Bases: sage.categories.graded_modules.GradedModulesCategory
The category of graded Hopf algebras with a distinguished basis.
EXAMPLES:
sage: C = GradedHopfAlgebrasWithBasis(ZZ); C
Category of graded hopf algebras with basis over Integer Ring
sage: C.super_categories()
[Category of hopf algebras with basis over Integer Ring,
Category of graded algebras with basis over Integer Ring]
sage: C is HopfAlgebras(ZZ).WithBasis().Graded()
True
sage: C is HopfAlgebras(ZZ).Graded().WithBasis()
False
TESTS:
sage: TestSuite(C).run()
Bases: sage.categories.with_realizations.WithRealizationsCategory
TESTS:
sage: from sage.categories.covariant_functorial_construction import CovariantConstructionCategory
sage: class FooBars(CovariantConstructionCategory):
... _functor_category = "FooBars"
sage: Category.FooBars = lambda self: FooBars.category_of(self)
sage: C = FooBars(ModulesWithBasis(ZZ))
sage: C
Category of foo bars of modules with basis over Integer Ring
sage: C.base_category()
Category of modules with basis over Integer Ring
sage: latex(C)
\mathbf{FooBars}(\mathbf{ModulesWithBasis}_{\Bold{Z}})
sage: import __main__; __main__.FooBars = FooBars # Fake FooBars being defined in a python module
sage: TestSuite(C).run()
EXAMPLES:
sage: GradedHopfAlgebrasWithBasis(QQ).WithRealizations().super_categories()
[Join of Category of hopf algebras over Rational Field
and Category of graded algebras over Rational Field]
TESTS:
sage: TestSuite(GradedHopfAlgebrasWithBasis(QQ).WithRealizations()).run()