surface
surface - Grid table data using adjustable tension continuous curvature splines
Synopsis
surface [ table ] -Goutputfile.nc
-Iincrement
-Rregion
[ -Aaspect_ratio ]
[ -Cconvergence_limit ]
[ -Lllower ] [ -Luupper ]
[ -Nmax_iterations ]
[ -Q ]
[ -Ssearch_radius[m|s] ]
[ -T[i|b]tension_factor ]
[ -V[level] ]
[ -Zover-relaxation_factor ]
[ -a<flags> ]
[ -bi<binary> ]
[ -di<nodata> ]
[ -f<flags> ]
[ -h<headers> ]
[ -i<flags> ]
[ -:[i|o] ]
Note: No space is allowed between the option flag and the associated arguments.
Description
surface reads randomly-spaced (x,y,z) triples from standard input
[or table] and produces a binary grid file of gridded values z(x,y) by
solving:
(1 - T) * L (L (z)) + T * L (z) = 0
where T is a tension factor between 0 and 1, and L indicates the
Laplacian operator. T = 0 gives the “minimum curvature” solution which
is equivalent to SuperMISP and the ISM packages. Minimum curvature can
cause undesired oscillations and false local maxima or minima (See Smith
and Wessel, 1990), and you may wish to use T > 0 to suppress these
effects. Experience suggests T ~ 0.25 usually looks good for potential
field data and T should be larger (T ~ 0.35) for steep topography data.
T = 1 gives a harmonic surface (no maxima or minima are possible except
at control data points). It is recommended that the user pre-process the
data with blockmean, blockmedian, or blockmode to avoid
spatial aliasing and eliminate redundant data. You may impose lower
and/or upper bounds on the solution. These may be entered in the form of
a fixed value, a grid with values, or simply be the minimum/maximum
input data values. Natural boundary conditions are applied at the edges,
except for geographic data with 360-degree range where we apply periodic
boundary conditions in the longitude direction.
Required Arguments
- -Goutputfile.nc
- Output file name. Output is a binary 2-D .nc file. Note that the
smallest grid dimension must be at least 4.
- -Ixinc[unit][=|+][/yinc[unit][=|+]]
- x_inc [and optionally y_inc] is the grid spacing. Optionally,
append a suffix modifier. Geographical (degrees) coordinates: Append
m to indicate arc minutes or s to indicate arc seconds. If one
of the units e, f, k, M, n or u is appended
instead, the increment is assumed to be given in meter, foot, km, Mile,
nautical mile or US survey foot, respectively, and will be converted to
the equivalent degrees longitude at the middle latitude of the region
(the conversion depends on PROJ_ELLIPSOID). If /y_inc is given
but set to 0 it will be reset equal to x_inc; otherwise it will be
converted to degrees latitude. All coordinates: If = is appended
then the corresponding max x (east) or y (north) may be slightly
adjusted to fit exactly the given increment [by default the increment
may be adjusted slightly to fit the given domain]. Finally, instead of
giving an increment you may specify the number of nodes desired by
appending + to the supplied integer argument; the increment is then
recalculated from the number of nodes and the domain. The resulting
increment value depends on whether you have selected a
gridline-registered or pixel-registered grid; see GMT File Formats for
details. Note: if -Rgrdfile is used then the grid spacing has
already been initialized; use -I to override the values.
- -R[unit]xmin/xmax/ymin/ymax[r] (more ...)
- Specify the region of interest.
Optional Arguments
- table
- One or more ASCII (or binary, see -bi[ncols][type]) data
table file(s) holding a number of data columns. If no tables are given
then we read from standard input.
- -Aaspect_ratio
- Aspect ratio. If desired, grid anisotropy can be added to the
equations. Enter aspect_ratio, where dy = dx / aspect_ratio
relates the grid dimensions. [Default = 1 assumes isotropic grid.]
- -Cconvergence_limit[%]
- Convergence limit. Iteration is assumed to have converged when the
maximum absolute change in any grid value is less than
convergence_limit. (Units same as data z units). Alternatively,
give limit in percentage of rms deviation by appending %. [Default is
scaled to 1e-4 of the root-mean-square deviation of the data
from a best-fit (least-squares) plane.].
This is the final convergence limit at the desired grid spacing; for
intermediate (coarser) grids the effective convergence limit is scaled
by the grid spacing multiplier.
- -Lllower and -Luupper
- Impose limits on the output solution. llower sets the lower
bound. lower can be the name of a grid file with lower bound
values, a fixed value, d to set to minimum input value, or u
for unconstrained [Default]. uupper sets the upper bound and
can be the name of a grid file with upper bound values, a fixed
value, d to set to maximum input value, or u for
unconstrained [Default]. Grid files used to set the limits may
contain NaNs. In the presence of NaNs, the limit of a node masked
with NaN is unconstrained.
