
Pymacs version 0.23
Extending Emacs with Python

Author: François Pinard
Email: pinard@iro.umontreal.ca
Copyright: © Progiciels Bourbeau-Pinard inc., Montréal 2003,

2008

Contents
1 Introduction 1

1.1 What is Pymacs? . 1
1.2 Documentation and examples . 1
1.3 Other resources . 3

2 Installation 3
2.1 Select Emacs and Python . 3
2.2 Check if Pymacs would work . 3
2.3 Install the Pymacs proper . 4
2.4 Prepare your .emacs file . 5
2.5 Porting and caveats . 5

3 Emacs Lisp structures and Python objects 6
3.1 Conversions . 6
3.2 Simple objects . 6
3.3 Sequences . 7
3.4 Opaque objects . 8

3.4.1 Emacs Lisp handles . 8
3.4.2 Python handles . 8

4 Usage on the Emacs Lisp side 9
4.1 pymacs-exec . 9
4.2 pymacs-eval . 9
4.3 pymacs-call . 9
4.4 pymacs-apply . 10
4.5 pymacs-load . 10
4.6 Expected usage . 10
4.7 Special Emacs Lisp variables . 11

4.7.1 pymacs-load-path . 11
4.7.2 pymacs-trace-transit . 11
4.7.3 pymacs-forget-mutability . 11

1

mailto:pinard@iro.umontreal.ca

4.7.4 pymacs-mutable-strings . 12
4.7.5 Timeout variables . 12
4.7.6 pymacs-dreadful-zombies . 12

5 Usage on the Python side 13
5.1 Python setup . 13
5.2 Emacs Lisp symbols . 13
5.3 Dynamic bindings . 14
5.4 Raw Emacs Lisp expressions . 15
5.5 User interaction . 16
5.6 Key bindings . 16

6 Debugging 17
6.1 On the communication protocol . 17
6.2 The *Pymacs* buffer . 18
6.3 Emacs usual debugging . 19
6.4 Auto-reloading on save . 20
6.5 Debugging the Pymacs helper . 20

7 About and around Pymacs 21
7.1 Known limitations . 21
7.2 History . 21
7.3 Pymacs and me! . 21
7.4 Vim considerations . 22
7.5 Inclusion within Emacs . 23
7.6 Speed issues . 23
7.7 The future of Pymacs . 24

1 Introduction

1.1 What is Pymacs?
Pymacs is a powerful tool which, once started from Emacs, allows two-way commu-
nication between Emacs Lisp and Python. Pymacs aims to employ Python as an ex-
tension language for Emacs rather than the other way around, and this asymmetry is
reflected in some design choices. Within Emacs Lisp code, one may load and use
Python modules. Python functions may themselves use Emacs services, and handle
Emacs Lisp objects kept in Emacs Lisp space.

The goals are to write naturally in both languages, debug with ease, fall back grace-
fully on errors, and allow full cross-recursion.

It is very easy to install Pymacs, as neither Emacs nor Python need to be compiled
nor relinked. Emacs merely starts Python as a subprocess, and Pymacs implements a
communication protocol between both processes.

Report problems, documentation flaws, or suggestions to François Pinard:

• mailto:pinard@iro.umontreal.ca

2

mailto:pinard@iro.umontreal.ca

1.2 Documentation and examples
The main Pymacs site conveys the Pymacs documentation (you are reading its Pymacs
manual right now) and distributions:

• http://pymacs.progiciels-bpi.ca

I expect average Pymacs users to have a deeper knowledge of Python than Emacs
Lisp. People have widely varying approaches in writing .emacs files, as far as Pymacs
is concerned:

• Some can go and write almost no Emacs Lisp, yet a bit is still nec-
essary for establishing a few loading hooks. For many simple needs,
one can do a lot without having to learn much.

• On the other hand, for more sophisticated usages, people cannot re-
ally escape knowing the Emacs Lisp API to some extent, because
they should be programming-wise familiarity with what is a buffer,
a point, a mark, etc. and what are the allowed operations on those.

While Pymacs examples are no substitute for a careful reading of the Pymacs man-
ual, the contemplation and study of others’ nice works may well enligthen and deepen
your understanding. A few examples are included within the Pymacs distribution, each
as a subdirectory of the contrib/ directory, and each haviing its own README file.
These are listed below, easiest examples first:

• Paul Winkler’s example

– http://pymacs.progiciels-bpi.ca/Winkler.html

• Fernando Pérez’ examples

– http://pymacs.progiciels-bpi.ca/Perez.html
– http://pymacs.progiciels-bpi.ca/contrib/Perez/

• Giovanni Giorgi’s files

– http://pymacs.progiciels-bpi.ca/Giorgi.html
– http://pymacs.progiciels-bpi.ca/contrib/Giorgi/

• A reformatter for boxed comments

– http://pymacs.progiciels-bpi.ca/rebox.html
– http://pymacs.progiciels-bpi.ca/contrib/rebox/

A few more substantial examples of Pymacs usage have been brought to my atten-
tion, and are available externally (listed here in no particular order):

• pymdev -- A Python Emacs Development Module:

– http://www.toolness.com/pymdev/

• Ropemacs -- Features like refactoring and code-assists:

– http://rope.sf.net/
– http://rope.sf.net/hg/rpymacs

• Bicycle Repair Man -- A Refactoring Tool for Python:

– http://bicyclerepair.sourceforge.net/

• Emacs Freex -- A personal wiki on steroids:

3

http://pymacs.progiciels-bpi.ca
http://pymacs.progiciels-bpi.ca/Winkler.html
http://pymacs.progiciels-bpi.ca/Perez.html
http://pymacs.progiciels-bpi.ca/contrib/Perez/
http://pymacs.progiciels-bpi.ca/Giorgi.html
http://pymacs.progiciels-bpi.ca/contrib/Giorgi/
http://pymacs.progiciels-bpi.ca/rebox.html
http://pymacs.progiciels-bpi.ca/contrib/rebox/
http://www.toolness.com/pymdev/
http://rope.sf.net/
http://rope.sf.net/hg/rpymacs
http://bicyclerepair.sourceforge.net/

– http://www.princeton.edu/%7Egdetre/software/freex/docs/index.
html

The QaTeX project was influenced by Pymacs, according to its author:

• http://qatex.sourceforge.net/

• http://www.pytex.org/doc/index.html#eurotex2005

1.3 Other resources
You are welcome writing to or joining the following mailing list, where there are a few
people around likely to give you feedback:

• mailto:pymacs-devel@googlegroups.com

If you have no fear of wider crowds :-), there still is:

• mailto:python-list@python.org

There are other Web sites specifically about Pymacs. Giovanni Giorgi has one of
them:

• http://blog.objectsroot.com/projects/pymacs/

There is also revised pymacs, part of the Ropemacs project:

• http://rope.sourceforge.net/ropemacs.html

2 Installation

2.1 Select Emacs and Python
The environment variable PYMACS_PYTHON is usually left unset or empty, in which
case python is implied. It has the purpose of naming the Python interpreter program
to be called for starting the Pymacs helper. It may be set to give the full path of the
executable if the Python program exists at some location outside the program search
path. It may also be given when the interpreter name is different, for exemple when the
Python version is part of the program name.

The similar environment variable PYMACS_EMACS is usually left unset or empty,
in which case emacs is implied. It has the purpose of naming the Emacs editor, yet
this is only meaningful for the validation (see next section). For normal Pymacs usage,
Emacs is launched by the user long before Pymacs is itself started, and consequently,
there is absolutely no need to tell Pymacs which Emacs is needed. For the validation
suite however, it may be set to give the full path of the executable if the Emacs program
exists at some location outside the program search path. It may also be given when the
editor name is different, for example when the Emacs version is part of the program
name, or when this is a different editor (like the value xemacs to call XEmacs).

