
THE GENERIC MAPPING TOOLS

GMT API Documentation
Release 5.1.1

P. Wessel, W. H. F. Smith,

R. Scharroo, J. Luis, and F. Wobbe

March 01, 2014

Contents

1 Preamble 3

2 The i/o abstraction layer 5

3 Our audience 7

4 Definitions 9

5 Recognized resources 11

5.1 Data tables . 11

5.2 Text tables . 11

5.3 GMT grids . 12

5.4 CPT palette tables . 12

5.5 GMT images . 12

5.6 User data columns (GMT vectors) . 12

5.7 User data matrices (GMT matrices) . 13

6 Overview of the GMT C Application Program Interface 15

7 The GMT C Application Program Interface 19

7.1 Initialize a new GMT session . 19

7.2 Register input or output resources . 19

7.3 Create empty resources . 22

7.4 Duplicate resources . 23

7.5 Get resource ID . 24

7.6 Import Data . 24

7.7 Manipulate data . 28

7.8 Message and Verbose Reporting . 30

7.9 Presenting and accessing GMT options . 31

7.10 Prepare module options . 32

7.11 Calling a GMT module . 36

7.12 Adjusting headers and comments . 36

7.13 Exporting Data . 37

7.14 Destroy allocated resources . 40

7.15 Terminate a GMT session . 40

8 The GMT FFT Interface 41

8.1 Presenting and Parsing the FFT options . 41

i

8.2 Initializing the FFT machinery . 41

8.3 Taking the FFT . 42

8.4 Taking the 1-D FFT . 42

8.5 Taking the 2-D FFT . 42

8.6 Wavenumber calculations . 43

8.7 Destroying the FFT machinery . 43

9 FORTRAN interfaces 45

9.1 FORTRAN 77 Grid i/o . 45

Index 47

ii

GMT API Documentation, Release 5.1.1

The Generic Mapping Tools

C/C++ Application Programming Interface

Pål (Paul) Wessel

SOEST, University of Hawai’i at Manoa

Walter H. F. Smith

Laboratory for Satellite Altimetry, NOAA/NESDIS

Remko Scharroo

EUMETSAT, Darmstadt, Germany

Joaquim F. Luis

Universidade do Algarve, Faro, Portugal

Florian Wobbe

Alfred Wegener Institute, Germany

Contents 1

GMT API Documentation, Release 5.1.1

2 Contents

CHAPTER 1

Preamble

Figure 1.1: GMT 4 programs contain all the high-level functionality.

Prior to version 5, the bulk of GMT functionality was coded directly in the standard GMT C program

modules (e.g., surface.c, psxy.c, grdimage.c, etc.). The GMT library only offered access to

low-level functions from which those high-level GMT programs were built. The standard GMT programs

have been very successful, with tens of thousands of users world-wide. However, the design of the main

programs prevented developers from leveraging GMT functionality from within other programming

environments since access to GMT tools could only be achieved via system calls 1. Consequently, all

data i/o had to be done via temporary files. The design also prevented the GMT developers themselves

from taking advantage of these modules directly. For instance, the tool pslegend needed to make

extensive use of system calls to psxy and pstext in order to plot the lines, symbols and text that

make up a map legend, making it a very awkward program to maintain.

Figure 1.2: GMT 5 programs contain all the high-level functionality.

Starting with GMT version 5, all standard GMT programs have been split into a short driver program

(the “new” GMT programs) and a function “module”. The drivers simply call the corresponding GMT

modules; it is these modules that do all the work. These new functions have been placed in a new GMT

high-level API library and can be called from a variety of environments (C/C++, Fortran, Python, Mat-

lab, Visual Basic, Julia, R, etc.) 2. For example, the main program blockmean.c has been reconfigured

1 or via a very confusing and ever-changing myriad of low-level library functions for bold programmers.
2 Currently, only C/C++ and Matlab are being tested.

3

GMT API Documentation, Release 5.1.1

as a high-level function GMT_blockmean(), which does the actual spatial averaging and can pass the

result back to the calling program (or write it to file). The previous behavior of blockmean.c is repli-

cated by a short driver program that simply collects user arguments and then calls GMT_blockmean().

Indeed, the driver programs for all the standard GMT programs are identical so that the makefile gen-

erates them on-the-fly when it compiles and links them with the GMT library into executables. Thus,

blockmean.c and others do in fact no longer exist.

4 Chapter 1. Preamble

CHAPTER 2

The i/o abstraction layer

In order for this interface to be as flexible as possible we have generalized the notion of input and

output. Data that already reside in an application’s memory may serve as input to a GMT function. Other

sources of input may be file pointers and file descriptors (as well as the already-supported mechanism

for passing file names). For standard data table i/o, the GMT API takes care of the task of assembling

any combination of files, pointers, and memory locations into a single virtual data set from which the

GMT function may read (a) all records at once into memory, or (b) read one record at a time. Likewise,

GMT functions may write their output to a virtual destination, which might be a memory location in the

user’s application, a file pointer or descriptor, or an output file. The GMT functions are unaware of these

details and simply read from a “source” and write to a “destination”.

5

GMT API Documentation, Release 5.1.1

6 Chapter 2. The i/o abstraction layer

CHAPTER 3

Our audience

Here, we document the new functions in the GMT API library for application developers who wish to

call these functions from their own custom programs. At this point, only the new high-level GMT API

is fully documented and intended for public use. The structure and documentation of the under-lying

lower-level GMT library is not finalized. Developers using these functions may risk disruption to their

programs due to changes we may make in the library in support of the GMT API. However, developers

who wish to make supplemental packages to be distributed as part of GMT will (other than talk to us)

probably want to access the entire low-level GMT library as well. It is unlikely that the low-level library

will ever be fully documented.

7

GMT API Documentation, Release 5.1.1

8 Chapter 3. Our audience

CHAPTER 4

Definitions

For the purpose of this documentation a few definitions are needed:

1. “Standard GMT program” refers to one of the traditional stand-alone command-line executables

known to all GMT users, e.g., blockmean, psxy, grdimage, etc. Prior to version 5, these

were the only GMT executables available.

2. “GMT module” refers to the function in the GMT API library that is responsible for all the action

taken by the corresponding GMT program. All such modules are given the same name as the

corresponding program but carry the prefix GMT_, e.g., GMT_blockmean.

3. “GMT application” refers to a new application written by any developer and may call one or more

GMT functions to create a new GMT-compatible executable.

4. In the API description that follows we will use the type int to mean a 4-byte integer. All integers

used in the API are 4-byte integers with the exception of one function where a longer integer is

used. Since different operating systems have their own way of defining 8-byte integers we use

C99’s int64_t for this purpose; it is guaranteed to yield the correct type that the GMT function

expect.

In version 5, the standard GMT programs are themselves specific but overly simple examples of GMT

applications that only call the single GMT function they are associated with. However, some programs

such as pslegend, gmtconvert, grdblend, grdfilter and others call several modules.

9

GMT API Documentation, Release 5.1.1

10 Chapter 4. Definitions

CHAPTER 5

Recognized resources

The GMT API knows how to read and write five types of data common to GMT operations: CPT palette

tables, data tables (ASCII or binary), text tables, GMT grids and images (reading only). In addition,

we present two data types to facilitate the passing of simple user arrays (one or more equal-length

data columns of any data type, e.g., double, char) and 2-D or 3-D user matrices (of any data type and

column/row organization 1). We refer to these data types as GMT resources. There are many attributes

for each of these resources and therefore we use a top-level structure for each type to keep them all in

one container. These containers are given or returned by the GMT API functions using opaque pointers

(void *). Below we discuss these containers in some detail; we will later present how they are used

when importing or exporting them to or from files, memory locations, or streams. The first five are the

standard GMT objects, while the latter two are the special user data containers to facilitate converting

user data into GMT resources. These resources are defined in the include file gmt_resources.h;

please consult this file to ensure correctness as it is difficult to keep the documentation up-to-date.

5.1 Data tables

Much data processed in GMT come in the form of ASCII, netCDF, or native binary data tables. These

may have any number of header records (ASCII files only) and perhaps segment headers. GMT pro-

grams will read one or more such tables when importing data. However, to avoid memory duplication or

limitations some programs may prefer to read records one at the time. The GMT API has functions that

let you read record-by-record by presenting a virtual data set that combines all the data tables specified

as input. This simplifies record processing considerably. A struct GMT_DATASET may contain any

number of tables, each with any number of segments, each segment with any number of records, and

each record with any number of columns. Thus, the arguments to GMT API functions that handle such

data sets expect this type of variable. All segments are expected to have the same number of columns.

5.2 Text tables

Some data needed by GMT are simply free-form ASCII text tables. These are handled similarly to data

tables. E.g., they may have any number of header records and even segment headers, and GMT programs

can read one or more tables or get text records one at the time. A struct GMT_TEXTSETmay contain

any number of tables, each with any number of segments, and each segment with any number of records.

Thus, the arguments to GMT API functions that handle such data sets expect this type of variable. The

user’s program may then parse and process such text records as required. This resources is particularly

1 At the moment, GMT does not have native support for 3-D grids.

11

GMT API Documentation, Release 5.1.1

useful when your data consist of a mix or data coordinates and ordinary text since regular data tables

will be parsed for floating-point columns only.

5.3 GMT grids

GMT grids are used to represent equidistant and organized 2-D surfaces. These can be plotted as contour

maps, color images, or as perspective surfaces. Because the native GMT grid is simply a 1-D float array

with all the metadata kept in a separate header, we pass this information via a struct GMT_GRID,

which is a container that holds both items. Thus, the arguments to GMT API functions that handle such

GMT grids expect this type of variable.

5.4 CPT palette tables

The color palette table files, or just CPT tables, contain colors and patterns used for plotting data such as

surfaces (i.e., GMT grids) or symbols, lines and polygons (i.e., GMT tables). GMT programs will gen-

erally read in a CPT palette table, make it the current palette, do the plotting, and destroy the table when

done. The information is referred to via a pointer to struct GMT_PALETTE. Thus, the arguments to

GMT API functions that handle palettes expect this type of variable. It is not expected that users will

wish to manipulate a CPT table directly, but rather use this mechanism to hold them in memory and pass

as arguments to GMT modules.

