next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Posets :: dropElements

dropElements -- computes the induced subposet of a poset given a list of elements to remove

Synopsis

Description

This method computes the induced subposet Q of P with the elements of L removed from the poset.
i1 : P = chain 5;
i2 : dropElements(P, {3})

o2 = Relation Matrix: | 1 1 1 1 |
                      | 0 1 1 1 |
                      | 0 0 1 1 |
                      | 0 0 0 1 |

o2 : Poset
i3 : P - {4, 5}

o3 = Relation Matrix: | 1 1 1 |
                      | 0 1 1 |
                      | 0 0 1 |

o3 : Poset
Alternatively, this method computes the induced subposet Q of P with the elements removed which return true when f is applied.
i4 : P = divisorPoset (2*3*5*7);
i5 : Q = dropElements(P, e -> e % 3 == 0)

o5 = Q

o5 : Poset
i6 : Q == divisorPoset(2*5*7)

o6 = true

See also

Ways to use dropElements :