4

http://www.princeton.edu/%7Egdetre/software/freex/docs/index.html
http://www.princeton.edu/%7Egdetre/software/freex/docs/index.html
http://qatex.sourceforge.net/
http://www.pytex.org/doc/index.html#eurotex2005
mailto:pymacs-devel@googlegroups.com
mailto:python-list@python.org
http://blog.objectsroot.com/
http://blog.objectsroot.com/projects/pymacs/
http://rope.sourceforge.net/ropemacs.html

2.2 Check if Pymacs would work
To know, before installing Pymacs, if it would work on your system, try the validation
suite by running make check. The suite is fairly elementary, but nevertheless, it is
able to detect some common show stoppers. As a convenience for those who want to
quickly try various Emacs and Python combinations, make check emacs=SOME_EMACS
python=SOME_PYTHON temporarily overrides the environment variables PYMACS_EMACS
and PYMACS_PYTHON. For example, make check emacs=xemacs runs the val-
idation suite using xemacs for an editor.

The remaining of this section may be safely be skipped, for mere Pymacs installa-
tion.

I did not base the validation suite on Junit (the Python unit testing framework is a
re-implementation of it), but on Codespeak’s pylib py.test, which is much simpler,
and still very powerful. The pylib project is driven by Holge Kregel, but attracted
some Python brains, like Armin Rigo (known for Psyco, among other things -- I think
his lsprof has also been added to Python 2.5 under the name cProfile). This gang
addresses overdone/heavy methods in Python, and do them better. Even py.test is
a bit more complex that I would want, and has (or at least had) flaws on the Unicode
side, so I rewrote my own, as a simple single file. I merely translated it from French to
English, to make it more distributable within Pymacs.

It has not been fruitful, trying to use Emacs stdin and stdout for communicating
expressions to evaluate and getting back results from within the validation suite. After
some fight, I reluctantly put this avenue aside. Currently, the suite writes problems in
files, for Emacs to read, and Emacs writes replies in files, for the suite to check. Busy
waiting (with small sleep added in the loops) is used on both sides. This is all too
heavy, and it slows down the suite. Hopefully, the suite is not run often, this is not a
real problem.

2.3 Install the Pymacs proper
Pymacs is a small package. Putting the documentation and administrative files aside,
there is one Python file and one Emacs Lisp file to it, to be installed in turn. Always
start with the Python file.

• For the Python part

At the top-level of the Pymacs distribution, then execute python setup.py
install. First, the script copies a few source files while presetting the ver-
sion strings in them. Second, it installs the Python package through the Python
standard Distutils tool. To get an option reminder, do python setup.py
install --help. Consult the Distutils documentation if you need more in-
formation about this.

That’s all to it. To check that pymacs.py is properly installed, start an interac-
tive Python session and type from Pymacs import lisp: you should not
receive any error.

• For the Emacs part

This is usually done by hand now. First select some directory along the list
kept in your Emacs load-path, for which you have write access, and copy file
pymacs.el in that directory.

5

If you want speed, you should ideally byte-compile this file. To do so, go to that
directory, launch Emacs, then give the command M-x byte-compile-file
RET pymacs.el RET. If for some reason you intend to such commands of-
ten, you could create a little script to do so. Here is an example of such a script,
assuming here that you use Emacs and want to install in directory ~/share/emacs/lisp/:

#!/bin/bash
cp pymacs.el ~/share/emacs/lisp/
emacs -batch -eval ’(byte-compile-file "~/share/emacs/lisp/pymacs.el")’

You should be done now. To check that pymacs.el is properly installed, return
to your usual directories, start Emacs and give it the command M-x load-library
RET pymacs RET: you should not receive any error.

Some features from previous Pymacs releases have been dropped:

• There used to be a script for installing the Emacs Lisp file. As it was difficult to
get it right in all circumstances; the script grew an interactive mode and lot of
options. This is just not worth the complexity, so this script is now gone.

• Examples were all installed automatically, but at least for some of them, this
was more pollution than help. You may browse the contents of the contrib/
directory to learn about available examples.

2.4 Prepare your .emacs file
The .emacs file is not given in the distribution, you likely have one already in your
home directory. You need to add these lines:

(autoload ’pymacs-apply "pymacs")
(autoload ’pymacs-call "pymacs")
(autoload ’pymacs-eval "pymacs" nil t)
(autoload ’pymacs-exec "pymacs" nil t)
(autoload ’pymacs-load "pymacs" nil t)
;;(eval-after-load "pymacs"
;; ’(add-to-list ’pymacs-load-path YOUR-PYMACS-DIRECTORY"))

If you plan to use a special directory to hold your own Pymacs code in Python,
which should be searched prior to the usual Python import search path, then uncom-
ment the last two lines (by removing the semi-colons) and replace YOUR-PYMACS-
DIRECTORY by the name of your special directory. If the file ~/.emacs does not
exist, merely create it with the above lines. You are now all set to use Pymacs.

To check this, start a fresh Emacs session, and type M-x pymacs-eval RET.
Emacs should prompt you for a Python expression. Try repr(2L**111) RET. The
mini buffer should display “2596148429267413814265248164610048L”. M-x pymacs-load
RET should prompt you for a Python module name. Reply os RET RET (the second
RET is for accepting the default prefix. This should have the effect of importing the
Python os module within Emacs. Typing M-: (os-getcwd) RET should echo
the current directory in the message buffer, as returned by the os.getcwd Python func-
tion.

6

2.5 Porting and caveats
Pymacs has been initially developed on Linux, Python 1.5.2, and Emacs 20, and cur-
rently on Python 2.5, Emacs 22.1 and XEmacs 21.5. It is expected to work out of the
box on many flavours of Unix, MS Windows and Mac OSX, and also on many version
of Python, Emacs and XEmacs.

From Pymacs 0.23 and upwards, Python 2.2 or better is likely needed, and for the
Pymacs proper, I rely on testers or users for portability issues. However, the validation
suite itself requires Python 2.4 or better, someone might choose to contribute the back
porting.

Pymacs uses Emacs weak hash tables. It can run without them, but then, complex
Python objects transmitted to Emacs will tie Python memory forever. It should not be
a practical problem in most simple cases. Some later versions of Emacs 20 silently
create ordinary tables when asked for weak hash tables. Older Emacses do not have
hash tables.

The Pymacs Python package holds a single pymacs.py file (and the mandatory
__init__.py). Programmers might elect, but are not required, to install their own
Pymacs applications either as sub-modules or sub-packages on Pymacs.

3 Emacs Lisp structures and Python objects

3.1 Conversions
Whenever Emacs Lisp calls Python functions giving them arguments, these arguments
are Emacs Lisp structures that should be converted into Python objects in some way.
Conversely, whenever Python calls Emacs Lisp functions, the arguments are Python
objects that should be received as Emacs Lisp structures. We need some conventions
for doing such conversions.

Conversions generally transmit mutable Emacs Lisp structures as mutable objects
on the Python side, in such a way that transforming the object in Python will effectively
transform the structure on the Emacs Lisp side (strings are handled a bit specially
however, see below). The other way around, Python objects transmitted to Emacs Lisp
often loose their mutability, so transforming the Emacs Lisp structure is not reflected
on the Python side.

Pymacs sticks to standard Emacs Lisp, it explicitly avoids various Emacs Lisp ex-
tensions. One goal for many Pymacs users is taking some distance from Emacs Lisp,
so Pymacs is not overly pushing users deeper into it.

3.2 Simple objects
Emacs Lisp nil and the equivalent Emacs Lisp () yield Python None. Python None,
Python False and the Python empty list [] are returned as nil in Emacs Lisp. Notice
the assymetry, in that three different Python objects are mapped into a single Emacs
Lisp object. So, neither False nor [] are likely produced by automatic conversions
from Emacs Lisp to Python.

Emacs Lisp t yields Python True. Python True is returned as t in Emacs Lisp.
Emacs Lisp numbers, either integer or floating, are converted in equivalent Python

numbers. Emacs Lisp characters are really numbers and yield Python numbers. In
the other direction, Python numbers are converted into Emacs Lisp numbers, with the
exception of long Python integers and complex numbers.