- -Nmax_iterations
- Number of iterations. Iteration will cease when convergence_limit
is reached or when number of iterations reaches max_iterations.
This is the final iteration limit at the desired grid spacing; for
intermediate (coarser) grids the effective iteration limit is scaled
by the grid spacing multiplier.
[Default is 500.]
- -Q
- Suggest grid dimensions which have a highly composite greatest
common factor. This allows surface to use several intermediate steps
in the solution, yielding faster run times and better results. The
sizes suggested by -Q can be achieved by altering -R and/or
-I. You can recover the -R and -I you want later by
using grdsample or grdcut on the output of surface.
- -Ssearch_radius[m|s]
- Search radius. Enter search_radius in same units as x,y data;
append m to indicate arc minutes or s for arc seconds. This
is used to initialize the grid before the first iteration; it is not
worth the time unless the grid lattice is prime and cannot have
regional stages. [Default = 0.0 and no search is made.]
- -T[i|b]tension_factor
- Tension factor[s]. These must be between 0 and 1. Tension may be
used in the interior solution (above equation, where it suppresses
spurious oscillations) and in the boundary conditions (where it
tends to flatten the solution approaching the edges). Using zero for
both values results in a minimum curvature surface with free edges,
i.e., a natural bicubic spline. Use -Titension_factor
to set interior tension, and -Tbtension_factor to set
boundary tension. If you do not prepend i or b, both will be
set to the same value. [Default = 0 for both gives minimum curvature
solution.]
- -V[level] (more ...)
- Select verbosity level [c]. -V3 will report the convergence after each iteration;
-V will report only after each regional grid is converged.
- -Zover-relaxation_factor
- Over-relaxation factor. This parameter is used to accelerate the
convergence; it is a number between 1 and 2. A value of 1 iterates
the equations exactly, and will always assure stable convergence.
Larger values overestimate the incremental changes during
convergence, and will reach a solution more rapidly but may become
unstable. If you use a large value for this factor, it is a good
idea to monitor each iteration with the -Vl option. [Default =
1.4 converges quickly and is almost always stable.]
- -acol=name[...] (more ...)
- Set aspatial column associations col=name.
- -bi[ncols][t] (more ...)
- Select native binary input. [Default is 3 input columns].
- -dinodata (more ...)
- Replace input columns that equal nodata with NaN.
- -f[i|o]colinfo (more ...)
- Specify data types of input and/or output columns.
- -h[i|o][n][+c][+d][+rremark][+rtitle] (more ...)
- Skip or produce header record(s). Not used with binary data.
- -icols[l][sscale][ooffset][,...] (more ...)
- Select input columns (0 is first column).
- -:[i|o] (more ...)
- Swap 1st and 2nd column on input and/or output.
- -^ or just -
- Print a short message about the syntax of the command, then exits (NOTE: on Windows use just -).
- -+ or just +
- Print an extensive usage (help) message, including the explanation of
any module-specific option (but not the GMT common options), then exits.
- -? or no arguments
- Print a complete usage (help) message, including the explanation of
options, then exits.
- --version
- Print GMT version and exit.
- --show-datadir
- Print full path to GMT share directory and exit.
Grid Values Precision
Regardless of the precision of the input data, GMT programs that create
grid files will internally hold the grids in 4-byte floating point
arrays. This is done to conserve memory and furthermore most if not all
real data can be stored using 4-byte floating point values. Data with
higher precision (i.e., double precision values) will lose that
precision once GMT operates on the grid or writes out new grids. To
limit loss of precision when processing data you should always consider
normalizing the data prior to processing.
Examples
To grid 5 by 5 minute gravity block means from the ASCII data in
hawaii_5x5.xyg, using a tension_factor = 0.25, a
convergence_limit = 0.1 milligal, writing the result to a file called
hawaii_grd.nc, and monitoring each iteration, try:
gmt surface hawaii_5x5.xyg -R198/208/18/25 -I5m -Ghawaii_grd.nc -T0.25 -C0.1 -Vl
Bugs
surface will complain when more than one data point is found for any
node and suggest that you run blockmean, blockmedian, or
blockmode first. If you did run blockm* and still get this
message it usually means that your grid spacing is so small that you
need more decimals in the output format used by blockm*. You may
specify more decimal places by editing the parameter
FORMAT_FLOAT_OUT in your gmt.conf file prior to running
blockm*, or choose binary input and/or output using single or
double precision storage.
Note that only gridline registration is possible with surface. If
you need a pixel-registered grid you can resample a gridline registered
grid using grdsample -T.
References
Smith, W. H. F, and P. Wessel, 1990, Gridding with continuous curvature
splines in tension, Geophysics, 55, 293-305.