i1 : R = QQ[x,y,z]/ideal(x^8-z^6-y^2*z^4-z^3); |
i2 : time R' = integralClosure(R, Verbosity => 2) [jacobian time .000452056 sec #minors 3] integral closure nvars 3 numgens 1 is S2 codim 1 codimJ 2 [step 0: radical (use decompose) .00348879 seconds idlizer1: .00647303 seconds idlizer2: .013033 seconds minpres: .00907728 seconds time .0443563 sec #fractions 4] [step 1: radical (use decompose) .00367645 seconds idlizer1: .00752669 seconds idlizer2: .0228886 seconds minpres: .0377591 seconds time .0857492 sec #fractions 4] [step 2: radical (use decompose) .00375962 seconds idlizer1: .0102602 seconds idlizer2: .0264362 seconds minpres: .0114251 seconds time .0661452 sec #fractions 5] [step 3: radical (use decompose) .00406365 seconds idlizer1: .00914305 seconds idlizer2: .041026 seconds minpres: .0303355 seconds time .127999 sec #fractions 5] [step 4: radical (use decompose) .0039565 seconds idlizer1: .0165841 seconds idlizer2: .0810708 seconds minpres: .0154482 seconds time .139169 sec #fractions 5] [step 5: radical (use decompose) .00399681 seconds idlizer1: .0109965 seconds time .0221679 sec #fractions 5] -- used 0.48919 seconds o2 = R' o2 : QuotientRing |
i3 : trim ideal R' 3 2 2 2 4 4 o3 = ideal (w z - x , w x - w , w x - y z - z - z, w x - w z, 4,0 4,0 1,1 1,1 4,0 1,1 ------------------------------------------------------------------------ 2 2 2 3 2 3 2 3 2 4 2 2 4 2 w w - x y z - x z - x , w + w x y - x*y z - x*y z - 2x*y z 4,0 1,1 4,0 4,0 ------------------------------------------------------------------------ 3 3 2 6 2 6 2 - x*z - x, w x - w + x y + x z ) 4,0 1,1 o3 : Ideal of QQ[w , w , x, y, z] 4,0 1,1 |
i4 : icFractions R 3 2 2 4 x y z + z + z o4 = {--, -------------, x, y, z} z x o4 : List |