7

Emacs Lisp strings are usually converted into equivalent Python strings. As Python
strings do not have text properties, these are not reflected. This may be changed by
setting the pymacs-mutable-strings option: if this variable is not nil, Emacs Lisp
strings are then transmitted opaquely. Python strings are always converted into Emacs
Lisp strings. Unicode strings are produced on the Python side for Emacs Lisp multi-
byte strings, but only when they do not fit in ASCII, otherwise Python narrow strings
are produced. Conversely, Emacs Lisp multi-byte strings are produced for Python
Unicode strings, but only when they do not fit ASCII, otherwise Emacs Lisp uni-byte
strings are produced. Currently, Pymacs behaviour is undefined for users wandering
outside the limits of Emacs’ utf-8 coding system.

Emacs Lisp symbols yield lisp[STRING] notations on the Python side, where
STRING names the symbol. In the other direction, Python lisp[STRING] corre-
sponds to an Emacs Lisp symbol printed with that STRING which, of course, should
then be a valid Emacs Lisp symbol name. As a convenience, lisp.SYMBOL on the
Python side yields an Emacs Lisp symbol with underscores replaced with hyphens; this
convention is welcome, as Emacs Lisp programmers commonly prefer using dashes,
where Python programmers use underlines. Of course, this lisp.SYMBOL notation
is only usable when the SYMBOL is a valid Python identifier, while not being a Python
keyword.

3.3 Sequences
The case of strings has been discussed in the previous section.

Proper Emacs Lisp lists, those for which the cdr of last cell is nil, are normally
transmitted opaquely to Python. If pymacs-forget-mutability is set, or if Python later
asks for these to be expanded, proper Emacs Lisp lists get converted into Python lists,
if we except the empty list, which is always converted as Python None. In the other
direction, Python lists are always converted into proper Emacs Lisp lists.

Emacs Lisp vectors are normally transmitted opaquely to Python. However, if
pymacs-forget-mutability is set, or if Python later asks for these to be expanded,
Emacs Lisp vectors get converted into Python tuples. In the other direction, Python
tuples are always converted into Emacs Lisp vectors.

Remember the rule: Round parentheses correspond to square brackets!. It works
for lists, vectors, tuples, seen from either Emacs Lisp or Python.

The above choices were debatable. Since Emacs Lisp proper lists and Python lists
are the bread-and-butter of algorithms modifying structures, at least in my experience,
I guess they are more naturally mapped into one another, this spares many casts in
practice. While in Python, the most usual idiom for growing lists is appending to their
end, the most usual idiom in Emacs Lisp to grow a list is by cons’ing new items at its
beginning:

(setq accumulator (cons ’new-item accumulator))

or more simply:

(push ’new-item accumulator)

So, in case speed is especially important and many modifications happen in a row
on the same side, while order of elements ought to be preserved, some (nreverse
...) on the Emacs Lisp side or .reverse() on the Python side side might be
needed. Surely, proper lists in Emacs Lisp and lists in Python are the normal structure
for which length is easily modified.

8

We cannot so easily change the size of a vector, the same as it is a bit more of a
stunt to modify a tuple. The shape of these objects is fixed. Mapping vectors to tuples,
which is admittedly strange, will only be done if the Python side requests an expanded
copy, otherwise an opaque Emacs Lisp object is seen in Python. In the other direction,
whenever an Emacs Lisp vector is needed, one has to write tuple(python_list)
while transmitting the object. Such transmissions are most probably to be unusual, as
people are not going to blindly transmit whole big structures back and forth between
Emacs and Python, they would rather do it once in a while only, and do only local
modifications afterwards. The infrequent casting to tuple for getting an Emacs Lisp
vector seems to suggest that we did a reasonable compromise.

In Python, both tuples and lists have O(1) access, so there is no real speed consid-
eration there. Emacs Lisp is different: vectors have O(1) access while lists have O(N)
access. The rigidity of Emacs Lisp vectors is such that people do not resort to vectors
unless there is a speed issue, so in real Emacs Lisp practice, vectors are used rather
parsimoniously. So much, in fact, that Emacs Lisp vectors are overloaded for what
they are not meant: for example, very small vectors are used to represent X events
in key-maps, programmers only want to test vectors for their type, or users just like
bracketed syntax. The speed of access is hardly an issue then.

3.4 Opaque objects
3.4.1 Emacs Lisp handles

When a Python function is called from Emacs Lisp, the function arguments have al-
ready been converted to Python types from Emacs Lisp types and the function result is
going to be converted back to Emacs Lisp.

Several Emacs Lisp objects do not have Python equivalents, like for Emacs win-
dows, buffers, markers, overlays, etc. It is nevertheless useful to pass them to Python
functions, hoping that these Python functions will operate on these Emacs Lisp objects.
Of course, the Python side may not itself modify such objects, it has to call for Emacs
services to do so. Emacs Lisp handles are a mean to ease this communication.

Whenever an Emacs Lisp object may not be converted to a Python object, an Emacs
Lisp handle is created and used instead. Whenever that Emacs Lisp handle is returned
into Emacs Lisp from a Python function, or is used as an argument to an Emacs Lisp
function from Python, the original Emacs Lisp object behind the Emacs Lisp handle is
automatically retrieved.

Emacs Lisp handles are either instances of the internal Lisp class, or of one of its
subclasses. If OBJECT is an Emacs Lisp handle, and if the underlying Emacs Lisp ob-
ject is an Emacs Lisp sequence, then whenever OBJECT[INDEX], OBJECT[INDEX]
= VALUE and len(OBJECT) are meaningful, these may be used to fetch or alter an
element of the sequence directly in Emacs Lisp space. Also, if OBJECT corresponds
to an Emacs Lisp function, OBJECT(ARGUMENTS) may be used to apply the Emacs
Lisp function over the given arguments. Since arguments have been evaluated the
Python way on the Python side, it would be conceptual overkill evaluating them again
the Emacs Lisp way on the Emacs Lisp side, so Pymacs manage to quote arguments
for defeating Emacs Lisp evaluation. The same logic applies the other way around.

Emacs Lisp handles have a value() method, which merely returns self. They
also have a copy() method, which tries to open the box if possible. Emacs Lisp
proper lists are turned into Python lists, Emacs Lisp vectors are turned into Python
tuples. Then, modifying the structure of the copy on the Python side has no effect on

9

the Emacs Lisp side.
For Emacs Lisp handles, str() returns an Emacs Lisp representation of the handle

which should be eq to the original object if read back and evaluated in Emacs Lisp.
repr() returns a Python representation of the expanded Emacs Lisp object. If that
Emacs Lisp object has an Emacs Lisp representation which Emacs Lisp could read
back, then repr() value is such that it could be read back and evaluated in Python
as well, this would result in another object which is equal to the original, but not
necessarily eq.

3.4.2 Python handles

The same as Emacs Lisp handles are useful for handling Emacs Lisp objects on the
Python side, Python handles are useful for handling Python objects on the Emacs Lisp
side.

Many Python objects do not have direct Emacs Lisp equivalents, including long in-
tegers, complex numbers, modules, classes, instances and surely a lot of others. When
such are being transmitted to the Emacs Lisp side, Pymacs use Python handles. These
are automatically recovered into the original Python objects whenever transmitted back
to Python, either as arguments to a Python function, as the Python function itself, or as
the return value of an Emacs Lisp function called from Python.

The objects represented by these Python handles may be inspected or modified
using the basic library of Python functions. For example, in:

(pymacs-exec "import re")
(setq matcher (pymacs-eval "re.compile(’PATTERN’).match"))
(pymacs-call matcher ARGUMENT)

the setq line above could be decomposed into:

(setq compiled (pymacs-eval "re.compile(’PATTERN’)")
matcher (pymacs-call "getattr" compiled "match"))

This example shows that one may use pymacs-call with getattr as the function, to
get a wanted attribute for a Python object.

4 Usage on the Emacs Lisp side

4.1 pymacs-exec
Function (pymacs-exec TEXT) gets TEXT executed as a Python statement, and
its value is always nil. So, this function may only be useful because of its possible side
effects on the Python side.

