ASL  0.1.7
Advanced Simulation Library
multicomponent_flow.cc

Example: Multicomponent flow

/*
* Advanced Simulation Library <http://asl.org.il>
*
* Copyright 2015 Avtech Scientific <http://avtechscientific.com>
*
*
* This file is part of Advanced Simulation Library (ASL).
*
* ASL is free software: you can redistribute it and/or modify it
* under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, version 3 of the License.
*
* ASL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with ASL. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <aslGeomInc.h>
#include <aslDataInc.h>
#include <num/aslLBGK.h>
#include <num/aslLBGKBC.h>
#include <num/aslBasicBC.h>
// typedef to switch to double precision
//typedef double FlT;
typedef float FlT;
using asl::AVec;
{
private:
void init();
public:
void load(int argc, char * argv[]);
};
appParamsManager("multicomponent_flow", "0.1"),
size(3),
dx(0.0005, "dx", "space step"),
dt(1., "dt", "time step"),
tSimulation(2e-3, "simulation_time", "simulation time"),
tOutput(1e-4, "output_interval", "output interval"),
nu(4e-8/1.6, "nu", "viscosity"),
tubeL(0.25, "tubeL", "tube's length"),
tubeD(0.05, "tubeD", "tube's diameter"),
pumpL(0.025, "pumpL", "pump's length"),
pumpD(0.03, "pumpD", "pump's diameter"),
component1InVel(0.16, "component1_in_velocity", "flow velocity in the component1 input"),
component2InVel(0.08, "component2_in_velocity", "flow velocity in the component2 input"),
component3InVel(0.1, "component3_in_velocity", "flow velocity in the component3 input")
{
}
void Parameters::load(int argc, char * argv[])
{
appParamsManager.load(argc, argv);
init();
}
{
nuNum = nu.v() * dt.v() / dx.v() / dx.v();
size[0] = tubeD.v() / dx.v() + 1;
size[1] = (tubeD.v() + 2 * pumpL.v()) / dx.v() + 1;
size[2] = tubeL.v() / dx.v() + 1;
}
void Parameters::init()
{
if (tubeD.v() < pumpD.v())
asl::errorMessage("Tube's diameter is smaller than pump's diameter");
}
// Generate geometry of the mixer (cross-coupled pipes)
{
asl::SPDistanceFunction mixerGeometry;
asl::AVec<double> orientation(asl::makeAVec(0., 0., 1.));
asl::AVec<double> center(asl::AVec<double>(params.size) * .5 * params.dx.v());
mixerGeometry = generateDFCylinderInf(params.tubeD.v() / 2., orientation,
center);
orientation[1] = 1.0;
orientation[2] = 0.0;
center[2] = params.pumpD.v() * 1.5;
mixerGeometry = mixerGeometry | generateDFCylinderInf(params.pumpD.v() / 2.,
orientation, center);
return asl::normalize(-(mixerGeometry) | asl::generateDFInBlock(block, 0),
params.dx.v());
}
int main(int argc, char *argv[])
{
Parameters params;
params.load(argc, argv);
cout << "Data initialization..." << endl;
asl::Block block(params.size, params.dx.v());
auto mcfMapMem(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
asl::initData(mcfMapMem, generateMixer(block, params));
auto component1Frac(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
asl::initData(component1Frac, 0);
auto component3Frac(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
asl::initData(component3Frac, 0);
cout << "Finished" << endl;
cout << "Numerics initialization..." << endl;
auto templ(&asl::d3q15());
asl::SPLBGK lbgk(new asl::LBGK(block,
templ));
lbgk->init();
lbgkUtil->initF(acl::generateVEConstant(.0, .0, .0));
auto flowVel(lbgk->getVelocity());
auto nmcomponent1(asl::generateFDAdvectionDiffusion(component1Frac, 0.01,
flowVel, templ, true));
nmcomponent1->init();
auto nmcomponent3(asl::generateFDAdvectionDiffusion(component3Frac, 0.01,
flowVel, templ));
nmcomponent3->init();
std::vector<asl::SPNumMethod> bc;
std::vector<asl::SPNumMethod> bcV;
std::vector<asl::SPNumMethod> bcDif;
bc.push_back(generateBCNoSlip(lbgk, mcfMapMem));
bc.push_back(generateBCConstantPressure(lbgk, 1., {asl::ZE}));
bc.push_back(generateBCConstantPressureVelocity(lbgk, 1.,
makeAVec(0., 0., params.component2InVel.v()),
{asl::Z0}));
bc.push_back(generateBCConstantPressureVelocity(lbgk, 1.,
makeAVec(0., -params.component1InVel.v(), 0.),
{asl::YE}));
bc.push_back(generateBCConstantPressureVelocity(lbgk, 1.,
makeAVec(0., params.component3InVel.v(), 0.),
{asl::Y0}));
bcDif.push_back(generateBCNoSlipVel(lbgk, mcfMapMem));
bc.push_back(generateBCConstantGradient(component1Frac, 0., mcfMapMem, templ));
bc.push_back(generateBCConstantGradient(component3Frac, 0., mcfMapMem, templ));
bc.push_back(generateBCConstantValue(component1Frac, 1., {asl::YE}));
bc.push_back(generateBCConstantValue(component3Frac, 0., {asl::YE, asl::Z0, asl::ZE}));
bc.push_back(generateBCConstantValue(component1Frac, 0., {asl::Y0, asl::Z0, asl::ZE}));
bc.push_back(generateBCConstantValue(component3Frac, 1., {asl::Y0}));
// bc.push_back(generateBCConstantGradient(component1Frac, 0.,templ, {asl::ZE}));
// bc.push_back(generateBCConstantGradient(component3Frac, 0.,templ, {asl::ZE}));
initAll(bc);
initAll(bcDif);
initAll(bcV);
cout << "Finished" << endl;
cout << "Computing..." << endl;
asl::Timer timer;
asl::WriterVTKXML writer("multicomponent_flow");
writer.addScalars("map", *mcfMapMem);
writer.addScalars("component1", *component1Frac);
writer.addScalars("component3", *component3Frac);
writer.addScalars("rho", *lbgk->getRho());
writer.addVector("v", *flowVel);
executeAll(bcDif);
executeAll(bcV);
writer.write();
timer.start();
for (unsigned int i(1); i < 10001; ++i)
{
lbgk->execute();
executeAll(bcDif);
nmcomponent1->execute();
nmcomponent3->execute();
if (!(i%100))
{
timer.stop();
cout << i << "/10000; time left (estimated): " << timer.estimatedRemainder(double(i)/10000.) << endl;
executeAll(bcV);
writer.write();
timer.start();
}
}
timer.stop();
cout << "Finished" << endl;
cout << "Computation statistic:" << endl;
cout << "Real Time = " << timer.realTime() << "; Processor Time = "
<< timer.processorTime() << "; Processor Load = "
<< timer.processorLoad() * 100 << "%" << endl;
return 0;
}