Sum species¶
-
class
sage.combinat.species.sum_species.
SumSpecies
(F, G, min=None, max=None, weight=None)¶ Bases:
sage.combinat.species.species.GenericCombinatorialSpecies
,sage.structure.unique_representation.UniqueRepresentation
Returns the sum of two species.
EXAMPLES:
sage: S = species.PermutationSpecies() sage: A = S+S sage: A.generating_series().coefficients(5) [2, 2, 2, 2, 2] sage: P = species.PermutationSpecies() sage: F = P + P sage: F._check() True sage: F == loads(dumps(F)) True
TESTS:
sage: A = species.SingletonSpecies() + species.SingletonSpecies() sage: B = species.SingletonSpecies() + species.SingletonSpecies() sage: C = species.SingletonSpecies() + species.SingletonSpecies(min=2) sage: A is B True sage: (A is C) or (A == C) False
-
weight_ring
()¶ Returns the weight ring for this species. This is determined by asking Sage’s coercion model what the result is when you add elements of the weight rings for each of the operands.
EXAMPLES:
sage: S = species.SetSpecies() sage: C = S+S sage: C.weight_ring() Rational Field
sage: S = species.SetSpecies(weight=QQ['t'].gen()) sage: C = S + S sage: C.weight_ring() Univariate Polynomial Ring in t over Rational Field
-
-
class
sage.combinat.species.sum_species.
SumSpeciesStructure
(parent, s, **options)¶ Bases:
sage.combinat.species.structure.SpeciesStructureWrapper
EXAMPLES:
sage: E = species.SetSpecies(); B = E+E sage: s = B.structures([1,2,3]).random_element() sage: s.parent() Sum of (Set species) and (Set species) sage: s == loads(dumps(s)) True
-
sage.combinat.species.sum_species.
SumSpecies_class
¶ alias of
SumSpecies