52 #define BITS_PER_LONG 8*SIZEOF_LONG 121 r->names = (
char **)
omAlloc0(
N *
sizeof(
char *));
129 r->wvhdl = (
int **)
omAlloc0((ord_size+1) *
sizeof(
int *));
146 return rDefault(
cf,
N,n,ord_size,ord,block0,block1,wvhdl);
153 int *block0 = (
int *)
omAlloc0(2 *
sizeof(
int));
154 int *block1 = (
int *)
omAlloc0(2 *
sizeof(
int));
189 WerrorS(
"weights only for orderings wp,ws,Wp,Ws,a,M");
198 int sz = (int)
sqrt((
double)(order->
length()-2));
199 if ((sz*sz)!=(order->
length()-2))
201 WerrorS(
"Matrix order is not a square matrix");
204 while ((
i<sz) && (typ==1))
207 while ((
j<sz) && ((*order)[
j*sz+
i+2]==0))
j++;
211 WerrorS(
"Matrix order not complete");
213 else if ((*order)[
j*sz+
i+2]<0)
226 for (
int i=0;
i<
N;
i++)
228 if (names[
i]==
NULL)
return -1;
229 if (strcmp(n,names[
i]) == 0)
return (
int)
i;
257 PrintS(
"// coefficients: ");
269 R->ShortOut = bSaveShortOut;
312 Print(
"// number of vars : %d",
r->N);
317 for (
int l=0, nlen=0 ;
l<nblocks;
l++)
320 Print(
"\n// block %3d : ",
l+1);
328 const int s =
r->block0[
l];
336 Print(
" syz_comp: %d",
r->block0[
l]);
348 for (
i =
r->block0[
l]-1; i<r->block1[
l];
i++)
350 nlen = strlen(
r->names[
i]);
358 j<(
r->block1[
l]-
r->block0[
l]+1)*(
r->block1[
l]-
r->block0[
l]+1);
361 PrintS(
"\n// : weights ");
362 for (
i = 0;
i<=
r->block1[
l]-
r->block0[
l];
i++)
380 int m=
r->wvhdl[
l][
i];
381 Print(
"\n// : %d module weights ",
m);
390 PrintS(
"\n// noncommutative relations:");
396 for (
i = 1;
i<
r->N;
i++)
398 for (
j =
i+1;
j<=
r->N;
j++)
403 Print(
"\n// %s%s=",
r->names[
j-1],
r->names[
i-1]);
414 Print(
"\n// is skew constant:%d",
r->GetNC()->IsSkewConstant);
419 PrintS(
"\n// quotient of sca by ideal");
439 PrintS(
"\n// quotient ring from ideal");
452 if (
r ==
NULL)
return;
459 if(
r->qideal !=
NULL )
474 if (
r->order !=
NULL)
498 for (
i=0;
i<
r->N;
i++)
517 if (order==0)
Werror(
"wrong ring order `%s`",ordername);
527 for (nblocks=0;
r->order[nblocks]; nblocks++);
550 j<(
r->block1[
l]-
r->block0[
l]+1)*(
r->block1[
l]-
r->block0[
l]+1);
566 for (
i = 0;
i<
r->block1[
l]-
r->block0[
l];
i++)
576 if (
j+
i+1==(
r->block1[
l]-
r->block0[
l]+1)*(
r->block1[
l]-
r->block0[
l]+1))
587 const int s =
r->block0[
l];
605 for (
i=0;
i<
r->N;
i++)
607 l+=strlen(
r->names[
i])+1;
611 for (
i=0;
i<
r->N-1;
i++)
613 strcat(
s,
r->names[
i]);
616 strcat(
s,
r->names[
i]);
635 l+=strlen(params[
i])+1;
641 strcat(
s, params[
i]);
644 strcat(
s, params[
i]);
655 char *
res=(
char *)
omAlloc(strlen(ch)+strlen(var)+strlen(ord)+9);
656 sprintf(
res,
"(%s),(%s),(%s)",ch,var,ord);
705 for(
int i=1;
i<
r->N;
i++)
706 for(
int j=
i+1;
j<=
r->N;
j++)
710 WarnS(
"Error initializing multiplication!");
730 memset(&tmpR,0,
sizeof(tmpR));
781 if (r1->cf->extRing->cf==r2->cf)
791 WerrorS (
"coeff sum of two extension fields not implemented");
797 WerrorS(
"coeff sum not yet implemented");
804 char **names=(
char **)
omAlloc0(
l*
sizeof(
char *));
809 for (
i=0;
i<r1->N;
i++)
813 if (*(r1->names[
i]) ==
'\0')
845 if (*(r2->names[
i]) ==
'\0')
868 if (strcmp(r1->names[
j],r2->names[
i])==0)
937 if ((r2->block0[0]==1)
938 && (r2->block1[0]==
rVar(r2))
944 tmpR.
order[1]=r2->order[0];
945 if (r2->wvhdl[0]!=
NULL)
1011 if (rb->wvhdl[
i]!=
NULL)
1012 WarnS(
"rSum: weights not implemented");
1018 for (
i=0;r1->order[
i]!=0;
i++)
1023 if (r1->wvhdl[
i]!=
NULL)
1034 for (
i=0;r2->order[
i]!=0;
i++)
1042 if (r2->wvhdl[
i]!=
NULL)
1049 if((r1->OrdSgn==-1)||(r2->OrdSgn==-1))
1069 if (r1->wvhdl[
i]!=
NULL)
1080 Werror(
"variables must not overlap (# of vars: %d,%d -> %d)",
rVar(r1),
rVar(r2),
k);
1086 memcpy(sum,&tmpR,
sizeof(
ip_sring));
1103 if ( (R1_is_nc) || (R2_is_nc))
1127 int *perm1 = (
int *)
omAlloc0((
rVar(R1)+1)*
sizeof(int));
1128 int *par_perm1 =
NULL;
1131 int *perm2 = (
int *)
omAlloc0((
rVar(R2)+1)*
sizeof(int));
1132 int *par_perm2 =
NULL;
1137 perm1, par_perm1, sum->cf->type);
1141 perm2, par_perm2, sum->cf->type);
1144 matrix C1 = R1->GetNC()->C, C2 = R2->GetNC()->C;
1145 matrix D1 = R1->GetNC()->D, D2 = R2->GetNC()->D;
1154 for (
i = 1;
i <=
rVar(R1);
i++)
1167 MATELEM(C,
i,
j) =
p_PermPoly(
MATELEM(C1,
i,
j), perm1, R1, sum, nMap1, par_perm1,
rPar(R1));
1170 MATELEM(
D,
i,
j) =
p_PermPoly(
MATELEM(D1,
i,
j), perm1, R1, sum, nMap1, par_perm1,
rPar(R1));
1183 MATELEM(C,
rVar(R1)+
i,
rVar(R1)+
j) =
p_PermPoly(
MATELEM(C2,
i,
j),perm2,R2,sum, nMap2,par_perm2,
rPar(R2));
1186 MATELEM(
D,
rVar(R1)+
i,
rVar(R1)+
j) =
p_PermPoly(
MATELEM(D2,
i,
j),perm2,R2,sum, nMap2,par_perm2,
rPar(R2));
1194 WarnS(
"Error initializing non-commutative multiplication!");
1203 Print(
"\nRefs: R1: %d, R2: %d\n", R1->GetNC()->ref, R2->GetNC()->ref);
1226 if (r1->qideal!=
NULL)
1237 int *perm1 = (
int *)
omAlloc0((
rVar(r1)+1)*
sizeof(int));
1238 int *par_perm1 =
NULL;
1242 perm1, par_perm1, sum->cf->type);
1246 for (
int for_i=0;for_i<
IDELEMS(r1->qideal);for_i++)
1248 r1->qideal->m[for_i], perm1,
1251 par_perm1,
rPar(r1));
1256 if (r2->qideal!=
NULL)
1260 int *perm2 = (
int *)
omAlloc0((
rVar(r2)+1)*
sizeof(int));
1261 int *par_perm2 =
NULL;
1265 perm2, par_perm2, sum->cf->type);
1269 for (
int for_i=0;for_i<
IDELEMS(r2->qideal);for_i++)
1271 r2->qideal->m[for_i], perm2,
1274 par_perm2,
rPar(r2));
1306 int rSum(ring r1, ring r2, ring &sum)
1332 res->options=
r->options;
1347 res->firstBlockEnds=
r->firstBlockEnds;
1349 res->real_var_start=
r->real_var_start;
1350 res->real_var_end=
r->real_var_end;
1353 #ifdef HAVE_SHIFTBBA 1354 res->isLPring=
r->isLPring;
1357 res->VectorOut=
r->VectorOut;
1358 res->ShortOut=
r->ShortOut;
1359 res->CanShortOut=
r->CanShortOut;
1375 res->bitmask=
r->bitmask;
1376 res->divmask=
r->divmask;
1377 res->BitsPerExp =
r->BitsPerExp;
1378 res->ExpPerLong =
r->ExpPerLong;
1397 if (copy_ordering ==
TRUE)
1399 res->LexOrder=
r->LexOrder;
1400 res->MixedOrder=
r->MixedOrder;
1416 memcpy(
res->block0,
r->block0,
i *
sizeof(
int));
1417 memcpy(
res->block1,
r->block1,
i *
sizeof(
int));
1432 if (
r->qideal!=
NULL)
1438 WerrorS(
"internal error: rCopy0(Q,TRUE,FALSE)");
1443 WarnS(
"internal bad stuff: rCopy0(Q,TRUE,TRUE)");
1470 res->options=
r->options;
1485 res->firstBlockEnds=
r->firstBlockEnds;
1487 res->real_var_start=
r->real_var_start;
1488 res->real_var_end=
r->real_var_end;
1491 #ifdef HAVE_SHIFTBBA 1492 res->isLPring=
r->isLPring;
1495 res->VectorOut=
r->VectorOut;
1496 res->ShortOut=
r->ShortOut;
1497 res->CanShortOut=
