next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Macaulay2Doc :: random(Type)

random(Type) -- random element of a type

Synopsis

Description

Synopsis

  • Usage:
    random T
  • Inputs:
  • Outputs:
    • a random instance of the type T. If the Height option specifies a number h and T is ZZ and , then the integers returned are in the range 0 .. h-1; for QQ the numerator and denominator are in the range 1 .. h.
i1 : random RR

o1 = .998851903799647

o1 : RR (of precision 53)
i2 : random CC_100

o2 = .193533231389919366294541905461+.855690749224781504376596926747*ii

o2 : CC (of precision 100)
i3 : tally for i to 100 list random GF 11

o3 = Tally{-1 => 1}
           -1 => 1
           -1 => 1
           -1 => 1
           -1 => 1
           -1 => 1
           -1 => 1
           -1 => 1
           -1 => 1
           -1 => 1
           -2 => 1
           -2 => 1
           -2 => 1
           -2 => 1
           -3 => 1
           -3 => 1
           -3 => 1
           -3 => 1
           -3 => 1
           -3 => 1
           -3 => 1
           -3 => 1
           -4 => 1
           -4 => 1
           -4 => 1
           -4 => 1
           -4 => 1
           -4 => 1
           -4 => 1
           -4 => 1
           -4 => 1
           -4 => 1
           -4 => 1
           -4 => 1
           -4 => 1
           -5 => 1
           -5 => 1
           -5 => 1
           -5 => 1
           -5 => 1
           -5 => 1
           -5 => 1
           -5 => 1
           -5 => 1
           -5 => 1
           -5 => 1
           0 => 1
           0 => 1
           0 => 1
           0 => 1
           0 => 1
           0 => 1
           0 => 1
           0 => 1
           0 => 1
           0 => 1
           0 => 1
           1 => 1
           1 => 1
           1 => 1
           1 => 1
           2 => 1
           2 => 1
           2 => 1
           2 => 1
           2 => 1
           2 => 1
           3 => 1
           3 => 1
           3 => 1
           3 => 1
           3 => 1
           3 => 1
           3 => 1
           3 => 1
           3 => 1
           3 => 1
           3 => 1
           4 => 1
           4 => 1
           4 => 1
           4 => 1
           4 => 1
           4 => 1
           4 => 1
           4 => 1
           4 => 1
           5 => 1
           5 => 1
           5 => 1
           5 => 1
           5 => 1
           5 => 1
           5 => 1
           5 => 1
           5 => 1
           5 => 1
           5 => 1
           5 => 1
           5 => 1
           5 => 1

o3 : Tally
i4 : random GF(2,40)

      39    35    33    31    28    27    26    24    23    21    20    19  
o4 = a   + a   + a   + a   + a   + a   + a   + a   + a   + a   + a   + a   +
     ------------------------------------------------------------------------
      18    17    15    13    10    9    7    6    5    4    3    2
     a   + a   + a   + a   + a   + a  + a  + a  + a  + a  + a  + a

o4 : GF 1099511627776

Synopsis

  • Usage:
    random(d,R)
  • Inputs:
  • Outputs:
    • a random homogeneous element of the ring R of degree d
i5 : R = ZZ[x,y];
i6 : random(5,R)

      5     4      3 2     2 3       4     5
o6 = x  + 4x y + 5x y  + 8x y  + 2x*y  + 2y

o6 : R
i7 : R = GF(25,Variable=>a)[x,y];
i8 : VerticalList for i to 6 list random(3,R)

     {           3       2                 2            3}
o8 = {(- 2a - 2)x  - 2a*x y + (- 2a - 2)x*y  + (2a + 1)y }
     {         3              2        2             3   }
     {(2a + 1)x  + (- 2a - 1)x y - 2x*y  + (- a + 2)y    }
     {  3           2               2            3       }
     {2x  + (a - 1)x y + (2a + 1)x*y  + (2a - 1)y        }
     {  3    2              2    3                       }
     {2x  + x y + (a - 2)x*y  - y                        }
     {         3                2              3         }
     {(2a + 1)x  + (- 2a - 2)x*y  + (- 2a - 2)y          }
     {          3     2         2            3           }
     {(- a - 1)x  - 2x y - a*x*y  + (2a + 1)y            }
     {           3              2       2              3 }
     {(- 2a - 2)x  + (- 2a + 1)x y - x*y  + (- 2a - 1)y  }

o8 : VerticalList
The length of d, if it's a list, should be the same as degreeLength R.

See also