5.5 GMT images

GMT images are used to represent bit-mapped images typically obtained via the GDAL bridge. These

can be reprojected internally, such as when used in grdimage. Since images and grids share the concept of

a header, we use the same header structure for grids as for images; however, some additional metadata

attributes are also needed. Finally, the image itself may be of any data type and have more than one

band (channel). Both image and header information are passed via a struct GMT_IMAGE, which

is a container that holds both items. Thus, the arguments to GMT API functions that handle GMT

images expect this type of variable. Unlike the other objects, writting images has only partial support

via GMT_grdimage 2.

struct GMT_IMAGE {

enum GMT_enum_type type; /* Data type, e.g. GMT_FLOAT */

int *ColorMap; /* Array with color lookup values */

struct GMT_GRID_HEADER *header; /* Pointer to full GMT header for the image */

unsigned char *data; /* Pointer to actual image */

/* ---- Variables "hidden" from the API ---- */

unsigned int id; /* The internal number of the data set */

enum GMT_enum_alloc alloc_mode; /* Allocation info [0] */

unsigned int alloc_level; /* Level of initial allocation */

const char *ColorInterp;

};

5.6 User data columns (GMT vectors)

Programs that wish to call GMT modules may hold data in their own particular data structures. For

instance, the user’s program may have three column arrays of type float and wishes to use these as

2 This may change in later releases.

12 Chapter 5. Recognized resources

GMT API Documentation, Release 5.1.1

the input source to the GMT_surface module, which normally expects double precision triplets via a

struct GMT_DATASET read from a file or given by memory reference. Simply create a new struct

GMT_VECTOR (see section [sec:create]) and assign the union array pointers (see univector) to your data

columns and provide the required information on length, data types, and optionally range (see Table

vector). By letting the GMT module know you are passing a data set via a struct GMT_VECTOR it

will know how to read the data correctly.

union GMT_UNIVECTOR {

uint8_t *uc1; /* Pointer for unsigned 1-byte array */

uint8_t *uc1; /* Pointer for unsigned 1-byte array */

int8_t *sc1; /* Pointer for signed 1-byte array */

uint16_t *ui2; /* Pointer for unsigned 2-byte array */

int16_t *si2; /* Pointer for signed 2-byte array */

uint32_t *ui4; /* Pointer for unsigned 4-byte array */

int32_t *si4; /* Pointer for signed 4-byte array */

uint64_t *ui8; /* Pointer for unsigned 8-byte array */

int64_t *si8; /* Pointer for signed 8-byte array */

float *f4; /* Pointer for float array */

double *f8; /* Pointer for double array */

};

Table 1.1: Definition of the GMT_UNIVECTOR union that holds a pointer to any array type.

struct GMT_VECTOR {

uint64_t n_columns; /* Number of vectors */

uint64_t n_rows; /* Number of rows in each vector */

enum GMT_enum_type *type; /* Array with data type for each vector */

double range[2]; /* The min and max limits on t-range (or 0,0) */

union GMT_UNIVECTOR *data; /* Array with unions for each column */

unsigned int id; /* An identification number */

enum GMT_enum_alloc alloc_mode; /* Determines if we may free the vectors or not */

unsigned int alloc_level; /* Level of initial allocation */

};

5.7 User data matrices (GMT matrices)

struct GMT_MATRIX {

uint64_t n_rows; /* Number of rows in the matrix */

uint64_t n_columns; /* Number of columns in the matrix */

unsigned int n_layers; /* Number of layers in a 3-D matrix */

unsigned int shape; /* 0 = C (rows) and 1 = Fortran (cols) */

unsigned int registration; /* 0 for gridline and 1 for pixel registration */

size_t dim; /* Length of dimension for row (C) or column (Fortran) */

size_t size; /* Byte length of data */

enum GMT_enum_alloc alloc_mode; /* Determines if we may free the vectors or not */

double range[6]; /* The min and max limits on x-, y-, and z-ranges */

union GMT_UNIVECTOR data; /* Union with pointers a data matrix of any type */

/* ---- Variables "hidden" from the API ---- */

unsigned int id; /* An identification number */

unsigned int alloc_level; /* Level of initial allocation */

enum GMT_enum_type type; /* The matrix data type */

};

Likewise, programs may have an integer 2-D matrix in memory and wish to use that as the input

grid to the GMT_grdfilter module, which normally expects a struct GMT_GRID with float-

ing point data via a file or provided by memory reference. As for user vectors, we create a struct

GMT_MATRIX (see section [sec:create]), assign the appropriate union pointer to your data matrix and

provide information on dimensions and data type (see Table matrix). Let the GMT module know you

are passing a grid via a struct GMT_MATRIX and it will know how to read the matrix properly.

The enum types referenced in Table vector and Table matrix and summarized in Table enums and Table

5.7. User data matrices (GMT matrices) 13

GMT API Documentation, Release 5.1.1

types.

constant description

GMT_ALLOCATED_EXTERNALLY Item was not allocated by GMT so do not reallocate or free

GMT_ALLOCATED_BY_GMT GMT allocated the memory; reallocate and free as needed

constant description

GMT_CHAR int8_t, 1-byte signed integer type

GMT_UCHAR int8_t, 1-byte unsigned integer type

GMT_SHORT int16_t, 2-byte signed integer type

GMT_USHORT uint16_t, 2-byte unsigned integer type

GMT_INT int32_t, 4-byte signed integer type

GMT_UINT uint32_t, 4-byte unsigned integer type

GMT_LONG int64_t, 8-byte signed integer type

GMT_ULONG uint64_t, 8-byte unsigned integer type

GMT_FLOAT 4-byte data float type

GMT_DOUBLE 8-byte data float type

14 Chapter 5. Recognized resources

CHAPTER 6

Overview of the GMT C Application Program Interface

Users who wish to create their own GMT application based on the API must make sure their program

goes through the steps below; details for each step will be revealed in the following chapter. We have

kept the API simple: In addition to the GMT modules, there are only 52 public functions to become

familiar with, but most applications will only use a small subset of this selection. Functions either return

an integer error code (when things go wrong; otherwise it is set to GMT_OK (0)), or they return a void

pointer to a GMT resources (or NULL if things go wrong). In either case the API will report what the

error is. The layout here assumes you wish to use data in memory as input sources; if the data are simply

command-line files then things simplify considerably.

1. Initialize a new GMT session with GMT_Create_Session, which allocates a hidden GMT

API control structure and returns an opaque pointer to it. This pointer is the first argument to all

subsequent GMT API function calls within the session.

2. For each intended call to a GMT module, several steps are involved:

(a) Register input sources and output destination with GMT_Register_IO.

(b) Each resource registration generates a unique ID number. For memory resources, we embed

these numbers in unique filenames of the form “@GMTAPI@-######”. When GMT i/o

library functions encounter such filenames they extract the ID and make a connection to

the corresponding resource. Multiple table data or text sources are combined into a single

virtual source for GMT modules to operate on. In contrast, CPT, Grid, and Image resources

are operated on individually.

(c) Enable data import once all registrations are complete.

(d) Read data into memory. You may choose to read everything at once or read record-by-record

(tables only).

(e) Prepare required arguments and call the GMT module you wish to use.

(f) Process any results returned to memory via pointers rather than written to files.

(g) Destroy the resources allocated by GMT modules to hold results, or let the garbage collector

do this automatically at the end of the module and at the end of the session.

3. Repeat steps a–f as many times as your application requires.

4. We terminate the GMT session by calling GMT_Destroy_Session.

The steps a–d collapse into a single step if data are simply read from files.

Advanced programs may be calling more than one GMT session and thus run several sessions, perhaps

concurrently as different threads on multi-core machines. We will now discuss these steps in more detail.

15

GMT API Documentation, Release 5.1.1

Throughout, we will introduce upper-case GMT C enum constants in lieu of simple integer constants.

These are considered part of the API and are available for developers via the gmt_resources.h

include file.

The C/C++ API is deliberately kept small to make it easy to use. Table [tbl:API] gives a list of all the

functions and their purpose.

constant description

GMT_Append_Option Append new option structure to linked list

GMT_Begin_IO Enable record-by-record i/o

GMT_Call_Module Call any of the GMT modules

GMT_Create_Args Convert linked list of options to text array

GMT_Create_Cmd Convert linked list of options to command line

GMT_Create_Data Create an empty data resource

GMT_Create_Options Convert command line options to linked list

GMT_Create_Session Initialize a new GMT session

GMT_Delete_Option Delete an option structure from the linked list

GMT_Destroy_Args Delete text array of arguments

GMT_Destroy_Cmd Delete text command of arguments

GMT_Destroy_Data Delete a data resource

GMT_Destroy_Options Delete the linked list of option structures

GMT_Destroy_Session Terminate a GMT session

GMT_Duplicate_Data Make an identical copy of a data resources

GMT_Encode_ID Encode a resources ID as a special filename

GMT_End_IO Disable further record-by-record i/o

GMT_FFT Take the Fast Fourier Transform of data object

GMT_FFT_1D Take the Fast Fourier Transform of 1-D float data

GMT_FFT_2D Take the Fast Fourier Transform of 2-D float data

GMT_FFT_Create Initialize the FFT machinery

GMT_FFT_Destroy Terminate the FFT machinery

GMT_FFT_Option Explain the FFT options and modifiers

GMT_FFT_Parse Parse argument with FFT options and modifiers

GMT_FFT_Wavenumber Return wavenumber given data index

GMT_Find_Option Find an option in the linked list

GMT_Get_Common Determine if a GMT common option was set

GMT_Get_Coord Create a coordinate array

GMT_Get_Data Import a registered data resources

GMT_Get_Default Obtain as string one of the GMT default settings

GMT_Get_ID Obtain the ID of a given resource

GMT_Get_Index Convert row, col into a grid or image index

GMT_Get_Record Import a single data record

GMT_Get_Row Import a single grid row

GMT_Get_Value Convert string into coordinates or dimensions

GMT_Init_IO Initialize i/o given registered resources

GMT_Make_Option Create an option structure

GMT_Message Issue a message, optionally with time stamp

GMT_Option Explain one or more GMT common options

GMT_Parse_Common Parse the GMT common options

GMT_Put_Data Export to a registered data resource given by ID

GMT_Put_Record Export a data record

GMT_Put_Row Export a grid row

Continued on next page

16 Chapter 6. Overview of the GMT C Application Program Interface

GMT API Documentation, Release 5.1.1

Table 6.1 – continued from previous page

constant description

GMT_Read_Data Import a data resource or file

GMT_Register_IO Register a resources for i/o

GMT_Report Issue a message contingent upon verbosity level

GMT_Retrieve_Data Obtained link to data in memory via ID

GMT_Set_Comment Assign a comment to a data resource

GMT_Status_IO Check status of record-by-record i/o

GMT_Update_Option Modify an option structure

GMT_Write_Data Export a data resource

17

GMT API Documentation, Release 5.1.1

18 Chapter 6. Overview of the GMT C Application Program Interface

CHAPTER 7

The GMT C Application Program Interface

7.1 Initialize a new GMT session

Most applications will need to initialize only a single GMT session. This is true of all the standard GMT

programs since they only call one GMT module and then exit. Most user-developed GMT applications

are likely to only initialize one session even though they may call many GMT modules. However, the

GMT API supports any number of simultaneous sessions should the programmer wish to take advantage

of it. This might be useful when you have access to several CPUs and want to spread the computing load
1. In the following discussion we will simplify our treatment to the use of a single session only.

