next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: cellularBinomialPrimaryDecomposition

cellularBinomialPrimaryDecomposition -- Primary decomposition of a cellular binomial ideal

Synopsis

Description

If the cell variables are known, they can be given via the option CellVariables otherwise they are computed.
i1 : R = QQ[x,y]

o1 = R

o1 : PolynomialRing
i2 : I = ideal(x^3-1,y-x)

             3
o2 = ideal (x  - 1, - x + y)

o2 : Ideal of R
i3 : cv = isCellular (I,ReturnCellVars=>true)

o3 = {x, y}

o3 : List
i4 : pd = cellularBinomialPrimaryDecomposition (I,CellVariables=>cv)
-------------------------------------------------
4ti2 version 1.3.2, Copyright (C) 2006 4ti2 team.
4ti2 comes with ABSOLUTELY NO WARRANTY.
This is free software, and you are welcome
to redistribute it under certain conditions.
For details, see the file COPYING.
-------------------------------------------------
Using 64 bit integers.
4ti2 Total Time:  0.00 secs.
using temporary file name /tmp/M2-18826-0/0

o4 = {ideal (y - 1, x - 1), ideal (y - ww , x - ww ), ideal (y + ww  + 1, x +
                                         3        3                3         
     ------------------------------------------------------------------------
     ww  + 1)}
       3

o4 : List
i5 : mingens \ pd

o5 = {| 1y-1 1x-1 |, | 1y-ww_3 1x-ww_3 |, | 1yww_3+1 1xww_3+1 |}

o5 : List

Caveat

This function will not return minimal generators for performance reasons.

See also

Ways to use cellularBinomialPrimaryDecomposition :