r->CanShortOut;
1498 res->LexOrder=
r->LexOrder;
1499 res->MixedOrder=
r->MixedOrder;
1515 res->bitmask=
r->bitmask;
1516 res->divmask=
r->divmask;
1517 res->BitsPerExp =
r->BitsPerExp;
1518 res->ExpPerLong =
r->ExpPerLong;
1537 if (copy_ordering ==
TRUE)
1544 for (
j=0;
j<
i-1;
j++)
1554 memcpy(&(
res->block0[1]),
r->block0,(
i-1) *
sizeof(
int));
1555 memcpy(&(
res->block1[1]),
r->block1,(
i-1) *
sizeof(
int));
1567 int length=wv64->
rows();
1569 for(
j=length-1;
j>=0;
j--)
1573 res->wvhdl[0]=(
int *)
A;
1575 res->block1[0]=length;
1583 if (
r->qideal!=
NULL)
1589 WerrorS(
"internal error: rCopy0(Q,TRUE,FALSE)");
1594 WarnS(
"internal bad stuff: rCopy0(Q,TRUE,TRUE)");
1631 if (r1 == r2)
return TRUE;
1633 if (r1->cf!=r2->cf)
return FALSE;
1643 if ((r1->names[
i] !=
NULL) && (r2->names[
i] !=
NULL))
1645 if (strcmp(r1->names[
i], r2->names[
i]))
return FALSE;
1647 else if ((r1->names[
i] !=
NULL) ^ (r2->names[
i] !=
NULL))
1655 if (r1->qideal !=
NULL)
1657 ideal id1 = r1->qideal, id2 = r2->qideal;
1671 else if (r2->qideal !=
NULL)
return FALSE;
1681 if (r1 == r2)
return TRUE;
1685 if ((r1->cf != r2->cf)
1687 || (r1->OrdSgn != r2->OrdSgn))
1691 while (r1->order[
i] != 0)
1693 if (r2->order[
i] == 0)
return FALSE;
1694 if ((r1->order[
i] != r2->order[
i])
1695 || (r1->block0[
i] != r2->block0[
i])
1696 || (r1->block1[
i] != r2->block1[
i]))
1698 if (r1->wvhdl[
i] !=
NULL)
1700 if (r2->wvhdl[
i] ==
NULL)
1702 for (
j=0;
j<r1->block1[
i]-r1->block0[
i]+1;
j++)
1703 if (r2->wvhdl[
i][
j] != r1->wvhdl[
i][
j])
1709 if (r2->order[
i] != 0)
return FALSE;
1770 if (blocks == 1)
return TRUE;
1779 if ((blocks -
s) > 2)
return FALSE;
1845 if (blocks == 1)
return TRUE;
1854 if ((blocks -
s) > 3)
return FALSE;
1857 if ((blocks -
s) == 3)
1876 for (pos=0;pos<
r->OrdSize;pos++)
1894 return (
rVar(
r) > 1 &&
1907 return ((
rVar(
r) > 1) &&
1916 while(
r->order[
i]!=0)
1918 if((
r->block0[
i]<=
v)
1919 && (
r->block1[
i]>=
v))
1924 return (
r->wvhdl[
i][
v-
r->block0[
i]]>0);
1963 if (
r->N == 0)
return TRUE;
1965 if ((
r->OrdSgn!=1) && (
r->OrdSgn!= -1))
1977 for(
int j=0;
j<=
i;
j++)
1980 dError(
"wrong order in r->order");
1991 if (
r->VarOffset ==
NULL)
1993 dReportError(
"Null ring VarOffset -- no rComplete (?) in n %s:%d", fn,
l);
1998 if ((
r->OrdSize==0)!=(
r->typ==
NULL))
2000 dReportError(
"mismatch OrdSize and typ-pointer in %s:%d");
2006 for(
i=0;
i<=
r->N;
i++)
2010 for(
j=0;
j<
r->OrdSize;
j++)
2014 const int p =
r->typ[
j].data.isTemp.suffixpos;
2019 assume( p < r->OrdSize );
2021 if(
r->typ[
p].ord_typ !=
ro_is)
2022 dReportError(
"ordrec prefix %d is unmatched (suffix: %d is wrong!!!)",
j,
p);
2025 if(
r->typ[
j].data.isTemp.pVarOffset[
i] != -1)
2031 else if (
r->typ[
j].ord_typ ==
ro_is)
2034 if(
r->typ[
j].data.is.pVarOffset[
i] != -1)
2044 if(((
short)
r->VarOffset[
i]) ==
r->typ[
j].data.cp.place)
2049 && (
r->VarOffset[
i] ==
r->typ[
j].data.dp.place))
2055 tmp=
r->VarOffset[
i] & 0xffffff;
2056 #if SIZEOF_LONG == 8 2057 if ((
r->VarOffset[
i] >> 24) >63)
2059 if ((
r->VarOffset[
i] >> 24) >31)
2062 if (
i > 0 && ((tmp<0) ||(tmp>
r->ExpL_Size-1)))
2064 dReportError(
"varoffset out of range for var %d: %d",
i,tmp);
2069 for(
j=0;
j<
r->OrdSize;
j++)
2071 if ((
r->typ[
j].ord_typ==
ro_dp)
2075 if (
r->typ[
j].data.dp.start >
r->typ[
j].data.dp.end)
2077 r->typ[
j].data.dp.start,
r->typ[
j].data.dp.end);
2078 if ((
r->typ[
j].data.dp.start < 1)
2079 || (
r->typ[
j].data.dp.end >
r->N))
2080 dReportError(
"in ordrec %d: start(%d)<1 or end(%d)>vars(%d)",
j,
2081 r->typ[
j].data.dp.start,
r->typ[
j].data.dp.end,
r->N);
2113 static void rO_TDegree(
int &place,
int &bitplace,
int start,
int end,
2119 ord_struct.
data.dp.start=start;
2120 ord_struct.
data.dp.end=end;
2121 ord_struct.
data.dp.place=place;
2133 ord_struct.
data.dp.start=start;
2134 ord_struct.
data.dp.end=end;
2135 ord_struct.
data.dp.place=place;
2141 static void rO_WDegree(
int &place,
int &bitplace,
int start,
int end,
2142 long *o,
sro_ord &ord_struct,
int *weights)
2145 while((start<end) && (weights[0]==0)) { start++; weights++; }
2146 while((start<end) && (weights[end-start]==0)) { end--; }
2149 for(
i=start;
i<=end;
i++)
2151 if(weights[
i-start]!=1)
2159 rO_TDegree(place,bitplace,start,end,o,ord_struct);
2164 ord_struct.
data.wp.start=start;
2165 ord_struct.
data.wp.end=end;
2166 ord_struct.
data.wp.place=place;
2167 ord_struct.
data.wp.weights=weights;
2171 for(
i=start;
i<=end;
i++)
2173 if(weights[
i-start]<0)
2181 static void rO_WMDegree(
int &place,
int &bitplace,
int start,
int end,
2182 long *o,
sro_ord &ord_struct,
int *weights)
2191 ord_struct.
data.am.start=start;
2192 ord_struct.
data.am.end=end;
2193 ord_struct.
data.am.place=place;
2194 ord_struct.
data.am.weights=weights;
2195 ord_struct.
data.am.weights_m = weights + (end-start+1);
2196 ord_struct.
data.am.len_gen=weights[end-start+1];
2197 assume( ord_struct.
data.am.weights_m[0] == ord_struct.
data.am.len_gen );
2210 ord_struct.
data.wp64.start=start;
2211 ord_struct.
data.wp64.end=end;
2212 ord_struct.
data.wp64.place=place;
2213 ord_struct.
data.wp64.weights64=weights;
2222 long *o,
sro_ord &ord_struct,
int *weights)
2225 while((start<end) && (weights[0]==0)) { start++; weights++; }
2226 while((start<end) && (weights[end-start]==0)) { end--; }
2229 ord_struct.
data.wp.start=start;
2230 ord_struct.
data.wp.end=end;
2231 ord_struct.
data.wp.place=place;
2232 ord_struct.
data.wp.weights=weights;
2237 for(
i=start;
i<=end;
i++)
2239 if(weights[
i-start]<0)
2247 static void rO_LexVars(
int &place,
int &bitplace,
int start,
int end,
2248 int &prev_ord,
long *o,
int *
v,
int bits,
int opt_var)
2253 if(prev_ord==-1)
rO_Align(place,bitplace);
2259 for(
k=start;;
k+=incr)
2264 v[
k]= place | (bitplace << 24);
2270 assume((opt_var == end+1) ||(opt_var == end-1));
2271 if((opt_var != end+1) &&(opt_var != end-1))
WarnS(
"hier-2");
2272 int save_bitplace=bitplace;
2276 bitplace=save_bitplace;
2280 v[opt_var]=place | (bitplace << 24);
2285 int &prev_ord,
long *o,
int *
v,
int bits,
int opt_var)
2290 if(prev_ord==1)
rO_Align(place,bitplace);
2296 for(
k=start;;
k+=incr)
2301 v[
k]=place | (bitplace << 24);
2308 assume((opt_var == end+1) ||(opt_var == end-1));
2309 if((opt_var != end+1) &&(opt_var != end-1))
WarnS(
"hier-1");
2310 int save_bitplace=bitplace;
2314 bitplace=save_bitplace;
2318 v[opt_var]=place | (bitplace << 24);
2329 ord_struct.
