SHOGUN
3.2.1
|
: Bagging algorithm i.e. bootstrap aggregating
Definition at line 27 of file BaggingMachine.h.
Public Attributes | |
SGIO * | io |
Parallel * | parallel |
Version * | version |
Parameter * | m_parameters |
Parameter * | m_model_selection_parameters |
Parameter * | m_gradient_parameters |
ParameterMap * | m_parameter_map |
uint32_t | m_hash |
Protected Member Functions | |
virtual bool | train_machine (CFeatures *data=NULL) |
virtual void | set_machine_parameters (CMachine *m, SGVector< index_t > idx) |
SGVector< float64_t > | apply_get_outputs (CFeatures *data) |
void | register_parameters () |
void | init () |
CDynamicArray< index_t > * | get_oob_indices (const SGVector< index_t > &in_bag) |
void | clear_oob_indicies () |
virtual void | store_model_features () |
virtual bool | is_label_valid (CLabels *lab) const |
virtual bool | train_require_labels () const |
virtual TParameter * | migrate (DynArray< TParameter * > *param_base, const SGParamInfo *target) |
virtual void | one_to_one_migration_prepare (DynArray< TParameter * > *param_base, const SGParamInfo *target, TParameter *&replacement, TParameter *&to_migrate, char *old_name=NULL) |
virtual void | load_serializable_pre () throw (ShogunException) |
virtual void | load_serializable_post () throw (ShogunException) |
virtual void | save_serializable_pre () throw (ShogunException) |
virtual void | save_serializable_post () throw (ShogunException) |
Protected Attributes | |
CDynamicObjectArray * | m_bags |
CFeatures * | m_features |
CMachine * | m_machine |
int32_t | m_num_bags |
int32_t | m_bag_size |
CCombinationRule * | m_combination_rule |
SGVector< bool > | m_all_oob_idx |
CDynamicObjectArray * | m_oob_indices |
float64_t | m_max_train_time |
CLabels * | m_labels |
ESolverType | m_solver_type |
bool | m_store_model_features |
bool | m_data_locked |
CBaggingMachine | ( | ) |
default ctor
Definition at line 17 of file BaggingMachine.cpp.
CBaggingMachine | ( | CFeatures * | features, |
CLabels * | labels | ||
) |
constructor
features | training features |
labels | training labels |
Definition at line 24 of file BaggingMachine.cpp.
|
virtual |
Definition at line 36 of file BaggingMachine.cpp.
apply machine to data if data is not specified apply to the current features
data | (test)data to be classified |
Definition at line 160 of file Machine.cpp.
|
virtual |
apply machine to data in means of binary classification problem
Reimplemented from CMachine.
Definition at line 45 of file BaggingMachine.cpp.
helper function for the apply_{regression,..} functions that computes the output
data | the data to compute the output for |
Definition at line 70 of file BaggingMachine.cpp.
|
virtualinherited |
apply machine to data in means of latent problem
Reimplemented in CLinearLatentMachine.
Definition at line 240 of file Machine.cpp.
Applies a locked machine on a set of indices. Error if machine is not locked
indices | index vector (of locked features) that is predicted |
Definition at line 195 of file Machine.cpp.
|
virtualinherited |
applies a locked machine on a set of indices for binary problems
Reimplemented in CKernelMachine, and CMultitaskLinearMachine.
Definition at line 246 of file Machine.cpp.
|
virtualinherited |
applies a locked machine on a set of indices for latent problems
Definition at line 274 of file Machine.cpp.
|
virtualinherited |
applies a locked machine on a set of indices for multiclass problems
Definition at line 260 of file Machine.cpp.
|
virtualinherited |
applies a locked machine on a set of indices for regression problems
Reimplemented in CKernelMachine.
Definition at line 253 of file Machine.cpp.
|
virtualinherited |
applies a locked machine on a set of indices for structured problems
Definition at line 267 of file Machine.cpp.
|
virtual |
apply machine to data in means of multiclass classification problem
Reimplemented from CMachine.
Definition at line 53 of file BaggingMachine.cpp.
|
virtualinherited |
applies to one vector
Reimplemented in CKernelMachine, CRelaxedTree, CWDSVMOcas, COnlineLinearMachine, CLinearMachine, CMultitaskLinearMachine, CMulticlassMachine, CKNN, CDistanceMachine, CMultitaskLogisticRegression, CMultitaskLeastSquaresRegression, CScatterSVM, CGaussianNaiveBayes, CPluginEstimate, and CFeatureBlockLogisticRegression.
|
virtual |
apply machine to data in means of regression problem
Reimplemented from CMachine.
