001// License: GPL. For details, see LICENSE file. 002package org.openstreetmap.josm.data.projection.proj; 003 004import static org.openstreetmap.josm.tools.I18n.tr; 005 006import org.openstreetmap.josm.data.Bounds; 007import org.openstreetmap.josm.data.coor.LatLon; 008import org.openstreetmap.josm.data.projection.ProjectionConfigurationException; 009 010/** 011 * Oblique Mercator Projection. A conformal, oblique, cylindrical projection with the cylinder 012 * touching the ellipsoid (or sphere) along a great circle path (the central line). The 013 * {@linkplain Mercator} and {@linkplain TransverseMercator Transverse Mercator} projections can 014 * be thought of as special cases of the oblique mercator, where the central line is along the 015 * equator or a meridian, respectively. The Oblique Mercator projection has been used in 016 * Switzerland, Hungary, Madagascar, Malaysia, Borneo and the panhandle of Alaska. 017 * <p> 018 * The Oblique Mercator projection uses a (<var>U</var>,<var>V</var>) coordinate system, with the 019 * <var>U</var> axis along the central line. During the forward projection, coordinates from the 020 * ellipsoid are projected conformally to a sphere of constant total curvature, called the 021 * "aposphere", before being projected onto the plane. The projection coordinates are further 022 * convented to a (<var>X</var>,<var>Y</var>) coordinate system by rotating the calculated 023 * (<var>u</var>,<var>v</var>) coordinates to give output (<var>x</var>,<var>y</var>) coordinates. 024 * The rotation value is usually the same as the projection azimuth (the angle, east of north, of 025 * the central line), but some cases allow a separate rotation parameter. 026 * <p> 027 * There are two forms of the oblique mercator, differing in the origin of their grid coordinates. 028 * The Hotine Oblique Mercator (EPSG code 9812) has grid coordinates start at the intersection of 029 * the central line and the equator of the aposphere. 030 * The Oblique Mercator (EPSG code 9815) is the same, except the grid coordinates begin at the 031 * central point (where the latitude of center and central line intersect). ESRI separates these 032 * two case by appending {@code "Natural_Origin"} (for the {@code "Hotine_Oblique_Mercator"}) and 033 * {@code "Center"} (for the {@code "Oblique_Mercator"}) to the projection names. 034 * <p> 035 * Two different methods are used to specify the central line for the oblique mercator: 036 * 1) a central point and an azimuth, east of north, describing the central line and 037 * 2) two points on the central line. The EPSG does not use the two point method, 038 * while ESRI separates the two cases by putting {@code "Azimuth"} and {@code "Two_Point"} 039 * in their projection names. Both cases use the point where the {@code "latitude_of_center"} 040 * parameter crosses the central line as the projection's central point. 041 * The {@linkplain #centralMeridian central meridian} is not a projection parameter, 042 * and is instead calculated as the intersection between the central line and the 043 * equator of the aposphere. 044 * <p> 045 * For the azimuth method, the central latitude cannot be ±90.0 degrees 046 * and the central line cannot be at a maximum or minimum latitude at the central point. 047 * In the two point method, the latitude of the first and second points cannot be 048 * equal. Also, the latitude of the first point and central point cannot be 049 * ±90.0 degrees. Furthermore, the latitude of the first point cannot be 0.0 and 050 * the latitude of the second point cannot be -90.0 degrees. A change of 051 * 10<sup>-7</sup> radians can allow calculation at these special cases. Snyder's restriction 052 * of the central latitude being 0.0 has been removed, since the equations appear 053 * to work correctly in this case. 054 * <p> 055 * Azimuth values of 0.0 and ±90.0 degrees are allowed (and used in Hungary 056 * and Switzerland), though these cases would usually use a Mercator or 057 * Transverse Mercator projection instead. Azimuth values > 90 degrees cause 058 * errors in the equations. 