University of Texas at San Antonio, Department of Computer Science,
Technical Report CS-TR-2008-002

ATLAS Installation Guide *

R. Clint Whaley f

June 6, 2008

Abstract

This note provides a brief overview of ATLAS, and describes how to install it.
It includes extensive discussion of common configure options, and describes why they
might be employed on various platforms. In addition to discussing how to configure and
build the ATLAS package, this note also describes how an installer can confirm that
the resulting libraries are producing correct answers and running efficiently. Extensive
examples are provided, including a full-length example showing the installation of both
ATLAS and LAPACK on an example architecture.

*This work was supported in part by National Science Foundation CRI grant SNS-0551504
Trwhaley@users .sourceforge.net, www.cs.utsa.edu/~whaley

UTSA/CS Technical Report CS-TR-2008-002 CONTENTS

Contents

1 Introduction

2 Overview of an ATLAS Installation

2.1
2.2
2.3

Downloading the software and checking for known errors
Turn off CPU throttling when installing ATLAS
Basic Steps of an ATLAS install o

3 The ATLAS configure step

3.1

3.2

3.3
34
3.5

Building a full LAPACK library using ATLAS and netlib’s LAPACK
3.1.1 Obtaining and installing netlib’s LAPACK
3.1.2 Discovering ATLAS’s preferred compiler and flags before installing
3.1.3 Adding a full LAPACK library to an already-installed ATLAS
Changing the compilers and flags that ATLAS uses for the build
3.2.1 Changing ATLAS interface compilers to match your usage
3.2.2 Compiling ATLAS with gcc 4.2 when your OS uses an incompatible gcc . . .
3.2.3 Rough guide to overriding ATLAS’s compiler choice/changing flags
3.2.4 Installing ATLAS when you don’t have access to a FORTRAN compiler . . .
Building dynamic/shared libraries L.
Changing the way ATLAS does timings
Various other flags
3.5.1 Changing pointer bitwidth (64 or 32 bits)
3.5.2 Changing configure verbosity
3.5.3 Controlling where ATLAS will move files to during install step
3.5.4 Telling ATLAS to ignore architectural defaults

4 The ATLAS build step

5 The ATLAS check step

6 The ATLAS time step

6.1
6.2

Contrasting non-default install performance
Discussion of timing targets

7 The ATLAS install step

8 Example: Installing ATLAS with full LAPACK on Linux/AMD64

8.1
8.2
8.3

Figuring out configure flags oo
Creating source directories and building LAPACK
Creating BLDdir and installing ATLAS

9 Special Instructions for some platforms

9.1
9.2
9.3

Special Instructions for Windows users oL
Special instructions for AIX oo
Special instructions for SunOS

10 Troubleshooting

—

W N =

© O 00~ O U A

[l T o T o S ey
WD -=OO

13

13

15
17
19

19

19
20
20
22

26
26
27
27

27

UTSA/CS Technical Report CS-TR-2008-002 Whaley 1

1 Introduction

This note provides a quick reference to installing and using ATLAS [17, 14, 15, 16, 20, 19].
ATLAS (Automatically Tuned Linear Algebra Software), is an empirical tuning system that
produces a BLAS [5, 6, 7, 11, 12] (Basic Linear Algebra Subprograms) library which has
been specifically optimized for the platform you install ATLAS on. The BLAS are a set
of building block routines which, when tuned well, allow more complicated Linear Algebra
operations such as solving linear equations or finding eigenvalues to run extremely efficiently
(this is important, since these operations are computationally intensive). For a list of the
BLAS routines, see the FORTRAN77 and C API quick references guides available in the
ATLAS tarfile at:

ATLAS/doc/cblasqref . pdf
ATLAS/doc/f77blasqref . pdf

ATLAS also natively provides a few routines from the LAPACK [2] (Linear Algebra
PACKage). LAPACK is an extremely comprehensive FORTRANT77 package for solving the
most commonly occurring problems in numerical linear algebra. LAPACK is available as an
open source FORTRANTY7 package from netlib [18], and its size and complexity effectively
rule out the idea of ATLAS providing a full implementation. Therefore, we add support for
particular LAPACK routines only when we believe that the potential performance win we
can offer make the extra development and maintenance costs worthwhile. Presently, ATLAS
provides roughly 40 routines, all of which derive from our improved LU and Cholesky
factorizations, which use recursive blocking. The standard LAPACK routines use statically
blocked routines, which typically run slower than recursively blocked for all problem sizes.
ATLAS’s LU and Cholesky factorizations are based on the work of [13, 9, 10, 1, 8].

In addition to providing the standard FORTRANTY7 interface to LAPACK, ATLAS also
provides its own C interface, modeled after the official C interface to the BLAS [4, 3],
which includes support for row-major storage in addition to the standard column-major
implementations. Note that there is no official C interface to LAPACK, and so there is no
general C API that allows users to easily substitute one C-interface LAPACK for another, as
there is when one uses the standard FORTRANT77 API. For a list of the LAPACK routines
that ATLAS natively supplies, see the FORTRAN77 and C API quick references guide
available in the ATLAS tarfile at:

ATLAS/doc/lapackqref . pdf

Note that although ATLAS provides only a handful of LAPACK routines, it is designed
so that it can easily be combined with netlib LAPACK in order to provide the complete
library. See Section 3.1 for details.