This function may also be called interactively:

M-x pymacs-exec RET TEXT RET

4.2 pymacs-eval
Function (pymacs-eval TEXT) gets TEXT evaluated as a Python expression, and
returns the value of that expression converted back to Emacs Lisp.

This function may also be called interactively:

M-x pymacs-eval RET TEXT RET

10

4.3 pymacs-call
Function (pymacs-call FUNCTION ARGUMENT...) will get Python to apply
the given FUNCTION over zero or more ARGUMENT. FUNCTION is either a string
holding Python source code for a function (like a mere name, or even an expression),
or else, a Python handle previously received from Python, and hopefully holding a
callable Python object. Each ARGUMENT gets separately converted to Python before
the function is called. pymacs-call returns the resulting value of the function call,
converted back to Emacs Lisp.

4.4 pymacs-apply
Function (pymacs-apply FUNCTION ARGUMENTS) will get Python to apply
the given FUNCTION over the given ARGUMENTS. ARGUMENTS is a list containing
all arguments, or nil if there is none. Besides arguments being bundled together instead
of given separately, the function acts pretty much like pymacs-call.

4.5 pymacs-load
Function (pymacs-load MODULE PREFIX) imports the Python module into Emacs
Lisp space. MODULE is the name of the file containing the module, without any .py
or .pyc extension. If the directory part is omitted in MODULE, the module will be
looked into the current Python search path. Dot notation may be used when the mod-
ule is part of a package. Each top-level function in the module produces a trampoline
function in Emacs Lisp having the same name, except that underlines in Python names
are turned into dashes in Emacs Lisp, and that PREFIX is uniformly added before the
Emacs Lisp name (as a way to avoid name clashes). PREFIX may be omitted, in which
case it defaults to base name of MODULE with underlines turned into dashes, and
followed by a dash.

Note that pymacs-load has the effect of declaring the module variables and meth-
ods the Emacs Lisp side, but it does not declare anything on the Python side. Of course,
Python imports the module before making it available for Emacs, but there is no Py-
macs ready variable on the Python side holding that module. If you need to import
MODULE in a variable on the Python side, the proper incantation is (pymacs-exec
"import MODULE"). And of course, that this latter statement does not declare any-
thing on the Emacs Lisp side.

Whenever pymacs_load_hook is defined in the loaded Python module, pymacs-
load calls it without arguments, but before creating the Emacs view for that module.
So, the pymacs_load_hook function may create new definitions or even add interac-
tion attributes to functions.

The return value of a successful pymacs-load is the module object. An optional
third argument, noerror, when given and not nil, will have pymacs-load to return nil
instead of raising an error, if the Python module could not be found.

When later calling one of these trampoline functions, all provided arguments are
converted to Python and transmitted, and the function return value is later converted
back to Emacs Lisp. It is left to the Python side to check for argument consistency.
However, for an interactive function, the interaction specification drives some check-
ing on the Emacs Lisp side. Currently, there is no provision for collecting keyword
arguments in Emacs Lisp.

This function may also be called interactively:

11

M-x pymacs-load RET MODULE RET PREFIX RET

4.6 Expected usage
We do not expect that pymacs-exec, pymacs-eval, pymacs-call or pymacs-apply will
be much used, if ever, in most Pymacs applications. In practice, the Emacs Lisp side of
a Pymacs application might call pymacs-load a few times for linking into the Python
modules, with the indirect effect of defining trampoline functions for these modules on
the Emacs Lisp side, which can later be called like usual Emacs Lisp functions.

These imported functions are usually those which are of interest for the user, and
the preferred way to call Python services with Pymacs.

4.7 Special Emacs Lisp variables
Users could alter the inner working of Pymacs through a few variables, these are all
documented here. Except for pymacs-load-path, which should be set before calling
any Pymacs function, the value of these variables can be changed at any time.

4.7.1 pymacs-load-path

Users might want to use special directories for holding their Python modules, when
these modules are meant to be used from Emacs. Best is to preset pymacs-load-path,
nil by default, to a list of these directory names. (Tilde expansions and such occur
automatically.)

Here is how it works. The first time Pymacs is needed from Emacs, a Pymacs helper
is automatically started as an Emacs subprocess, and given as arguments all strings in
the pymacs-load-path list. These arguments are added at the beginning of sys.path,
or moved at the beginning if they were already on sys.path. So in practice, nothing is
removed from sys.path.

4.7.2 pymacs-trace-transit

The *Pymacs* buffer, within Emacs, holds a trace of transactions between Emacs and
Python. When pymacs-trace-transit is nil, the buffer only holds the last bi-directional
transaction (a request and a reply). In this case, it gets erased before each and every
transaction. If that variable is t, all transactions are kept. This could be useful for de-
bugging, but the drawback is that this buffer could grow big over time, to the point of
diminishing Emacs performance. As a compromise, that variable may also be a cons
cell of integers (KEEP . LIMIT), in which case the buffer is reduced to approx-
imately KEEP bytes whenever its size exceeds LIMIT bytes, by deleting an integral
number of lines from its beginning. The default setting for pymacs-trace-transit is
(5000 . 30000).

4.7.3 pymacs-forget-mutability

The default behaviour of Pymacs is to transmit Emacs Lisp objects to Python in such
a way that they are fully modifiable from the Python side, would it mean triggering
Emacs Lisp functions to act on them. When pymacs-forget-mutability is not nil, the
behaviour is changed, and the flexibility is lost. Pymacs then tries to expand proper lists
and vectors as full copies when transmitting them on the Python side. This variable,

12

seen as a user setting, is best left to nil. It may be temporarily overridden within some
functions, when deemed useful.

There is no corresponding variable from objects transmitted to Emacs from Python.
Pymacs automatically expands what gets transmitted. Mutability is preserved only as
a side-effect of not having a natural Emacs Lisp representation for the Python object.
This asymmetry is on purpose, yet debatable. Maybe Pymacs could have a variable
telling that mutability is important for Python objects? That would give Pymacs users
the capability of restoring the symmetry somewhat, yet so far, in our experience, this
has never been needed.

4.7.4 pymacs-mutable-strings

Strictly speaking, Emacs Lisp strings are mutable. Yet, it does not come naturally to a
Python programmer to modify a string in-place, as Python strings are never mutable.
When pymacs-mutable-strings is nil, which is the default setting, Emacs Lisp strings
are transmitted to Python as Python strings, and so, loose their mutability. Moreover,
text properties are not reflected on the Python side. But if that variable is not nil, Emacs
Lisp strings are rather passed as Emacs Lisp handles. This variable is ignored whenever
pymacs-forget-mutability is set.

4.7.5 Timeout variables

Emacs needs to protect itself a bit, in case the Pymacs service program, which handles
the Python side of requests, would not start correctly, or maybe later die unexpectedly.
So, whenever Emacs reads data coming from that program, it sets a time limit, and take
some action whenever that time limit expires. All times are expressed in seconds.

The pymacs-timeout-at-start variable defaults to 30 seconds, this time should
only be increased if a given machine is so heavily loaded that the Pymacs service
program has not enough of 30 seconds to start, in which case Pymacs refuses to work,
with an appropriate message in the mini buffer.

The two remaining timeout variables almost never need to be changed in practice.
When Emacs is expecting a reply from Python, it might repeatedly check the status
of the Pymacs service program when that reply is not received fast enough, just to
make sure that this program did not die. The pymacs-timeout-at-reply variable, which
defaults to 5, says how many seconds to wait without checking, while expecting the first
line of a reply. The pymacs-timeout-at-line variable, which defaults to 2, says how
many seconds to wait without checking, while expecting a line of the reply after the
first.

4.7.6 pymacs-dreadful-zombies

When the Pymacs helper dies, all useful Python objects it might contain also die with it.
However, if the death occurs unexpectedly, instead of normally at the end of the Emacs
session, there might now exist dangling references in Emacs Lisp space towards those
vanished Python objects.

Pymacs could not do much without a Pymacs helper, and likely, a new one will
soon be created within the same Emacs session, and brand new Python objects may
be created within that new helper. Now, and this is a bit technical, all references are
transmitted in form of object slot numbers. As a consequence, the new Pymacs helper

13

should be careful at never allocating a new Python object using a slot number of a
useful vanished object, as this might possibly create fatal confusion.

