Library Flocq.Core.Fcore_FLT
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/
Copyright (C) 2010-2013 Sylvie Boldo
Copyright (C) 2010-2013 Guillaume Melquiond
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
Copyright (C) 2010-2013 Guillaume Melquiond
Floating-point format with gradual underflow
Require Import Fcore_Raux.
Require Import Fcore_defs.
Require Import Fcore_rnd.
Require Import Fcore_generic_fmt.
Require Import Fcore_float_prop.
Require Import Fcore_FLX.
Require Import Fcore_FIX.
Require Import Fcore_rnd_ne.
Section RND_FLT.
Variable beta : radix.
Notation bpow e := (bpow beta e).
Variable emin prec : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Definition FLT_format (x : R) :=
∃ f : float beta,
x = F2R f ∧ (Zabs (Fnum f) < Zpower beta prec)%Z ∧ (emin ≤ Fexp f)%Z.
Definition FLT_exp e := Zmax (e - prec) emin.
Require Import Fcore_defs.
Require Import Fcore_rnd.
Require Import Fcore_generic_fmt.
Require Import Fcore_float_prop.
Require Import Fcore_FLX.
Require Import Fcore_FIX.
Require Import Fcore_rnd_ne.
Section RND_FLT.
Variable beta : radix.
Notation bpow e := (bpow beta e).
Variable emin prec : Z.
Context { prec_gt_0_ : Prec_gt_0 prec }.
Definition FLT_format (x : R) :=
∃ f : float beta,
x = F2R f ∧ (Zabs (Fnum f) < Zpower beta prec)%Z ∧ (emin ≤ Fexp f)%Z.
Definition FLT_exp e := Zmax (e - prec) emin.
Properties of the FLT format
Global Instance FLT_exp_valid : Valid_exp FLT_exp.
Theorem generic_format_FLT :
∀ x, FLT_format x → generic_format beta FLT_exp x.
Theorem FLT_format_generic :
∀ x, generic_format beta FLT_exp x → FLT_format x.
Theorem FLT_format_bpow :
∀ e, (emin ≤ e)%Z → generic_format beta FLT_exp (bpow e).
Theorem FLT_format_satisfies_any :
satisfies_any FLT_format.
Theorem canonic_exp_FLT_FLX :
∀ x,
(bpow (emin + prec - 1) ≤ Rabs x)%R →
canonic_exp beta FLT_exp x = canonic_exp beta (FLX_exp prec) x.
Theorem generic_format_FLT :
∀ x, FLT_format x → generic_format beta FLT_exp x.
Theorem FLT_format_generic :
∀ x, generic_format beta FLT_exp x → FLT_format x.
Theorem FLT_format_bpow :
∀ e, (emin ≤ e)%Z → generic_format beta FLT_exp (bpow e).
Theorem FLT_format_satisfies_any :
satisfies_any FLT_format.
Theorem canonic_exp_FLT_FLX :
∀ x,
(bpow (emin + prec - 1) ≤ Rabs x)%R →
canonic_exp beta FLT_exp x = canonic_exp beta (FLX_exp prec) x.
Links between FLT and FLX
Theorem generic_format_FLT_FLX :
∀ x : R,
(bpow (emin + prec - 1) ≤ Rabs x)%R →
generic_format beta (FLX_exp prec) x →
generic_format beta FLT_exp x.
Theorem generic_format_FLX_FLT :
∀ x : R,
generic_format beta FLT_exp x → generic_format beta (FLX_exp prec) x.
Theorem round_FLT_FLX : ∀ rnd x,
(bpow (emin + prec - 1) ≤ Rabs x)%R →
round beta FLT_exp rnd x = round beta (FLX_exp prec) rnd x.
∀ x : R,
(bpow (emin + prec - 1) ≤ Rabs x)%R →
generic_format beta (FLX_exp prec) x →
generic_format beta FLT_exp x.
Theorem generic_format_FLX_FLT :
∀ x : R,
generic_format beta FLT_exp x → generic_format beta (FLX_exp prec) x.
Theorem round_FLT_FLX : ∀ rnd x,
(bpow (emin + prec - 1) ≤ Rabs x)%R →
round beta FLT_exp rnd x = round beta (FLX_exp prec) rnd x.
Links between FLT and FIX (underflow)
Theorem canonic_exp_FLT_FIX :
∀ x, x ≠ R0 →
(Rabs x < bpow (emin + prec))%R →
canonic_exp beta FLT_exp x = canonic_exp beta (FIX_exp emin) x.
Theorem generic_format_FIX_FLT :
∀ x : R,
generic_format beta FLT_exp x →
generic_format beta (FIX_exp emin) x.
Theorem generic_format_FLT_FIX :
∀ x : R,
(Rabs x ≤ bpow (emin + prec))%R →
generic_format beta (FIX_exp emin) x →
generic_format beta FLT_exp x.
∀ x, x ≠ R0 →
(Rabs x < bpow (emin + prec))%R →
canonic_exp beta FLT_exp x = canonic_exp beta (FIX_exp emin) x.
Theorem generic_format_FIX_FLT :
∀ x : R,
generic_format beta FLT_exp x →
generic_format beta (FIX_exp emin) x.
Theorem generic_format_FLT_FIX :
∀ x : R,
(Rabs x ≤ bpow (emin + prec))%R →
generic_format beta (FIX_exp emin) x →
generic_format beta FLT_exp x.
FLT is a nice format: it has a monotone exponent...
and it allows a rounding to nearest, ties to even.