Bases: sage.structure.element.AlgebraElement
Create the element x of the FreeAlgebraQuotient A.
EXAMPLES:
sage: H, (i,j,k) = sage.algebras.free_algebra_quotient.hamilton_quatalg(ZZ)
sage: sage.algebras.free_algebra_quotient.FreeAlgebraQuotientElement(H, i)
i
sage: a = sage.algebras.free_algebra_quotient.FreeAlgebraQuotientElement(H, 1); a
1
sage: a in H
True
TESTS:
sage: TestSuite(i).run()
Return underlying vector representation of this element.
EXAMPLES:
sage: H, (i,j,k) = sage.algebras.free_algebra_quotient.hamilton_quatalg(QQ)
sage: ((2/3)*i - j).vector()
(0, 2/3, -1, 0)
EXAMPLES:
sage: H, (i,j,k) = sage.algebras.free_algebra_quotient.hamilton_quatalg(QQ)
sage: sage.algebras.free_algebra_quotient_element.is_FreeAlgebraQuotientElement(i)
True
Of course this is testing the data type:
sage: sage.algebras.free_algebra_quotient_element.is_FreeAlgebraQuotientElement(1)
False
sage: sage.algebras.free_algebra_quotient_element.is_FreeAlgebraQuotientElement(H(1))
True