ASL  0.1.7
Advanced Simulation Library
pitot_tube_ice.cc

Example: Icing process in the Pitot tube

/*
* Advanced Simulation Library <http://asl.org.il>
*
* Copyright 2015 Avtech Scientific <http://avtechscientific.com>
*
*
* This file is part of Advanced Simulation Library (ASL).
*
* ASL is free software: you can redistribute it and/or modify it
* under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, version 3 of the License.
*
* ASL is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with ASL. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <aslGeomInc.h>
#include <aslGenerators.h>
#include <num/aslLBGK.h>
#include <num/aslLBGKBC.h>
#include <num/aslBasicBC.h>
typedef float FlT;
//typedef double FlT;
using asl::AVec;
{
private:
void init();
public:
void load(int argc, char * argv[]);
};
appParamsManager("pitot_tube_ice", "0.1"),
size(3),
dx(0.000125, "dx", "space step"),
dt(1., "dt", "time step"),
tSimulation(2e-3, "simulation_time", "simulation time"),
tOutput(1e-4, "output_interval", "output interval"),
nu(6.25e-10/4., "nu", "viscosity"),
rIn(0.0015, "r_in", "Internal radius, m"),
rEx(0.005, "r_ex", "External radius, m"),
lCyl(0.002, "l_cyl", "Length of cylindric part, m"),
lCone(0.02, "l_cone", "Length of conic part, m"),
temperature(253, "temperature", "temperature, K"),
humidity(.5, "humidity", "relative humidity, K"),
flowVel(0.08, "flow_vel", "flow velocity")
{
}
void Parameters::load(int argc, char * argv[])
{
appParamsManager.load(argc, argv);
init();
}
{
nuNum = nu.v() * dt.v() / dx.v() / dx.v();
size[0] = 1.0*(lCyl.v() + lCone.v()) / dx.v() + 1;
size[1] = rEx.v() * 2.5 / dx.v() + 1;
size[2] = rEx.v() * 2.5 / dx.v() + 1;
}
void Parameters::init()
{
if (rEx.v() < rIn.v())
asl::errorMessage("External tube's diameter is smaller than internal one");
}
// generate geometry
{
asl::AVec<double> orientation(asl::makeAVec(1., 0., 0.));
asl::AVec<double> center(asl::AVec<double>(params.size)*.5*params.dx.v());
auto centerCyl(center);
centerCyl[0] = params.lCyl.v()*.45;
auto centerHole(centerCyl+(params.lCone.v()*.6)*orientation);
auto lHole(params.lCyl.v()+params.lCone.v());
auto apexCone(centerCyl+orientation*(params.lCyl.v()*.49+params.lCone.v()));
tubeGeometry = ((generateDFCylinder(params.rEx.v(), orientation*params.lCyl.v(), centerCyl) |
generateDFCone(params.rEx.v()*.98, -orientation*params.lCone.v(), apexCone)) &
-generateDFCylinder(params.rIn.v(), orientation*lHole, centerHole)) &
generateDFPlane(orientation, apexCone-orientation*params.lCone.v()*.5);
return asl::normalize(tubeGeometry, params.dx.v());
}
int main(int argc, char *argv[])
{
Parameters params;
params.load(argc, argv);
std::cout << "Data initialization...";
asl::Block block(params.size, params.dx.v());
auto mcfMapMem(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
asl::initData(mcfMapMem, generateGeometry(block, params));
// auto waterFrac(asl::generateDataContainerACL_SP<FlT>(block, 1, 1u));
// asl::initData(waterFrac, 0);
std::cout << "Finished" << endl;
std::cout << "Flow: Numerics initialization...";
auto templ(&asl::d3q15());
asl::SPLBGK lbgk(new asl::LBGK(block,
templ));
lbgk->init();
lbgkUtil->initF(acl::generateVEConstant(-0.9*params.flowVel.v(), params.flowVel.v()*.4, .0));
auto flowVel(lbgk->getVelocity());
// auto nmWater(asl::generateFDAdvectionDiffusion(waterFrac, 0.01, flowVel, templ, false));
// nmWater->init();
std::vector<asl::SPNumMethod> bc;
std::vector<asl::SPNumMethod> bcV;
std::vector<asl::SPNumMethod> bcDif;
bc.push_back(generateBCNoSlip(lbgk, mcfMapMem));
bc.push_back(generateBCConstantPressure(lbgk,1.,{asl::ZE}));
bc.push_back(generateBCConstantPressureVelocity(lbgk, 1.,
makeAVec(-params.flowVel.v()*.9,params.flowVel.v()*.3,0.),
bcDif.push_back(generateBCNoSlipVel(lbgk, mcfMapMem));
bcV.push_back(generateBCNoSlipRho(lbgk, mcfMapMem));
// bc.push_back(generateBCConstantGradient(waterFrac, 0., mcfMapMem, templ));
// bc.push_back(generateBCConstantValue(waterFrac, 1., {asl::YE}));
// bc.push_back(generateBCConstantValue(waterFrac, 0., {asl::Y0, asl::Z0, asl::ZE}));
initAll(bc);
initAll(bcDif);
initAll(bcV);
std::cout << "Finished" << endl;
std::cout << "Computing..." << endl;
asl::Timer timer;
asl::WriterVTKXML writer(params.appParamsManager.getDir() + "pitot_tube");
writer.addScalars("map", *mcfMapMem);
// writer.addScalars("water", *waterFrac);
writer.addScalars("rho", *lbgk->getRho());
writer.addVector("v", *flowVel);
executeAll(bcDif);
executeAll(bcV);
writer.write();
timer.start();
for(unsigned int i(1); i < 8001; ++i)
{
lbgk->execute();
executeAll(bcDif);
// nmWater->execute();
if(!(i%800))
{
timer.stop();
cout << i << "/8000; time left (estimated): " << timer.estimatedRemainder(double(i)/8000.) << endl;
executeAll(bcV);
writer.write();
timer.start();
}
}
timer.stop();
cout << "Finished" << endl;
cout << "Computation statistic:" << endl;
cout << "Real Time = " << timer.realTime() << "; Processor Time = "
<< timer.processorTime() << "; Processor Load = "
<< timer.processorLoad() * 100 << "%" << endl;
return 0;
}