ASL  0.1.7
Advanced Simulation Library
testSMPhiBV.cc
/*
* Advanced Simulation Library <http://asl.org.il>
*
* Copyright 2015 Avtech Scientific <http://avtechscientific.com>
*
*
* This file is part of Advanced Simulation Library (ASL).
*
* ASL is free software: you can redistribute it and/or modify it
* under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, version 3 of the License.
*
* ASL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with ASL. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <aslGeomInc.h>
#include <aslDataInc.h>
#include <num/aslBasicBC.h>
typedef float FlT;
//typedef double FlT;
using asl::AVec;
int main(int argc, char* argv[])
{
// Optionally add appParamsManager to be able to manipulate at least
// hardware parameters(platform/device) through command line/parameters file
asl::ApplicationParametersManager appParamsManager("testSMPhiBV",
"1.0");
appParamsManager.load(argc, argv);
Param dx(1.);
Param dt(1.);
Param diffCoef(.15);
Param diffCoefNum(diffCoef.v()*dt.v()/dx.v()/dx.v());
AVec<int> size(asl::makeAVec(10,20,20));
auto gSize(dx.v()*AVec<>(size));
std::cout << "Data initialization... ";
asl::Block block(size,dx.v());
auto c1Field(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
asl::initData(c1Field, 0.5);
auto c2Field(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
asl::initData(c2Field, 0.5);
auto c1aField(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
asl::initData(c1aField, 0.5);
auto phiField(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
asl::initData(phiField, 0.5);
auto phiSField(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
asl::initData(phiSField, 0.);
std::cout << "Finished" << endl;
std::cout << "Numerics initialization... ";
auto templ(&asl::d3q7());
auto nm(generateFDStefanMaxwell(c1Field, c2Field, diffCoefNum.v(), templ));
nm->setDustDiffusionCoefficient(0,acl::generateVEConstant(diffCoefNum.v()*.5));
nm->setDustDiffusionCoefficient(1,acl::generateVEConstant(diffCoefNum.v()));
nm->setElectricField(asl::generateDataContainer_SP(block,
phiField->getEContainer()*1e5/8.31/300,
1u));
nm->setCharge(0,acl::generateVEConstant(-2.));
nm->setCharge(1,acl::generateVEConstant(0.));
nm->init();
auto nmA(generateFDAdvectionDiffusion(c1aField, diffCoefNum.v(), templ));
nmA->init();
auto nmPhi(make_shared<asl::FDStefanMaxwellElectricField>(nm, phiField));
nmPhi->setPhiS(asl::generateDataContainer_SP(block,
-phiSField->getEContainer()*.1,
1u));
nmPhi->init();
auto nmBV(generateFDBVKinetics(c1aField, -1., c1Field, 1., phiSField,
phiField->getEContainer()+.2,
1u),
1., .5, 1.));
nmBV->addAI(c2Field, -1);
nmBV->init();
std::vector<asl::SPNumMethod> bc;
std::vector<asl::SPNumMethod> bcPhi;
bc.push_back(asl::generateBCConstantValue(c1Field, 0., {asl::X0}));
bc.push_back(asl::generateBCConstantValue(c2Field, 1, {asl::X0}));
bc.push_back(asl::generateBCConstantGradient(c1aField, 0, templ, {asl::X0,asl::Y0,asl::YE,asl::Z0,asl::ZE}));
bc.push_back(asl::generateBCConstantValue(c1aField, 1, {asl::XE}));
initAll(bc);
bcPhi.push_back(asl::generateBCConstantGradient(phiField, 0, templ, {asl::XE,asl::Y0,asl::YE,asl::Z0,asl::ZE}));
bcPhi.push_back(asl::generateBCConstantValue(phiField, 0, {asl::X0}));
initAll(bcPhi);
std::cout << "Finished" << endl;
std::cout << "Computing..." << flush;
asl::Timer timer;
asl::WriterVTKXML writer(appParamsManager.getDir() + "testSMPhiBV");
writer.addScalars("c1", *c1Field);
writer.addScalars("c2", *c2Field);
writer.addScalars("c1a", *c1aField);
writer.addScalars("phi", *phiField);
writer.addScalars("phiS", *phiSField);
executeAll(bcPhi);
writer.write();
timer.start();
for (unsigned int i(1); i < 401; ++i)
{
for (unsigned int j(0); j<50; ++j)
{
nmBV->executeJ();
nmPhi->execute();
executeAll(bcPhi);
}
nm->execute();
nmA->execute();
nmBV->execute();
if (!(i%40))
{
cout << i << endl;
writer.write();
}
}
timer.stop();
cout << "Finished" << endl;
cout << "Computation statistic:" << endl;
cout << "Real Time = " << timer.realTime() << "; Processor Time = "
<< timer.processorTime() << "; Processor Load = "
<< timer.processorLoad() * 100 << "%" << endl;
return 0;
}