To initiate the new session we use

void *GMT_Create_Session (char *tag, unsigned int pad, unsigned int mode,

int (*print_func) (FILE *, const char *));

and you will typically call it thus:

void *API = NULL;

API = GMT_Create_Session ("Session name", 2, 0, NULL);

where API is an opaque pointer to the hidden GMT API control structure. You will need to pass this

pointer to all subsequent GMT API functions; this is how essential internal information is passed from

module to module. The key task of this initialization is to set up the GMT machinery and its internal

variables used for map projections, plotting, i/o, etc. The initialization also allocates space for internal

structures used to register resources. The pad argument sets how many rows and columns should be

used for padding for grids and images so that boundary conditions can be applied. GMT uses 2 so we

recommend that value. The mode argument is only used for external APIs that need to replace GMT’s

calls to a hard exit upon failure with a soft return. Likewise, the print_func argument is a pointer to a

function that is used to print messages via GMT_Message or GMT_Report from APIs that cannot use

the standard printf (this is the case for the Matlab API, for instance). All other uses should simply pass

0 and NULL for these two arguments. Should something go wrong then API will be returned as NULL.

7.2 Register input or output resources

When using the standard GMT programs, you specify input files on the command line or via special

program options (e.g., -Iintensity.nc). The output of the programs are either written to standard output

(which you redirect to files or pipe to other programs) or to files specified by specific program options

(e.g., -Goutput.nc). Alternatively, the GMT API allows you to specify input (and output) to be associated

1 However, there is no thread-support yet.

19

GMT API Documentation, Release 5.1.1

with open file handles or program variables. We will examine this more closely below. Registering a

resource is a required step before attempting to import or export data that do not come from files or

standard input/output.

7.2.1 Resource registration

Registration involves a direct or indirect call to

int GMT_Register_IO (void *API, unsigned int family, unsigned int method,

unsigned int geometry, unsigned int direction,

double wesn[], void *ptr);

where family specifies what kind of resource is to be registered, method specifies how we to access this

resource (see Table methods for recognized methods, as well as modifiers you can add; these are listed in

Table via), geometry specifies the geometry of the data (see Table geometry for recognized geometries),

ptr is the address of the pointer to the named resource. If direction is GMT_OUT and the method

is not related to a file (filename, stream, or handle), then ptrmust be NULL. After the GMT module has

written the data you can use GMT_Retrieve_Data to assign a pointer to the memory location (variable)

where the output was allocated. For grid (and image) resources you may request to obtain a subset via

the wesn array (see Table wesn for information); otherwise, pass NULL (or an array with at least 4 items

all set to 0) to obtain the entire grid (or image). The direction indicates input or output and is either

GMT_IN or GMT_OUT. Finally, the function returns a unique resource ID, or GMT_NOTSET if there

was an error.

7.2.2 Object ID encoding

To use registered resources as program input or output arguments you must pass them via a text string

that acts as a special file name (Chapter [ch:overview]). The proper filename formatting is guaranteed

by using the function

int GMT_Encode_ID (void *API, char *filename, int ID);

which accepts the unique ID and writes the corresponding filename. The variable filename must

have enough space to hold 16 bytes. The function returns 1 if there is an error; otherwise it returns 0.

family source points to

GMT_IS_DATASET A [multi-segment] table file

GMT_IS_TEXTSET A [multi-segment] text file

GMT_IS_GRID A GMT grid file

GMT_IS_CPT A CPT file

GMT_IS_IMAGE A GMT image

method how to read/write data

GMT_IS_FILE Pointer to name of a file

GMT_IS_STREAM Pointer to open stream (or process)

GMT_IS_FDESC Pointer to integer file descriptor

GMT_IS_DUPLICATE Pointer to memory we may duplicate data from

GMT_IS_REFERENCE Pointer to memory we may reference data from

20 Chapter 7. The GMT C Application Program Interface

GMT API Documentation, Release 5.1.1

approach how method is modified

GMT_VIA_VECTOR User’s data columns are accessed via a GMT_VECTOR structure

GMT_VIA_MATRIX User’s matrix is accessed via a GMT_MATRIX structure

geometry description

GMT_IS_TEXT Not a geographic item

GMT_IS_POINT Multi-dimensional point data

GMT_IS_LINE Geographic or Cartesian line segments

GMT_IS_POLYGON Geographic or Cartesian closed polygons

GMT_IS_SURFACE 2-D gridded surface

index description

GMT_XLO x_min (west) boundary of grid subset

GMT_XHI x_max (east) boundary of grid subset

GMT_YLO y_min (south) boundary of grid subset

GMT_YHI y_max (north) boundary of grid subset

GMT_ZLO z_min (bottom) boundary of 3-D matrix subset

GMT_ZHI z_max (top) boundary of 3-D matrix subset

7.2.3 Resource initialization

All GMT programs dealing with input or output files given on the command line, and perhaps default-

ing to the standard input or output streams if no files are given, must call the i/o initializer function

GMT_Init_IO once for each direction required (i.e., input and output separately). For input it deter-

mines how many input sources have already been registered. If none has been registered then it scans

the program arguments for any filenames given on the command line and register these input resources.

Finally, if we still have found no input sources we assign the standard input stream as the single input

source. For output it is similar: If no single destination has been registered we specify the standard output

stream as the output destination. Only one main output destination is allowed to be active when a module

writes data (some modules also write additional output via program-specific options). The prototype for

this function is

int GMT_Init_IO (void *API, unsigned int family, unsigned int geometry,

unsigned int direction, unsigned int mode,

unsigned int n_args, void *args);

where family specifies what kind of resource is to be registered, geometry specifies the geometry

of the data, direction is either GMT_IN or GMT_OUT, and mode is a bit flag that determines what

we do if no resources have been registered. The choices are

GMT_ADD_FILES_IF_NONE means “add command line (option) files if none have been

registered already”

GMT_ADD_FILES_ALWAYS means “always add any command line files”

GMT_ADD_STDIO_IF_NONE means “add std* if no other input/output have been spec-

ified”

GMT_ADD_STDIO_ALWAYS means “always add std* even if resources have been reg-

istered”.

GMT_ADD_EXISTING means “only use already registered resources”.

7.2. Register input or output resources 21

GMT API Documentation, Release 5.1.1

The standard behavior is GMT_REG_DEFAULT. Next, n_args is 0 if args is the head of a linked

list of options (further discussed in Section [sec:func]); otherwise args is an array of n_args strings

(i.e., the int argc, char *argv[] model)

Many programs will register an export location where results of a GMT function (say, a filtered grid)

should be returned, but may then wish to use that variable as an input resource in a subsequent mod-

ule call. This is accomplished by re-registering the resource as an input source, thereby changing the

direction of the data set. The function returns 1 if there is an error; otherwise it returns 0.

7.2.4 Dimension parameters for user 1-D column vectors

We refer to Table [tbl:vector]. The type array must hold the data type of each data column in the user’s

program. All types other than GMT_DOUBLE will be converted internally in GMT to double, thus

possibly increasing memory requirements. If the type is GMT_DOUBLE then GMT will be able to use

the column directly by reference. The n_columns and n_rows parameters indicate the number of

vectors and their common length. If these are not yet known you may pass 0 for these values and set

alloc_mode to GMT_ALLOCATED_BY_GMT; this will make sure GMT will allocate the necessary

memory to the variable you specify.

7.2.5 Dimension parameters for user 2-D table arrays

We refer to Table [tbl:matrix]. The type parameter specifies the data type used for the array in the

user’s program. All types other than GMT_FLOAT will be converted internally in GMT to float, thus

possibly increasing memory requirements. If the type is GMT_FLOAT then GMT may be able to use

the matrix directly by reference. The n_rows and n_columns parameters indicate the dimensions

of the matrix. If these are not yet known you may pass 0 for these values and set alloc_mode to

GMT_ALLOCATED_BY_GMT; this will make sure GMT will allocate the necessary memory at the

location you specify. Fortran users will instead have to specify a size large enough to hold the anticipated

output data. The registration and range gives the grid registration and domain. Finally, use dim

to indicate if the memory matrix has a dimension that exceeds that of the leading row (or column)

dimension. Note: For GMT_IS_TEXTSET the user matrix is expected to be a 2-D character array with

a fixed row length of dim but we only consider the first n_columns characters. For data grids you will

also need to specify the registration (see the GMT Cookbook and Reference, App-file-formats for

description of the two forms of registration) and data domain range.

7.3 Create empty resources

If your application needs to build and populate GMT resources in ways that do not depend on exter-

nal resources (files, memory locations, etc.), then youGMT_Create_Data can obtain a “blank slate” by

calling

void *GMT_Create_Data (void *API, unsigned int family, unsigned int geometry,

unsigned int mode, uint64_t par[], double *wesn,

double *inc, unsigned int registration, int pad, void *data)

which returns a pointer to the allocated resource. Pass family as one of GMT_IS_GRID,

GMT_IS_IMAGE, GMT_IS_DATASET, GMT_IS_TEXTSET, or GMT_IS_CPT, or via the modi-

fiers GMT_IS_VECTOR or GMT_IS_MATRIX when handling user data. Also pass a compatible

geometry. Depending on the family and your particular way of representing dimensions you may

pass the additional parameters in one of two ways:

22 Chapter 7. The GMT C Application Program Interface

GMT API Documentation, Release 5.1.1

1. Actual integer dimensions of items needed.

2. Physical distances and increments of each dimension.

For the first case, pass the par array, as indicated below:

GMT_IS_GRID An empty GMT_GRID structure with a header is allocated; the data array is NULL.

The par argument is not used.

GMT_IS_IMAGE An empty GMT_GRID structure with a header is allocated; the image array is

NULL. The par argument is not used.

GMT_IS_DATASET An empty GMT_DATASET structure consisting of par[0] tables, each with

par[1] segments, each with par[2] rows, all with par[3] columns, is allocated. The wesn,

inc, and registration argument are ignored.

GMT_IS_TEXTSET An empty GMT_TEXTSET structure consisting of par[0] tables, each with

par[1] segments, all with par[2] text records (rows), is allocated. The wesn, inc, and

registration argument are ignored.

GMT_IS_CPT An empty GMT_PALETTE structure with par[0] palette entries is allocated. The

wesn, inc, and registration argument are ignored.