2 Overview of an ATLAS Installation

2.1 Downloading the software and checking for known errors

The main ATLAS homepage is at:
http://math-atlas.sourceforge.net/

UTSA/CS Technical Report CS-TR-2008-002 Whaley 2

The software link off of this page allows for downloading the tarfile. The explicit down-
load link is:

https://sourceforge.net/project/showfiles.php?group_id=23725

Once you have obtained the tarfile, you untar it in the directory where you want to keep
the ATLAS source directory. The tarfile will create a subdirectory called ATLAS, which you
may want to rename to make less generic. For instance, assuming I have saved the tarfile
to /home/whaley/dload, and want to put the source in /home/whaley/numerics, I could
create ATLAS’s source directory (SRCdir) with the following commands:

cd ~/numerics
bunzip2 -c “/dload/atlas3.8.0.tar.bz2 | tar xfm -
mv ATLAS ATLAS3.8.0

Before doing anything else, scope the ATLAS errata file for known errors/problems that
you should fix/be aware of before installation:

http://math-atlas.sourceforge.net/errata.html

This file contains not only all bugs found, but also all kinds of platform-specific instal-
lation and tuning help.

2.2 Turn off CPU throttling when installing ATLAS

Most OSes (including Linux) now turn on CPU throttling for power management

even if you are using a desktop machine. CPU throttling makes pretty much all timings
completely random, and so any ATLAS install will be junk. Therefore, before installing
ATLAS, turn off CPU throttling. For most PCs, you can switch it off in the BIOS (eg., on
my Athlon-64 machine, I can say "No” to ”Cool and Quiet” under ”Power Management”).
Most OSes also provide a way to switch off CPU throttling, but that varies from OS to OS.
Under Fedora, at any rate, the following command seemed to work:

/usr/bin/cpufreq-selector -g performance

On my Core2Duo, cpufreg-selector only changes the parameters of the first CPU, re-
gardless of which cpu you specify. I suspect this is a bug, because on earlier systems, the
remaining CPUs were controlled via a logical link to /sys/devices/system/cpu/cpu0/. In
this case, the only way I found to force the second processor to also run at its peak frequency
was to issue the following as root after setting CPUO to performance:

cp /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor \
/sys/devices/system/cpu/cpul/cpufreq/scaling_governor

Under MacOS or Windows, you may be able to change this under the power settings.

ATLAS config tries to detect if CPU throttling is enabled, but it may not always detect
it, and sometimes may detect it after you have disabled it. In the latter case, to force the
configure to continue regardless of the results of the CPU throttling probe, pass this flag
to configure:

-Si cputhrchk O

UTSA/CS Technical Report CS-TR-2008-002 Whaley 3

2.3 Basic Steps of an ATLAS install

An ATLAS install is performed in 5 steps, only the first two of which are mandatory. This
install process is very similar to other free software installs, particularly gnu, though the
fact that ATLAS does an extremely complex empirical tuning step can make the build step
particularly long running. There are two directories that we will refer to constantly in this
note, which indicate both the ATLAS source and build directories:

SRCdir : This handle should be replaced by the path to your ATLAS source directory (eg,
/home/whaley/ATLAS3.8.0).

BLDdir : This handle should be replaced by the path to your ATLAS build directory (eg,
/home/whaley/ATLAS3.8.0/Linux_P4E64SSE3).

Note that these two directories cannot be the same (i.e. you cannot build the libraries
directly in the source directory). The examples in this note show the BLDdir being a
subdirectory of the SRCdir, but this is not required (in fact, any directory to which the
installer has read/write permission other than SRCdir can be used).

The ATLAS install steps are:

1. configure (§3): Tell the ATLAS build harness where your SRCdir and BLDdir direc-
tories are, and allow ATLAS to probe the platform to create ATLAS’s Make.inc and
BLDdir directory tree.

2. build (§4): Tune ATLAS for your platform, and build the libraries.
3. check! (§5): Run sanity tests to ensure your libraries are producing correct answers.

4. time! (§6): Run basic timing on various ATLAS kernels in order to make sure the
tuning done in the build step has resulted in efficient implementations.

5. install! (§7): Copy ATLAS's libraries from the BLDdir to some standard location.

It is extremely important that you read Section 3 in particular, as most users will want
to throw at least one flag during the configure step. In particular, most installers will want
to set whether to build 32 or 64-bit libraries (Section 3.5.1), and fine-tune the timer used,
as discussed in Section 3.4. However, for the impatient, here is the way a typical install
might look (see §3 for an explanation of the configure flags, since they will not work on
all systems); note that the characters after the # character are comments, and not meant
to be typed in:

bunzip2 -c atlas3.8.0.tar.bz2 | tar xfm - # create SRCdir

mv ATLAS ATLAS3.8.0 # get unique dir name

cd ATLAS3.8.0 # enter SRCdir

mkdir Linux_C2D64SSE3 # create BLDdir

cd Linux_C2D64SSE3 # enter BLDdir

../configure -b 64 -D c -DPentiumCPS=2400 --prefix=/home/whaley/lib/atlas
make build # tune & build 1lib

!Optional step

UTSA/CS Technical Report CS-TR-2008-002 Whaley 4

make check # sanity check correct answer
make time # check if 1lib is fast
make install # copy libs to install dir

3 The ATLAS configure step

In this step, ATLAS builds all the subdirectories of the BLDdir, and creates the make include
file used in all ATLAS’s Makefiles (Make.inc). In order to do this successfully, you inform
ATLAS where your SRCdir and BLDdir are located, and pass flags which tell configure
what type of install you want to do. The basic way to do a configure step is:

cd BLDdir ; SRCdir/configure [flags]

A complete list of flags is beyond the scope of this paper, but you can get a list of them
by passing —-help to configure. In this note, we will discuss some of the more important
flags only. ATLAS takes two types of flags: flags that are consumed by the initial configure
script itself begin with --, and flags that are passed by configure to a later config step
begin with only a single -.

We first discuss flags and steps for building a full netlib library using netlib’s LA-
PACK (§3.1), building a shared library (§3.3), changing the compilers (§3.2), and a flag (§3.2.4)
to indicate that you have no FORTRAN compiler (and thus don’t need any FORTRAN
APIs), and changing the way ATLAS does timings (§3.4). Finally, we consider a few miscel-
laneous flags (§3.5), including the flag telling ATLAS whether the resulting libraries should
assume a 64 or 32 bit address space (§3.5.1).

