Crystals of Modified Nakajima Monomials

AUTHORS:

  • Arthur Lubovsky: Initial version
  • Ben Salisbury: Initial version

Let Y_{i,k}, for i \in I and k \in \ZZ, be a commuting set of variables, and let \boldsymbol{1} be a new variable which commutes with each Y_{i,k}. (Here, I represents the index set of a Cartan datum.) One may endow the structure of a crystal on the set \widehat{\mathcal{M}} of monomials of the form

M = \prod_{(i,k) \in I\times \ZZ_{\ge0}} Y_{i,k}^{y_i(k)}\boldsymbol{1}.

Elements of \widehat{\mathcal{M}} are called modified Nakajima monomials. We will omit the \boldsymbol{1} from the end of a monomial if there exists at least one y_i(k) \neq 0. The crystal structure on this set is defined by

\begin{aligned}
\mathrm{wt}(M) &= \sum_{i\in I} \Bigl( \sum_{k\ge 0} y_i(k) \Bigr) \Lambda_i, \\
\varphi_i(M) &= \max\Bigl\{ \sum_{0\le j \le k} y_i(j) : k\ge 0 \Bigr\}, \\
\varepsilon_i(M) &= \varphi_i(M) - \langle h_i, \mathrm{wt}(M) \rangle, \\
k_f = k_f(M) &= \min\Bigl\{ k\ge 0 : \varphi_i(M) = \sum_{0\le j\le k} y_i(j) \Bigr\}, \\
k_e = k_e(M) &= \max\Bigl\{ k\ge 0 : \varphi_i(M) = \sum_{0\le j\le k} y_i(j) \Bigr\},
\end{aligned}

where \{h_i : i \in I\} and \{\Lambda_i : i \in I \} are the simple coroots and fundamental weights, respectively. With a chosen set of integers C = (c_{ij})_{i\neq j} such that c_{ij}+c{ji} =1, one defines

A_{i,k} = Y_{i,k} Y_{i,k+1} \prod_{j\neq i} Y_{j,k+c_{ji}}^{a_{ji}},

where (a_{ij}) is a Cartan matrix. Then

\begin{aligned}
e_iM &= \begin{cases} 0 & \text{if } \varepsilon_i(M) = 0, \\
A_{i,k_e}M & \text{if } \varepsilon_i(M) > 0, \end{cases} \\
f_iM &= A_{i,k_f}^{-1} M.
\end{aligned}

It is shown in [KKS07] that the connected component of \widehat{\mathcal{M}} containing the element \boldsymbol{1}, which we denote by \mathcal{M}(\infty), is crystal isomorphic to the crystal B(\infty).

Let \widetilde{\mathcal{M}} be \widehat{\mathcal{M}} as a set, and with crystal structure defined as on \widehat{\mathcal{M}} with the exception that

f_iM = \begin{cases} 0 & \text{if } \varphi_i(M) = 0, \\
A_{i,k_f}^{-1}M & \text{if } \varphi_i(M) > 0. \end{cases}

Then Kashiwara [Kash03] showed that the connected component in \widetilde{\mathcal{M}} containing a monomial M such that e_iM = 0, for all i \in I, is crystal isomorphic to the irreducible highest weight crystal B(\mathrm{wt}(M)).

WARNING:

Monomial crystals depend on the choice of positive integers C = (c_{ij})_{i\neq j} satisfying the condition c_{ij}+c_{ji}=1. We have chosen such integers uniformly such that c_{ij} = 1 if i < j and c_{ij} = 0 if i>j.

REFERENCES:

[KKS07](1, 2) S.-J. Kang, J.-A. Kim, and D.-U. Shin. Modified Nakajima Monomials and the Crystal B(\infty). J. Algebra 308, pp. 524–535, 2007.
[Kash03](1, 2) M. Kashiwara. Realizations of Crystals. Combinatorial and geometric representation theory (Seoul, 2001), Contemp. Math. 325, Amer. Math. Soc., pp. 133–139, 2003.
class sage.combinat.crystals.monomial_crystals.CrystalOfNakajimaMonomials(ct, La)

Bases: sage.combinat.crystals.monomial_crystals.InfinityCrystalOfNakajimaMonomials

Let \widetilde{\mathcal{M}} be \widehat{\mathcal{M}} as a set, and with crystal structure defined as on \widehat{\mathcal{M}} with the exception that

f_iM = \begin{cases} 0 & \text{if } \varphi_i(M) = 0, \\
A_{i,k_f}^{-1}M & \text{if } \varphi_i(M) > 0. \end{cases}

Then Kashiwara [Kash03] showed that the connected component in \widetilde{\mathcal{M}} containing a monomial M such that e_iM = 0, for all i \in I, is crystal isomorphic to the irreducible highest weight crystal B(\mathrm{wt}(M)).