GMT_IS_VECTOR An empty GMT_VECTOR structure with par[0] column entries is allocated.

The wesn, inc, and registration argument are ignored.

GMT_IS_MATRIX An empty GMT_MATRIX structure is allocated. par[3] indicates the number

of layers for a 3-D matrix, or pass 0, 1, or NULL for a 2-D matrix.

In this case, pass wesn, inc as NULL (or arrays with elements all set to 0). For the second approach,

you instead pass wesn, inc, and registration and leave par as NULL (or with all elements

equal 0). For grids and images you may pass pad to set the padding, or -1 to accept the GMT de-

fault. The mode determines what is actually allocated when you have chosen grids or images. As for

GMT_Read_Data you can pass GMT_GRID_ALL to initialize the header and allocate space for the ar-

ray. Alternatively, you can pass GMT_GRID_HEADER_ONLY to just initialize the grid or image header,

and call a second time, passing GMT_GRID_DATA_ONLY, to allocate space for the array. In that sec-

ond call you pass the pointer returned by the first call as data and specify the family; all other argu-

ments should be NULL or 0. Normally, resources created by this function are considered to be input

(i.e., have a direction that is GMT_IN). You can change that to GMT_OUT by adding in the bit flag

GMT_VIA_OUTPUT. The function returns a pointer to the data container. In case of an error we return

a NULL pointer and pass an error code via API->error.

7.4 Duplicate resources

Often you have read or created a data resource and then need an identical copy, presumably to make

modifications to. Or, you want a copy with the same dimensions and allocated memory, except data

values should not be duplicated. Alternatively, perhaps you just want to duplicate the header and skip

the allocation and duplication of the data. These tasks are addressed by

void *GMT_Duplicate_Data (void *API, unsigned int family,

unsigned int mode, void *data);

which returns a pointer to the allocated resource. Specify which family and select mode

from GMT_DUPLICATE_DATA, GMT_DUPLICATE_ALLOC, and GMT_DUPLICATE_NONE, as dis-

cussed above (also see mode discussion above). For datasets and textsets you can add modifiers

GMT_ALLOC_VERTICAL or GMT_ALLOC_HORIZONTAL if you wish to put all data in a single long

7.4. Duplicate resources 23

GMT API Documentation, Release 5.1.1

table or to paste all tables side-by-side, respectively (thus getting one wide table instead). Additional

note for datasets: Normally we allocate the output given the corresponding input dimensions. You can

override these by specifying your alternative dimensions in the input dataset variable dim[]. The data

is a pointer to the resource you wish to duplicate. In case of an error we return a NULL pointer and pass

an error code via API->error.

7.5 Get resource ID

Resources created by these two methods can be used as in various ways. Sometimes you want to pass

them as input to other modules, in which case you need to registration ID of that resource. This task are

performed by

void *GMT_Get_ID (void *API, unsigned int family,

unsigned int direction, void *data);

which returns the ID number of the allocated resource. Specify which family and select direction

from GMT_IN or GMT_OUT. The data is a pointer to the resource you whose ID you need. In case of

an error we return GMT_NOTSET and pass an error code via API->error.

7.6 Import Data

If your main program needs to read any of the five recognized data types (CPT files, data tables, text

tables, GMT grids, or images) you will use the GMT_Get_Data or GMT_Read_Data functions, which

both return entire data sets. In the case of data and text tables you may also select record-by-record

reading using the GMT_Get_Record function. As a general rule, your program development simplifies

if you can read entire resources into memory with GMT_Get_Data or GMT_Read_Data However, if this

leads to unacceptable memory usage or if the program logic is particularly simple, you may obtain one

data record at the time via GMT_Get_Record

All input functions takes a parameter called mode. The mode parameter generally has different mean-

ings for the different data types and will be discussed below. However, one bit setting is common to all

types: By default, you are only allowed to read a data source once; the source is then flagged as having

been read and subsequent attempts to read from the same source will result in a warning and no reading

takes place. In the unlikely event you need to re-read a source you can override this default behavior by

adding GMT_IO_RESET to your mode parameter. Note that this override does not apply to sources that

are streams or file handles, as it may not be possible to re-read their contents.

7.6.1 Enable Data Import

Once all input resources have been registered, we signal the API that we are done with the registration

phase and are ready to start the actual data import. This step is only required when reading one record

at the time. We initialize record-by-record reading by calling GMT_Begin_IO This function enables

dataset and textset record-by-record reading and prepares the registered sources for the upcoming import.

The prototype is

int GMT_Begin_IO (void *API, unsigned int family, unsigned int direction,

unsigned int mode, unsigned int header);

where family specifies the resource type to be read or written (see Table [tbl:family]; only

GMT_IS_DATASET and GMT_IS_TEXTSET are available for record-by-record handling). The

direction is either GMT_IN or GMT_out, so for import we obviously use GMT_IN. The function

24 Chapter 7. The GMT C Application Program Interface

GMT API Documentation, Release 5.1.1

determines the first input source and sets up procedures for skipping to the next input source in a vir-

tual data set. The GMT_Get_Record function will not be able to read any data before GMT_Begin_IO

has been called. As you might guess, there is a companion GMT_End_IO function that completes,

then disables record-by-record data access. You can use these several times to switch modes between

registering data resources, doing the importing/exporting, and disabling further data access, perhaps

to do more registration. We will discuss GMT_End_IO once we are done with the data import. The

mode option is used to allow output to write table header information (GMT_HEADER_ON) or not

(GMT_HEADER_OFF). This is usually on unless you are writing messages and other non-data. The

final header argument determines if the common header-block should be written during initialization;

choose between GMT_HEADER_ON and GMT_HEADER_OFF. The function returns 1 if there is an error;

otherwise it returns 0.

7.6.2 Import a data set

If your program needs to import any of the five recognized data types (CPT table, data table, text table,

GMT grid, or image) you will use either the GMT_Read_Data or GMT_Get_Data functions. The former

is typically used when reading from files, streams (e.g., stdin), or an open file handle, while the latter

is only used with a registered resource via its unique ID. Because of the similarities of these five import

functions we use an generic form that covers all of them.

Import from a file, stream, or handle

To read an entire resource from a file, stream, or file handle, use

void *GMT_Read_Data (void *API, unsigned int family, unsigned int method,

unsigned int geometry, unsigned int mode, double wesn[],

char *input, void *ptr);

• API – None of your business

• family

• method

• geometry

• wesn

void *GMT_Read_Data (void *API, unsigned int family, unsigned int method,

unsigned int geometry, unsigned int mode, double wesn[],

char *input, void *ptr);

Parameters

• API – None of your business

• family – family

Return type None (void)

where ptr is NULL except when reading grids in two steps (i.e., first get a grid structure with a header,

then read the data). Most of these arguments have been discussed earlier. This function can be called in

three different situations:

1. If you have a single source (filename, stream pointer, etc.) you can call GMT_Read_Data directly;

there is no need to first register the source with GMT_Register_IO or gather the sources with

GMT_Init_IO. However, if you did register a single source you can still pass it via an encoded

7.6. Import Data 25

GMT API Documentation, Release 5.1.1

filename (see GMT_Encode_ID) or you can instead use GMT_Get_Data using the integer ID

directly (see next section).

2. If you want to specify stdin as source then use input as NULL.

3. If you already registered all desired sources with GMT_Init_IO then you indicate this by passing

geometry = 0.

Space will be allocated to hold the results, if needed, and a pointer to the object is returned. If there

are errors we simply return NULL and report the error. The mode parameter has different meanings for

different data types.

CPT table mode contains bit-flags that control how the CPT file’s back-, fore-, and NaN-colors should

be initialized. Select 0 to use the CPT file’s back-, fore-, and NaN-colors, 2 to replace these with

the GMT default values, or 4 to replace them with the color table’s entries for highest and lowest

value.

Data table mode is currently not used.

Text table mode is currently not used.

GMT grid Here, mode determines how we read the grid: To read the entire grid and its header, pass

GMT_GRID_ALL. However, if you need to extract a sub-region you must first read the header by

passing GMT_GRID_HEADER_ONLY, then examine the header structure range attributes and to

specify a subset via the array wesn, and finally call GMT_Read_Data a second time, now with

mode = GMT_GRID_DATA_ONLY and passing your wesn array and the grid structure returned

from the first call as ptr. In the event your data array should be allocated to hold both the real and

imaginary parts of a complex data set you must add either GMT_GRID_IS_COMPLEX_REAL

or GMT_GRID_IS_COMPLEX_IMAG to mode so as to allow for the extra memory needed and

to stride the input values correctly. If your grid is huge and you must read it row-by-row, set mode

to GMT_GRID_HEADER_ONLY | GMT_GRID_ROW_BY_ROW. You can then access the grid

row-by-row using GMT_Get_Row By default the rows will be automatically processed in order.

To completely specify which row to be read, use GMT_GRID_ROW_BY_ROW_MANUAL in-

stead.

Import from a memory location

If you are importing via variables or prefer to first register the source, then you should use

GMT_Get_Data instead. This function requires fewer arguments since you simply pass the unique ID

number of the resource. The function is described as follows:

void *GMT_Get_Data (void *API, int ID, unsigned int mode, void *ptr);

The ID is the unique object ID you received when registering the resource, mode controls some aspects

of the import (see GMT_Read_Data above), while ptr is NULL except when reading grids in two steps

(i.e., first get a grid structure with a header, then read the data). Other arguments have been discussed

earlier. Space will be allocated to hold the results, if needed, and a pointer to the object is returned. If

there are errors we simply return NULL and report the error.

Retrieve an allocated result

Finally, if you need to access the result that a GMT module wrote to a memory location, then you must

register an output destination with GMT_Register_IO first (passing ptr == NULL). The GMT module

will then allocate space to hold the output and let the API know where this memory resides. You can then

26 Chapter 7. The GMT C Application Program Interface

GMT API Documentation, Release 5.1.1

use GMT_Retrieve_Data to get a pointer to the container where the data set was stored. This function

requires fewer arguments since you simply pass the unique ID number of the resource. The function is

described as follows:

void *GMT_Retrieve_Data (void *API, int ID);

The ID is the unique object ID you received when registering the NULL resource earlier, Since this

container has already been created, a pointer to the object is returned. If there are errors we simply

return NULL and report the error.

7.6.3 Importing a data record

If your program will read data table records one-by-one you must first enable this input mechanism with

GMT_Begin_IO and then read the records in a loop using

void *GMT_Get_Record (void *API, unsigned int mode, int *nfields);

where the returned value is either a pointer to a double array with the current row values or to a character

string with the current row, depending on mode. In either case these pointers point to memory internal to

GMT and should be considered read-only. When we reach end-of-file, encounter conversion problems,

read header comments, or identify segment headers we return a NULL pointer. The nfields pointer

will return the number of fields returned; pass NULL if your program should ignore this information.

