ASL  0.1.7
Advanced Simulation Library
Public Types | Public Member Functions | List of all members
asl::TimeContinPLagrangeFraction Class Reference

Numerical method that generates temporal extrapolation of the data with Lagrangian polynoms of fractional argument. More...

#include <aslTimeContinuations.h>

Inheritance diagram for asl::TimeContinPLagrangeFraction:
Inheritance graph
[legend]
Collaboration diagram for asl::TimeContinPLagrangeFraction:
Collaboration graph
[legend]

Public Types

typedef SPDataWithGhostNodesACLData Data
 
typedef SPAbstractDataWithGhostNodes Field
 
- Public Types inherited from asl::TimeContinuations
typedef SPDataWithGhostNodesACLData Data
 

Public Member Functions

 TimeContinPLagrangeFraction (Data inD, double f, unsigned int order)
 
 TimeContinPLagrangeFraction (acl::VectorOfElementsData &inD, double f, unsigned int order)
 
void execute ()
 Executes the numerical procedure. More...
 
virtual void init ()
 Builds the necesery internal data and kernels. More...
 
- Public Member Functions inherited from asl::TimeContinuations
void addData (Data inD)
 
void addData (acl::VectorOfElementsData &inD)
 
void reset ()
 makes reset of the contiuation (storage) cicle More...
 
- Public Member Functions inherited from asl::NumMethod
virtual ~NumMethod ()
 

Additional Inherited Members

- Protected Member Functions inherited from asl::TimeContinuations
 TimeContinuations (Data inD, double factor)
 
 TimeContinuations (acl::VectorOfElementsData &inD, double factor)
 
- Protected Attributes inherited from asl::TimeContinuations
acl::VectorOfElementsData inData
 
double factor
 
unsigned int nStorages
 

Detailed Description

Numerical method that generates temporal extrapolation of the data with Lagrangian polynoms of fractional argument.

The method computes Lagrange polinomial extrapolation of order \(k\) in time. The time is taken in the form \( (t+t_s)^{-1}\). factor defines extrapolation length. \( t_s\) is defined as:

\[ t_s = 2 k+ factor \]

The interpolation polinoms are nothing else but the Lagrange one with \( x \) defined as \( x=(t+t_s)^{-1} \)

\[ u(t+dt*factor) = \sum_{i=0}^n y_i l_i \]

where

\[ l_i(x) = \prod_{j=0, j\neq i}^k \frac{x-x_j}{x_i-x_j}\]

The first avalible point has \( t_0 = -k$. The last avalible point has \) t_k = 0$.

Definition at line 114 of file aslTimeContinuations.h.

Member Typedef Documentation

◆ Data

Definition at line 117 of file aslTimeContinuations.h.

◆ Field

Definition at line 118 of file aslTimeContinuations.h.

Constructor & Destructor Documentation

◆ TimeContinPLagrangeFraction() [1/2]

asl::TimeContinPLagrangeFraction::TimeContinPLagrangeFraction ( Data  inD,
double  f,
unsigned int  order 
)

◆ TimeContinPLagrangeFraction() [2/2]

asl::TimeContinPLagrangeFraction::TimeContinPLagrangeFraction ( acl::VectorOfElementsData inD,
double  f,
unsigned int  order 
)

Member Function Documentation

◆ execute()

void asl::TimeContinPLagrangeFraction::execute ( )
virtual

Executes the numerical procedure.

Implements asl::TimeContinuations.

◆ init()

virtual void asl::TimeContinPLagrangeFraction::init ( )
virtual

Builds the necesery internal data and kernels.

Implements asl::TimeContinuations.


The documentation for this class was generated from the following file: