We randomly choose an r × n matrix A over ZZ with entries up to the given Height, and take the time to compute B=ker A and an LLL basis of B.
i1 : setRandomSeed "nice example 2"; |
i2 : r=10,n=20 o2 = (10, 20) o2 : Sequence |
i3 : (m,t1,t2)=testTimeForLLLonSyzygies(r,n,Height=>11) o3 = ({5, 2.91596e52, 9}, .00717084, .00348856) o3 : Sequence |
i4 : (m,t1,t2)=testTimeForLLLonSyzygies(15,30,Height=>100) o4 = ({50, 2.30853e454, 98}, .0257853, .203612) o4 : Sequence |
i5 : L=apply(10,c->(testTimeForLLLonSyzygies(15,30))_{1,2}) o5 = {{.0279898, .061899}, {.0256856, .0183315}, {.0271505, .030351}, ------------------------------------------------------------------------ {.0277125, .169706}, {.0218211, .0682573}, {.0243794, .0678935}, ------------------------------------------------------------------------ {.0207347, .0366959}, {.0219039, .0331952}, {.0189853, .0239535}, ------------------------------------------------------------------------ {.0248031, .0394808}} o5 : List |
i6 : 1/10*sum(L,t->t_0) o6 = .0241166 o6 : RR (of precision 53) |
i7 : 1/10*sum(L,t->t_1) o7 = .054976402 o7 : RR (of precision 53) |