While slower than specialized C/C++ implementations, the implementation is general and works with any exact field in Sage that allows you to define polyhedra.
EXAMPLES:
sage: p0 = (0, 0)
sage: p1 = (1, 0)
sage: p2 = (1/2, AA(3).sqrt()/2)
sage: equilateral_triangle = Polyhedron([p0, p1, p2])
sage: equilateral_triangle.vertices()
(A vertex at (0, 0),
A vertex at (1, 0),
A vertex at (0.500000000000000?, 0.866025403784439?))
sage: equilateral_triangle.inequalities()
(An inequality (-1, -0.5773502691896258?) x + 1 >= 0,
An inequality (1, -0.5773502691896258?) x + 0 >= 0,
An inequality (0, 1.154700538379252?) x + 0 >= 0)
Bases: sage.geometry.polyhedron.base.Polyhedron_base
Polyhedra over all fields supported by Sage
INPUT:
EXAMPLES:
sage: p = Polyhedron(vertices=[(0,0),(AA(2).sqrt(),0),(0,AA(3).sqrt())],
....: rays=[(1,1)], lines=[], backend='field', base_ring=AA)
sage: TestSuite(p).run()
TESTS:
sage: K.<sqrt3> = NumberField(x^2-3)
sage: p = Polyhedron([(0,0), (1,0), (1/2, sqrt3/2)])
sage: TestSuite(p).run()