next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
TensorComplexes :: basisList

basisList -- gives the list used to label the basis elements of a labeled module

Synopsis

Description

One of the key features of a labeled module of rank r is that the basis can be labeled by any list of cardinality r. This is particularly convenient when working with tensor products, symmetric powers, and exterior powers. For instance, if A is a labeled module with basis labeled by {0,…, r-1} then it is natural to think of 2 A as a labeled module with a basis labeled by elements of the lists

{(i,j)| 0≤i<j≤r-1}.

When you use apply the functions tensorProduct, symmetricPower and exteriorPower to a labeled module, the output is a labeled module with a natural basis list.

i1 : S=ZZ/101[x,y,z];
i2 : A=labeledModule(S^2);

o2 : free S-module with labeled basis
i3 : B=labeledModule(S^4);

o3 : free S-module with labeled basis
i4 : F=A**B

      8
o4 = S

o4 : free S-module with labeled basis
i5 : basisList(F)

o5 = {{0, 0}, {0, 1}, {0, 2}, {0, 3}, {1, 0}, {1, 1}, {1, 2}, {1, 3}}

o5 : List
i6 : G=exteriorPower(2,B)

      6
o6 = S

o6 : free S-module with labeled basis
i7 : basisList(G)

o7 = {{0, 1}, {0, 2}, {1, 2}, {0, 3}, {1, 3}, {2, 3}}

o7 : List

Ways to use basisList :

  • basisList(LabeledModule)