There is not enough information for the new Pymacs helper to recreate the useful
objects which disappeared. However, there is enough machinery to recover all their
slot numbers, and then, all these slots are initialized with so-called zombies. If Emacs
later calls a vanished Python object, this merely awakes its zombie, which will then
make some noise, then fall asleep again. The noise has the form of a diagnostic within
the *Messages* buffer, sometimes visible in the mini-buffer as well when the mini-
buffer is not simultaneously used for some other purpose.

Zombies get more dreadful if pymacs-dreadful-zombies is set to a non-nil value.
In this case, calling a vanished Python object raises an error that will eventually in-
terrupt the current computation. Such a behaviour might be useful for debugging pur-
poses, or for making sure that no call to a vanished Python object goes unnoticed.

In previous Pymacs releases, zombies were always dreadful, under the assump-
tion that calling a vanished object is a real error. However, it could cause irritation in
some circumstances, like when associated with frequently triggered Emacs Lisp hook
functions. That’s why that, by default, zombies have been finally turned into more
innocuous beings!

5 Usage on the Python side

5.1 Python setup
For Python modules meant to be used from Emacs and which receive nothing but
Emacs nil, numbers or strings, or return nothing but Python None, numbers or strings,
then Pymacs requires little or no setup. Otherwise, use from Pymacs import
lisp at the start of your module. If you need more Pymacs features, like the Let
class, then write from Pymacs import lisp, Let.

The Pymacs helper runs Python code to serve the Emacs side, and it is blocked
waiting until Emacs sends a request. Until the Pymacs helper returns a reply, Emacs
is blocked in turn, yet fully listening to serve eventual Python sub-requests, etc. So,
either Emacs or the Pymacs helper is active at a given instant, but never both at once.

Unless Emacs has sent a request to the Pymacs helper and is expecting a reply, it
is just not listening to receive Python requests. So, any other Python thread may not
asynchronously use Pymacs to get Emacs services. The design of the Python appli-
cation should be such that the communication is always be channelled from the main
Python thread.

When Pymacs starts, all process signals are inhibited on the Python side. Yet,
SIGINT gets re-enabled while running user functions. If the user elects to reactivate
some other signal in her Python code, she should do so as to not damage or severe the
communication protocol.

5.2 Emacs Lisp symbols
lisp is a special object which has useful built-in magic. Its attributes do nothing but
represent Emacs Lisp symbols, created on the fly as needed (symbols also have their
built-in magic).

As special cases, lisp.nil or lisp["nil"] are the same as None, and lisp.t
or lisp["t"] are the same as True. Otherwise, both lisp.SYMBOL and lisp[STRING]

14

yield objects of the internal Symbol type. These are genuine Python objects, that could
be referred to by simple Python variables. One may write quote = lisp.quote,
for example, and use quote afterwards to mean that Emacs Lisp symbol. If a Python
function received an Emacs Lisp symbol as an argument, it can check with == if that
argument is lisp.never or lisp.ask, say. A Python function may well choose
to return some symbol, like lisp.always.

In Python, writing lisp.SYMBOL = VALUE or lisp[STRING] = VALUE
does assign VALUE to the corresponding symbol in Emacs Lisp space. Beware that in
such cases, the lisp. prefix may not be spared. After result = lisp.result,
one cannot hope that a later result = 3 will have any effect in the Emacs Lisp
space: this would merely change the Python variable result, which was a reference
to a Symbol instance, so it is now a reference to the number 3.

The Symbol class has value() and copy()methods. One can use either lisp.SYMBOL.value()
or lisp.SYMBOL.copy() to access the Emacs Lisp value of a symbol, after con-
version to some Python object, of course. However, if value() would have given an
Emacs Lisp handle, lisp.SYMBOL.copy() has the effect of lisp.SYMBOL.value().copy(),
that is, it returns the value of the symbol as opened as possible.

A symbol may also be used as if it was a Python function, in which case it really
names an Emacs Lisp function that should be applied over the following function ar-
guments. The result of the Emacs Lisp function becomes the value of the call, with all
due conversions of course.

5.3 Dynamic bindings
As Emacs Lisp uses dynamic bindings, it is common that Emacs Lisp programs use let
for temporarily setting new values for some Emacs Lisp variables having global scope.
These variables recover their previous value automatically when the let gets completed,
even if an error occurs which interrupts the normal flow of execution.

Pymacs has a Let class to represent such temporary settings. Suppose for example
that you want to recover the value of lisp.mark() when the transient mark mode
is active on the Emacs Lisp side. One could surely use lisp.mark(True) to force
reading the mark in such cases, but for the sake of illustration, let’s ignore that, and
temporarily deactivate transient mark mode instead. This could be done this way:

try:
let = Let()
let.push(transient_mark_mode=None)
... USER CODE ...

finally:
let.pop()

let.push() accepts any number of keywords arguments. Each keyword name
is interpreted as an Emacs Lisp symbol written the Pymacs way, with underlines.
The value of that Emacs Lisp symbol is saved on the Python side, and the value
of the keyword becomes the new temporary value for this Emacs Lisp symbol. A
later let.pop() restores the previous value for all symbols which were saved to-
gether at the time of the corresponding let.push(). There may be more than one
let.push() call for a single Let instance, they stack within that instance. Each
let.pop() will undo one and only one let.push() from the stack, in the reverse
order or the pushes.

15

When the Let instance disappears, either because the programmer does del let
or let = None, or just because the Python let variable goes out of scope, all re-
maining let.pop() get automatically executed, so the try/finally statement may be
omitted in practice. For this omission to work flawlessly, the programmer should be
careful at not keeping extra references to the Let instance.

The constructor call let = Let() also has an implied initial .push() over all
given arguments, so the explicit let.push() may be omitted as well. In practice,
this sums up and the above code could be reduced to a mere:

let = Let(transient_mark_mode=None)
... USER CODE ...

Be careful at assigning the result of the constructor to some Python variable. Oth-
erwise, the instance would disappear immediately after having been created, restoring
the Emacs Lisp variable much too soon.

Any variable to be bound with Let should have been bound in advance on the
Emacs Lisp side. This restriction usually does no kind of harm. Yet, it will likely be
lifted in some later version of Pymacs.

The Let class has other methods meant for some macros which are common in
Emacs Lisp programming, in the spirit of let bindings. These method names look
like push_* or pop_*, where Emacs Lisp macros are save-*. One has to use
the matching pop_* for undoing the effect of a given push_* rather than a mere
.pop(): the Python code is clearer, this also ensures that things are undone in the
proper order. The same Let instance may use many push_* methods, their effects
nest.

push_excursion() and pop_excursion() save and restore the current
buffer, point and mark. push_match_data() and pop_match_data() save and
restore the state of the last regular expression match. push_restriction() and
pop_restriction() save and restore the current narrowing limits. push_selected_window()
and pop_selected_window() save and restore the fact that a window holds the
cursor. push_window_excursion() and pop_window_excursion() save
and restore the current window configuration in the Emacs display.

As a convenience, let.push() and all other push_* methods return the Let
instance. This helps chaining various push_* right after the instance generation. For
example, one may write:

let = Let().push_excursion()
if True:

... USER CODE ...
del let

The if True: (use if 1: with older Python releases, some people might pre-
fer writing if let: anyway), has the only goal of indenting USER CODE, so the
scope of the let variable is made very explicit. This is purely stylistic, and not at all
necessary. The last del let might be omitted in a few circumstances, for example if
the excursion lasts until the end of the Python function.

5.4 Raw Emacs Lisp expressions
Pymacs offers a device for evaluating a raw Emacs Lisp expression, or a sequence of
such, expressed as a string. One merely uses lisp as a function, like this:

16

lisp("""
...
POSSIBLY-LONG-SEQUENCE-OF-LISP-EXPRESSIONS
...
""")

The Emacs Lisp value of the last or only expression in the sequence becomes the
value of the lisp call, after conversion back to Python.