INPUT:

  • ct – a Cartan type
  • La – an element of the weight lattice

EXAMPLES:

sage: La = RootSystem("A2").weight_lattice().fundamental_weights()
sage: M = crystals.NakajimaMonomials("A2",La[1]+La[2])
sage: B = crystals.Tableaux("A2",shape=[2,1])
sage: GM = M.digraph()
sage: GB = B.digraph()
sage: GM.is_isomorphic(GB,edge_labels=True)
True

sage: La = RootSystem("G2").weight_lattice().fundamental_weights()
sage: M = crystals.NakajimaMonomials("G2",La[1]+La[2])
sage: B = crystals.Tableaux("G2",shape=[2,1])
sage: GM = M.digraph()
sage: GB = B.digraph()
sage: GM.is_isomorphic(GB,edge_labels=True)
True

sage: La = RootSystem("B2").weight_lattice().fundamental_weights()
sage: M = crystals.NakajimaMonomials(['B',2],La[1]+La[2])
sage: B = crystals.Tableaux("B2",shape=[3/2,1/2])
sage: GM = M.digraph()
sage: GB = B.digraph()
sage: GM.is_isomorphic(GB,edge_labels=True)
True

sage: La = RootSystem(['A',3,1]).weight_lattice().fundamental_weights()
sage: M = crystals.NakajimaMonomials(['A',3,1],La[0]+La[2])
sage: B = crystals.GeneralizedYoungWalls(3,La[0]+La[2])
sage: SM = M.subcrystal(max_depth=4)
sage: SB = B.subcrystal(max_depth=4)
sage: GM = M.digraph(subset=SM) # long time
sage: GB = B.digraph(subset=SB) # long time
sage: GM.is_isomorphic(GB,edge_labels=True) # long time
True

sage: La = RootSystem(['A',5,2]).weight_lattice().fundamental_weights()
sage: LA = RootSystem(['A',5,2]).weight_space().fundamental_weights()
sage: M = crystals.NakajimaMonomials(['A',5,2],3*La[0])
sage: B = crystals.LSPaths(3*LA[0])
sage: SM = M.subcrystal(max_depth=4)
sage: SB = B.subcrystal(max_depth=4)
sage: GM = M.digraph(subset=SM)
sage: GB = B.digraph(subset=SB)
sage: GM.is_isomorphic(GB,edge_labels=True)
True
cardinality()

Return the cardinality of self.

EXAMPLES:

sage: La = RootSystem(['A',2]).weight_lattice().fundamental_weights()
sage: M = crystals.NakajimaMonomials(['A',2],La[1])
sage: M.cardinality()
3

sage: La = RootSystem(['D',4,2]).weight_lattice().fundamental_weights()
sage: M = crystals.NakajimaMonomials(['D',4,2],La[1])
sage: M.cardinality()
+Infinity
class sage.combinat.crystals.monomial_crystals.CrystalOfNakajimaMonomialsElement(parent, dict)

Bases: sage.combinat.crystals.monomial_crystals.NakajimaYMonomial

Element class for CrystalOfNakajimaMonomials.

The f_i operators need to be modified from the version in monomial_crystalsNakajimaYMonomial in order to create irreducible highest weight realizations. This modified f_i is defined as

f_iM = \begin{cases} 0 & \text{if } \varphi_i(M) = 0, \\
A_{i,k_f}^{-1}M & \text{if } \varphi_i(M) > 0. \end{cases}

EXAMPLES:

sage: La = RootSystem(['A',5,2]).weight_lattice().fundamental_weights()
sage: M = crystals.NakajimaMonomials(['A',5,2],3*La[0])
sage: m = M.module_generators[0].f(0); m
Y(0,0)^2 Y(0,1)^-1 Y(2,0)
sage: TestSuite(m).run()
f(i)

Return the action of f_i on self.