Definition at line 61 of file BaggingMachine.cpp.
|
virtualinherited |
apply machine to data in means of SO classification problem
Reimplemented in CLinearStructuredOutputMachine.
Definition at line 234 of file Machine.cpp.
|
inherited |
Builds a dictionary of all parameters in SGObject as well of those of SGObjects that are parameters of this object. Dictionary maps parameters to the objects that own them.
dict | dictionary of parameters to be built. |
Definition at line 1185 of file SGObject.cpp.
|
protected |
|
virtualinherited |
Creates a clone of the current object. This is done via recursively traversing all parameters, which corresponds to a deep copy. Calling equals on the cloned object always returns true although none of the memory of both objects overlaps.
Definition at line 1302 of file SGObject.cpp.
Locks the machine on given labels and data. After this call, only train_locked and apply_locked may be called
Only possible if supports_locking() returns true
labs | labels used for locking |
features | features used for locking |
Reimplemented in CKernelMachine.
Definition at line 120 of file Machine.cpp.
|
virtualinherited |
Unlocks a locked machine and restores previous state
Reimplemented in CKernelMachine.
Definition at line 151 of file Machine.cpp.
|
virtualinherited |
A deep copy. All the instance variables will also be copied.
Definition at line 146 of file SGObject.cpp.
Recursively compares the current SGObject to another one. Compares all registered numerical parameters, recursion upon complex (SGObject) parameters. Does not compare pointers!
May be overwritten but please do with care! Should not be necessary in most cases.
other | object to compare with |
accuracy | accuracy to use for comparison (optional) |
tolerant | allows linient check on float equality (within accuracy) |
Definition at line 1206 of file SGObject.cpp.
|
virtual |
Get number of feature vectors that are use for training each bag/machine
Definition at line 214 of file BaggingMachine.cpp.
|
virtual |
get classifier type
Reimplemented from CMachine.
Definition at line 110 of file BaggingMachine.h.
CCombinationRule * get_combination_rule | ( | ) | const |
Get the combination rule that is used for aggregating the results
Definition at line 252 of file BaggingMachine.cpp.
|
inherited |
|
inherited |
|
inherited |
|
virtualinherited |
CMachine * get_machine | ( | ) | const |
Get machine for bagging
Definition at line 219 of file BaggingMachine.cpp.
|
virtualinherited |
returns type of problem machine solves
Reimplemented in CNeuralNetwork, CRandomForest, CCHAIDTree, CCARTree, and CBaseMulticlassMachine.
|
inherited |
|
inherited |
Definition at line 1077 of file SGObject.cpp.
|
inherited |
Returns description of a given parameter string, if it exists. SG_ERROR otherwise
param_name | name of the parameter |
Definition at line 1101 of file SGObject.cpp.
|
inherited |
Returns index of model selection parameter with provided index
param_name | name of model selection parameter |
Definition at line 1114 of file SGObject.cpp.
|
virtual |
name
Reimplemented from CMachine.
Reimplemented in CRandomForest.
Definition at line 121 of file BaggingMachine.h.
int32_t get_num_bags | ( | ) | const |
Get number of bags/machines
Definition at line 204 of file BaggingMachine.cpp.
float64_t get_oob_error | ( | CEvaluation * | eval | ) | const |
get out-of-bag error CombinationRule is used for combining the predictions.
eval | Evaluation method to use for calculating the error |
Definition at line 258 of file BaggingMachine.cpp.
|
protected |
get the vector of indices for feature vectors that are out of bag
in_bag | vector of indices that are in bag. NOTE: in_bag is a randomly generated with replacement |
Definition at line 338 of file BaggingMachine.cpp.
|
inherited |
|
protected |
Definition at line 232 of file BaggingMachine.cpp.
|
inherited |
|
virtualinherited |
If the SGSerializable is a class template then TRUE will be returned and GENERIC is set to the type of the generic.
generic | set to the type of the generic if returning TRUE |
Definition at line 243 of file SGObject.cpp.
|
protectedvirtualinherited |
check whether the labels is valid.