5.5 User interaction
Emacs functions have the concept of user interaction for completing the specification of
their arguments while being called. This happens only when a function is interactively
called by the user, it does not happen when a function is directly called by another. As
Python does not have a corresponding facility, a bit of trickery was needed to retrofit
that facility on the Python side.

After loading a Python module but prior to creating an Emacs view for this module,
Pymacs decides whether loaded functions will be interactively callable from Emacs, or
not. Whenever a function has an interaction attribute, this attribute holds the Emacs
interaction specification for this function. The specification is either another Python
function or a string. In the former case, that other function is called without arguments
and should, maybe after having consulted the user, return a list of the actual arguments
to be used for the original function. In the latter case, the specification string is used
verbatim as the argument to the (interactive ...) function on the Emacs side.
To get a short reminder about how this string is interpreted on the Emacs side, try C-h
f interactive within Emacs. Here is an example where an empty string is used
to specify that an interactive has no arguments:

from Pymacs import lisp

def hello_world():
"‘Hello world’ from Python."
lisp.insert("Hello from Python!")

hello_world.interaction = ’’

Versions of Python released before the integration of PEP 232 do not allow users
to add attributes to functions, so there is a fall-back mechanism. Let’s presume that a
given function does not have an interaction attribute as explained above. If the Python
module contains an interactions global variable which is a dictionary, if that dictionary
has an entry for the given function with a value other than None, that function is going
to be interactive on the Emacs side. Here is how the preceding example should be
written for an older version of Python, or when portability is at premium:

from Pymacs import lisp
interactions = @{@}

def hello_world():
"‘Hello world’ from Python."
lisp.insert("Hello from Python!")

interactions[hello_world] = ’’

17

One might wonder why we do not merely use lisp.interactive(...) from
within Python. There is some magic in the Emacs Lisp interpreter itself, looking for
that call before the function is actually entered, this explains why (interactive
...) has to appear first in an Emacs Lisp defun. Pymacs could try to scan the already
compiled form of the Python code, seeking for lisp.interactive, but as the
evaluation of lisp.interactive arguments could get arbitrarily complex, it would a real
challenge un-compiling that evaluation into Emacs Lisp.

5.6 Key bindings
An interactive function may be bound to a key sequence.

To translate bindings like C-x w, say, one might have to know a bit more how
Emacs Lisp processes string escapes like \C-x or \M-\C-x in Emacs Lisp, and em-
ulate it within Python strings, since Python does not have such escapes. \C-L, where
L is an upper case letter, produces a character which ordinal is the result of subtracting
0x40 from ordinal of L. \M- has the ordinal one gets by adding 0x80 to the ordinal
of following described character. So people can use self-inserting non-ASCII charac-
ters, \M- is given another representation, which is to replace the addition of 0x80 by
prefixing with ‘ESC’, that is 0x1b.

So \C-x in Emacs is ’x18’ in Python. This is easily found, using an interactive
Python session, by giving it: chr(ord(’X’) - ord(’A’) + 1). An easier way would be using
the kbd function on the Emacs Lisp side, like with lisp.kbd(’C-x w’) or lisp.kbd(’M-
<f2>’).

To bind the F1 key to the helper function in some module:

lisp.global_set_key((lisp.f1,), lisp.module_helper)

(item,) is a Python tuple yielding an Emacs Lisp vector. lisp.f1 translates to
the Emacs Lisp symbol f1. So, Python (lisp.f1,) is Emacs Lisp [f1]. Keys like
[M-f2]might require some more ingenuity, one may write either (lisp[’M-f2’],)
or (lisp.M_f2,) on the Python side.

6 Debugging

6.1 On the communication protocol
Initially, the Pymacs communication protocol was rather simple deep down, merely
using evaluation on arrival on both sides. All the rest was recursion trickery over that
simple idea. But the magic was fragile to interruption requests, so the protocol has
been revisited a bit so each message action could be recognized before evaluation is
attempted. The idea (not fully implemented yet) is to make the protocol part immune
to interruptions, but to allow evaluations themselves to be interrupted.

• As it is more easy to generate than to parse, and also because Emacs
has a Lisp parser and Python has a Python parser, Emacs generates
Python code when preparing a message to the Pymacs helper, and
Python generates Emacs Lisp expressions when preparing a message
for Emacs.

• Messages are exchanged in strictly alternating directions (from Python
to Emacs, from Emacs to Python, etc.), the first message being sent

18

by the Pymacs helper just after it started, identifying the current Py-
macs version.

• Messages in both directions have a similar envelope. Each physical
message has a prefix, the message contents, and a newline. The pre-
fix starts with either < or > to mark the directionality, immediately
followed by the decimal expression of the contents length counted
in characters, immediately followed by a single horizontal tab. The
count excludes the prefix, but includes the newline.

• In each direction, messages are made up of two elements: an action
keyword and a single argument (yet the argument may sometimes
be complex). As a special case, memory cleanup messages, from
Python to Emacs, use four elements: the atom free, a list of slot num-
bers to free, and then the real action and argument. This is because
the cleanup is delayed and piggy-backed over some other message
from Python to Emacs.

• For Emacs originated messages, the action and the argument are sep-
arated by a space. For Python originated messages, the action and the
argument are made into a Lisp list.

• Most actions in the following table are available in both directions,
unless noted. The first three actions start a new level of Pymacs
evaluation, the remaining actions end the current level.

– eval requests the evaluation of its expression argument.
– exec requests the execution of its statement argument (this may

only be received on the Python side).
– expand requests the opening of an Emacs Lisp structure (this

may only be received on the Emacs side).
– return represents the normal reply to a request, the argument

holds the value to be returned (nil in case of exec).
– raise represents the error reply to a request, the argument then

holds a diagnostic string.

6.2 The *Pymacs* buffer
Emacs and Python are two separate processes (well, each may use more than one pro-
cess). Pymacs implements a simple communication protocol between both, and does
whatever needed so the programmers do not have to worry about details. The main de-
bugging tool is the communication buffer between Emacs and Python, which is named
Pymacs. By default, this buffer gets erased before each transaction. To make good
debugging use of it, first set pymacs-trace-transit to either t or to some (KEEP .
LIMIT). As it is sometimes helpful to understand the communication protocol, it is
briefly explained here, using an artificially complex example to do so. Consider:

(pymacs-eval "lisp(’(pymacs-eval \"repr(2L**111)\")’)")
"2596148429267413814265248164610048L"

Here, Emacs asks Python to ask Emacs to ask Python for a simple bignum com-
putation. Note that Emacs does not natively know how to handle big integers, nor has

19

an internal representation for them. This is why I use the repr function, so Python
returns a string representation of the result, instead of the result itself. Here is a trace
for this example. Imagine that Emacs stands on the left and that Python stands on the
right. The < character flags a message going from Python to Emacs, while the > char-
acter flags a message going from Emacs to Python. The number gives the length of
the message, including the end of line. (Acute readers may notice that the first number
is incorrect, as the version number gets replaced in the example while this manual is
being produced.)

<22 (version "0.23")
>43 eval lisp(’(pymacs-eval "repr(2L**111)")’)
<45 (eval (progn (pymacs-eval "repr(2L**111)")))
>19 eval repr(2L**111)
<47 (return "2596148429267413814265248164610048L")
>45 return "2596148429267413814265248164610048L"
<47 (return "2596148429267413814265248164610048L")

Python evaluation is done in the context of the Pymacs.pymacs module, so for
example a mere reply really means Pymacs.pymacs.reply. On the Emacs Lisp
side, there is no concept of module name spaces, so we use the pymacs- prefix as
an attempt to stay clean. Users should ideally refrain from naming their Emacs Lisp
objects with a pymacs- prefix.

reply and pymacs-reply are special functions meant to indicate that an expected
result is finally transmitted. error and pymacs-error are special functions that intro-
duce a string which explains an exception which recently occurred. pymacs-expand
is a special function implementing the copy() methods of Emacs Lisp handles or
symbols. In all other cases, the expression is a request for the other side, that request
stacks until a corresponding reply is received.