3.1 Building a full LAPACK library using ATLAS and netlib’s LAPACK

ATLAS natively provides only a relative handful of the routines which comprise LAPACK.
However, ATLAS is designed so that its routines can easily be added to Netlib’s standard
LAPACK in order to get a full LAPACK library. Note that there is no standard C API
to LAPACK, so this will get you only the FORTRAN API. As previously mentioned, AT-
LAS provides its own C/F77 API only for those LAPACK routines it natively provides.
Therefore, C users wishing to call an LAPACK routine not natively provided by ATLAS
will need to build the full LAPACK library as outlined in this section, and then call the
FORTRAN API. Note that we are currently working on an add-on package that provides
a uniform C API for any FORTRANT77 API LAPACK, but this work may not be available
for some time (or indeed, ever).

Here are the steps to get a full FORTRAN77 API LAPACK which uses ATLAS’s im-
proved routines when possible, and the standard netlib routines when not:

1. Download and install netlib’s LAPACK (see §3.1.1 for help with this). Assume this is
installed in NLAPACKdir (eg., my NLAPACKdir might be /home/whaley/numerical/lapack-3.1.1).

2. During configure of ATLAS, pass configure the flag so that it will add your previously
install netlib LAPACK to its own LAPACK routines by passing the following flags to
your ATLAS configure line:

--with-netlib-lapack=NLAPACKdir/<your lapack library name>

UTSA/CS Technical Report CS-TR-2008-002 Whaley 5

(eg., ——with-netlib-lapack=/home/whaley/numerical/lapack-3.1.1/lapack linux.a).

3. Do rest of ATLAS install as normal, full FORTRAN77 LAPACK API will be available
in BLDdir/lib/liblapack.a.

These directions allow you to produce a full LAPACK when doing an ATLAS install.
Section 3.1.3 describes how to easily add netlib’s LAPACK to an already existing ATLAS
build.

3.1.1 Obtaining and installing netlib’s LAPACK

Note that these directions are extremely crude, and work with LAPACK 3.1.1 on the ma-
chines I've used it on. For more standard information on LAPACK, please scope the fol-
lowing URLs:

e http://www.netlib.org/lapack/

e http://www.netlib.org/lapack/lawn81/index.html
http://www.netlib.org/lapack/lawn4l/index.html
e http://www.netlib.org/lapack/release_notes.html
e http://www.netlib.org/lapack/lug/index.html

Here are the rough steps necessary to install netlib LAPACK for ATLAS:

1. Download the LAPACK source tarfile. You can download the LAPACK reference
implementation from www.netlib.org/lapack/. As of this writing, the newest LA-
PACK tarfile was www.netlib.org/lapack/lapack-3.1.1.tgz.

2. Create the source directory, NLAPACKdir. Go to the directory where you want to install
LAPACK, and untar the downloaded file (eg., gunzip -c¢ /dload/lapack-3.1.1.tgz
| tar xvf -). This currently creates a directory called lapack-3.1.1 in your present
directory.

3. cd lapack-3.1.1

4. Create a make.inc for LAPACK’s makefiles. You need to take an example make. inc,
and edit it as appropriate for your machine. Copy the make.inc example file that is
closest to your platform to make.inc (eg., cp INSTALL/make.inc.LINUX make.inc).
The make macros that I usually have to pay attention to are the following:

(a) FORTRAN: set to your FORTRANT77 compiler
(b) OPTS : flags for the FORTRAN compiler

(c) NOOPTS : same as above, but without optimization (used to compile testers which
may generate spurious errors if the compiler attempts to optimize them). Note
that some routines compiled with this flag are put in the library, so flags such as
-fPIC that modify the type of object must be included here.

(d) LOADER: your linker, can usually be set to $ (FORTRAN).
(e) LOADOPTS : linker flags. Can usually be set to $(0PTS)

(f) TIMER : uncomment the line that matches your compiler, and comment out the
default line (if different).

UTSA/CS Technical Report CS-TR-2008-002 Whaley 6

Note that the compiler and flags suggested by the LAPACK example make.inc’s are
out of date, and will sometimes cause errors if used to compile the library. Even when
they don’t, they will often cause errors when mixed with ATLAS, since ATLAS uses
different/more modern compiler or uses certain flags (changing the compiler or flags
can both cause interoperability problems on modern platforms). ATLAS’s flags are
kept better up to date, and chosen to minimize compiler errors while maintaining
decent performance, so it is highly recommended that you set these flags to match
those given by ATLAS. See Section 3.1.2 for details on how to figure out what flags
ATLAS is going to use before doing an install. Essentially, you want to set LAPACK’s
FORTRAN to the contents of ATLAS’s F77 definition, and LAPACK 0OPTS to the con-
tents of ATLAS’s F77FLAGS. Then you’ll remove the optimization flags from the OPTS
definition to fill in NOOPTS, etc.

5. Build the netlib LAPACK library. With your corrected make.inc in place, issue make
1ib. This will eventually create a library with a name like lapack_<plat>.a (eg.,
lapack_linux.a), as called for by your LAPACKLIB macro.

You are now ready to install ATLAS, and point to the above created library with the
--with-netlib-lapack flag to ATLAS’s configure.

3.1.2 Discovering ATLAS’s preferred compiler and flags before installing

In order to minimize compiler/flag interoperability problems, you want to build LAPACK
with the same flags that you use to compile ATLAS’s FORTRAN API routines with. This
may present a chicken-and-egg problem, since you want to install LAPACK before installing
ATLAS. In order to figure out the best flags, I recommend you do a bogus configure step of
ATLAS in a temporary directory, where you pass all the configure flags you plan to use (see
Section 3 configure flag for details), but without specifying the -—with-netlib-lapack flag,
and view the generated Make.inc. You can then set make macros in LAPACK’s make. inc
based on ATLAS’s Make.inc macro settings: set LAPACK’s FORTRAN to the contents of
ATLAS’s F77 definition, and LAPACK’s OPTS to the contents of ATLAS’s F77FLAGS. Then
you’ll remove the optimization flags from the OPTS flags to create NOOPTS. After this, you
can delete the entire bogus BLDdir that you generated with this configure step. For more
information on this, see the example of doing a full ATLAS install given in Section 8, and
the example of installing netlib LAPACK in Section 8.2.

