next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

               2           2     2       2    2   2              2     
o2 = ideal (m*s  - a*p, r*t x - m , a*c*w  - q , b j*u - d, a*h*p  - f,
     ------------------------------------------------------------------------
        2 2         2   2
     i*t u  - w, e*n q*v  - 1)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             3 2 2 3 3    2   4 3    2 3 3   3 2    2 2 4 3     3 4 4     
o3 = ideal (f i l m r  - a c*d k o, d f i p*v w  - c g s t , b*c h n p*q -
     ------------------------------------------------------------------------
      3 3 3 4   4 3 4 2 4 3    4 4 3 2
     a l r u , d g k q s x  - c f l u )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.