INPUT:

  • i – an element of the index set

EXAMPLES:

sage: La = RootSystem(['A',5,2]).weight_lattice().fundamental_weights()
sage: M = crystals.NakajimaMonomials(['A',5,2],3*La[0])
sage: m = M.module_generators[0]
sage: [m.f(i) for i in M.index_set()]
[Y(0,0)^2 Y(0,1)^-1 Y(2,0) , None, None, None]
class sage.combinat.crystals.monomial_crystals.InfinityCrystalOfNakajimaMonomials(ct, category, elt_class)

Bases: sage.structure.parent.Parent, sage.structure.unique_representation.UniqueRepresentation

Let Y_{i,k}, for i \in I and k \in \ZZ, be a commuting set of variables, and let \boldsymbol{1} be a new variable which commutes with each Y_{i,k}. (Here, I represents the index set of a Cartan datum.) One may endow the structure of a crystal on the set \widehat{\mathcal{M}} of monomials of the form

M = \prod_{(i,k) \in I\times \ZZ_{\ge0}} Y_{i,k}^{y_i(k)}\boldsymbol{1}.

Elements of \widehat{\mathcal{M}} are called modified Nakajima monomials. We will omit the \boldsymbol{1} from the end of a monomial if there exists at least one y_i(k) \neq 0. The crystal structure on this set is defined by

\begin{aligned}
\mathrm{wt}(M) &= \sum_{i\in I} \Bigl( \sum_{k\ge 0} y_i(k) \Bigr) \Lambda_i, \\
\varphi_i(M) &= \max\Bigl\{ \sum_{0\le j \le k} y_i(j) : k\ge 0 \Bigr\}, \\
\varepsilon_i(M) &= \varphi_i(M) - \langle h_i, \mathrm{wt}(M) \rangle, \\
k_f = k_f(M) &= \min\Bigl\{ k\ge 0 : \varphi_i(M) = \sum_{0\le j\le k} y_i(j) \Bigr\}, \\
k_e = k_e(M) &= \max\Bigl\{ k\ge 0 : \varphi_i(M) = \sum_{0\le j\le k} y_i(j) \Bigr\},
\end{aligned}

where \{h_i : i \in I\} and \{\Lambda_i : i \in I \} are the simple coroots and fundamental weights, respectively. With a chosen set of integers C = (c_{ij})_{i\neq j} such that c_{ij}+c{ji} =1, one defines

A_{i,k} = Y_{i,k} Y_{i,k+1} \prod_{j\neq i} Y_{j,k+c_{ji}}^{a_{ji}},

where (a_{ij}) is a Cartan matrix. Then

\begin{aligned}
e_iM &= \begin{cases} 0 & \text{if } \varepsilon_i(M) = 0, \\
A_{i,k_e}M & \text{if } \varepsilon_i(M) > 0, \end{cases} \\
f_iM &= A_{i,k_f}^{-1} M.
\end{aligned}

It is shown in [KKS07] that the connected component of \widehat{\mathcal{M}} containing the element \boldsymbol{1}, which we denote by \mathcal{M}(\infty), is crystal isomorphic to the crystal B(\infty).

INPUT:

  • cartan_type – a Cartan type
  • use_Y – choice of monomials in terms of A or Y

EXAMPLES:

sage: B = crystals.infinity.Tableaux("C3")
sage: S = B.subcrystal(max_depth=4)
sage: G = B.digraph(subset=S) # long time
sage: M = crystals.infinity.NakajimaMonomials("C3") # long time
sage: T = M.subcrystal(max_depth=4) # long time
sage: H = M.digraph(subset=T) # long time
sage: G.is_isomorphic(H,edge_labels=True) # long time
True

sage: M = crystals.infinity.NakajimaMonomials(['A',2,1])
sage: T = M.subcrystal(max_depth=3)
sage: H = M.digraph(subset=T) # long time
sage: Y = crystals.infinity.GeneralizedYoungWalls(2)
sage: YS = Y.subcrystal(max_depth=3)
sage: YG = Y.digraph(subset=YS) # long time
sage: YG.is_isomorphic(H,edge_labels=True) # long time
True

sage: M = crystals.infinity.NakajimaMonomials("D4")
sage: B = crystals.infinity.Tableaux("D4")
sage: MS = M.subcrystal(max_depth=3)
sage: BS = B.subcrystal(max_depth=3)
sage: MG = M.digraph(subset=MS) # long time
sage: BG = B.digraph(subset=BS) # long time
sage: BG.is_isomorphic(MG,edge_labels=True) # long time
True
cardinality()

Return the cardinality of self, which is always \infty.

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials(['A',5,2])
sage: M.cardinality()
+Infinity
class sage.combinat.crystals.monomial_crystals.NakajimaAMonomial(parent, dict)

Bases: sage.combinat.crystals.monomial_crystals.NakajimaYMonomial

Monomials of the form A_{i_1,k_1}^{a_1}\cdots A_{i_t,k_t}^{a_t}, where i_1,\dots,i_t are elements of the index set, k_1,\dots,k_t are nonnegative integers, and a_1,\dots,a_t are integers.

