Graded algebras with basis¶
-
class
sage.categories.graded_algebras_with_basis.
GradedAlgebrasWithBasis
(base_category)¶ Bases:
sage.categories.graded_modules.GradedModulesCategory
The category of graded algebras with a distinguished basis
EXAMPLES:
sage: C = GradedAlgebrasWithBasis(ZZ); C Category of graded algebras with basis over Integer Ring sage: sorted(C.super_categories(), key=str) [Category of algebras with basis over Integer Ring, Category of graded algebras over Integer Ring, Category of graded modules with basis over Integer Ring]
TESTS:
sage: TestSuite(C).run()
-
class
ElementMethods
¶ -
degree
()¶ The degree of this element.
Note
This raises an error if the element is not homogeneous. To obtain the maximum of the degrees of the homogeneous summands, use
maximal_degree()
EXAMPLES:
sage: S = NonCommutativeSymmetricFunctions(QQ).S() sage: (x, y) = (S[2], S[3]) sage: x.homogeneous_degree() 2 sage: (x^3 + 4*y^2).homogeneous_degree() 6 sage: ((1 + x)^3).homogeneous_degree() Traceback (most recent call last): ... ValueError: Element is not homogeneous.
TESTS:
sage: S = NonCommutativeSymmetricFunctions(QQ).S() sage: S.zero().degree() Traceback (most recent call last): ... ValueError: The zero element does not have a well-defined degree.
-
homogeneous_degree
()¶ The degree of this element.
Note
This raises an error if the element is not homogeneous. To obtain the maximum of the degrees of the homogeneous summands, use
maximal_degree()
EXAMPLES:
sage: S = NonCommutativeSymmetricFunctions(QQ).S() sage: (x, y) = (S[2], S[3]) sage: x.homogeneous_degree() 2 sage: (x^3 + 4*y^2).homogeneous_degree() 6 sage: ((1 + x)^3).homogeneous_degree() Traceback (most recent call last): ... ValueError: Element is not homogeneous.
TESTS:
sage: S = NonCommutativeSymmetricFunctions(QQ).S() sage: S.zero().degree() Traceback (most recent call last): ... ValueError: The zero element does not have a well-defined degree.
-
is_homogeneous
()¶ Return whether this element is homogeneous.
EXAMPLES:
sage: S = NonCommutativeSymmetricFunctions(QQ).S() sage: (x, y) = (S[2], S[3]) sage: (3*x).is_homogeneous() True sage: (x^3 - y^2).is_homogeneous() True sage: ((x + y)^2).is_homogeneous() False
-
maximal_degree
()¶ The maximum of the degrees of the homogeneous summands.
EXAMPLES:
sage: S = NonCommutativeSymmetricFunctions(QQ).S() sage: (x, y) = (S[2], S[3]) sage: x.maximal_degree() 2 sage: (x^3 + 4*y^2).maximal_degree() 6 sage: ((1 + x)^3).maximal_degree() 6
TESTS:
sage: S = NonCommutativeSymmetricFunctions(QQ).S() sage: S.zero().degree() Traceback (most recent call last): ... ValueError: The zero element does not have a well-defined degree.
-
-
class
GradedAlgebrasWithBasis.
ParentMethods
¶
-
class