Part of the protocol manages memory, and this management generates some extra-
noise in the *Pymacs* buffer. Whenever Emacs passes a structure to Python, an extra
pointer is generated on the Emacs side to inhibit garbage collection by Emacs. Python
garbage collector detects when the received structure is no longer needed on the Python
side, at which time the next communication will tell Emacs to remove the extra pointer.
It works symmetrically as well, that is, whenever Python passes a structure to Emacs,
an extra Python reference is generated to inhibit garbage collection on the Python side.
Emacs garbage collector detects when the received structure is no longer needed on
the Emacs side, after which Python will be told to remove the extra reference. For
efficiency, those allocation-related messages are delayed, merged and batched together
within the next communication having another purpose.

Variable pymacs-trace-transit may be modified for controlling how and when the
Pymacs buffer, or parts thereof, get erased.

6.3 Emacs usual debugging
If cross-calls between Emacs Lisp and Python nest deeply, an error will raise succes-
sive exceptions alternatively on both sides as requests unstack, and the diagnostic gets
transmitted back and forth, slightly growing as we go. So, errors will eventually be
reported by Emacs. I made no kind of effort to transmit the Emacs Lisp back trace on
the Python side, as I do not see a purpose for it: all debugging is done within Emacs
windows anyway.

20

On recent Emacses, the Python back trace gets displayed in the mini-buffer, and
the Emacs Lisp back trace is simultaneously shown in the *Backtrace* window. One
useful thing is to allow to mini-buffer to grow big, so it has more chance to fully contain
the Python back trace, the last lines of which are often especially useful. Here, I use:

(setq resize-mini-windows t
max-mini-window-height .85)

in my .emacs file, so the mini-buffer may use 85% of the screen, and quickly
shrinks when fewer lines are needed. The mini-buffer contents disappear at the next
keystroke, but you can recover the Python back trace by looking at the end of the
Messages buffer. In which case the ffap package in Emacs may be yet another
friend! From the *Messages* buffer, once ffap activated, merely put the cursor on the
file name of a Python module from the back trace, and C-x C-f RET will quickly
open that source for you.

6.4 Auto-reloading on save
I found useful to automatically pymacs-load some Python files whenever they get
saved from Emacs. This can be decided on a per-file or per-directory basis. To get a
particular Python file to be reloaded automatically on save, add the following lines at
the end:

Local Variables:
pymacs-auto-reload: t
End:

Here is an example of automatic reloading on a per-directory basis. The code below
assumes that Python files meant for Pymacs are kept in ~/share/emacs/python:

(defun fp-maybe-pymacs-reload ()
(let ((pymacsdir (expand-file-name "~/share/emacs/python/")))

(when (and (string-equal (file-name-directory buffer-file-name)
pymacsdir)

(string-match "\\.py\\’" buffer-file-name))
(pymacs-load (substring buffer-file-name 0 -3)))))

(add-hook ’after-save-hook ’fp-maybe-pymacs-reload)

6.5 Debugging the Pymacs helper
The Pymacs helper is a Python program which accepts options and arguments. The
available options, which are only meant for debugging, are:

-d FILE Debug the protocol to FILE
-s FILE Trace received signals to FILE

• The -d option saves a copy of the communication protocol in the given file, as
seen from the Pymacs helper. The file should be fairly identical to the contents
of the *Pymacs* buffer within Emacs.

• The -s option monitors most signals received by the Pymacs helper and logs
them in the given file. Each log line merely contains a signal number, possibly
followed by a star if the interruption was allowed in. Besides logging, signals
are usually ignored.

21

The arguments list directories to be added at the beginning of the Python module
search path, and whenever Emacs launches the Pymacs helper, the contents of the
Emacs Lisp pymacs-load-path variable is turned into this argument list.

The Pymacs helper options may be set through the PYMACS_OPTIONS environ-
ment variable. For example, one could execute something like:

export PYMACS_OPTIONS=’-d /tmp/pymacs-debug -s /tmp/pymacs-signals’

in a shell (presuming bash here) and start Emacs from that shell. Then, when
Emacs will launch the Pymacs helper, the above options will be obeyed.

7 About and around Pymacs

7.1 Known limitations
Memory may leak in some theoretical circumstances (I say theoretical, because no
one ever reported this as being an actual problem). As Richard Stallman once put it
(2002-08):

I wonder, though, can this [memory management] technique fully handle
cycles that run between Lisp and Python? Suppose Lisp object A refers to
Python object B, which refers to Lisp object A, and suppose nothing else
refers to either one of them. Will you succeed in recognizing these two
objects as garbage?

7.2 History
I once hungered for a Python-extensible editor, so much so that I pondered the idea
of dropping Emacs for other avenues, but found nothing much convincing. Moreover,
looking at all Lisp extensions I’d made for myself, and considering all those superb
tools written by others, all of which are now part of my computer life, it would have
been a huge undertaking for me to reprogram these all in Python. So, when I began to
see that something like Pymacs was possible, I felt strongly motivated! :-)

Pymacs draws on previous work of Cedric Adjih that enabled the running of Python
as a process separate from Emacs. See http://www.crepuscule.com/pyemacs/, or write
Cedric at mailto:adjih-pam@crepuscule.com. Cedric presented pyemacs to me as a
proof of concept. As I simplified that concept a bit, I dropped the e in pyemacs
:-). Cedric also previously wrote patches for linking Python right into XEmacs, but
abandoned the idea, as he found out that his patches were unmaintainable over the
evolution of both Python and XEmacs.

As Brian McErlean independently and simultaneously wrote a tool similar to this
one, we decided to merge our projects. In an amusing coincidence, he even chose
pymacs as a name. Brian paid good attention to complex details that escaped my
courage, so his help and collaboration have been beneficial. You may reach Brian at
mailto:brianmce@crosswinds.net.

The initial throw at Pymacs has been written on 2001-09-05, and releases in the
0.x series followed in a rapid pace for a few months, and Pymacs became stable. Since
then, it did not need to move much, as bugs are not found often. Yet, in my opinion,
some missing features should be addressed before we dare some 1.0 release.

22

http://www.crepuscule.com/pyemacs/
mailto:adjih-pam@crepuscule.com
mailto:brianmce@crosswinds.net

7.3 Pymacs and me!
Pymacs has been fairly stable since the early versions. I surely used it a great deal,
constantly, magically, in my daily works, to the point of forgetting that was it there all
the time. It was fairly complete, at least for my own needs, and did not move much
anymore.

Some time later, someone begged me to consider Vim, and not only Emacs, for
some tools I was then writing. Looking at Vim more closely, I discovered that it is a
worth editor, with Python nicely integrated, enough for me to switch. In a Web article
(which many enjoyed, as they told me), I detailed my feelings on these matters.

My viewpoint is that Pymacs, maybe after an initial flurry of a bit more than a dozen
releases, soon became stable in its history. Reported bugs or suggestions were minor,
there was not enough new material to warrant other releases. Nevertheless, when I
switched from Emacs to Vim in my day-to-day habits, I felt that Pymacs needed a
more credible maintainer than me. Syver Enstad, who was an enthusiastic user and
competent contributor, was kind enough to accept the duty (2003-10). Some more
bugs and suggestions flowed in since then, but Syver did not elect to make any new
release, and this did not bother me. Syver then became unavailable, to the point I
could not contact him in years. I would loathe to see myself interfering with an official
maintainer, but when I decided to return to some moderate Emacs usage, and because
of the long silence, I considered resuming Pymacs maintenance as well (2007-11).
Then, I dived into it for real (2008-01).

Giovanni Giorgi once (2007-03) wanted to expand on Pymacs and publish it on
his own, and later felt like maintaining it whole (late 2007-12). I rather suggested an
attempt at collaborative maintenance, and this experiment is still going on...

7.4 Vim considerations
Emacs Lisp is deeply soldered into Emacs internals. Vim has its own language, which
people sometimes call Vimscript, similarly tightened into Vim. My feeling is that
Emacs Lisp allows for a more intimate handling of edit buffers and external processes
than Vimscript does, yet this intimacy has a price in complexity, so all totalled, they
may be perceived as comparable for most practical purposes.