data.syzcomp.place=place;
2330 ord_struct.
data.syzcomp.Components=
NULL;
2331 ord_struct.
data.syzcomp.ShiftedComponents=
NULL;
2338 static void rO_Syz(
int &place,
int &bitplace,
int &prev_ord,
2339 int syz_comp,
long *o,
sro_ord &ord_struct)
2346 ord_struct.
data.syz.place=place;
2347 ord_struct.
data.syz.limit=syz_comp;
2349 ord_struct.
data.syz.syz_index = (
int*)
omAlloc0((syz_comp+1)*
sizeof(int));
2351 ord_struct.
data.syz.syz_index =
NULL;
2352 ord_struct.
data.syz.curr_index = 1;
2365 long *o,
int ,
int *
v,
sro_ord &ord_struct)
2372 ord_struct.
data.isTemp.start = place;
2374 ord_struct.
data.isTemp.suffixpos = -1;
2382 static void rO_ISSuffix(
int &place,
int &bitplace,
int &prev_ord,
long *o,
2387 int typ_j = typ_i - 1;
2390 if( tmp_typ[typ_j].ord_typ ==
ro_isTemp)
2403 const int start = tmp_typ[typ_j].
data.isTemp.start;
2404 int *pVarOffset = tmp_typ[typ_j].
data.isTemp.pVarOffset;
2415 tmp_typ[typ_j].
data.isTemp.suffixpos = typ_i;
2422 for(
int i = 0;
i <=
N;
i++ )
2425 if(
v[
i] != pVarOffset[
i] )
2427 pVarOffset[
i] =
v[
i];
2429 assume( pVarOffset[
i] != -1 );
2435 if( pVarOffset[0] != -1 )
2436 pVarOffset[0] &= 0x0fff;
2438 sro_ord &ord_struct = tmp_typ[typ_j];
2442 ord_struct.
data.is.start = start;
2443 ord_struct.
data.is.end = place;
2444 ord_struct.
data.is.pVarOffset = pVarOffset;
2466 v[0] = place | (bitplace << 24);
2477 bits=16; bitmask=0xffff;
2479 else if (bitmask <= 1L)
2481 bits=1; bitmask = 1L;
2483 else if (bitmask <= 3L)
2485 bits=2; bitmask = 3L;
2487 else if (bitmask <= 7L)
2491 else if (bitmask <= 0xfL)
2493 bits=4; bitmask=0xfL;
2495 else if (bitmask <= 0x1fL)
2497 bits=5; bitmask=0x1fL;
2499 else if (bitmask <= 0x3fL)
2501 bits=6; bitmask=0x3fL;
2503 #if SIZEOF_LONG == 8 2504 else if (bitmask <= 0x7fL)
2506 bits=7; bitmask=0x7fL;
2509 else if (bitmask <= 0xffL)
2511 bits=8; bitmask=0xffL;
2513 #if SIZEOF_LONG == 8 2514 else if (bitmask <= 0x1ffL)
2516 bits=9; bitmask=0x1ffL;
2519 else if (bitmask <= 0x3ffL)
2521 bits=10; bitmask=0x3ffL;
2523 #if SIZEOF_LONG == 8 2524 else if (bitmask <= 0xfffL)
2526 bits=12; bitmask=0xfff;
2529 else if (bitmask <= 0xffffL)
2531 bits=16; bitmask=0xffffL;
2533 #if SIZEOF_LONG == 8 2534 else if (bitmask <= 0xfffffL)
2536 bits=20; bitmask=0xfffffL;
2538 else if (bitmask <= 0xffffffffL)
2540 bits=32; bitmask=0xffffffffL;
2542 else if (bitmask <= 0x7fffffffffffffffL)
2544 bits=63; bitmask=0x7fffffffffffffffL;
2548 bits=63; bitmask=0x7fffffffffffffffL;
2551 else if (bitmask <= 0x7fffffff)
2553 bits=31; bitmask=0x7fffffff;
2557 bits=31; bitmask=0x7fffffffL;
2568 #if SIZEOF_LONG == 8 2583 unsigned long bitmask1 =
rGetExpSize(bitmask+1, bits1);
2585 if ((((
N+vars_per_long-1)/vars_per_long) ==
2586 ((
N+vars_per_long1-1)/vars_per_long1)))
2588 vars_per_long=vars_per_long1;
2608 unsigned long exp_limit)
2615 int iNeedInducedOrderingSetup = 0;
2619 need_other_ring = (exp_limit !=
r->bitmask);
2623 int *block0=(
int*)
omAlloc0((nblocks+1)*
sizeof(int));
2624 int *block1=(
int*)
omAlloc0((nblocks+1)*
sizeof(int));
2625 int **wvhdl=(
int**)
omAlloc0((nblocks+1)*
sizeof(
int *));
2634 if (
r->block0[
i]==
r->block1[
i])
2659 Warn(
"Error: unhandled ordering in rModifyRing: ringorder_S = [%d]", r_ord);
2673 need_other_ring=
TRUE;
2674 try_omit_comp=
FALSE;
2675 copy_block_index=
FALSE;
2689 need_other_ring=
TRUE;
2691 omitted_degree =
TRUE;
2705 need_other_ring=
TRUE;
2707 omitted_degree =
TRUE;
2715 try_omit_comp =
FALSE;
2718 iNeedInducedOrderingSetup++;
2727 try_omit_comp =
FALSE;
2736 if (copy_block_index)
2738 block0[
j]=
r->block0[
i];
2739 block1[
j]=
r->block1[
i];
2740 wvhdl[
j]=
r->wvhdl[
i];
2745 if(!need_other_ring)
2765 res->bitmask=exp_limit;
2772 if (
r->pFDegOrig !=
res->pFDegOrig &&
2777 res->firstwv =
r->firstwv;
2778 res->firstBlockEnds =
r->firstBlockEnds;
2782 res->pLDeg =
r->pLDegOrig;
2791 res->typ[0] =
r->typ[0];
2793 if (
r->typ[0].data.syz.limit > 0)
2795 res->typ[0].data.syz.syz_index
2796 = (
int*)
omAlloc((
r->typ[0].data.syz.limit +1)*
sizeof(int));
2797 memcpy(
res->typ[0].data.syz.syz_index,
r->typ[0].data.syz.syz_index,
2798 (
r->typ[0].data.syz.limit +1)*
sizeof(
int));
2802 if( iNeedInducedOrderingSetup > 0 )
2804 for(
j = 0,
i = 0; (i < nblocks) && (iNeedInducedOrderingSetup > 0);
i++)
2811 r->typ[
i].data.is.limit,
2816 iNeedInducedOrderingSetup--;
2822 res->OrdSgn=
r->OrdSgn;
2831 WarnS(
"error in nc_rComplete");
2844 WarnS(
"error in sca_Force!");
2870 res->block1[0] =
r->N;
2871 res->wvhdl[0] = weights;
2886 WarnS(
"error in nc_rComplete");
2913 int nblocks=1+(ommit_comp!=0);
2915 int *block0=(
int*)
omAlloc0((nblocks+1)*
sizeof(int));
2916 int *block1=(
int*)
omAlloc0((nblocks+1)*
sizeof(int));
2917 int **wvhdl=(
int**)
omAlloc0((nblocks+1)*
sizeof(
int *));
2936 res->bitmask=exp_limit;
2947 WarnS(
"error in nc_rComplete");
2963 return rModifyRing(
r, ommit_degree, ommit_comp, exp_limit);
2996 r->CanShortOut =
TRUE;
3016 if (
r->N <
N)
N =
r->N;
3018 for (
i=(
N-1);
i>=0;
i--)
3020 if(
r->names[
i] !=
NULL && strlen(
r->names[
i])>1)
3028 r->ShortOut =
r->CanShortOut;
3030 assume( !( !