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials("A3",use_Y=False)
sage: mg = M.module_generators[0]
sage: mg.f_string([1,2,3,2,1])
A(1,0)^-1 A(1,1)^-1 A(2,0)^-2 A(3,0)^-1
sage: mg.f_string([3,2,1])
A(1,2)^-1 A(2,1)^-1 A(3,0)^-1
e(i)

Return the action of e_i on self.

INPUT:

  • i – an element of the index set

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials(['D',4,1],use_Y=False)
sage: m = M.module_generators[0].f_string([4,2,3,0])
sage: [m.e(i) for i in M.index_set()]
[A(2,1)^-1 A(3,1)^-1 A(4,0)^-1 ,
 None,
 None,
 A(0,2)^-1 A(2,1)^-1 A(4,0)^-1 ,
 None]
epsilon(i)

Return the action of \varepsilon_i on self.

INPUT:

  • i – an element of the index set

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials(['C',4,1],use_Y=False)
sage: m = M.module_generators[0].f_string([4,2,3])
sage: [m.epsilon(i) for i in M.index_set()]
[0, 0, 0, 1, 0]
f(i)

Return the action of f_i on self.

INPUT:

  • i – an element of the index set

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials("E8",use_Y=False)
sage: m = M.module_generators[0].f_string([4,2,3,8])
sage: m
A(2,1)^-1 A(3,1)^-1 A(4,0)^-1 A(8,0)^-1
sage: [m.f(i) for i in M.index_set()]
[A(1,2)^-1 A(2,1)^-1 A(3,1)^-1 A(4,0)^-1 A(8,0)^-1 ,
 A(2,0)^-1 A(2,1)^-1 A(3,1)^-1 A(4,0)^-1 A(8,0)^-1 ,
 A(2,1)^-1 A(3,0)^-1 A(3,1)^-1 A(4,0)^-1 A(8,0)^-1 ,
 A(2,1)^-1 A(3,1)^-1 A(4,0)^-1 A(4,1)^-1 A(8,0)^-1 ,
 A(2,1)^-1 A(3,1)^-1 A(4,0)^-1 A(5,0)^-1 A(8,0)^-1 ,
 A(2,1)^-1 A(3,1)^-1 A(4,0)^-1 A(6,0)^-1 A(8,0)^-1 ,
 A(2,1)^-1 A(3,1)^-1 A(4,0)^-1 A(7,1)^-1 A(8,0)^-1 ,
 A(2,1)^-1 A(3,1)^-1 A(4,0)^-1 A(8,0)^-2 ]
phi(i)

Return the action of \varphi_i on self.

INPUT:

  • i – an element of the index set

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials(['C',4,1],use_Y=False)
sage: m = M.module_generators[0].f_string([4,2,3])
sage: [m.phi(i) for i in M.index_set()]
[0, 1, -1, 2, -1]
to_Y_monomial()

Represent \prod_{(i,k)} A_{i,k}^{a_{i}(k)} in the form \prod_{(i,k)} Y_{i,k}^{y_i(k)} using the formula

A_{i,k} = Y_{i,k} Y_{i,k+1} \prod_{\substack{j \in I \\ j\neq i}}
Y_{i,k+c_{ji}}^{a_{ji}}.

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials(['A',2,1],use_Y=False)
sage: m = M.module_generators[0].f_string([2,0,1,2,1])
sage: m
A(0,0)^-1 A(1,0)^-1 A(1,1)^-1 A(2,0)^-1 A(2,1)^-1
sage: m.to_Y_monomial()
Y(0,1) Y(0,2) Y(1,1)^-1 Y(2,2)^-1
weight()

Return the weight of self as an element of self.parent().weight_lattice_realization().

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials(['A',4,2],use_Y=False)
sage: m = M.module_generators[0].f_string([1,2,0,1])
sage: m.weight()
2*Lambda[0] - Lambda[1]
weight_in_root_lattice()

Return the weight of self as an element of the root lattice.

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials(['C',3,1],use_Y=False)
sage: m = M.module_generators[0].f_string([3,0,1,2,0])
sage: m.weight_in_root_lattice()
-2*alpha[0] - alpha[1] - alpha[2] - alpha[3]
class sage.combinat.crystals.monomial_crystals.NakajimaYMonomial(parent, dict)

Bases: sage.structure.element.Element

Monomials of the form Y_{i_1,k_1}^{a_1}\cdots Y_{i_t,k_t}^{y_t}, where i_1,\dots,i_t are elements of the index set, k_1,\dots,k_t are nonnegative integers, and y_1,\dots,y_t are integers.