Subclasses can override this to implement their check of label types.
lab | the labels being checked, guaranteed to be non-NULL |
Reimplemented in CNeuralNetwork, CCARTree, CCHAIDTree, CGaussianProcessBinaryClassification, CGaussianProcessRegression, and CBaseMulticlassMachine.
|
inherited |
maps all parameters of this instance to the provided file version and loads all parameter data from the file into an array, which is sorted (basically calls load_file_parameter(...) for all parameters and puts all results into a sorted array)
file_version | parameter version of the file |
current_version | version from which mapping begins (you want to use Version::get_version_parameter() for this in most cases) |
file | file to load from |
prefix | prefix for members |
Definition at line 648 of file SGObject.cpp.
|
inherited |
loads some specified parameters from a file with a specified version The provided parameter info has a version which is recursively mapped until the file parameter version is reached. Note that there may be possibly multiple parameters in the mapping, therefore, a set of TParameter instances is returned
param_info | information of parameter |
file_version | parameter version of the file, must be <= provided parameter version |
file | file to load from |
prefix | prefix for members |
Definition at line 489 of file SGObject.cpp.
|
virtualinherited |
Load this object from file. If it will fail (returning FALSE) then this object will contain inconsistent data and should not be used!
file | where to load from |
prefix | prefix for members |
param_version | (optional) a parameter version different to (this is mainly for testing, better do not use) |
Definition at line 320 of file SGObject.cpp.
|
protectedvirtualinherited |
Can (optionally) be overridden to post-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::LOAD_SERIALIZABLE_POST is called.
ShogunException | Will be thrown if an error occurres. |
Reimplemented in CKernel, CWeightedDegreePositionStringKernel, CList, CAlphabet, CLinearHMM, CGaussianKernel, CInverseMultiQuadricKernel, CCircularKernel, and CExponentialKernel.
Definition at line 1004 of file SGObject.cpp.
|
protectedvirtualinherited |
Can (optionally) be overridden to pre-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::LOAD_SERIALIZABLE_PRE is called.
ShogunException | Will be thrown if an error occurres. |
Reimplemented in CDynamicArray< T >, CDynamicArray< float64_t >, CDynamicArray< float32_t >, CDynamicArray< int32_t >, CDynamicArray< char >, CDynamicArray< bool >, and CDynamicObjectArray.
Definition at line 999 of file SGObject.cpp.
|
inherited |
Takes a set of TParameter instances (base) with a certain version and a set of target parameter infos and recursively maps the base level wise to the current version using CSGObject::migrate(...). The base is replaced. After this call, the base version containing parameters should be of same version/type as the initial target parameter infos. Note for this to work, the migrate methods and all the internal parameter mappings have to match
param_base | set of TParameter instances that are mapped to the provided target parameter infos |
base_version | version of the parameter base |
target_param_infos | set of SGParamInfo instances that specify the target parameter base |
Definition at line 686 of file SGObject.cpp.
|
protectedvirtualinherited |
creates a new TParameter instance, which contains migrated data from the version that is provided. The provided parameter data base is used for migration, this base is a collection of all parameter data of the previous version. Migration is done FROM the data in param_base TO the provided param info Migration is always one version step. Method has to be implemented in subclasses, if no match is found, base method has to be called.
If there is an element in the param_base which equals the target, a copy of the element is returned. This represents the case when nothing has changed and therefore, the migrate method is not overloaded in a subclass
param_base | set of TParameter instances to use for migration |
target | parameter info for the resulting TParameter |
Definition at line 893 of file SGObject.cpp.
|
protectedvirtualinherited |
This method prepares everything for a one-to-one parameter migration. One to one here means that only ONE element of the parameter base is needed for the migration (the one with the same name as the target). Data is allocated for the target (in the type as provided in the target SGParamInfo), and a corresponding new TParameter instance is written to replacement. The to_migrate pointer points to the single needed TParameter instance needed for migration. If a name change happened, the old name may be specified by old_name. In addition, the m_delete_data flag of to_migrate is set to true. So if you want to migrate data, the only thing to do after this call is converting the data in the m_parameter fields. If unsure how to use - have a look into an example for this. (base_migration_type_conversion.cpp for example)
param_base | set of TParameter instances to use for migration |
target | parameter info for the resulting TParameter |
replacement | (used as output) here the TParameter instance which is returned by migration is created into |
to_migrate | the only source that is used for migration |
old_name | with this parameter, a name change may be specified |
Definition at line 833 of file SGObject.cpp.