059 * <p> 060 * The oblique mercator is also called the "Rectified Skew Orthomorphic" (RSO). It appears 061 * is that the only difference from the oblique mercator is that the RSO allows the rotation 062 * from the (<var>U</var>,<var>V</var>) to (<var>X</var>,<var>Y</var>) coordinate system to 063 * be different from the azimuth. This separate parameter is called 064 * {@code "rectified_grid_angle"} (or {@code "XY_Plane_Rotation"} by ESRI) and is also 065 * included in the EPSG's parameters for the Oblique Mercator and Hotine Oblique Mercator. 066 * The rotation parameter is optional in all the non-two point projections and will be 067 * set to the azimuth if not specified. 068 * <p> 069 * Projection cases and aliases implemented by the {@link ObliqueMercator} are: 070 * <ul> 071 * <li>{@code Oblique_Mercator} (EPSG code 9815)<br> 072 * grid coordinates begin at the central point, 073 * has {@code "rectified_grid_angle"} parameter.</li> 074 * <li>{@code Hotine_Oblique_Mercator_Azimuth_Center} (ESRI)<br> 075 * grid coordinates begin at the central point.</li> 076 * <li>{@code Rectified_Skew_Orthomorphic_Center} (ESRI)<br> 077 * grid coordinates begin at the central point, 078 * has {@code "rectified_grid_angle"} parameter.</li> 079 * 080 * <li>{@code Hotine_Oblique_Mercator} (EPSG code 9812)<br> 081 * grid coordinates begin at the interseciton of the central line and aposphere equator, 082 * has {@code "rectified_grid_angle"} parameter.</li> 083 * <li>{@code Hotine_Oblique_Mercator_Azimuth_Natural_Origin} (ESRI)<br> 084 * grid coordinates begin at the interseciton of the central line and aposphere equator.</li> 085 * <li>{@code Rectified_Skew_Orthomorphic_Natural_Origin} (ESRI)<br> 086 * grid coordinates begin at the interseciton of the central line and aposphere equator, 087 * has {@code "rectified_grid_angle"} parameter.</li> 088 * 089 * <li>{@code Hotine_Oblique_Mercator_Two_Point_Center} (ESRI)<br> 090 * grid coordinates begin at the central point.</li> 091 * <li>{@code Hotine_Oblique_Mercator_Two_Point_Natural_Origin} (ESRI)<br> 092 * grid coordinates begin at the interseciton of the central line and aposphere equator.</li> 093 * </ul> 094 * <p> 095 * This class has been derived from the implementation of the Geotools project; 096 * git 8cbf52d, org.geotools.referencing.operation.projection.ObliqueMercator 097 * at the time of migration. 098 * <p> 099 * Note that automatic calculation of bounds is very limited for this projection, 100 * since the central line can have any orientation. 101 * <p> 102 * <b>References:</b> 103 * <ul> 104 * <li>{@code libproj4} is available at 105 * <A HREF="http://members.bellatlantic.net/~vze2hc4d/proj4/">libproj4 Miscellanea</A><br> 106 * Relevent files are: {@code PJ_omerc.c}, {@code pj_tsfn.c}, 107 * {@code pj_fwd.c}, {@code pj_inv.c} and {@code lib_proj.h}</li> 108 * <li>John P. Snyder (Map Projections - A Working Manual, 109 * U.S. Geological Survey Professional Paper 1395, 1987)</li> 110 * <li>"Coordinate Conversions and Transformations including Formulas", 111 * EPSG Guidence Note Number 7 part 2, Version 24.