Normally (mode == GMT_READ_DOUBLE), we return a pointer to the double array. To read text

records, supply instead mode == GMT_READ_TEXT and we instead return a pointer to the text record.

However, if you have input records that mixes organized floating-point columns with text items you

could pass mode == GMT_READ_MIXED. Then, GMT will attempt to extract the floating-point val-

ues; you can still access the record string, as discussed below. Finally, if your application needs to be

notified when GMT closes one file and opens the next, add GMT_FILE_BREAK to mode and check

for the status code GMT_IO_NEXT_FILE (by default, we treat the concatenation of many input files

as a single virtual file). Using GMT_Get_Record requires you to first initialize the source(s) with

GMT_Init_IO. For certain records, GMT_Get_Record will return NULL and sets status codes that

your program will need to examine to take appropriate response. Table [tbl:iostatus] list the various

status codes you can check for, using GMT_Status_IO (see next section).

7.6.4 Examining record status

Programs that read record-by-record must be aware of what the current record represents. Given the

presence of headers, data gaps, NaN-record, etc. the developer will want to check the status after reading

the next record. The internal i/o status mode can be interrogated with the function

int GMT_Status_IO (void *API, unsigned int mode);

which returns 0 (false) or 1 (true) if the current status is reflected by the specified mode.

There are 11 different modes available to programmers; for a list see Table [tbl:iostatus].

For an example of how these may be used, see the test program testgmtio.c. De-

velopers who plan to import data on a record-by-record basis may also consult the

source code of, say, blockmean.c or pstext.c, to see examples of working code.

7.6. Import Data 27

GMT API Documentation, Release 5.1.1

mode description and return value

GMT_IO_DATA_RECORD 1 if we read a data record

GMT_IO_TABLE_HEADER 1 if we read a table header

GMT_IO_SEGMENT_HEADER 1 if we read a segment header

GMT_IO_ANY_HEADER 1 if we read either header record

GMT_IO_MISMATCH 1 if we read incorrect number of columns

GMT_IO_EOF 1 if we reached the end of the file (EOF)

GMT_IO_NAN 1 if we only read NaNs

GMT_IO_GAP 1 if this record implies a data gap

GMT_IO_NEW_SEGMENT 1 if we enter a new segment

GMT_IO_LINE_BREAK 1 if we encountered a segment header, EOF, NaNs or gap

GMT_IO_NEXT_FILE 1 if we finished one file but not the last

7.6.5 Importing a grid row

If your program must read a grid file row-by-row you must first enable row-by-row reading with

GMT_Read_Data and then use the GMT_Get_Row function in a loop; the prototype is

int GMT_Get_Row (void *API, int row_no, struct GMT_GRID *G, float *row);

where row is a pointer to a single-precision array to receive the current row, G is the grid in question,

and row_no is the number of the current row to be read. Note this value is only considered if the row-

by-row mode was initialized with GMT_GRID_ROW_BY_ROW_MANUAL. The user must allocate

enough space to hold the entire row in memory.

7.6.6 Disable Data Import

Once the record-by-record input processing has completed we disable further input to prevent accidental

reading from occurring (due to poor program structure, bugs, etc.). We do so by calling GMT_End_IO.

This function disables further record-by-record data import; its prototype is

int GMT_End_IO (void *API, unsigned int direction, unsigned int mode);

and we specify direction = GMT_IN. At the moment, mode is not used. This call will also reallocate

any arrays obtained into their proper lengths. The function returns 1 if there is an error (which is passed

back with API->error), otherwise it returns 0.

7.7 Manipulate data

[sec:manipulate]

Once you have created and allocated and empty resources, or read in resources from the outside, you

will wish to manipulate their contents. This section discusses how to set up loops and access the impor-

tant variables for the various data families. For grids and images it may be required to know what the

coordinates are at each node point. This can be obtained via arrays of coordinates for each dimension,

obtained by

double *GMT_Get_Coord (void *API, unsigned int family, unsigned int dim, void *data);

where family must be GMT_IS_GRID or GMT_IS_DATASET, dim is either GMT_IS_X or

GMT_IS_Y, and data is the grid or image pointer. This function will be used below in our example on

grid manipulation.

28 Chapter 7. The GMT C Application Program Interface

GMT API Documentation, Release 5.1.1

Another aspect of dealing with grids and images is to convert a row and column 2-D reference to our

1-D array index. Because of grid and image boundary padding the relationship is not straightforward,

hence we supply

int64_t GMT_Get_Index (struct GMT_GRID_HEADER *header, int row, int col);

where the header is the header of either a grid or image, and row and col is the 2-D position in the

grid or image. We return the 1-D array position; again this function is used below in our example.

7.7.1 Manipulate grids

Most applications wishing to manipulate grids will want to loop over all the nodes, typically in a manner

organized by rows and columns. In doing so, the coordinates at each node may also be required for a

calculation. Below is a snippet of code that shows how to do visit all nodes in a grid and assign each

node the product x * y:

int row, col, node;

double *x_coord = NULL, *y_coord = NULL;

< ... create a grid G or read one ... >

x_coord = GMT_Get_Coord (API, GMT_IS_GRID, GMT_X, G);

y_coord = GMT_Get_Coord (API, GMT_IS_GRID, GMT_Y, G);

for (row = 0; row < G->header->ny) {

for (col = 0; col < G->header->nx; col++) {

node = GMT_Get_Index (G->header, row, col);

G->data[node] = x_coord[col] * y_coord[row];

}

}

Note the use of GMT_Get_Index to get the grid node number associated with the row and col

we are visiting. Because GMT grids have padding (for boundary conditions) the relationship be-

tween rows, columns, and node indices is more complicated and hence we hide that complexity in

GMT_Get_Index. Note that for trivial procedures such setting all grid nodes to a constant (e.g., -

9999.0) where the row and column does not enter you can instead do a single loop:

int node;

< ... create a grid G or read one ... >

for (node = 0; node < G->header->size) G->data[node] = -9999.0;

Note we must use G->header->size (size of allocated array) and not G->header->nm (number

of nodes in grid) since the latter is smaller due to the padding and a single loop like the above treats the

pad as part of the “inside” grid.

7.7.2 Manipulate data tables

Another common application is to process the records in a data table. Because GMT consider the

GMT_DATASET resources to contain one or more tables, each of which may contain one or more

segments, all of which may contain one or more columns, you will need to have multiple loops to visit

all entries. The following code snippet will visit all data records and add 1 to all columns beyond the

first two (x and y):

int tbl, seg, row, col;

struct GMT_DATATABLE *T = NULL;

struct GMT_DATASEGMENT *S = NULL;

< ... create a dataset D or read one ... >

for (tbl = 0; tbl < D->n_tables; tbl++) { /* For each table */

T = D->table[tbl]; /* Convenient shorthand for current table */

for (seg = 0; seg < T->n_segments; seg++) { /* For all segments */

S = T->segment[seg]; /* Convenient shorthand for current segment */

7.7. Manipulate data 29

GMT API Documentation, Release 5.1.1

for (row = 0; row < S->n_rows; row++) {

for (col = 2; col < T->n_columns; col++) {

S->coord[col][row] += 1.0;

}

}

}

}

7.7.3 Manipulate text tables

When data file contain text mixed in with numbers you must open the file as a GMT_TEXTSET and

do your own parsing of the data records. The following code snippet will visit all text records and print

them out:

int tbl, seg, row, col;

struct GMT_TEXTTABLE *T = NULL;

struct GMT_TEXTSEGMENT *S = NULL;

< ... create a textset D or read one ... >

for (tbl = 0; tbl < D->n_tables; tbl++) { /* For each table */

T = D->table[tbl]; /* Convenient shorthand for current table */

for (seg = 0; seg < T->n_segments; seg++) { /* For all segments */

S = T->segment[seg]; /* Convenient shorthand for current segment */

for (row = 0; row < S->n_rows; row++) {

printf ("T=%d S=%d R=%d : %s\n", tbl, seg, row, S->record[row]);

}

}

}

7.8 Message and Verbose Reporting

The API provides two functions for your program to present information to the user during the run of

the program. One is used for messages that are always written while the other is used for reports that

must exceed the verbosity settings specified via -V.

int GMT_Report (void *API, unsigned int level, char *message, ...);

This function takes a verbosity level and a multi-part message (e.g., a format statement and zero

or more variables). The verbosity level is an integer in the 0–5 range; these are listed in Ta-

ble [tbl:verbosity]. You assign an appropriate verbosity level to your message, and depending

on the chosen run-time verbosity level set via -V your message may or may not be reported.

Only messages whose stated verbosity level is lower or equal to the -Vlevel will be printed.

constant description

GMT_MSG_QUIET No messages whatsoever

GMT_MSG_NORMAL Default output, e.g., warnings and errors only

GMT_MSG_COMPAT Compatibility warnings

GMT_MSG_VERBOSE Verbose level

GMT_MSG_LONG_VERBOSE Longer verbose

GMT_MSG_DEBUG Debug messages for developers mostly

int GMT_Message (void *API, unsigned int mode, char *format, ...);

This function always prints its message to the standard output. Use the mode value

to control if a time stamp should preface the message. and if selected how the

time information should be formatted. See Table timemodes for the various modes.

30 Chapter 7. The GMT C Application Program Interface

GMT API Documentation, Release 5.1.1

constant description

GMT_TIME_NONE Display no time information

GMT_TIME_CLOCK Display current local time

GMT_TIME_ELAPSED Display elapsed time since last reset

GMT_TIME_RESET Reset the elapsed time to 0

7.9 Presenting and accessing GMT options

[sec:parsopt] As you develop a program you may need to rely on some of the GMT common options.

For instance, you may wish to have your program present the -R option to the user, let GMT handle

the parsing, and examine the values. You may also wish to encode your own custom options that may

require you to parse user text into the corresponding floating point dimensions, length, coordinates, time,

etc. The API provides several functions to simplify these tedious parsing tasks. This section is intended

to show how the programmer will obtain information from the user that is necessary to do the task at

hand (e.g., special options to provide values and settings for the program). In the following section we

will concern ourselves with preparing arguments for calling any of the GMT modules.

7.9.1 Display usage syntax for GMT common options

You can have your program menu display the standard usage message for a GMT common option by

calling the function

int GMT_Option (void *API, char *options);

where options is a comma-separated list of GMT common options (e.g., “R,J,O,X”). You can repeat

this function with different sets of options in order to intersperse your own custom options with in an

overall alphabetical order; see any GMT module for examples of typical layouts.

