
Trove DBPF Handle Allocator

PVFS Development Team

April 9, 2018

$Id: handle-allocator.tex,v 1.1 2003-01-24 23:29:18 pcarns Exp $

1 Introduction

The Trove interface gives out handles – unique identifiers to trove objects. In addition to being unique, handles will

not be reused within a configurable amount of time. These two constraints make for a handle allocator that ends up

being a bit more complicated than one might expect. Add to that the fact that we want to serialize on disk all or part

of the handle allocator’s state, and here we are with a document to explain it all.

1.1 Data Structures

1.1.1 Extents

We have a large handle space we need to represent efficiently. This approach uses extents:

struct extent {

int64_t first;

int64_t last;

};

1.1.2 Extent List

We keep the extents (not nescessarily sorted) in the extents array. For faster searches, index keeps an index

into extents in an AVL tree. In addition to the extents themselves, some bookkeeping members are added. The

most important is the timestamp member, used to make sure no handle in its list gets reused before it should.

size is only used internally, keeping track of how big extents is.

struct extentlist {

int64_t __size;

int64_t num_extents;

1

int64_t num_handles;

struct timeval timestamp;

struct extent * extents;

};

1.1.3 Handle Ledger

We manage several lists. The free list contains all the valid handles. The recently freed list contains

handles which have been freed, but possibly before some expire time has passed. The overflow list holds

freed handles while items on the recently freed list wait for the expire time to pass.

We save our state by writing out and reading from the three TROVE handle members, making use of the higher

level trove interface.

struct handle_ledger {

struct extentlist free_list;

struct extentlist recently_freed_list;

struct extentlist overflow_list;

FILE *backing_store;

TROVE_handle free_list_handle;

TROVE_handle recently_freed_list_handle;

TROVE_handle overflow_list_handle;

}

2 Algorithm

2.1 Assigning handles

Start off with a free list of one big extent encompassing the entire handle space.

• Get the last extent from the free list (We hope getting the last extent improves the effiency of the extent

representation)

• Save last for later return to the caller

• Decrement last

• if first > last, mark the extent as empty.

2.2 returning handles

• when the first handle is returned, it gets added to the recently freed list. Because this is the first item

on that list, we check the time.

• now we add more handles to the list. we check the time after N handles are returned and update the times-

tamp.

2

• Once we have added H handles, we decide the recently freed list has enough handles. We then start

using the overflow list to hold returned handles.

• as with the recently freed list, we record the time that this handle was added, updating the timestamp

after every N additions. We also check how old the recently freed list is.

• at some point in time, the whole recently freed list is ready to be returned to the free list. The

recently freed list is merged into the free list, the overflow list becomes the recently freed

list and the overflow list is empty.

2.3 I don’t know what to call this section

Let Tr be the minimum response time for an operation of any sort, Tf be the time a handle must sit before being

moved back to the free list, and Ntot be the total number of handles available on a server.

The pathological case would be one where a caller

• fills up the recently freed list

• immediately starts consuming handles as quickly as possible to make for the largest possible recently freed

list in the next pass

This results in the largest number of handles being unavailable due to sitting on the overflow list. Call Npurg

the number of handles waiting in “purgatory” (waiting for Tf to pass)

Npurg = Tf/Tr (1)

Fpurg = Npurg/Ntot (2)

Fpurg = Tf/(Tr ∗Ntot) (3)

We should try to collect statistics and see what Tr and Npurg end up being for real and pathological workloads.

3