r->CanShortOut &&
r->ShortOut ) );
3038 if(block1[
i]!=
r->N)
r->LexOrder=
TRUE;
3039 r->firstBlockEnds=block1[
i];
3040 r->firstwv = wvhdl[
i];
3049 for(
j=block1[
i]-
r->block0[
i];
j>=0;
j--)
3051 if (
r->firstwv[
j]==0)
r->LexOrder=
TRUE;
3058 for(
j=block1[
i]-
r->block0[
i];
j>=0;
j--)
3060 if (
w[
j]==0)
r->LexOrder=
TRUE;
3088 r->pLDegOrig =
r->pLDeg;
3095 int* block0 =
r->block0;
3096 int* block1 =
r->block1;
3097 int** wvhdl =
r->wvhdl;
3113 for(
int ii=block0[0];ii<=block1[0];ii++)
3114 if (wvhdl[0][ii-1]<0) {
r->MixedOrder=2;
break;}
3116 for(
int ii=block0[0];ii<=block1[0];ii++)
3117 if (wvhdl[0][ii-1]==0) {
r->LexOrder=
TRUE;
break;}
3118 if ((block0[0]==1)&&(block1[0]==
r->N))
3129 r->firstwv = wvhdl[0];
3141 if (
r->OrdSgn == -1)
r->pLDeg =
pLDeg0c;
3160 for(
int ii=block0[0];ii<=block1[0];ii++)
3162 if (wvhdl[0][ii-1]<0) {
r->MixedOrder=2;
break;}
3164 if (
r->MixedOrder==0)
3166 if ((block0[0]==1)&&(block1[0]==
r->N))
3174 r->firstBlockEnds=block1[0];
3175 r->firstwv = wvhdl[0];
3194 r->firstBlockEnds=block1[1];
3195 if (wvhdl!=
NULL)
r->firstwv = wvhdl[1];
3203 for(
int ii=block0[1];ii<=block1[1];ii++)
3204 if (wvhdl[1][ii-1]<0) {
r->MixedOrder=2;
break;}
3205 if (
r->MixedOrder==
FALSE)
3253 r->pFDegOrig =
r->pFDeg;
3268 for(
i=0;
i<
r->OrdSize;
i++)
3276 r->NegWeightL_Size=
l;
3277 r->NegWeightL_Offset=(
int *)
omAlloc(
l*
sizeof(
int));
3279 for(
i=0;
i<
r->OrdSize;
i++)
3283 r->NegWeightL_Offset[
l]=
r->typ[
i].data.wp.place;
3286 else if(
r->typ[
i].ord_typ==
ro_am)
3288 r->NegWeightL_Offset[
l]=
r->typ[
i].data.am.place;
3295 r->NegWeightL_Size = 0;
3296 r->NegWeightL_Offset =
NULL;
3308 if ( (
r->cf->extRing!=
NULL)
3317 if (
r->LexOrder ||
r->OrdSgn == -1 || (
r->cf->extRing!=
NULL))
3334 r->pLexOrder=
r->LexOrder;
3342 static inline int sign(
int x) {
return (
x > 0) - (
x < 0);}
3367 if (
r->VarOffset!=
NULL && force == 0)
return FALSE;
3373 r->BitsPerExp = bits;
3378 long *tmp_ordsgn=(
long *)
omAlloc0(3*(n+
r->N)*
sizeof(long));
3380 int *
v=(
int *)
omAlloc((
r->N+1)*
sizeof(int));
3381 for(
i=
r->N;
i>=0 ;
i--)
3398 switch (
r->order[
i])
3402 rO_WDegree(
j,j_bits,
r->block0[
i],
r->block1[
i],tmp_ordsgn,tmp_typ[typ_i],
3415 tmp_typ[typ_i], (
int64 *)(
r->wvhdl[
i]));
3422 r->ComponentOrder=1;
3428 r->ComponentOrder=-1;
3434 k=
r->block1[
i]-
r->block0[
i]+1;
3439 r->wvhdl[
i]+(
r->block1[
i]-
r->block0[
i]+1)*
l);
3447 tmp_ordsgn,
v,bits, -1);
3452 tmp_ordsgn,
v, bits, -1);
3457 tmp_ordsgn,
v, bits, -1);
3462 tmp_ordsgn,
v, bits, -1);
3466 if (
r->block0[
i]==
r->block1[
i])
3469 tmp_ordsgn,
v, bits, -1);
3477 prev_ordsgn,tmp_ordsgn,
v,bits,
r->block0[
i]);
3482 if (
r->block0[
i]==
r->block1[
i])
3485 tmp_ordsgn,
v, bits, -1);
3493 tmp_ordsgn,
v, bits,
r->block1[
i]);
3498 if (
r->block0[
i]==
r->block1[
i])
3501 tmp_ordsgn,
v,bits, -1);
3509 prev_ordsgn,tmp_ordsgn,
v,bits,
r->block0[
i]);
3514 if (
r->block0[
i]==
r->block1[
i])
3517 tmp_ordsgn,
v, bits, -1);
3525 tmp_ordsgn,
v, bits,
r->block1[
i]);
3531 tmp_typ[typ_i],
r->wvhdl[
i]);
3536 for(jj=
r->block1[
i]-
r->block0[
i];jj>=0; jj--)
3538 if (
r->wvhdl[
i][jj]<=0) have_bad_weights=
TRUE;
3540 if (have_bad_weights)
3547 if (
r->block1[
i]!=
r->block0[
i])
3550 tmp_ordsgn,
v,bits,
r->block0[
i]);
3556 tmp_typ[typ_i],
r->wvhdl[
i]);
3561 for(jj=
r->block1[
i]-
r->block0[
i];jj>=0; jj--)
3563 if (
r->wvhdl[
i][jj]<=0) have_bad_weights=
TRUE;
3565 if (have_bad_weights)
3572 if (
r->block1[
i]!=
r->block0[
i])
3575 tmp_ordsgn,
v, bits,
r->block1[
i]);
3581 tmp_typ[typ_i],
r->wvhdl[
i]);
3583 if (
r->block1[
i]!=
r->block0[
i])
3586 tmp_ordsgn,
v,bits,
r->block0[
i]);
3592 tmp_typ[typ_i],
r->wvhdl[
i]);
3594 if (
r->block1[
i]!=
r->block0[
i])
3597 tmp_ordsgn,
v, bits,
r->block1[
i]);
3604 rO_Syzcomp(
j, j_bits,prev_ordsgn, tmp_ordsgn,tmp_typ[typ_i]);
3605 need_to_add_comp=
TRUE;
3606 r->ComponentOrder=-1;
3612 rO_Syz(
j, j_bits, prev_ordsgn,
r->block0[
i], tmp_ordsgn, tmp_typ[typ_i]);
3613 need_to_add_comp=
TRUE;
3614 r->ComponentOrder=-1;
3622 const int s =
r->block0[
i];
3626 rO_ISPrefix(
j, j_bits, prev_ordsgn, tmp_ordsgn,
r->N,
v, tmp_typ[typ_i++]);
3629 rO_ISSuffix(
j, j_bits, prev_ordsgn, tmp_ordsgn,
r->N,
v, tmp_typ, typ_i,
s);
3630 need_to_add_comp=
FALSE;
3649 j_bits=j_bits0;
j=j0;
3654 if((need_to_add_comp) && (
v[0]== -1))
3668 for(
i=1 ;
i<=
r->N ;
i++)
3695 r->ordsgn=(
long *)
omAlloc0(
r->ExpL_Size*
sizeof(
long));
3697 for(
j=0;
j<
r->CmpL_Size;
j++)
3699 r->ordsgn[
j] = tmp_ordsgn[
j];
3708 if (typ_i==0)
r->typ=
NULL;
3712 memcpy(
r->typ,tmp_typ,typ_i*
sizeof(
sro_ord));
3722 r->pCompIndex=(
r->VarOffset[0] & 0xffff);
3725 if (
i==
r->pCompIndex)
i++;
3726 while ((j < r->OrdSize)
3734 if (
i==
r->pCompIndex)
i++;
3772 for(
int i=1;
i<=
r->N;
i++)
3779 if ((
r->block0[
j]<=
i)&&(
r->block1[
j]>=
i))
3799 if(
r->wvhdl[
j][
i-
r->block0[
j]]<0)
3805 else if(
r->wvhdl[
j][
i-
r->block0[
j]]>0)
3816 if(
r->wvhdl[
j][
i-
r->block0[
j]]<0)
3822 else if(
r->wvhdl[
j][
i-
r->block0[
j]]>0)
3851 if (nonneg>0)
r->MixedOrder=1;
3862 if (
r ==
NULL)
return;
3863 if (
r->VarOffset !=
NULL)
3865 if (
r->OrdSize!=0 &&
r->typ !=
NULL)
3867 for(
int i = 0;
i <
r->OrdSize;
i++)
3868 if(
r->typ[
i].ord_typ ==
ro_is)
3871 r->typ[
i].data.is.F =
NULL;
3873 if(
r->typ[
i].data.is.pVarOffset !=
NULL )
3876 r->typ[
i].data.is.pVarOffset =
NULL;
3879 else if (
r->typ[
i].ord_typ ==
ro_syz)
3881 if(
r->typ[
i].data.syz.limit > 0)
3882 omFreeSize(
r->typ[
i].data.syz.syz_index, ((
r->typ[
i].data.syz.limit) +1)*
sizeof(
int));
3883 r->typ[
i].data.syz.syz_index =
NULL;
3887 assume(
r->typ[
i].data.syzcomp.ShiftedComponents ==
NULL );
3898 if (
r->PolyBin !=
NULL)
3903 if (
r->ordsgn !=
NULL &&
r->CmpL_Size != 0)
3905 if (
r->p_Procs !=
NULL)
3909 if (
r->NegWeightL_Offset!=
NULL)
3911 omFreeSize(
r->NegWeightL_Offset,
r->NegWeightL_Size*
sizeof(
int));
3912 r->NegWeightL_Offset=
NULL;
3920 int* VarL_Number = (
int*)
omAlloc0(
r->ExpL_Size*
sizeof(
int));
3925 for (
i=1;
i<=
r->N;
i++)
3927 VarL_Number[
r->VarOffset[
i] & 0xffffff]++;
3931 for (
i=0,
j=0;
i<
r->ExpL_Size;
i++)
3933 if (VarL_Number[
i] != 0)
3935 if (
min > VarL_Number[
i])
3937 min = VarL_Number[
i];
3946 r->VarL_Offset = (
int*)
omAlloc(
r->VarL_Size*
sizeof(
int));
3947 r->VarL_LowIndex = 0;
3950 for (
i=0,
j=0;
i<
r->ExpL_Size;
i++)
3952 if (VarL_Number[
i] != 0)
3954 r->VarL_Offset[
j] =
i;
3955 if (
j > 0 &&
r->VarL_Offset[
j-1] !=