7.9.2 Parsing the GMT common options

The parsing of all GMT common option is done by

int GMT_Parse_Common (void *API, char *args, struct GMT_OPTION *list);

where args is a string of the common GMT options your program may use. An error will be reported if

any of the common GMT options fail to parse, and if so we return TRUE; if not errors we return FALSE.

All other options, including file names, will be silently ignored. The parsing will update the internal

GMT information structure that affects program operations.

7.9.3 Inquiring about the GMT common options

The API provide only a limited window into the full GMT machinery accessible to the modules. You

can determine if a particular common option has been parsed and in some cases determine the values

that was set with

int GMT_Get_Common (void *API, unsigned int option, double *par);

where option is a single option character (e.g., ‘R’) and par is a double array with at least a length

of 6. If the particular option has been parsed then the function returns the number of parameters passed

back via par; otherwise we return -1. For instance, to determine if the -R was set and what the resulting

region was set to you may call

7.9. Presenting and accessing GMT options 31

GMT API Documentation, Release 5.1.1

if (GMT_Get_Common (API, ’R’, wesn)) != -1) {

/* wesn now contains the boundary information */

}

The wesn array could now be passed to the various read and create functions for GMT resources.

7.9.4 Parsing text values

Your program may need to request values from the user, such as distances, plot dimensions, coordinates,

and other data. The conversion from such text to actual distances, taking units into account, is tedious to

program. You can simplify this by using

int GMT_Get_Value (void *API, char *arg, double par[]);

where arg is the text item with one or more values that are separated by commas, spaces, or slashes,

and par is an array long enough to hold all the items you are parsing. The function returns the number

of items parsed, or -1 if there is an error. For instance, assume the character string origin was given

by the user as two geographic coordinates separated by a slash (e.g., "35:45W/19:30:55.3S"). We

obtain the two coordinates as decimal degrees by calling

n = GMT_Get_Value (API, origin, pair);

Your program can now check that n equals 2 and then use the values in pairs. Note: Dimensions given

with units of inches, cm, or points are converted to the GMT default length unit (PROJ_LENGTH_UNIT)

[cm], while distances given in km, nautical miles, miles, feet, or survey feet are returned in meters. Arc

lengths in minutes and seconds are returned in decimal degrees, and date/time values are returned in

seconds since the epoch (1970).

7.9.5 Inquiring about a GMT default parameter

If your program needs to determine one or more of the current GMT default settings you can do so via

int GMT_Get_Default (void *API, char *keyword, char *value);

where keyword is one such keyword (e.g., PROJ_LENGTH_UNIT) and value must be a character

array long enough to hold the answer. Depending on what parameter you selected you could further

convert it to a numerical value with GMT_Get_Value or just use it in a text comparison.

7.10 Prepare module options

[sec:func] One of the advantages of programming with the API is that you have access to the high-level

GMT modules. For example, if your program must compute the distance from a point to all other points

on the node you can simply set up options and call GMT_grdmath to do it for you and accept the result

back as an input grid. All the module interfaces are identical are looks like

int GMT_Call_Module (void *API, const char *module, int mode, void *args);

Here, module can be any of the GMT modules, such as psxy or grdvolume. All GMT modules may

be called with one of three sets of args depending on mode. The three modes differ in how the options

are passed to the module:

32 Chapter 7. The GMT C Application Program Interface

GMT API Documentation, Release 5.1.1

mode == GMT_MODULE_EXIST Just print a brief one-line summary of the module;

args should be NULL. If module equals NULL then we list summaries for all the

modules.

mode == GMT_MODULE_PURPOSE Just prints the purpose of the module; args should

be NULL.

mode == GMT_MODULE_OPT Expects args to be a pointer to a doubly-linked list of

objects with individual options for the current program. We will see how API functions

can help prepare such lists.

mode == GMT_MODULE_CMD Expects args to be a single text string with all re-

quired options.

mode > 0 Expects args to be an array of text options and mode to be a count of how

many options are passed (i.e., the argc, argv[]model used by the GMT programs

themselves).

If no module by the given name is found we return -1.

7.10.1 Set program options via text array arguments

When mode > 0 we expect an array args of character strings that each holds a single command line

options (e.g., “-R120:30/134:45/8S/3N”) and interpret mode to be the count of how many options are

passed. This, of course, is almost exactly how the stand-alone GMT programs are called (and reflects

how they themselves are activated internally). We call this the “argc–argv” mode. Depending on how

your program obtains the necessary options you may find that this interface offers all you need.

7.10.2 Set program options via text command

If mode == 0 then args will be examined to see if it contains several options within a single command

string. If so we will break these into separate options. This is useful if you wish to pass a single string

such as “-R120:30/134:45/8S/3N -JM6i mydata.txt -Sc0.2c”. We call this the “command” mode.

7.10.3 Set program options via linked structures

The third, linked-list interface allows developers using higher-level programming languages to pass all

command options via a pointer to a NULL-terminated, doubly-linked list of option structures, each

containing information about a single option. Here, instead of text arguments we pass the pointer to

the linked list of options mentioned above, and mode must be passed as -1 (or any negative value).

Using this interface can be more involved since you need to generate the linked list of program options;

however, utility functions exist to simplify its use. This interface is intended for programs whose internal

workings are better suited to generate such arguments – we call this the “options” mode. The order in

the list is not important as GMT will sort it internally according to need. The option structure is defined

below.

struct GMT_OPTION {

char option; /* Single character of the option (e.g., ’G’ for -G) */

char *arg; /* String pointer with arguments (NULL if not used) */

struct GMT_OPTION *next; /* Pointer to next option (NULL for last option) */

struct GMT_OPTION *prev; /* Pointer to previous option (NULL for first option) */

};

7.10. Prepare module options 33

GMT API Documentation, Release 5.1.1

7.10.4 Convert between text and linked structures

To assist programmers there are also two convenience functions that allow you to convert between the

two argument formats. They are

struct GMT_OPTIONS *GMT_Create_Options (void *API, int argc, void *args);

This function accepts your array of text arguments (cast via a void pointer), allocates the necessary

space, performs the conversion, and returns a pointer to the head of the linked list of program options.

However, in case of an error we return a NULL pointer and set API->error to indicate the nature of

the problem. Otherwise, the pointer may now be passed to the relevant GMT_module. Note that if your

list of text arguments were obtained from a C main() function then argv[0] will contain the name

of the calling program. To avoid passing this as a file name option, call GMT_Create_Options with

argc-1 and argv+1. If you wish to pass a single text string with multiple options (in lieu of an array

of text strings), then pass argc = 0. When no longer needed you can remove the entire list by calling

int GMT_Destroy_Options (void *API, struct GMT_OPTION **list);

The function returns 1 if there is an error (which is passed back with API->error), otherwise it returns

0.

The inverse function prototype is

char **GMT_Create_Args (void *API, int *argc, struct GMT_OPTIONS *list);

which allocates space for the text strings and performs the conversion; it passes back the count of the

arguments via argc and returns a pointer to the text array. In the case of an error we return a NULL

pointer and set API->error to reflect the error type. Note that argv[0] will not contain the name of

the program as is the case the arguments presented by a C main() function. When you no longer have

any use for the text array, call

int GMT_Destroy_Args (void *API, int argc, char **argv[]);

to deallocate the space used. This function returns 1 if there is an error (which is passed back with

API->error), otherwise it returns 0.

Finally, to convert the linked list of option structures to a single text string command, use

char *GMT_Create_Cmd (void *API, struct GMT_OPTION *list);

Developers who plan to import and export GMT shell scripts might find it convenient to use these

functions. In case of an error we return a NULL pointer and set API->error, otherwise a pointer to

an allocated string is returned. When you no longer have any use for the text string, call

int _GMT_Destroy_Cmd (void *API, char **argv);

to deallocate the space used. This function returns 1 if there is an error (which is passed back with

API->error), otherwise it returns 0.

7.10.5 Manage the linked list of options

Several additional utility functions are available for programmers who wish to manipulate program

option structures within their own programs. These allow you to create new option structures, append

them to the linked list, replace existing options with new values, find a particular option, and remove

options from the list. Note: The order in which the options appear in the linked list is of no consequence

34 Chapter 7. The GMT C Application Program Interface

GMT API Documentation, Release 5.1.1

to GMT. Internally, GMT will sort and process the options in the manner required. Externally, you are

free to maintain your own order.

Make a new option structure

GMT_Make_Option will allocate a new option structure, assign it values given the option and arg

parameter (pass NULL if there is no argument for this option), and returns a pointer to the allocated

structure. The prototype is

struct GMT_OPTION *GMT_Make_Option (void *API, char option, char *arg);

Should memory allocation fail the function will print an error message set an error code via

API->error, and return NULL.

Append an option to the linked list

GMT_Append_Option will append the specified option to the end of the doubly-linked list. The

prototype is

struct GMT_OPTION *GMT_Append_Option (void *API, struct GMT_OPTION *option, \

struct GMT_OPTION *list);

We return the list back, and if list is given as NULL we return option as the start of the new list.

Any errors results in a NULL pointer with API->error holding the error type.

Find an option in the linked list

GMT_Find_Option will return a pointer ptr to the first option in the linked list starting at list

whose option character equals option. If not found we return NULL. While this is not necessarily an

error we still set API->error accordingly. The prototype is

struct GMT_OPTION *GMT_Find_Option (void *API, char option,

struct GMT_OPTION *list);

If you need to look for multiple occurrences of a certain option you will need to call

GMT_Find_Option again, passing the option following the previously found option as the list

entry, i.e.,

list = *ptr->next;

Update an existing option in the list

GMT_Update_Option will replace the argument of current with the new argument arg and oth-

erwise leave the option at its place in the list. The prototype is

int GMT_Update_Option (void *API, struct GMT_OPTION *current, char *arg);

An error will be reported if (a) current is NULL or (b) arg is NULL. The function returns 1 if there

is an error, otherwise it returns 0.

7.10. Prepare module options 35

GMT API Documentation, Release 5.1.1

Delete an existing option in the linked list

You may use GMT_Delete_Option to remove option from the linked list. The prototype is

int GMT_Delete_Option (void *API, struct GMT_OPTION *current);

We return TRUE if the option is not found in the list and set API->error accordingly. Note: Only the

first occurrence of the specified option will be deleted. If you need to delete all such options you will

need to call this function in a loop until it returns a non-zero status.

Specify a file via an linked option

To specify an input file name via an option, simply use < as the option (this is what

GMT_Create_Options does when it finds filenames on the command line). Likewise, > can be

used to explicitly indicate an output file. In order to append to an existing file, use >>. For example

the following command would read from file.A and append to file.B:

gmtconvert -<file.A ->>file.B

These options also work on the command line but usually one would have to escape the special characters

< and > as they are used for file redirection.