</li> 112 * <li>Gerald Evenden, 2004, <a href="http://members.verizon.net/~vze2hc4d/proj4/omerc.pdf"> 113 * Documentation of revised Oblique Mercator</a></li> 114 * </ul> 115 * 116 * @author Gerald I. Evenden (for original code in Proj4) 117 * @author Rueben Schulz 118 * 119 * @see <A HREF="http://mathworld.wolfram.com/MercatorProjection.html">Oblique Mercator projection on MathWorld</A> 120 * @see <A HREF="http://www.remotesensing.org/geotiff/proj_list/hotine_oblique_mercator.html">"hotine_oblique_mercator" on RemoteSensing.org</A> 121 * @see <A HREF="http://www.remotesensing.org/geotiff/proj_list/oblique_mercator.html">"oblique_mercator" on RemoteSensing.org</A> 122 */ 123public class ObliqueMercator extends AbstractProj implements ICentralMeridianProvider { 124 125 /** 126 * Maximum difference allowed when comparing real numbers. 127 */ 128 private static final double EPSILON = 1E-6; 129 130 /** 131 * Maximum difference allowed when comparing latitudes. 132 */ 133 private static final double EPSILON_LATITUDE = 1E-10; 134 135 ////// 136 ////// Map projection parameters. The following are NOT used by the transformation 137 ////// methods, but are stored in order to restitute them in WKT formatting. They 138 ////// are made visible ('protected' access) for documentation purpose and because 139 ////// they are user-supplied parameters, not derived coefficients. 140 ////// 141 142 /** 143 * The azimuth of the central line passing throught the centre of the projection, in radians. 144 */ 145 protected double azimuth; 146 147 /** 148 * The rectified bearing of the central line, in radians. This is equals to the 149 * {@linkplain #azimuth} if the parameter value is not set. 150 */ 151 protected double rectifiedGridAngle; 152 153 ////// 154 ////// Map projection coefficients computed from the above parameters. 155 ////// They are the fields used for coordinate transformations. 156 ////// 157 158 /** 159 * Constants used in the transformation. 160 */ 161 private double b, a, e; 162 163 /** 164 * Convenience values equal to {@link #a} / {@link #b}, 165 * {@link #a}×{@link #b}, and {@link #b} / {@link #a}. 166 */ 167 private double arb, ab, bra; 168 169 /** 170 * <var>v</var> values when the input latitude is a pole. 171 */ 172 private double vPoleN, vPoleS; 173 174 /** 175 * Sine and Cosine values for gamma0 (the angle between the meridian 176 * and central line at the intersection between the central line and 177 * the Earth equator on aposphere). 178 */ 179 private double singamma0, cosgamma0; 180 181 /** 182 * Sine and Cosine values for the rotation between (U,V) and 183 * (X,Y) coordinate systems 184 */ 185 private double sinrot, cosrot; 186 187 /** 188 * <var>u</var> value (in (U,V) coordinate system) of the central point. Used in 189 * the oblique mercator case. The <var>v</var> value of the central point is 0.0. 190 */ 191 private double uc; 192 193 /** 194 * Central longitude in <u>radians</u>. Default value is 0, the Greenwich meridian. 195 * This is called '<var>lambda0</var>' in Snyder. 196 */ 197 protected double centralMeridian; 198 199 /** 200 * A reference point, which is known to be on the central line. 201 */ 202 private LatLon referencePoint; 203 204 @Override 205 public String getName() { 206 return tr("Oblique Mercator"); 207 } 208 209 @Override 210 public String getProj4Id() { 211 return "omerc"; 212 } 213 214 @Override 215 public void initialize(ProjParameters params) throws ProjectionConfigurationException { 216 super.initialize(params); 217 boolean twoPoint = params.alpha == null; 218 219 double latCenter = 0; 220 if (params.lat0 != null) { 221 latCenter = Math.toRadians(params.lat0); 222 } 223 224 final double com = Math.sqrt(1.0 - e2); 225 double sinph0 = Math.sin(latCenter); 226 double cosph0 = Math.cos(latCenter); 227 final double con = 1. - e2 * sinph0 * sinph0; 228 double temp = cosph0 * cosph0; 229 b = Math.sqrt(1.0 + e2 * (temp * temp) / (1.0 - e2)); 230 a = b * com / con; 231 final double d = b * com / (cosph0 * Math.sqrt(con)); 232 double f = d * d - 1.0; 233 if (f < 0.0) { 234 f = 0.0; 235 } else { 236 f = Math.sqrt(f); 237 if (latCenter < 0.0) { 238 f = -f; 239 } 240 } 241 e = f += d; 242 e = f * Math.pow(tsfn(latCenter, sinph0), b); 243 244 /* 245 * Computes the constants that depend on the "twoPoint" vs "azimuth" case. In the 246 * two points case, we compute them from (LAT_OF_1ST_POINT, LONG_OF_1ST_POINT) and 247 * (LAT_OF_2ND_POINT, LONG_OF_2ND_POINT). For the "azimuth" case, we compute them 248 * from LONGITUDE_OF_CENTRE and AZIMUTH. 