r->VarL_Offset[
j] - 1)
3956 r->VarL_LowIndex = -1;
3960 if (
r->VarL_LowIndex >= 0)
3961 r->VarL_LowIndex =
r->VarL_Offset[0];
3965 j =
r->VarL_Offset[min_j];
3966 r->VarL_Offset[min_j] =
r->VarL_Offset[0];
3967 r->VarL_Offset[0] =
j;
3974 int* shifts = (
int*)
omAlloc(
r->ExpL_Size*
sizeof(
int));
3977 for (
i=0;
i<
r->ExpL_Size;
i++)
3981 for (
i=1;
i<=
r->N;
i++)
3983 if (shifts[
r->VarOffset[
i] & 0xffffff] >
r->VarOffset[
i] >> 24)
3984 shifts[
r->VarOffset[
i] & 0xffffff] =
r->VarOffset[
i] >> 24;
3987 for (
i=1;
i<=
r->N;
i++)
3989 if (shifts[
r->VarOffset[
i] & 0xffffff] != 0)
3991 = (
r->VarOffset[
i] & 0xffffff) |
3992 (((
r->VarOffset[
i] >> 24) - shifts[
r->VarOffset[
i] & 0xffffff]) << 24);
4000 unsigned long divmask = 1;
4005 divmask |= (((
unsigned long) 1) << (
unsigned long)
i);
4020 const char *TYP[]={
"ro_dp",
"ro_wp",
"ro_am",
"ro_wp64",
"ro_wp_neg",
"ro_cp",
4021 "ro_syzcomp",
"ro_syz",
"ro_isTemp",
"ro_is",
"ro_none"};
4024 Print(
"ExpL_Size:%d ",
r->ExpL_Size);
4025 Print(
"CmpL_Size:%d ",
r->CmpL_Size);
4026 Print(
"VarL_Size:%d\n",
r->VarL_Size);
4027 Print(
"bitmask=0x%lx (expbound=%ld) \n",
r->bitmask,
r->bitmask);
4028 Print(
"divmask=%lx\n",
r->divmask);
4029 Print(
"BitsPerExp=%d ExpPerLong=%d at L[%d]\n",
r->BitsPerExp,
r->ExpPerLong,
r->VarL_Offset[0]);
4031 Print(
"VarL_LowIndex: %d\n",
r->VarL_LowIndex);
4032 PrintS(
"VarL_Offset:\n");
4035 for(
j = 0;
j <
r->VarL_Size;
j++)
4036 Print(
" VarL_Offset[%d]: %d ",
j,
r->VarL_Offset[
j]);
4043 for(
j=0;
j<=
r->N;
j++)
4044 Print(
" v%d at e-pos %d, bit %d\n",
4045 j,
r->VarOffset[
j] & 0xffffff,
r->VarOffset[
j] >>24);
4047 for(
j=0;
j<
r->CmpL_Size;
j++)
4048 Print(
" ordsgn %ld at pos %d\n",
r->ordsgn[
j],
j);
4049 Print(
"OrdSgn:%d\n",
r->OrdSgn);
4051 for(
j=0;
j<
r->OrdSize;
j++)
4053 Print(
" typ %s", TYP[
r->typ[
j].ord_typ]);
4056 const short place =
r->typ[
j].data.syz.place;
4057 const int limit =
r->typ[
j].data.syz.limit;
4058 const int curr_index =
r->typ[
j].data.syz.curr_index;
4059 const int* syz_index =
r->typ[
j].data.syz.syz_index;
4061 Print(
" limit %d (place: %d, curr_index: %d), syz_index: ", limit, place, curr_index);
4063 if( syz_index ==
NULL )
4068 for(
i=0;
i <= limit;
i++ )
4069 Print(
"%d ", syz_index[
i]);
4076 Print(
" start (level) %d, suffixpos: %d, VO: ",
r->typ[
j].data.isTemp.start,
r->typ[
j].data.isTemp.suffixpos);
4079 else if (
r->typ[
j].ord_typ==
ro_is)
4081 Print(
" start %d, end: %d: ",
r->typ[
j].data.is.start,
r->typ[
j].data.is.end);
4085 Print(
" limit %d",
r->typ[
j].data.is.limit);
4092 else if (
r->typ[
j].ord_typ==
ro_am)
4094 Print(
" place %d",
r->typ[
j].data.am.place);
4095 Print(
" start %d",
r->typ[
j].data.am.start);
4096 Print(
" end %d",
r->typ[
j].data.am.end);
4097 Print(
" len_gen %d",
r->typ[
j].data.am.len_gen);
4100 for(
l=
r->typ[
j].data.am.start;l<=r->typ[
j].data.am.end;
l++)
4101 Print(
" %d",
r->typ[
j].data.am.weights[
l-
r->typ[
j].data.am.start]);
4102 l=
r->typ[
j].data.am.end+1;
4103 int ll=
r->typ[
j].data.am.weights[
l-
r->typ[
j].data.am.start];
4105 for(
int lll=
l+1;lll<
l+ll+1;lll++)
4106 Print(
" %d",
r->typ[
j].data.am.weights[lll-
r->typ[
j].data.am.start]);
4110 Print(
" place %d",
r->typ[
j].data.dp.place);
4114 Print(
" start %d",
r->typ[
j].data.dp.start);
4115 Print(
" end %d",
r->typ[
j].data.dp.end);
4116 if ((
r->typ[
j].ord_typ==
ro_wp)
4120 for(
int l=
r->typ[
j].data.wp.start;l<=r->typ[
j].data.wp.end;
l++)
4121 Print(
" %d",
r->typ[
j].data.wp.weights[
l-
r->typ[
j].data.wp.start]);
4127 for(
l=
r->typ[
j].data.wp64.start;l<=r->typ[
j].data.wp64.end;
l++)
4128 Print(
" %ld",(
long)(((
int64*)
r->typ[
j].data.wp64.weights64)+
l-
r->typ[
j].data.wp64.start));
4134 Print(
"pOrdIndex:%d pCompIndex:%d\n",
r->pOrdIndex,
r->pCompIndex);
4135 Print(
"OrdSize:%d\n",
r->OrdSize);
4136 PrintS(
"--------------------\n");
4137 for(
j=0;
j<
r->ExpL_Size;
j++)
4140 if (j< r->CmpL_Size)
4141 Print(
"ordsgn %ld ",
r->ordsgn[
j]);
4147 if( (
r->VarOffset[
i] & 0xffffff) ==
j )
4148 {
Print(
"v%d at e[%d], bit %d; ",
i,
r->VarOffset[
i] & 0xffffff,
4149 r->VarOffset[
i] >>24 ); }
4151 if(
r->pCompIndex==
j )
PrintS(
"v0; ");
4152 for(
i=0;
i<
r->OrdSize;
i++)
4154 if (
r->typ[
i].data.dp.place ==
j)
4156 Print(
"ordrec:%s (start:%d, end:%d) ",TYP[
r->typ[
i].ord_typ],
4157 r->typ[
i].data.dp.start,
r->typ[
i].data.dp.end);
4161 if (
j==
r->pOrdIndex)
4166 Print(
"LexOrder:%d, MixedOrder:%d\n",
r->LexOrder,
r->MixedOrder);
4168 Print(
"NegWeightL_Size: %d, NegWeightL_Offset: ",
r->NegWeightL_Size);
4171 for(
j = 0;
j <
r->NegWeightL_Size;
j++)
4172 Print(
" [%d]: %d ",
j,
r->NegWeightL_Offset[
j]);
4183 Print(
"p_Spec : %s, %s, %s\n", field, length, ord);
4185 for (
i=0;
i<(int) (
sizeof(
p_Procs_s)/
sizeof(
void*));
i++)
4187 Print(
" %s,\n", ((
char**) &proc_names)[
i]);
4193 #define pFDeg_CASE(A) if(r->pFDeg == A) PrintS( "" #A "" ) 4202 Print(
"pLDeg : (%p)",
r->pLDeg);
4214 else Print(
"%p\n",
r->p_Setm);
4224 Print(
"\nexp[0..%d]\n",
r->ExpL_Size-1);
4225 for(
i=0;
i<
r->ExpL_Size;
i++)
4233 if (
j==0) {
PrintS(
"...\n");
break; }
4242 Print(
"\nexp[0..%d]\n",
R->ExpL_Size - 1);
4243 for(
int i = 0;
i <
R->ExpL_Size;
i++)
4262 for(
int j = (F->ncols*F->nrows) - 1;
j >= 0;
j-- )
4276 Print(
"gen[%d] -> gen(%d)\n", c,
MIN + (*V)[ c -
MIN - 1 ]);
4300 r->typ[1].data.syzcomp.Components = currComponents;
4308 *currComponents =
r->typ[1].data.syzcomp.Components;
4318 r->typ[1].data.syzcomp.length = length;
4328 *length =
r->typ[1].data.syzcomp.length;
4370 WarnS(
"rAssure_SyzComp: input ring has an IS-ordering!");
4381 int ** wvhdl =(
int **)
omAlloc0((
i+1)*
sizeof(
int**));
4384 res->order[
j]=
r->order[
j-1];
4385 res->block0[
j]=
r->block0[
j-1];
4386 res->block1[
j]=
r->block1[
j-1];
4387 if (
r->wvhdl[
j-1] !=
NULL)
4406 WarnS(
"error in nc_rComplete");
4417 if (
r->qideal!=
NULL)
4449 for(
i=
r->OrdSize-1;
i>=0;
i--)
4451 if ((
r->typ[
i].ord_typ==
ro_dp)
4452 && (
r->typ[
i].data.dp.start==1)
4453 && (
r->typ[
i].data.dp.end==
r->N))
4467 for(
i=
r->OrdSize-1;
i>=0;
i--)
4469 if ((
r->typ[
i].ord_typ==
ro_dp)
4470 && (
r->typ[
i].data.dp.start==1)
4471 && (
r->typ[
i].data.dp.end==
r->N))
4473 pos=
r->typ[
i].data.dp.place;
4493 res->ExpL_Size=
r->ExpL_Size+1;
4497 for(
j=0;
j<
r->CmpL_Size;
j++)
4499 res->ordsgn[
j] =
r->ordsgn[
j];
4501 res->OrdSize=
r->OrdSize+1;
4510 res->typ[
res->OrdSize-1].data.dp.start=1;
