X1 = hirzebruchSurface 2; |
isNef X1_0 |
isAmple X1_0 |
isNef X1_1 |
isNef X1_2 |
isAmple X1_2 |
isNef X1_3 |
isAmple X1_3 |
X2 = weightedProjectiveSpace {2,3,5} |
D = X2_1-X2_0 |
isNef D |
HH^0(X2, OO D) |
for i from 1 to dim X2 list HH^i(X2, OO D) |
isCartier D |
isCartier (30*D) |
HH^0(X2, OO (30*D)) |
for i from 1 to dim X2 list HH^i(X2, OO (30*D)) |
R2 = {{1,0,0},{0,1,0},{0,0,1},{0,-1,2},{0,0,-1},{-1,1,-1},{-1,0,-1},{-1,-1,0}}; |
S2 = {{0,1,2},{0,2,3},{0,3,4},{0,4,5},{0,1,5},{1,2,7},{2,3,7},{3,4,7},{4,5,6},{4,6,7},{5,6,7},{1,5,7}}; |
X3 = normalToricVariety(R2,S2); |
isComplete X3 |
isProjective X3 |
isSmooth X3 |
any(#rays X3, i -> isNef X3_i) |
isNef (0*X3_1) |
X4 = kleinschmidt(9,{1,2,3}); |
isNef X4_0 |
isAmple X4_0 |
for i from 1 to dim X4 list HH^i(X4, OO X4_0) |
D = X4_0+X4_4 |
isNef D |
isAmple D |
for i from 1 to dim X4 list HH^i(X4, OO D) |