next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                     2     2      2   2              2       2 2    2 2   2 2
o2 = ideal (k*m*w - i , a*m  - d*q , j o*t - v, a*p*r  - q, f q  - d r , b k 
     ------------------------------------------------------------------------
        2      2 2    2
     - h o, q*r x  - f )

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             4 4 3 3    2   2   2 2       3   4 2 2     3 3   3 3 3 3 4 4  
o3 = ideal (p q r u  - h i*m n*s x , b*e*f h*l o r t - c n , b m n q r x  -
     ------------------------------------------------------------------------
        2 2 3   2 3 3 3 2 4 3    4 2 3
     i*l o v , e f j p r t w  - a n x )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.