4511 res->typ[
res->OrdSize-1].data.dp.end=
res->N;
4512 res->typ[
res->OrdSize-1].data.dp.place=
res->ExpL_Size-1;
4513 pos=
res->ExpL_Size-1;
4529 WarnS(
"error in nc_rComplete");
4535 if (
r->qideal!=
NULL)
4565 if (
r->order[
i] == 0)
4574 new_r->wvhdl=(
int **)
omAlloc0(
i *
sizeof(
int *));
4576 new_r->block0 = (
int *)
omAlloc0(
i *
sizeof(
int));
4577 new_r->block1 = (
int *)
omAlloc0(
i *
sizeof(
int));
4579 memcpy(new_r->block0,
r->block0,(
i-1) *
sizeof(
int));
4580 memcpy(new_r->block1,
r->block1,(
i-1) *
sizeof(
int));
4581 for (
int j=0;
j<=last_block;
j++)
4602 WarnS(
"error in nc_rComplete");
4621 for (
i=0;
i< last_block;
i++)
4632 for (
i=c_pos+1;
i<=last_block;
i++)
4634 new_r->order[
i-1] = new_r->order[
i];
4635 new_r->block0[
i-1] = new_r->block0[
i];
4636 new_r->block1[
i-1] = new_r->block1[
i];
4637 new_r->wvhdl[
i-1] = new_r->wvhdl[
i];
4639 new_r->order[last_block] =
r->order[c_pos];
4640 new_r->block0[last_block] =
r->block0[c_pos];
4641 new_r->block1[last_block] =
r->block1[c_pos];
4642 new_r->wvhdl[last_block] =
r->wvhdl[c_pos];
4653 WarnS(
"error in nc_rComplete");
4678 if (new_r_1 != new_r && new_r_1 != old_r)
rDelete(new_r_1);
4686 # ifndef SING_NDEBUG 4687 WarnS(
"error in nc_rComplete");
4694 if (old_r->qideal !=
NULL)
4696 new_r->qideal =
idrCopyR(old_r->qideal, old_r, new_r);
4704 WarnS(
"error in nc_SetupQuotient");
4729 if ((r_blocks == 3) &&
4730 (
r->order[0] == b1) &&
4731 (
r->order[1] == b2) &&
4744 res->block1[1] =
r->N;
4749 res->block1[0] =
r->N;
4758 WarnS(
"error in nc_rComplete");
4771 Print(
"rAssure_InducedSchreyerOrdering(r, complete = %d, sgn = %d): r: \n", complete,
sgn);
4788 int ** wvhdl =(
int **)
omAlloc0((n+2)*
sizeof(
int**));
4796 res->block0[
j] =
res->block1[
j] = 0;
4800 for(
int i = 0; (
i <= n) && (
r->order[
i] != 0);
i++,
j++)
4802 res->order [
j] =
r->order [
i];
4803 res->block0[
j] =
r->block0[
i];
4804 res->block1[
j] =
r->block1[
i];
4838 WarnS(
"error in nc_rComplete");
4850 if (
r->qideal!=
NULL)
4907 Print(
"rIsIS(p: %d)\nF:",
p);
4918 for(
int pos = 0; pos <
r->OrdSize; pos++ )
4919 if(
r->typ[pos].ord_typ ==
ro_is)
4941 dReportError(
"Error: WRONG USE of rSetISReference: wrong ring! (typ == NULL)");
4950 dReportError(
"Error: WRONG USE of rSetISReference: specified ordering block was not found!!!" );
4955 if(
i !=
r->typ[pos].data.is.limit )
4956 Print(
"Changing record on pos: %d\nOld limit: %d --->> New Limit: %d\n", pos,
r->typ[pos].data.is.limit,
i);
4962 if(
r->typ[pos].data.is.F !=
NULL)
4965 PrintS(
"Deleting old reference set F... \n");
4968 r->typ[pos].data.is.F =
NULL;
4973 r->typ[pos].data.is.F = FF;
4975 r->typ[pos].data.is.limit =
i;
5001 r->block0[0]=
r->block1[0] =
k;
5002 if(
k ==
r->typ[0].data.syz.limit )
5006 if (
r->typ[0].data.syz.limit == 0)
5008 r->typ[0].data.syz.syz_index = (
int*)
omAlloc0((
k+1)*
sizeof(int));
5009 r->typ[0].data.syz.syz_index[0] = 0;
5010 r->typ[0].data.syz.curr_index = 1;
5014 r->typ[0].data.syz.syz_index = (
int*)
5016 (
r->typ[0].data.syz.limit+1)*
sizeof(int),
5019 for (
i=
r->typ[0].data.syz.limit + 1;
i<=
k;
i++)
5021 r->typ[0].data.syz.syz_index[
i] =
5022 r->typ[0].data.syz.curr_index;
5024 if(k < r->typ[0].data.syz.limit)
5027 Warn(
"rSetSyzComp called with smaller limit (%d) as before (%d)",
k,
r->typ[0].data.syz.limit);
5029 r->typ[0].data.syz.curr_index = 1 +
r->typ[0].data.syz.syz_index[
k];
5033 r->typ[0].data.syz.limit =
k;
5034 r->typ[0].data.syz.curr_index++;
5043 Warn(
"rSetSyzComp(%d) in an IS ring! Be careful!",
k);
5048 r->block0[0] =
r->block1[0] =
k;
5064 r->typ[0].data.syz.limit > 0 &&
i > 0)
5066 assume(i <= r->typ[0].data.syz.limit);
5068 for (
j=0;
j<
r->typ[0].data.syz.limit;
j++)
5070 if (
r->typ[0].data.syz.syz_index[
j] ==
i &&
5071 r->typ[0].data.syz.syz_index[
j+1] !=
i)
5073 assume(
r->typ[0].data.syz.syz_index[
j+1] ==
i+1);
5077 return r->typ[0].data.syz.limit;
5089 for (
i=0;
i<nb;
i++)
5093 int length =
r->block1[
i] -
r->block0[
i];
5094 int* wvhdl =
r->wvhdl[
i];
5098 for (
j=0;
j< length;
j++)
5100 if (wvhdl[
j] != 0 && wvhdl[
j] != 1)
return FALSE;
5116 return (
r->cf->type);
5138 while((
r->typ[
i].ord_typ!=
ro_wp64) && (
r->typ[
i].ord_typ>0))
i++;
5140 return (
int64*)(
r->typ[
i].data.wp64.weights64);
5148 memcpy(
r->typ[0].data.wp64.weights64,wv,
r->N*
sizeof(
int64));
5159 for(
int k=
size;
k>pos;
k--)
r->wvhdl[
k]=
r->wvhdl[
k-1];
5164 #if 0 // currently unused 5165 static int rReallocM1(ring
r,
int size,
int pos)
5171 for(
int k=pos+1;
k<
size;
k++)
r->wvhdl[
k]=
r->wvhdl[
k+1];
5179 for(
int j=0;
j<=i2;
j++)
5187 #define rOppVar(R,I) (rVar(R)+1-I) 5213 int i2 = (
rVar(
r)-1)/2;
5214 for(
i=i2;
i>=0;
i--)
5238 char *
p=
r->names[
i];
5239 if(isupper(*
p)) *
p = tolower(*
p);
5240 else *
p = toupper(*
p);
5287 for(
i=0; src->order[
i]!=0;
i++)
5289 switch (src->order[
i])
5294 r->order[
j]=src->order[
i];
5312 r->wvhdl[
j]=(
int*)
omAlloc((
r->block1[
j]-
r->block0[
j]+1)*
sizeof(int));
5313 for(
int k=
r->block0[
j]; k<=r->block1[
j];
k++)
5314 r->wvhdl[
j][
k-
r->block0[
j]]=1;
5328 r->wvhdl[
j]=(
int*)
omAlloc((
r->block1[
j]-
r->block0[
j]+1)*
sizeof(int));
5329 for(
int k=
r->block0[
j]; k<=r->block1[
j];
k++)
5330 r->wvhdl[
j][
k-
r->block0[
j]]=1;
5344 r->wvhdl[
j]=
r->wvhdl[
j+1];
r->wvhdl[
j+1]=
NULL;
5359 r->wvhdl[
j]=
r->wvhdl[
j+1];
r->wvhdl[
j+1]=
NULL;
5373 int n=
r->block1[
j]-
r->block0[
j];
5375 for (
int nn=0; nn<=n; nn++)
5443 int *par_perm =
NULL;
5446 for(
i=1;
i<=
r->N;
i++)
5462 MATELEM(C,nj,ni) =
p_PermPoly(
MATELEM(src->GetNC()->C,
i,
j),perm,src,
r, nMap,par_perm,
rPar(src));
5465 MATELEM(
D,nj,ni) =
p_PermPoly(
MATELEM(src->GetNC()->D,
i,
j),perm,src,
r, nMap,par_perm,
rPar(src));
5473 WarnS(
"Error initializing non-commutative multiplication!");
5481 assume(
r->GetNC()->IsSkewConstant == src->GetNC()->IsSkewConstant);
5488 if (src->qideal !=
NULL)
5525 int stat =
rSum(
R, Ropp, Renv);
5527 WarnS(
"Error in rEnvelope at rSum");
5550 const int N = dest->N;
5559 const ring srcBase = src;
5566 matrix C0 = src->GetNC()->C;
5567 matrix D0 = src->GetNC()->D;
5570 for (
int i = 1;
i <
N;
i++)
5572 for (
int j =
i + 1;
j <=
N;
j++)
5617 while(
r->order[
i]!=0)
5624 for(
j=
r->block1[
i]-
r->block0[
i];
j>=0;
j--)
5626 r->wvhdl[
i]=(
int*)w64;
5660 Werror(
"n_IsParam: IsParam is not to be used for (coeff_type = %d)",
getCoeffType(C));
for idElimination, like a, except pFDeg, pWeigths ignore it