|
virtualinherited |
Definition at line 209 of file SGObject.cpp.
|
inherited |
prints all parameter registered for model selection and their type
Definition at line 1053 of file SGObject.cpp.
|
virtualinherited |
prints registered parameters out
prefix | prefix for members |
Definition at line 255 of file SGObject.cpp.
|
protected |
Definition at line 184 of file BaggingMachine.cpp.
|
virtualinherited |
Save this object to file.
file | where to save the object; will be closed during returning if PREFIX is an empty string. |
prefix | prefix for members |
param_version | (optional) a parameter version different to (this is mainly for testing, better do not use) |
Definition at line 261 of file SGObject.cpp.
|
protectedvirtualinherited |
Can (optionally) be overridden to post-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::SAVE_SERIALIZABLE_POST is called.
ShogunException | Will be thrown if an error occurres. |
Reimplemented in CKernel.
Definition at line 1014 of file SGObject.cpp.
|
protectedvirtualinherited |
Can (optionally) be overridden to pre-initialize some member variables which are not PARAMETER::ADD'ed. Make sure that at first the overridden method BASE_CLASS::SAVE_SERIALIZABLE_PRE is called.
ShogunException | Will be thrown if an error occurres. |
Reimplemented in CKernel, CDynamicArray< T >, CDynamicArray< float64_t >, CDynamicArray< float32_t >, CDynamicArray< int32_t >, CDynamicArray< char >, CDynamicArray< bool >, and CDynamicObjectArray.
Definition at line 1009 of file SGObject.cpp.
|
virtual |
Set number of feature vectors to use for each bag/machine
bag_size | number of vectors to use for a bag |
Definition at line 209 of file BaggingMachine.cpp.
void set_combination_rule | ( | CCombinationRule * | rule | ) |
Set the combination rule to use for aggregating the classification results
rule | combination rule |
Definition at line 245 of file BaggingMachine.cpp.
|
inherited |
Definition at line 38 of file SGObject.cpp.
|
inherited |
Definition at line 43 of file SGObject.cpp.
|
inherited |
Definition at line 48 of file SGObject.cpp.
|
inherited |
Definition at line 53 of file SGObject.cpp.
|
inherited |
Definition at line 58 of file SGObject.cpp.
|
inherited |
Definition at line 63 of file SGObject.cpp.
|
inherited |
Definition at line 68 of file SGObject.cpp.
|
inherited |
Definition at line 73 of file SGObject.cpp.
|
inherited |
Definition at line 78 of file SGObject.cpp.
|
inherited |
Definition at line 83 of file SGObject.cpp.
|
inherited |
Definition at line 88 of file SGObject.cpp.
|
inherited |
Definition at line 93 of file SGObject.cpp.
|
inherited |
Definition at line 98 of file SGObject.cpp.
|
inherited |
Definition at line 103 of file SGObject.cpp.
|
inherited |
Definition at line 108 of file SGObject.cpp.
|
inherited |
set generic type to T
|
inherited |
|
inherited |
set the parallel object
parallel | parallel object to use |
Definition at line 189 of file SGObject.cpp.
|
inherited |
set the version object
version | version object to use |
Definition at line 230 of file SGObject.cpp.
|
virtualinherited |
set labels
lab | labels |
Reimplemented in CNeuralNetwork, CCARTree, CGaussianProcessMachine, CStructuredOutputMachine, CRelaxedTree, and CMulticlassMachine.
Definition at line 73 of file Machine.cpp.
|
virtual |
Set machine to use in bagging
machine | the machine to use for bagging |
Reimplemented in CRandomForest.
Definition at line 225 of file BaggingMachine.cpp.
sets parameters of CMachine - useful in Random Forest
m | machine |
idx | indices of training vectors chosen in current bag |
Reimplemented in CRandomForest.
Definition at line 180 of file BaggingMachine.cpp.
|
inherited |
set maximum training time
t | maximimum training time |
Definition at line 90 of file Machine.cpp.
void set_num_bags | ( | int32_t | num_bags | ) |
Set number of bags/machine to create
num_bags | number of bags |
Definition at line 199 of file BaggingMachine.cpp.
|
inherited |
|
virtualinherited |
Setter for store-model-features-after-training flag
store_model | whether model should be stored after training |
Definition at line 115 of file Machine.cpp.
|
virtualinherited |
A shallow copy. All the SGObject instance variables will be simply assigned and SG_REF-ed.
