next | previous | forward | backward | up | top | index | toc | Macaulay2 web site
Binomials :: randomBinomialIdeal

randomBinomialIdeal -- Random Binomial Ideals

Synopsis

Description

The exponents are drawn at random from {-d,...,d}. All coefficients are set to 1.
i1 : R = QQ[a..x]

o1 = R

o1 : PolynomialRing
i2 : randomBinomialIdeal (R,6,2,4,true)

                        2     2    2 2    2    2 2    2    2 2      2   2 2 
o2 = ideal (b*e*v - x, e g - k s, g t  - o p, o q  - t u, f o  - q*w , g o t
     ------------------------------------------------------------------------
        2   2 2
     - r , b l n - r)

o2 : Ideal of R
i3 : randomBinomialIdeal (R,3,4,10,false)

             4 3 3 3   2    3 3 3 4   4 3 3 4     2    4 3 4   3 3 3 3 4 2  
o3 = ideal (b d g h o*q  - l s t v , a b d e k*n*v  - h l s , b g j n r t  -
     ------------------------------------------------------------------------
      2 3 2 4   2 3 3 3 3 4 3    2
     k m s x , b d h j p q s  - m u*v)

o3 : Ideal of R
This function is mostly for internal testing purposes. Don't expect anything from it.

Caveat

Minimal generators are produced. These can be less than n and of higher degree. They also need not be homogeneous.