ASL
0.1.7
Advanced Simulation Library
|
Numerical method that generates temporal extrapolation of the data with Lagrangian polynoms. More...
#include <aslTimeContinuations.h>
Public Member Functions | |
TimeContinPLagrange (Data inD, double f, unsigned int order) | |
TimeContinPLagrange (acl::VectorOfElementsData &inD, double f, unsigned int order) | |
virtual void | execute () |
Executes the numerical procedure. More... | |
virtual void | init () |
Builds the necesery internal data and kernels. More... | |
![]() | |
void | addData (Data inD) |
void | addData (acl::VectorOfElementsData &inD) |
void | reset () |
makes reset of the contiuation (storage) cicle More... | |
![]() | |
virtual | ~NumMethod () |
Additional Inherited Members | |
![]() | |
typedef SPDataWithGhostNodesACLData | Data |
![]() | |
TimeContinuations (Data inD, double factor) | |
TimeContinuations (acl::VectorOfElementsData &inD, double factor) | |
![]() | |
acl::VectorOfElementsData | inData |
double | factor |
unsigned int | nStorages |
Numerical method that generates temporal extrapolation of the data with Lagrangian polynoms.
The method computes Lagrange polinomial extrapolation of order \(k\) in time. factor
defines extrapolation length:
\[ u(t+dt*factor) = \sum_{i=0}^n y_i l_i \]
where
\[ l_i(x) = \prod_{j=0, j\neq i}^k \frac{x-x_j}{x_i-x_j}\]
The first avalible point has \( t_0 = -k$. The last avalible point has \) t_k = 0$.
Definition at line 80 of file aslTimeContinuations.h.
asl::TimeContinPLagrange::TimeContinPLagrange | ( | Data | inD, |
double | f, | ||
unsigned int | order | ||
) |
asl::TimeContinPLagrange::TimeContinPLagrange | ( | acl::VectorOfElementsData & | inD, |
double | f, | ||
unsigned int | order | ||
) |
|
virtual |
Executes the numerical procedure.
Implements asl::TimeContinuations.
|
virtual |
Builds the necesery internal data and kernels.
Implements asl::TimeContinuations.