7.11 Calling a GMT module

Given your linked list of program options (or text array) and possibly some registered resources, you

can now call the required GMT module using one of the two flavors discussed in section [sec:func]. All

modules return an error or status code that your program should consider before processing the results.

7.12 Adjusting headers and comments

All header records in incoming datasets are stored in memory. You may wish to replace these records

with new information, or append new information to the existing headers. This is achieved with

int GMT_Set_Comment (void *API, unsigned int family, unsigned int mode

void *arg, void *data)

Again, family selects which kind of resource is passed via data. The mode determines what kind of

comment is being considered, how it should be included, and in what form the comment passed via arg

is. Table [tbl:comments] lists the available options, which may be combined by adding (bitwise “or”).

The GMT_Set_Comment does not actually output anything but sets the relevant comment and header

records in the relevant structure. When a file is written out the information will be output as well (Note:

Users can always decide if they wish to turn header output on or off via the common GMT option -h.

For record-by-record writing you must enable the header block output when you call GMT_Begin_IO

36 Chapter 7. The GMT C Application Program Interface

GMT API Documentation, Release 5.1.1

constant description

GMT_COMMENT_IS_TEXT Comment is a text string

GMT_COMMENT_IS_OPTION Comment is a linked list of GMT_OPTION structures

GMT_COMMENT_IS_COMMAND Comment is the command

GMT_COMMENT_IS_REMARK Comment is the remark

GMT_COMMENT_IS_TITLE Comment is the title

GMT_COMMENT_IS_NAME_X Comment is the x variable name (grids only)

GMT_COMMENT_IS_NAME_Y Comment is the y variable name (grids only)

GMT_COMMENT_IS_NAME_Z Comment is the z variable name (grids only)

GMT_COMMENT_IS_COLNAMES Comment is the column names header

GMT_COMMENT_IS_RESET Comment replaces existing information

The named modes (command, remark, title, name_x,y,z and colnames are used to distinguish regular text

comments from specific fields in the header structures of the data resources, such as GMT_GRID. For the

various table resources (e.g., GMT_DATASET) these modifiers result in a specially formatted comments

beginning with “Command: ” or “Remark: ”, reflecting how this type of information is encoded in the

headers.

7.13 Exporting Data

If your program needs to write any of the four recognized data types (CPT files, data tables, text tables,

or GMT grids) you can use the GMT_Put_Data. In the case of data and text tables, you may also

consider the GMT_Put_Record function. As a general rule, your program organization may simplify

if you can write the export the entire resource with GMT_Put_Data. However, if the program logic is

simple or already involves using GMT_Get_Record, it may be better to export one data record at the

time via GMT_Put_Record.

Both of these output functions takes a parameter called mode. The mode parameter generally takes on

different meanings for the different data types and will be discussed below. However, one bit setting is

common to all types: By default, you are only allowed to write a data resource once; the resource is

then flagged to have been written and subsequent attempts to write to the same resource will quietly be

ignored. In the unlikely event you need to re-write a resource you can override this default behavior by

adding GMT_IO_RESET to your mode parameter.

7.13.1 Enable Data Export

Similar to the data import procedures, once all output destinations have been registered, we signal the

API that we are done with the registration phase and are ready to start the actual data export. As for input,

this step is only needed when dealing with record-by-record writing. Again, we enable record-by-record

writing by calling GMT_Begin_IO, this time with direction = GMT_OUT. This function enables

data export and prepares the registered destinations for the upcoming writing.

7.13.2 Exporting a data set

To have your program accept results from GMT modules and write them separately requires you to use

the GMT_Write_Data or GMT_Put_Data functions. They are very similar to the GMT_Read_Data

and GMT_Get_Data functions encountered earlier.

7.13. Exporting Data 37

GMT API Documentation, Release 5.1.1

Exporting a data set to a file, stream, or handle

The prototype for writing to a file (via name, stream, or file handle) is

int GMT_Write_Data (void *API, unsigned int family, unsigned int method,

unsigned int geometry, unsigned int mode,

double wesn[], void *output, void *data);

where data is a pointer to any of the four structures discussed previously. Again, the mode parameter

is specific to each data type:

CPT table mode controls if the CPT table’s back-, fore-, and NaN-colors should be written (1) or not

(0).

Data table If method is GMT_IS_FILE, then the value of mode affects how the data set is written:

GMT_WRITE_SET The entire data set will be written to the single file [0].

GMT_WRITE_TABLE Each table in the data set is written to individual files [1]. You can

either specify an output file name that must contain one C-style format specifier for a int

variable (e.g., “New_Table_%06d.txt”), which will be replaced with the table number (a

running number from 0) or you must assign to each table i a unique output file name via the

D->table[i]->file[GMT_OUT] variables prior to calling the function.

GMT_WRITE_SEGMENT Each segment in the data set is written to an individual file [2].

Same setup as for GMT_WRITE_TABLE except we use sequential segment numbers to

build the file names.

GMT_WRITE_TABLE_SEGMENT Each segment in the data set is written to an individual file

[3]. You can either specify an output file name that must contain two C-style format specifiers

for two int variables (e.g., “New_Table_%06d_Segment_%03d.txt”), which will be replaced

with the table and segment numbers, or you must assign to each segment j in each table i

a unique output file name via the D->table[i]->segment[j]->file[GMT_OUT]

variables prior to calling the function.

GMT_WRITE_OGR Writes the dataset in OGR/GMT format in conjunction with the -a setting

[4].

Text table The mode is used the same way as for data tables.

GMT grid Here, modemay be GMT_GRID_HEADER_ONLY to only update a file’s header structure,

but normally it is simply GMT_GRID_ALL so the entire grid and its header will be exported (a

subset is not allowed during export). However, in the event your data array holds both the real and

imaginary parts of a complex data set you must add either GMT_GRID_IS_COMPLEX_REAL

or GMT_GRID_IS_COMPLEX_IMAG to mode so as to export the corresponding grid val-

ues correctly. Finally, for native binary grids you may skip writing the grid header by adding

GMT_GRID_NO_HEADER; this setting is ignored for other grid formats. If your output grid

is huge and you are building it row-by-row, set mode to GMT_GRID_HEADER_ONLY |

GMT_GRID_ROW_BY_ROW. You can then write the grid row-by-row using GMT_Put_Row.

By default the rows will be automatically processed in order. To completely specify which row to

be written, use GMT_GRID_ROW_BY_ROW_MANUAL instead.

If successful the function returns 0; otherwise we return 1 and set API->error to reflect to cause.

Note: If method is GMT_IS_FILE, family is GMT_IS_GRID, and the filename implies a change

from NaN to another value then the grid is modified accordingly. If you continue to use that grid after

writing please be aware that the changes you specified were applied to the grid.

38 Chapter 7. The GMT C Application Program Interface

GMT API Documentation, Release 5.1.1

Exporting a data set to memory

If writing to a memory destination you will want to first register that destination and then use the returned

ID with GMT_Put_Data instead:

int GMT_Put_Data (void *API, int ID, unsigned int mode, void *data);

where ID is the unique ID of the registered destination, mode is specific to each data type (and controls

aspects of the output structuring), and data is a pointer to any of the four structures discussed previ-

ously. For more detail, see GMT_Write_Data above. If successful the function returns 0; otherwise

we return 1 and set API->error to reflect to cause.

7.13.3 Exporting a data record

If your program must write data table records one-by-one you must first enable record-by-record writing

with GMT_Begin_IO and then use the GMT_Put_Record function in a loop; the prototype is

int GMT_Put_Record (void *API, unsigned int mode, void *rec);

where rec is a pointer to either (a) a double-precision array with the current row. Then, rec is expected

to hold at least as many items as the current setting of n_col[GMT_OUT], which represents the number

of columns in the output destination. Alternatively (b), rec points to a text string. The mode parameter

must be set to reflect what is passed. Using GMT_Put_Record requires you to first initialize the des-

tination with GMT_Init_IO. Note that for families GMT_IS_DATASET and GMT_IS_TEXTSET the

methods GMT_IS_DUPLICATE and GMT_IS_REFERENCE are not supported since you can simply

populate the GMT_DATASET structure directly. As mentioned, mode affects what is actually written:

GMT_WRITE_DOUBLE Normal operation that builds the current output record from the values in

rec.

GMT_WRITE_TEXT For ASCII output mode we write the text string rec. If rec is NULL then

we use the current (last imported) text record. If binary output mode we quietly skip writing this

record.

GMT_WRITE_TABLE_HEADER For ASCII output mode we write the text string rec. If rec is

NULL then we write the last read header record (and ensures it starts with #). If binary output

mode we quietly skip writing this record.

GMT_WRITE_SEGMENT_HEADER For ASCII output mode we use the text string rec as the

segment header. If rec is NULL then we use the current (last read) segment header record. If

binary output mode instead we write a record composed of NaNs.

The function returns 1 if there was an error associated with the writing (which is passed back with

API->error), otherwise it returns 0.

7.13.4 Exporting a grid row

If your program must write a grid file row-by-row you must first enable row-by-row writing with

GMT_Read_Data and then use the GMT_Put_Row function in a loop; the prototype is

int GMT_Put_Row (void *API, int row_no, struct GMT_GRID *G, float *row);

where row is a pointer to a single-precision array with the current row, G is the grid in question, and

row_no is the number of the current row to be written. Note this value is only considered if the row-

by-row mode was initialized with GMT_GRID_ROW_BY_ROW_MANUAL.

7.13. Exporting Data 39

GMT API Documentation, Release 5.1.1

7.13.5 Disable Data Export

Once the record-by-record output has completed we disable further output to prevent accidental writ-

ing from occurring (due to poor program structure, bugs, etc.). We do so by calling GMT_End_IO.

This function disables further record-by-record data export; here, we obviously pass direction as

GMT_OUT.

7.14 Destroy allocated resources

If your session imported any data sets into memory then you may explicitly free this memory once it

is no longer needed and before terminating the session. This is done with the GMT_Destroy_Data

function, whose prototype is

int GMT_Destroy_Data (void *API, void *data);

where data is the address of the pointer to a data container. Note that when each module completes

it will automatically free memory created by the API; similarly, when the session is destroyed we also

automatically free up memory. Thus, GMT_Destroy_Data is therefore generally only needed when

you wish to directly free up memory to avoid running out of it. The function returns 1 if there is an error

when trying to free the memory (the error code is passed back with API->error), otherwise it returns

0.