3.1.3 Adding a full LAPACK library to an already-installed ATLAS

You can easily do this by hand once you have installed netlib LAPACK as already discussed.
In your BLDdir/1lib directory, issue the following commands:

mkdir tmp

cd tmp

ar x ../liblapack.a

cp <your LAPACK path & 1lib> ../liblapack.a
ar r ../liblapack.a *.o0

cd ..

rm -rf tmp

UTSA/CS Technical Report CS-TR-2008-002 Whaley 7

3.2 Changing the compilers and flags that ATLAS uses for the build

ATLAS defines eight different compilers and associated flag macros in its Make.inc which
are used to compile various files during the install process. ATLAS’s configure provides
flags for changing both the compiler and flags for each of these macros. In the following
list, the macro name is given first, and the configure flag abbreviation is in parentheses:

1. XCC (xc): C compiler used to compile ATLAS’s build harness routines (these never
appear in any user-callable library)

2. GOODGCC (gc): gee with any required architectural flags (eg. -m64), which will be used
to assemble cpp-enabled assembly and to compile certain multiple implementation
routines that specifically request gcc

3. F77 (if): FORTRAN compiler used to compile ATLAS’s FORTRANT77 API interface

routines.
4. ICC (ic): C compiler used to compile ATLAS’s C API interface routines.

5. DMC (dm): C compiler used to compile ATLAS’s generated double precision (real and
complex) matmul kernels

6. SMC (sm): C compiler used to compile ATLAS’s generated single precision (real and
complex) matmul kernels

7. DKC (dk): C compiler used to compile all other double precision routines (mainly used
for other kernels, thus the K)

8. SKC (sk): C compiler used to compile all other single precision routines (mainly used
for other kernels, thus the K)

It is almost never a good idea to change DMC or SMC, and it is only very rarely a good
idea to change DKC or SKC. For ATLAS 3.8.0, all architectural defaults are set using gcc
4.2 only (the one exception is MIPS/IRIX, where SGI’s compiler is used). In most cases,
switching these compilers will get you worse performance and accuracy, even when you are
absolutely sure it is a better compiler and flag combination! In particular we tried the Intel
compiler icc (called icl on Windows) on Intel x86 platforms, and overall performance was
lower than gcc. Even worse, from the documentation icc does not seem to have any firm
IEEE floating point compliance unless you want to run so slow that you could compute it
by hand faster. This means that whenever icc achieves reasonable performance, I have no
idea if the error will be bounded or not. I could not obtain access to icc on the Itaniums,
where icc has historically been much faster than gcc, but I note that the performance of
gcc4. 2 is much better than gce3 for most routines, so gcc may be the best compiler there
now as well.

There is almost never a need to change XCC, since it doesn’t affect the output libraries
in any way, and we have seen that changing the kernel compilers is a bad idea. However,
what if you yourself use a non-gnu compiler, like Intel’s icc or ifort, then what you need
to do is tell ATLAS to compile its interface routines with your compilers, which is discussed
in Section 3.2.1. Another common problem is that your OS has been built with an older
gcc whose libraries are incompatible with gcc 4.2. In this case, creating an executable

UTSA/CS Technical Report CS-TR-2008-002 Whaley 8

with gcc4.2 can cause problems, and so what you want to do is keep gcc3 as you default
compiler (compiling ATLAS interface routines with it, as well as using it for all linking)
but compile the ATLAS kernel routines with gcc4. This case is discussed in Section 3.2.2.
For those who insist on monkeying with other compilers, Section 3.2.3 gives some guidance.
Finally installing ATLAS without a FORTRAN compiler is discussed in Section 3.2.4.

3.2.1 Changing ATLAS interface compilers to match your usage

As mentioned, ATLAS typically gets its best performance when compiled with gcc using
the flags that ATLAS automatically picks for your platform (this assumes you are installing
on a system that ATLAS provides architectural defaults for). However, you can vary the
interface (API) compilers without affecting ATLAS’s performance. Since most compilers
are interoperable with gcc this is what we recommend you do if you are using a non-default
compiler. Note that almost all compilers can interoperate with gcc, though you may have
to throw some special flags (eg., /iface:cref for MSVC++).
The configure flags to override the C interface compiler and flags are:

-C ic <C compiler> -F ic ’<compiler flags>’

The configure flags to override the FORTRAN interface compiler and flags are:
-C if <FORTRAN compiler> -F if ’<compiler flags>’

A few example will help here. If T wanted to use Intel’s FORTRAN and C compilers
under windows on a P4, I could issue:

-C if ifort -F if ’-02 -fltconsistency -nologo’ \

-C ic icl -F ic ’-QxN -03 -Qprec -fp:extended -fp:except -nologo -0y’

On the same system, if I wanted to use Intel for FORTRAN and MSVC++ for C:
-C if ifort -F if ’-02 -fltconsistency -nologo’ \
-C ic icl -F ic ’-0y -0x -arch:SSE2 -nologo’

For Windows, we can note a couple of things. First, while these flags are straight from
the Windows compiler documentation, we have replaced the Windows ¢/’ flag character with
the Unix ‘-’ flag character. This is because ATLAS doesn’t call native Windows compilers
directly, but rather calls a wrapper routine that makes these compilers work with make like
a standard Unix compiler. The second thing to notice is that we don’t have to say to use
the /iface:cref flag, because this same wrapper always throws this flag (ATLAS does not
work with the other rather bizarre naming strategies).