n_coeffType rFieldType(ring r)
ideal SCAQuotient(const ring r)
void p_Setm_General(poly p, const ring r)
const CanonicalForm int s
void p_DebugPrint(poly p, const ring r)
#define omCheckAddrSize(addr, size)
static void rOptimizeLDeg(ring r)
long pLDeg1(poly p, int *l, const ring r)
only used if HAVE_RINGS is defined
#define omcheckAddrSize(addr, size)
poly rGetVar(const int varIndex, const ring r)
static void rO_LexVars(int &place, int &bitplace, int start, int end, int &prev_ord, long *o, int *v, int bits, int opt_var)
int rSumInternal(ring r1, ring r2, ring &sum, BOOLEAN vartest, BOOLEAN dp_dp)
returns -1 for not compatible, 1 for compatible (and sum) dp_dp:0: block ordering, 1: dp,dp, 2: aa(...),dp vartest: check for name conflicts
non-simple ordering as specified by currRing
simple ordering, exponent vector has priority component is compatible with exp-vector order ...
static void rSetNegWeight(ring r)
poly prCopyR(poly p, ring src_r, ring dest_r)
static BOOLEAN rField_is_Zp_a(const ring r)
long pLDeg1c_Totaldegree(poly p, int *l, const ring r)
p_SetmProc p_GetSetmProc(const ring r)
rOrderType_t rGetOrderType(ring r)
only used if HAVE_RINGS is defined
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
static int min(int a, int b)
BOOLEAN rRing_is_Homog(ring r)
static BOOLEAN rField_is_Ring_PtoM(const ring r)
int sgn(const Rational &a)
long pLDeg1c(poly p, int *l, const ring r)
static void rO_ISSuffix(int &place, int &bitplace, int &prev_ord, long *o, int N, int *v, sro_ord *tmp_typ, int &typ_i, int sgn)
size_t omSizeOfAddr(const void *addr)
ideal id_Copy(ideal h1, const ring r)
copy an ideal
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff 'n' represents the one element.
BOOLEAN nc_rComplete(const ring src, ring dest, bool bSetupQuotient)
static int rPar(const ring r)
(r->cf->P)
poly p_NSet(number n, const ring r)
returns the poly representing the number n, destroys n
BOOLEAN rOrd_is_WeightedDegree_Ordering(const ring r)
void p_Setm_WFirstTotalDegree(poly p, const ring r)
static BOOLEAN rField_is_Ring_ModN(const ring r)
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
struct p_Procs_s p_Procs_s
static BOOLEAN rField_is_R(const ring r)
static int rRealloc1(ring r, int size, int pos)
BOOLEAN rOrd_is_MixedDegree_Ordering(ring r)
bool nc_SetupQuotient(ring rGR, const ring rG=NULL, bool bCopy=false)
ring rCopy0AndAddA(const ring r, int64vec *wv64, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
ring rModifyRing_Wp(ring r, int *weights)
construct Wp, C ring
BOOLEAN rIsPolyVar(int v, const ring r)
returns TRUE if var(i) belongs to p-block
#define omFreeSize(addr, size)
static BOOLEAN rShortOut(const ring r)
static short rVar(const ring r)
#define rVar(r) (r->N)
void id_Delete(ideal *h, ring r)
deletes an ideal/module/matrix
#define omfreeSize(addr, size)
static void m_DebugPrint(const poly p, const ring R)
debug-print monomial poly/vector p, assuming that it lives in the ring R
long pLDeg0c(poly p, int *l, const ring r)
void nc_rKill(ring r)
complete destructor
static void rNGetSComps(int **currComponents, long **currShiftedComponents, ring r)
static void rOppWeight(int *w, int l)
ring rModifyRing(ring r, BOOLEAN omit_degree, BOOLEAN try_omit_comp, unsigned long exp_limit)
void p_Debug_GetSpecNames(const ring r, const char *&field, const char *&length, const char *&ord)
BOOLEAN rOrder_is_WeightedOrdering(rRingOrder_t order)
#define omUnGetSpecBin(bin_ptr)
static BOOLEAN rField_is_Q_a(const ring r)
ring rAssure_SyzOrder(const ring r, BOOLEAN complete)
static long p_Totaldegree(poly p, const ring r)
static void rO_ISPrefix(int &place, int &bitplace, int &prev_ord, long *o, int, int *v, sro_ord &ord_struct)
BOOLEAN rOrder_is_DegOrdering(const rRingOrder_t order)
simple ordering, component has priority
static void rO_Syz(int &place, int &bitplace, int &prev_ord, int syz_comp, long *o, sro_ord &ord_struct)
void WerrorS(const char *s)
void p_Setm_TotalDegree(poly p, const ring r)
static BOOLEAN rField_is_GF(const ring r)
static char const ** rParameter(const ring r)
(r->cf->parameter)
long * currShiftedComponents
int rGetISPos(const int p, const ring r)
Finds p^th IS ordering, and returns its position in r->typ[] returns -1 if something went wrong! p - ...
BOOLEAN rDBTest(ring r, const char *fn, const int l)
ring rAssure_HasComp(const ring r)
long pLDeg1_Deg(poly p, int *l, const ring r)
ring rAssure_c_dp(const ring r)
ring rAssure_SyzComp_CompLastBlock(const ring r)
makes sure that c/C ordering is last ordering and SyzIndex is first
static BOOLEAN rCanShortOut(const ring r)
BOOLEAN rHasSimpleOrder(const ring r)
BOOLEAN rHas_c_Ordering(const ring r)
ideal idrHeadR(ideal id, ring r, ring dest_r)
Copy leading terms of id[i] via prHeeadR into dest_r.
BOOLEAN rHasSimpleOrderAA(ring r)
ideal idOppose(ring Rop_src, ideal I, const ring Rop_dst)
opposes a module I from Rop to currRing(dst)
static void rSetOption(ring r)
real floating point (GMP) numbers
void iiWriteMatrix(matrix im, const char *n, int dim, const ring r, int spaces)
set spaces to zero by default
void idShow(const ideal id, const ring lmRing, const ring tailRing, const int debugPrint)
static void rDBGetSComps(int **currComponents, long **currShiftedComponents, int *length, ring r)
simple ordering, exponent vector has priority component not compatible with exp-vector order ...
long pLDeg1c_Deg(poly p, int *l, const ring r)
ring rAssure_InducedSchreyerOrdering(const ring r, BOOLEAN complete, int sgn)
int rSum(ring r1, ring r2, ring &sum)
static void rSetDegStuff(ring r)
#define omReallocSize(addr, o_size, size)
bool sca_Force(ring rGR, int b, int e)
static void rO_LexVars_neg(int &place, int &bitplace, int start, int end, int &prev_ord, long *o, int *v, int bits, int opt_var)
static void rO_Align(int &place, int &bitplace)
single prescision (6,6) real numbers
void rGetSComps(int **currComponents, long **currShiftedComponents, int *length, ring r)
static void rDBChangeSComps(int *currComponents, long *currShiftedComponents, int length, ring r)
static int rBlocks(ring r)
int r_IsRingVar(const char *n, char **names, int N)
long p_Deg(poly a, const ring r)
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
static void rO_WMDegree(int &place, int &bitplace, int start, int end, long *o, sro_ord &ord_struct, int *weights)
Coefficient rings, fields and other domains suitable for Singular polynomials.
