FflasFfpack
Enumerations | Functions
FFLAS Namespace Reference

FFLAS: Finite Field Linear Algebra Subroutines. More...

Enumerations

enum  FFLAS_TRANSPOSE { FflasNoTrans = 111, FflasTrans = 112 }
 Is matrix transposed ? More...
enum  FFLAS_UPLO { FflasUpper = 121, FflasLower = 122 }
 Is triangular matrix's shape upper ? More...
enum  FFLAS_DIAG { FflasNonUnit = 131, FflasUnit = 132 }
 Is Matrix diagonal implicit ? More...
enum  FFLAS_SIDE { FflasLeft = 141, FflasRight = 142 }
 On what side ? More...
enum  FFLAS_BASE { FflasDouble = 151, FflasFloat = 152, FflasGeneric = 153 }
 FFLAS_BASE determines the type of the element representation for Matrix Mult kernel. More...

Functions

template<class Field >
void fcopy (const Field &F, const size_t N, typename Field::Element *X, const size_t incX, const typename Field::Element *Y, const size_t incY)
 fcopy : $x \gets y $.
template<class Field >
void fzero (const Field &F, const size_t n, typename Field::Element *X, const size_t incX)
 fzero : $A \gets 0 $.

Detailed Description

FFLAS: Finite Field Linear Algebra Subroutines.


Enumeration Type Documentation

Is matrix transposed ?

Enumerator:
FflasNoTrans 

Matrix is not transposed.

FflasTrans 

Matrix is transposed.

enum FFLAS_UPLO

Is triangular matrix's shape upper ?

Enumerator:
FflasUpper 

Triangular matrix is Upper triangular (if $i>j$ then $T_{i,j} = 0$)

FflasLower 

Triangular matrix is Lower triangular (if $i<j$ then $T_{i,j} = 0$)

enum FFLAS_DIAG

Is Matrix diagonal implicit ?

Enumerator:
FflasNonUnit 

Triangular matrix has an explicit general diagonal.

FflasUnit 

Triangular matrix has an implicit unit diagonal ( $T_{i,i} = 1$)

enum FFLAS_SIDE

On what side ?

Enumerator:
FflasLeft 

Operator applied on the left.

FflasRight 

Operator applied on the rigth.

enum FFLAS_BASE

FFLAS_BASE determines the type of the element representation for Matrix Mult kernel.

Enumerator:
FflasDouble 

to use the double precision BLAS

FflasFloat 

to use the single precison BLAS

FflasGeneric 

for any other domain, that can not be converted to floating point integers


Function Documentation

void fcopy ( const Field &  F,
const size_t  N,
typename Field::Element *  X,
const size_t  incX,
const typename Field::Element *  Y,
const size_t  incY 
) [inline]

fcopy : $x \gets y $.

Parameters:
Ffield
Nsize of the vectors
Xvector in F
incXstride of X
Yvector in F
incYstride of Y
void FFLAS::fzero ( const Field &  F,
const size_t  n,
typename Field::Element *  X,
const size_t  incX 
)

fzero : $A \gets 0 $.

Parameters:
Ffield
nnumber of elements to zero
Xvector in F
incXstride of X