For a non-Windows example, assume you use the Sun Workshop compilers available
under Solaris. You can instruct configure to use them for building the APIs rather than
the gnu compilers with something like:

-C if £77 -F if ’-dalign -native -x05° \

-C ic cc -F ic ’-dalign -fsingle -x05 -native’

UTSA/CS Technical Report CS-TR-2008-002 Whaley 9

3.2.2 Compiling ATLAS with gcc 4.2 when your OS uses an incompatible gcc

As previously mentioned, gcc4.2 is what the architectural defaults are built for, and pre-
vious versions are likely to hurt your performance. For systems with gcc4.1 (the worst-
performing gcc for x86 machines), you can usually just install gcc4.2, and change your
path so that gcc4.2 is your default compiler. However, between major releases the gcc
system libraries change too much for this to work right. Therefore, if your OS was built
with gcc3, for example, what will often happen is that executables built with gcc4 will not
be able to run, unless you fiddle with your LD_LIBRARY_PATH so that the gcc4 libraries are
found before those of gcc3. However, if you do this, then often gcc3-built objects, which
include the majority of things you use every day (eg., editors), won’t run because they find
the gcc4 libraries instead of the expected libs from gcc3!

Therefore, you don’t want to make gcc4.2 your default compiler, but you want to have
ATLAS use it to compile all the kernel routines, while compiling interface routines and
doing any linking with gcc3. To do this, leave the system gcc as the default one in your
path, but pass the following flag to configure:

-8s kern <path to gcc4.2>

This tells ATLAS to use all non-kernel compilers as normal, but to change all kernel
compilers to the given compiler. Therefore, if I have installed gcc4.2 on my gcc3-built OS
in my own home area at /home/whaley/local/gcc42, I would add something like:

-Ss kern /home/whaley/local/gcc42/bin/gcc

3.2.3 Rough guide to overriding ATLAS’s compiler choice/changing flags

Previous sections have discussed the more useful cases of overriding ATLAS’s compiler and
flags, which typically leave ATLAS’s kernel compilers alone. Users often wish to add flags or
change arbitrary compilers, however. This is rarely a good idea, and almost always provides
reduced performance. However, you can do it. You can find more details by passing --help
to configure.

As previously mentioned (§3.2.1), you can specify what compiler (flag setting) to override
by passing the appropriate abbreviation to the -C (-F) configure flags in order to change
the compiler (compiler flags). For example, you would pass -C if to override interface
FORTRAN compiler. configure also supports appending certain compiler flags, so that
user flags are simply added to the defaults that ATLAS uses. This is done:

-Fa <abbr> ’<comp flags to append>’
where <abbr> is one of:
e One of the already discussed compiler abbreviations (eg, xc, ic, if, sk, dc, sm or dm)
e al: all compilers (including FORTRAN) except GOODGCC
e alg all compilers (including FORTRAN) including GOODGCC
e ac: all C compilers except GOODGCC
e acg: all C compilers including GOODGCC

Therefore, by passing the following to configure:

UTSA/CS Technical Report CS-TR-2008-002 Whaley 10

-Fa acg ’-DUsingDynamic -fPIC’

We would have all C routines compiled with ~fPIC, and also have the macro UsingDynamic
defined (ATLAS does not use this macro, this is for example only).

The compiler overriding flag -C can also take the abbreviation ac which will override
all C compilers except GOODGCC with the given C compiler. There is currently no flag to
override GOODGCC on the command line, so if you need to do this, you will need to edit the
output Make.inc after configure.

As an example, if I want to use SunOS’s £77 rather than gfortran, I could pass the
following compiler and flag override:

-C if £77 -F if ’dalign -native -x05’

IMPORTANT NOTE: If you change the default flags in any way for the kernel
compilers (even just appending flags), you may reduce performance. Therefore once your
build is finished, you should make sure to compare your achieved performance against what
ATLAS’s architectural defaults achieved. See Section 6.1 for details on how to do this. If
your compiler is a different version of gcc, you may also want to tell ATLAS not to use the
architectural defaults, as described in Section 3.5.4.

3.2.4 Installing ATLAS when you don’t have access to a FORTRAN compiler

By default, ATLAS expects to find a FORTRAN compiler on your system. If you cannot
install a FORTRAN compiler, you can still install ATLAS, but ATLAS will be unable to
build the FORTRANT77 APIs for both BLAS and LAPACK. Further, certain tests will not
be able to even compile, as their testers are at least partially implemented in FORTRAN.
To tell ATLAS you wish to install w/o a FORTRAN compiler, simply add the flag:

--nof77

to your configure command.

IMPORTANT NOTE: When you install ATLAS w/o a FORTRAN compiler, your build
step will end with a bunch of make errors about being unable to compile some FORTRAN
routines. This is because the Makefiles always attempt to compile the FORTRAN APIs:
they simply continue the install if they don’t succeed in building them. So, just because
you get a lot of make messages about FORTRAN, don’t assume your library is messed up.
As long as make check and make time say your -nof77 install is OK, you should be fine.

3.3 Building dynamic/shared libraries

ATLAS natively builds static libraries (i.e. libs that usually end in ‘.a’ under Unix and
.1ib’ under windows). ATLAS always builds such a library, but it can also optionally
be requested to build a dynamic/shared library (typically ending in .so for Unix or .dll
windows) as well. In order to do so, you must tell ATLAS up front to compile with the
proper flags (the same is true when building netlib’s LAPACK, see §3.1 for more details).
Assuming you are using the gnu C and FORTRAN compilers, you can add the following
commands to your configure command:

-Fa alg -fPIC

UTSA/CS Technical Report CS-TR-2008-002 Whaley 11

to force ATLAS to be built using position independent code (required for a dynamic lib).
If you use non-gnu compilers, you'll need to use -Fa to pass the correct flag(s) to append
to force position independent code for each compiler (don’t forget the gee compiler used in
the index files).