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
int naIsParam(number m, const coeffs cf)
if m == var(i)/1 => return i,
long id_RankFreeModule(ideal s, ring lmRing, ring tailRing)
return the maximal component number found in any polynomial in s
const CanonicalForm CFMap CFMap & N
BOOLEAN rComplete(ring r, int force)
this needs to be called whenever a new ring is created: new fields in ring are created (like VarOffse...
static void rO_WDegree_neg(int &place, int &bitplace, int start, int end, long *o, sro_ord &ord_struct, int *weights)
for(int i=0;i< R->ExpL_Size;i++) Print("%09lx "
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
only used if HAVE_RINGS is defined
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
The main handler for Singular numbers which are suitable for Singular polynomials.
long p_WFirstTotalDegree(poly p, const ring r)
void StringSetS(const char *st)
int rGetMaxSyzComp(int i, const ring r)
return the max-comonent wchich has syzIndex i Assume: i<= syzIndex_limit
static void rO_TDegree_neg(int &place, int &bitplace, int start, int end, long *o, sro_ord &ord_struct)
ring rCopy0(const ring r, BOOLEAN copy_qideal, BOOLEAN copy_ordering)
void StringAppendS(const char *st)
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
long pLDeg0(poly p, int *l, const ring r)
ring rAssure_SyzComp(const ring r, BOOLEAN complete)
ring rAssure_dp_C(const ring r)
complex floating point (GMP) numbers
const char * rSimpleOrdStr(int ord)
gmp_float sqrt(const gmp_float &a)
static ring rAssure_Global(rRingOrder_t b1, rRingOrder_t b2, const ring r)
BOOLEAN rOrd_is_Totaldegree_Ordering(const ring r)
void p_Setm_Dummy(poly p, const ring r)
static long p_FDeg(const poly p, const ring r)
BOOLEAN rCheckIV(const intvec *iv)
BOOLEAN rSamePolyRep(ring r1, ring r2)
returns TRUE, if r1 and r2 represents the monomials in the same way FALSE, otherwise this is an analo...
only used if HAVE_RINGS is defined
static int si_max(const int a, const int b)
void rDebugPrint(const ring r)
static void rO_WDegree64(int &place, int &bitplace, int start, int end, long *o, sro_ord &ord_struct, int64 *weights)
Induced (Schreyer) ordering.
void PrintS(const char *s)
ring rAssure_TDeg(ring r, int &pos)
static BOOLEAN rField_is_Q(const ring r)
ring rAssure_CompLastBlock(ring r, BOOLEAN complete)
makes sure that c/C ordering is last ordering
static void rO_Syzcomp(int &place, int &bitplace, int &prev_ord, long *o, sro_ord &ord_struct)
void p_Debug_GetProcNames(const ring r, p_Procs_s *p_Procs)
BOOLEAN rOrd_SetCompRequiresSetm(const ring r)
return TRUE if p_SetComp requires p_Setm
static void rSetVarL(ring r)
set r->VarL_Size, r->VarL_Offset, r->VarL_LowIndex
static void rSetFirstWv(ring r, int i, rRingOrder_t *order, int *block1, int **wvhdl)
void rWrite(ring r, BOOLEAN details)
ring rDefault(const coeffs cf, int N, char **n, int ord_size, rRingOrder_t *ord, int *block0, int *block1, int **wvhdl)
void rKillModified_Wp_Ring(ring r)
static void rSetOutParams(ring r)
static unsigned long rGetExpSize(unsigned long bitmask, int &bits)
BOOLEAN rEqual(ring r1, ring r2, BOOLEAN qr)
returns TRUE, if r1 equals r2 FALSE, otherwise Equality is determined componentwise, if qr == 1, then qrideal equality is tested, as well
void mp_Delete(matrix *a, const ring r)
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
static short scaFirstAltVar(ring r)
static FORCE_INLINE n_coeffType getCoeffType(const coeffs r)
Returns the type of coeffs domain.
BOOLEAN p_EqualPolys(poly p1, poly p2, const ring r)
static BOOLEAN rField_is_long_C(const ring r)
void rSetSyzComp(int k, const ring r)
static BOOLEAN rField_is_Zp(const ring r)
void pISUpdateComponents(ideal F, const intvec *const V, const int MIN, const ring r)
matrix mpNew(int r, int c)
create a r x c zero-matrix
static FORCE_INLINE coeffs nCopyCoeff(const coeffs r)
"copy" coeffs, i.e. increment ref
void p_Write0(poly p, ring lmRing, ring tailRing)
static void p_Delete(poly *p, const ring r)
#define omGetSpecBin(size)
ideal idInit(int idsize, int rank)
initialise an ideal / module
void rSetWeightVec(ring r, int64 *wv)
BOOLEAN nc_CallPlural(matrix cc, matrix dd, poly cn, poly dn, ring r, bool bSetupQuotient, bool bCopyInput, bool bBeQuiet, ring curr, bool dummy_ring=false)
returns TRUE if there were errors analyze inputs, check them for consistency detects nc_type...
const Variable & v
< [in] a sqrfree bivariate poly
bool nc_rCopy(ring res, const ring r, bool bSetupQuotient)
static unsigned long rGetDivMask(int bits)
get r->divmask depending on bits per exponent
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent : VarOffset encodes the position in p->exp
BOOLEAN rHasSimpleLexOrder(const ring r)
returns TRUE, if simple lp or ls ordering
static void rO_TDegree(int &place, int &bitplace, int start, int end, long *o, sro_ord &ord_struct)
void maFindPerm(char const *const *const preim_names, int preim_n, char const *const *const preim_par, int preim_p, char const *const *const names, int n, char const *const *const par, int nop, int *perm, int *par_perm, n_coeffType ch)
long pLDegb(poly p, int *l, const ring r)
static FORCE_INLINE void n_CoeffWrite(const coeffs r, BOOLEAN details=TRUE)
output the coeff description
static BOOLEAN rField_is_Ring_2toM(const ring r)
static BOOLEAN rField_is_Ring(const ring r)
ring rAssure_dp_S(const ring r)
static const char *const ringorder_name[]
long pLDeg1_Totaldegree(poly p, int *l, const ring r)
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of 'n'
void rDelete(ring r)
unconditionally deletes fields in r
ring rAssure_C_dp(const ring r)
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic ...
static BOOLEAN rField_is_Ring_Z(const ring r)
ring nc_rCreateNCcomm_rCopy(ring r)
void p_ProcsSet(ring r, p_Procs_s *p_Procs)
static BOOLEAN rField_is_long_R(const ring r)
int rTypeOfMatrixOrder(const intvec *order)
static short scaLastAltVar(ring r)
static void rO_WDegree(int &place, int &bitplace, int start, int end, long *o, sro_ord &ord_struct, int *weights)
BOOLEAN rSetISReference(const ring r, const ideal F, const int i, const int p)
Changes r by setting induced ordering parameters: limit and reference leading terms F belong to r...
void rModify_a_to_A(ring r)
static bool rIsSCA(const ring r)
static void rRightAdjustVarOffset(ring r)
right-adjust r->VarOffset
void rKillModifiedRing(ring r)
ideal idrCopyR(ideal id, ring src_r, ring dest_r)
static void p_Setm(poly p, const ring r)
long pLDeg1_WFirstTotalDegree(poly p, int *l, const ring r)
rRingOrder_t rOrderName(char *ordername)
static nc_type & ncRingType(nc_struct *p)
long pLDeg1c_WFirstTotalDegree(poly p, int *l, const ring r)
int dReportError(const char *fmt,...)
static FORCE_INLINE BOOLEAN nCoeff_is_Extension(const coeffs r)
int ntIsParam(number m, const coeffs cf)
if m == var(i)/1 => return i,
int n_IsParam(const number m, const ring r)
TODO: rewrite somehow...
#define TEST_RINGDEP_OPTS
long p_WTotaldegree(poly p, const ring r)
#define omCheckAddr(addr)
void p_wrp(poly p, ring lmRing, ring tailRing)
char * rCharStr(const ring r)
TODO: make it a virtual method of coeffs, together with: Decompose & Compose, rParameter & rPar...
void p_Write(poly p, ring lmRing, ring tailRing)
static FORCE_INLINE char * nCoeffString(const coeffs cf)
TODO: make it a virtual method of coeffs, together with: Decompose & Compose, rParameter & rPar...
static void rCheckOrdSgn(ring r, int i)
#define omFreeBin(addr, bin)
ring rModifyRing_Simple(ring r, BOOLEAN ommit_degree, BOOLEAN ommit_comp, unsigned long exp_limit, BOOLEAN &simple)
void p_SetGlobals(const ring r, BOOLEAN complete)
set all properties of a new ring - also called by rComplete
BOOLEAN rRing_has_CompLastBlock(ring r)
void rKillModifiedRing_Simple(ring r)
ideal idrCopyR_NoSort(ideal id, ring src_r, ring dest_r)
void rChangeSComps(int *currComponents, long *currShiftedComponents, int length, ring r)
void nKillChar(coeffs r)
undo all initialisations
ideal id_SimpleAdd(ideal h1, ideal h2, const ring R)
concat the lists h1 and h2 without zeros
poly p_ISet(long i, const ring r)
returns the poly representing the integer i
void Werror(const char *fmt,...)
int64 * rGetWeightVec(const ring r)
static void rNChangeSComps(int *currComponents, long *currShiftedComponents, ring r)
used to represent polys as coeffcients
#define UPMATELEM(i, j, nVar)
#define MATELEM(mat, i, j)
coeffs nInitChar(n_coeffType t, void *parameter)
one-time initialisations for new coeffs in case of an error return NULL