next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
HyperplaneArrangements :: lct

lct -- Compute the log-canonical threshold of an arrangement

Synopsis

Description

The log-canonical threshold of A defined by a polynomial f is the least number c for which the multiplier ideal J(f^c) is nontrivial.

Let's consider Example 6.3 of Berkesch and Leykin from arXiv:1002.1475v2:

i1 : R := QQ[x,y,z];
i2 : f := toList factor((x^2 - y^2)*(x^2 - z^2)*(y^2 - z^2)*z) / first;
i3 : A := arrangement f

o3 = {z, y - z, y + z, x - z, x + z, x - y, x + y}

o3 : Hyperplane Arrangement 
i4 : lct A

     3
o4 = -
     7

o4 : QQ
note that A is allowed to be a multiarrangement.

See also

Ways to use lct :