After your build is complete, you can cd to your 0BJdir/1ib directory, and ask ATLAS
to build the .so you want. If you want all libraries, including the FORTRANTY7 routines,
the target choices are:

shared : create shared versions of ATLAS’s sequential libs

ptshared : create shared versions of ATLAS’s threaded libs

If you want only C routines (eg., you don’t have a FORTRAN compiler):
cshared : create shared versions of ATLAS’s sequential libs

cptshared : create shared versions of ATLAS’s threaded libs

Note that this support for building dynamic libraries is new in this release, and not well
debugged or supported, and is much less likely to work for non-gnu compilers.

IMPORTANT NOTE: Since gcc uses one less integer register when compiling with
this flag, this could potentially impact performance of the architectural defaults, but we
have not seen it so far. Therefore, do not throw this flag unless you want dynamic libraries.
If you want both static and dynamic libs, the safest thing is probably to build ATLAS twice,
once static and once dynamic, rather than getting both from a dynamic install.

3.4 Changing the way ATLAS does timings

By default ATLAS does all timings with a CPU timer, so that the install can be done on
a machine that is experiencing relatively heavy load. However, CPU time has very poor
resolution, and so this makes the timings less repeatable and provides for only a rough idea
of overall performance. Therefore, if you are installing ATLAS on a machine which is not
heavily loaded, you will want to improve your install by instructing ATLAS to use one of
its higher resolution wall timers.

For x86 machines, ATLAS has access to a cycle accurate wall timer, assuming you are
using gcc as your interface compiler (we use gcc’s inline assembly to enable this timer —
under Linux, Intel’s icc also supports this form of inline assembly). ATLAS needs to be
able to translate the cycle count returned by this function into seconds, so you must pass
your machine’s clock rate to ATLAS. In order to do this, you add the following flags to
your configure flags:

-D ¢ -DPentiumCPS=<your Mhz>

So, for my 2.4Ghz Core2Duo, I would pass:
-D ¢ -DPentiumCPS=2400

If you are not on an x86 machine, or if your interface compiler is not gcc (or icc if on
Linux), then you cannot use the above cycle-accurate wall timer. However, wall time is still
much more accurate than CPU time, so you can indicate ATLAS should use its wall timer
for the install by passing the flag:

UTSA/CS Technical Report CS-TR-2008-002 Whaley 12

-D ¢ -DWALL

Note that on Windows XP/NT /2000, this should still get you a cycle-accurate walltime,
since it calls some undocumented Windows APIs that purport to do so. For Solaris, the
high resolution timer gethrtime will be used. For all other OSes, this will call a standard
wall timer such as gettimeofday, which is still usually much more accurate than the CPU
timer.

3.5 Various other flags
3.5.1 Changing pointer bitwidth (64 or 32 bits)

Most modern platforms allow for compiling libraries to handle either 32 or 64 bit address
spaces. On the x86, this selection strongly affects the ISA used (eg., whether to use IA32 or
x86-64). The x86-64 ISA, with 16 rather than 8 registers, is more amenable to optimization
than the IA32, so if the user has no preference, 64-bit pointers are recommended. If ATLAS’s
guess is not correct, you can tell configure what address space to build for. In order to force
32-bit pointer width, pass the flag:

-b 32

and in order to force 64 bit pointers, pass:
-b 64

(the b stands for bitwidth).

This tells ATLAS to throw the appropriate compiler flags for compilers it knows about,
as well as effecting various configure probes. Therefore, if you override ATLAS’s compiler
choices, be sure that you give the correct flags to match this setting.

3.5.2 Changing configure verbosity

configure does a series of architectural probes to figure out how to do an install on your
system. Many of the probes that are run don’t produce output during the configure step.
You can tell configure that you want to see more output by cranking up the verbosity.
Presently, maximum verbosity is enabled by adding the flag:

-v 2

3.5.3 Controlling where ATLAS will move files to during install step

ATLAS supplies some flags to control where ATLAS will move files to when you do the
make install step (§2). These flags are taken from gnu configure, and they are:

e ——prefix=<dirname> : Top level installation directory. include files will be moved
to <dirname>/include and libraries will be moved to <dirmame>/1lib. Default:
/usr/local/atlas

e —-incdir=<dirname> : Installation directory for ATLAS’s include files. Default:
/usr/local/atlas/include.

e ——incdir=<dirname> : Installation directory for ATLAS’s libraries.
Default: /usr/local/atlas/lib.

UTSA/CS Technical Report CS-TR-2008-002 Whaley 13

3.5.4 Telling ATLAS to ignore architectural defaults

Architectural defaults are partial results of past searches when the compiler and architecture
are known. They allow you skip the full ATLAS search, which makes install time much
quicker. They also ensure that you have good results, since they typically represent several
searches and/or user intervention into the usual search so that maximum performance is
found. This doesn’t typically mean a huge performance difference, since the empirical
search usually does an adequate job, but it often provides a few extra percentage points
of performance. Also, occasionally the empirical search will, due to machine load or other
timing problems, produce inadequate code, and using the architectural defaults prevents
this from happening.

By default, ATLAS automatically uses the architectural defaults anytime it has results
for the given architecture and compiler. However, the compiler detection is based on the
compiler name, not version, and so ATLAS’s architectural defaults for gnu gcc4.2 might
not be best for gcc3 or apple’s gec, ete, even though configure would use the architectural
defaults in such cases.

