PolyBoRi
groebner_alg.h
Go to the documentation of this file.
00001 /*
00002  *  groebner_alg.h
00003  *  PolyBoRi
00004  *
00005  *  Created by Michael Brickenstein on 20.04.06.
00006  *  Copyright 2006 The PolyBoRi Team. See LICENSE file.
00007  *
00008  */
00009 
00010 #ifndef PBORI_GB_ALG_H
00011 #define PBORI_GB_ALG_H
00012 
00013 
00014 #include "PairStatusSet.h"
00015 #include "PairManager.h"
00016 #include "MonomialHasher.h"
00017 #include "ReductionStrategy.h"
00018 #include "GroebnerStrategy.h"
00019 #include "LessWeightedLengthInStrat.h"
00020 #include "LargerDegreeComparer.h"
00021 #include "LessWeightedLengthInStratModified.h"
00022 #include "LessEcartThenLessWeightedLengthInStrat.h"
00023 #include "LessUsedTailVariablesThenLessWeightedLengthInStrat.h"
00024 #include "LessCombinedManySizesInStrat.h"
00025 
00026 #include <polybori.h>
00027 #include "groebner_defs.h"
00028 #include "pairs.h"
00029 #include <boost/dynamic_bitset.hpp>
00030 #include <vector>
00031 #include <string>
00032 #include <algorithm>
00033 #include <utility>
00034 #include <iostream>
00035 #include "cache_manager.h"
00036 #include "polynomial_properties.h"
00037 
00038 
00039 BEGIN_NAMESPACE_PBORIGB
00040 
00041 #define LL_RED_FOR_GROEBNER 1
00042 Polynomial map_every_x_to_x_plus_one(Polynomial p);
00043 
00044 MonomialSet mod_var_set(const MonomialSet& as, const MonomialSet& vs);
00045 void groebner(GroebnerStrategy& strat);
00046 Polynomial reduce_by_binom(const Polynomial& p, const Polynomial& binom);
00047 Polynomial reduce_by_monom(const Polynomial& p, const Monomial& m);
00048 Polynomial reduce_complete(const Polynomial& p, const Polynomial& reductor);
00049 
00050 
00051 
00052 
00053 
00054 Polynomial mult_fast_sim(const std::vector<Polynomial>& vec,
00055                          const BoolePolyRing& ring);
00056 std::vector<Polynomial> full_implication_gb(const Polynomial & p,CacheManager& cache,GroebnerStrategy& strat);
00057 Polynomial reduce_complete(const Polynomial &p, const PolyEntry& reductor, wlen_type &len);
00058 MonomialSet recursively_insert(MonomialSet::navigator p, idx_type idx, MonomialSet mset);
00059 
00060 
00061 
00062 
00063 inline Polynomial
00064 cancel_monomial_in_tail(const Polynomial& p, const Monomial & m){
00065   Monomial lm=p.lead();
00066   
00067   Polynomial res=reduce_by_monom(p,m);
00068   if ((!res.isZero()) && (res.lead()==lm)){
00069     return res;
00070   } else {
00071     return res+lm;
00072   }
00073   /*Polynomial tail=p-lm;
00074   Monomial used_var=tail.usedVariables();
00075   
00076   if (used_var.reducibleBy(m)){
00077     tail=Polynomial(BooleSet(tail).diff(m.multiples(used_var)));
00078     
00079   }
00080   return tail+lm;*/
00081 }
00082 
00083 inline Polynomial
00084 reduce_by_binom(const Polynomial& p, const Polynomial& binom){
00085   PBORI_ASSERT(binom.length()==2);
00086   
00087   Monomial bin_lead=binom.lead();
00088   Monomial bin_last=*(++(binom.orderedBegin()));
00089   
00090   MonomialSet dividing_terms=((MonomialSet)p).multiplesOf(bin_lead);
00091   
00092   Monomial b_p_gcd=bin_last.GCD(bin_lead);
00093   
00094   Monomial divide_by=bin_lead/b_p_gcd;
00095   Monomial multiply_by=bin_last/b_p_gcd;
00096   
00097   Polynomial rewritten=((Polynomial) dividing_terms)/divide_by;
00098   return p-dividing_terms+rewritten*multiply_by;
00099   
00100 }
00101 
00102 
00103 inline Polynomial
00104 reduce_by_binom_in_tail (const Polynomial& p, const Polynomial& binom){
00105   PBORI_ASSERT(binom.length()==2);
00106   Monomial lm=p.lead();
00107   return lm+reduce_by_binom(p-lm,binom);
00108 }
00109 
00110 
00111 END_NAMESPACE_PBORIGB
00112 
00113 #endif
00114