7.15 Terminate a GMT session

Before your program exits it should properly terminate the GMT session, which involves a call to

int GMT_Destroy_Session (void *API);

which simply takes the pointer to the GMT API control structure as its only arguments. It terminates the

GMT machinery and deallocates all memory used by the GMT API book-keeping. It also unregisters

any remaining resources previously registered with the session. The GMT API will only close files that

it was responsible for opening in the first place. Finally, the API structure itself is freed so your main

program does not need to do so. The function returns 1 if there is an error when trying to free the memory

(the error code is passed back with API->error), otherwise it returns 0.

40 Chapter 7. The GMT C Application Program Interface

CHAPTER 8

The GMT FFT Interface

While the i/o options presented so far lets you easily read in a data table or grid and manipulated them,

if you need to do so in the wavenumber domain then this chapter is for you. Here we outline how to

take the Fourier transform of such data, perform calculations in the wavenumber domain, and take the

inverse transform before writing the results. To assist programmers we also distribute fully functioning

demonstration programs that takes you through the steps we are about to discuss; these demo programs

may be used as your starting point for further development.

8.1 Presenting and Parsing the FFT options

Several GMT programs using FFTs present the same unified option and modifier sets to the user. The

API makes these available as well. If your program needs to present the option usage you can call

unsigned int GMT_FFT_Option (void *API, char option, unsigned int dim,

char *string);

Here, option is the unique character used for this particular program option (most GMT programs

have standardized on using ‘N’ but you are free to choose whatever you want except existing GMT

common options). The dim sets the dimension of the transform, currently you must choose 1 or 2,

while the string is a one-line message that states what the option does; you should tailor this to your

program. If NULL then a generic message is placed instead.

To parse the user’s selection you call

void *GMT_FFT_Parse (void *API, char option, unsigned int dim, char *args);

which accepts the user’s string option via args; the other arguments are the same as those above. The

function returns an opaque pointer to a structure with the chosen parameters.

8.2 Initializing the FFT machinery

Before your can take any transforms you must initialize the FFT machinery. This process involves a

series of preparatory steps that are conveniently performed for you by

void *GMT_FFT_Create (void *API, void *X, unsigned int dim,

unsigned int mode, void *F);

Here, X is either your dataset or grid pointer, dim is the dimension of the transform (1 or 2 only),

mode passes various flags to the setup, such as whether the data is real, imaginary, or complex, and F

is the opaque pointer returned by GMT_FFT_Parse. Depending on the options you chose to pass to

41

GMT API Documentation, Release 5.1.1

GMT_FFT_Parse, the data may have a constant or a trend removed, reflected and extended by various

symmetries, padded and tapered to desired transform dimensions, and possibly there are temporary files

written out before the transform takes place. See the man page for a full explanation of the options

presented by GMT_FFT_Option.

8.3 Taking the FFT

Now that everything has been set up you can perform the transform with

void *GMT_FFT (void *API, void *X, int direction, unsigned int mode, void *K);

which takes as direction either GMT_FFT_FWD or GMT_FFT_INV. The mode is used to spec-

ify if we pass a real (GMT_FFT_REAL) or complex (GMT_FFT_COMPLEX) data set, and K is the

opaque pointer returned by GMT_FFT_Create. The transform is performed in place and returned via

X. When done with your manipulations (below) you can call it again with the inverse flag to recover the

corresponding space-domain version of your data. The FFT is fully normalized so that calling forward

followed by inverse yields the original data set. The information passed via K determines if a 1-D or 2-D

transform takes place; the key work is done via GMT_FFT_1D or GMT_FFT_1D below.

8.4 Taking the 1-D FFT

A lower-level 1-D FFT is also available via

int GMT_FFT_1D (void *API, float *data, uint64_t n, int direction, unsigned int mode);

which takes as direction either GMT_FFT_FWD or GMT_FFT_INV. The mode is used to specify if

we pass a real (GMT_FFT_REAL) or complex (GMT_FFT_COMPLEX) data set, and data is the 1-D

data array of length n that we wish to transform. The transform is performed in place and returned via

data. When done with your manipulations (below) you can call it again with the inverse flag to recover

the corresponding space-domain version of your data. The 1-D FFT is fully normalized so that calling

forward followed by inverse yields the original data set. Note that unlike GMT_FFT, this functions does

not do any data extension, mirroring, detrending, etc. but operates directly on the data array given.

8.5 Taking the 2-D FFT

A lower-level 2-D FFT is also available via

int GMT_FFT_2D (void *API, float *data, unsigned int nx, unsigned int ny,

int direction, unsigned int mode);

which takes as direction either GMT_FFT_FWD or GMT_FFT_INV. The mode is used to specify if

we pass a real (GMT_FFT_REAL) or complex (GMT_FFT_COMPLEX) data set, and data is the 2-D

data array in row-major format, with row length nx and column length ny. The transform is performed

in place and returned via data. When done with your manipulations (below) you can call it again

with the inverse flag to recover the corresponding space-domain version of your data. The 2-D FFT

is fully normalized so that calling forward followed by inverse yields the original data set. Note that

unlike GMT_FFT, this functions does not do any data extension, mirroring, detrending, etc. but operates

directly on the data array given.

42 Chapter 8. The GMT FFT Interface

GMT API Documentation, Release 5.1.1

8.6 Wavenumber calculations

As your data have been transformed to the wavenumber domain you may wish to operate on the various

values as a function of wavenumber. We will show how this is done for datasets and grids separately.

First, we present the function that returns an individual wavenumber:

double GMT_FFT_Wavenumber (void *API, uint64_t k, unsigned int mode, void *K);

where k is the index into the array or grid, mode specifies which wavenumber we want (it is not used for

1-D transform but for the 2-D transform we can select either the x-wavenumber (0), the y-wavenumber

(1), or the radial wavenumber (2)), and finally the opaque vector used earlier.

8.6.1 1-D FFT manipulation

To be added later.

8.6.2 2-D FFT manipulation

The number of complex pairs in the grid is given by the header’s nm variable, while size will be

twice that value as it holds the number of components. To visit all the complex values and obtain the

corresponding wavenumber we simply need to loop over size and call GMT_FFT_Wavenumber.

This code snippet multiples the complex grid by the radial wavenumber:

uint64_t k;

for (k = 0; k < Grid->header->size; k++) {

wave = GMT_FFT_Wavenumber (API, k, 2, K);

Grid->data[k] *= wave;

}

Alternatively, you may choose to be more specific about which components are real and imaginary

(especially if they are to be treated differently), and set up the loop this way:

uint64_t re, im;

for (re = 0, im = 1; re < Grid->header->size; re += 2, im += 2) {

wave = GMT_FFT_Wavenumber (API, re, 2, K);

Grid->data[re] *= wave;

Grid->data[im] *= 2.0 * wave;

}

8.7 Destroying the FFT machinery

When done you terminate the FFT machinery with

double GMT_FFT_Destroy (void *API, void *K);

which simply frees up the memory allocated by the FFT machinery.

8.6. Wavenumber calculations 43

GMT API Documentation, Release 5.1.1

44 Chapter 8. The GMT FFT Interface

CHAPTER 9

FORTRAN interfaces

FORTRAN 90 developers who wish to use the GMT API may use the same API functions as discussed

in Chapter 2. As we do not have much (i.e., any) experience with modern Fortran we are not sure to what

extent you are able to access the members of the various structures, such as the GMT_GRID structure.

Thus, this part will depend on feedback and for the time being is to be considered preliminary and

subject to change. We encourage you to take contact should you wish to use the API with your Fortran

90 programs.

9.1 FORTRAN 77 Grid i/o

Because of a lack of structure pointers we can only provide a low level of support for Fortran 77. This

API is limited to help you inquire, read and write GMT grids directly from Fortran 77. To inquire about

the range of information in a grid, use

int GMT_F77_readgrdinfo (unsigned int dim[], double limits[], double inc[],

char *title, char *remark, char *file)

where dim returns the grid width, height, and registration, limits returns the min and max values

for x, y, and z as three consecutive pairs, inc returns the x and y increment, the title and remark

returns the values of these strings. The file argument is the name of the file we wish to inquire about.

The function returns 0 unless there is an error. Note that you must declare your variables so that limits

has at least 6 elements and inc and dime have at least 2 each.

To actually read the grid, we use

int GMT_F77_readgrd (float *array, unsigned int dim[], double wesn[],

double inc[], char *title, char *remark, char *file)

where array is the 1-D grid data array, dim returns the grid width, height, and registration, limits

returns the min and max values for x, y, and z, inc returns the x and y increments, the title and

remark returns the values of these strings. The file argument is the name of the file we wish to read

from. The function returns 0 unless there is an error. Note on input, dim[2] can be set to 1 which

means we will allocate the array for you; otherwise we assume space has already been secured. Also, if

dim[3] is set to 1 we will in-place transpose the array from C-style row-major array order to Fortran

column-major array order.

Finally, to write a grid to file you can use

int GMT_F77_writegrd_(float *array, unsigned int dim[], double wesn[],

double inc[], char *title, char *remark, char *file)

45

GMT API Documentation, Release 5.1.1

where array is the 1-D grid data array, dim specifies the grid width, height, and registration, limits

may be used to specify a subset (normally, just pass zeros), inc specifies the x and y increments, the

title and remark supplies the values of these strings. The file argument is the name of the file we

wish to write to. The function returns 0 unless there is an error. Note on input, dim[2] can be set to 1

which means we will allocate the array for you; otherwise we assume space has already been secured.

Also, if dim[3] is set to 1 we will in-place transpose the array from Fortran column-major array order

to C-style row-major array order before writing. Note this means array will have been transposed when

the function returns.

46 Chapter 9. FORTRAN interfaces

Index

A
API, 1

47

	Preamble
	The i/o abstraction layer
	Our audience
	Definitions
	Recognized resources
	Data tables
	Text tables
	GMT grids
	CPT palette tables
	GMT images
	User data columns (GMT vectors)
	User data matrices (GMT matrices)

	Overview of the GMT C Application Program Interface
	The GMT C Application Program Interface
	Initialize a new GMT session
	Register input or output resources
	Create empty resources
	Duplicate resources
	Get resource ID
	Import Data
	Manipulate data
	Message and Verbose Reporting
	Presenting and accessing GMT options
	Prepare module options
	Calling a GMT module
	Adjusting headers and comments
	Exporting Data
	Destroy allocated resources
	Terminate a GMT session

	The GMT FFT Interface
	Presenting and Parsing the FFT options
	Initializing the FFT machinery
	Taking the FFT
	Taking the 1-D FFT
	Taking the 2-D FFT
	Wavenumber calculations
	Destroying the FFT machinery

	FORTRAN interfaces
	FORTRAN 77 Grid i/o

	Index

