next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

               2                 2   2          2       2       2       2 2  
o2 = ideal (r*u  - s*v, c*k*m - n , e g*r - j, n o*p - k , d*k*n  - b, j m  -
     ------------------------------------------------------------------------
      2    2 2 2    2
     f q, c d o  - f )

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             3 3 3 3 2    4   4   3   3 4 4 2 2      2 4 2    4 3 3 4 3 2  
o3 = ideal (a b j m t  - f k*p v*x , e f q r v  - g*k o t w, b o p r v x  -
     ------------------------------------------------------------------------
        2 3 3   4 4 4 2 3 3    3 3 3 2
     g*l s t , f j k n t w  - h i l v )

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.