Part of the (internal) classes which runs the bijection between rigged
configurations and KR tableaux of type .
AUTHORS:
TESTS:
sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A', 5, 2], [[2,1]])
sage: from sage.combinat.rigged_configurations.bij_type_A2_odd import KRTToRCBijectionTypeA2Odd
sage: bijection = KRTToRCBijectionTypeA2Odd(KRT(pathlist=[[-1,2]]))
sage: TestSuite(bijection).run()
sage: RC = RiggedConfigurations(['A', 5, 2], [[2, 1]])
sage: from sage.combinat.rigged_configurations.bij_type_A2_odd import RCToKRTBijectionTypeA2Odd
sage: bijection = RCToKRTBijectionTypeA2Odd(RC(partition_list=[[],[],[]]))
sage: TestSuite(bijection).run()
Bases: sage.combinat.rigged_configurations.bij_type_A.KRTToRCBijectionTypeA
Specific implementation of the bijection from KR tableaux to rigged
configurations for type .
This inherits from type because we use the same methods in
some places.
Build the next state for type .
TESTS:
sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A', 5, 2], [[2,1]])
sage: from sage.combinat.rigged_configurations.bij_type_A2_odd import KRTToRCBijectionTypeA2Odd
sage: bijection = KRTToRCBijectionTypeA2Odd(KRT(pathlist=[[-2,3]]))
sage: bijection.cur_path.insert(0, [])
sage: bijection.cur_dims.insert(0, [0, 1])
sage: bijection.cur_path[0].insert(0, [3])
sage: bijection.next_state(3)
Bases: sage.combinat.rigged_configurations.bij_type_A.RCToKRTBijectionTypeA
Specific implementation of the bijection from rigged configurations to
tensor products of KR tableaux for type .
Build the next state for type .
TESTS:
sage: RC = RiggedConfigurations(['A', 5, 2], [[2, 1]])
sage: from sage.combinat.rigged_configurations.bij_type_A2_odd import RCToKRTBijectionTypeA2Odd
sage: bijection = RCToKRTBijectionTypeA2Odd(RC(partition_list=[[1],[2,1],[2]]))
sage: bijection.next_state(0)
-2