SHOGUN  3.2.1
 全部  命名空间 文件 函数 变量 类型定义 枚举 枚举值 友元 宏定义  
NeuralInputLayer.cpp
浏览该文件的文档.
1 /*
2  * Copyright (c) 2014, Shogun Toolbox Foundation
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions are met:
7 
8  * 1. Redistributions of source code must retain the above copyright notice,
9  * this list of conditions and the following disclaimer.
10  *
11  * 2. Redistributions in binary form must reproduce the above copyright notice,
12  * this list of conditions and the following disclaimer in the documentation
13  * and/or other materials provided with the distribution.
14  *
15  * 3. Neither the name of the copyright holder nor the names of its
16  * contributors may be used to endorse or promote products derived from this
17  * software without specific prior written permission.
18 
19  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
20  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
23  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29  * POSSIBILITY OF SUCH DAMAGE.
30  *
31  * Written (W) 2014 Khaled Nasr
32  */
33 
35 
36 using namespace shogun;
37 
39 {
40  init();
41 }
42 
43 CNeuralInputLayer::CNeuralInputLayer(int32_t num_neurons, int32_t start_index):
44 CNeuralLayer(num_neurons)
45 {
46  init();
47  m_start_index = start_index;
48 }
49 
51 {
52  if (m_start_index == 0)
53  {
54  memcpy(m_activations.matrix, inputs.matrix,
56  }
57  else
58  {
59  for (int32_t i=0; i<m_num_neurons; i++)
60  for (int32_t j=0; j<m_batch_size; j++)
61  m_activations(i,j) = inputs(m_start_index+i, j);
62  }
63  if (gaussian_noise > 0)
64  {
65  int32_t len = m_num_neurons*m_batch_size;
66  for (int32_t k=0; k<len; k++)
68  }
69 }
70 
71 void CNeuralInputLayer::init()
72 {
73  m_start_index = 0;
74  gaussian_noise = 0;
75  SG_ADD(&m_start_index, "start_index",
76  "Start Index", MS_NOT_AVAILABLE);
77  SG_ADD(&gaussian_noise, "gaussian_noise",
78  "Gaussian Noise Standard Deviation", MS_NOT_AVAILABLE);
79 }
static float32_t normal_random(float32_t mean, float32_t std_dev)
Definition: Math.h:655
SGMatrix< float64_t > m_activations
Definition: NeuralLayer.h:317
Base class for neural network layers.
Definition: NeuralLayer.h:73
double float64_t
Definition: common.h:50
virtual void compute_activations(SGMatrix< float64_t > inputs)
#define SG_ADD(...)
Definition: SGObject.h:67

SHOGUN 机器学习工具包 - 项目文档