ASL  0.1.7
Advanced Simulation Library
acousticWaves.cc
/*
* Advanced Simulation Library <http://asl.org.il>
*
* Copyright 2015 Avtech Scientific <http://avtechscientific.com>
*
*
* This file is part of Advanced Simulation Library (ASL).
*
* ASL is free software: you can redistribute it and/or modify it
* under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, version 3 of the License.
*
* ASL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with ASL. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <aslDataInc.h>
#include <num/aslBasicBC.h>
#include <aslGeomInc.h>
typedef float FlT;
//typedef asl::UValue<FlT> Param;
{
private:
void init();
public:
void load(int argc, char * argv[]);
};
appParamsManager("acousticWaves", "0.1"),
size(3),
dx(1e-3,"dx", "dx"),
bulkModulus(160e9,"bulk_modulus", "bulk modulus"),
shearModulus(79e9,"shear_modulus", "shear modulus"),
rho(7800,"rho", "density"),
tubeL(.2,"tube_length", "pipe length" "m"),
tubeDEx(0.021, "tube_diameter_external", "external pipe diameter" "m"),
// tubeDIn(0.0157,"tube_diameter_internal", "internal pipe diameter" "m"),
tubeDIn(0.0107,"tube_diameter_internal", "internal pipe diameter" "m"),
hole1Pos(0.1,"hole_1_position", "position of first hole" "m"),
hole2Pos(0.15,"hole_2_position", "position of second hole" "m"),
hole1D(15e-3,"hole_1_diameter", "diameter of first hole" "m"),
hole2D(15e-3,"hole_2_diameter", "diameter of second hole" "m"),
tSimulation(8e-5, "simulation_time", "simulation time"),
tOutput(1e-6, "output_interval", "output interval")
{
}
void Parameters::load(int argc, char * argv[])
{
appParamsManager.load(argc, argv);
init();
}
{
double vs(sqrt((bulkModulus.v()+2.*shearModulus.v())/rho.v()));
dt=dx.v()/vs*.1;
cout << vs << "; " << dx.v() << "; " << dt.v() << endl;
bulkMNum = bulkModulus.v()/rho.v()/dx.v()/dx.v();
size = asl::makeAVec(tubeL.v() / dx.v() + 1,
tubeDEx.v() / dx.v() + 1,
tubeDEx.v() / dx.v() + 1);
}
void Parameters::init()
{
// if (tubeD.v() < pumpD.v())
// asl::errorMessage("Tube's diameter is smaller than pump's diameter");
}
{
asl::AVec<double> orientation(asl::makeAVec(1., 0., 0.));
asl::AVec<double> lVec(asl::makeAVec(params.tubeL.v()+2.*params.dx.v(), 0., 0.));
asl::AVec<double> h1Orientation(asl::makeAVec(0., 1., 0.));
asl::AVec<double> h2Orientation(asl::makeAVec(0., 0., 1.));
asl::AVec<double> center(asl::AVec<double>(params.size)*.5*params.dx.v());
double wallMid((params.tubeDEx.v()+params.tubeDIn.v())*.25);
double wallTh((params.tubeDEx.v())*.5);
asl::AVec<double> h1Center(center - (center*orientation)*orientation +
params.hole1Pos.v()*orientation +
h1Orientation*wallMid);
asl::AVec<double> h2Center(center - (center*orientation)*orientation +
params.hole2Pos.v()*orientation +
h2Orientation*wallMid);
pipeGeometry = asl::generateDFCylinder(params.tubeDEx.v() / 2., lVec, center) &
(-asl::generateDFCylinderInf(params.tubeDIn.v() / 2., orientation, center));
pipeGeometry = pipeGeometry &
(-asl::generateDFCylinder(params.hole1D.v() / 2., h1Orientation * wallTh, h1Center));
pipeGeometry = pipeGeometry &
(-asl::generateDFCylinder(params.hole2D.v() / 2., h2Orientation * wallTh, h2Center));
return asl::normalize(-pipeGeometry, params.dx.v());
}
{
float a(it<200. ? 1.-cos(it*6.28/200.) : 0);
return asl::makeAVec(a,0.f,0.f);
}
int main(int argc, char* argv[])
{
Parameters params;
params.load(argc, argv);
std::cout << "Data initialization... " << flush;
asl::Block block(params.size, params.dx.v());
auto displacement(asl::generateDataContainerACL_SP<FlT>(block, 3, 1u));
asl::initData(displacement, asl::makeAVec(0.,0.,0.));
auto mapMem(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
asl::initData(mapMem, generatePipe(block, params));
asl::WriterVTKXML writer(params.appParamsManager.getDir() + "acousticWaves");
writer.addScalars("map", *mapMem);
writer.addVector("displacement", *displacement);
writer.write();
std::cout << "Finished" << endl;
std::cout << "Numerics initialization... " << flush;
auto elasticity(generateFDElasticityRelax(displacement,
params.bulkMNum.v(),
params.shearMNum.v(),
params.dt.v(),
&asl::d3q19()));
/* auto elasticity(generateFDElasticity(displacement,
params.bulkMNum.v(),
params.shearMNum.v(),
params.dt.v(),
&asl::d3q19()));*/
elasticity->setDumpingFactor(acl::generateVEConstant(.9999));
elasticity->init();
std::vector<asl::SPNumMethod> bc;
bc.push_back(generateBCZeroStress(elasticity, mapMem));
// bc.push_back(generateBCConstantGradient(displacement,asl::makeAVec(0.,0.,0.),mapMem,&asl::d3q19()));
// bc.push_back(generateBCConstantGradient(elasticity->getPressureData(),0.,mapMem,&asl::d3q19()));
// bc.push_back(generateBCZeroStressP(elasticity, mapMem));
bc.push_back(asl::generateBCConstantValue(displacement, pres, {asl::X0}));
initAll(bc);
std::cout << "Finished" << endl;
std::cout << "Computing..." << endl;
asl::Timer timer;
timer.start();
double tOutPrev(0);
cout << params.dt.v() << endl;
for (double t(0); t < params.tSimulation.v(); t+=params.dt.v())
{
elasticity->execute();
pres=getAmplitude(t/params.dt.v());
if(t - params.tOutput.v()>=tOutPrev)
{
timer.stop();
tOutPrev=t;
cout << t << "/" << params.tSimulation.v() << "; time left (estimated): " << timer.estimatedRemainder(t/params.tSimulation.v()) << endl;
writer.write();
timer.start();
}
}
timer.stop();
cout << "Finished" << endl;
cout << "Computation statistic:" << endl;
cout << "Real Time = " << timer.realTime() << "; Processor Time = "
<< timer.processorTime() << "; Processor Load = "
<< timer.processorLoad() * 100 << "%" << endl;
return 0;
}