Reimplemented in CGaussianKernel.
Definition at line 140 of file SGObject.cpp.
|
protectedvirtualinherited |
Stores feature data of underlying model. After this method has been called, it is possible to change the machine's feature data and call apply(), which is then performed on the training feature data that is part of the machine's model.
Base method, has to be implemented in order to allow cross-validation and model selection.
NOT IMPLEMENTED! Has to be done in subclasses
Reimplemented in CKernelMachine, CKNN, CLinearMulticlassMachine, CTreeMachine< T >, CTreeMachine< ConditionalProbabilityTreeNodeData >, CTreeMachine< RelaxedTreeNodeData >, CTreeMachine< id3TreeNodeData >, CTreeMachine< VwConditionalProbabilityTreeNodeData >, CTreeMachine< CARTreeNodeData >, CTreeMachine< C45TreeNodeData >, CTreeMachine< CHAIDTreeNodeData >, CTreeMachine< NbodyTreeNodeData >, CLinearMachine, CHierarchical, CDistanceMachine, CGaussianProcessMachine, CKernelMulticlassMachine, and CLinearStructuredOutputMachine.
|
virtualinherited |
Reimplemented in CKernelMachine, and CMultitaskLinearMachine.
|
virtualinherited |
train machine
data | training data (parameter can be avoided if distance or kernel-based classifiers are used and distance/kernels are initialized with train data). If flag is set, model features will be stored after training. |
Reimplemented in CRelaxedTree, CAutoencoder, CSGDQN, and COnlineSVMSGD.
Definition at line 47 of file Machine.cpp.
Trains a locked machine on a set of indices. Error if machine is not locked
NOT IMPLEMENTED
indices | index vector (of locked features) that is used for training |
Reimplemented in CKernelMachine, and CMultitaskLinearMachine.
|
protectedvirtual |
train machine
data | training data (parameter can be avoided if distance or kernel-based classifiers are used and distance/kernels are initialized with train data) |
NOT IMPLEMENTED!
Reimplemented from CMachine.
Definition at line 104 of file BaggingMachine.cpp.
|
protectedvirtualinherited |
returns whether machine require labels for training
Reimplemented in COnlineLinearMachine, CHierarchical, CLinearLatentMachine, CVwConditionalProbabilityTree, CConditionalProbabilityTree, and CLibSVMOneClass.
|
inherited |
unset generic type
this has to be called in classes specializing a template class
Definition at line 250 of file SGObject.cpp.
|
virtualinherited |
Updates the hash of current parameter combination
Definition at line 196 of file SGObject.cpp.
|
inherited |
io
Definition at line 461 of file SGObject.h.
|
protected |
indices of all feature vectors that are out of bag
Definition at line 176 of file BaggingMachine.h.
|
protected |
number of vectors to use from the training features
Definition at line 170 of file BaggingMachine.h.
|
protected |
bags array
Definition at line 158 of file BaggingMachine.h.
|
protected |
combination rule to use
Definition at line 173 of file BaggingMachine.h.
|
protectedinherited |
|
protected |
features to train on
Definition at line 161 of file BaggingMachine.h.
|
inherited |
parameters wrt which we can compute gradients
Definition at line 476 of file SGObject.h.
|
inherited |
Hash of parameter values
Definition at line 482 of file SGObject.h.
|
protected |
machine to use for bagging
Definition at line 164 of file BaggingMachine.h.
|
protectedinherited |
|
inherited |
model selection parameters
Definition at line 473 of file SGObject.h.
|
protected |
number of bags to create
Definition at line 167 of file BaggingMachine.h.
|
protected |
array of oob indices
Definition at line 179 of file BaggingMachine.h.
|
inherited |
map for different parameter versions
Definition at line 479 of file SGObject.h.
|
inherited |
parameters
Definition at line 470 of file SGObject.h.
|
protectedinherited |
|
protectedinherited |
|
inherited |
parallel
Definition at line 464 of file SGObject.h.
|
inherited |
version
Definition at line 467 of file SGObject.h.