i1 : R = ZZ/101[x,y,z] o1 = R o1 : PolynomialRing |
i2 : A = freeDGAlgebra(R,{{1},{1},{1},{3}}) o2 = {Ring => R } Underlying algebra => R[T , T , T , T ] 1 2 3 4 Differential => null isHomogeneous => false o2 : DGAlgebra |
i3 : A.natural o3 = R[T , T , T , T ] 1 2 3 4 o3 : PolynomialRing |
i4 : setDiff(A,{x,y,z,x*T_2*T_3-y*T_1*T_3+z*T_1*T_2}) o4 = {Ring => R } Underlying algebra => R[T , T , T , T ] 1 2 3 4 Differential => {x, y, z, z*T T - y*T T + x*T T } 1 2 1 3 2 3 isHomogeneous => false o4 : DGAlgebra |
i5 : isHomogeneous(A) o5 = false |
i6 : Add = toComplex A 1 3 3 2 3 3 1 o6 = R <-- R <-- R <-- R <-- R <-- R <-- R 0 1 2 3 4 5 6 o6 : ChainComplex |
i7 : B = freeDGAlgebra(R,{{1,1},{1,1},{1,1},{3,3}}) o7 = {Ring => R } Underlying algebra => R[T , T , T , T ] 1 2 3 4 Differential => null isHomogeneous => false o7 : DGAlgebra |
i8 : B.natural o8 = R[T , T , T , T ] 1 2 3 4 o8 : PolynomialRing |
i9 : setDiff(B,{x,y,z,x*T_2*T_3-y*T_1*T_3+z*T_1*T_2}) o9 = {Ring => R } Underlying algebra => R[T , T , T , T ] 1 2 3 4 Differential => {x, y, z, z*T T - y*T T + x*T T } 1 2 1 3 2 3 isHomogeneous => true o9 : DGAlgebra |
i10 : isHomogeneous(B) o10 = true |
i11 : Bdd = toComplex B 1 3 3 2 3 3 1 o11 = R <-- R <-- R <-- R <-- R <-- R <-- R 0 1 2 3 4 5 6 o11 : ChainComplex |