249 */ 250 final double gamma0; 251 Double lonCenter = null; 252 if (twoPoint) { 253 if (params.lon1 == null) 254 throw new ProjectionConfigurationException(tr("Parameter ''{0}'' required.", "lon_1")); 255 if (params.lat1 == null) 256 throw new ProjectionConfigurationException(tr("Parameter ''{0}'' required.", "lat_1")); 257 if (params.lon2 == null) 258 throw new ProjectionConfigurationException(tr("Parameter ''{0}'' required.", "lon_2")); 259 if (params.lat2 == null) 260 throw new ProjectionConfigurationException(tr("Parameter ''{0}'' required.", "lat_2")); 261 referencePoint = new LatLon(params.lat1, params.lat2); 262 double lon1 = Math.toRadians(params.lon1); 263 double lat1 = Math.toRadians(params.lat1); 264 double lon2 = Math.toRadians(params.lon2); 265 double lat2 = Math.toRadians(params.lat2); 266 267 if (Math.abs(lat1 - lat2) <= EPSILON || 268 Math.abs(lat1) <= EPSILON || 269 Math.abs(Math.abs(lat1) - Math.PI / 2) <= EPSILON || 270 Math.abs(Math.abs(latCenter) - Math.PI / 2) <= EPSILON || 271 Math.abs(Math.abs(lat2) - Math.PI / 2) <= EPSILON) { 272 throw new ProjectionConfigurationException( 273 tr("Unsuitable parameters ''{0}'' and ''{1}'' for two point method.", "lat_1", "lat_2")); 274 } 275 /* 276 * The coefficients for the "two points" case. 277 */ 278 final double h = Math.pow(tsfn(lat1, Math.sin(lat1)), b); 279 final double l = Math.pow(tsfn(lat2, Math.sin(lat2)), b); 280 final double fp = e / h; 281 final double p = (l - h) / (l + h); 282 double j = e * e; 283 j = (j - l * h) / (j + l * h); 284 double diff = lon1 - lon2; 285 if (diff < -Math.PI) { 286 lon2 -= 2.0 * Math.PI; 287 } else if (diff > Math.PI) { 288 lon2 += 2.0 * Math.PI; 289 } 290 centralMeridian = normalizeLonRad(0.5 * (lon1 + lon2) - 291 Math.atan(j * Math.tan(0.5 * b * (lon1 - lon2)) / p) / b); 292 gamma0 = Math.atan(2.0 * Math.sin(b * normalizeLonRad(lon1 - centralMeridian)) / 293 (fp - 1.0 / fp)); 294 azimuth = Math.asin(d * Math.sin(gamma0)); 295 rectifiedGridAngle = azimuth; 296 } else { 297 if (params.lonc == null) 298 throw new ProjectionConfigurationException(tr("Parameter ''{0}'' required.", "lonc")); 299 if (params.lat0 == null) 300 throw new ProjectionConfigurationException(tr("Parameter ''{0}'' required.", "lat_0")); 301 if (params.alpha == null) 302 throw new ProjectionConfigurationException(tr("Parameter ''{0}'' required.", "alpha")); 303 referencePoint = new LatLon(params.lat0, params.lonc); 304 305 lonCenter = Math.toRadians(params.lonc); 306 azimuth = Math.toRadians(params.alpha); 307 if ((azimuth > -1.5*Math.PI && azimuth < -0.5*Math.PI) || 308 (azimuth > 0.5*Math.PI && azimuth < 1.5*Math.PI)) { 309 throw new ProjectionConfigurationException( 310 tr("Illegal value for parameter ''{0}'': {1}", "alpha", Double.toString(params.alpha))); 311 } 312 if (params.gamma != null) { 313 rectifiedGridAngle = Math.toRadians(params.gamma); 314 } else { 315 rectifiedGridAngle = azimuth; 316 } 317 gamma0 = Math.asin(Math.sin(azimuth) / d); 318 // Check for asin(+-1.00000001) 319 temp = 0.5 * (f - 1.0 / f) * Math.tan(gamma0); 320 if (Math.abs(temp) > 1.0) { 321 if (Math.abs(Math.abs(temp) - 1.0) > EPSILON) { 322 throw new ProjectionConfigurationException(tr("error in initialization")); 323 } 324 temp = (temp > 0) ? 