and resperf

The "dnsperf" and "resperf" programs were written by Nominum and are distributed in
source code form. They can be downloaded from:

 http://nominum.com/services/measurement_tools.php

Appendix B: Obtaining test data

To run a latency or throughput test involving servers on the Internet, you need a
representative set of test queries. One way of collecting such queries is to log the
queries received by your existing caching DNS server, either using tcpdump or using the
server's query logging function.

Obtaining test data using tcpdump

To make a packet capture of the incoming DNS traffic at a caching server, you can run
tcpdump on the server machine. For example, if the machine's IP address is 10.0.0.1,
you can use the command:

 tcpdump -w queries.pcap -p -s 1500 dst 10.0.0.1 and dst port 53

to save the incoming DNS traffic to the file "queries.pcap". The purpose of the "dst
10.0.0.1" clause is to make sure that only incoming queries are saved, not the outgoing
queries sent to authoritative servers by the caching server itself.

This saves the queries in the binary "pcap" file format. This can be converted into the
query file format accepted by dnsperf and resperf using the "queryparse" program in the
contrib/queryparse directory of the dnsperf source distribution.

Obtaining test data using query logging

Another way of saving DNS queries for use as test data is to enable query logging on the
server. For example, if you are running BIND 9, you can add these lines to named.conf:

 logging {
 channel queries {
 file "query.log";
 };
 category queries { queries; };
 };

and all queries will be saved in the file "query.log". To convert this log file into a format
suitable as input for dnsperf or resperf, you can use a shell command like

 perl -n -e 'print "$1 $2\n" if /query: ([^]+) IN ([^]+);' query.log >queries

If you are running Nominum CNS, you can use the global configuration statements:

 use-querylog-file yes;
 querylog-format "{name} {type}";

and the view configuration statement

©2008 Nominum, Inc. All rights reserved. Nominum is a registered trademark.

 log-queries yes;

The querylog-format statement used in the above example will make Nominum CNS write
a query log file that is compatible with dnsperf and resperf as-is, without requiring a
separate conversion step.

©2008 Nominum, Inc. All rights reserved. Nominum is a registered trademark.

About Nominum

Nominum's network naming and addressing solutions power the world's largest always-
on networks. Nominum is a global provider of ENUM-based IP-application routing
directories, DNS, and DHCP solutions that enable communication providers to deliver high
quality always-on broadband internet and innovative services to their customers,
including VoIP, push to talk, fixed-mobile convergence, IPTV, and triple-play.

For further information, visit www.nominum.com.