So, there are times when you want to tell ATLAS to ignore any architectural defaults
it might have. Common reasons include the fact that you have overridden the compiler
flags ATLAS uses, or are using an earlier version of the supported compiler. In these
cases, the best idea is often to install both with and without the architectural defaults, and
compare timings. If both your installs (homegrown-compiler/flags+archdef, homegrown-
compiler/flags+search) are slower than the architectural defaults using the default compiler,
you should probably install the default compiler. However, if your results are largely the
same, you know your changes haven’t depressed performance and so it is OK to use the
generated libraries (see Section 6 for details on timing an ATLAS install). If your timing
results are substantially better, and you haven’t enabled IEEE-destroying flags, you should
send your improved compiler and flags to the ATLAS team!

To force ATLAS to ignore the architectural defaults (and thus to perform a full ATLAS
search), pass the following flags to configure:

-Si archdef O

4 The ATLAS build step

This is the step where ATLAS performs all its empirical tuning, and then uses the discovered
kernels to build all required libraries. It uses the BLDdir created by the configure step, and
is invoked from the BLDdir with the make build command, or simply by make. This step
can be quite long, depending on your platform and whether or not you use architectural
defaults. For a system like the Core2Duo with architectural defaults, the build step may
take 10 or 20 minutes, while in order to complete a full ATLAS search on a slower platform
(eg. MIPS) could take anywhere between a couple of hours and a full day.

5 The ATLAS check step

In this optional step, ATLAS runs various testers in order to make sure that the generated
library is not producing completely bogus results. For each precision, ATLAS runs the

UTSA/CS Technical Report CS-TR-2008-002 Whaley 14

standard BLAS testers (both C and F77 interface), and then various of ATLAS’s homegrown
testers that appear in ATLAS/bin. If you have installed without a FORTRAN compiler, then
the standard BLAS testers cannot be run (the standard BLAS testers, downloadable from
netlib, require FORTRAN even to test the C interface), and so your testing will be less
comprehensive.

There are two possible targets, check which tests ATLAS’s serial routines, and ptcheck
which check the parallel routines. You cannot run ptcheck if you haven’t installed the
parallel libraries. This step is invoked from BLDdir by typing:

make check # test serial routines
make ptcheck # check parallel routines

Both of these commands will first do a lot of compilation, and then they will finish with
results such as:
core2.home.net. make check

DONE BUILDING TESTERS, RUNNING:

SCOPING FOR FAILURES IN BIN TESTS:

fgrep -e fault -e FAULT -e error -e ERROR -e fail -e FAIL \
bin/sanity.out

8 cases: 8 passed, O skipped, O failed
4 cases: 4 passed, O skipped, 0 failed
8 cases: 8 passed, O skipped, 0 failed
4 cases: 4 passed, O skipped, 0 failed
8 cases: 8 passed, O skipped, 0 failed
4 cases: 4 passed, O skipped, O failed
8 cases: 8 passed, O skipped, 0 failed
4 cases: 4 passed, O skipped, O failed
DONE

SCOPING FOR FAILURES IN CBLAS TESTS:
fgrep -e fault -e FAULT -e error -e ERROR -e fail -e FAIL \
interfaces/blas/C/testing/sanity.out | \
fgrep -v PASSED
make[1]: [sanity_test] Error 1 (ignored)
DONE
SCOPING FOR FAILURES IN F77BLAS TESTS:
fgrep -e fault -e FAULT -e error -e ERROR -e fail -e FAIL \
interfaces/blas/F77/testing/sanity.out | \
fgrep -v PASSED
make[1]: [sanity_test] Error 1 (ignored)
DONE
make[1]: Leaving directory ‘/home/whaley/TEST/ATLAS3.7.36.0/0bj64’

Notice that the Error 1 (ignored) commands come from make, and they indicate that
fgrep is not finding any errors in the output files (thus this make output does not represent
the finding of an error). When true errors occur, the lines of the form

UTSA/CS Technical Report CS-TR-2008-002 Whaley 15

8 cases: 8 passed, O skipped, O failed

will have non-zero numbers for failed, or you will see other tester output discussing
errors, such as the printing of large residuals.

As mentioned, this is really sanity checking, and it runs only a few tests on a handful
of problem sizes. This is usually adequate to catch most blatant problems (eg., compiler
producing incorrect output). More subtle or rarely-occurring bugs may require running the
LAPACK and/or full ATLAS testers. The ATLAS developer guide [21] provides instructions
on how to use the full ATLAS tester, as well as help in diagnosing problems. The developer
guide is provided in the ATLAS tarfile as ATLAS/doc/atlas_devel.pdf

6 The ATLAS time step

In this optional step, ATLAS times certain kernel routines and reports their performance as
a percentage of clock rate. Its purpose is to provide a quick way to ensure that your install
has resulted in a library that obtains adequate performance. If you are installing using
architectural defaults, this step will print a timing comparison against the performance
that the ATLAS maintainer got when creating the architectural defaults. To invoke this
step, issue the following command in your BLDdir:

make time

In Figure 1 we see a typical printout of a successful install, in this case ran on my 2.4Ghz
Core2Duo. The Refrenc columns provide the performance achieved by the architectural
defaults when they were originally created, while the Present columns provide the results
obtained using the new ATLAS install we have just completed. We see that the Present
columns wins occasionally (eg. single precision real kSelMM), and loses sometimes (eg. single
precision complex kSelMM), but that the timings are relatively similar across the board. This
tells us that the install is OK from a performance angle.

As a general rule, performance for both data types of a particular precision should be
roughly comparable, but may vary dramatically between precisions (due mainly to differing
vector lengths in SIMD instructions).

The timings are normalized to the clock rate, which is why the clock rate of both the
reference and present install are printed. It is expected that as clock rates rise, performance
as a percent of it may fall slightly (since memory bus speeds do not usually rise in exact
lockstep). Therefore, if T installed on a 3.2Ghz Core2Duo, I would not be surprised if the
Present install lost by a few percentage points in most cases.