Pymacs allows customising Emacs with Python instead of Emacs Lisp, and then
runs Python as a process external to Emacs, with a communication protocol between
both processes. Python may be built into Vim, and then both Python and Vim use a
single process. The same as Pymacs gives access to almost all of Emacs Lisp, Python
within Vim gives access to almost all of Vimscript, but with a much smaller overhead
than Pymacs.

Pymacs is not Emacs Lisp, and Python in Vim is not Vimscript either, tweaks are
needed in both cases for accessing some of the underlying scripting facilities. Pymacs
is rather elegant, Python in Vim is rather clean. Python itself is both elegant and clean,
but one strong point of Python for me is the legibility, which builds deeper roots on the
clean side than on the elegant side. All in all, despite I know how debatable it can be, I
guess I now have a prejudice towards Python in Vim.

I figured out a simple way to have the same Python source usable both within
Pymacs or Vim. However, Emacs is byte oriented, while Vim is line oriented. In a
few Pymacs applications of mine, I internally toggle between line orientation and byte
orientation, keeping both for speed most probably, while I see things would be a bit
simpler (and maybe slower) if I was pushing myself on the line-oriented side. Each

23

http://pinard.progiciels-bpi.ca/opinions/editors.html

of Emacs and Vim have their own logic and elegance, and it is probable that we loose
overall if we try to emulate one with the other.

The idea traversed me to convert all the few Pymacs examples so they work both
for Pymacs and Vim, and through the documentation, publicise how people writing
Python extensions could write them for both editors at once. Yet, while doing so, one
has to stretch either towards Emacs or Vim, and I guess I would favour Vim over Emacs
when the time comes to evaluate efficiency-related choices.

I also thought about writing a Pymacs module for running Python scripts already
written for Vim, by offering a compatibility layer. The complexity of this might be
unbounded, I should study actual Python scripts for Vim before knowing better if this
is thinkable or not.

7.5 Inclusion within Emacs
Gerd Möllman, who was maintaining Emacs at the time of Pymacs birth and devel-
opment, retrofitted (2001-09) the idea of a post-gc-hook from XEmacs, as a way to
facilitate memory management within Pymacs.

Richard Stallman once suggested (2001-10) that Pymacs be distributed within Emacs,
and while discussing the details of this, I underlined small technical difficulties about
Emacs installing the Python parts, and the need of a convention about where to install
Python files meant for Pymacs. As Richard felt, at the time, very overwhelmed with
other duties, no decision was taken and the integration went nowhere.

After Gerd resigned as an Emacs maintainer, someone from the Emacs develop-
ment team wrote again (2002-01) asking information about how to integrate Pymacs.
It was easy for me to write a good and thorough summary, after all these discussions
with Richard. And that’s the end of the story: I never heard of it again. :-)

7.6 Speed issues
Doug Bagley’s shoot out project compares the relative speed of many popular lan-
guages, and this might interest Pymacs users. The first URL points to the original, the
second points to a newer version oriented towards Win32 systems, the third is more
recent but Debian-oriented:

• http://www.bagley.org/~doug/shootout/

• http://dada.perl.it/shootout/index.html

• http://shootout.alioth.debian.org/

I’ve not heard of any Python to Lisp compiler. Lisp may be slow or fast depending
on how one uses it, and how much one uses declarations. Some Lisp systems have
really excellent compilers, that give very fast code when properly hinted.

Python itself may be slow or fast, once again depending on how one uses it. With
the proper bend, one can develop the habit of writing Python which shows honest speed.
And there is always Pyrex, which is Python complemented with explicit declarations
(a bit like some Lisp implementations), and which can buy a lot of speed.

This is quite likely that one can have fast programs while using Python, or a mix
of Python and Pyrex (or even Psyco sometimes), that is, within Python paradigms,
without feeling any need of resorting to Lisp.

If Python looks like being slow while being used with Emacs, the problem probably
lies in Emacs-Python communication which Pymacs implements. One has to learn how

24

http://www.bagley.org/~doug/shootout/
http://dada.perl.it/shootout/index.html
http://shootout.alioth.debian.org/

to do the proper compromises for having less communications. (In that regard, Vim
and Python are really linked together, so Python in Vim is likely faster than Pymacs for
someone who does not pay special attention to such matters.)

Ali Gholami Rudi also writes (2008-02):

Well, there seems to be lots of overhead when transferring large strings.
Transferring them requires:

1. escaping characters in the strings
2. putting them in *Pymacs* buffer
3. sending the region to Python process
4. evaluating the Python string in Python-side (involves

compiling)

In my experiments, transferring a ~5k-line file takes more than a second on
a relatively new computer (data from rope-dev). Improving that probably
requires a new protocol that does not use Python eval and has an optional
debug buffer. Probably few applications need to transfer large strings to
Python but if they do, it is quite slow.

All in all, speed may sometimes become a real issue for Pymacs. I once wrote
within http://pinard.progiciels-bpi.ca/opinions/editors.html :

While Pymacs is elegant in my opinion, one cannot effectively use Pymacs
(the Python part) without knowing at least the specification of many Lisp
functions, and I found that it requires some doing for a Pymacs developer
to decouple the Emacs interaction part from the purer algorithmic part in
applications. Moreover, if you do not consider speed issues, they bite you.

7.7 The future of Pymacs
Some people suggested important internal Pymacs changes. In my opinion, new bigger
features are better implemented in a careful way, first as examples or contributions, and
moved closer to internal integration depending on how users use or appreciate them.
For now, Pymacs should concentrate at doing its own humble job well, and resist bloat.

Before Pymacs closes to some version 1.0, some specifications should be revisited,
user suggestions pondered, porting matters documented. The test suite should grow
up, we should collect more examples. Pymacs should aim seamless integration with
.el files and with transparent autoload (my little tries were not so successful). On the
Python side, Pymacs might fake primitives like getindex and putindex, better support
iterators and some newer Python features, and at least consider Python 3.0.

Pymacs is not much geared towards Python threads. It is not clear yet if it would
be reasonably tractable to better support them.

25

http://pinard.progiciels-bpi.ca/opinions/editors.html

	Contents
	1 Introduction
	1.1 What is Pymacs?
	1.2 Documentation and examples
	1.3 Other resources

	2 Installation
	2.1 Select Emacs and Python
	2.2 Check if Pymacs would work
	2.3 Install the Pymacs proper
	2.4 Prepare your .emacs file
	2.5 Porting and caveats

	3 Emacs Lisp structures and Python objects
	3.1 Conversions
	3.2 Simple objects
	3.3 Sequences
	3.4 Opaque objects
	3.4.1 Emacs Lisp handles
	3.4.2 Python handles

	4 Usage on the Emacs Lisp side
	4.1 pymacs-exec
	4.2 pymacs-eval
	4.3 pymacs-call
	4.4 pymacs-apply
	4.5 pymacs-load
	4.6 Expected usage
	4.7 Special Emacs Lisp variables
	4.7.1 pymacs-load-path
	4.7.2 pymacs-trace-transit
	4.7.3 pymacs-forget-mutability
	4.7.4 pymacs-mutable-strings
	4.7.5 Timeout variables
	4.7.6 pymacs-dreadful-zombies

	5 Usage on the Python side
	5.1 Python setup
	5.2 Emacs Lisp symbols
	5.3 Dynamic bindings
	5.4 Raw Emacs Lisp expressions
	5.5 User interaction
	5.6 Key bindings

	6 Debugging
	6.1 On the communication protocol
	6.2 The *Pymacs* buffer
	6.3 Emacs usual debugging
	6.4 Auto-reloading on save
	6.5 Debugging the Pymacs helper

	7 About and around Pymacs
	7.1 Known limitations
	7.2 History
	7.3 Pymacs and me!
	7.4 Vim considerations
	7.5 Inclusion within Emacs
	7.6 Speed issues
	7.7 The future of Pymacs