1.0 : -1.0; 325 } 326 centralMeridian = lonCenter - Math.asin(temp) / b; 327 } 328 329 /* 330 * More coefficients common to all kind of oblique mercator. 331 */ 332 singamma0 = Math.sin(gamma0); 333 cosgamma0 = Math.cos(gamma0); 334 sinrot = Math.sin(rectifiedGridAngle); 335 cosrot = Math.cos(rectifiedGridAngle); 336 arb = a / b; 337 ab = a * b; 338 bra = b / a; 339 vPoleN = arb * Math.log(Math.tan(0.5 * (Math.PI/2.0 - gamma0))); 340 vPoleS = arb * Math.log(Math.tan(0.5 * (Math.PI/2.0 + gamma0))); 341 boolean hotine = params.no_off != null && params.no_off; 342 if (hotine) { 343 uc = 0.0; 344 } else { 345 if (Math.abs(Math.abs(azimuth) - Math.PI/2.0) < EPSILON_LATITUDE) { 346 // lonCenter == null in twoPoint, but azimuth cannot be 90 here (lat1 != lat2) 347 if (lonCenter == null) { 348 throw new ProjectionConfigurationException("assertion error"); 349 } 350 uc = a * (lonCenter - centralMeridian); 351 } else { 352 double uC = Math.abs(arb * Math.atan2(Math.sqrt(d * d - 1.0), Math.cos(azimuth))); 353 if (latCenter < 0.0) { 354 uC = -uC; 355 } 356 this.uc = uC; 357 } 358 } 359 } 360 361 private double normalizeLonRad(double a) { 362 return Math.toRadians(LatLon.normalizeLon(Math.toDegrees(a))); 363 } 364 365 @Override 366 public double[] project(double y, double x) { 367 double u, v; 368 if (Math.abs(Math.abs(y) - Math.PI/2.0) > EPSILON) { 369 double q = e / Math.pow(tsfn(y, Math.sin(y)), b); 370 double temp = 1.0 / q; 371 double s = 0.5 * (q - temp); 372 double V = Math.sin(b * x); 373 double U = (s * singamma0 - V * cosgamma0) / (0.5 * (q + temp)); 374 if (Math.abs(Math.abs(U) - 1.0) < EPSILON) { 375 v = 0; // this is actually an error and should be reported to the caller somehow 376 } else { 377 v = 0.5 * arb * Math.log((1.0 - U) / (1.0 + U)); 378 } 379 temp = Math.cos(b * x); 380 if (Math.abs(temp) < EPSILON_LATITUDE) { 381 u = ab * x; 382 } else { 383 u = arb * Math.atan2(s * cosgamma0 + V * singamma0, temp); 384 } 385 } else { 386 v = y > 0 ? vPoleN : vPoleS; 387 u = arb * y; 388 } 389 u -= uc; 390 x = v * cosrot + u * sinrot; 391 y = u * cosrot - v * sinrot; 392 return new double[] {x, y}; 393 } 394 395 @Override 396 public double[] invproject(double x, double y) { 397 double v = x * cosrot - y * sinrot; 398 double u = y * cosrot + x * sinrot + uc; 399 double qp = Math.exp(-bra * v); 400 double temp = 1.0 / qp; 401 double sp = 0.5 * (qp - temp); 402 double vp = Math.sin(bra * u); 403 double up = (vp * cosgamma0 + sp * singamma0) / (0.5 * (qp + temp)); 404 if (Math.abs(Math.abs(up) - 1.0) < EPSILON) { 405 x = 0.0; 406 y = up < 0.0 ? -Math.PI / 2.0 : Math.PI / 2.0; 407 } else { 408 y = Math.pow(e / Math.sqrt((1. + up) / (1. - up)), 1.0 / b); //calculate t 409 y = cphi2(y); 410 x = -Math.atan2(sp * cosgamma0 - vp * singamma0, Math.cos(bra * u)) / b; 411 } 412 return new double[] {y, x}; 413 } 414 415 @Override 416 public Bounds getAlgorithmBounds() { 417 // The central line of this projection can be oriented in any direction. 418 // Moreover, the projection doesn't work too well very far off the central line. 419 // This makes it hard to choose proper bounds automatically. 420 // 421 // We return a small box around a reference point. This default box is 422 // probably too small for most applications. If this is the case, the 423 // bounds should be configured explicitly. 424 double lat = referencePoint.lat(); 425 double dLat = 3.0; 426 double lon = referencePoint.lon() - Math.toDegrees(centralMeridian); 427 double dLon = 3.0; 428 return new Bounds(lat - dLat, lon - dLon, lat + dLat, lon + dLon, false); 429 } 430 431 @Override 432 public double getCentralMeridian() { 433 return Math.toDegrees(centralMeridian); 434 } 435}