True problems typically display a significant loss that occurs in a pattern. The most
common problem is from installing with a poor compiler, which will lower the performance
of most compiled kernels, without affecting the speed of assembly kernels. Figure 2 shows
such an example, where gcc 4.1 (a terrible compiler for floating point arithmetic on x86
machines) has been used to install ATLAS on an Opteron, rather than gcc 4.2, which
was the compiler that was used to create the architectural defaults. Here, we see that the
present machine is actually slower than the machine that was used to create the defaults, so
if anything, we expect it to achieve a greater percentage of clock rate. Indeed, this is more
or less true of the first line, kSe1MM. On this platform, kSelMM is written totally in assembly,
and BIG_MM calls these kernels, and so the Present results are good for these rows. All the
other rows show kernels that are written in C, and so we see that the use of a bad compiler

UTSA/CS Technical Report

CS-TR-2008-002

Whaley

16

NAMING ABBREVIATIONS:
kSelMM :

kGenMM :
kMM_NT :
kKMM_TN :
BIG_MM :

kMV_N
kKMV_T
kGER

Kernel routines are not called by the user directly, and their

: NoTranspose matvec kernel

selected matmul kernel (may be hand-tuned)
generated matmul kernel
worst no-copy kermel
best no-copy kernel
large GEMM timing (usually N=1600); estimate of asymptotic peak

: Transpose matvec kernel
: GER (rank-1 update) kernel

performance is often somewhat different than the total
algorithm (eg, dGER perf may differ from dkGER)

Reference clock rate=2394Mhz, new rate=2394Mhz
Refrenc : % of clock rate achieved by reference install

Present : % of clock rate achieved by present ATLAS install
single precision double precision
sokskokokokokokkkokokokskokokkskokokokskokokokskokokokskok ok skkolokokskokokok sk koksksk ek sk sk ksl ksl sk ok sksk ok
real complex real complex

Benchmark Refrenc Present Refrenc Present Refrenc Present Refrenc Present
kSelMM 535.0 551.4 525.4 509.6 311.5 312.7 298.0 296.5
kGenMM 175.5 174.0 175.5 173.6 160.5 159.7 165.4 166.9
kMM_NT 145.2 143.7 149.3 150.7 1356.3 131.0 132.3 134.3
kMM_TN 163.2 158.0 161.1 164.6 148.7 144.8 146.0 155.4
BIG_MM 510.1 544.5 504.0 545.9 307.7 301.5 293.0 304.9
kMV_N 113.5 109.1 216.9 208.3 58.9 56.2 97.4 88.8
kMV_T 89.9 85.9 94.6 96.4 47.2 44 .4 74.1 77.1
kGER 154.2 154.1 119.4 116.9 29.1 26.0 46.8 45.6

Figure 1: Normal results for make time on Core2Duo64SSE3

Reference clock rate=2200Mhz, new rate=1597Mhz

single precision

ok ok oK K o ok oK oK K ok oK oK K ok ok oK K ok ok ok K ok ok ok Kk ok

double precision

K3 ok oK K K ok oK oK K ok ok oK K ok ok oK K ok ok ok K ok ok K K

real complex real complex

Benchmark Refrenc Present Refrenc Present Refrenc Present Refrenc Present
kSelMM 335.5 338.8 329.4 331.6 178.9 180.8 180.3 178.7
kGenMM 175.4 100.4 174.2 100.3 163.7 92.6 141.4 94.9
kMM_NT 142.0 86.8 141.2 92.0 125.3 85.2 138.1 88.8
kMM_TN 143.0 92.7 141.1 95.2 139.4 87.8 137.4 90.1
BIG_MM 327.1 325.2 318.6 320.0 169.8 171.3 171.0 172.0
kMV_N 61.4 35.5 139.3 98.9 47.2 30.7 71.9 74.2
kMV_T 73.6 53.6 75.3 62.5 31.6 20.2 52.7 36.6
kGER 43.6 28.8 91.8 65.1 23.7 18.3 46.8 40.3

Figure 2: Timings results when architectural defaults are compiled with substandard gcc4.1,
rather than gcc4.2

UTSA/CS Technical Report CS-TR-2008-002 Whaley 17

has markedly depressed performance across the board. Anytime you see a pattern such as
this, the first thing you should check is if you are using a recommended compiler, and if
not, install and use that compiler.

On the other hand, if only your BIG.MM column is depressed, it is likely you have a
bad setting for the CacheEdge or the complex-to-real crossover point (if the performance is
depressed only for both complex types).

6.1 Contrasting non-default install performance

If you do not install using the architectural defaults, make time will only print out the
Present columns. This gives you a good summary of ATLAS’s library performance, but
it can be hard to tell what is good and bad if you are not familiar with ATLAS on this
hardware. Sometimes, ATLAS has architectural defaults for your platform, but your install
doesn’t use them. This is usually because the installer has specified the use of a non-
default compiler, or has explicitly asked that the architectural defaults not be used, or has
overridden the detection of the architecture, etc. In this case, make time does not do the
comparison against the architectural defaults, and so only the Present columns are printed.

However, if you wish to ensure that your library is as good as one that uses the archi-
tectural defaults, then you can manually tell the program called by make time (xatlbench
to do the comparison. The most common example would be you have switched to an un-
supported compiler (eg., the Intel compiler), and now you want to see if the library you
built using it is as fast or faster than the one using the default gcc 4.2 compiler. Another
example would be that you want to compare the performance of two closely related archi-
tectures. This is what we will do here, where we contrast the performance of the 32 and 64
bit versions of the library on my Core2Duo.

In order to manually do a comparison between a present install and any of the results
stored in ATLAS’s architectural defaults you’ll need to perform the following steps:

1. make time issued in the BLDdir of your non-default install. This does the timings of
the present build, and stores the results in BLDdir/bin/INSTALL_LOG.

2. cd SRCAir/CONFIG/ARCHS, and find the tarfile containing the results you wish to
compare against. In our case, we choose