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials(['B',3,1])
sage: mg = M.module_generators[0]
sage: mg
1
sage: mg.f_string([1,3,2,0,1,2,3,0,0,1])
Y(0,0)^-1 Y(0,1)^-1 Y(0,2)^-1 Y(0,3)^-1 Y(1,0)^-3 Y(1,1)^-2 Y(1,2) Y(2,0)^3 Y(2,2) Y(3,0) Y(3,2)^-1
e(i)

Return the action of e_i on self.

INPUT:

  • i – an element of the index set

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials(['E',7,1])
sage: m = M.module_generators[0].f_string([0,1,4,3])
sage: [m.e(i) for i in M.index_set()]
[None,
 None,
 None,
 Y(0,0)^-1 Y(1,1)^-1 Y(2,1) Y(3,0) Y(3,1) Y(4,0)^-1 Y(4,1)^-1 Y(5,0) ,
 None,
 None,
 None,
 None]

sage: M = crystals.infinity.NakajimaMonomials("C5")
sage: m = M.module_generators[0].f_string([1,3])
sage: [m.e(i) for i in M.index_set()]
[Y(2,1) Y(3,0)^-1 Y(3,1)^-1 Y(4,0) ,
 None,
 Y(1,0)^-1 Y(1,1)^-1 Y(2,0) ,
 None,
 None]
epsilon(i)

Return the value of \varepsilon_i on self.

INPUT:

  • i – an element of the index set

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials(['G',2,1])
sage: m = M.module_generators[0].f(2)
sage: [m.epsilon(i) for i in M.index_set()]
[0, 0, 1]
f(i)

Return the action of f_i on self.

INPUT:

  • i – an element of the index set

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials("B4")
sage: m = M.module_generators[0].f_string([1,3,4])
sage: [m.f(i) for i in M.index_set()]
[Y(1,0)^-2 Y(1,1)^-2 Y(2,0)^2 Y(2,1) Y(3,0)^-1 Y(4,0) Y(4,1)^-1 ,
 Y(1,0)^-1 Y(1,1)^-1 Y(1,2) Y(2,0) Y(2,2)^-1 Y(3,0)^-1 Y(3,1) Y(4,0) Y(4,1)^-1 ,
 Y(1,0)^-1 Y(1,1)^-1 Y(2,0) Y(2,1)^2 Y(3,0)^-2 Y(3,1)^-1 Y(4,0)^3 Y(4,1)^-1 ,
 Y(1,0)^-1 Y(1,1)^-1 Y(2,0) Y(2,1) Y(3,0)^-1 Y(3,1) Y(4,1)^-2 ]
phi(i)

Return the value of \varphi_i on self.

INPUT:

  • i – an element of the index set

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials(['D',4,3])
sage: m = M.module_generators[0].f(1)
sage: [m.phi(i) for i in M.index_set()]
[1, -1, 1]
weight()

Return the weight of self as an element of self.parent().weight_lattice_realization.

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials(['D',4,2])
sage: m = M.module_generators[0].f_string([0,3,2,0,1])
sage: m.weight()
-2*Lambda[0] + Lambda[1]

sage: M = crystals.infinity.NakajimaMonomials(['E',6])
sage: m = M.module_generators[0].f_string([1,5,2,6,3])
sage: m.weight()
(-1/2, -3/2, 3/2, 1/2, -1/2, 1/2, 1/2, -1/2)
weight_in_root_lattice()

Return the weight of self as an element of the root lattice.

EXAMPLES:

sage: M = crystals.infinity.NakajimaMonomials(['F',4])
sage: m = M.module_generators[0].f_string([3,3,1,2,4])
sage: m.weight_in_root_lattice()
-alpha[1] - alpha[2] - 2*alpha[3] - alpha[4]

sage: M = crystals.infinity.NakajimaMonomials(['B',3,1])
sage: mg = M.module_generators[0]
sage: m = mg.f_string([1,3,2,0,1,2,3,0,0,1])
sage: m.weight_in_root_lattice()
-3*alpha[0] - 3*alpha[1] - 2*alpha[2] - 2*alpha[3]

Previous topic

Crystals of letters

Next topic

Direct Sum of Crystals

This Page